backing-dev: Handle class_create() failure
[linux-2.6/libata-dev.git] / block / cfq-iosched.c
blob2c7a0f4f3cd7860da6a50c4f066aa1521927cc63
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
19 * tunables
21 /* max queue in one round of service */
22 static const int cfq_quantum = 8;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
51 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
52 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
54 #define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
56 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58 static struct kmem_cache *cfq_pool;
59 static struct kmem_cache *cfq_ioc_pool;
61 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62 static struct completion *ioc_gone;
63 static DEFINE_SPINLOCK(ioc_gone_lock);
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
78 struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
81 unsigned count;
82 unsigned total_weight;
83 u64 min_vdisktime;
84 struct rb_node *active;
86 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
90 * Per process-grouping structure
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 unsigned int slice_dispatch;
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
124 unsigned long slice_end;
125 long slice_resid;
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
136 pid_t pid;
138 u32 seek_history;
139 sector_t last_request_pos;
141 struct cfq_rb_root *service_tree;
142 struct cfq_queue *new_cfqq;
143 struct cfq_group *cfqg;
144 struct cfq_group *orig_cfqg;
145 /* Sectors dispatched in current dispatch round */
146 unsigned long nr_sectors;
150 * First index in the service_trees.
151 * IDLE is handled separately, so it has negative index
153 enum wl_prio_t {
154 BE_WORKLOAD = 0,
155 RT_WORKLOAD = 1,
156 IDLE_WORKLOAD = 2,
160 * Second index in the service_trees.
162 enum wl_type_t {
163 ASYNC_WORKLOAD = 0,
164 SYNC_NOIDLE_WORKLOAD = 1,
165 SYNC_WORKLOAD = 2
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170 /* group service_tree member */
171 struct rb_node rb_node;
173 /* group service_tree key */
174 u64 vdisktime;
175 unsigned int weight;
176 bool on_st;
178 /* number of cfqq currently on this group */
179 int nr_cfqq;
181 /* Per group busy queus average. Useful for workload slice calc. */
182 unsigned int busy_queues_avg[2];
184 * rr lists of queues with requests, onle rr for each priority class.
185 * Counts are embedded in the cfq_rb_root
187 struct cfq_rb_root service_trees[2][3];
188 struct cfq_rb_root service_tree_idle;
190 unsigned long saved_workload_slice;
191 enum wl_type_t saved_workload;
192 enum wl_prio_t saved_serving_prio;
193 struct blkio_group blkg;
194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
195 struct hlist_node cfqd_node;
196 atomic_t ref;
197 #endif
201 * Per block device queue structure
203 struct cfq_data {
204 struct request_queue *queue;
205 /* Root service tree for cfq_groups */
206 struct cfq_rb_root grp_service_tree;
207 struct cfq_group root_group;
210 * The priority currently being served
212 enum wl_prio_t serving_prio;
213 enum wl_type_t serving_type;
214 unsigned long workload_expires;
215 struct cfq_group *serving_group;
216 bool noidle_tree_requires_idle;
219 * Each priority tree is sorted by next_request position. These
220 * trees are used when determining if two or more queues are
221 * interleaving requests (see cfq_close_cooperator).
223 struct rb_root prio_trees[CFQ_PRIO_LISTS];
225 unsigned int busy_queues;
227 int rq_in_driver;
228 int rq_in_flight[2];
231 * queue-depth detection
233 int rq_queued;
234 int hw_tag;
236 * hw_tag can be
237 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239 * 0 => no NCQ
241 int hw_tag_est_depth;
242 unsigned int hw_tag_samples;
245 * idle window management
247 struct timer_list idle_slice_timer;
248 struct work_struct unplug_work;
250 struct cfq_queue *active_queue;
251 struct cfq_io_context *active_cic;
254 * async queue for each priority case
256 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257 struct cfq_queue *async_idle_cfqq;
259 sector_t last_position;
262 * tunables, see top of file
264 unsigned int cfq_quantum;
265 unsigned int cfq_fifo_expire[2];
266 unsigned int cfq_back_penalty;
267 unsigned int cfq_back_max;
268 unsigned int cfq_slice[2];
269 unsigned int cfq_slice_async_rq;
270 unsigned int cfq_slice_idle;
271 unsigned int cfq_latency;
272 unsigned int cfq_group_isolation;
274 struct list_head cic_list;
277 * Fallback dummy cfqq for extreme OOM conditions
279 struct cfq_queue oom_cfqq;
281 unsigned long last_delayed_sync;
283 /* List of cfq groups being managed on this device*/
284 struct hlist_head cfqg_list;
285 struct rcu_head rcu;
288 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
290 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291 enum wl_prio_t prio,
292 enum wl_type_t type)
294 if (!cfqg)
295 return NULL;
297 if (prio == IDLE_WORKLOAD)
298 return &cfqg->service_tree_idle;
300 return &cfqg->service_trees[prio][type];
303 enum cfqq_state_flags {
304 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
305 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
306 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
307 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
309 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
310 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
311 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
312 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
313 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
314 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
315 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
316 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
319 #define CFQ_CFQQ_FNS(name) \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(split_coop);
344 CFQ_CFQQ_FNS(deep);
345 CFQ_CFQQ_FNS(wait_busy);
346 #undef CFQ_CFQQ_FNS
348 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
349 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
350 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352 blkg_path(&(cfqq)->cfqg->blkg), ##args);
354 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
355 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
356 blkg_path(&(cfqg)->blkg), ##args); \
358 #else
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
362 #endif
363 #define cfq_log(cfqd, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
366 /* Traverses through cfq group service trees */
367 #define for_each_cfqg_st(cfqg, i, j, st) \
368 for (i = 0; i <= IDLE_WORKLOAD; i++) \
369 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370 : &cfqg->service_tree_idle; \
371 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372 (i == IDLE_WORKLOAD && j == 0); \
373 j++, st = i < IDLE_WORKLOAD ? \
374 &cfqg->service_trees[i][j]: NULL) \
377 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
379 if (cfq_class_idle(cfqq))
380 return IDLE_WORKLOAD;
381 if (cfq_class_rt(cfqq))
382 return RT_WORKLOAD;
383 return BE_WORKLOAD;
387 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
389 if (!cfq_cfqq_sync(cfqq))
390 return ASYNC_WORKLOAD;
391 if (!cfq_cfqq_idle_window(cfqq))
392 return SYNC_NOIDLE_WORKLOAD;
393 return SYNC_WORKLOAD;
396 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397 struct cfq_data *cfqd,
398 struct cfq_group *cfqg)
400 if (wl == IDLE_WORKLOAD)
401 return cfqg->service_tree_idle.count;
403 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
408 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409 struct cfq_group *cfqg)
411 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
415 static void cfq_dispatch_insert(struct request_queue *, struct request *);
416 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417 struct io_context *, gfp_t);
418 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419 struct io_context *);
421 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422 bool is_sync)
424 return cic->cfqq[is_sync];
427 static inline void cic_set_cfqq(struct cfq_io_context *cic,
428 struct cfq_queue *cfqq, bool is_sync)
430 cic->cfqq[is_sync] = cfqq;
434 * We regard a request as SYNC, if it's either a read or has the SYNC bit
435 * set (in which case it could also be direct WRITE).
437 static inline bool cfq_bio_sync(struct bio *bio)
439 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
443 * scheduler run of queue, if there are requests pending and no one in the
444 * driver that will restart queueing
446 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
448 if (cfqd->busy_queues) {
449 cfq_log(cfqd, "schedule dispatch");
450 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
454 static int cfq_queue_empty(struct request_queue *q)
456 struct cfq_data *cfqd = q->elevator->elevator_data;
458 return !cfqd->rq_queued;
462 * Scale schedule slice based on io priority. Use the sync time slice only
463 * if a queue is marked sync and has sync io queued. A sync queue with async
464 * io only, should not get full sync slice length.
466 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
467 unsigned short prio)
469 const int base_slice = cfqd->cfq_slice[sync];
471 WARN_ON(prio >= IOPRIO_BE_NR);
473 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
476 static inline int
477 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
479 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
482 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
484 u64 d = delta << CFQ_SERVICE_SHIFT;
486 d = d * BLKIO_WEIGHT_DEFAULT;
487 do_div(d, cfqg->weight);
488 return d;
491 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
493 s64 delta = (s64)(vdisktime - min_vdisktime);
494 if (delta > 0)
495 min_vdisktime = vdisktime;
497 return min_vdisktime;
500 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
502 s64 delta = (s64)(vdisktime - min_vdisktime);
503 if (delta < 0)
504 min_vdisktime = vdisktime;
506 return min_vdisktime;
509 static void update_min_vdisktime(struct cfq_rb_root *st)
511 u64 vdisktime = st->min_vdisktime;
512 struct cfq_group *cfqg;
514 if (st->active) {
515 cfqg = rb_entry_cfqg(st->active);
516 vdisktime = cfqg->vdisktime;
519 if (st->left) {
520 cfqg = rb_entry_cfqg(st->left);
521 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
524 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
528 * get averaged number of queues of RT/BE priority.
529 * average is updated, with a formula that gives more weight to higher numbers,
530 * to quickly follows sudden increases and decrease slowly
533 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534 struct cfq_group *cfqg, bool rt)
536 unsigned min_q, max_q;
537 unsigned mult = cfq_hist_divisor - 1;
538 unsigned round = cfq_hist_divisor / 2;
539 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
541 min_q = min(cfqg->busy_queues_avg[rt], busy);
542 max_q = max(cfqg->busy_queues_avg[rt], busy);
543 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
544 cfq_hist_divisor;
545 return cfqg->busy_queues_avg[rt];
548 static inline unsigned
549 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
551 struct cfq_rb_root *st = &cfqd->grp_service_tree;
553 return cfq_target_latency * cfqg->weight / st->total_weight;
556 static inline void
557 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
559 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560 if (cfqd->cfq_latency) {
562 * interested queues (we consider only the ones with the same
563 * priority class in the cfq group)
565 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566 cfq_class_rt(cfqq));
567 unsigned sync_slice = cfqd->cfq_slice[1];
568 unsigned expect_latency = sync_slice * iq;
569 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
571 if (expect_latency > group_slice) {
572 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573 /* scale low_slice according to IO priority
574 * and sync vs async */
575 unsigned low_slice =
576 min(slice, base_low_slice * slice / sync_slice);
577 /* the adapted slice value is scaled to fit all iqs
578 * into the target latency */
579 slice = max(slice * group_slice / expect_latency,
580 low_slice);
583 cfqq->slice_start = jiffies;
584 cfqq->slice_end = jiffies + slice;
585 cfqq->allocated_slice = slice;
586 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
590 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591 * isn't valid until the first request from the dispatch is activated
592 * and the slice time set.
594 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
596 if (cfq_cfqq_slice_new(cfqq))
597 return 0;
598 if (time_before(jiffies, cfqq->slice_end))
599 return 0;
601 return 1;
605 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
606 * We choose the request that is closest to the head right now. Distance
607 * behind the head is penalized and only allowed to a certain extent.
609 static struct request *
610 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
612 sector_t s1, s2, d1 = 0, d2 = 0;
613 unsigned long back_max;
614 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
615 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
616 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
618 if (rq1 == NULL || rq1 == rq2)
619 return rq2;
620 if (rq2 == NULL)
621 return rq1;
623 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624 return rq1;
625 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626 return rq2;
627 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628 return rq1;
629 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630 return rq2;
632 s1 = blk_rq_pos(rq1);
633 s2 = blk_rq_pos(rq2);
636 * by definition, 1KiB is 2 sectors
638 back_max = cfqd->cfq_back_max * 2;
641 * Strict one way elevator _except_ in the case where we allow
642 * short backward seeks which are biased as twice the cost of a
643 * similar forward seek.
