mm: memcg: keep ratelimit counter separate from event counters
[linux-2.6/libata-dev.git] / mm / memcontrol.c
blobb7b230606f2c115bae193a5c7133e6a7e1c506d6
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
75 #else
76 #define do_swap_account 0
77 #endif
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
94 enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS,
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
107 enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
110 MEM_CGROUP_TARGET_NUMAINFO,
111 MEM_CGROUP_NTARGETS,
113 #define THRESHOLDS_EVENTS_TARGET 128
114 #define SOFTLIMIT_EVENTS_TARGET 1024
115 #define NUMAINFO_EVENTS_TARGET 1024
117 struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120 unsigned long nr_page_events;
121 unsigned long targets[MEM_CGROUP_NTARGETS];
124 struct mem_cgroup_reclaim_iter {
125 /* css_id of the last scanned hierarchy member */
126 int position;
127 /* scan generation, increased every round-trip */
128 unsigned int generation;
132 * per-zone information in memory controller.
134 struct mem_cgroup_per_zone {
135 struct lruvec lruvec;
136 unsigned long lru_size[NR_LRU_LISTS];
138 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140 struct rb_node tree_node; /* RB tree node */
141 unsigned long long usage_in_excess;/* Set to the value by which */
142 /* the soft limit is exceeded*/
143 bool on_tree;
144 struct mem_cgroup *memcg; /* Back pointer, we cannot */
145 /* use container_of */
148 struct mem_cgroup_per_node {
149 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152 struct mem_cgroup_lru_info {
153 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
157 * Cgroups above their limits are maintained in a RB-Tree, independent of
158 * their hierarchy representation
161 struct mem_cgroup_tree_per_zone {
162 struct rb_root rb_root;
163 spinlock_t lock;
166 struct mem_cgroup_tree_per_node {
167 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170 struct mem_cgroup_tree {
171 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176 struct mem_cgroup_threshold {
177 struct eventfd_ctx *eventfd;
178 u64 threshold;
181 /* For threshold */
182 struct mem_cgroup_threshold_ary {
183 /* An array index points to threshold just below or equal to usage. */
184 int current_threshold;
185 /* Size of entries[] */
186 unsigned int size;
187 /* Array of thresholds */
188 struct mem_cgroup_threshold entries[0];
191 struct mem_cgroup_thresholds {
192 /* Primary thresholds array */
193 struct mem_cgroup_threshold_ary *primary;
195 * Spare threshold array.
196 * This is needed to make mem_cgroup_unregister_event() "never fail".
197 * It must be able to store at least primary->size - 1 entries.
199 struct mem_cgroup_threshold_ary *spare;
202 /* for OOM */
203 struct mem_cgroup_eventfd_list {
204 struct list_head list;
205 struct eventfd_ctx *eventfd;
208 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
209 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212 * The memory controller data structure. The memory controller controls both
213 * page cache and RSS per cgroup. We would eventually like to provide
214 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
215 * to help the administrator determine what knobs to tune.
217 * TODO: Add a water mark for the memory controller. Reclaim will begin when
218 * we hit the water mark. May be even add a low water mark, such that
219 * no reclaim occurs from a cgroup at it's low water mark, this is
220 * a feature that will be implemented much later in the future.
222 struct mem_cgroup {
223 struct cgroup_subsys_state css;
225 * the counter to account for memory usage
227 struct res_counter res;
229 union {
231 * the counter to account for mem+swap usage.
233 struct res_counter memsw;
236 * rcu_freeing is used only when freeing struct mem_cgroup,
237 * so put it into a union to avoid wasting more memory.
238 * It must be disjoint from the css field. It could be
239 * in a union with the res field, but res plays a much
240 * larger part in mem_cgroup life than memsw, and might
241 * be of interest, even at time of free, when debugging.
242 * So share rcu_head with the less interesting memsw.
244 struct rcu_head rcu_freeing;
246 * But when using vfree(), that cannot be done at
247 * interrupt time, so we must then queue the work.
249 struct work_struct work_freeing;
253 * Per cgroup active and inactive list, similar to the
254 * per zone LRU lists.
256 struct mem_cgroup_lru_info info;
257 int last_scanned_node;
258 #if MAX_NUMNODES > 1
259 nodemask_t scan_nodes;
260 atomic_t numainfo_events;
261 atomic_t numainfo_updating;
262 #endif
264 * Should the accounting and control be hierarchical, per subtree?
266 bool use_hierarchy;
268 bool oom_lock;
269 atomic_t under_oom;
271 atomic_t refcnt;
273 int swappiness;
274 /* OOM-Killer disable */
275 int oom_kill_disable;
277 /* set when res.limit == memsw.limit */
278 bool memsw_is_minimum;
280 /* protect arrays of thresholds */
281 struct mutex thresholds_lock;
283 /* thresholds for memory usage. RCU-protected */
284 struct mem_cgroup_thresholds thresholds;
286 /* thresholds for mem+swap usage. RCU-protected */
287 struct mem_cgroup_thresholds memsw_thresholds;
289 /* For oom notifier event fd */
290 struct list_head oom_notify;
293 * Should we move charges of a task when a task is moved into this
294 * mem_cgroup ? And what type of charges should we move ?
296 unsigned long move_charge_at_immigrate;
298 * set > 0 if pages under this cgroup are moving to other cgroup.
300 atomic_t moving_account;
301 /* taken only while moving_account > 0 */
302 spinlock_t move_lock;
304 * percpu counter.
306 struct mem_cgroup_stat_cpu __percpu *stat;
308 * used when a cpu is offlined or other synchronizations
309 * See mem_cgroup_read_stat().
311 struct mem_cgroup_stat_cpu nocpu_base;
312 spinlock_t pcp_counter_lock;
314 #ifdef CONFIG_INET
315 struct tcp_memcontrol tcp_mem;
316 #endif
319 /* Stuffs for move charges at task migration. */
321 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
322 * left-shifted bitmap of these types.
324 enum move_type {
325 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
326 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
327 NR_MOVE_TYPE,
330 /* "mc" and its members are protected by cgroup_mutex */
331 static struct move_charge_struct {
332 spinlock_t lock; /* for from, to */
333 struct mem_cgroup *from;
334 struct mem_cgroup *to;
335 unsigned long precharge;
336 unsigned long moved_charge;
337 unsigned long moved_swap;
338 struct task_struct *moving_task; /* a task moving charges */
339 wait_queue_head_t waitq; /* a waitq for other context */
340 } mc = {
341 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
342 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345 static bool move_anon(void)
347 return test_bit(MOVE_CHARGE_TYPE_ANON,
348 &mc.to->move_charge_at_immigrate);
351 static bool move_file(void)
353 return test_bit(MOVE_CHARGE_TYPE_FILE,
354 &mc.to->move_charge_at_immigrate);
358 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
359 * limit reclaim to prevent infinite loops, if they ever occur.
361 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
362 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
364 enum charge_type {
365 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
366 MEM_CGROUP_CHARGE_TYPE_MAPPED,
367 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
368 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
369 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
370 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
371 NR_CHARGE_TYPE,
374 /* for encoding cft->private value on file */
375 #define _MEM (0)
376 #define _MEMSWAP (1)
377 #define _OOM_TYPE (2)
378 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
379 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
380 #define MEMFILE_ATTR(val) ((val) & 0xffff)
381 /* Used for OOM nofiier */
382 #define OOM_CONTROL (0)
385 * Reclaim flags for mem_cgroup_hierarchical_reclaim
387 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
388 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
389 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
390 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
392 static void mem_cgroup_get(struct mem_cgroup *memcg);
393 static void mem_cgroup_put(struct mem_cgroup *memcg);
395 /* Writing them here to avoid exposing memcg's inner layout */
396 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
397 #include <net/sock.h>
398 #include <net/ip.h>
400 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
401 void sock_update_memcg(struct sock *sk)
403 if (mem_cgroup_sockets_enabled) {
404 struct mem_cgroup *memcg;
406 BUG_ON(!sk->sk_prot->proto_cgroup);
408 /* Socket cloning can throw us here with sk_cgrp already
409 * filled. It won't however, necessarily happen from
410 * process context. So the test for root memcg given
411 * the current task's memcg won't help us in this case.
413 * Respecting the original socket's memcg is a better
414 * decision in this case.
416 if (sk->sk_cgrp) {
417 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
418 mem_cgroup_get(sk->sk_cgrp->memcg);
419 return;
422 rcu_read_lock();
423 memcg = mem_cgroup_from_task(current);
424 if (!mem_cgroup_is_root(memcg)) {
425 mem_cgroup_get(memcg);
426 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
428 rcu_read_unlock();
431 EXPORT_SYMBOL(sock_update_memcg);
433 void sock_release_memcg(struct sock *sk)
435 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
436 struct mem_cgroup *memcg;
437 WARN_ON(!sk->sk_cgrp->memcg);
438 memcg = sk->sk_cgrp->memcg;
439 mem_cgroup_put(memcg);
443 #ifdef CONFIG_INET
444 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
446 if (!memcg || mem_cgroup_is_root(memcg))
447 return NULL;
449 return &memcg->tcp_mem.cg_proto;
451 EXPORT_SYMBOL(tcp_proto_cgroup);
452 #endif /* CONFIG_INET */
453 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
455 static void drain_all_stock_async(struct mem_cgroup *memcg);
457 static struct mem_cgroup_per_zone *
458 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
460 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
465 return &memcg->css;
468 static struct mem_cgroup_per_zone *
469 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
471 int nid = page_to_nid(page);
472 int zid = page_zonenum(page);
474 return mem_cgroup_zoneinfo(memcg, nid, zid);
477 static struct mem_cgroup_tree_per_zone *
478 soft_limit_tree_node_zone(int nid, int zid)
480 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483 static struct mem_cgroup_tree_per_zone *
484 soft_limit_tree_from_page(struct page *page)
486 int nid = page_to_nid(page);
487 int zid = page_zonenum(page);
489 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492 static void
493 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
494 struct mem_cgroup_per_zone *mz,
495 struct mem_cgroup_tree_per_zone *mctz,
496 unsigned long long new_usage_in_excess)
498 struct rb_node **p = &mctz->rb_root.rb_node;
499 struct rb_node *parent = NULL;
500 struct mem_cgroup_per_zone *mz_node;
502 if (mz->on_tree)
503 return;
505 mz->usage_in_excess = new_usage_in_excess;
506 if (!mz->usage_in_excess)
507 return;
508 while (*p) {
509 parent = *p;
510 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
511 tree_node);
512 if (mz->usage_in_excess < mz_node->usage_in_excess)
513 p = &(*p)->rb_left;
515 * We can't avoid mem cgroups that are over their soft
516 * limit by the same amount
518 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
519 p = &(*p)->rb_right;
521 rb_link_node(&mz->tree_node, parent, p);
522 rb_insert_color(&mz->tree_node, &mctz->rb_root);
523 mz->on_tree = true;
526 static void
527 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
528 struct mem_cgroup_per_zone *mz,
529 struct mem_cgroup_tree_per_zone *mctz)
531 if (!mz->on_tree)
532 return;
533 rb_erase(&mz->tree_node, &mctz->rb_root);
534 mz->on_tree = false;
537 static void
538 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
539 struct mem_cgroup_per_zone *mz,
540 struct mem_cgroup_tree_per_zone *mctz)
542 spin_lock(&mctz->lock);
543 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
544 spin_unlock(&mctz->lock);
548 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
550 unsigned long long excess;
551 struct mem_cgroup_per_zone *mz;
552 struct mem_cgroup_tree_per_zone *mctz;
553 int nid = page_to_nid(page);
554 int zid = page_zonenum(page);
555 mctz = soft_limit_tree_from_page(page);
558 * Necessary to update all ancestors when hierarchy is used.
559 * because their event counter is not touched.
561 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
562 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
563 excess = res_counter_soft_limit_excess(&memcg->res);
565 * We have to update the tree if mz is on RB-tree or
566 * mem is over its softlimit.
568 if (excess || mz->on_tree) {
569 spin_lock(&mctz->lock);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
577 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
578 spin_unlock(&mctz->lock);
583 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 int node, zone;
586 struct mem_cgroup_per_zone *mz;
587 struct mem_cgroup_tree_per_zone *mctz;
589 for_each_node(node) {
590 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
591 mz = mem_cgroup_zoneinfo(memcg, node, zone);
592 mctz = soft_limit_tree_node_zone(node, zone);
593 mem_cgroup_remove_exceeded(memcg, mz, mctz);
598 static struct mem_cgroup_per_zone *
599 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
601 struct rb_node *rightmost = NULL;
602 struct mem_cgroup_per_zone *mz;
604 retry:
605 mz = NULL;
606 rightmost = rb_last(&mctz->rb_root);
607 if (!rightmost)
608 goto done; /* Nothing to reclaim from */
610 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
612 * Remove the node now but someone else can add it back,
613 * we will to add it back at the end of reclaim to its correct
614 * position in the tree.
616 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
617 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
618 !css_tryget(&mz->memcg->css))
619 goto retry;
620 done:
621 return mz;
624 static struct mem_cgroup_per_zone *
625 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
627 struct mem_cgroup_per_zone *mz;
629 spin_lock(&mctz->lock);
630 mz = __mem_cgroup_largest_soft_limit_node(mctz);
631 spin_unlock(&mctz->lock);
632 return mz;
636 * Implementation Note: reading percpu statistics for memcg.
638 * Both of vmstat[] and percpu_counter has threshold and do periodic
639 * synchronization to implement "quick" read. There are trade-off between
640 * reading cost and precision of value. Then, we may have a chance to implement
641 * a periodic synchronizion of counter in memcg's counter.
643 * But this _read() function is used for user interface now. The user accounts
644 * memory usage by memory cgroup and he _always_ requires exact value because
645 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
646 * have to visit all online cpus and make sum. So, for now, unnecessary
647 * synchronization is not implemented. (just implemented for cpu hotplug)
649 * If there are kernel internal actions which can make use of some not-exact
650 * value, and reading all cpu value can be performance bottleneck in some
651 * common workload, threashold and synchonization as vmstat[] should be
652 * implemented.
654 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
655 enum mem_cgroup_stat_index idx)
657 long val = 0;
658 int cpu;
660 get_online_cpus();
661 for_each_online_cpu(cpu)
662 val += per_cpu(memcg->stat->count[idx], cpu);
663 #ifdef CONFIG_HOTPLUG_CPU
664 spin_lock(&memcg->pcp_counter_lock);
665 val += memcg->nocpu_base.count[idx];
666 spin_unlock(&memcg->pcp_counter_lock);
667 #endif
668 put_online_cpus();
669 return val;
672 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
673 bool charge)
675 int val = (charge) ? 1 : -1;
676 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
680 enum mem_cgroup_events_index idx)
682 unsigned long val = 0;
683 int cpu;
685 for_each_online_cpu(cpu)
686 val += per_cpu(memcg->stat->events[idx], cpu);
687 #ifdef CONFIG_HOTPLUG_CPU
688 spin_lock(&memcg->pcp_counter_lock);
689 val += memcg->nocpu_base.events[idx];
690 spin_unlock(&memcg->pcp_counter_lock);
691 #endif
692 return val;
695 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
696 bool anon, int nr_pages)
698 preempt_disable();
701 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
702 * counted as CACHE even if it's on ANON LRU.
704 if (anon)
705 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
706 nr_pages);
707 else
708 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
709 nr_pages);
711 /* pagein of a big page is an event. So, ignore page size */
712 if (nr_pages > 0)
713 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
714 else {
715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
716 nr_pages = -nr_pages; /* for event */
719 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
721 preempt_enable();
724 unsigned long
725 mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
727 struct mem_cgroup_per_zone *mz;
729 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
730 return mz->lru_size[lru];
733 static unsigned long
734 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
735 unsigned int lru_mask)
737 struct mem_cgroup_per_zone *mz;
738 enum lru_list lru;
739 unsigned long ret = 0;
741 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
743 for_each_lru(lru) {
744 if (BIT(lru) & lru_mask)
745 ret += mz->lru_size[lru];
747 return ret;
750 static unsigned long
751 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
752 int nid, unsigned int lru_mask)
754 u64 total = 0;
755 int zid;
757 for (zid = 0; zid < MAX_NR_ZONES; zid++)
758 total += mem_cgroup_zone_nr_lru_pages(memcg,
759 nid, zid, lru_mask);
761 return total;
764 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
765 unsigned int lru_mask)
767 int nid;
768 u64 total = 0;
770 for_each_node_state(nid, N_HIGH_MEMORY)
771 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
772 return total;
775 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
776 enum mem_cgroup_events_target target)
778 unsigned long val, next;
780 val = __this_cpu_read(memcg->stat->nr_page_events);
781 next = __this_cpu_read(memcg->stat->targets[target]);
782 /* from time_after() in jiffies.h */
783 if ((long)next - (long)val < 0) {
784 switch (target) {
785 case MEM_CGROUP_TARGET_THRESH:
786 next = val + THRESHOLDS_EVENTS_TARGET;
787 break;
788 case MEM_CGROUP_TARGET_SOFTLIMIT:
789 next = val + SOFTLIMIT_EVENTS_TARGET;
790 break;
791 case MEM_CGROUP_TARGET_NUMAINFO:
792 next = val + NUMAINFO_EVENTS_TARGET;
793 break;
794 default:
795 break;
797 __this_cpu_write(memcg->stat->targets[target], next);
798 return true;
800 return false;
804 * Check events in order.
