leds: leds-gpio: Use of_get_child_count() helper
[linux-2.6/libata-dev.git] / mm / swap.c
blob77825883298f1f1843e068c2e5ad0d55706cf873
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
34 #include "internal.h"
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
47 static void __page_cache_release(struct page *page)
49 if (PageLRU(page)) {
50 struct zone *zone = page_zone(page);
51 struct lruvec *lruvec;
52 unsigned long flags;
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 lruvec = mem_cgroup_page_lruvec(page, zone);
56 VM_BUG_ON(!PageLRU(page));
57 __ClearPageLRU(page);
58 del_page_from_lru_list(page, lruvec, page_off_lru(page));
59 spin_unlock_irqrestore(&zone->lru_lock, flags);
63 static void __put_single_page(struct page *page)
65 __page_cache_release(page);
66 free_hot_cold_page(page, 0);
69 static void __put_compound_page(struct page *page)
71 compound_page_dtor *dtor;
73 __page_cache_release(page);
74 dtor = get_compound_page_dtor(page);
75 (*dtor)(page);
78 static void put_compound_page(struct page *page)
80 if (unlikely(PageTail(page))) {
81 /* __split_huge_page_refcount can run under us */
82 struct page *page_head = compound_trans_head(page);
84 if (likely(page != page_head &&
85 get_page_unless_zero(page_head))) {
86 unsigned long flags;
89 * THP can not break up slab pages so avoid taking
90 * compound_lock(). Slab performs non-atomic bit ops
91 * on page->flags for better performance. In particular
92 * slab_unlock() in slub used to be a hot path. It is
93 * still hot on arches that do not support
94 * this_cpu_cmpxchg_double().
96 if (PageSlab(page_head)) {
97 if (PageTail(page)) {
98 if (put_page_testzero(page_head))
99 VM_BUG_ON(1);
101 atomic_dec(&page->_mapcount);
102 goto skip_lock_tail;
103 } else
104 goto skip_lock;
107 * page_head wasn't a dangling pointer but it
108 * may not be a head page anymore by the time
109 * we obtain the lock. That is ok as long as it
110 * can't be freed from under us.
112 flags = compound_lock_irqsave(page_head);
113 if (unlikely(!PageTail(page))) {
114 /* __split_huge_page_refcount run before us */
115 compound_unlock_irqrestore(page_head, flags);
116 skip_lock:
117 if (put_page_testzero(page_head))
118 __put_single_page(page_head);
119 out_put_single:
120 if (put_page_testzero(page))
121 __put_single_page(page);
122 return;
124 VM_BUG_ON(page_head != page->first_page);
126 * We can release the refcount taken by
127 * get_page_unless_zero() now that
128 * __split_huge_page_refcount() is blocked on
129 * the compound_lock.
131 if (put_page_testzero(page_head))
132 VM_BUG_ON(1);
133 /* __split_huge_page_refcount will wait now */
134 VM_BUG_ON(page_mapcount(page) <= 0);
135 atomic_dec(&page->_mapcount);
136 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
137 VM_BUG_ON(atomic_read(&page->_count) != 0);
138 compound_unlock_irqrestore(page_head, flags);
140 skip_lock_tail:
141 if (put_page_testzero(page_head)) {
142 if (PageHead(page_head))
143 __put_compound_page(page_head);
144 else
145 __put_single_page(page_head);
147 } else {
148 /* page_head is a dangling pointer */
149 VM_BUG_ON(PageTail(page));
150 goto out_put_single;
152 } else if (put_page_testzero(page)) {
153 if (PageHead(page))
154 __put_compound_page(page);
155 else
156 __put_single_page(page);
160 void put_page(struct page *page)
162 if (unlikely(PageCompound(page)))
163 put_compound_page(page);
164 else if (put_page_testzero(page))
165 __put_single_page(page);
167 EXPORT_SYMBOL(put_page);
170 * This function is exported but must not be called by anything other
171 * than get_page(). It implements the slow path of get_page().