645 if (s1 >= last)
646 d1 = s1 - last;
647 else if (s1 + back_max >= last)
648 d1 = (last - s1) * cfqd->cfq_back_penalty;
649 else
650 wrap |= CFQ_RQ1_WRAP;
652 if (s2 >= last)
653 d2 = s2 - last;
654 else if (s2 + back_max >= last)
655 d2 = (last - s2) * cfqd->cfq_back_penalty;
656 else
657 wrap |= CFQ_RQ2_WRAP;
659 /* Found required data */
662 * By doing switch() on the bit mask "wrap" we avoid having to
663 * check two variables for all permutations: --> faster!
665 switch (wrap) {
666 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
667 if (d1 < d2)
668 return rq1;
669 else if (d2 < d1)
670 return rq2;
671 else {
672 if (s1 >= s2)
673 return rq1;
674 else
675 return rq2;
678 case CFQ_RQ2_WRAP:
679 return rq1;
680 case CFQ_RQ1_WRAP:
681 return rq2;
682 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
683 default:
685 * Since both rqs are wrapped,
686 * start with the one that's further behind head
687 * (--> only *one* back seek required),
688 * since back seek takes more time than forward.
690 if (s1 <= s2)
691 return rq1;
692 else
693 return rq2;
698 * The below is leftmost cache rbtree addon
700 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
702 /* Service tree is empty */
703 if (!root->count)
704 return NULL;
706 if (!root->left)
707 root->left = rb_first(&root->rb);
709 if (root->left)
710 return rb_entry(root->left, struct cfq_queue, rb_node);
712 return NULL;
715 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
717 if (!root->left)
718 root->left = rb_first(&root->rb);
720 if (root->left)
721 return rb_entry_cfqg(root->left);
723 return NULL;
726 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
728 rb_erase(n, root);
729 RB_CLEAR_NODE(n);
732 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
734 if (root->left == n)
735 root->left = NULL;
736 rb_erase_init(n, &root->rb);
737 --root->count;
741 * would be nice to take fifo expire time into account as well
743 static struct request *
744 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745 struct request *last)
747 struct rb_node *rbnext = rb_next(&last->rb_node);
748 struct rb_node *rbprev = rb_prev(&last->rb_node);
749 struct request *next = NULL, *prev = NULL;
751 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
753 if (rbprev)
754 prev = rb_entry_rq(rbprev);
756 if (rbnext)
757 next = rb_entry_rq(rbnext);
758 else {
759 rbnext = rb_first(&cfqq->sort_list);
760 if (rbnext && rbnext != &last->rb_node)
761 next = rb_entry_rq(rbnext);
764 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
767 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768 struct cfq_queue *cfqq)
771 * just an approximation, should be ok.
773 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
774 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
777 static inline s64
778 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
780 return cfqg->vdisktime - st->min_vdisktime;
783 static void
784 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
786 struct rb_node **node = &st->rb.rb_node;
787 struct rb_node *parent = NULL;
788 struct cfq_group *__cfqg;
789 s64 key = cfqg_key(st, cfqg);
790 int left = 1;
792 while (*node != NULL) {
793 parent = *node;
794 __cfqg = rb_entry_cfqg(parent);
796 if (key < cfqg_key(st, __cfqg))
797 node = &parent->rb_left;
798 else {
799 node = &parent->rb_right;
800 left = 0;
804 if (left)
805 st->left = &cfqg->rb_node;
807 rb_link_node(&cfqg->rb_node, parent, node);
808 rb_insert_color(&cfqg->rb_node, &st->rb);
811 static void
812 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
814 struct cfq_rb_root *st = &cfqd->grp_service_tree;
815 struct cfq_group *__cfqg;
816 struct rb_node *n;
818 cfqg->nr_cfqq++;
819 if (cfqg->on_st)
820 return;
823 * Currently put the group at the end. Later implement something
824 * so that groups get lesser vtime based on their weights, so that
825 * if group does not loose all if it was not continously backlogged.
827 n = rb_last(&st->rb);
828 if (n) {
829 __cfqg = rb_entry_cfqg(n);
830 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831 } else
832 cfqg->vdisktime = st->min_vdisktime;
834 __cfq_group_service_tree_add(st, cfqg);
835 cfqg->on_st = true;
836 st->total_weight += cfqg->weight;
839 static void
840 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
842 struct cfq_rb_root *st = &cfqd->grp_service_tree;
844 if (st->active == &cfqg->rb_node)
845 st->active = NULL;
847 BUG_ON(cfqg->nr_cfqq < 1);
848 cfqg->nr_cfqq--;
850 /* If there are other cfq queues under this group, don't delete it */
851 if (cfqg->nr_cfqq)
852 return;
854 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
855 cfqg->on_st = false;
856 st->total_weight -= cfqg->weight;
857 if (!RB_EMPTY_NODE(&cfqg->rb_node))
858 cfq_rb_erase(&cfqg->rb_node, st);
859 cfqg->saved_workload_slice = 0;
860 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
863 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
865 unsigned int slice_used;
868 * Queue got expired before even a single request completed or
869 * got expired immediately after first request completion.
871 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
873 * Also charge the seek time incurred to the group, otherwise
874 * if there are mutiple queues in the group, each can dispatch
875 * a single request on seeky media and cause lots of seek time
876 * and group will never know it.
878 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
880 } else {
881 slice_used = jiffies - cfqq->slice_start;
882 if (slice_used > cfqq->allocated_slice)
883 slice_used = cfqq->allocated_slice;
886 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
887 cfqq->nr_sectors);
888 return slice_used;
891 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
892 struct cfq_queue *cfqq)
894 struct cfq_rb_root *st = &cfqd->grp_service_tree;
895 unsigned int used_sl, charge_sl;
896 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
897 - cfqg->service_tree_idle.count;
899 BUG_ON(nr_sync < 0);
900 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
902 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
903 charge_sl = cfqq->allocated_slice;
905 /* Can't update vdisktime while group is on service tree */
906 cfq_rb_erase(&cfqg->rb_node, st);
907 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
908 __cfq_group_service_tree_add(st, cfqg);
910 /* This group is being expired. Save the context */
911 if (time_after(cfqd->workload_expires, jiffies)) {
912 cfqg->saved_workload_slice = cfqd->workload_expires
913 - jiffies;
914 cfqg->saved_workload = cfqd->serving_type;
915 cfqg->saved_serving_prio = cfqd->serving_prio;
916 } else
917 cfqg->saved_workload_slice = 0;
919 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
920 st->min_vdisktime);
921 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
922 cfqq->nr_sectors);
925 #ifdef CONFIG_CFQ_GROUP_IOSCHED
926 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
928 if (blkg)
929 return container_of(blkg, struct cfq_group, blkg);
930 return NULL;
933 void
934 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
936 cfqg_of_blkg(blkg)->weight = weight;
939 static struct cfq_group *
940 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
942 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
943 struct cfq_group *cfqg = NULL;
944 void *key = cfqd;
945 int i, j;
946 struct cfq_rb_root *st;
947 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
948 unsigned int major, minor;
950 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
951 if (cfqg || !create)
952 goto done;
954 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
955 if (!cfqg)
956 goto done;
958 cfqg->weight = blkcg->weight;
959 for_each_cfqg_st(cfqg, i, j, st)
960 *st = CFQ_RB_ROOT;
961 RB_CLEAR_NODE(&cfqg->rb_node);
964 * Take the initial reference that will be released on destroy
965 * This can be thought of a joint reference by cgroup and
966 * elevator which will be dropped by either elevator exit
967 * or cgroup deletion path depending on who is exiting first.
969 atomic_set(&cfqg->ref, 1);
971 /* Add group onto cgroup list */
972 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
973 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
974 MKDEV(major, minor));
976 /* Add group on cfqd list */
977 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
979 done:
980 return cfqg;
984 * Search for the cfq group current task belongs to. If create = 1, then also
985 * create the cfq group if it does not exist. request_queue lock must be held.
987 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
989 struct cgroup *cgroup;
990 struct cfq_group *cfqg = NULL;
992 rcu_read_lock();
993 cgroup = task_cgroup(current, blkio_subsys_id);
994 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
995 if (!cfqg && create)
996 cfqg = &cfqd->root_group;
997 rcu_read_unlock();
998 return cfqg;
1001 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1003 /* Currently, all async queues are mapped to root group */
1004 if (!cfq_cfqq_sync(cfqq))
1005 cfqg = &cfqq->cfqd->root_group;
1007 cfqq->cfqg = cfqg;
1008 /* cfqq reference on cfqg */
1009 atomic_inc(&cfqq->cfqg->ref);
1012 static void cfq_put_cfqg(struct cfq_group *cfqg)
1014 struct cfq_rb_root *st;
1015 int i, j;
1017 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1018 if (!atomic_dec_and_test(&cfqg->ref))
1019 return;
1020 for_each_cfqg_st(cfqg, i, j, st)
1021 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1022 kfree(cfqg);
1025 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1027 /* Something wrong if we are trying to remove same group twice */
1028 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1030 hlist_del_init(&cfqg->cfqd_node);
1033 * Put the reference taken at the time of creation so that when all
1034 * queues are gone, group can be destroyed.
1036 cfq_put_cfqg(cfqg);
1039 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1041 struct hlist_node *pos, *n;
1042 struct cfq_group *cfqg;
1044 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1046 * If cgroup removal path got to blk_group first and removed
1047 * it from cgroup list, then it will take care of destroying
1048 * cfqg also.
1050 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1051 cfq_destroy_cfqg(cfqd, cfqg);
1056 * Blk cgroup controller notification saying that blkio_group object is being
1057 * delinked as associated cgroup object is going away. That also means that
1058 * no new IO will come in this group. So get rid of this group as soon as
1059 * any pending IO in the group is finished.
1061 * This function is called under rcu_read_lock(). key is the rcu protected
1062 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1063 * read lock.
1065 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1066 * it should not be NULL as even if elevator was exiting, cgroup deltion
1067 * path got to it first.
1069 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1071 unsigned long flags;
1072 struct cfq_data *cfqd = key;
1074 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1075 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1076 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1079 #else /* GROUP_IOSCHED */
1080 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1082 return &cfqd->root_group;
1084 static inline void
1085 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1086 cfqq->cfqg = cfqg;
1089 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1090 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1092 #endif /* GROUP_IOSCHED */
1095 * The cfqd->service_trees holds all pending cfq_queue's that have
1096 * requests waiting to be processed. It is sorted in the order that
1097 * we will service the queues.
1099 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1100 bool add_front)
1102 struct rb_node **p, *parent;
1103 struct cfq_queue *__cfqq;
1104 unsigned long rb_key;
1105 struct cfq_rb_root *service_tree;
1106 int left;
1107 int new_cfqq = 1;
1108 int group_changed = 0;
1110 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1111 if (!cfqd->cfq_group_isolation
1112 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1113 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1114 /* Move this cfq to root group */
1115 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1116 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1117 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1118 cfqq->orig_cfqg = cfqq->cfqg;
1119 cfqq->cfqg = &cfqd->root_group;
1120 atomic_inc(&cfqd->root_group.ref);
1121 group_changed = 1;
1122 } else if (!cfqd->cfq_group_isolation
1123 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1124 /* cfqq is sequential now needs to go to its original group */
1125 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1126 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1127 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1128 cfq_put_cfqg(cfqq->cfqg);
1129 cfqq->cfqg = cfqq->orig_cfqg;
1130 cfqq->orig_cfqg = NULL;
1131 group_changed = 1;
1132 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1134 #endif
1136 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1137 cfqq_type(cfqq));
1138 if (cfq_class_idle(cfqq)) {
1139 rb_key = CFQ_IDLE_DELAY;
1140 parent = rb_last(&service_tree->rb);
1141 if (parent && parent != &cfqq->rb_node) {
1142 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1143 rb_key += __cfqq->rb_key;
1144 } else
1145 rb_key += jiffies;
1146 } else if (!add_front) {
1148 * Get our rb key offset. Subtract any residual slice
1149 * value carried from last service. A negative resid
1150 * count indicates slice overrun, and this should position
1151 * the next service time further away in the tree.