807 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
809 preempt_disable();
810 /* threshold event is triggered in finer grain than soft limit */
811 if (unlikely(mem_cgroup_event_ratelimit(memcg,
812 MEM_CGROUP_TARGET_THRESH))) {
813 bool do_softlimit;
814 bool do_numainfo __maybe_unused;
816 do_softlimit = mem_cgroup_event_ratelimit(memcg,
817 MEM_CGROUP_TARGET_SOFTLIMIT);
818 #if MAX_NUMNODES > 1
819 do_numainfo = mem_cgroup_event_ratelimit(memcg,
820 MEM_CGROUP_TARGET_NUMAINFO);
821 #endif
822 preempt_enable();
824 mem_cgroup_threshold(memcg);
825 if (unlikely(do_softlimit))
826 mem_cgroup_update_tree(memcg, page);
827 #if MAX_NUMNODES > 1
828 if (unlikely(do_numainfo))
829 atomic_inc(&memcg->numainfo_events);
830 #endif
831 } else
832 preempt_enable();
835 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
837 return container_of(cgroup_subsys_state(cont,
838 mem_cgroup_subsys_id), struct mem_cgroup,
839 css);
842 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
845 * mm_update_next_owner() may clear mm->owner to NULL
846 * if it races with swapoff, page migration, etc.
847 * So this can be called with p == NULL.
849 if (unlikely(!p))
850 return NULL;
852 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
853 struct mem_cgroup, css);
856 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
858 struct mem_cgroup *memcg = NULL;
860 if (!mm)
861 return NULL;
863 * Because we have no locks, mm->owner's may be being moved to other
864 * cgroup. We use css_tryget() here even if this looks
865 * pessimistic (rather than adding locks here).
867 rcu_read_lock();
868 do {
869 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
870 if (unlikely(!memcg))
871 break;
872 } while (!css_tryget(&memcg->css));
873 rcu_read_unlock();
874 return memcg;
878 * mem_cgroup_iter - iterate over memory cgroup hierarchy
879 * @root: hierarchy root
880 * @prev: previously returned memcg, NULL on first invocation
881 * @reclaim: cookie for shared reclaim walks, NULL for full walks
883 * Returns references to children of the hierarchy below @root, or
884 * @root itself, or %NULL after a full round-trip.
886 * Caller must pass the return value in @prev on subsequent
887 * invocations for reference counting, or use mem_cgroup_iter_break()
888 * to cancel a hierarchy walk before the round-trip is complete.
890 * Reclaimers can specify a zone and a priority level in @reclaim to
891 * divide up the memcgs in the hierarchy among all concurrent
892 * reclaimers operating on the same zone and priority.
894 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
895 struct mem_cgroup *prev,
896 struct mem_cgroup_reclaim_cookie *reclaim)
898 struct mem_cgroup *memcg = NULL;
899 int id = 0;
901 if (mem_cgroup_disabled())
902 return NULL;
904 if (!root)
905 root = root_mem_cgroup;
907 if (prev && !reclaim)
908 id = css_id(&prev->css);
910 if (prev && prev != root)
911 css_put(&prev->css);
913 if (!root->use_hierarchy && root != root_mem_cgroup) {
914 if (prev)
915 return NULL;
916 return root;
919 while (!memcg) {
920 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
921 struct cgroup_subsys_state *css;
923 if (reclaim) {
924 int nid = zone_to_nid(reclaim->zone);
925 int zid = zone_idx(reclaim->zone);
926 struct mem_cgroup_per_zone *mz;
928 mz = mem_cgroup_zoneinfo(root, nid, zid);
929 iter = &mz->reclaim_iter[reclaim->priority];
930 if (prev && reclaim->generation != iter->generation)
931 return NULL;
932 id = iter->position;
935 rcu_read_lock();
936 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
937 if (css) {
938 if (css == &root->css || css_tryget(css))
939 memcg = container_of(css,
940 struct mem_cgroup, css);
941 } else
942 id = 0;
943 rcu_read_unlock();
945 if (reclaim) {
946 iter->position = id;
947 if (!css)
948 iter->generation++;
949 else if (!prev && memcg)
950 reclaim->generation = iter->generation;
953 if (prev && !css)
954 return NULL;
956 return memcg;
960 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
961 * @root: hierarchy root
962 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
964 void mem_cgroup_iter_break(struct mem_cgroup *root,
965 struct mem_cgroup *prev)
967 if (!root)
968 root = root_mem_cgroup;
969 if (prev && prev != root)
970 css_put(&prev->css);
974 * Iteration constructs for visiting all cgroups (under a tree). If
975 * loops are exited prematurely (break), mem_cgroup_iter_break() must
976 * be used for reference counting.
978 #define for_each_mem_cgroup_tree(iter, root) \
979 for (iter = mem_cgroup_iter(root, NULL, NULL); \
980 iter != NULL; \
981 iter = mem_cgroup_iter(root, iter, NULL))
983 #define for_each_mem_cgroup(iter) \
984 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
985 iter != NULL; \
986 iter = mem_cgroup_iter(NULL, iter, NULL))
988 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
990 return (memcg == root_mem_cgroup);
993 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
995 struct mem_cgroup *memcg;
997 if (!mm)
998 return;
1000 rcu_read_lock();
1001 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1002 if (unlikely(!memcg))
1003 goto out;
1005 switch (idx) {
1006 case PGFAULT:
1007 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1008 break;
1009 case PGMAJFAULT:
1010 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1011 break;
1012 default:
1013 BUG();
1015 out:
1016 rcu_read_unlock();
1018 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1021 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1022 * @zone: zone of the wanted lruvec
1023 * @mem: memcg of the wanted lruvec
1025 * Returns the lru list vector holding pages for the given @zone and
1026 * @mem. This can be the global zone lruvec, if the memory controller
1027 * is disabled.
1029 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1030 struct mem_cgroup *memcg)
1032 struct mem_cgroup_per_zone *mz;
1034 if (mem_cgroup_disabled())
1035 return &zone->lruvec;
1037 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1038 return &mz->lruvec;
1042 * Following LRU functions are allowed to be used without PCG_LOCK.
1043 * Operations are called by routine of global LRU independently from memcg.
1044 * What we have to take care of here is validness of pc->mem_cgroup.
1046 * Changes to pc->mem_cgroup happens when
1047 * 1. charge
1048 * 2. moving account
1049 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1050 * It is added to LRU before charge.
1051 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1052 * When moving account, the page is not on LRU. It's isolated.
1056 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1057 * @zone: zone of the page
1058 * @page: the page
1059 * @lru: current lru
1061 * This function accounts for @page being added to @lru, and returns
1062 * the lruvec for the given @zone and the memcg @page is charged to.
1064 * The callsite is then responsible for physically linking the page to
1065 * the returned lruvec->lists[@lru].
1067 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1068 enum lru_list lru)
1070 struct mem_cgroup_per_zone *mz;
1071 struct mem_cgroup *memcg;
1072 struct page_cgroup *pc;
1074 if (mem_cgroup_disabled())
1075 return &zone->lruvec;
1077 pc = lookup_page_cgroup(page);
1078 memcg = pc->mem_cgroup;
1081 * Surreptitiously switch any uncharged page to root:
1082 * an uncharged page off lru does nothing to secure
1083 * its former mem_cgroup from sudden removal.
1085 * Our caller holds lru_lock, and PageCgroupUsed is updated
1086 * under page_cgroup lock: between them, they make all uses
1087 * of pc->mem_cgroup safe.
1089 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1090 pc->mem_cgroup = memcg = root_mem_cgroup;
1092 mz = page_cgroup_zoneinfo(memcg, page);
1093 /* compound_order() is stabilized through lru_lock */
1094 mz->lru_size[lru] += 1 << compound_order(page);
1095 return &mz->lruvec;
1099 * mem_cgroup_lru_del_list - account for removing an lru page
1100 * @page: the page
1101 * @lru: target lru
1103 * This function accounts for @page being removed from @lru.
1105 * The callsite is then responsible for physically unlinking
1106 * @page->lru.
1108 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1110 struct mem_cgroup_per_zone *mz;
1111 struct mem_cgroup *memcg;
1112 struct page_cgroup *pc;
1114 if (mem_cgroup_disabled())
1115 return;
1117 pc = lookup_page_cgroup(page);
1118 memcg = pc->mem_cgroup;
1119 VM_BUG_ON(!memcg);
1120 mz = page_cgroup_zoneinfo(memcg, page);
1121 /* huge page split is done under lru_lock. so, we have no races. */
1122 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1123 mz->lru_size[lru] -= 1 << compound_order(page);
1127 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1128 * @zone: zone of the page
1129 * @page: the page
1130 * @from: current lru
1131 * @to: target lru
1133 * This function accounts for @page being moved between the lrus @from
1134 * and @to, and returns the lruvec for the given @zone and the memcg
1135 * @page is charged to.
1137 * The callsite is then responsible for physically relinking
1138 * @page->lru to the returned lruvec->lists[@to].
1140 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1141 struct page *page,
1142 enum lru_list from,
1143 enum lru_list to)
1145 /* XXX: Optimize this, especially for @from == @to */
1146 mem_cgroup_lru_del_list(page, from);
1147 return mem_cgroup_lru_add_list(zone, page, to);
1151 * Checks whether given mem is same or in the root_mem_cgroup's
1152 * hierarchy subtree
1154 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1155 struct mem_cgroup *memcg)
1157 if (root_memcg == memcg)
1158 return true;
1159 if (!root_memcg->use_hierarchy)
1160 return false;
1161 return css_is_ancestor(&memcg->css, &root_memcg->css);
1164 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1165 struct mem_cgroup *memcg)
1167 bool ret;
1169 rcu_read_lock();
1170 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1171 rcu_read_unlock();
1172 return ret;
1175 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1177 int ret;
1178 struct mem_cgroup *curr = NULL;
1179 struct task_struct *p;
1181 p = find_lock_task_mm(task);
1182 if (p) {
1183 curr = try_get_mem_cgroup_from_mm(p->mm);
1184 task_unlock(p);
1185 } else {
1187 * All threads may have already detached their mm's, but the oom
1188 * killer still needs to detect if they have already been oom
1189 * killed to prevent needlessly killing additional tasks.
1191 task_lock(task);
1192 curr = mem_cgroup_from_task(task);
1193 if (curr)
1194 css_get(&curr->css);
1195 task_unlock(task);
1197 if (!curr)
1198 return 0;
1200 * We should check use_hierarchy of "memcg" not "curr". Because checking
1201 * use_hierarchy of "curr" here make this function true if hierarchy is
1202 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1203 * hierarchy(even if use_hierarchy is disabled in "memcg").
1205 ret = mem_cgroup_same_or_subtree(memcg, curr);
1206 css_put(&curr->css);
1207 return ret;
1210 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1212 unsigned long inactive_ratio;
1213 unsigned long inactive;
1214 unsigned long active;
1215 unsigned long gb;
1217 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1218 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
1220 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1221 if (gb)
1222 inactive_ratio = int_sqrt(10 * gb);
1223 else
1224 inactive_ratio = 1;
1226 return inactive * inactive_ratio < active;
1229 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1231 unsigned long active;
1232 unsigned long inactive;
1234 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1235 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
1237 return (active > inactive);
1240 struct zone_reclaim_stat *
1241 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1243 struct page_cgroup *pc;
1244 struct mem_cgroup_per_zone *mz;
1246 if (mem_cgroup_disabled())
1247 return NULL;
1249 pc = lookup_page_cgroup(page);
1250 if (!PageCgroupUsed(pc))
1251 return NULL;
1252 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1253 smp_rmb();
1254 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1255 return &mz->lruvec.reclaim_stat;
1258 #define mem_cgroup_from_res_counter(counter, member) \
1259 container_of(counter, struct mem_cgroup, member)
1262 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1263 * @mem: the memory cgroup
1265 * Returns the maximum amount of memory @mem can be charged with, in
1266 * pages.
1268 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270 unsigned long long margin;
1272 margin = res_counter_margin(&memcg->res);
1273 if (do_swap_account)
1274 margin = min(margin, res_counter_margin(&memcg->memsw));
1275 return margin >> PAGE_SHIFT;
1278 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1280 struct cgroup *cgrp = memcg->css.cgroup;
1282 /* root ? */
1283 if (cgrp->parent == NULL)
1284 return vm_swappiness;
1286 return memcg->swappiness;
1290 * memcg->moving_account is used for checking possibility that some thread is
1291 * calling move_account(). When a thread on CPU-A starts moving pages under
1292 * a memcg, other threads should check memcg->moving_account under
1293 * rcu_read_lock(), like this:
1295 * CPU-A CPU-B
1296 * rcu_read_lock()
1297 * memcg->moving_account+1 if (memcg->mocing_account)
1298 * take heavy locks.
1299 * synchronize_rcu() update something.
1300 * rcu_read_unlock()
1301 * start move here.
1304 /* for quick checking without looking up memcg */
1305 atomic_t memcg_moving __read_mostly;
1307 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1309 atomic_inc(&memcg_moving);
1310 atomic_inc(&memcg->moving_account);
1311 synchronize_rcu();
1314 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1317 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1318 * We check NULL in callee rather than caller.
1320 if (memcg) {
1321 atomic_dec(&memcg_moving);
1322 atomic_dec(&memcg->moving_account);
1327 * 2 routines for checking "mem" is under move_account() or not.
1329 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1330 * is used for avoiding races in accounting. If true,
1331 * pc->mem_cgroup may be overwritten.
1333 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1334 * under hierarchy of moving cgroups. This is for
1335 * waiting at hith-memory prressure caused by "move".
1338 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1340 VM_BUG_ON(!rcu_read_lock_held());
1341 return atomic_read(&memcg->moving_account) > 0;
1344 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1346 struct mem_cgroup *from;
1347 struct mem_cgroup *to;
1348 bool ret = false;
1350 * Unlike task_move routines, we access mc.to, mc.from not under
1351 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1353 spin_lock(&mc.lock);
1354 from = mc.from;
1355 to = mc.to;
1356 if (!from)
1357 goto unlock;
1359 ret = mem_cgroup_same_or_subtree(memcg, from)
1360 || mem_cgroup_same_or_subtree(memcg, to);
1361 unlock:
1362 spin_unlock(&mc.lock);
1363 return ret;
1366 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1368 if (mc.moving_task && current != mc.moving_task) {
1369 if (mem_cgroup_under_move(memcg)) {
1370 DEFINE_WAIT(wait);
1371 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1372 /* moving charge context might have finished. */
1373 if (mc.moving_task)
1374 schedule();
1375 finish_wait(&mc.waitq, &wait);
1376 return true;
1379 return false;
1383 * Take this lock when
1384 * - a code tries to modify page's memcg while it's USED.
1385 * - a code tries to modify page state accounting in a memcg.
1386 * see mem_cgroup_stolen(), too.
1388 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1389 unsigned long *flags)
1391 spin_lock_irqsave(&memcg->move_lock, *flags);
1394 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1397 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1401 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1402 * @memcg: The memory cgroup that went over limit
1403 * @p: Task that is going to be killed
1405 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1406 * enabled
1408 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1410 struct cgroup *task_cgrp;
1411 struct cgroup *mem_cgrp;
1413 * Need a buffer in BSS, can't rely on allocations. The code relies
1414 * on the assumption that OOM is serialized for memory controller.
1415 * If this assumption is broken, revisit this code.
1417 static char memcg_name[PATH_MAX];
1418 int ret;
1420 if (!memcg || !p)
1421 return;
1423 rcu_read_lock();
1425 mem_cgrp = memcg->css.cgroup;
1426 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1428 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1429 if (ret < 0) {
1431 * Unfortunately, we are unable to convert to a useful name
1432 * But we'll still print out the usage information
1434 rcu_read_unlock();
1435 goto done;
1437 rcu_read_unlock();
1439 printk(KERN_INFO "Task in %s killed", memcg_name);
1441 rcu_read_lock();
1442 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1443 if (ret < 0) {
1444 rcu_read_unlock();
1445 goto done;
1447 rcu_read_unlock();
1450 * Continues from above, so we don't need an KERN_ level
1452 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1453 done:
1455 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1456 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1457 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1458 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1459 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1460 "failcnt %llu\n",
1461 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1462 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1463 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1467 * This function returns the number of memcg under hierarchy tree. Returns
1468 * 1(self count) if no children.
1470 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1472 int num = 0;
1473 struct mem_cgroup *iter;
1475 for_each_mem_cgroup_tree(iter, memcg)
1476 num++;
1477 return num;
1481 * Return the memory (and swap, if configured) limit for a memcg.
1483 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1485 u64 limit;
1486 u64 memsw;
1488 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1489 limit += total_swap_pages << PAGE_SHIFT;
1491 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1493 * If memsw is finite and limits the amount of swap space available
1494 * to this memcg, return that limit.
1496 return min(limit, memsw);
1499 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1500 gfp_t gfp_mask,
1501 unsigned long flags)
1503 unsigned long total = 0;
1504 bool noswap = false;
1505 int loop;
1507 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1508 noswap = true;
1509 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1510 noswap = true;
1512 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1513 if (loop)
1514 drain_all_stock_async(memcg);
1515 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1517 * Allow limit shrinkers, which are triggered directly
1518 * by userspace, to catch signals and stop reclaim
1519 * after minimal progress, regardless of the margin.
1521 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1522 break;
1523 if (mem_cgroup_margin(memcg))
1524 break;
1526 * If nothing was reclaimed after two attempts, there
1527 * may be no reclaimable pages in this hierarchy.
1529 if (loop && !total)
1530 break;
1532 return total;
1536 * test_mem_cgroup_node_reclaimable
1537 * @mem: the target memcg
1538 * @nid: the node ID to be checked.
1539 * @noswap : specify true here if the user wants flle only information.
1541 * This function returns whether the specified memcg contains any
1542 * reclaimable pages on a node. Returns true if there are any reclaimable
1543 * pages in the node.
1545 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1546 int nid, bool noswap)
1548 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1549 return true;
1550 if (noswap || !total_swap_pages)
1551 return false;
1552 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1553 return true;
1554 return false;
1557 #if MAX_NUMNODES > 1
1560 * Always updating the nodemask is not very good - even if we have an empty
1561 * list or the wrong list here, we can start from some node and traverse all
1562 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1565 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1567 int nid;
1569 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1570 * pagein/pageout changes since the last update.