173 bool __get_page_tail(struct page *page)
176 * This takes care of get_page() if run on a tail page
177 * returned by one of the get_user_pages/follow_page variants.
178 * get_user_pages/follow_page itself doesn't need the compound
179 * lock because it runs __get_page_tail_foll() under the
180 * proper PT lock that already serializes against
181 * split_huge_page().
183 unsigned long flags;
184 bool got = false;
185 struct page *page_head = compound_trans_head(page);
187 if (likely(page != page_head && get_page_unless_zero(page_head))) {
189 /* Ref to put_compound_page() comment. */
190 if (PageSlab(page_head)) {
191 if (likely(PageTail(page))) {
192 __get_page_tail_foll(page, false);
193 return true;
194 } else {
195 put_page(page_head);
196 return false;
201 * page_head wasn't a dangling pointer but it
202 * may not be a head page anymore by the time
203 * we obtain the lock. That is ok as long as it
204 * can't be freed from under us.
206 flags = compound_lock_irqsave(page_head);
207 /* here __split_huge_page_refcount won't run anymore */
208 if (likely(PageTail(page))) {
209 __get_page_tail_foll(page, false);
210 got = true;
212 compound_unlock_irqrestore(page_head, flags);
213 if (unlikely(!got))
214 put_page(page_head);
216 return got;
218 EXPORT_SYMBOL(__get_page_tail);
221 * put_pages_list() - release a list of pages
222 * @pages: list of pages threaded on page->lru
224 * Release a list of pages which are strung together on page.lru. Currently
225 * used by read_cache_pages() and related error recovery code.
227 void put_pages_list(struct list_head *pages)
229 while (!list_empty(pages)) {
230 struct page *victim;
232 victim = list_entry(pages->prev, struct page, lru);
233 list_del(&victim->lru);
234 page_cache_release(victim);
237 EXPORT_SYMBOL(put_pages_list);
240 * get_kernel_pages() - pin kernel pages in memory
241 * @kiov: An array of struct kvec structures
242 * @nr_segs: number of segments to pin
243 * @write: pinning for read/write, currently ignored
244 * @pages: array that receives pointers to the pages pinned.
245 * Should be at least nr_segs long.
247 * Returns number of pages pinned. This may be fewer than the number
248 * requested. If nr_pages is 0 or negative, returns 0. If no pages
249 * were pinned, returns -errno. Each page returned must be released
250 * with a put_page() call when it is finished with.
252 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
253 struct page **pages)
255 int seg;
257 for (seg = 0; seg < nr_segs; seg++) {
258 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
259 return seg;
261 pages[seg] = kmap_to_page(kiov[seg].iov_base);
262 page_cache_get(pages[seg]);
265 return seg;
267 EXPORT_SYMBOL_GPL(get_kernel_pages);
270 * get_kernel_page() - pin a kernel page in memory
271 * @start: starting kernel address
272 * @write: pinning for read/write, currently ignored
273 * @pages: array that receives pointer to the page pinned.
274 * Must be at least nr_segs long.
276 * Returns 1 if page is pinned. If the page was not pinned, returns
277 * -errno. The page returned must be released with a put_page() call
278 * when it is finished with.