1153 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1154 rb_key -= cfqq->slice_resid;
1155 cfqq->slice_resid = 0;
1156 } else {
1157 rb_key = -HZ;
1158 __cfqq = cfq_rb_first(service_tree);
1159 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1162 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1163 new_cfqq = 0;
1165 * same position, nothing more to do
1167 if (rb_key == cfqq->rb_key &&
1168 cfqq->service_tree == service_tree)
1169 return;
1171 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1172 cfqq->service_tree = NULL;
1175 left = 1;
1176 parent = NULL;
1177 cfqq->service_tree = service_tree;
1178 p = &service_tree->rb.rb_node;
1179 while (*p) {
1180 struct rb_node **n;
1182 parent = *p;
1183 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1186 * sort by key, that represents service time.
1188 if (time_before(rb_key, __cfqq->rb_key))
1189 n = &(*p)->rb_left;
1190 else {
1191 n = &(*p)->rb_right;
1192 left = 0;
1195 p = n;
1198 if (left)
1199 service_tree->left = &cfqq->rb_node;
1201 cfqq->rb_key = rb_key;
1202 rb_link_node(&cfqq->rb_node, parent, p);
1203 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1204 service_tree->count++;
1205 if ((add_front || !new_cfqq) && !group_changed)
1206 return;
1207 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1210 static struct cfq_queue *
1211 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1212 sector_t sector, struct rb_node **ret_parent,
1213 struct rb_node ***rb_link)
1215 struct rb_node **p, *parent;
1216 struct cfq_queue *cfqq = NULL;
1218 parent = NULL;
1219 p = &root->rb_node;
1220 while (*p) {
1221 struct rb_node **n;
1223 parent = *p;
1224 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1227 * Sort strictly based on sector. Smallest to the left,
1228 * largest to the right.
1230 if (sector > blk_rq_pos(cfqq->next_rq))
1231 n = &(*p)->rb_right;
1232 else if (sector < blk_rq_pos(cfqq->next_rq))
1233 n = &(*p)->rb_left;
1234 else
1235 break;
1236 p = n;
1237 cfqq = NULL;
1240 *ret_parent = parent;
1241 if (rb_link)
1242 *rb_link = p;
1243 return cfqq;
1246 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1248 struct rb_node **p, *parent;
1249 struct cfq_queue *__cfqq;
1251 if (cfqq->p_root) {
1252 rb_erase(&cfqq->p_node, cfqq->p_root);
1253 cfqq->p_root = NULL;
1256 if (cfq_class_idle(cfqq))
1257 return;
1258 if (!cfqq->next_rq)
1259 return;
1261 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1262 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1263 blk_rq_pos(cfqq->next_rq), &parent, &p);
1264 if (!__cfqq) {
1265 rb_link_node(&cfqq->p_node, parent, p);
1266 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1267 } else
1268 cfqq->p_root = NULL;
1272 * Update cfqq's position in the service tree.
1274 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1277 * Resorting requires the cfqq to be on the RR list already.
1279 if (cfq_cfqq_on_rr(cfqq)) {
1280 cfq_service_tree_add(cfqd, cfqq, 0);
1281 cfq_prio_tree_add(cfqd, cfqq);
1286 * add to busy list of queues for service, trying to be fair in ordering
1287 * the pending list according to last request service
1289 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1291 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1292 BUG_ON(cfq_cfqq_on_rr(cfqq));
1293 cfq_mark_cfqq_on_rr(cfqq);
1294 cfqd->busy_queues++;
1296 cfq_resort_rr_list(cfqd, cfqq);
1300 * Called when the cfqq no longer has requests pending, remove it from
1301 * the service tree.
1303 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1305 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1306 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1307 cfq_clear_cfqq_on_rr(cfqq);
1309 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1310 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1311 cfqq->service_tree = NULL;
1313 if (cfqq->p_root) {
1314 rb_erase(&cfqq->p_node, cfqq->p_root);
1315 cfqq->p_root = NULL;
1318 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1319 BUG_ON(!cfqd->busy_queues);
1320 cfqd->busy_queues--;
1324 * rb tree support functions
1326 static void cfq_del_rq_rb(struct request *rq)
1328 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1329 const int sync = rq_is_sync(rq);
1331 BUG_ON(!cfqq->queued[sync]);
1332 cfqq->queued[sync]--;
1334 elv_rb_del(&cfqq->sort_list, rq);
1336 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1338 * Queue will be deleted from service tree when we actually
1339 * expire it later. Right now just remove it from prio tree
1340 * as it is empty.
1342 if (cfqq->p_root) {
1343 rb_erase(&cfqq->p_node, cfqq->p_root);
1344 cfqq->p_root = NULL;
1349 static void cfq_add_rq_rb(struct request *rq)
1351 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1352 struct cfq_data *cfqd = cfqq->cfqd;
1353 struct request *__alias, *prev;
1355 cfqq->queued[rq_is_sync(rq)]++;
1358 * looks a little odd, but the first insert might return an alias.
1359 * if that happens, put the alias on the dispatch list
1361 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1362 cfq_dispatch_insert(cfqd->queue, __alias);
1364 if (!cfq_cfqq_on_rr(cfqq))
1365 cfq_add_cfqq_rr(cfqd, cfqq);
1368 * check if this request is a better next-serve candidate
1370 prev = cfqq->next_rq;
1371 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1374 * adjust priority tree position, if ->next_rq changes
1376 if (prev != cfqq->next_rq)
1377 cfq_prio_tree_add(cfqd, cfqq);
1379 BUG_ON(!cfqq->next_rq);
1382 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1384 elv_rb_del(&cfqq->sort_list, rq);
1385 cfqq->queued[rq_is_sync(rq)]--;
1386 cfq_add_rq_rb(rq);
1389 static struct request *
1390 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1392 struct task_struct *tsk = current;
1393 struct cfq_io_context *cic;
1394 struct cfq_queue *cfqq;
1396 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1397 if (!cic)
1398 return NULL;
1400 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1401 if (cfqq) {
1402 sector_t sector = bio->bi_sector + bio_sectors(bio);
1404 return elv_rb_find(&cfqq->sort_list, sector);
1407 return NULL;
1410 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1412 struct cfq_data *cfqd = q->elevator->elevator_data;
1414 cfqd->rq_in_driver++;
1415 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1416 cfqd->rq_in_driver);
1418 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1421 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1423 struct cfq_data *cfqd = q->elevator->elevator_data;
1425 WARN_ON(!cfqd->rq_in_driver);
1426 cfqd->rq_in_driver--;
1427 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1428 cfqd->rq_in_driver);
1431 static void cfq_remove_request(struct request *rq)
1433 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1435 if (cfqq->next_rq == rq)
1436 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1438 list_del_init(&rq->queuelist);
1439 cfq_del_rq_rb(rq);
1441 cfqq->cfqd->rq_queued--;
1442 if (rq_is_meta(rq)) {
1443 WARN_ON(!cfqq->meta_pending);
1444 cfqq->meta_pending--;
1448 static int cfq_merge(struct request_queue *q, struct request **req,
1449 struct bio *bio)
1451 struct cfq_data *cfqd = q->elevator->elevator_data;
1452 struct request *__rq;
1454 __rq = cfq_find_rq_fmerge(cfqd, bio);
1455 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1456 *req = __rq;
1457 return ELEVATOR_FRONT_MERGE;
1460 return ELEVATOR_NO_MERGE;
1463 static void cfq_merged_request(struct request_queue *q, struct request *req,
1464 int type)
1466 if (type == ELEVATOR_FRONT_MERGE) {
1467 struct cfq_queue *cfqq = RQ_CFQQ(req);
1469 cfq_reposition_rq_rb(cfqq, req);
1473 static void
1474 cfq_merged_requests(struct request_queue *q, struct request *rq,
1475 struct request *next)
1477 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1479 * reposition in fifo if next is older than rq
1481 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1482 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1483 list_move(&rq->queuelist, &next->queuelist);
1484 rq_set_fifo_time(rq, rq_fifo_time(next));
1487 if (cfqq->next_rq == next)
1488 cfqq->next_rq = rq;
1489 cfq_remove_request(next);
1492 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1493 struct bio *bio)
1495 struct cfq_data *cfqd = q->elevator->elevator_data;
1496 struct cfq_io_context *cic;
1497 struct cfq_queue *cfqq;
1500 * Disallow merge of a sync bio into an async request.
1502 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1503 return false;
1506 * Lookup the cfqq that this bio will be queued with. Allow
1507 * merge only if rq is queued there.
1509 cic = cfq_cic_lookup(cfqd, current->io_context);
1510 if (!cic)
1511 return false;
1513 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1514 return cfqq == RQ_CFQQ(rq);
1517 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1518 struct cfq_queue *cfqq)
1520 if (cfqq) {
1521 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1522 cfqd->serving_prio, cfqd->serving_type);
1523 cfqq->slice_start = 0;
1524 cfqq->dispatch_start = jiffies;
1525 cfqq->allocated_slice = 0;
1526 cfqq->slice_end = 0;
1527 cfqq->slice_dispatch = 0;
1528 cfqq->nr_sectors = 0;
1530 cfq_clear_cfqq_wait_request(cfqq);
1531 cfq_clear_cfqq_must_dispatch(cfqq);
1532 cfq_clear_cfqq_must_alloc_slice(cfqq);
1533 cfq_clear_cfqq_fifo_expire(cfqq);
1534 cfq_mark_cfqq_slice_new(cfqq);
1536 del_timer(&cfqd->idle_slice_timer);
1539 cfqd->active_queue = cfqq;
1543 * current cfqq expired its slice (or was too idle), select new one
1545 static void
1546 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1547 bool timed_out)
1549 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1551 if (cfq_cfqq_wait_request(cfqq))
1552 del_timer(&cfqd->idle_slice_timer);
1554 cfq_clear_cfqq_wait_request(cfqq);
1555 cfq_clear_cfqq_wait_busy(cfqq);
1558 * If this cfqq is shared between multiple processes, check to
1559 * make sure that those processes are still issuing I/Os within
1560 * the mean seek distance. If not, it may be time to break the
1561 * queues apart again.
1563 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1564 cfq_mark_cfqq_split_coop(cfqq);
1567 * store what was left of this slice, if the queue idled/timed out
1569 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1570 cfqq->slice_resid = cfqq->slice_end - jiffies;
1571 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1574 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1576 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1577 cfq_del_cfqq_rr(cfqd, cfqq);
1579 cfq_resort_rr_list(cfqd, cfqq);
1581 if (cfqq == cfqd->active_queue)
1582 cfqd->active_queue = NULL;
1584 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1585 cfqd->grp_service_tree.active = NULL;
1587 if (cfqd->active_cic) {
1588 put_io_context(cfqd->active_cic->ioc);
1589 cfqd->active_cic = NULL;
1593 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1595 struct cfq_queue *cfqq = cfqd->active_queue;
1597 if (cfqq)
1598 __cfq_slice_expired(cfqd, cfqq, timed_out);
1602 * Get next queue for service. Unless we have a queue preemption,
1603 * we'll simply select the first cfqq in the service tree.