1572 if (!atomic_read(&memcg->numainfo_events))
1573 return;
1574 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1575 return;
1577 /* make a nodemask where this memcg uses memory from */
1578 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1580 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1582 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1583 node_clear(nid, memcg->scan_nodes);
1586 atomic_set(&memcg->numainfo_events, 0);
1587 atomic_set(&memcg->numainfo_updating, 0);
1591 * Selecting a node where we start reclaim from. Because what we need is just
1592 * reducing usage counter, start from anywhere is O,K. Considering
1593 * memory reclaim from current node, there are pros. and cons.
1595 * Freeing memory from current node means freeing memory from a node which
1596 * we'll use or we've used. So, it may make LRU bad. And if several threads
1597 * hit limits, it will see a contention on a node. But freeing from remote
1598 * node means more costs for memory reclaim because of memory latency.
1600 * Now, we use round-robin. Better algorithm is welcomed.
1602 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1604 int node;
1606 mem_cgroup_may_update_nodemask(memcg);
1607 node = memcg->last_scanned_node;
1609 node = next_node(node, memcg->scan_nodes);
1610 if (node == MAX_NUMNODES)
1611 node = first_node(memcg->scan_nodes);
1613 * We call this when we hit limit, not when pages are added to LRU.
1614 * No LRU may hold pages because all pages are UNEVICTABLE or
1615 * memcg is too small and all pages are not on LRU. In that case,
1616 * we use curret node.
1618 if (unlikely(node == MAX_NUMNODES))
1619 node = numa_node_id();
1621 memcg->last_scanned_node = node;
1622 return node;
1626 * Check all nodes whether it contains reclaimable pages or not.
1627 * For quick scan, we make use of scan_nodes. This will allow us to skip
1628 * unused nodes. But scan_nodes is lazily updated and may not cotain
1629 * enough new information. We need to do double check.
1631 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1633 int nid;
1636 * quick check...making use of scan_node.
1637 * We can skip unused nodes.
1639 if (!nodes_empty(memcg->scan_nodes)) {
1640 for (nid = first_node(memcg->scan_nodes);
1641 nid < MAX_NUMNODES;
1642 nid = next_node(nid, memcg->scan_nodes)) {
1644 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1645 return true;
1649 * Check rest of nodes.
1651 for_each_node_state(nid, N_HIGH_MEMORY) {
1652 if (node_isset(nid, memcg->scan_nodes))
1653 continue;
1654 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1655 return true;
1657 return false;
1660 #else
1661 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1663 return 0;
1666 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1670 #endif
1672 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1673 struct zone *zone,
1674 gfp_t gfp_mask,
1675 unsigned long *total_scanned)
1677 struct mem_cgroup *victim = NULL;
1678 int total = 0;
1679 int loop = 0;
1680 unsigned long excess;
1681 unsigned long nr_scanned;
1682 struct mem_cgroup_reclaim_cookie reclaim = {
1683 .zone = zone,
1684 .priority = 0,
1687 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1689 while (1) {
1690 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1691 if (!victim) {
1692 loop++;
1693 if (loop >= 2) {
1695 * If we have not been able to reclaim
1696 * anything, it might because there are
1697 * no reclaimable pages under this hierarchy
1699 if (!total)
1700 break;
1702 * We want to do more targeted reclaim.
1703 * excess >> 2 is not to excessive so as to
1704 * reclaim too much, nor too less that we keep
1705 * coming back to reclaim from this cgroup
1707 if (total >= (excess >> 2) ||
1708 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1709 break;
1711 continue;
1713 if (!mem_cgroup_reclaimable(victim, false))
1714 continue;
1715 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1716 zone, &nr_scanned);
1717 *total_scanned += nr_scanned;
1718 if (!res_counter_soft_limit_excess(&root_memcg->res))
1719 break;
1721 mem_cgroup_iter_break(root_memcg, victim);
1722 return total;
1726 * Check OOM-Killer is already running under our hierarchy.
1727 * If someone is running, return false.
1728 * Has to be called with memcg_oom_lock
1730 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1732 struct mem_cgroup *iter, *failed = NULL;
1734 for_each_mem_cgroup_tree(iter, memcg) {
1735 if (iter->oom_lock) {
1737 * this subtree of our hierarchy is already locked
1738 * so we cannot give a lock.
1740 failed = iter;
1741 mem_cgroup_iter_break(memcg, iter);
1742 break;
1743 } else
1744 iter->oom_lock = true;
1747 if (!failed)
1748 return true;
1751 * OK, we failed to lock the whole subtree so we have to clean up
1752 * what we set up to the failing subtree
1754 for_each_mem_cgroup_tree(iter, memcg) {
1755 if (iter == failed) {
1756 mem_cgroup_iter_break(memcg, iter);
1757 break;
1759 iter->oom_lock = false;
1761 return false;
1765 * Has to be called with memcg_oom_lock
1767 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1769 struct mem_cgroup *iter;
1771 for_each_mem_cgroup_tree(iter, memcg)
1772 iter->oom_lock = false;
1773 return 0;
1776 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1778 struct mem_cgroup *iter;
1780 for_each_mem_cgroup_tree(iter, memcg)
1781 atomic_inc(&iter->under_oom);
1784 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1786 struct mem_cgroup *iter;
1789 * When a new child is created while the hierarchy is under oom,
1790 * mem_cgroup_oom_lock() may not be called. We have to use
1791 * atomic_add_unless() here.
1793 for_each_mem_cgroup_tree(iter, memcg)
1794 atomic_add_unless(&iter->under_oom, -1, 0);
1797 static DEFINE_SPINLOCK(memcg_oom_lock);
1798 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1800 struct oom_wait_info {
1801 struct mem_cgroup *memcg;
1802 wait_queue_t wait;
1805 static int memcg_oom_wake_function(wait_queue_t *wait,
1806 unsigned mode, int sync, void *arg)
1808 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1809 struct mem_cgroup *oom_wait_memcg;
1810 struct oom_wait_info *oom_wait_info;
1812 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1813 oom_wait_memcg = oom_wait_info->memcg;
1816 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1817 * Then we can use css_is_ancestor without taking care of RCU.
1819 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1820 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1821 return 0;
1822 return autoremove_wake_function(wait, mode, sync, arg);
1825 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1827 /* for filtering, pass "memcg" as argument. */
1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1831 static void memcg_oom_recover(struct mem_cgroup *memcg)
1833 if (memcg && atomic_read(&memcg->under_oom))
1834 memcg_wakeup_oom(memcg);
1838 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1840 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1841 int order)
1843 struct oom_wait_info owait;
1844 bool locked, need_to_kill;
1846 owait.memcg = memcg;
1847 owait.wait.flags = 0;
1848 owait.wait.func = memcg_oom_wake_function;
1849 owait.wait.private = current;
1850 INIT_LIST_HEAD(&owait.wait.task_list);
1851 need_to_kill = true;
1852 mem_cgroup_mark_under_oom(memcg);
1854 /* At first, try to OOM lock hierarchy under memcg.*/
1855 spin_lock(&memcg_oom_lock);
1856 locked = mem_cgroup_oom_lock(memcg);
1858 * Even if signal_pending(), we can't quit charge() loop without
1859 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1860 * under OOM is always welcomed, use TASK_KILLABLE here.
1862 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1863 if (!locked || memcg->oom_kill_disable)
1864 need_to_kill = false;
1865 if (locked)
1866 mem_cgroup_oom_notify(memcg);
1867 spin_unlock(&memcg_oom_lock);
1869 if (need_to_kill) {
1870 finish_wait(&memcg_oom_waitq, &owait.wait);
1871 mem_cgroup_out_of_memory(memcg, mask, order);
1872 } else {
1873 schedule();
1874 finish_wait(&memcg_oom_waitq, &owait.wait);
1876 spin_lock(&memcg_oom_lock);
1877 if (locked)
1878 mem_cgroup_oom_unlock(memcg);
1879 memcg_wakeup_oom(memcg);
1880 spin_unlock(&memcg_oom_lock);
1882 mem_cgroup_unmark_under_oom(memcg);
1884 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1885 return false;
1886 /* Give chance to dying process */
1887 schedule_timeout_uninterruptible(1);
1888 return true;
1892 * Currently used to update mapped file statistics, but the routine can be
1893 * generalized to update other statistics as well.
1895 * Notes: Race condition
1897 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1898 * it tends to be costly. But considering some conditions, we doesn't need
1899 * to do so _always_.
1901 * Considering "charge", lock_page_cgroup() is not required because all
1902 * file-stat operations happen after a page is attached to radix-tree. There
1903 * are no race with "charge".
1905 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1906 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1907 * if there are race with "uncharge". Statistics itself is properly handled
1908 * by flags.
1910 * Considering "move", this is an only case we see a race. To make the race
1911 * small, we check mm->moving_account and detect there are possibility of race
1912 * If there is, we take a lock.
1915 void __mem_cgroup_begin_update_page_stat(struct page *page,
1916 bool *locked, unsigned long *flags)
1918 struct mem_cgroup *memcg;
1919 struct page_cgroup *pc;
1921 pc = lookup_page_cgroup(page);
1922 again:
1923 memcg = pc->mem_cgroup;
1924 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1925 return;
1927 * If this memory cgroup is not under account moving, we don't
1928 * need to take move_lock_page_cgroup(). Because we already hold
1929 * rcu_read_lock(), any calls to move_account will be delayed until
1930 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1932 if (!mem_cgroup_stolen(memcg))
1933 return;
1935 move_lock_mem_cgroup(memcg, flags);
1936 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1937 move_unlock_mem_cgroup(memcg, flags);
1938 goto again;
1940 *locked = true;
1943 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1945 struct page_cgroup *pc = lookup_page_cgroup(page);
1948 * It's guaranteed that pc->mem_cgroup never changes while
1949 * lock is held because a routine modifies pc->mem_cgroup
1950 * should take move_lock_page_cgroup().
1952 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1955 void mem_cgroup_update_page_stat(struct page *page,
1956 enum mem_cgroup_page_stat_item idx, int val)
1958 struct mem_cgroup *memcg;
1959 struct page_cgroup *pc = lookup_page_cgroup(page);
1960 unsigned long uninitialized_var(flags);
1962 if (mem_cgroup_disabled())
1963 return;
1965 memcg = pc->mem_cgroup;
1966 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1967 return;
1969 switch (idx) {
1970 case MEMCG_NR_FILE_MAPPED:
1971 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1972 break;
1973 default:
1974 BUG();
1977 this_cpu_add(memcg->stat->count[idx], val);
1981 * size of first charge trial. "32" comes from vmscan.c's magic value.
1982 * TODO: maybe necessary to use big numbers in big irons.
1984 #define CHARGE_BATCH 32U
1985 struct memcg_stock_pcp {
1986 struct mem_cgroup *cached; /* this never be root cgroup */
1987 unsigned int nr_pages;
1988 struct work_struct work;
1989 unsigned long flags;
1990 #define FLUSHING_CACHED_CHARGE 0
1992 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1993 static DEFINE_MUTEX(percpu_charge_mutex);
1996 * Try to consume stocked charge on this cpu. If success, one page is consumed
1997 * from local stock and true is returned. If the stock is 0 or charges from a
1998 * cgroup which is not current target, returns false. This stock will be
1999 * refilled.
2001 static bool consume_stock(struct mem_cgroup *memcg)
2003 struct memcg_stock_pcp *stock;
2004 bool ret = true;
2006 stock = &get_cpu_var(memcg_stock);
2007 if (memcg == stock->cached && stock->nr_pages)
2008 stock->nr_pages--;
2009 else /* need to call res_counter_charge */
2010 ret = false;
2011 put_cpu_var(memcg_stock);
2012 return ret;
2016 * Returns stocks cached in percpu to res_counter and reset cached information.
2018 static void drain_stock(struct memcg_stock_pcp *stock)
2020 struct mem_cgroup *old = stock->cached;
2022 if (stock->nr_pages) {
2023 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2025 res_counter_uncharge(&old->res, bytes);
2026 if (do_swap_account)
2027 res_counter_uncharge(&old->memsw, bytes);
2028 stock->nr_pages = 0;
2030 stock->cached = NULL;
2034 * This must be called under preempt disabled or must be called by
2035 * a thread which is pinned to local cpu.
2037 static void drain_local_stock(struct work_struct *dummy)
2039 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2040 drain_stock(stock);
2041 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2045 * Cache charges(val) which is from res_counter, to local per_cpu area.
2046 * This will be consumed by consume_stock() function, later.
2048 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2050 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2052 if (stock->cached != memcg) { /* reset if necessary */
2053 drain_stock(stock);
2054 stock->cached = memcg;
2056 stock->nr_pages += nr_pages;
2057 put_cpu_var(memcg_stock);
2061 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2062 * of the hierarchy under it. sync flag says whether we should block
2063 * until the work is done.
2065 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2067 int cpu, curcpu;
2069 /* Notify other cpus that system-wide "drain" is running */
2070 get_online_cpus();
2071 curcpu = get_cpu();
2072 for_each_online_cpu(cpu) {
2073 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2074 struct mem_cgroup *memcg;
2076 memcg = stock->cached;
2077 if (!memcg || !stock->nr_pages)
2078 continue;
2079 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2080 continue;
2081 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2082 if (cpu == curcpu)
2083 drain_local_stock(&stock->work);
2084 else
2085 schedule_work_on(cpu, &stock->work);
2088 put_cpu();
2090 if (!sync)
2091 goto out;
2093 for_each_online_cpu(cpu) {
2094 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2095 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2096 flush_work(&stock->work);
2098 out:
2099 put_online_cpus();
2103 * Tries to drain stocked charges in other cpus. This function is asynchronous
2104 * and just put a work per cpu for draining localy on each cpu. Caller can
2105 * expects some charges will be back to res_counter later but cannot wait for
2106 * it.
2108 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2111 * If someone calls draining, avoid adding more kworker runs.
2113 if (!mutex_trylock(&percpu_charge_mutex))
2114 return;
2115 drain_all_stock(root_memcg, false);
2116 mutex_unlock(&percpu_charge_mutex);
2119 /* This is a synchronous drain interface. */
2120 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2122 /* called when force_empty is called */
2123 mutex_lock(&percpu_charge_mutex);
2124 drain_all_stock(root_memcg, true);
2125 mutex_unlock(&percpu_charge_mutex);
2129 * This function drains percpu counter value from DEAD cpu and
2130 * move it to local cpu. Note that this function can be preempted.
2132 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2134 int i;
2136 spin_lock(&memcg->pcp_counter_lock);
2137 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2138 long x = per_cpu(memcg->stat->count[i], cpu);
2140 per_cpu(memcg->stat->count[i], cpu) = 0;
2141 memcg->nocpu_base.count[i] += x;
2143 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2144 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2146 per_cpu(memcg->stat->events[i], cpu) = 0;
2147 memcg->nocpu_base.events[i] += x;
2149 spin_unlock(&memcg->pcp_counter_lock);
2152 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2153 unsigned long action,
2154 void *hcpu)
2156 int cpu = (unsigned long)hcpu;
2157 struct memcg_stock_pcp *stock;
2158 struct mem_cgroup *iter;
2160 if (action == CPU_ONLINE)
2161 return NOTIFY_OK;
2163 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2164 return NOTIFY_OK;
2166 for_each_mem_cgroup(iter)
2167 mem_cgroup_drain_pcp_counter(iter, cpu);
2169 stock = &per_cpu(memcg_stock, cpu);
2170 drain_stock(stock);
2171 return NOTIFY_OK;
2175 /* See __mem_cgroup_try_charge() for details */
2176 enum {
2177 CHARGE_OK, /* success */
2178 CHARGE_RETRY, /* need to retry but retry is not bad */
2179 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2180 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2181 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2184 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2185 unsigned int nr_pages, bool oom_check)
2187 unsigned long csize = nr_pages * PAGE_SIZE;
2188 struct mem_cgroup *mem_over_limit;
2189 struct res_counter *fail_res;
2190 unsigned long flags = 0;
2191 int ret;
2193 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2195 if (likely(!ret)) {
2196 if (!do_swap_account)
2197 return CHARGE_OK;
2198 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2199 if (likely(!ret))
2200 return CHARGE_OK;
2202 res_counter_uncharge(&memcg->res, csize);
2203 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2204 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2205 } else
2206 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2208 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2209 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2211 * Never reclaim on behalf of optional batching, retry with a
2212 * single page instead.
2214 if (nr_pages == CHARGE_BATCH)
2215 return CHARGE_RETRY;
2217 if (!(gfp_mask & __GFP_WAIT))
2218 return CHARGE_WOULDBLOCK;
2220 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2221 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2222 return CHARGE_RETRY;
2224 * Even though the limit is exceeded at this point, reclaim
2225 * may have been able to free some pages. Retry the charge
2226 * before killing the task.
2228 * Only for regular pages, though: huge pages are rather
2229 * unlikely to succeed so close to the limit, and we fall back
2230 * to regular pages anyway in case of failure.
2232 if (nr_pages == 1 && ret)
2233 return CHARGE_RETRY;
2236 * At task move, charge accounts can be doubly counted. So, it's
2237 * better to wait until the end of task_move if something is going on.
2239 if (mem_cgroup_wait_acct_move(mem_over_limit))
2240 return CHARGE_RETRY;
2242 /* If we don't need to call oom-killer at el, return immediately */
2243 if (!oom_check)
2244 return CHARGE_NOMEM;
2245 /* check OOM */
2246 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2247 return CHARGE_OOM_DIE;
2249 return CHARGE_RETRY;
2253 * __mem_cgroup_try_charge() does
2254 * 1. detect memcg to be charged against from passed *mm and *ptr,
2255 * 2. update res_counter
2256 * 3. call memory reclaim if necessary.
2258 * In some special case, if the task is fatal, fatal_signal_pending() or
2259 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2260 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2261 * as possible without any hazards. 2: all pages should have a valid
2262 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2263 * pointer, that is treated as a charge to root_mem_cgroup.
2265 * So __mem_cgroup_try_charge() will return
2266 * 0 ... on success, filling *ptr with a valid memcg pointer.
2267 * -ENOMEM ... charge failure because of resource limits.
2268 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2270 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2271 * the oom-killer can be invoked.
