[S390] 1K/2K page table pages.
[linux-2.6/libata-dev.git] / arch / s390 / mm / vmem.c
blob434491f8f47cb26338492d4debb0b528871c6531
1 /*
2 * arch/s390/mm/vmem.c
4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6 */
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
18 static DEFINE_MUTEX(vmem_mutex);
20 struct memory_segment {
21 struct list_head list;
22 unsigned long start;
23 unsigned long size;
26 static LIST_HEAD(mem_segs);
28 void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
29 unsigned long start_pfn)
31 struct page *start, *end;
32 struct page *map_start, *map_end;
33 int i;
35 start = pfn_to_page(start_pfn);
36 end = start + size;
38 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
39 unsigned long cstart, cend;
41 cstart = PFN_DOWN(memory_chunk[i].addr);
42 cend = cstart + PFN_DOWN(memory_chunk[i].size);
44 map_start = mem_map + cstart;
45 map_end = mem_map + cend;
47 if (map_start < start)
48 map_start = start;
49 if (map_end > end)
50 map_end = end;
52 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
53 / sizeof(struct page);
54 map_end += ((PFN_ALIGN((unsigned long) map_end)
55 - (unsigned long) map_end)
56 / sizeof(struct page));
58 if (map_start < map_end)
59 memmap_init_zone((unsigned long)(map_end - map_start),
60 nid, zone, page_to_pfn(map_start),
61 MEMMAP_EARLY);
65 static void __ref *vmem_alloc_pages(unsigned int order)
67 if (slab_is_available())
68 return (void *)__get_free_pages(GFP_KERNEL, order);
69 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
72 #define vmem_pud_alloc() ({ BUG(); ((pud_t *) NULL); })
74 static inline pmd_t *vmem_pmd_alloc(void)
76 pmd_t *pmd = NULL;
78 #ifdef CONFIG_64BIT
79 pmd = vmem_alloc_pages(2);
80 if (!pmd)
81 return NULL;
82 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4);
83 #endif
84 return pmd;
87 static pte_t __init_refok *vmem_pte_alloc(void)
89 pte_t *pte;
91 if (slab_is_available())
92 pte = (pte_t *) page_table_alloc(&init_mm);
93 else
94 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
95 if (!pte)
96 return NULL;
97 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
98 PTRS_PER_PTE * sizeof(pte_t));
99 return pte;
103 * Add a physical memory range to the 1:1 mapping.
105 static int vmem_add_range(unsigned long start, unsigned long size)
107 unsigned long address;
108 pgd_t *pg_dir;
109 pud_t *pu_dir;
110 pmd_t *pm_dir;
111 pte_t *pt_dir;
112 pte_t pte;
113 int ret = -ENOMEM;
115 for (address = start; address < start + size; address += PAGE_SIZE) {
116 pg_dir = pgd_offset_k(address);
117 if (pgd_none(*pg_dir)) {
118 pu_dir = vmem_pud_alloc();
119 if (!pu_dir)
120 goto out;
121 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
124 pu_dir = pud_offset(pg_dir, address);
125 if (pud_none(*pu_dir)) {
126 pm_dir = vmem_pmd_alloc();
127 if (!pm_dir)
128 goto out;
129 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
132 pm_dir = pmd_offset(pu_dir, address);
133 if (pmd_none(*pm_dir)) {
134 pt_dir = vmem_pte_alloc();
135 if (!pt_dir)
136 goto out;
137 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
140 pt_dir = pte_offset_kernel(pm_dir, address);
141 pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
142 *pt_dir = pte;
144 ret = 0;
145 out:
146 flush_tlb_kernel_range(start, start + size);
147 return ret;
151 * Remove a physical memory range from the 1:1 mapping.
152 * Currently only invalidates page table entries.
154 static void vmem_remove_range(unsigned long start, unsigned long size)
156 unsigned long address;
157 pgd_t *pg_dir;
158 pud_t *pu_dir;
159 pmd_t *pm_dir;
160 pte_t *pt_dir;
161 pte_t pte;
163 pte_val(pte) = _PAGE_TYPE_EMPTY;
164 for (address = start; address < start + size; address += PAGE_SIZE) {
165 pg_dir = pgd_offset_k(address);
166 pu_dir = pud_offset(pg_dir, address);
167 if (pud_none(*pu_dir))
168 continue;
169 pm_dir = pmd_offset(pu_dir, address);
170 if (pmd_none(*pm_dir))
171 continue;
172 pt_dir = pte_offset_kernel(pm_dir, address);
173 *pt_dir = pte;
175 flush_tlb_kernel_range(start, start + size);
179 * Add a backed mem_map array to the virtual mem_map array.