1605 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1607 struct cfq_rb_root *service_tree =
1608 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1609 cfqd->serving_type);
1611 if (!cfqd->rq_queued)
1612 return NULL;
1614 /* There is nothing to dispatch */
1615 if (!service_tree)
1616 return NULL;
1617 if (RB_EMPTY_ROOT(&service_tree->rb))
1618 return NULL;
1619 return cfq_rb_first(service_tree);
1622 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1624 struct cfq_group *cfqg;
1625 struct cfq_queue *cfqq;
1626 int i, j;
1627 struct cfq_rb_root *st;
1629 if (!cfqd->rq_queued)
1630 return NULL;
1632 cfqg = cfq_get_next_cfqg(cfqd);
1633 if (!cfqg)
1634 return NULL;
1636 for_each_cfqg_st(cfqg, i, j, st)
1637 if ((cfqq = cfq_rb_first(st)) != NULL)
1638 return cfqq;
1639 return NULL;
1643 * Get and set a new active queue for service.
1645 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1646 struct cfq_queue *cfqq)
1648 if (!cfqq)
1649 cfqq = cfq_get_next_queue(cfqd);
1651 __cfq_set_active_queue(cfqd, cfqq);
1652 return cfqq;
1655 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1656 struct request *rq)
1658 if (blk_rq_pos(rq) >= cfqd->last_position)
1659 return blk_rq_pos(rq) - cfqd->last_position;
1660 else
1661 return cfqd->last_position - blk_rq_pos(rq);
1664 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1665 struct request *rq)
1667 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1670 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1671 struct cfq_queue *cur_cfqq)
1673 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1674 struct rb_node *parent, *node;
1675 struct cfq_queue *__cfqq;
1676 sector_t sector = cfqd->last_position;
1678 if (RB_EMPTY_ROOT(root))
1679 return NULL;
1682 * First, if we find a request starting at the end of the last
1683 * request, choose it.
1685 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1686 if (__cfqq)
1687 return __cfqq;
1690 * If the exact sector wasn't found, the parent of the NULL leaf
1691 * will contain the closest sector.
1693 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1694 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1695 return __cfqq;
1697 if (blk_rq_pos(__cfqq->next_rq) < sector)
1698 node = rb_next(&__cfqq->p_node);
1699 else
1700 node = rb_prev(&__cfqq->p_node);
1701 if (!node)
1702 return NULL;
1704 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1705 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1706 return __cfqq;
1708 return NULL;
1712 * cfqd - obvious
1713 * cur_cfqq - passed in so that we don't decide that the current queue is
1714 * closely cooperating with itself.
1716 * So, basically we're assuming that that cur_cfqq has dispatched at least
1717 * one request, and that cfqd->last_position reflects a position on the disk
1718 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1719 * assumption.
1721 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1722 struct cfq_queue *cur_cfqq)
1724 struct cfq_queue *cfqq;
1726 if (cfq_class_idle(cur_cfqq))
1727 return NULL;
1728 if (!cfq_cfqq_sync(cur_cfqq))
1729 return NULL;
1730 if (CFQQ_SEEKY(cur_cfqq))
1731 return NULL;
1734 * Don't search priority tree if it's the only queue in the group.
1736 if (cur_cfqq->cfqg->nr_cfqq == 1)
1737 return NULL;
1740 * We should notice if some of the queues are cooperating, eg
1741 * working closely on the same area of the disk. In that case,
1742 * we can group them together and don't waste time idling.
1744 cfqq = cfqq_close(cfqd, cur_cfqq);
1745 if (!cfqq)
1746 return NULL;
1748 /* If new queue belongs to different cfq_group, don't choose it */
1749 if (cur_cfqq->cfqg != cfqq->cfqg)
1750 return NULL;
1753 * It only makes sense to merge sync queues.
1755 if (!cfq_cfqq_sync(cfqq))
1756 return NULL;
1757 if (CFQQ_SEEKY(cfqq))
1758 return NULL;
1761 * Do not merge queues of different priority classes
1763 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1764 return NULL;
1766 return cfqq;
1770 * Determine whether we should enforce idle window for this queue.
1773 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1775 enum wl_prio_t prio = cfqq_prio(cfqq);
1776 struct cfq_rb_root *service_tree = cfqq->service_tree;
1778 BUG_ON(!service_tree);
1779 BUG_ON(!service_tree->count);
1781 /* We never do for idle class queues. */
1782 if (prio == IDLE_WORKLOAD)
1783 return false;
1785 /* We do for queues that were marked with idle window flag. */
1786 if (cfq_cfqq_idle_window(cfqq) &&
1787 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1788 return true;
1791 * Otherwise, we do only if they are the last ones
1792 * in their service tree.
1794 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1795 return 1;
1796 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1797 service_tree->count);
1798 return 0;
1801 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1803 struct cfq_queue *cfqq = cfqd->active_queue;
1804 struct cfq_io_context *cic;
1805 unsigned long sl;
1808 * SSD device without seek penalty, disable idling. But only do so
1809 * for devices that support queuing, otherwise we still have a problem
1810 * with sync vs async workloads.
1812 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1813 return;
1815 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1816 WARN_ON(cfq_cfqq_slice_new(cfqq));
1819 * idle is disabled, either manually or by past process history
1821 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1822 return;
1825 * still active requests from this queue, don't idle
1827 if (cfqq->dispatched)
1828 return;
1831 * task has exited, don't wait
1833 cic = cfqd->active_cic;
1834 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1835 return;
1838 * If our average think time is larger than the remaining time
1839 * slice, then don't idle. This avoids overrunning the allotted
1840 * time slice.
1842 if (sample_valid(cic->ttime_samples) &&
1843 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1844 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1845 cic->ttime_mean);
1846 return;
1849 cfq_mark_cfqq_wait_request(cfqq);
1851 sl = cfqd->cfq_slice_idle;
1853 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1854 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1858 * Move request from internal lists to the request queue dispatch list.
1860 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1862 struct cfq_data *cfqd = q->elevator->elevator_data;
1863 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1865 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1867 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1868 cfq_remove_request(rq);
1869 cfqq->dispatched++;
1870 elv_dispatch_sort(q, rq);
1872 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1873 cfqq->nr_sectors += blk_rq_sectors(rq);
1877 * return expired entry, or NULL to just start from scratch in rbtree
1879 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1881 struct request *rq = NULL;
1883 if (cfq_cfqq_fifo_expire(cfqq))
1884 return NULL;
1886 cfq_mark_cfqq_fifo_expire(cfqq);
1888 if (list_empty(&cfqq->fifo))
1889 return NULL;
1891 rq = rq_entry_fifo(cfqq->fifo.next);
1892 if (time_before(jiffies, rq_fifo_time(rq)))
1893 rq = NULL;
1895 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1896 return rq;
1899 static inline int
1900 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1902 const int base_rq = cfqd->cfq_slice_async_rq;
1904 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1906 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1910 * Must be called with the queue_lock held.
1912 static int cfqq_process_refs(struct cfq_queue *cfqq)
1914 int process_refs, io_refs;
1916 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1917 process_refs = atomic_read(&cfqq->ref) - io_refs;
1918 BUG_ON(process_refs < 0);
1919 return process_refs;
1922 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1924 int process_refs, new_process_refs;
1925 struct cfq_queue *__cfqq;
1927 /* Avoid a circular list and skip interim queue merges */
1928 while ((__cfqq = new_cfqq->new_cfqq)) {
1929 if (__cfqq == cfqq)
1930 return;
1931 new_cfqq = __cfqq;
1934 process_refs = cfqq_process_refs(cfqq);
1936 * If the process for the cfqq has gone away, there is no
1937 * sense in merging the queues.
1939 if (process_refs == 0)
1940 return;
1943 * Merge in the direction of the lesser amount of work.
1945 new_process_refs = cfqq_process_refs(new_cfqq);
1946 if (new_process_refs >= process_refs) {
1947 cfqq->new_cfqq = new_cfqq;
1948 atomic_add(process_refs, &new_cfqq->ref);
1949 } else {
1950 new_cfqq->new_cfqq = cfqq;
1951 atomic_add(new_process_refs, &cfqq->ref);
1955 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1956 struct cfq_group *cfqg, enum wl_prio_t prio)
1958 struct cfq_queue *queue;
1959 int i;
1960 bool key_valid = false;
1961 unsigned long lowest_key = 0;
1962 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1964 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1965 /* select the one with lowest rb_key */
1966 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1967 if (queue &&
1968 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1969 lowest_key = queue->rb_key;
1970 cur_best = i;
1971 key_valid = true;
1975 return cur_best;
1978 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1980 unsigned slice;
1981 unsigned count;
1982 struct cfq_rb_root *st;
1983 unsigned group_slice;
1985 if (!cfqg) {
1986 cfqd->serving_prio = IDLE_WORKLOAD;
1987 cfqd->workload_expires = jiffies + 1;
1988 return;
1991 /* Choose next priority. RT > BE > IDLE */
1992 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1993 cfqd->serving_prio = RT_WORKLOAD;
1994 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1995 cfqd->serving_prio = BE_WORKLOAD;
1996 else {
1997 cfqd->serving_prio = IDLE_WORKLOAD;
1998 cfqd->workload_expires = jiffies + 1;
1999 return;
2003 * For RT and BE, we have to choose also the type
2004 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2005 * expiration time
2007 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2008 count = st->count;
2011 * check workload expiration, and that we still have other queues ready
2013 if (count && !time_after(jiffies, cfqd->workload_expires))
2014 return;
2016 /* otherwise select new workload type */
2017 cfqd->serving_type =
2018 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2019 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2020 count = st->count;
2023 * the workload slice is computed as a fraction of target latency
2024 * proportional to the number of queues in that workload, over
2025 * all the queues in the same priority class
2027 group_slice = cfq_group_slice(cfqd, cfqg);
2029 slice = group_slice * count /
2030 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2031 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2033 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2034 unsigned int tmp;
2037 * Async queues are currently system wide. Just taking
2038 * proportion of queues with-in same group will lead to higher
2039 * async ratio system wide as generally root group is going
2040 * to have higher weight. A more accurate thing would be to
2041 * calculate system wide asnc/sync ratio.
2043 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2044 tmp = tmp/cfqd->busy_queues;
2045 slice = min_t(unsigned, slice, tmp);
2047 /* async workload slice is scaled down according to
2048 * the sync/async slice ratio. */
2049 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2050 } else
2051 /* sync workload slice is at least 2 * cfq_slice_idle */
2052 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2054 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2055 cfq_log(cfqd, "workload slice:%d", slice);
2056 cfqd->workload_expires = jiffies + slice;
2057 cfqd->noidle_tree_requires_idle = false;
2060 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2062 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2063 struct cfq_group *cfqg;
2065 if (RB_EMPTY_ROOT(&st->rb))
2066 return NULL;
2067 cfqg = cfq_rb_first_group(st);
2068 st->active = &cfqg->rb_node;
2069 update_min_vdisktime(st);
2070 return cfqg;
2073 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2075 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2077 cfqd->serving_group = cfqg;
2079 /* Restore the workload type data */
2080 if (cfqg->saved_workload_slice) {
2081 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2082 cfqd->serving_type = cfqg->saved_workload;
2083 cfqd->serving_prio = cfqg->saved_serving_prio;
2084 } else
2085 cfqd->workload_expires = jiffies - 1;
2087 choose_service_tree(cfqd, cfqg);
2091 * Select a queue for service. If we have a current active queue,
2092 * check whether to continue servicing it, or retrieve and set a new one.
2094 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2096 struct cfq_queue *cfqq, *new_cfqq = NULL;
2098 cfqq = cfqd->active_queue;
2099 if (!cfqq)
2100 goto new_queue;
2102 if (!cfqd->rq_queued)
2103 return NULL;
2106 * We were waiting for group to get backlogged. Expire the queue
2108 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2109 goto expire;
2112 * The active queue has run out of time, expire it and select new.