2273 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2274 gfp_t gfp_mask,
2275 unsigned int nr_pages,
2276 struct mem_cgroup **ptr,
2277 bool oom)
2279 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2280 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2281 struct mem_cgroup *memcg = NULL;
2282 int ret;
2285 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2286 * in system level. So, allow to go ahead dying process in addition to
2287 * MEMDIE process.
2289 if (unlikely(test_thread_flag(TIF_MEMDIE)
2290 || fatal_signal_pending(current)))
2291 goto bypass;
2294 * We always charge the cgroup the mm_struct belongs to.
2295 * The mm_struct's mem_cgroup changes on task migration if the
2296 * thread group leader migrates. It's possible that mm is not
2297 * set, if so charge the init_mm (happens for pagecache usage).
2299 if (!*ptr && !mm)
2300 *ptr = root_mem_cgroup;
2301 again:
2302 if (*ptr) { /* css should be a valid one */
2303 memcg = *ptr;
2304 VM_BUG_ON(css_is_removed(&memcg->css));
2305 if (mem_cgroup_is_root(memcg))
2306 goto done;
2307 if (nr_pages == 1 && consume_stock(memcg))
2308 goto done;
2309 css_get(&memcg->css);
2310 } else {
2311 struct task_struct *p;
2313 rcu_read_lock();
2314 p = rcu_dereference(mm->owner);
2316 * Because we don't have task_lock(), "p" can exit.
2317 * In that case, "memcg" can point to root or p can be NULL with
2318 * race with swapoff. Then, we have small risk of mis-accouning.
2319 * But such kind of mis-account by race always happens because
2320 * we don't have cgroup_mutex(). It's overkill and we allo that
2321 * small race, here.
2322 * (*) swapoff at el will charge against mm-struct not against
2323 * task-struct. So, mm->owner can be NULL.
2325 memcg = mem_cgroup_from_task(p);
2326 if (!memcg)
2327 memcg = root_mem_cgroup;
2328 if (mem_cgroup_is_root(memcg)) {
2329 rcu_read_unlock();
2330 goto done;
2332 if (nr_pages == 1 && consume_stock(memcg)) {
2334 * It seems dagerous to access memcg without css_get().
2335 * But considering how consume_stok works, it's not
2336 * necessary. If consume_stock success, some charges
2337 * from this memcg are cached on this cpu. So, we
2338 * don't need to call css_get()/css_tryget() before
2339 * calling consume_stock().
2341 rcu_read_unlock();
2342 goto done;
2344 /* after here, we may be blocked. we need to get refcnt */
2345 if (!css_tryget(&memcg->css)) {
2346 rcu_read_unlock();
2347 goto again;
2349 rcu_read_unlock();
2352 do {
2353 bool oom_check;
2355 /* If killed, bypass charge */
2356 if (fatal_signal_pending(current)) {
2357 css_put(&memcg->css);
2358 goto bypass;
2361 oom_check = false;
2362 if (oom && !nr_oom_retries) {
2363 oom_check = true;
2364 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2367 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2368 switch (ret) {
2369 case CHARGE_OK:
2370 break;
2371 case CHARGE_RETRY: /* not in OOM situation but retry */
2372 batch = nr_pages;
2373 css_put(&memcg->css);
2374 memcg = NULL;
2375 goto again;
2376 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2377 css_put(&memcg->css);
2378 goto nomem;
2379 case CHARGE_NOMEM: /* OOM routine works */
2380 if (!oom) {
2381 css_put(&memcg->css);
2382 goto nomem;
2384 /* If oom, we never return -ENOMEM */
2385 nr_oom_retries--;
2386 break;
2387 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2388 css_put(&memcg->css);
2389 goto bypass;
2391 } while (ret != CHARGE_OK);
2393 if (batch > nr_pages)
2394 refill_stock(memcg, batch - nr_pages);
2395 css_put(&memcg->css);
2396 done:
2397 *ptr = memcg;
2398 return 0;
2399 nomem:
2400 *ptr = NULL;
2401 return -ENOMEM;
2402 bypass:
2403 *ptr = root_mem_cgroup;
2404 return -EINTR;
2408 * Somemtimes we have to undo a charge we got by try_charge().
2409 * This function is for that and do uncharge, put css's refcnt.
2410 * gotten by try_charge().
2412 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2413 unsigned int nr_pages)
2415 if (!mem_cgroup_is_root(memcg)) {
2416 unsigned long bytes = nr_pages * PAGE_SIZE;
2418 res_counter_uncharge(&memcg->res, bytes);
2419 if (do_swap_account)
2420 res_counter_uncharge(&memcg->memsw, bytes);
2425 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2426 * This is useful when moving usage to parent cgroup.
2428 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2429 unsigned int nr_pages)
2431 unsigned long bytes = nr_pages * PAGE_SIZE;
2433 if (mem_cgroup_is_root(memcg))
2434 return;
2436 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2437 if (do_swap_account)
2438 res_counter_uncharge_until(&memcg->memsw,
2439 memcg->memsw.parent, bytes);
2443 * A helper function to get mem_cgroup from ID. must be called under
2444 * rcu_read_lock(). The caller must check css_is_removed() or some if
2445 * it's concern. (dropping refcnt from swap can be called against removed
2446 * memcg.)
2448 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2450 struct cgroup_subsys_state *css;
2452 /* ID 0 is unused ID */
2453 if (!id)
2454 return NULL;
2455 css = css_lookup(&mem_cgroup_subsys, id);
2456 if (!css)
2457 return NULL;
2458 return container_of(css, struct mem_cgroup, css);
2461 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2463 struct mem_cgroup *memcg = NULL;
2464 struct page_cgroup *pc;
2465 unsigned short id;
2466 swp_entry_t ent;
2468 VM_BUG_ON(!PageLocked(page));
2470 pc = lookup_page_cgroup(page);
2471 lock_page_cgroup(pc);
2472 if (PageCgroupUsed(pc)) {
2473 memcg = pc->mem_cgroup;
2474 if (memcg && !css_tryget(&memcg->css))
2475 memcg = NULL;
2476 } else if (PageSwapCache(page)) {
2477 ent.val = page_private(page);
2478 id = lookup_swap_cgroup_id(ent);
2479 rcu_read_lock();
2480 memcg = mem_cgroup_lookup(id);
2481 if (memcg && !css_tryget(&memcg->css))
2482 memcg = NULL;
2483 rcu_read_unlock();
2485 unlock_page_cgroup(pc);
2486 return memcg;
2489 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2490 struct page *page,
2491 unsigned int nr_pages,
2492 enum charge_type ctype,
2493 bool lrucare)
2495 struct page_cgroup *pc = lookup_page_cgroup(page);
2496 struct zone *uninitialized_var(zone);
2497 bool was_on_lru = false;
2498 bool anon;
2500 lock_page_cgroup(pc);
2501 if (unlikely(PageCgroupUsed(pc))) {
2502 unlock_page_cgroup(pc);
2503 __mem_cgroup_cancel_charge(memcg, nr_pages);
2504 return;
2507 * we don't need page_cgroup_lock about tail pages, becase they are not
2508 * accessed by any other context at this point.
2512 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2513 * may already be on some other mem_cgroup's LRU. Take care of it.
2515 if (lrucare) {
2516 zone = page_zone(page);
2517 spin_lock_irq(&zone->lru_lock);
2518 if (PageLRU(page)) {
2519 ClearPageLRU(page);
2520 del_page_from_lru_list(zone, page, page_lru(page));
2521 was_on_lru = true;
2525 pc->mem_cgroup = memcg;
2527 * We access a page_cgroup asynchronously without lock_page_cgroup().
2528 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2529 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2530 * before USED bit, we need memory barrier here.
2531 * See mem_cgroup_add_lru_list(), etc.
2533 smp_wmb();
2534 SetPageCgroupUsed(pc);
2536 if (lrucare) {
2537 if (was_on_lru) {
2538 VM_BUG_ON(PageLRU(page));
2539 SetPageLRU(page);
2540 add_page_to_lru_list(zone, page, page_lru(page));
2542 spin_unlock_irq(&zone->lru_lock);
2545 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2546 anon = true;
2547 else
2548 anon = false;
2550 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2551 unlock_page_cgroup(pc);
2554 * "charge_statistics" updated event counter. Then, check it.
2555 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2556 * if they exceeds softlimit.
2558 memcg_check_events(memcg, page);
2561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2563 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2565 * Because tail pages are not marked as "used", set it. We're under
2566 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2567 * charge/uncharge will be never happen and move_account() is done under
2568 * compound_lock(), so we don't have to take care of races.
2570 void mem_cgroup_split_huge_fixup(struct page *head)
2572 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2573 struct page_cgroup *pc;
2574 int i;
2576 if (mem_cgroup_disabled())
2577 return;
2578 for (i = 1; i < HPAGE_PMD_NR; i++) {
2579 pc = head_pc + i;
2580 pc->mem_cgroup = head_pc->mem_cgroup;
2581 smp_wmb();/* see __commit_charge() */
2582 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2585 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2588 * mem_cgroup_move_account - move account of the page
2589 * @page: the page
2590 * @nr_pages: number of regular pages (>1 for huge pages)
2591 * @pc: page_cgroup of the page.
2592 * @from: mem_cgroup which the page is moved from.
2593 * @to: mem_cgroup which the page is moved to. @from != @to.
2595 * The caller must confirm following.
2596 * - page is not on LRU (isolate_page() is useful.)
2597 * - compound_lock is held when nr_pages > 1
2599 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2600 * from old cgroup.
2602 static int mem_cgroup_move_account(struct page *page,
2603 unsigned int nr_pages,
2604 struct page_cgroup *pc,
2605 struct mem_cgroup *from,
2606 struct mem_cgroup *to)
2608 unsigned long flags;
2609 int ret;
2610 bool anon = PageAnon(page);
2612 VM_BUG_ON(from == to);
2613 VM_BUG_ON(PageLRU(page));
2615 * The page is isolated from LRU. So, collapse function
2616 * will not handle this page. But page splitting can happen.
2617 * Do this check under compound_page_lock(). The caller should
2618 * hold it.
2620 ret = -EBUSY;
2621 if (nr_pages > 1 && !PageTransHuge(page))
2622 goto out;
2624 lock_page_cgroup(pc);
2626 ret = -EINVAL;
2627 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2628 goto unlock;
2630 move_lock_mem_cgroup(from, &flags);
2632 if (!anon && page_mapped(page)) {
2633 /* Update mapped_file data for mem_cgroup */
2634 preempt_disable();
2635 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2636 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2637 preempt_enable();
2639 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2641 /* caller should have done css_get */
2642 pc->mem_cgroup = to;
2643 mem_cgroup_charge_statistics(to, anon, nr_pages);
2645 * We charges against "to" which may not have any tasks. Then, "to"
2646 * can be under rmdir(). But in current implementation, caller of
2647 * this function is just force_empty() and move charge, so it's
2648 * guaranteed that "to" is never removed. So, we don't check rmdir
2649 * status here.
2651 move_unlock_mem_cgroup(from, &flags);
2652 ret = 0;
2653 unlock:
2654 unlock_page_cgroup(pc);
2656 * check events
2658 memcg_check_events(to, page);
2659 memcg_check_events(from, page);
2660 out:
2661 return ret;
2665 * move charges to its parent.
2668 static int mem_cgroup_move_parent(struct page *page,
2669 struct page_cgroup *pc,
2670 struct mem_cgroup *child,
2671 gfp_t gfp_mask)
2673 struct mem_cgroup *parent;
2674 unsigned int nr_pages;
2675 unsigned long uninitialized_var(flags);
2676 int ret;
2678 /* Is ROOT ? */
2679 if (mem_cgroup_is_root(child))
2680 return -EINVAL;
2682 ret = -EBUSY;
2683 if (!get_page_unless_zero(page))
2684 goto out;
2685 if (isolate_lru_page(page))
2686 goto put;
2688 nr_pages = hpage_nr_pages(page);
2690 parent = parent_mem_cgroup(child);
2692 * If no parent, move charges to root cgroup.
2694 if (!parent)
2695 parent = root_mem_cgroup;
2697 if (nr_pages > 1)
2698 flags = compound_lock_irqsave(page);
2700 ret = mem_cgroup_move_account(page, nr_pages,
2701 pc, child, parent);
2702 if (!ret)
2703 __mem_cgroup_cancel_local_charge(child, nr_pages);
2705 if (nr_pages > 1)
2706 compound_unlock_irqrestore(page, flags);
2707 putback_lru_page(page);
2708 put:
2709 put_page(page);
2710 out:
2711 return ret;
2715 * Charge the memory controller for page usage.
2716 * Return
2717 * 0 if the charge was successful
2718 * < 0 if the cgroup is over its limit
2720 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2721 gfp_t gfp_mask, enum charge_type ctype)
2723 struct mem_cgroup *memcg = NULL;
2724 unsigned int nr_pages = 1;
2725 bool oom = true;
2726 int ret;
2728 if (PageTransHuge(page)) {
2729 nr_pages <<= compound_order(page);
2730 VM_BUG_ON(!PageTransHuge(page));
2732 * Never OOM-kill a process for a huge page. The
2733 * fault handler will fall back to regular pages.
2735 oom = false;
2738 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2739 if (ret == -ENOMEM)
2740 return ret;
2741 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2742 return 0;
2745 int mem_cgroup_newpage_charge(struct page *page,
2746 struct mm_struct *mm, gfp_t gfp_mask)
2748 if (mem_cgroup_disabled())
2749 return 0;
2750 VM_BUG_ON(page_mapped(page));
2751 VM_BUG_ON(page->mapping && !PageAnon(page));
2752 VM_BUG_ON(!mm);
2753 return mem_cgroup_charge_common(page, mm, gfp_mask,
2754 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2757 static void
2758 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2759 enum charge_type ctype);
2761 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2762 gfp_t gfp_mask)
2764 struct mem_cgroup *memcg = NULL;
2765 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2766 int ret;
2768 if (mem_cgroup_disabled())
2769 return 0;
2770 if (PageCompound(page))
2771 return 0;
2773 if (unlikely(!mm))
2774 mm = &init_mm;
2775 if (!page_is_file_cache(page))
2776 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2778 if (!PageSwapCache(page))
2779 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2780 else { /* page is swapcache/shmem */
2781 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2782 if (!ret)
2783 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2785 return ret;
2789 * While swap-in, try_charge -> commit or cancel, the page is locked.
2790 * And when try_charge() successfully returns, one refcnt to memcg without
2791 * struct page_cgroup is acquired. This refcnt will be consumed by
2792 * "commit()" or removed by "cancel()"
2794 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2795 struct page *page,
2796 gfp_t mask, struct mem_cgroup **memcgp)
2798 struct mem_cgroup *memcg;
2799 int ret;
2801 *memcgp = NULL;
2803 if (mem_cgroup_disabled())
2804 return 0;
2806 if (!do_swap_account)
2807 goto charge_cur_mm;
2809 * A racing thread's fault, or swapoff, may have already updated
2810 * the pte, and even removed page from swap cache: in those cases
2811 * do_swap_page()'s pte_same() test will fail; but there's also a
2812 * KSM case which does need to charge the page.
2814 if (!PageSwapCache(page))
2815 goto charge_cur_mm;
2816 memcg = try_get_mem_cgroup_from_page(page);
2817 if (!memcg)
2818 goto charge_cur_mm;
2819 *memcgp = memcg;
2820 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2821 css_put(&memcg->css);
2822 if (ret == -EINTR)
2823 ret = 0;
2824 return ret;
2825 charge_cur_mm:
2826 if (unlikely(!mm))
2827 mm = &init_mm;
2828 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2829 if (ret == -EINTR)
2830 ret = 0;
2831 return ret;
2834 static void
2835 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2836 enum charge_type ctype)
2838 if (mem_cgroup_disabled())
2839 return;
2840 if (!memcg)
2841 return;
2842 cgroup_exclude_rmdir(&memcg->css);
2844 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2846 * Now swap is on-memory. This means this page may be
2847 * counted both as mem and swap....double count.
2848 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2849 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2850 * may call delete_from_swap_cache() before reach here.
2852 if (do_swap_account && PageSwapCache(page)) {
2853 swp_entry_t ent = {.val = page_private(page)};
2854 mem_cgroup_uncharge_swap(ent);
2857 * At swapin, we may charge account against cgroup which has no tasks.
2858 * So, rmdir()->pre_destroy() can be called while we do this charge.
2859 * In that case, we need to call pre_destroy() again. check it here.
2861 cgroup_release_and_wakeup_rmdir(&memcg->css);
2864 void mem_cgroup_commit_charge_swapin(struct page *page,
2865 struct mem_cgroup *memcg)
2867 __mem_cgroup_commit_charge_swapin(page, memcg,
2868 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2871 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2873 if (mem_cgroup_disabled())
2874 return;
2875 if (!memcg)
2876 return;
2877 __mem_cgroup_cancel_charge(memcg, 1);
2880 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2881 unsigned int nr_pages,
2882 const enum charge_type ctype)
2884 struct memcg_batch_info *batch = NULL;
2885 bool uncharge_memsw = true;
2887 /* If swapout, usage of swap doesn't decrease */
2888 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2889 uncharge_memsw = false;
2891 batch = &current->memcg_batch;
2893 * In usual, we do css_get() when we remember memcg pointer.
2894 * But in this case, we keep res->usage until end of a series of
2895 * uncharges. Then, it's ok to ignore memcg's refcnt.
2897 if (!batch->memcg)
2898 batch->memcg = memcg;
2900 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2901 * In those cases, all pages freed continuously can be expected to be in
2902 * the same cgroup and we have chance to coalesce uncharges.
2903 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2904 * because we want to do uncharge as soon as possible.
2907 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2908 goto direct_uncharge;
2910 if (nr_pages > 1)
2911 goto direct_uncharge;
2914 * In typical case, batch->memcg == mem. This means we can
2915 * merge a series of uncharges to an uncharge of res_counter.
2916 * If not, we uncharge res_counter ony by one.