280 int get_kernel_page(unsigned long start, int write, struct page **pages)
282 const struct kvec kiov = {
283 .iov_base = (void *)start,
284 .iov_len = PAGE_SIZE
287 return get_kernel_pages(&kiov, 1, write, pages);
289 EXPORT_SYMBOL_GPL(get_kernel_page);
291 static void pagevec_lru_move_fn(struct pagevec *pvec,
292 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
293 void *arg)
295 int i;
296 struct zone *zone = NULL;
297 struct lruvec *lruvec;
298 unsigned long flags = 0;
300 for (i = 0; i < pagevec_count(pvec); i++) {
301 struct page *page = pvec->pages[i];
302 struct zone *pagezone = page_zone(page);
304 if (pagezone != zone) {
305 if (zone)
306 spin_unlock_irqrestore(&zone->lru_lock, flags);
307 zone = pagezone;
308 spin_lock_irqsave(&zone->lru_lock, flags);
311 lruvec = mem_cgroup_page_lruvec(page, zone);
312 (*move_fn)(page, lruvec, arg);
314 if (zone)
315 spin_unlock_irqrestore(&zone->lru_lock, flags);
316 release_pages(pvec->pages, pvec->nr, pvec->cold);
317 pagevec_reinit(pvec);
320 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
321 void *arg)
323 int *pgmoved = arg;
325 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
326 enum lru_list lru = page_lru_base_type(page);
327 list_move_tail(&page->lru, &lruvec->lists[lru]);
328 (*pgmoved)++;
333 * pagevec_move_tail() must be called with IRQ disabled.
334 * Otherwise this may cause nasty races.
336 static void pagevec_move_tail(struct pagevec *pvec)
338 int pgmoved = 0;
340 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
341 __count_vm_events(PGROTATED, pgmoved);
345 * Writeback is about to end against a page which has been marked for immediate
346 * reclaim. If it still appears to be reclaimable, move it to the tail of the
347 * inactive list.
349 void rotate_reclaimable_page(struct page *page)
351 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
352 !PageUnevictable(page) && PageLRU(page)) {
353 struct pagevec *pvec;
354 unsigned long flags;
356 page_cache_get(page);
357 local_irq_save(flags);
358 pvec = &__get_cpu_var(lru_rotate_pvecs);
359 if (!pagevec_add(pvec, page))
360 pagevec_move_tail(pvec);
361 local_irq_restore(flags);
365 static void update_page_reclaim_stat(struct lruvec *lruvec,
366 int file, int rotated)
368 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
370 reclaim_stat->recent_scanned[file]++;
371 if (rotated)
372 reclaim_stat->recent_rotated[file]++;
375 static void __activate_page(struct page *page, struct lruvec *lruvec,
376 void *arg)
378 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
379 int file = page_is_file_cache(page);
380 int lru = page_lru_base_type(page);
382 del_page_from_lru_list(page, lruvec, lru);
383 SetPageActive(page);
384 lru += LRU_ACTIVE;
385 add_page_to_lru_list(page, lruvec, lru);
387 __count_vm_event(PGACTIVATE);
388 update_page_reclaim_stat(lruvec, file, 1);
392 #ifdef CONFIG_SMP
393 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
395 static void activate_page_drain(int cpu)
397 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
399 if (pagevec_count(pvec))
400 pagevec_lru_move_fn(pvec, __activate_page, NULL);
403 void activate_page(struct page *page)
405 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
406 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
408 page_cache_get(page);
409 if (!pagevec_add(pvec, page))
410 pagevec_lru_move_fn(pvec, __activate_page, NULL);
411 put_cpu_var(activate_page_pvecs);
415 #else
416 static inline void activate_page_drain(int cpu)
420 void activate_page(struct page *page)
422 struct zone *zone = page_zone(page);
424 spin_lock_irq(&zone->lru_lock);
425 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
426 spin_unlock_irq(&zone->lru_lock);
428 #endif
431 * Mark a page as having seen activity.
433 * inactive,unreferenced -> inactive,referenced
434 * inactive,referenced -> active,unreferenced
435 * active,unreferenced -> active,referenced
437 void mark_page_accessed(struct page *page)
439 if (!PageActive(page) && !PageUnevictable(page) &&
440 PageReferenced(page) && PageLRU(page)) {
441 activate_page(page);
442 ClearPageReferenced(page);
443 } else if (!PageReferenced(page)) {
444 SetPageReferenced(page);
447 EXPORT_SYMBOL(mark_page_accessed);
449 void __lru_cache_add(struct page *page, enum lru_list lru)
451 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
453 page_cache_get(page);
454 if (!pagevec_add(pvec, page))
455 __pagevec_lru_add(pvec, lru);
456 put_cpu_var(lru_add_pvecs);
458 EXPORT_SYMBOL(__lru_cache_add);
461 * lru_cache_add_lru - add a page to a page list
462 * @page: the page to be added to the LRU.