2114 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2116 * If slice had not expired at the completion of last request
2117 * we might not have turned on wait_busy flag. Don't expire
2118 * the queue yet. Allow the group to get backlogged.
2120 * The very fact that we have used the slice, that means we
2121 * have been idling all along on this queue and it should be
2122 * ok to wait for this request to complete.
2124 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2125 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2126 cfqq = NULL;
2127 goto keep_queue;
2128 } else
2129 goto expire;
2133 * The active queue has requests and isn't expired, allow it to
2134 * dispatch.
2136 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2137 goto keep_queue;
2140 * If another queue has a request waiting within our mean seek
2141 * distance, let it run. The expire code will check for close
2142 * cooperators and put the close queue at the front of the service
2143 * tree. If possible, merge the expiring queue with the new cfqq.
2145 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2146 if (new_cfqq) {
2147 if (!cfqq->new_cfqq)
2148 cfq_setup_merge(cfqq, new_cfqq);
2149 goto expire;
2153 * No requests pending. If the active queue still has requests in
2154 * flight or is idling for a new request, allow either of these
2155 * conditions to happen (or time out) before selecting a new queue.
2157 if (timer_pending(&cfqd->idle_slice_timer) ||
2158 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2159 cfqq = NULL;
2160 goto keep_queue;
2163 expire:
2164 cfq_slice_expired(cfqd, 0);
2165 new_queue:
2167 * Current queue expired. Check if we have to switch to a new
2168 * service tree
2170 if (!new_cfqq)
2171 cfq_choose_cfqg(cfqd);
2173 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2174 keep_queue:
2175 return cfqq;
2178 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2180 int dispatched = 0;
2182 while (cfqq->next_rq) {
2183 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2184 dispatched++;
2187 BUG_ON(!list_empty(&cfqq->fifo));
2189 /* By default cfqq is not expired if it is empty. Do it explicitly */
2190 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2191 return dispatched;
2195 * Drain our current requests. Used for barriers and when switching
2196 * io schedulers on-the-fly.
2198 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2200 struct cfq_queue *cfqq;
2201 int dispatched = 0;
2203 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2204 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2206 cfq_slice_expired(cfqd, 0);
2207 BUG_ON(cfqd->busy_queues);
2209 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2210 return dispatched;
2213 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2214 struct cfq_queue *cfqq)
2216 /* the queue hasn't finished any request, can't estimate */
2217 if (cfq_cfqq_slice_new(cfqq))
2218 return 1;
2219 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2220 cfqq->slice_end))
2221 return 1;
2223 return 0;
2226 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2228 unsigned int max_dispatch;
2231 * Drain async requests before we start sync IO
2233 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2234 return false;
2237 * If this is an async queue and we have sync IO in flight, let it wait
2239 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2240 return false;
2242 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2243 if (cfq_class_idle(cfqq))
2244 max_dispatch = 1;
2247 * Does this cfqq already have too much IO in flight?
2249 if (cfqq->dispatched >= max_dispatch) {
2251 * idle queue must always only have a single IO in flight
2253 if (cfq_class_idle(cfqq))
2254 return false;
2257 * We have other queues, don't allow more IO from this one
2259 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2260 return false;
2263 * Sole queue user, no limit
2265 if (cfqd->busy_queues == 1)
2266 max_dispatch = -1;
2267 else
2269 * Normally we start throttling cfqq when cfq_quantum/2
2270 * requests have been dispatched. But we can drive
2271 * deeper queue depths at the beginning of slice
2272 * subjected to upper limit of cfq_quantum.
2273 * */
2274 max_dispatch = cfqd->cfq_quantum;
2278 * Async queues must wait a bit before being allowed dispatch.
2279 * We also ramp up the dispatch depth gradually for async IO,
2280 * based on the last sync IO we serviced
2282 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2283 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2284 unsigned int depth;
2286 depth = last_sync / cfqd->cfq_slice[1];
2287 if (!depth && !cfqq->dispatched)
2288 depth = 1;
2289 if (depth < max_dispatch)
2290 max_dispatch = depth;
2294 * If we're below the current max, allow a dispatch
2296 return cfqq->dispatched < max_dispatch;
2300 * Dispatch a request from cfqq, moving them to the request queue
2301 * dispatch list.
2303 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2305 struct request *rq;
2307 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2309 if (!cfq_may_dispatch(cfqd, cfqq))
2310 return false;
2313 * follow expired path, else get first next available
2315 rq = cfq_check_fifo(cfqq);
2316 if (!rq)
2317 rq = cfqq->next_rq;
2320 * insert request into driver dispatch list
2322 cfq_dispatch_insert(cfqd->queue, rq);
2324 if (!cfqd->active_cic) {
2325 struct cfq_io_context *cic = RQ_CIC(rq);
2327 atomic_long_inc(&cic->ioc->refcount);
2328 cfqd->active_cic = cic;
2331 return true;
2335 * Find the cfqq that we need to service and move a request from that to the
2336 * dispatch list
2338 static int cfq_dispatch_requests(struct request_queue *q, int force)
2340 struct cfq_data *cfqd = q->elevator->elevator_data;
2341 struct cfq_queue *cfqq;
2343 if (!cfqd->busy_queues)
2344 return 0;
2346 if (unlikely(force))
2347 return cfq_forced_dispatch(cfqd);
2349 cfqq = cfq_select_queue(cfqd);
2350 if (!cfqq)
2351 return 0;
2354 * Dispatch a request from this cfqq, if it is allowed
2356 if (!cfq_dispatch_request(cfqd, cfqq))
2357 return 0;
2359 cfqq->slice_dispatch++;
2360 cfq_clear_cfqq_must_dispatch(cfqq);
2363 * expire an async queue immediately if it has used up its slice. idle
2364 * queue always expire after 1 dispatch round.
2366 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2367 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2368 cfq_class_idle(cfqq))) {
2369 cfqq->slice_end = jiffies + 1;
2370 cfq_slice_expired(cfqd, 0);
2373 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2374 return 1;
2378 * task holds one reference to the queue, dropped when task exits. each rq
2379 * in-flight on this queue also holds a reference, dropped when rq is freed.
2381 * Each cfq queue took a reference on the parent group. Drop it now.
2382 * queue lock must be held here.
2384 static void cfq_put_queue(struct cfq_queue *cfqq)
2386 struct cfq_data *cfqd = cfqq->cfqd;
2387 struct cfq_group *cfqg, *orig_cfqg;
2389 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2391 if (!atomic_dec_and_test(&cfqq->ref))
2392 return;
2394 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2395 BUG_ON(rb_first(&cfqq->sort_list));
2396 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2397 cfqg = cfqq->cfqg;
2398 orig_cfqg = cfqq->orig_cfqg;
2400 if (unlikely(cfqd->active_queue == cfqq)) {
2401 __cfq_slice_expired(cfqd, cfqq, 0);
2402 cfq_schedule_dispatch(cfqd);
2405 BUG_ON(cfq_cfqq_on_rr(cfqq));
2406 kmem_cache_free(cfq_pool, cfqq);
2407 cfq_put_cfqg(cfqg);
2408 if (orig_cfqg)
2409 cfq_put_cfqg(orig_cfqg);
2413 * Must always be called with the rcu_read_lock() held
2415 static void
2416 __call_for_each_cic(struct io_context *ioc,
2417 void (*func)(struct io_context *, struct cfq_io_context *))
2419 struct cfq_io_context *cic;
2420 struct hlist_node *n;
2422 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2423 func(ioc, cic);
2427 * Call func for each cic attached to this ioc.
2429 static void
2430 call_for_each_cic(struct io_context *ioc,
2431 void (*func)(struct io_context *, struct cfq_io_context *))
2433 rcu_read_lock();
2434 __call_for_each_cic(ioc, func);
2435 rcu_read_unlock();
2438 static void cfq_cic_free_rcu(struct rcu_head *head)
2440 struct cfq_io_context *cic;
2442 cic = container_of(head, struct cfq_io_context, rcu_head);
2444 kmem_cache_free(cfq_ioc_pool, cic);
2445 elv_ioc_count_dec(cfq_ioc_count);
2447 if (ioc_gone) {
2449 * CFQ scheduler is exiting, grab exit lock and check
2450 * the pending io context count. If it hits zero,
2451 * complete ioc_gone and set it back to NULL
2453 spin_lock(&ioc_gone_lock);
2454 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2455 complete(ioc_gone);
2456 ioc_gone = NULL;
2458 spin_unlock(&ioc_gone_lock);
2462 static void cfq_cic_free(struct cfq_io_context *cic)
2464 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2467 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2469 unsigned long flags;
2471 BUG_ON(!cic->dead_key);
2473 spin_lock_irqsave(&ioc->lock, flags);
2474 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2475 hlist_del_rcu(&cic->cic_list);
2476 spin_unlock_irqrestore(&ioc->lock, flags);
2478 cfq_cic_free(cic);
2482 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2483 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2484 * and ->trim() which is called with the task lock held
2486 static void cfq_free_io_context(struct io_context *ioc)
2489 * ioc->refcount is zero here, or we are called from elv_unregister(),
2490 * so no more cic's are allowed to be linked into this ioc. So it
2491 * should be ok to iterate over the known list, we will see all cic's
2492 * since no new ones are added.
2494 __call_for_each_cic(ioc, cic_free_func);
2497 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2499 struct cfq_queue *__cfqq, *next;
2501 if (unlikely(cfqq == cfqd->active_queue)) {
2502 __cfq_slice_expired(cfqd, cfqq, 0);
2503 cfq_schedule_dispatch(cfqd);
2507 * If this queue was scheduled to merge with another queue, be
2508 * sure to drop the reference taken on that queue (and others in
2509 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2511 __cfqq = cfqq->new_cfqq;
2512 while (__cfqq) {
2513 if (__cfqq == cfqq) {
2514 WARN(1, "cfqq->new_cfqq loop detected\n");
2515 break;
2517 next = __cfqq->new_cfqq;
2518 cfq_put_queue(__cfqq);
2519 __cfqq = next;
2522 cfq_put_queue(cfqq);
2525 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2526 struct cfq_io_context *cic)
2528 struct io_context *ioc = cic->ioc;
2530 list_del_init(&cic->queue_list);
2533 * Make sure key == NULL is seen for dead queues
2535 smp_wmb();
2536 cic->dead_key = (unsigned long) cic->key;
2537 cic->key = NULL;
2539 if (ioc->ioc_data == cic)
2540 rcu_assign_pointer(ioc->ioc_data, NULL);
2542 if (cic->cfqq[BLK_RW_ASYNC]) {
2543 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2544 cic->cfqq[BLK_RW_ASYNC] = NULL;
2547 if (cic->cfqq[BLK_RW_SYNC]) {
2548 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2549 cic->cfqq[BLK_RW_SYNC] = NULL;
2553 static void cfq_exit_single_io_context(struct io_context *ioc,
2554 struct cfq_io_context *cic)
2556 struct cfq_data *cfqd = cic->key;
2558 if (cfqd) {
2559 struct request_queue *q = cfqd->queue;
2560 unsigned long flags;
2562 spin_lock_irqsave(q->queue_lock, flags);
2565 * Ensure we get a fresh copy of the ->key to prevent
2566 * race between exiting task and queue
2568 smp_read_barrier_depends();
2569 if (cic->key)
2570 __cfq_exit_single_io_context(cfqd, cic);
2572 spin_unlock_irqrestore(q->queue_lock, flags);
2577 * The process that ioc belongs to has exited, we need to clean up
2578 * and put the internal structures we have that belongs to that process.