2918 if (batch->memcg != memcg)
2919 goto direct_uncharge;
2920 /* remember freed charge and uncharge it later */
2921 batch->nr_pages++;
2922 if (uncharge_memsw)
2923 batch->memsw_nr_pages++;
2924 return;
2925 direct_uncharge:
2926 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2927 if (uncharge_memsw)
2928 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2929 if (unlikely(batch->memcg != memcg))
2930 memcg_oom_recover(memcg);
2934 * uncharge if !page_mapped(page)
2936 static struct mem_cgroup *
2937 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2939 struct mem_cgroup *memcg = NULL;
2940 unsigned int nr_pages = 1;
2941 struct page_cgroup *pc;
2942 bool anon;
2944 if (mem_cgroup_disabled())
2945 return NULL;
2947 if (PageSwapCache(page))
2948 return NULL;
2950 if (PageTransHuge(page)) {
2951 nr_pages <<= compound_order(page);
2952 VM_BUG_ON(!PageTransHuge(page));
2955 * Check if our page_cgroup is valid
2957 pc = lookup_page_cgroup(page);
2958 if (unlikely(!PageCgroupUsed(pc)))
2959 return NULL;
2961 lock_page_cgroup(pc);
2963 memcg = pc->mem_cgroup;
2965 if (!PageCgroupUsed(pc))
2966 goto unlock_out;
2968 anon = PageAnon(page);
2970 switch (ctype) {
2971 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2973 * Generally PageAnon tells if it's the anon statistics to be
2974 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2975 * used before page reached the stage of being marked PageAnon.
2977 anon = true;
2978 /* fallthrough */
2979 case MEM_CGROUP_CHARGE_TYPE_DROP:
2980 /* See mem_cgroup_prepare_migration() */
2981 if (page_mapped(page) || PageCgroupMigration(pc))
2982 goto unlock_out;
2983 break;
2984 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2985 if (!PageAnon(page)) { /* Shared memory */
2986 if (page->mapping && !page_is_file_cache(page))
2987 goto unlock_out;
2988 } else if (page_mapped(page)) /* Anon */
2989 goto unlock_out;
2990 break;
2991 default:
2992 break;
2995 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2997 ClearPageCgroupUsed(pc);
2999 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3000 * freed from LRU. This is safe because uncharged page is expected not
3001 * to be reused (freed soon). Exception is SwapCache, it's handled by
3002 * special functions.
3005 unlock_page_cgroup(pc);
3007 * even after unlock, we have memcg->res.usage here and this memcg
3008 * will never be freed.
3010 memcg_check_events(memcg, page);
3011 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3012 mem_cgroup_swap_statistics(memcg, true);
3013 mem_cgroup_get(memcg);
3015 if (!mem_cgroup_is_root(memcg))
3016 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3018 return memcg;
3020 unlock_out:
3021 unlock_page_cgroup(pc);
3022 return NULL;
3025 void mem_cgroup_uncharge_page(struct page *page)
3027 /* early check. */
3028 if (page_mapped(page))
3029 return;
3030 VM_BUG_ON(page->mapping && !PageAnon(page));
3031 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3034 void mem_cgroup_uncharge_cache_page(struct page *page)
3036 VM_BUG_ON(page_mapped(page));
3037 VM_BUG_ON(page->mapping);
3038 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3042 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3043 * In that cases, pages are freed continuously and we can expect pages
3044 * are in the same memcg. All these calls itself limits the number of
3045 * pages freed at once, then uncharge_start/end() is called properly.
3046 * This may be called prural(2) times in a context,
3049 void mem_cgroup_uncharge_start(void)
3051 current->memcg_batch.do_batch++;
3052 /* We can do nest. */
3053 if (current->memcg_batch.do_batch == 1) {
3054 current->memcg_batch.memcg = NULL;
3055 current->memcg_batch.nr_pages = 0;
3056 current->memcg_batch.memsw_nr_pages = 0;
3060 void mem_cgroup_uncharge_end(void)
3062 struct memcg_batch_info *batch = &current->memcg_batch;
3064 if (!batch->do_batch)
3065 return;
3067 batch->do_batch--;
3068 if (batch->do_batch) /* If stacked, do nothing. */
3069 return;
3071 if (!batch->memcg)
3072 return;
3074 * This "batch->memcg" is valid without any css_get/put etc...
3075 * bacause we hide charges behind us.
3077 if (batch->nr_pages)
3078 res_counter_uncharge(&batch->memcg->res,
3079 batch->nr_pages * PAGE_SIZE);
3080 if (batch->memsw_nr_pages)
3081 res_counter_uncharge(&batch->memcg->memsw,
3082 batch->memsw_nr_pages * PAGE_SIZE);
3083 memcg_oom_recover(batch->memcg);
3084 /* forget this pointer (for sanity check) */
3085 batch->memcg = NULL;
3088 #ifdef CONFIG_SWAP
3090 * called after __delete_from_swap_cache() and drop "page" account.
3091 * memcg information is recorded to swap_cgroup of "ent"
3093 void
3094 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3096 struct mem_cgroup *memcg;
3097 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3099 if (!swapout) /* this was a swap cache but the swap is unused ! */
3100 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3102 memcg = __mem_cgroup_uncharge_common(page, ctype);
3105 * record memcg information, if swapout && memcg != NULL,
3106 * mem_cgroup_get() was called in uncharge().
3108 if (do_swap_account && swapout && memcg)
3109 swap_cgroup_record(ent, css_id(&memcg->css));
3111 #endif
3113 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3115 * called from swap_entry_free(). remove record in swap_cgroup and
3116 * uncharge "memsw" account.
3118 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3120 struct mem_cgroup *memcg;
3121 unsigned short id;
3123 if (!do_swap_account)
3124 return;
3126 id = swap_cgroup_record(ent, 0);
3127 rcu_read_lock();
3128 memcg = mem_cgroup_lookup(id);
3129 if (memcg) {
3131 * We uncharge this because swap is freed.
3132 * This memcg can be obsolete one. We avoid calling css_tryget
3134 if (!mem_cgroup_is_root(memcg))
3135 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3136 mem_cgroup_swap_statistics(memcg, false);
3137 mem_cgroup_put(memcg);
3139 rcu_read_unlock();
3143 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3144 * @entry: swap entry to be moved
3145 * @from: mem_cgroup which the entry is moved from
3146 * @to: mem_cgroup which the entry is moved to
3148 * It succeeds only when the swap_cgroup's record for this entry is the same
3149 * as the mem_cgroup's id of @from.
3151 * Returns 0 on success, -EINVAL on failure.
3153 * The caller must have charged to @to, IOW, called res_counter_charge() about
3154 * both res and memsw, and called css_get().
3156 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3157 struct mem_cgroup *from, struct mem_cgroup *to)
3159 unsigned short old_id, new_id;
3161 old_id = css_id(&from->css);
3162 new_id = css_id(&to->css);
3164 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3165 mem_cgroup_swap_statistics(from, false);
3166 mem_cgroup_swap_statistics(to, true);
3168 * This function is only called from task migration context now.
3169 * It postpones res_counter and refcount handling till the end
3170 * of task migration(mem_cgroup_clear_mc()) for performance
3171 * improvement. But we cannot postpone mem_cgroup_get(to)
3172 * because if the process that has been moved to @to does
3173 * swap-in, the refcount of @to might be decreased to 0.
3175 mem_cgroup_get(to);
3176 return 0;
3178 return -EINVAL;
3180 #else
3181 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3182 struct mem_cgroup *from, struct mem_cgroup *to)
3184 return -EINVAL;
3186 #endif
3189 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3190 * page belongs to.
3192 int mem_cgroup_prepare_migration(struct page *page,
3193 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3195 struct mem_cgroup *memcg = NULL;
3196 struct page_cgroup *pc;
3197 enum charge_type ctype;
3198 int ret = 0;
3200 *memcgp = NULL;
3202 VM_BUG_ON(PageTransHuge(page));
3203 if (mem_cgroup_disabled())
3204 return 0;
3206 pc = lookup_page_cgroup(page);
3207 lock_page_cgroup(pc);
3208 if (PageCgroupUsed(pc)) {
3209 memcg = pc->mem_cgroup;
3210 css_get(&memcg->css);
3212 * At migrating an anonymous page, its mapcount goes down
3213 * to 0 and uncharge() will be called. But, even if it's fully
3214 * unmapped, migration may fail and this page has to be
3215 * charged again. We set MIGRATION flag here and delay uncharge
3216 * until end_migration() is called
3218 * Corner Case Thinking
3219 * A)
3220 * When the old page was mapped as Anon and it's unmap-and-freed
3221 * while migration was ongoing.
3222 * If unmap finds the old page, uncharge() of it will be delayed
3223 * until end_migration(). If unmap finds a new page, it's
3224 * uncharged when it make mapcount to be 1->0. If unmap code
3225 * finds swap_migration_entry, the new page will not be mapped
3226 * and end_migration() will find it(mapcount==0).
3228 * B)
3229 * When the old page was mapped but migraion fails, the kernel
3230 * remaps it. A charge for it is kept by MIGRATION flag even
3231 * if mapcount goes down to 0. We can do remap successfully
3232 * without charging it again.
3234 * C)
3235 * The "old" page is under lock_page() until the end of
3236 * migration, so, the old page itself will not be swapped-out.
3237 * If the new page is swapped out before end_migraton, our
3238 * hook to usual swap-out path will catch the event.
3240 if (PageAnon(page))
3241 SetPageCgroupMigration(pc);
3243 unlock_page_cgroup(pc);
3245 * If the page is not charged at this point,
3246 * we return here.
3248 if (!memcg)
3249 return 0;
3251 *memcgp = memcg;
3252 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3253 css_put(&memcg->css);/* drop extra refcnt */
3254 if (ret) {
3255 if (PageAnon(page)) {
3256 lock_page_cgroup(pc);
3257 ClearPageCgroupMigration(pc);
3258 unlock_page_cgroup(pc);
3260 * The old page may be fully unmapped while we kept it.
3262 mem_cgroup_uncharge_page(page);
3264 /* we'll need to revisit this error code (we have -EINTR) */
3265 return -ENOMEM;
3268 * We charge new page before it's used/mapped. So, even if unlock_page()
3269 * is called before end_migration, we can catch all events on this new
3270 * page. In the case new page is migrated but not remapped, new page's
3271 * mapcount will be finally 0 and we call uncharge in end_migration().
3273 if (PageAnon(page))
3274 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3275 else if (page_is_file_cache(page))
3276 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3277 else
3278 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3279 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3280 return ret;
3283 /* remove redundant charge if migration failed*/
3284 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3285 struct page *oldpage, struct page *newpage, bool migration_ok)
3287 struct page *used, *unused;
3288 struct page_cgroup *pc;
3289 bool anon;
3291 if (!memcg)
3292 return;
3293 /* blocks rmdir() */
3294 cgroup_exclude_rmdir(&memcg->css);
3295 if (!migration_ok) {
3296 used = oldpage;
3297 unused = newpage;
3298 } else {
3299 used = newpage;
3300 unused = oldpage;
3303 * We disallowed uncharge of pages under migration because mapcount
3304 * of the page goes down to zero, temporarly.
3305 * Clear the flag and check the page should be charged.
3307 pc = lookup_page_cgroup(oldpage);
3308 lock_page_cgroup(pc);
3309 ClearPageCgroupMigration(pc);
3310 unlock_page_cgroup(pc);
3311 anon = PageAnon(used);
3312 __mem_cgroup_uncharge_common(unused,
3313 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3314 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3317 * If a page is a file cache, radix-tree replacement is very atomic
3318 * and we can skip this check. When it was an Anon page, its mapcount
3319 * goes down to 0. But because we added MIGRATION flage, it's not
3320 * uncharged yet. There are several case but page->mapcount check
3321 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3322 * check. (see prepare_charge() also)
3324 if (anon)
3325 mem_cgroup_uncharge_page(used);
3327 * At migration, we may charge account against cgroup which has no
3328 * tasks.
3329 * So, rmdir()->pre_destroy() can be called while we do this charge.
3330 * In that case, we need to call pre_destroy() again. check it here.
3332 cgroup_release_and_wakeup_rmdir(&memcg->css);
3336 * At replace page cache, newpage is not under any memcg but it's on
3337 * LRU. So, this function doesn't touch res_counter but handles LRU
3338 * in correct way. Both pages are locked so we cannot race with uncharge.
3340 void mem_cgroup_replace_page_cache(struct page *oldpage,
3341 struct page *newpage)
3343 struct mem_cgroup *memcg = NULL;
3344 struct page_cgroup *pc;
3345 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3347 if (mem_cgroup_disabled())
3348 return;
3350 pc = lookup_page_cgroup(oldpage);
3351 /* fix accounting on old pages */
3352 lock_page_cgroup(pc);
3353 if (PageCgroupUsed(pc)) {
3354 memcg = pc->mem_cgroup;
3355 mem_cgroup_charge_statistics(memcg, false, -1);
3356 ClearPageCgroupUsed(pc);
3358 unlock_page_cgroup(pc);
3361 * When called from shmem_replace_page(), in some cases the
3362 * oldpage has already been charged, and in some cases not.
3364 if (!memcg)
3365 return;
3367 if (PageSwapBacked(oldpage))
3368 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3371 * Even if newpage->mapping was NULL before starting replacement,
3372 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3373 * LRU while we overwrite pc->mem_cgroup.
3375 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3378 #ifdef CONFIG_DEBUG_VM
3379 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3381 struct page_cgroup *pc;
3383 pc = lookup_page_cgroup(page);
3385 * Can be NULL while feeding pages into the page allocator for
3386 * the first time, i.e. during boot or memory hotplug;
3387 * or when mem_cgroup_disabled().
3389 if (likely(pc) && PageCgroupUsed(pc))
3390 return pc;
3391 return NULL;
3394 bool mem_cgroup_bad_page_check(struct page *page)
3396 if (mem_cgroup_disabled())
3397 return false;
3399 return lookup_page_cgroup_used(page) != NULL;
3402 void mem_cgroup_print_bad_page(struct page *page)
3404 struct page_cgroup *pc;
3406 pc = lookup_page_cgroup_used(page);
3407 if (pc) {
3408 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3409 pc, pc->flags, pc->mem_cgroup);
3412 #endif
3414 static DEFINE_MUTEX(set_limit_mutex);
3416 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3417 unsigned long long val)
3419 int retry_count;
3420 u64 memswlimit, memlimit;
3421 int ret = 0;
3422 int children = mem_cgroup_count_children(memcg);
3423 u64 curusage, oldusage;
3424 int enlarge;
3427 * For keeping hierarchical_reclaim simple, how long we should retry
3428 * is depends on callers. We set our retry-count to be function
3429 * of # of children which we should visit in this loop.
3431 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3433 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3435 enlarge = 0;
3436 while (retry_count) {
3437 if (signal_pending(current)) {
3438 ret = -EINTR;
3439 break;
3442 * Rather than hide all in some function, I do this in
3443 * open coded manner. You see what this really does.
3444 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3446 mutex_lock(&set_limit_mutex);
3447 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3448 if (memswlimit < val) {
3449 ret = -EINVAL;
3450 mutex_unlock(&set_limit_mutex);
3451 break;
3454 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3455 if (memlimit < val)
3456 enlarge = 1;
3458 ret = res_counter_set_limit(&memcg->res, val);
3459 if (!ret) {
3460 if (memswlimit == val)
3461 memcg->memsw_is_minimum = true;
3462 else
3463 memcg->memsw_is_minimum = false;
3465 mutex_unlock(&set_limit_mutex);
3467 if (!ret)
3468 break;
3470 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3471 MEM_CGROUP_RECLAIM_SHRINK);
3472 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3473 /* Usage is reduced ? */
3474 if (curusage >= oldusage)
3475 retry_count--;
3476 else
3477 oldusage = curusage;
3479 if (!ret && enlarge)
3480 memcg_oom_recover(memcg);
3482 return ret;
3485 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3486 unsigned long long val)
3488 int retry_count;
3489 u64 memlimit, memswlimit, oldusage, curusage;
3490 int children = mem_cgroup_count_children(memcg);
3491 int ret = -EBUSY;
3492 int enlarge = 0;
3494 /* see mem_cgroup_resize_res_limit */
3495 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3496 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3497 while (retry_count) {
3498 if (signal_pending(current)) {
3499 ret = -EINTR;
3500 break;
3503 * Rather than hide all in some function, I do this in
3504 * open coded manner. You see what this really does.
3505 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3507 mutex_lock(&set_limit_mutex);
3508 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3509 if (memlimit > val) {
3510 ret = -EINVAL;
3511 mutex_unlock(&set_limit_mutex);
3512 break;
3514 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3515 if (memswlimit < val)
3516 enlarge = 1;
3517 ret = res_counter_set_limit(&memcg->memsw, val);
3518 if (!ret) {
3519 if (memlimit == val)
3520 memcg->memsw_is_minimum = true;
3521 else
3522 memcg->memsw_is_minimum = false;
3524 mutex_unlock(&set_limit_mutex);
3526 if (!ret)
3527 break;
3529 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3530 MEM_CGROUP_RECLAIM_NOSWAP |
3531 MEM_CGROUP_RECLAIM_SHRINK);
3532 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3533 /* Usage is reduced ? */
3534 if (curusage >= oldusage)
3535 retry_count--;
3536 else
3537 oldusage = curusage;
3539 if (!ret && enlarge)
3540 memcg_oom_recover(memcg);
3541 return ret;
3544 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3545 gfp_t gfp_mask,
3546 unsigned long *total_scanned)
3548 unsigned long nr_reclaimed = 0;
3549 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3550 unsigned long reclaimed;
3551 int loop = 0;
3552 struct mem_cgroup_tree_per_zone *mctz;
3553 unsigned long long excess;
3554 unsigned long nr_scanned;
3556 if (order > 0)
3557 return 0;
3559 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3561 * This loop can run a while, specially if mem_cgroup's continuously
3562 * keep exceeding their soft limit and putting the system under
3563 * pressure
3565 do {
3566 if (next_mz)
3567 mz = next_mz;
3568 else
3569 mz = mem_cgroup_largest_soft_limit_node(mctz);
3570 if (!mz)
3571 break;
3573 nr_scanned = 0;
3574 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3575 gfp_mask, &nr_scanned);
3576 nr_reclaimed += reclaimed;
3577 *total_scanned += nr_scanned;
3578 spin_lock(&mctz->lock);
3581 * If we failed to reclaim anything from this memory cgroup
3582 * it is time to move on to the next cgroup
3584 next_mz = NULL;
3585 if (!reclaimed) {
3586 do {
3588 * Loop until we find yet another one.