463 * @lru: the LRU list to which the page is added.
465 void lru_cache_add_lru(struct page *page, enum lru_list lru)
467 if (PageActive(page)) {
468 VM_BUG_ON(PageUnevictable(page));
469 ClearPageActive(page);
470 } else if (PageUnevictable(page)) {
471 VM_BUG_ON(PageActive(page));
472 ClearPageUnevictable(page);
475 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
476 __lru_cache_add(page, lru);
480 * add_page_to_unevictable_list - add a page to the unevictable list
481 * @page: the page to be added to the unevictable list
483 * Add page directly to its zone's unevictable list. To avoid races with
484 * tasks that might be making the page evictable, through eg. munlock,
485 * munmap or exit, while it's not on the lru, we want to add the page
486 * while it's locked or otherwise "invisible" to other tasks. This is
487 * difficult to do when using the pagevec cache, so bypass that.
489 void add_page_to_unevictable_list(struct page *page)
491 struct zone *zone = page_zone(page);
492 struct lruvec *lruvec;
494 spin_lock_irq(&zone->lru_lock);
495 lruvec = mem_cgroup_page_lruvec(page, zone);
496 SetPageUnevictable(page);
497 SetPageLRU(page);
498 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
499 spin_unlock_irq(&zone->lru_lock);
503 * If the page can not be invalidated, it is moved to the
504 * inactive list to speed up its reclaim. It is moved to the
505 * head of the list, rather than the tail, to give the flusher
506 * threads some time to write it out, as this is much more
507 * effective than the single-page writeout from reclaim.
509 * If the page isn't page_mapped and dirty/writeback, the page
510 * could reclaim asap using PG_reclaim.
512 * 1. active, mapped page -> none
513 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
514 * 3. inactive, mapped page -> none
515 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
516 * 5. inactive, clean -> inactive, tail
517 * 6. Others -> none
519 * In 4, why it moves inactive's head, the VM expects the page would
520 * be write it out by flusher threads as this is much more effective
521 * than the single-page writeout from reclaim.
523 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
524 void *arg)
526 int lru, file;
527 bool active;
529 if (!PageLRU(page))
530 return;
532 if (PageUnevictable(page))
533 return;
535 /* Some processes are using the page */
536 if (page_mapped(page))
537 return;
539 active = PageActive(page);
540 file = page_is_file_cache(page);
541 lru = page_lru_base_type(page);
543 del_page_from_lru_list(page, lruvec, lru + active);
544 ClearPageActive(page);
545 ClearPageReferenced(page);
546 add_page_to_lru_list(page, lruvec, lru);
548 if (PageWriteback(page) || PageDirty(page)) {
550 * PG_reclaim could be raced with end_page_writeback
551 * It can make readahead confusing. But race window
552 * is _really_ small and it's non-critical problem.
554 SetPageReclaim(page);
555 } else {
557 * The page's writeback ends up during pagevec
558 * We moves tha page into tail of inactive.
560 list_move_tail(&page->lru, &lruvec->lists[lru]);
561 __count_vm_event(PGROTATED);
564 if (active)
565 __count_vm_event(PGDEACTIVATE);
566 update_page_reclaim_stat(lruvec, file, 0);
570 * Drain pages out of the cpu's pagevecs.
571 * Either "cpu" is the current CPU, and preemption has already been
572 * disabled; or "cpu" is being hot-unplugged, and is already dead.