2580 static void cfq_exit_io_context(struct io_context *ioc)
2582 call_for_each_cic(ioc, cfq_exit_single_io_context);
2585 static struct cfq_io_context *
2586 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2588 struct cfq_io_context *cic;
2590 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2591 cfqd->queue->node);
2592 if (cic) {
2593 cic->last_end_request = jiffies;
2594 INIT_LIST_HEAD(&cic->queue_list);
2595 INIT_HLIST_NODE(&cic->cic_list);
2596 cic->dtor = cfq_free_io_context;
2597 cic->exit = cfq_exit_io_context;
2598 elv_ioc_count_inc(cfq_ioc_count);
2601 return cic;
2604 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2606 struct task_struct *tsk = current;
2607 int ioprio_class;
2609 if (!cfq_cfqq_prio_changed(cfqq))
2610 return;
2612 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2613 switch (ioprio_class) {
2614 default:
2615 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2616 case IOPRIO_CLASS_NONE:
2618 * no prio set, inherit CPU scheduling settings
2620 cfqq->ioprio = task_nice_ioprio(tsk);
2621 cfqq->ioprio_class = task_nice_ioclass(tsk);
2622 break;
2623 case IOPRIO_CLASS_RT:
2624 cfqq->ioprio = task_ioprio(ioc);
2625 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2626 break;
2627 case IOPRIO_CLASS_BE:
2628 cfqq->ioprio = task_ioprio(ioc);
2629 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2630 break;
2631 case IOPRIO_CLASS_IDLE:
2632 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2633 cfqq->ioprio = 7;
2634 cfq_clear_cfqq_idle_window(cfqq);
2635 break;
2639 * keep track of original prio settings in case we have to temporarily
2640 * elevate the priority of this queue
2642 cfqq->org_ioprio = cfqq->ioprio;
2643 cfqq->org_ioprio_class = cfqq->ioprio_class;
2644 cfq_clear_cfqq_prio_changed(cfqq);
2647 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2649 struct cfq_data *cfqd = cic->key;
2650 struct cfq_queue *cfqq;
2651 unsigned long flags;
2653 if (unlikely(!cfqd))
2654 return;
2656 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2658 cfqq = cic->cfqq[BLK_RW_ASYNC];
2659 if (cfqq) {
2660 struct cfq_queue *new_cfqq;
2661 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2662 GFP_ATOMIC);
2663 if (new_cfqq) {
2664 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2665 cfq_put_queue(cfqq);
2669 cfqq = cic->cfqq[BLK_RW_SYNC];
2670 if (cfqq)
2671 cfq_mark_cfqq_prio_changed(cfqq);
2673 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2676 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2678 call_for_each_cic(ioc, changed_ioprio);
2679 ioc->ioprio_changed = 0;
2682 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2683 pid_t pid, bool is_sync)
2685 RB_CLEAR_NODE(&cfqq->rb_node);
2686 RB_CLEAR_NODE(&cfqq->p_node);
2687 INIT_LIST_HEAD(&cfqq->fifo);
2689 atomic_set(&cfqq->ref, 0);
2690 cfqq->cfqd = cfqd;
2692 cfq_mark_cfqq_prio_changed(cfqq);
2694 if (is_sync) {
2695 if (!cfq_class_idle(cfqq))
2696 cfq_mark_cfqq_idle_window(cfqq);
2697 cfq_mark_cfqq_sync(cfqq);
2699 cfqq->pid = pid;
2702 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2703 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2705 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2706 struct cfq_data *cfqd = cic->key;
2707 unsigned long flags;
2708 struct request_queue *q;
2710 if (unlikely(!cfqd))
2711 return;
2713 q = cfqd->queue;
2715 spin_lock_irqsave(q->queue_lock, flags);
2717 if (sync_cfqq) {
2719 * Drop reference to sync queue. A new sync queue will be
2720 * assigned in new group upon arrival of a fresh request.
2722 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2723 cic_set_cfqq(cic, NULL, 1);
2724 cfq_put_queue(sync_cfqq);
2727 spin_unlock_irqrestore(q->queue_lock, flags);
2730 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2732 call_for_each_cic(ioc, changed_cgroup);
2733 ioc->cgroup_changed = 0;
2735 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2737 static struct cfq_queue *
2738 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2739 struct io_context *ioc, gfp_t gfp_mask)
2741 struct cfq_queue *cfqq, *new_cfqq = NULL;
2742 struct cfq_io_context *cic;
2743 struct cfq_group *cfqg;
2745 retry:
2746 cfqg = cfq_get_cfqg(cfqd, 1);
2747 cic = cfq_cic_lookup(cfqd, ioc);
2748 /* cic always exists here */
2749 cfqq = cic_to_cfqq(cic, is_sync);
2752 * Always try a new alloc if we fell back to the OOM cfqq
2753 * originally, since it should just be a temporary situation.
2755 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2756 cfqq = NULL;
2757 if (new_cfqq) {
2758 cfqq = new_cfqq;
2759 new_cfqq = NULL;
2760 } else if (gfp_mask & __GFP_WAIT) {
2761 spin_unlock_irq(cfqd->queue->queue_lock);
2762 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2763 gfp_mask | __GFP_ZERO,
2764 cfqd->queue->node);
2765 spin_lock_irq(cfqd->queue->queue_lock);
2766 if (new_cfqq)
2767 goto retry;
2768 } else {
2769 cfqq = kmem_cache_alloc_node(cfq_pool,
2770 gfp_mask | __GFP_ZERO,
2771 cfqd->queue->node);
2774 if (cfqq) {
2775 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2776 cfq_init_prio_data(cfqq, ioc);
2777 cfq_link_cfqq_cfqg(cfqq, cfqg);
2778 cfq_log_cfqq(cfqd, cfqq, "alloced");
2779 } else
2780 cfqq = &cfqd->oom_cfqq;
2783 if (new_cfqq)
2784 kmem_cache_free(cfq_pool, new_cfqq);
2786 return cfqq;
2789 static struct cfq_queue **
2790 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2792 switch (ioprio_class) {
2793 case IOPRIO_CLASS_RT:
2794 return &cfqd->async_cfqq[0][ioprio];
2795 case IOPRIO_CLASS_BE:
2796 return &cfqd->async_cfqq[1][ioprio];
2797 case IOPRIO_CLASS_IDLE:
2798 return &cfqd->async_idle_cfqq;
2799 default:
2800 BUG();
2804 static struct cfq_queue *
2805 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2806 gfp_t gfp_mask)
2808 const int ioprio = task_ioprio(ioc);
2809 const int ioprio_class = task_ioprio_class(ioc);
2810 struct cfq_queue **async_cfqq = NULL;
2811 struct cfq_queue *cfqq = NULL;
2813 if (!is_sync) {
2814 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2815 cfqq = *async_cfqq;
2818 if (!cfqq)
2819 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2822 * pin the queue now that it's allocated, scheduler exit will prune it
2824 if (!is_sync && !(*async_cfqq)) {
2825 atomic_inc(&cfqq->ref);
2826 *async_cfqq = cfqq;
2829 atomic_inc(&cfqq->ref);
2830 return cfqq;
2834 * We drop cfq io contexts lazily, so we may find a dead one.
2836 static void
2837 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2838 struct cfq_io_context *cic)
2840 unsigned long flags;
2842 WARN_ON(!list_empty(&cic->queue_list));
2844 spin_lock_irqsave(&ioc->lock, flags);
2846 BUG_ON(ioc->ioc_data == cic);
2848 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2849 hlist_del_rcu(&cic->cic_list);
2850 spin_unlock_irqrestore(&ioc->lock, flags);
2852 cfq_cic_free(cic);
2855 static struct cfq_io_context *
2856 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2858 struct cfq_io_context *cic;
2859 unsigned long flags;
2860 void *k;
2862 if (unlikely(!ioc))
2863 return NULL;
2865 rcu_read_lock();
2868 * we maintain a last-hit cache, to avoid browsing over the tree
2870 cic = rcu_dereference(ioc->ioc_data);
2871 if (cic && cic->key == cfqd) {
2872 rcu_read_unlock();
2873 return cic;
2876 do {
2877 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2878 rcu_read_unlock();
2879 if (!cic)
2880 break;
2881 /* ->key must be copied to avoid race with cfq_exit_queue() */
2882 k = cic->key;
2883 if (unlikely(!k)) {
2884 cfq_drop_dead_cic(cfqd, ioc, cic);
2885 rcu_read_lock();
2886 continue;
2889 spin_lock_irqsave(&ioc->lock, flags);
2890 rcu_assign_pointer(ioc->ioc_data, cic);
2891 spin_unlock_irqrestore(&ioc->lock, flags);
2892 break;
2893 } while (1);
2895 return cic;
2899 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2900 * the process specific cfq io context when entered from the block layer.
2901 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2903 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2904 struct cfq_io_context *cic, gfp_t gfp_mask)
2906 unsigned long flags;
2907 int ret;
2909 ret = radix_tree_preload(gfp_mask);
2910 if (!ret) {
2911 cic->ioc = ioc;
2912 cic->key = cfqd;
2914 spin_lock_irqsave(&ioc->lock, flags);
2915 ret = radix_tree_insert(&ioc->radix_root,
2916 (unsigned long) cfqd, cic);
2917 if (!ret)
2918 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2919 spin_unlock_irqrestore(&ioc->lock, flags);
2921 radix_tree_preload_end();
2923 if (!ret) {
2924 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2925 list_add(&cic->queue_list, &cfqd->cic_list);
2926 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2930 if (ret)
2931 printk(KERN_ERR "cfq: cic link failed!\n");
2933 return ret;
2937 * Setup general io context and cfq io context. There can be several cfq
2938 * io contexts per general io context, if this process is doing io to more
2939 * than one device managed by cfq.
2941 static struct cfq_io_context *
2942 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2944 struct io_context *ioc = NULL;
2945 struct cfq_io_context *cic;
2947 might_sleep_if(gfp_mask & __GFP_WAIT);
2949 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2950 if (!ioc)
2951 return NULL;
2953 cic = cfq_cic_lookup(cfqd, ioc);
2954 if (cic)
2955 goto out;
2957 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2958 if (cic == NULL)
2959 goto err;
2961 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2962 goto err_free;
2964 out:
2965 smp_read_barrier_depends();
2966 if (unlikely(ioc->ioprio_changed))
2967 cfq_ioc_set_ioprio(ioc);
2969 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2970 if (unlikely(ioc->cgroup_changed))
2971 cfq_ioc_set_cgroup(ioc);
2972 #endif
2973 return cic;
2974 err_free:
2975 cfq_cic_free(cic);
2976 err:
2977 put_io_context(ioc);
2978 return NULL;
2981 static void
2982 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2984 unsigned long elapsed = jiffies - cic->last_end_request;
2985 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2987 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2988 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2989 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2992 static void
2993 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2994 struct request *rq)
2996 sector_t sdist = 0;
2997 sector_t n_sec = blk_rq_sectors(rq);
2998 if (cfqq->last_request_pos) {
2999 if (cfqq->last_request_pos < blk_rq_pos(rq))
3000 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3001 else
3002 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3005 cfqq->seek_history <<= 1;
3006 if (blk_queue_nonrot(cfqd->queue))
3007 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3008 else
3009 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3013 * Disable idle window if the process thinks too long or seeks so much that
3014 * it doesn't matter
3016 static void
3017 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3018 struct cfq_io_context *cic)
3020 int old_idle, enable_idle;
3023 * Don't idle for async or idle io prio class
3025 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3026 return;
3028 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3030 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3031 cfq_mark_cfqq_deep(cfqq);
3033 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3034 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3035 enable_idle = 0;
3036 else if (sample_valid(cic->ttime_samples)) {
3037 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3038 enable_idle = 0;
3039 else
3040 enable_idle = 1;
3043 if (old_idle != enable_idle) {
3044 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3045 if (enable_idle)
3046 cfq_mark_cfqq_idle_window(cfqq);
3047 else
3048 cfq_clear_cfqq_idle_window(cfqq);
3053 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3054 * no or if we aren't sure, a 1 will cause a preempt.