3590 * By the time we get the soft_limit lock
3591 * again, someone might have aded the
3592 * group back on the RB tree. Iterate to
3593 * make sure we get a different mem.
3594 * mem_cgroup_largest_soft_limit_node returns
3595 * NULL if no other cgroup is present on
3596 * the tree
3598 next_mz =
3599 __mem_cgroup_largest_soft_limit_node(mctz);
3600 if (next_mz == mz)
3601 css_put(&next_mz->memcg->css);
3602 else /* next_mz == NULL or other memcg */
3603 break;
3604 } while (1);
3606 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3607 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3609 * One school of thought says that we should not add
3610 * back the node to the tree if reclaim returns 0.
3611 * But our reclaim could return 0, simply because due
3612 * to priority we are exposing a smaller subset of
3613 * memory to reclaim from. Consider this as a longer
3614 * term TODO.
3616 /* If excess == 0, no tree ops */
3617 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3618 spin_unlock(&mctz->lock);
3619 css_put(&mz->memcg->css);
3620 loop++;
3622 * Could not reclaim anything and there are no more
3623 * mem cgroups to try or we seem to be looping without
3624 * reclaiming anything.
3626 if (!nr_reclaimed &&
3627 (next_mz == NULL ||
3628 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3629 break;
3630 } while (!nr_reclaimed);
3631 if (next_mz)
3632 css_put(&next_mz->memcg->css);
3633 return nr_reclaimed;
3637 * This routine traverse page_cgroup in given list and drop them all.
3638 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3640 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3641 int node, int zid, enum lru_list lru)
3643 struct mem_cgroup_per_zone *mz;
3644 unsigned long flags, loop;
3645 struct list_head *list;
3646 struct page *busy;
3647 struct zone *zone;
3648 int ret = 0;
3650 zone = &NODE_DATA(node)->node_zones[zid];
3651 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3652 list = &mz->lruvec.lists[lru];
3654 loop = mz->lru_size[lru];
3655 /* give some margin against EBUSY etc...*/
3656 loop += 256;
3657 busy = NULL;
3658 while (loop--) {
3659 struct page_cgroup *pc;
3660 struct page *page;
3662 ret = 0;
3663 spin_lock_irqsave(&zone->lru_lock, flags);
3664 if (list_empty(list)) {
3665 spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 break;
3668 page = list_entry(list->prev, struct page, lru);
3669 if (busy == page) {
3670 list_move(&page->lru, list);
3671 busy = NULL;
3672 spin_unlock_irqrestore(&zone->lru_lock, flags);
3673 continue;
3675 spin_unlock_irqrestore(&zone->lru_lock, flags);
3677 pc = lookup_page_cgroup(page);
3679 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3680 if (ret == -ENOMEM || ret == -EINTR)
3681 break;
3683 if (ret == -EBUSY || ret == -EINVAL) {
3684 /* found lock contention or "pc" is obsolete. */
3685 busy = page;
3686 cond_resched();
3687 } else
3688 busy = NULL;
3691 if (!ret && !list_empty(list))
3692 return -EBUSY;
3693 return ret;
3697 * make mem_cgroup's charge to be 0 if there is no task.
3698 * This enables deleting this mem_cgroup.
3700 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3702 int ret;
3703 int node, zid, shrink;
3704 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3705 struct cgroup *cgrp = memcg->css.cgroup;
3707 css_get(&memcg->css);
3709 shrink = 0;
3710 /* should free all ? */
3711 if (free_all)
3712 goto try_to_free;
3713 move_account:
3714 do {
3715 ret = -EBUSY;
3716 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3717 goto out;
3718 ret = -EINTR;
3719 if (signal_pending(current))
3720 goto out;
3721 /* This is for making all *used* pages to be on LRU. */
3722 lru_add_drain_all();
3723 drain_all_stock_sync(memcg);
3724 ret = 0;
3725 mem_cgroup_start_move(memcg);
3726 for_each_node_state(node, N_HIGH_MEMORY) {
3727 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3728 enum lru_list lru;
3729 for_each_lru(lru) {
3730 ret = mem_cgroup_force_empty_list(memcg,
3731 node, zid, lru);
3732 if (ret)
3733 break;
3736 if (ret)
3737 break;
3739 mem_cgroup_end_move(memcg);
3740 memcg_oom_recover(memcg);
3741 /* it seems parent cgroup doesn't have enough mem */
3742 if (ret == -ENOMEM)
3743 goto try_to_free;
3744 cond_resched();
3745 /* "ret" should also be checked to ensure all lists are empty. */
3746 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3747 out:
3748 css_put(&memcg->css);
3749 return ret;
3751 try_to_free:
3752 /* returns EBUSY if there is a task or if we come here twice. */
3753 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3754 ret = -EBUSY;
3755 goto out;
3757 /* we call try-to-free pages for make this cgroup empty */
3758 lru_add_drain_all();
3759 /* try to free all pages in this cgroup */
3760 shrink = 1;
3761 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3762 int progress;
3764 if (signal_pending(current)) {
3765 ret = -EINTR;
3766 goto out;
3768 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3769 false);
3770 if (!progress) {
3771 nr_retries--;
3772 /* maybe some writeback is necessary */
3773 congestion_wait(BLK_RW_ASYNC, HZ/10);
3777 lru_add_drain();
3778 /* try move_account...there may be some *locked* pages. */
3779 goto move_account;
3782 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3784 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3788 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3790 return mem_cgroup_from_cont(cont)->use_hierarchy;
3793 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3794 u64 val)
3796 int retval = 0;
3797 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3798 struct cgroup *parent = cont->parent;
3799 struct mem_cgroup *parent_memcg = NULL;
3801 if (parent)
3802 parent_memcg = mem_cgroup_from_cont(parent);
3804 cgroup_lock();
3806 * If parent's use_hierarchy is set, we can't make any modifications
3807 * in the child subtrees. If it is unset, then the change can
3808 * occur, provided the current cgroup has no children.
3810 * For the root cgroup, parent_mem is NULL, we allow value to be
3811 * set if there are no children.
3813 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3814 (val == 1 || val == 0)) {
3815 if (list_empty(&cont->children))
3816 memcg->use_hierarchy = val;
3817 else
3818 retval = -EBUSY;
3819 } else
3820 retval = -EINVAL;
3821 cgroup_unlock();
3823 return retval;
3827 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3828 enum mem_cgroup_stat_index idx)
3830 struct mem_cgroup *iter;
3831 long val = 0;
3833 /* Per-cpu values can be negative, use a signed accumulator */
3834 for_each_mem_cgroup_tree(iter, memcg)
3835 val += mem_cgroup_read_stat(iter, idx);
3837 if (val < 0) /* race ? */
3838 val = 0;
3839 return val;
3842 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3844 u64 val;
3846 if (!mem_cgroup_is_root(memcg)) {
3847 if (!swap)
3848 return res_counter_read_u64(&memcg->res, RES_USAGE);
3849 else
3850 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3853 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3854 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3856 if (swap)
3857 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3859 return val << PAGE_SHIFT;
3862 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3863 struct file *file, char __user *buf,
3864 size_t nbytes, loff_t *ppos)
3866 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3867 char str[64];
3868 u64 val;
3869 int type, name, len;
3871 type = MEMFILE_TYPE(cft->private);
3872 name = MEMFILE_ATTR(cft->private);
3874 if (!do_swap_account && type == _MEMSWAP)
3875 return -EOPNOTSUPP;
3877 switch (type) {
3878 case _MEM:
3879 if (name == RES_USAGE)
3880 val = mem_cgroup_usage(memcg, false);
3881 else
3882 val = res_counter_read_u64(&memcg->res, name);
3883 break;
3884 case _MEMSWAP:
3885 if (name == RES_USAGE)
3886 val = mem_cgroup_usage(memcg, true);
3887 else
3888 val = res_counter_read_u64(&memcg->memsw, name);
3889 break;
3890 default:
3891 BUG();
3894 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3895 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3898 * The user of this function is...
3899 * RES_LIMIT.
3901 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3902 const char *buffer)
3904 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3905 int type, name;
3906 unsigned long long val;
3907 int ret;
3909 type = MEMFILE_TYPE(cft->private);
3910 name = MEMFILE_ATTR(cft->private);
3912 if (!do_swap_account && type == _MEMSWAP)
3913 return -EOPNOTSUPP;
3915 switch (name) {
3916 case RES_LIMIT:
3917 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3918 ret = -EINVAL;
3919 break;
3921 /* This function does all necessary parse...reuse it */
3922 ret = res_counter_memparse_write_strategy(buffer, &val);
3923 if (ret)
3924 break;
3925 if (type == _MEM)
3926 ret = mem_cgroup_resize_limit(memcg, val);
3927 else
3928 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3929 break;
3930 case RES_SOFT_LIMIT:
3931 ret = res_counter_memparse_write_strategy(buffer, &val);
3932 if (ret)
3933 break;
3935 * For memsw, soft limits are hard to implement in terms
3936 * of semantics, for now, we support soft limits for
3937 * control without swap
3939 if (type == _MEM)
3940 ret = res_counter_set_soft_limit(&memcg->res, val);
3941 else
3942 ret = -EINVAL;
3943 break;
3944 default:
3945 ret = -EINVAL; /* should be BUG() ? */
3946 break;
3948 return ret;
3951 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3952 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3954 struct cgroup *cgroup;
3955 unsigned long long min_limit, min_memsw_limit, tmp;
3957 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3958 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3959 cgroup = memcg->css.cgroup;
3960 if (!memcg->use_hierarchy)
3961 goto out;
3963 while (cgroup->parent) {
3964 cgroup = cgroup->parent;
3965 memcg = mem_cgroup_from_cont(cgroup);
3966 if (!memcg->use_hierarchy)
3967 break;
3968 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3969 min_limit = min(min_limit, tmp);
3970 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3971 min_memsw_limit = min(min_memsw_limit, tmp);
3973 out:
3974 *mem_limit = min_limit;
3975 *memsw_limit = min_memsw_limit;
3978 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3980 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3981 int type, name;
3983 type = MEMFILE_TYPE(event);
3984 name = MEMFILE_ATTR(event);
3986 if (!do_swap_account && type == _MEMSWAP)
3987 return -EOPNOTSUPP;
3989 switch (name) {
3990 case RES_MAX_USAGE:
3991 if (type == _MEM)
3992 res_counter_reset_max(&memcg->res);
3993 else
3994 res_counter_reset_max(&memcg->memsw);
3995 break;
3996 case RES_FAILCNT:
3997 if (type == _MEM)
3998 res_counter_reset_failcnt(&memcg->res);
3999 else
4000 res_counter_reset_failcnt(&memcg->memsw);
4001 break;
4004 return 0;
4007 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4008 struct cftype *cft)
4010 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4013 #ifdef CONFIG_MMU
4014 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4015 struct cftype *cft, u64 val)
4017 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4019 if (val >= (1 << NR_MOVE_TYPE))
4020 return -EINVAL;
4022 * We check this value several times in both in can_attach() and
4023 * attach(), so we need cgroup lock to prevent this value from being
4024 * inconsistent.
4026 cgroup_lock();
4027 memcg->move_charge_at_immigrate = val;
4028 cgroup_unlock();
4030 return 0;
4032 #else
4033 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4034 struct cftype *cft, u64 val)
4036 return -ENOSYS;
4038 #endif
4041 /* For read statistics */
4042 enum {
4043 MCS_CACHE,
4044 MCS_RSS,
4045 MCS_FILE_MAPPED,
4046 MCS_PGPGIN,
4047 MCS_PGPGOUT,
4048 MCS_SWAP,
4049 MCS_PGFAULT,
4050 MCS_PGMAJFAULT,
4051 MCS_INACTIVE_ANON,
4052 MCS_ACTIVE_ANON,
4053 MCS_INACTIVE_FILE,
4054 MCS_ACTIVE_FILE,
4055 MCS_UNEVICTABLE,
4056 NR_MCS_STAT,
4059 struct mcs_total_stat {
4060 s64 stat[NR_MCS_STAT];
4063 static const char *memcg_stat_strings[NR_MCS_STAT] = {
4064 "cache",
4065 "rss",
4066 "mapped_file",
4067 "pgpgin",
4068 "pgpgout",
4069 "swap",
4070 "pgfault",
4071 "pgmajfault",
4072 "inactive_anon",
4073 "active_anon",
4074 "inactive_file",
4075 "active_file",
4076 "unevictable",
4079 static void
4080 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4082 s64 val;
4084 /* per cpu stat */
4085 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4086 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4087 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4088 s->stat[MCS_RSS] += val * PAGE_SIZE;
4089 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4090 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4091 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4092 s->stat[MCS_PGPGIN] += val;
4093 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4094 s->stat[MCS_PGPGOUT] += val;
4095 if (do_swap_account) {
4096 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4097 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4099 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4100 s->stat[MCS_PGFAULT] += val;
4101 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4102 s->stat[MCS_PGMAJFAULT] += val;
4104 /* per zone stat */
4105 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4106 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4107 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4108 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4109 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4110 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4111 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4112 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4113 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4114 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4117 static void
4118 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4120 struct mem_cgroup *iter;
4122 for_each_mem_cgroup_tree(iter, memcg)
4123 mem_cgroup_get_local_stat(iter, s);
4126 #ifdef CONFIG_NUMA
4127 static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4128 struct seq_file *m)
4130 int nid;
4131 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4132 unsigned long node_nr;
4133 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4135 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4136 seq_printf(m, "total=%lu", total_nr);
4137 for_each_node_state(nid, N_HIGH_MEMORY) {
4138 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4139 seq_printf(m, " N%d=%lu", nid, node_nr);
4141 seq_putc(m, '\n');
4143 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4144 seq_printf(m, "file=%lu", file_nr);
4145 for_each_node_state(nid, N_HIGH_MEMORY) {
4146 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4147 LRU_ALL_FILE);
4148 seq_printf(m, " N%d=%lu", nid, node_nr);
4150 seq_putc(m, '\n');
4152 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4153 seq_printf(m, "anon=%lu", anon_nr);
4154 for_each_node_state(nid, N_HIGH_MEMORY) {
4155 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4156 LRU_ALL_ANON);
4157 seq_printf(m, " N%d=%lu", nid, node_nr);
4159 seq_putc(m, '\n');
4161 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4162 seq_printf(m, "unevictable=%lu", unevictable_nr);
4163 for_each_node_state(nid, N_HIGH_MEMORY) {
4164 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4165 BIT(LRU_UNEVICTABLE));
4166 seq_printf(m, " N%d=%lu", nid, node_nr);
4168 seq_putc(m, '\n');
4169 return 0;
4171 #endif /* CONFIG_NUMA */
4173 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4174 struct seq_file *m)
4176 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4177 struct mcs_total_stat mystat;
4178 int i;
4180 memset(&mystat, 0, sizeof(mystat));
4181 mem_cgroup_get_local_stat(memcg, &mystat);
4184 for (i = 0; i < NR_MCS_STAT; i++) {
4185 if (i == MCS_SWAP && !do_swap_account)
4186 continue;
4187 seq_printf(m, "%s %llu\n", memcg_stat_strings[i],
4188 (unsigned long long)mystat.stat[i]);
4191 /* Hierarchical information */
4193 unsigned long long limit, memsw_limit;
4194 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4195 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4196 if (do_swap_account)
4197 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4198 memsw_limit);
4201 memset(&mystat, 0, sizeof(mystat));
4202 mem_cgroup_get_total_stat(memcg, &mystat);
4203 for (i = 0; i < NR_MCS_STAT; i++) {
4204 if (i == MCS_SWAP && !do_swap_account)
4205 continue;
4206 seq_printf(m, "total_%s %llu\n", memcg_stat_strings[i],
4207 (unsigned long long)mystat.stat[i]);
4210 #ifdef CONFIG_DEBUG_VM
4212 int nid, zid;
4213 struct mem_cgroup_per_zone *mz;
4214 struct zone_reclaim_stat *rstat;
4215 unsigned long recent_rotated[2] = {0, 0};
4216 unsigned long recent_scanned[2] = {0, 0};
4218 for_each_online_node(nid)
4219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4220 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4221 rstat = &mz->lruvec.reclaim_stat;
4223 recent_rotated[0] += rstat->recent_rotated[0];
4224 recent_rotated[1] += rstat->recent_rotated[1];
4225 recent_scanned[0] += rstat->recent_scanned[0];
4226 recent_scanned[1] += rstat->recent_scanned[1];
4228 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4229 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4230 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4231 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4233 #endif
4235 return 0;
4238 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4240 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4242 return mem_cgroup_swappiness(memcg);
4245 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4246 u64 val)
4248 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4249 struct mem_cgroup *parent;
4251 if (val > 100)
4252 return -EINVAL;
4254 if (cgrp->parent == NULL)
4255 return -EINVAL;
4257 parent = mem_cgroup_from_cont(cgrp->parent);
4259 cgroup_lock();
4261 /* If under hierarchy, only empty-root can set this value */
4262 if ((parent->use_hierarchy) ||
4263 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4264 cgroup_unlock();
4265 return -EINVAL;
4268 memcg->swappiness = val;
4270 cgroup_unlock();
4272 return 0;
4275 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4277 struct mem_cgroup_threshold_ary *t;
4278 u64 usage;
4279 int i;
4281 rcu_read_lock();
4282 if (!swap)
4283 t = rcu_dereference(memcg->thresholds.primary);
4284 else
4285 t = rcu_dereference(memcg->memsw_thresholds.primary);
4287 if (!t)
4288 goto unlock;
4290 usage = mem_cgroup_usage(memcg, swap);
4293 * current_threshold points to threshold just below or equal to usage.