574 void lru_add_drain_cpu(int cpu)
576 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
577 struct pagevec *pvec;
578 int lru;
580 for_each_lru(lru) {
581 pvec = &pvecs[lru - LRU_BASE];
582 if (pagevec_count(pvec))
583 __pagevec_lru_add(pvec, lru);
586 pvec = &per_cpu(lru_rotate_pvecs, cpu);
587 if (pagevec_count(pvec)) {
588 unsigned long flags;
590 /* No harm done if a racing interrupt already did this */
591 local_irq_save(flags);
592 pagevec_move_tail(pvec);
593 local_irq_restore(flags);
596 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
597 if (pagevec_count(pvec))
598 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
600 activate_page_drain(cpu);
604 * deactivate_page - forcefully deactivate a page
605 * @page: page to deactivate
607 * This function hints the VM that @page is a good reclaim candidate,
608 * for example if its invalidation fails due to the page being dirty
609 * or under writeback.
611 void deactivate_page(struct page *page)
614 * In a workload with many unevictable page such as mprotect, unevictable
615 * page deactivation for accelerating reclaim is pointless.
617 if (PageUnevictable(page))
618 return;
620 if (likely(get_page_unless_zero(page))) {
621 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
623 if (!pagevec_add(pvec, page))
624 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
625 put_cpu_var(lru_deactivate_pvecs);
629 void lru_add_drain(void)
631 lru_add_drain_cpu(get_cpu());
632 put_cpu();
635 static void lru_add_drain_per_cpu(struct work_struct *dummy)
637 lru_add_drain();
641 * Returns 0 for success
643 int lru_add_drain_all(void)
645 return schedule_on_each_cpu(lru_add_drain_per_cpu);
649 * Batched page_cache_release(). Decrement the reference count on all the
650 * passed pages. If it fell to zero then remove the page from the LRU and
651 * free it.
653 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
654 * for the remainder of the operation.
656 * The locking in this function is against shrink_inactive_list(): we recheck
657 * the page count inside the lock to see whether shrink_inactive_list()
658 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
659 * will free it.
661 void release_pages(struct page **pages, int nr, int cold)
663 int i;
664 LIST_HEAD(pages_to_free);
665 struct zone *zone = NULL;
666 struct lruvec *lruvec;
667 unsigned long uninitialized_var(flags);
669 for (i = 0; i < nr; i++) {
670 struct page *page = pages[i];
672 if (unlikely(PageCompound(page))) {
673 if (zone) {
674 spin_unlock_irqrestore(&zone->lru_lock, flags);
675 zone = NULL;
677 put_compound_page(page);
678 continue;
681 if (!put_page_testzero(page))
682 continue;
684 if (PageLRU(page)) {
685 struct zone *pagezone = page_zone(page);
687 if (pagezone != zone) {
688 if (zone)
689 spin_unlock_irqrestore(&zone->lru_lock,
690 flags);
691 zone = pagezone;
692 spin_lock_irqsave(&zone->lru_lock, flags);
695 lruvec = mem_cgroup_page_lruvec(page, zone);
696 VM_BUG_ON(!PageLRU(page));
697 __ClearPageLRU(page);
698 del_page_from_lru_list(page, lruvec, page_off_lru(page));
701 list_add(&page->lru, &pages_to_free);
703 if (zone)
704 spin_unlock_irqrestore(&zone->lru_lock, flags);
706 free_hot_cold_page_list(&pages_to_free, cold);
708 EXPORT_SYMBOL(release_pages);
711 * The pages which we're about to release may be in the deferred lru-addition
712 * queues. That would prevent them from really being freed right now. That's
713 * OK from a correctness point of view but is inefficient - those pages may be
714 * cache-warm and we want to give them back to the page allocator ASAP.
716 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
717 * and __pagevec_lru_add_active() call release_pages() directly to avoid
718 * mutual recursion.