3056 static bool
3057 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3058 struct request *rq)
3060 struct cfq_queue *cfqq;
3062 cfqq = cfqd->active_queue;
3063 if (!cfqq)
3064 return false;
3066 if (cfq_class_idle(new_cfqq))
3067 return false;
3069 if (cfq_class_idle(cfqq))
3070 return true;
3073 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3075 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3076 return false;
3079 * if the new request is sync, but the currently running queue is
3080 * not, let the sync request have priority.
3082 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3083 return true;
3085 if (new_cfqq->cfqg != cfqq->cfqg)
3086 return false;
3088 if (cfq_slice_used(cfqq))
3089 return true;
3091 /* Allow preemption only if we are idling on sync-noidle tree */
3092 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3093 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3094 new_cfqq->service_tree->count == 2 &&
3095 RB_EMPTY_ROOT(&cfqq->sort_list))
3096 return true;
3099 * So both queues are sync. Let the new request get disk time if
3100 * it's a metadata request and the current queue is doing regular IO.
3102 if (rq_is_meta(rq) && !cfqq->meta_pending)
3103 return true;
3106 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3108 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3109 return true;
3111 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3112 return false;
3115 * if this request is as-good as one we would expect from the
3116 * current cfqq, let it preempt
3118 if (cfq_rq_close(cfqd, cfqq, rq))
3119 return true;
3121 return false;
3125 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3126 * let it have half of its nominal slice.
3128 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3130 cfq_log_cfqq(cfqd, cfqq, "preempt");
3131 cfq_slice_expired(cfqd, 1);
3134 * Put the new queue at the front of the of the current list,
3135 * so we know that it will be selected next.
3137 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3139 cfq_service_tree_add(cfqd, cfqq, 1);
3141 cfqq->slice_end = 0;
3142 cfq_mark_cfqq_slice_new(cfqq);
3146 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3147 * something we should do about it
3149 static void
3150 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3151 struct request *rq)
3153 struct cfq_io_context *cic = RQ_CIC(rq);
3155 cfqd->rq_queued++;
3156 if (rq_is_meta(rq))
3157 cfqq->meta_pending++;
3159 cfq_update_io_thinktime(cfqd, cic);
3160 cfq_update_io_seektime(cfqd, cfqq, rq);
3161 cfq_update_idle_window(cfqd, cfqq, cic);
3163 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3165 if (cfqq == cfqd->active_queue) {
3167 * Remember that we saw a request from this process, but
3168 * don't start queuing just yet. Otherwise we risk seeing lots
3169 * of tiny requests, because we disrupt the normal plugging
3170 * and merging. If the request is already larger than a single
3171 * page, let it rip immediately. For that case we assume that
3172 * merging is already done. Ditto for a busy system that
3173 * has other work pending, don't risk delaying until the
3174 * idle timer unplug to continue working.
3176 if (cfq_cfqq_wait_request(cfqq)) {
3177 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3178 cfqd->busy_queues > 1) {
3179 del_timer(&cfqd->idle_slice_timer);
3180 cfq_clear_cfqq_wait_request(cfqq);
3181 __blk_run_queue(cfqd->queue);
3182 } else
3183 cfq_mark_cfqq_must_dispatch(cfqq);
3185 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3187 * not the active queue - expire current slice if it is
3188 * idle and has expired it's mean thinktime or this new queue
3189 * has some old slice time left and is of higher priority or
3190 * this new queue is RT and the current one is BE
3192 cfq_preempt_queue(cfqd, cfqq);
3193 __blk_run_queue(cfqd->queue);
3197 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3199 struct cfq_data *cfqd = q->elevator->elevator_data;
3200 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3202 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3203 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3205 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3206 list_add_tail(&rq->queuelist, &cfqq->fifo);
3207 cfq_add_rq_rb(rq);
3209 cfq_rq_enqueued(cfqd, cfqq, rq);
3213 * Update hw_tag based on peak queue depth over 50 samples under
3214 * sufficient load.
3216 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3218 struct cfq_queue *cfqq = cfqd->active_queue;
3220 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3221 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3223 if (cfqd->hw_tag == 1)
3224 return;
3226 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3227 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3228 return;
3231 * If active queue hasn't enough requests and can idle, cfq might not
3232 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3233 * case
3235 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3236 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3237 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3238 return;
3240 if (cfqd->hw_tag_samples++ < 50)
3241 return;
3243 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3244 cfqd->hw_tag = 1;
3245 else
3246 cfqd->hw_tag = 0;
3249 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3251 struct cfq_io_context *cic = cfqd->active_cic;
3253 /* If there are other queues in the group, don't wait */
3254 if (cfqq->cfqg->nr_cfqq > 1)
3255 return false;
3257 if (cfq_slice_used(cfqq))
3258 return true;
3260 /* if slice left is less than think time, wait busy */
3261 if (cic && sample_valid(cic->ttime_samples)
3262 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3263 return true;
3266 * If think times is less than a jiffy than ttime_mean=0 and above
3267 * will not be true. It might happen that slice has not expired yet
3268 * but will expire soon (4-5 ns) during select_queue(). To cover the
3269 * case where think time is less than a jiffy, mark the queue wait
3270 * busy if only 1 jiffy is left in the slice.
3272 if (cfqq->slice_end - jiffies == 1)
3273 return true;
3275 return false;
3278 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3280 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3281 struct cfq_data *cfqd = cfqq->cfqd;
3282 const int sync = rq_is_sync(rq);
3283 unsigned long now;
3285 now = jiffies;
3286 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3288 cfq_update_hw_tag(cfqd);
3290 WARN_ON(!cfqd->rq_in_driver);
3291 WARN_ON(!cfqq->dispatched);
3292 cfqd->rq_in_driver--;
3293 cfqq->dispatched--;
3295 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3297 if (sync) {
3298 RQ_CIC(rq)->last_end_request = now;
3299 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3300 cfqd->last_delayed_sync = now;
3304 * If this is the active queue, check if it needs to be expired,
3305 * or if we want to idle in case it has no pending requests.
3307 if (cfqd->active_queue == cfqq) {
3308 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3310 if (cfq_cfqq_slice_new(cfqq)) {
3311 cfq_set_prio_slice(cfqd, cfqq);
3312 cfq_clear_cfqq_slice_new(cfqq);
3316 * Should we wait for next request to come in before we expire
3317 * the queue.
3319 if (cfq_should_wait_busy(cfqd, cfqq)) {
3320 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3321 cfq_mark_cfqq_wait_busy(cfqq);
3322 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3326 * Idling is not enabled on:
3327 * - expired queues
3328 * - idle-priority queues
3329 * - async queues
3330 * - queues with still some requests queued
3331 * - when there is a close cooperator
3333 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3334 cfq_slice_expired(cfqd, 1);
3335 else if (sync && cfqq_empty &&
3336 !cfq_close_cooperator(cfqd, cfqq)) {
3337 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3339 * Idling is enabled for SYNC_WORKLOAD.
3340 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3341 * only if we processed at least one !rq_noidle request
3343 if (cfqd->serving_type == SYNC_WORKLOAD
3344 || cfqd->noidle_tree_requires_idle
3345 || cfqq->cfqg->nr_cfqq == 1)
3346 cfq_arm_slice_timer(cfqd);
3350 if (!cfqd->rq_in_driver)
3351 cfq_schedule_dispatch(cfqd);
3355 * we temporarily boost lower priority queues if they are holding fs exclusive
3356 * resources. they are boosted to normal prio (CLASS_BE/4)
3358 static void cfq_prio_boost(struct cfq_queue *cfqq)
3360 if (has_fs_excl()) {
3362 * boost idle prio on transactions that would lock out other
3363 * users of the filesystem
3365 if (cfq_class_idle(cfqq))
3366 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3367 if (cfqq->ioprio > IOPRIO_NORM)
3368 cfqq->ioprio = IOPRIO_NORM;
3369 } else {
3371 * unboost the queue (if needed)
3373 cfqq->ioprio_class = cfqq->org_ioprio_class;
3374 cfqq->ioprio = cfqq->org_ioprio;
3378 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3380 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3381 cfq_mark_cfqq_must_alloc_slice(cfqq);
3382 return ELV_MQUEUE_MUST;
3385 return ELV_MQUEUE_MAY;
3388 static int cfq_may_queue(struct request_queue *q, int rw)
3390 struct cfq_data *cfqd = q->elevator->elevator_data;
3391 struct task_struct *tsk = current;
3392 struct cfq_io_context *cic;
3393 struct cfq_queue *cfqq;
3396 * don't force setup of a queue from here, as a call to may_queue
3397 * does not necessarily imply that a request actually will be queued.
3398 * so just lookup a possibly existing queue, or return 'may queue'
3399 * if that fails
3401 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3402 if (!cic)
3403 return ELV_MQUEUE_MAY;
3405 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3406 if (cfqq) {
3407 cfq_init_prio_data(cfqq, cic->ioc);
3408 cfq_prio_boost(cfqq);
3410 return __cfq_may_queue(cfqq);
3413 return ELV_MQUEUE_MAY;
3417 * queue lock held here
3419 static void cfq_put_request(struct request *rq)
3421 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3423 if (cfqq) {
3424 const int rw = rq_data_dir(rq);
3426 BUG_ON(!cfqq->allocated[rw]);
3427 cfqq->allocated[rw]--;
3429 put_io_context(RQ_CIC(rq)->ioc);
3431 rq->elevator_private = NULL;
3432 rq->elevator_private2 = NULL;
3434 cfq_put_queue(cfqq);
3438 static struct cfq_queue *
3439 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3440 struct cfq_queue *cfqq)
3442 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3443 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3444 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3445 cfq_put_queue(cfqq);
3446 return cic_to_cfqq(cic, 1);
3450 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3451 * was the last process referring to said cfqq.
3453 static struct cfq_queue *
3454 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3456 if (cfqq_process_refs(cfqq) == 1) {
3457 cfqq->pid = current->pid;
3458 cfq_clear_cfqq_coop(cfqq);
3459 cfq_clear_cfqq_split_coop(cfqq);
3460 return cfqq;
3463 cic_set_cfqq(cic, NULL, 1);
3464 cfq_put_queue(cfqq);
3465 return NULL;
3468 * Allocate cfq data structures associated with this request.
3470 static int
3471 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3473 struct cfq_data *cfqd = q->elevator->elevator_data;
3474 struct cfq_io_context *cic;
3475 const int rw = rq_data_dir(rq);
3476 const bool is_sync = rq_is_sync(rq);
3477 struct cfq_queue *cfqq;
3478 unsigned long flags;
3480 might_sleep_if(gfp_mask & __GFP_WAIT);
3482 cic = cfq_get_io_context(cfqd, gfp_mask);
3484 spin_lock_irqsave(q->queue_lock, flags);
3486 if (!cic)
3487 goto queue_fail;
3489 new_queue:
3490 cfqq = cic_to_cfqq(cic, is_sync);
3491 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3492 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3493 cic_set_cfqq(cic, cfqq, is_sync);
3494 } else {
3496 * If the queue was seeky for too long, break it apart.
3498 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3499 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3500 cfqq = split_cfqq(cic, cfqq);
3501 if (!cfqq)
3502 goto new_queue;
3506 * Check to see if this queue is scheduled to merge with
3507 * another, closely cooperating queue. The merging of
3508 * queues happens here as it must be done in process context.
3509 * The reference on new_cfqq was taken in merge_cfqqs.