4294 * If it's not true, a threshold was crossed after last
4295 * call of __mem_cgroup_threshold().
4297 i = t->current_threshold;
4300 * Iterate backward over array of thresholds starting from
4301 * current_threshold and check if a threshold is crossed.
4302 * If none of thresholds below usage is crossed, we read
4303 * only one element of the array here.
4305 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4306 eventfd_signal(t->entries[i].eventfd, 1);
4308 /* i = current_threshold + 1 */
4309 i++;
4312 * Iterate forward over array of thresholds starting from
4313 * current_threshold+1 and check if a threshold is crossed.
4314 * If none of thresholds above usage is crossed, we read
4315 * only one element of the array here.
4317 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4318 eventfd_signal(t->entries[i].eventfd, 1);
4320 /* Update current_threshold */
4321 t->current_threshold = i - 1;
4322 unlock:
4323 rcu_read_unlock();
4326 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4328 while (memcg) {
4329 __mem_cgroup_threshold(memcg, false);
4330 if (do_swap_account)
4331 __mem_cgroup_threshold(memcg, true);
4333 memcg = parent_mem_cgroup(memcg);
4337 static int compare_thresholds(const void *a, const void *b)
4339 const struct mem_cgroup_threshold *_a = a;
4340 const struct mem_cgroup_threshold *_b = b;
4342 return _a->threshold - _b->threshold;
4345 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4347 struct mem_cgroup_eventfd_list *ev;
4349 list_for_each_entry(ev, &memcg->oom_notify, list)
4350 eventfd_signal(ev->eventfd, 1);
4351 return 0;
4354 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4356 struct mem_cgroup *iter;
4358 for_each_mem_cgroup_tree(iter, memcg)
4359 mem_cgroup_oom_notify_cb(iter);
4362 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4363 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4365 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4366 struct mem_cgroup_thresholds *thresholds;
4367 struct mem_cgroup_threshold_ary *new;
4368 int type = MEMFILE_TYPE(cft->private);
4369 u64 threshold, usage;
4370 int i, size, ret;
4372 ret = res_counter_memparse_write_strategy(args, &threshold);
4373 if (ret)
4374 return ret;
4376 mutex_lock(&memcg->thresholds_lock);
4378 if (type == _MEM)
4379 thresholds = &memcg->thresholds;
4380 else if (type == _MEMSWAP)
4381 thresholds = &memcg->memsw_thresholds;
4382 else
4383 BUG();
4385 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4387 /* Check if a threshold crossed before adding a new one */
4388 if (thresholds->primary)
4389 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4391 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4393 /* Allocate memory for new array of thresholds */
4394 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4395 GFP_KERNEL);
4396 if (!new) {
4397 ret = -ENOMEM;
4398 goto unlock;
4400 new->size = size;
4402 /* Copy thresholds (if any) to new array */
4403 if (thresholds->primary) {
4404 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4405 sizeof(struct mem_cgroup_threshold));
4408 /* Add new threshold */
4409 new->entries[size - 1].eventfd = eventfd;
4410 new->entries[size - 1].threshold = threshold;
4412 /* Sort thresholds. Registering of new threshold isn't time-critical */
4413 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4414 compare_thresholds, NULL);
4416 /* Find current threshold */
4417 new->current_threshold = -1;
4418 for (i = 0; i < size; i++) {
4419 if (new->entries[i].threshold <= usage) {
4421 * new->current_threshold will not be used until
4422 * rcu_assign_pointer(), so it's safe to increment
4423 * it here.
4425 ++new->current_threshold;
4426 } else
4427 break;
4430 /* Free old spare buffer and save old primary buffer as spare */
4431 kfree(thresholds->spare);
4432 thresholds->spare = thresholds->primary;
4434 rcu_assign_pointer(thresholds->primary, new);
4436 /* To be sure that nobody uses thresholds */
4437 synchronize_rcu();
4439 unlock:
4440 mutex_unlock(&memcg->thresholds_lock);
4442 return ret;
4445 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4446 struct cftype *cft, struct eventfd_ctx *eventfd)
4448 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4449 struct mem_cgroup_thresholds *thresholds;
4450 struct mem_cgroup_threshold_ary *new;
4451 int type = MEMFILE_TYPE(cft->private);
4452 u64 usage;
4453 int i, j, size;
4455 mutex_lock(&memcg->thresholds_lock);
4456 if (type == _MEM)
4457 thresholds = &memcg->thresholds;
4458 else if (type == _MEMSWAP)
4459 thresholds = &memcg->memsw_thresholds;
4460 else
4461 BUG();
4463 if (!thresholds->primary)
4464 goto unlock;
4466 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4468 /* Check if a threshold crossed before removing */
4469 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4471 /* Calculate new number of threshold */
4472 size = 0;
4473 for (i = 0; i < thresholds->primary->size; i++) {
4474 if (thresholds->primary->entries[i].eventfd != eventfd)
4475 size++;
4478 new = thresholds->spare;
4480 /* Set thresholds array to NULL if we don't have thresholds */
4481 if (!size) {
4482 kfree(new);
4483 new = NULL;
4484 goto swap_buffers;
4487 new->size = size;
4489 /* Copy thresholds and find current threshold */
4490 new->current_threshold = -1;
4491 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4492 if (thresholds->primary->entries[i].eventfd == eventfd)
4493 continue;
4495 new->entries[j] = thresholds->primary->entries[i];
4496 if (new->entries[j].threshold <= usage) {
4498 * new->current_threshold will not be used
4499 * until rcu_assign_pointer(), so it's safe to increment
4500 * it here.
4502 ++new->current_threshold;
4504 j++;
4507 swap_buffers:
4508 /* Swap primary and spare array */
4509 thresholds->spare = thresholds->primary;
4510 /* If all events are unregistered, free the spare array */
4511 if (!new) {
4512 kfree(thresholds->spare);
4513 thresholds->spare = NULL;
4516 rcu_assign_pointer(thresholds->primary, new);
4518 /* To be sure that nobody uses thresholds */
4519 synchronize_rcu();
4520 unlock:
4521 mutex_unlock(&memcg->thresholds_lock);
4524 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4525 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4527 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4528 struct mem_cgroup_eventfd_list *event;
4529 int type = MEMFILE_TYPE(cft->private);
4531 BUG_ON(type != _OOM_TYPE);
4532 event = kmalloc(sizeof(*event), GFP_KERNEL);
4533 if (!event)
4534 return -ENOMEM;
4536 spin_lock(&memcg_oom_lock);
4538 event->eventfd = eventfd;
4539 list_add(&event->list, &memcg->oom_notify);
4541 /* already in OOM ? */
4542 if (atomic_read(&memcg->under_oom))
4543 eventfd_signal(eventfd, 1);
4544 spin_unlock(&memcg_oom_lock);
4546 return 0;
4549 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4550 struct cftype *cft, struct eventfd_ctx *eventfd)
4552 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4553 struct mem_cgroup_eventfd_list *ev, *tmp;
4554 int type = MEMFILE_TYPE(cft->private);
4556 BUG_ON(type != _OOM_TYPE);
4558 spin_lock(&memcg_oom_lock);
4560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4561 if (ev->eventfd == eventfd) {
4562 list_del(&ev->list);
4563 kfree(ev);
4567 spin_unlock(&memcg_oom_lock);
4570 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4571 struct cftype *cft, struct cgroup_map_cb *cb)
4573 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4575 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4577 if (atomic_read(&memcg->under_oom))
4578 cb->fill(cb, "under_oom", 1);
4579 else
4580 cb->fill(cb, "under_oom", 0);
4581 return 0;
4584 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4585 struct cftype *cft, u64 val)
4587 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4588 struct mem_cgroup *parent;
4590 /* cannot set to root cgroup and only 0 and 1 are allowed */
4591 if (!cgrp->parent || !((val == 0) || (val == 1)))
4592 return -EINVAL;
4594 parent = mem_cgroup_from_cont(cgrp->parent);
4596 cgroup_lock();
4597 /* oom-kill-disable is a flag for subhierarchy. */
4598 if ((parent->use_hierarchy) ||
4599 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4600 cgroup_unlock();
4601 return -EINVAL;
4603 memcg->oom_kill_disable = val;
4604 if (!val)
4605 memcg_oom_recover(memcg);
4606 cgroup_unlock();
4607 return 0;
4610 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4611 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4613 return mem_cgroup_sockets_init(memcg, ss);
4616 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4618 mem_cgroup_sockets_destroy(memcg);
4620 #else
4621 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4623 return 0;
4626 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4629 #endif
4631 static struct cftype mem_cgroup_files[] = {
4633 .name = "usage_in_bytes",
4634 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4635 .read = mem_cgroup_read,
4636 .register_event = mem_cgroup_usage_register_event,
4637 .unregister_event = mem_cgroup_usage_unregister_event,
4640 .name = "max_usage_in_bytes",
4641 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4642 .trigger = mem_cgroup_reset,
4643 .read = mem_cgroup_read,
4646 .name = "limit_in_bytes",
4647 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4648 .write_string = mem_cgroup_write,
4649 .read = mem_cgroup_read,
4652 .name = "soft_limit_in_bytes",
4653 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4654 .write_string = mem_cgroup_write,
4655 .read = mem_cgroup_read,
4658 .name = "failcnt",
4659 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4660 .trigger = mem_cgroup_reset,
4661 .read = mem_cgroup_read,
4664 .name = "stat",
4665 .read_seq_string = mem_control_stat_show,
4668 .name = "force_empty",
4669 .trigger = mem_cgroup_force_empty_write,
4672 .name = "use_hierarchy",
4673 .write_u64 = mem_cgroup_hierarchy_write,
4674 .read_u64 = mem_cgroup_hierarchy_read,
4677 .name = "swappiness",
4678 .read_u64 = mem_cgroup_swappiness_read,
4679 .write_u64 = mem_cgroup_swappiness_write,
4682 .name = "move_charge_at_immigrate",
4683 .read_u64 = mem_cgroup_move_charge_read,
4684 .write_u64 = mem_cgroup_move_charge_write,
4687 .name = "oom_control",
4688 .read_map = mem_cgroup_oom_control_read,
4689 .write_u64 = mem_cgroup_oom_control_write,
4690 .register_event = mem_cgroup_oom_register_event,
4691 .unregister_event = mem_cgroup_oom_unregister_event,
4692 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4694 #ifdef CONFIG_NUMA
4696 .name = "numa_stat",
4697 .read_seq_string = mem_control_numa_stat_show,
4699 #endif
4700 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4702 .name = "memsw.usage_in_bytes",
4703 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4704 .read = mem_cgroup_read,
4705 .register_event = mem_cgroup_usage_register_event,
4706 .unregister_event = mem_cgroup_usage_unregister_event,
4709 .name = "memsw.max_usage_in_bytes",
4710 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4711 .trigger = mem_cgroup_reset,
4712 .read = mem_cgroup_read,
4715 .name = "memsw.limit_in_bytes",
4716 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4717 .write_string = mem_cgroup_write,
4718 .read = mem_cgroup_read,
4721 .name = "memsw.failcnt",
4722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4723 .trigger = mem_cgroup_reset,
4724 .read = mem_cgroup_read,
4726 #endif
4727 { }, /* terminate */
4730 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4732 struct mem_cgroup_per_node *pn;
4733 struct mem_cgroup_per_zone *mz;
4734 int zone, tmp = node;
4736 * This routine is called against possible nodes.
4737 * But it's BUG to call kmalloc() against offline node.
4739 * TODO: this routine can waste much memory for nodes which will
4740 * never be onlined. It's better to use memory hotplug callback
4741 * function.
4743 if (!node_state(node, N_NORMAL_MEMORY))
4744 tmp = -1;
4745 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4746 if (!pn)
4747 return 1;
4749 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4750 mz = &pn->zoneinfo[zone];
4751 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4752 mz->usage_in_excess = 0;
4753 mz->on_tree = false;
4754 mz->memcg = memcg;
4756 memcg->info.nodeinfo[node] = pn;
4757 return 0;
4760 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4762 kfree(memcg->info.nodeinfo[node]);
4765 static struct mem_cgroup *mem_cgroup_alloc(void)
4767 struct mem_cgroup *memcg;
4768 int size = sizeof(struct mem_cgroup);
4770 /* Can be very big if MAX_NUMNODES is very big */
4771 if (size < PAGE_SIZE)
4772 memcg = kzalloc(size, GFP_KERNEL);
4773 else
4774 memcg = vzalloc(size);
4776 if (!memcg)
4777 return NULL;
4779 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4780 if (!memcg->stat)
4781 goto out_free;
4782 spin_lock_init(&memcg->pcp_counter_lock);
4783 return memcg;
4785 out_free:
4786 if (size < PAGE_SIZE)
4787 kfree(memcg);
4788 else
4789 vfree(memcg);
4790 return NULL;
4794 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4795 * but in process context. The work_freeing structure is overlaid
4796 * on the rcu_freeing structure, which itself is overlaid on memsw.
4798 static void vfree_work(struct work_struct *work)
4800 struct mem_cgroup *memcg;
4802 memcg = container_of(work, struct mem_cgroup, work_freeing);
4803 vfree(memcg);
4805 static void vfree_rcu(struct rcu_head *rcu_head)
4807 struct mem_cgroup *memcg;
4809 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4810 INIT_WORK(&memcg->work_freeing, vfree_work);
4811 schedule_work(&memcg->work_freeing);
4815 * At destroying mem_cgroup, references from swap_cgroup can remain.
4816 * (scanning all at force_empty is too costly...)
4818 * Instead of clearing all references at force_empty, we remember
4819 * the number of reference from swap_cgroup and free mem_cgroup when
4820 * it goes down to 0.
4822 * Removal of cgroup itself succeeds regardless of refs from swap.
4825 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4827 int node;
4829 mem_cgroup_remove_from_trees(memcg);
4830 free_css_id(&mem_cgroup_subsys, &memcg->css);
4832 for_each_node(node)
4833 free_mem_cgroup_per_zone_info(memcg, node);
4835 free_percpu(memcg->stat);
4836 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4837 kfree_rcu(memcg, rcu_freeing);
4838 else
4839 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4842 static void mem_cgroup_get(struct mem_cgroup *memcg)
4844 atomic_inc(&memcg->refcnt);
4847 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4849 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4850 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4851 __mem_cgroup_free(memcg);
4852 if (parent)
4853 mem_cgroup_put(parent);
4857 static void mem_cgroup_put(struct mem_cgroup *memcg)
4859 __mem_cgroup_put(memcg, 1);
4863 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4865 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4867 if (!memcg->res.parent)
4868 return NULL;
4869 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4871 EXPORT_SYMBOL(parent_mem_cgroup);
4873 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4874 static void __init enable_swap_cgroup(void)
4876 if (!mem_cgroup_disabled() && really_do_swap_account)
4877 do_swap_account = 1;
4879 #else
4880 static void __init enable_swap_cgroup(void)
4883 #endif
4885 static int mem_cgroup_soft_limit_tree_init(void)
4887 struct mem_cgroup_tree_per_node *rtpn;
4888 struct mem_cgroup_tree_per_zone *rtpz;
4889 int tmp, node, zone;
4891 for_each_node(node) {
4892 tmp = node;
4893 if (!node_state(node, N_NORMAL_MEMORY))
4894 tmp = -1;
4895 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4896 if (!rtpn)
4897 goto err_cleanup;
4899 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4901 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4902 rtpz = &rtpn->rb_tree_per_zone[zone];
4903 rtpz->rb_root = RB_ROOT;
4904 spin_lock_init(&rtpz->lock);
4907 return 0;
4909 err_cleanup:
4910 for_each_node(node) {
4911 if (!soft_limit_tree.rb_tree_per_node[node])
4912 break;
4913 kfree(soft_limit_tree.rb_tree_per_node[node]);
4914 soft_limit_tree.rb_tree_per_node[node] = NULL;
4916 return 1;
4920 static struct cgroup_subsys_state * __ref
4921 mem_cgroup_create(struct cgroup *cont)
4923 struct mem_cgroup *memcg, *parent;
4924 long error = -ENOMEM;
4925 int node;
4927 memcg = mem_cgroup_alloc();
4928 if (!memcg)
4929 return ERR_PTR(error);
4931 for_each_node(node)
4932 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4933 goto free_out;
4935 /* root ? */
4936 if (cont->parent == NULL) {
4937 int cpu;
4938 enable_swap_cgroup();
4939 parent = NULL;
4940 if (mem_cgroup_soft_limit_tree_init())
4941 goto free_out;
4942 root_mem_cgroup = memcg;
4943 for_each_possible_cpu(cpu) {
4944 struct memcg_stock_pcp *stock =
4945 &per_cpu(memcg_stock, cpu);
4946 INIT_WORK(&stock->work, drain_local_stock);
4948 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4949 } else {
4950 parent = mem_cgroup_from_cont(cont->parent);
4951 memcg->use_hierarchy = parent->use_hierarchy;
4952 memcg->oom_kill_disable = parent->oom_kill_disable;
4955 if (parent && parent->use_hierarchy) {
4956 res_counter_init(&memcg->res, &parent->res);
4957 res_counter_init(&memcg->memsw, &parent->memsw);
4959 * We increment refcnt of the parent to ensure that we can
4960 * safely access it on res_counter_charge/uncharge.
4961 * This refcnt will be decremented when freeing this
4962 * mem_cgroup(see mem_cgroup_put).