720 void __pagevec_release(struct pagevec *pvec)
722 lru_add_drain();
723 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
724 pagevec_reinit(pvec);
726 EXPORT_SYMBOL(__pagevec_release);
728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
729 /* used by __split_huge_page_refcount() */
730 void lru_add_page_tail(struct page *page, struct page *page_tail,
731 struct lruvec *lruvec)
733 int uninitialized_var(active);
734 enum lru_list lru;
735 const int file = 0;
737 VM_BUG_ON(!PageHead(page));
738 VM_BUG_ON(PageCompound(page_tail));
739 VM_BUG_ON(PageLRU(page_tail));
740 VM_BUG_ON(NR_CPUS != 1 &&
741 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
743 SetPageLRU(page_tail);
745 if (page_evictable(page_tail, NULL)) {
746 if (PageActive(page)) {
747 SetPageActive(page_tail);
748 active = 1;
749 lru = LRU_ACTIVE_ANON;
750 } else {
751 active = 0;
752 lru = LRU_INACTIVE_ANON;
754 } else {
755 SetPageUnevictable(page_tail);
756 lru = LRU_UNEVICTABLE;
759 if (likely(PageLRU(page)))
760 list_add_tail(&page_tail->lru, &page->lru);
761 else {
762 struct list_head *list_head;
764 * Head page has not yet been counted, as an hpage,
765 * so we must account for each subpage individually.
767 * Use the standard add function to put page_tail on the list,
768 * but then correct its position so they all end up in order.
770 add_page_to_lru_list(page_tail, lruvec, lru);
771 list_head = page_tail->lru.prev;
772 list_move_tail(&page_tail->lru, list_head);
775 if (!PageUnevictable(page))
776 update_page_reclaim_stat(lruvec, file, active);
778 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
780 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
781 void *arg)
783 enum lru_list lru = (enum lru_list)arg;
784 int file = is_file_lru(lru);
785 int active = is_active_lru(lru);
787 VM_BUG_ON(PageActive(page));
788 VM_BUG_ON(PageUnevictable(page));
789 VM_BUG_ON(PageLRU(page));
791 SetPageLRU(page);
792 if (active)
793 SetPageActive(page);
794 add_page_to_lru_list(page, lruvec, lru);
795 update_page_reclaim_stat(lruvec, file, active);
799 * Add the passed pages to the LRU, then drop the caller's refcount
800 * on them. Reinitialises the caller's pagevec.
802 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
804 VM_BUG_ON(is_unevictable_lru(lru));
806 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
808 EXPORT_SYMBOL(__pagevec_lru_add);
811 * pagevec_lookup - gang pagecache lookup
812 * @pvec: Where the resulting pages are placed
813 * @mapping: The address_space to search
814 * @start: The starting page index
815 * @nr_pages: The maximum number of pages
817 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
818 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
819 * reference against the pages in @pvec.
821 * The search returns a group of mapping-contiguous pages with ascending
822 * indexes. There may be holes in the indices due to not-present pages.
824 * pagevec_lookup() returns the number of pages which were found.
826 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
827 pgoff_t start, unsigned nr_pages)
829 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
830 return pagevec_count(pvec);
832 EXPORT_SYMBOL(pagevec_lookup);
834 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
835 pgoff_t *index, int tag, unsigned nr_pages)
837 pvec->nr = find_get_pages_tag(mapping, index, tag,
838 nr_pages, pvec->pages);
839 return pagevec_count(pvec);
841 EXPORT_SYMBOL(pagevec_lookup_tag);
844 * Perform any setup for the swap system
846 void __init swap_setup(void)
848 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
850 #ifdef CONFIG_SWAP
851 bdi_init(swapper_space.backing_dev_info);
852 #endif
854 /* Use a smaller cluster for small-memory machines */
855 if (megs < 16)
856 page_cluster = 2;
857 else
858 page_cluster = 3;
860 * Right now other parts of the system means that we
861 * _really_ don't want to cluster much more