181 static int vmem_add_mem_map(unsigned long start, unsigned long size)
183 unsigned long address, start_addr, end_addr;
184 struct page *map_start, *map_end;
185 pgd_t *pg_dir;
186 pud_t *pu_dir;
187 pmd_t *pm_dir;
188 pte_t *pt_dir;
189 pte_t pte;
190 int ret = -ENOMEM;
192 map_start = VMEM_MAP + PFN_DOWN(start);
193 map_end = VMEM_MAP + PFN_DOWN(start + size);
195 start_addr = (unsigned long) map_start & PAGE_MASK;
196 end_addr = PFN_ALIGN((unsigned long) map_end);
198 for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
199 pg_dir = pgd_offset_k(address);
200 if (pgd_none(*pg_dir)) {
201 pu_dir = vmem_pud_alloc();
202 if (!pu_dir)
203 goto out;
204 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
207 pu_dir = pud_offset(pg_dir, address);
208 if (pud_none(*pu_dir)) {
209 pm_dir = vmem_pmd_alloc();
210 if (!pm_dir)
211 goto out;
212 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
215 pm_dir = pmd_offset(pu_dir, address);
216 if (pmd_none(*pm_dir)) {
217 pt_dir = vmem_pte_alloc();
218 if (!pt_dir)
219 goto out;
220 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
223 pt_dir = pte_offset_kernel(pm_dir, address);
224 if (pte_none(*pt_dir)) {
225 unsigned long new_page;
227 new_page =__pa(vmem_alloc_pages(0));
228 if (!new_page)
229 goto out;
230 pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
231 *pt_dir = pte;
234 ret = 0;
235 out:
236 flush_tlb_kernel_range(start_addr, end_addr);
237 return ret;
240 static int vmem_add_mem(unsigned long start, unsigned long size)
242 int ret;
244 ret = vmem_add_mem_map(start, size);
245 if (ret)
246 return ret;
247 return vmem_add_range(start, size);
251 * Add memory segment to the segment list if it doesn't overlap with
252 * an already present segment.
254 static int insert_memory_segment(struct memory_segment *seg)
256 struct memory_segment *tmp;
258 if (seg->start + seg->size >= VMEM_MAX_PHYS ||
259 seg->start + seg->size < seg->start)
260 return -ERANGE;
262 list_for_each_entry(tmp, &mem_segs, list) {
263 if (seg->start >= tmp->start + tmp->size)
264 continue;
265 if (seg->start + seg->size <= tmp->start)
266 continue;
267 return -ENOSPC;
269 list_add(&seg->list, &mem_segs);
270 return 0;
274 * Remove memory segment from the segment list.
276 static void remove_memory_segment(struct memory_segment *seg)
278 list_del(&seg->list);
281 static void __remove_shared_memory(struct memory_segment *seg)
283 remove_memory_segment(seg);
284 vmem_remove_range(seg->start, seg->size);
287 int remove_shared_memory(unsigned long start, unsigned long size)
289 struct memory_segment *seg;
290 int ret;
292 mutex_lock(&vmem_mutex);
294 ret = -ENOENT;
295 list_for_each_entry(seg, &mem_segs, list) {
296 if (seg->start == start && seg->size == size)
297 break;
300 if (seg->start != start || seg->size != size)
301 goto out;
303 ret = 0;
304 __remove_shared_memory(seg);
305 kfree(seg);
306 out:
307 mutex_unlock(&vmem_mutex);
308 return ret;
311 int add_shared_memory(unsigned long start, unsigned long size)
313 struct memory_segment *seg;
314 struct page *page;
315 unsigned long pfn, num_pfn, end_pfn;
316 int ret;
318 mutex_lock(&vmem_mutex);
319 ret = -ENOMEM;
320 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
321 if (!seg)
322 goto out;
323 seg->start = start;
324 seg->size = size;
326 ret = insert_memory_segment(seg);
327 if (ret)
328 goto out_free;
330 ret = vmem_add_mem(start, size);
331 if (ret)
332 goto out_remove;
334 pfn = PFN_DOWN(start);
335 num_pfn = PFN_DOWN(size);
336 end_pfn = pfn + num_pfn;
338 page = pfn_to_page(pfn);
339 memset(page, 0, num_pfn * sizeof(struct page));
341 for (; pfn < end_pfn; pfn++) {
342 page = pfn_to_page(pfn);
343 init_page_count(page);
344 reset_page_mapcount(page);
345 SetPageReserved(page);
346 INIT_LIST_HEAD(&page->lru);
348 goto out;
350 out_remove:
351 __remove_shared_memory(seg);
352 out_free:
353 kfree(seg);
354 out:
355 mutex_unlock(&vmem_mutex);
356 return ret;
360 * map whole physical memory to virtual memory (identity mapping)
361 * we reserve enough space in the vmalloc area for vmemmap to hotplug
362 * additional memory segments.
364 void __init vmem_map_init(void)
366 int i;
368 INIT_LIST_HEAD(&init_mm.context.crst_list);
369 INIT_LIST_HEAD(&init_mm.context.pgtable_list);
370 init_mm.context.noexec = 0;
371 NODE_DATA(0)->node_mem_map = VMEM_MAP;
372 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
373 vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
377 * Convert memory chunk array to a memory segment list so there is a single
378 * list that contains both r/w memory and shared memory segments.
380 static int __init vmem_convert_memory_chunk(void)
382 struct memory_segment *seg;
383 int i;
385 mutex_lock(&vmem_mutex);
386 for (i = 0; i < MEMORY_CHUNKS; i++) {
387 if (!memory_chunk[i].size)
388 continue;
389 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
390 if (!seg)
391 panic("Out of memory...\n");
392 seg->start = memory_chunk[i].addr;
393 seg->size = memory_chunk[i].size;
394 insert_memory_segment(seg);
396 mutex_unlock(&vmem_mutex);
397 return 0;
400 core_initcall(vmem_convert_memory_chunk);