4964 mem_cgroup_get(parent);
4965 } else {
4966 res_counter_init(&memcg->res, NULL);
4967 res_counter_init(&memcg->memsw, NULL);
4969 memcg->last_scanned_node = MAX_NUMNODES;
4970 INIT_LIST_HEAD(&memcg->oom_notify);
4972 if (parent)
4973 memcg->swappiness = mem_cgroup_swappiness(parent);
4974 atomic_set(&memcg->refcnt, 1);
4975 memcg->move_charge_at_immigrate = 0;
4976 mutex_init(&memcg->thresholds_lock);
4977 spin_lock_init(&memcg->move_lock);
4979 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4980 if (error) {
4982 * We call put now because our (and parent's) refcnts
4983 * are already in place. mem_cgroup_put() will internally
4984 * call __mem_cgroup_free, so return directly
4986 mem_cgroup_put(memcg);
4987 return ERR_PTR(error);
4989 return &memcg->css;
4990 free_out:
4991 __mem_cgroup_free(memcg);
4992 return ERR_PTR(error);
4995 static int mem_cgroup_pre_destroy(struct cgroup *cont)
4997 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4999 return mem_cgroup_force_empty(memcg, false);
5002 static void mem_cgroup_destroy(struct cgroup *cont)
5004 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5006 kmem_cgroup_destroy(memcg);
5008 mem_cgroup_put(memcg);
5011 #ifdef CONFIG_MMU
5012 /* Handlers for move charge at task migration. */
5013 #define PRECHARGE_COUNT_AT_ONCE 256
5014 static int mem_cgroup_do_precharge(unsigned long count)
5016 int ret = 0;
5017 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5018 struct mem_cgroup *memcg = mc.to;
5020 if (mem_cgroup_is_root(memcg)) {
5021 mc.precharge += count;
5022 /* we don't need css_get for root */
5023 return ret;
5025 /* try to charge at once */
5026 if (count > 1) {
5027 struct res_counter *dummy;
5029 * "memcg" cannot be under rmdir() because we've already checked
5030 * by cgroup_lock_live_cgroup() that it is not removed and we
5031 * are still under the same cgroup_mutex. So we can postpone
5032 * css_get().
5034 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5035 goto one_by_one;
5036 if (do_swap_account && res_counter_charge(&memcg->memsw,
5037 PAGE_SIZE * count, &dummy)) {
5038 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5039 goto one_by_one;
5041 mc.precharge += count;
5042 return ret;
5044 one_by_one:
5045 /* fall back to one by one charge */
5046 while (count--) {
5047 if (signal_pending(current)) {
5048 ret = -EINTR;
5049 break;
5051 if (!batch_count--) {
5052 batch_count = PRECHARGE_COUNT_AT_ONCE;
5053 cond_resched();
5055 ret = __mem_cgroup_try_charge(NULL,
5056 GFP_KERNEL, 1, &memcg, false);
5057 if (ret)
5058 /* mem_cgroup_clear_mc() will do uncharge later */
5059 return ret;
5060 mc.precharge++;
5062 return ret;
5066 * get_mctgt_type - get target type of moving charge
5067 * @vma: the vma the pte to be checked belongs
5068 * @addr: the address corresponding to the pte to be checked
5069 * @ptent: the pte to be checked
5070 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5072 * Returns
5073 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5074 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5075 * move charge. if @target is not NULL, the page is stored in target->page
5076 * with extra refcnt got(Callers should handle it).
5077 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5078 * target for charge migration. if @target is not NULL, the entry is stored
5079 * in target->ent.
5081 * Called with pte lock held.
5083 union mc_target {
5084 struct page *page;
5085 swp_entry_t ent;
5088 enum mc_target_type {
5089 MC_TARGET_NONE = 0,
5090 MC_TARGET_PAGE,
5091 MC_TARGET_SWAP,
5094 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5095 unsigned long addr, pte_t ptent)
5097 struct page *page = vm_normal_page(vma, addr, ptent);
5099 if (!page || !page_mapped(page))
5100 return NULL;
5101 if (PageAnon(page)) {
5102 /* we don't move shared anon */
5103 if (!move_anon())
5104 return NULL;
5105 } else if (!move_file())
5106 /* we ignore mapcount for file pages */
5107 return NULL;
5108 if (!get_page_unless_zero(page))
5109 return NULL;
5111 return page;
5114 #ifdef CONFIG_SWAP
5115 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5116 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5118 struct page *page = NULL;
5119 swp_entry_t ent = pte_to_swp_entry(ptent);
5121 if (!move_anon() || non_swap_entry(ent))
5122 return NULL;
5124 * Because lookup_swap_cache() updates some statistics counter,
5125 * we call find_get_page() with swapper_space directly.
5127 page = find_get_page(&swapper_space, ent.val);
5128 if (do_swap_account)
5129 entry->val = ent.val;
5131 return page;
5133 #else
5134 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5135 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5137 return NULL;
5139 #endif
5141 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5142 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5144 struct page *page = NULL;
5145 struct address_space *mapping;
5146 pgoff_t pgoff;
5148 if (!vma->vm_file) /* anonymous vma */
5149 return NULL;
5150 if (!move_file())
5151 return NULL;
5153 mapping = vma->vm_file->f_mapping;
5154 if (pte_none(ptent))
5155 pgoff = linear_page_index(vma, addr);
5156 else /* pte_file(ptent) is true */
5157 pgoff = pte_to_pgoff(ptent);
5159 /* page is moved even if it's not RSS of this task(page-faulted). */
5160 page = find_get_page(mapping, pgoff);
5162 #ifdef CONFIG_SWAP
5163 /* shmem/tmpfs may report page out on swap: account for that too. */
5164 if (radix_tree_exceptional_entry(page)) {
5165 swp_entry_t swap = radix_to_swp_entry(page);
5166 if (do_swap_account)
5167 *entry = swap;
5168 page = find_get_page(&swapper_space, swap.val);
5170 #endif
5171 return page;
5174 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5175 unsigned long addr, pte_t ptent, union mc_target *target)
5177 struct page *page = NULL;
5178 struct page_cgroup *pc;
5179 enum mc_target_type ret = MC_TARGET_NONE;
5180 swp_entry_t ent = { .val = 0 };
5182 if (pte_present(ptent))
5183 page = mc_handle_present_pte(vma, addr, ptent);
5184 else if (is_swap_pte(ptent))
5185 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5186 else if (pte_none(ptent) || pte_file(ptent))
5187 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5189 if (!page && !ent.val)
5190 return ret;
5191 if (page) {
5192 pc = lookup_page_cgroup(page);
5194 * Do only loose check w/o page_cgroup lock.
5195 * mem_cgroup_move_account() checks the pc is valid or not under
5196 * the lock.
5198 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5199 ret = MC_TARGET_PAGE;
5200 if (target)
5201 target->page = page;
5203 if (!ret || !target)
5204 put_page(page);
5206 /* There is a swap entry and a page doesn't exist or isn't charged */
5207 if (ent.val && !ret &&
5208 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5209 ret = MC_TARGET_SWAP;
5210 if (target)
5211 target->ent = ent;
5213 return ret;
5216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5218 * We don't consider swapping or file mapped pages because THP does not
5219 * support them for now.
5220 * Caller should make sure that pmd_trans_huge(pmd) is true.
5222 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5223 unsigned long addr, pmd_t pmd, union mc_target *target)
5225 struct page *page = NULL;
5226 struct page_cgroup *pc;
5227 enum mc_target_type ret = MC_TARGET_NONE;
5229 page = pmd_page(pmd);
5230 VM_BUG_ON(!page || !PageHead(page));
5231 if (!move_anon())
5232 return ret;
5233 pc = lookup_page_cgroup(page);
5234 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5235 ret = MC_TARGET_PAGE;
5236 if (target) {
5237 get_page(page);
5238 target->page = page;
5241 return ret;
5243 #else
5244 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5245 unsigned long addr, pmd_t pmd, union mc_target *target)
5247 return MC_TARGET_NONE;
5249 #endif
5251 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5252 unsigned long addr, unsigned long end,
5253 struct mm_walk *walk)
5255 struct vm_area_struct *vma = walk->private;
5256 pte_t *pte;
5257 spinlock_t *ptl;
5259 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5260 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5261 mc.precharge += HPAGE_PMD_NR;
5262 spin_unlock(&vma->vm_mm->page_table_lock);
5263 return 0;
5266 if (pmd_trans_unstable(pmd))
5267 return 0;
5268 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5269 for (; addr != end; pte++, addr += PAGE_SIZE)
5270 if (get_mctgt_type(vma, addr, *pte, NULL))
5271 mc.precharge++; /* increment precharge temporarily */
5272 pte_unmap_unlock(pte - 1, ptl);
5273 cond_resched();
5275 return 0;
5278 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5280 unsigned long precharge;
5281 struct vm_area_struct *vma;
5283 down_read(&mm->mmap_sem);
5284 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5285 struct mm_walk mem_cgroup_count_precharge_walk = {
5286 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5287 .mm = mm,
5288 .private = vma,
5290 if (is_vm_hugetlb_page(vma))
5291 continue;
5292 walk_page_range(vma->vm_start, vma->vm_end,
5293 &mem_cgroup_count_precharge_walk);
5295 up_read(&mm->mmap_sem);
5297 precharge = mc.precharge;
5298 mc.precharge = 0;
5300 return precharge;
5303 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5305 unsigned long precharge = mem_cgroup_count_precharge(mm);
5307 VM_BUG_ON(mc.moving_task);
5308 mc.moving_task = current;
5309 return mem_cgroup_do_precharge(precharge);
5312 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5313 static void __mem_cgroup_clear_mc(void)
5315 struct mem_cgroup *from = mc.from;
5316 struct mem_cgroup *to = mc.to;
5318 /* we must uncharge all the leftover precharges from mc.to */
5319 if (mc.precharge) {
5320 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5321 mc.precharge = 0;
5324 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5325 * we must uncharge here.
5327 if (mc.moved_charge) {
5328 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5329 mc.moved_charge = 0;
5331 /* we must fixup refcnts and charges */
5332 if (mc.moved_swap) {
5333 /* uncharge swap account from the old cgroup */
5334 if (!mem_cgroup_is_root(mc.from))
5335 res_counter_uncharge(&mc.from->memsw,
5336 PAGE_SIZE * mc.moved_swap);
5337 __mem_cgroup_put(mc.from, mc.moved_swap);
5339 if (!mem_cgroup_is_root(mc.to)) {
5341 * we charged both to->res and to->memsw, so we should
5342 * uncharge to->res.
5344 res_counter_uncharge(&mc.to->res,
5345 PAGE_SIZE * mc.moved_swap);
5347 /* we've already done mem_cgroup_get(mc.to) */
5348 mc.moved_swap = 0;
5350 memcg_oom_recover(from);
5351 memcg_oom_recover(to);
5352 wake_up_all(&mc.waitq);
5355 static void mem_cgroup_clear_mc(void)
5357 struct mem_cgroup *from = mc.from;
5360 * we must clear moving_task before waking up waiters at the end of
5361 * task migration.
5363 mc.moving_task = NULL;
5364 __mem_cgroup_clear_mc();
5365 spin_lock(&mc.lock);
5366 mc.from = NULL;
5367 mc.to = NULL;
5368 spin_unlock(&mc.lock);
5369 mem_cgroup_end_move(from);
5372 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5373 struct cgroup_taskset *tset)
5375 struct task_struct *p = cgroup_taskset_first(tset);
5376 int ret = 0;
5377 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5379 if (memcg->move_charge_at_immigrate) {
5380 struct mm_struct *mm;
5381 struct mem_cgroup *from = mem_cgroup_from_task(p);
5383 VM_BUG_ON(from == memcg);
5385 mm = get_task_mm(p);
5386 if (!mm)
5387 return 0;
5388 /* We move charges only when we move a owner of the mm */
5389 if (mm->owner == p) {
5390 VM_BUG_ON(mc.from);
5391 VM_BUG_ON(mc.to);
5392 VM_BUG_ON(mc.precharge);
5393 VM_BUG_ON(mc.moved_charge);
5394 VM_BUG_ON(mc.moved_swap);
5395 mem_cgroup_start_move(from);
5396 spin_lock(&mc.lock);
5397 mc.from = from;
5398 mc.to = memcg;
5399 spin_unlock(&mc.lock);
5400 /* We set mc.moving_task later */
5402 ret = mem_cgroup_precharge_mc(mm);
5403 if (ret)
5404 mem_cgroup_clear_mc();
5406 mmput(mm);
5408 return ret;
5411 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5412 struct cgroup_taskset *tset)
5414 mem_cgroup_clear_mc();
5417 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5418 unsigned long addr, unsigned long end,
5419 struct mm_walk *walk)
5421 int ret = 0;
5422 struct vm_area_struct *vma = walk->private;
5423 pte_t *pte;
5424 spinlock_t *ptl;
5425 enum mc_target_type target_type;
5426 union mc_target target;
5427 struct page *page;
5428 struct page_cgroup *pc;
5431 * We don't take compound_lock() here but no race with splitting thp
5432 * happens because:
5433 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5434 * under splitting, which means there's no concurrent thp split,
5435 * - if another thread runs into split_huge_page() just after we
5436 * entered this if-block, the thread must wait for page table lock
5437 * to be unlocked in __split_huge_page_splitting(), where the main
5438 * part of thp split is not executed yet.
5440 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5441 if (mc.precharge < HPAGE_PMD_NR) {
5442 spin_unlock(&vma->vm_mm->page_table_lock);
5443 return 0;
5445 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5446 if (target_type == MC_TARGET_PAGE) {
5447 page = target.page;
5448 if (!isolate_lru_page(page)) {
5449 pc = lookup_page_cgroup(page);
5450 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5451 pc, mc.from, mc.to)) {
5452 mc.precharge -= HPAGE_PMD_NR;
5453 mc.moved_charge += HPAGE_PMD_NR;
5455 putback_lru_page(page);
5457 put_page(page);
5459 spin_unlock(&vma->vm_mm->page_table_lock);
5460 return 0;
5463 if (pmd_trans_unstable(pmd))
5464 return 0;
5465 retry:
5466 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5467 for (; addr != end; addr += PAGE_SIZE) {
5468 pte_t ptent = *(pte++);
5469 swp_entry_t ent;
5471 if (!mc.precharge)
5472 break;
5474 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5475 case MC_TARGET_PAGE:
5476 page = target.page;
5477 if (isolate_lru_page(page))
5478 goto put;
5479 pc = lookup_page_cgroup(page);
5480 if (!mem_cgroup_move_account(page, 1, pc,
5481 mc.from, mc.to)) {
5482 mc.precharge--;
5483 /* we uncharge from mc.from later. */
5484 mc.moved_charge++;
5486 putback_lru_page(page);
5487 put: /* get_mctgt_type() gets the page */
5488 put_page(page);
5489 break;
5490 case MC_TARGET_SWAP:
5491 ent = target.ent;
5492 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5493 mc.precharge--;
5494 /* we fixup refcnts and charges later. */
5495 mc.moved_swap++;
5497 break;
5498 default:
5499 break;
5502 pte_unmap_unlock(pte - 1, ptl);
5503 cond_resched();
5505 if (addr != end) {
5507 * We have consumed all precharges we got in can_attach().
5508 * We try charge one by one, but don't do any additional
5509 * charges to mc.to if we have failed in charge once in attach()
5510 * phase.
5512 ret = mem_cgroup_do_precharge(1);
5513 if (!ret)
5514 goto retry;
5517 return ret;
5520 static void mem_cgroup_move_charge(struct mm_struct *mm)
5522 struct vm_area_struct *vma;
5524 lru_add_drain_all();
5525 retry:
5526 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5528 * Someone who are holding the mmap_sem might be waiting in
5529 * waitq. So we cancel all extra charges, wake up all waiters,
5530 * and retry. Because we cancel precharges, we might not be able
5531 * to move enough charges, but moving charge is a best-effort
5532 * feature anyway, so it wouldn't be a big problem.
5534 __mem_cgroup_clear_mc();
5535 cond_resched();
5536 goto retry;
5538 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5539 int ret;
5540 struct mm_walk mem_cgroup_move_charge_walk = {
5541 .pmd_entry = mem_cgroup_move_charge_pte_range,
5542 .mm = mm,
5543 .private = vma,
5545 if (is_vm_hugetlb_page(vma))
5546 continue;
5547 ret = walk_page_range(vma->vm_start, vma->vm_end,
5548 &mem_cgroup_move_charge_walk);
5549 if (ret)
5551 * means we have consumed all precharges and failed in
5552 * doing additional charge. Just abandon here.
5554 break;
5556 up_read(&mm->mmap_sem);
5559 static void mem_cgroup_move_task(struct cgroup *cont,
5560 struct cgroup_taskset *tset)
5562 struct task_struct *p = cgroup_taskset_first(tset);
5563 struct mm_struct *mm = get_task_mm(p);
5565 if (mm) {
5566 if (mc.to)
5567 mem_cgroup_move_charge(mm);
5568 mmput(mm);
5570 if (mc.to)
5571 mem_cgroup_clear_mc();
5573 #else /* !CONFIG_MMU */
5574 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5575 struct cgroup_taskset *tset)
5577 return 0;
5579 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5580 struct cgroup_taskset *tset)
5583 static void mem_cgroup_move_task(struct cgroup *cont,
5584 struct cgroup_taskset *tset)
5587 #endif
5589 struct cgroup_subsys mem_cgroup_subsys = {
5590 .name = "memory",
5591 .subsys_id = mem_cgroup_subsys_id,
5592 .create = mem_cgroup_create,
5593 .pre_destroy = mem_cgroup_pre_destroy,
5594 .destroy = mem_cgroup_destroy,
5595 .can_attach = mem_cgroup_can_attach,
5596 .cancel_attach = mem_cgroup_cancel_attach,
5597 .attach = mem_cgroup_move_task,
5598 .base_cftypes = mem_cgroup_files,
5599 .early_init = 0,
5600 .use_id = 1,
5601 .__DEPRECATED_clear_css_refs = true,
5604 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5605 static int __init enable_swap_account(char *s)
5607 /* consider enabled if no parameter or 1 is given */
5608 if (!strcmp(s, "1"))
5609 really_do_swap_account = 1;
5610 else if (!strcmp(s, "0"))
5611 really_do_swap_account = 0;
5612 return 1;
5614 __setup("swapaccount=", enable_swap_account);
5616 #endif