3511 if (cfqq->new_cfqq)
3512 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3515 cfqq->allocated[rw]++;
3516 atomic_inc(&cfqq->ref);
3518 spin_unlock_irqrestore(q->queue_lock, flags);
3520 rq->elevator_private = cic;
3521 rq->elevator_private2 = cfqq;
3522 return 0;
3524 queue_fail:
3525 if (cic)
3526 put_io_context(cic->ioc);
3528 cfq_schedule_dispatch(cfqd);
3529 spin_unlock_irqrestore(q->queue_lock, flags);
3530 cfq_log(cfqd, "set_request fail");
3531 return 1;
3534 static void cfq_kick_queue(struct work_struct *work)
3536 struct cfq_data *cfqd =
3537 container_of(work, struct cfq_data, unplug_work);
3538 struct request_queue *q = cfqd->queue;
3540 spin_lock_irq(q->queue_lock);
3541 __blk_run_queue(cfqd->queue);
3542 spin_unlock_irq(q->queue_lock);
3546 * Timer running if the active_queue is currently idling inside its time slice
3548 static void cfq_idle_slice_timer(unsigned long data)
3550 struct cfq_data *cfqd = (struct cfq_data *) data;
3551 struct cfq_queue *cfqq;
3552 unsigned long flags;
3553 int timed_out = 1;
3555 cfq_log(cfqd, "idle timer fired");
3557 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3559 cfqq = cfqd->active_queue;
3560 if (cfqq) {
3561 timed_out = 0;
3564 * We saw a request before the queue expired, let it through
3566 if (cfq_cfqq_must_dispatch(cfqq))
3567 goto out_kick;
3570 * expired
3572 if (cfq_slice_used(cfqq))
3573 goto expire;
3576 * only expire and reinvoke request handler, if there are
3577 * other queues with pending requests
3579 if (!cfqd->busy_queues)
3580 goto out_cont;
3583 * not expired and it has a request pending, let it dispatch
3585 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3586 goto out_kick;
3589 * Queue depth flag is reset only when the idle didn't succeed
3591 cfq_clear_cfqq_deep(cfqq);
3593 expire:
3594 cfq_slice_expired(cfqd, timed_out);
3595 out_kick:
3596 cfq_schedule_dispatch(cfqd);
3597 out_cont:
3598 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3601 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3603 del_timer_sync(&cfqd->idle_slice_timer);
3604 cancel_work_sync(&cfqd->unplug_work);
3607 static void cfq_put_async_queues(struct cfq_data *cfqd)
3609 int i;
3611 for (i = 0; i < IOPRIO_BE_NR; i++) {
3612 if (cfqd->async_cfqq[0][i])
3613 cfq_put_queue(cfqd->async_cfqq[0][i]);
3614 if (cfqd->async_cfqq[1][i])
3615 cfq_put_queue(cfqd->async_cfqq[1][i]);
3618 if (cfqd->async_idle_cfqq)
3619 cfq_put_queue(cfqd->async_idle_cfqq);
3622 static void cfq_cfqd_free(struct rcu_head *head)
3624 kfree(container_of(head, struct cfq_data, rcu));
3627 static void cfq_exit_queue(struct elevator_queue *e)
3629 struct cfq_data *cfqd = e->elevator_data;
3630 struct request_queue *q = cfqd->queue;
3632 cfq_shutdown_timer_wq(cfqd);
3634 spin_lock_irq(q->queue_lock);
3636 if (cfqd->active_queue)
3637 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3639 while (!list_empty(&cfqd->cic_list)) {
3640 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3641 struct cfq_io_context,
3642 queue_list);
3644 __cfq_exit_single_io_context(cfqd, cic);
3647 cfq_put_async_queues(cfqd);
3648 cfq_release_cfq_groups(cfqd);
3649 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3651 spin_unlock_irq(q->queue_lock);
3653 cfq_shutdown_timer_wq(cfqd);
3655 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3656 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3659 static void *cfq_init_queue(struct request_queue *q)
3661 struct cfq_data *cfqd;
3662 int i, j;
3663 struct cfq_group *cfqg;
3664 struct cfq_rb_root *st;
3666 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3667 if (!cfqd)
3668 return NULL;
3670 /* Init root service tree */
3671 cfqd->grp_service_tree = CFQ_RB_ROOT;
3673 /* Init root group */
3674 cfqg = &cfqd->root_group;
3675 for_each_cfqg_st(cfqg, i, j, st)
3676 *st = CFQ_RB_ROOT;
3677 RB_CLEAR_NODE(&cfqg->rb_node);
3679 /* Give preference to root group over other groups */
3680 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3682 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3684 * Take a reference to root group which we never drop. This is just
3685 * to make sure that cfq_put_cfqg() does not try to kfree root group
3687 atomic_set(&cfqg->ref, 1);
3688 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3690 #endif
3692 * Not strictly needed (since RB_ROOT just clears the node and we
3693 * zeroed cfqd on alloc), but better be safe in case someone decides
3694 * to add magic to the rb code
3696 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3697 cfqd->prio_trees[i] = RB_ROOT;
3700 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3701 * Grab a permanent reference to it, so that the normal code flow
3702 * will not attempt to free it.
3704 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3705 atomic_inc(&cfqd->oom_cfqq.ref);
3706 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3708 INIT_LIST_HEAD(&cfqd->cic_list);
3710 cfqd->queue = q;
3712 init_timer(&cfqd->idle_slice_timer);
3713 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3714 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3716 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3718 cfqd->cfq_quantum = cfq_quantum;
3719 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3720 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3721 cfqd->cfq_back_max = cfq_back_max;
3722 cfqd->cfq_back_penalty = cfq_back_penalty;
3723 cfqd->cfq_slice[0] = cfq_slice_async;
3724 cfqd->cfq_slice[1] = cfq_slice_sync;
3725 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3726 cfqd->cfq_slice_idle = cfq_slice_idle;
3727 cfqd->cfq_latency = 1;
3728 cfqd->cfq_group_isolation = 0;
3729 cfqd->hw_tag = -1;
3731 * we optimistically start assuming sync ops weren't delayed in last
3732 * second, in order to have larger depth for async operations.
3734 cfqd->last_delayed_sync = jiffies - HZ;
3735 INIT_RCU_HEAD(&cfqd->rcu);
3736 return cfqd;
3739 static void cfq_slab_kill(void)
3742 * Caller already ensured that pending RCU callbacks are completed,
3743 * so we should have no busy allocations at this point.
3745 if (cfq_pool)
3746 kmem_cache_destroy(cfq_pool);
3747 if (cfq_ioc_pool)
3748 kmem_cache_destroy(cfq_ioc_pool);
3751 static int __init cfq_slab_setup(void)
3753 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3754 if (!cfq_pool)
3755 goto fail;
3757 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3758 if (!cfq_ioc_pool)
3759 goto fail;
3761 return 0;
3762 fail:
3763 cfq_slab_kill();
3764 return -ENOMEM;
3768 * sysfs parts below -->
3770 static ssize_t
3771 cfq_var_show(unsigned int var, char *page)
3773 return sprintf(page, "%d\n", var);
3776 static ssize_t
3777 cfq_var_store(unsigned int *var, const char *page, size_t count)
3779 char *p = (char *) page;
3781 *var = simple_strtoul(p, &p, 10);
3782 return count;
3785 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3786 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3788 struct cfq_data *cfqd = e->elevator_data; \
3789 unsigned int __data = __VAR; \
3790 if (__CONV) \
3791 __data = jiffies_to_msecs(__data); \
3792 return cfq_var_show(__data, (page)); \
3794 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3795 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3796 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3797 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3798 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3799 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3800 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3801 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3802 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3803 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3804 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3805 #undef SHOW_FUNCTION
3807 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3808 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3810 struct cfq_data *cfqd = e->elevator_data; \
3811 unsigned int __data; \
3812 int ret = cfq_var_store(&__data, (page), count); \
3813 if (__data < (MIN)) \
3814 __data = (MIN); \
3815 else if (__data > (MAX)) \
3816 __data = (MAX); \
3817 if (__CONV) \
3818 *(__PTR) = msecs_to_jiffies(__data); \
3819 else \
3820 *(__PTR) = __data; \
3821 return ret; \
3823 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3824 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3825 UINT_MAX, 1);
3826 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3827 UINT_MAX, 1);
3828 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3829 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3830 UINT_MAX, 0);
3831 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3832 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3833 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3834 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3835 UINT_MAX, 0);
3836 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3837 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3838 #undef STORE_FUNCTION
3840 #define CFQ_ATTR(name) \
3841 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3843 static struct elv_fs_entry cfq_attrs[] = {
3844 CFQ_ATTR(quantum),
3845 CFQ_ATTR(fifo_expire_sync),
3846 CFQ_ATTR(fifo_expire_async),
3847 CFQ_ATTR(back_seek_max),
3848 CFQ_ATTR(back_seek_penalty),
3849 CFQ_ATTR(slice_sync),
3850 CFQ_ATTR(slice_async),
3851 CFQ_ATTR(slice_async_rq),
3852 CFQ_ATTR(slice_idle),
3853 CFQ_ATTR(low_latency),
3854 CFQ_ATTR(group_isolation),
3855 __ATTR_NULL
3858 static struct elevator_type iosched_cfq = {
3859 .ops = {
3860 .elevator_merge_fn = cfq_merge,
3861 .elevator_merged_fn = cfq_merged_request,
3862 .elevator_merge_req_fn = cfq_merged_requests,
3863 .elevator_allow_merge_fn = cfq_allow_merge,
3864 .elevator_dispatch_fn = cfq_dispatch_requests,
3865 .elevator_add_req_fn = cfq_insert_request,
3866 .elevator_activate_req_fn = cfq_activate_request,
3867 .elevator_deactivate_req_fn = cfq_deactivate_request,
3868 .elevator_queue_empty_fn = cfq_queue_empty,
3869 .elevator_completed_req_fn = cfq_completed_request,
3870 .elevator_former_req_fn = elv_rb_former_request,
3871 .elevator_latter_req_fn = elv_rb_latter_request,
3872 .elevator_set_req_fn = cfq_set_request,
3873 .elevator_put_req_fn = cfq_put_request,
3874 .elevator_may_queue_fn = cfq_may_queue,
3875 .elevator_init_fn = cfq_init_queue,
3876 .elevator_exit_fn = cfq_exit_queue,
3877 .trim = cfq_free_io_context,
3879 .elevator_attrs = cfq_attrs,
3880 .elevator_name = "cfq",
3881 .elevator_owner = THIS_MODULE,
3884 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3885 static struct blkio_policy_type blkio_policy_cfq = {
3886 .ops = {
3887 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3888 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3891 #else
3892 static struct blkio_policy_type blkio_policy_cfq;
3893 #endif
3895 static int __init cfq_init(void)
3898 * could be 0 on HZ < 1000 setups
3900 if (!cfq_slice_async)
3901 cfq_slice_async = 1;
3902 if (!cfq_slice_idle)
3903 cfq_slice_idle = 1;
3905 if (cfq_slab_setup())
3906 return -ENOMEM;
3908 elv_register(&iosched_cfq);
3909 blkio_policy_register(&blkio_policy_cfq);
3911 return 0;
3914 static void __exit cfq_exit(void)
3916 DECLARE_COMPLETION_ONSTACK(all_gone);
3917 blkio_policy_unregister(&blkio_policy_cfq);
3918 elv_unregister(&iosched_cfq);
3919 ioc_gone = &all_gone;
3920 /* ioc_gone's update must be visible before reading ioc_count */
3921 smp_wmb();
3924 * this also protects us from entering cfq_slab_kill() with
3925 * pending RCU callbacks
3927 if (elv_ioc_count_read(cfq_ioc_count))
3928 wait_for_completion(&all_gone);
3929 cfq_slab_kill();
3932 module_init(cfq_init);
3933 module_exit(cfq_exit);
3935 MODULE_AUTHOR("Jens Axboe");
3936 MODULE_LICENSE("GPL");
3937 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");