2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include <linux/ratelimit.h>
33 * Inode locking rules:
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget()
37 * inode->i_sb->s_inode_lru_lock protects:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode_sb_list_lock protects:
40 * sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
50 * inode->i_sb->s_inode_lru_lock
63 static unsigned int i_hash_mask __read_mostly
;
64 static unsigned int i_hash_shift __read_mostly
;
65 static struct hlist_head
*inode_hashtable __read_mostly
;
66 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
68 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
71 * Empty aops. Can be used for the cases where the user does not
72 * define any of the address_space operations.
74 const struct address_space_operations empty_aops
= {
76 EXPORT_SYMBOL(empty_aops
);
79 * Statistics gathering..
81 struct inodes_stat_t inodes_stat
;
83 static DEFINE_PER_CPU(unsigned int, nr_inodes
);
84 static DEFINE_PER_CPU(unsigned int, nr_unused
);
86 static struct kmem_cache
*inode_cachep __read_mostly
;
88 static int get_nr_inodes(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_inodes
, i
);
94 return sum
< 0 ? 0 : sum
;
97 static inline int get_nr_inodes_unused(void)
101 for_each_possible_cpu(i
)
102 sum
+= per_cpu(nr_unused
, i
);
103 return sum
< 0 ? 0 : sum
;
106 int get_nr_dirty_inodes(void)
108 /* not actually dirty inodes, but a wild approximation */
109 int nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
110 return nr_dirty
> 0 ? nr_dirty
: 0;
114 * Handle nr_inode sysctl
117 int proc_nr_inodes(ctl_table
*table
, int write
,
118 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
120 inodes_stat
.nr_inodes
= get_nr_inodes();
121 inodes_stat
.nr_unused
= get_nr_inodes_unused();
122 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
127 * inode_init_always - perform inode structure intialisation
128 * @sb: superblock inode belongs to
129 * @inode: inode to initialise
131 * These are initializations that need to be done on every inode
132 * allocation as the fields are not initialised by slab allocation.
134 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
136 static const struct inode_operations empty_iops
;
137 static const struct file_operations empty_fops
;
138 struct address_space
*const mapping
= &inode
->i_data
;
141 inode
->i_blkbits
= sb
->s_blocksize_bits
;
143 atomic_set(&inode
->i_count
, 1);
144 inode
->i_op
= &empty_iops
;
145 inode
->i_fop
= &empty_fops
;
146 inode
->__i_nlink
= 1;
147 inode
->i_opflags
= 0;
150 atomic_set(&inode
->i_writecount
, 0);
154 inode
->i_generation
= 0;
156 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
158 inode
->i_pipe
= NULL
;
159 inode
->i_bdev
= NULL
;
160 inode
->i_cdev
= NULL
;
162 inode
->dirtied_when
= 0;
164 if (security_inode_alloc(inode
))
166 spin_lock_init(&inode
->i_lock
);
167 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
169 mutex_init(&inode
->i_mutex
);
170 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
172 atomic_set(&inode
->i_dio_count
, 0);
174 mapping
->a_ops
= &empty_aops
;
175 mapping
->host
= inode
;
177 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
178 mapping
->assoc_mapping
= NULL
;
179 mapping
->backing_dev_info
= &default_backing_dev_info
;
180 mapping
->writeback_index
= 0;
183 * If the block_device provides a backing_dev_info for client
184 * inodes then use that. Otherwise the inode share the bdev's
188 struct backing_dev_info
*bdi
;
190 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
191 mapping
->backing_dev_info
= bdi
;
193 inode
->i_private
= NULL
;
194 inode
->i_mapping
= mapping
;
195 INIT_LIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
200 #ifdef CONFIG_FSNOTIFY
201 inode
->i_fsnotify_mask
= 0;
204 this_cpu_inc(nr_inodes
);
210 EXPORT_SYMBOL(inode_init_always
);
212 static struct inode
*alloc_inode(struct super_block
*sb
)
216 if (sb
->s_op
->alloc_inode
)
217 inode
= sb
->s_op
->alloc_inode(sb
);
219 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
224 if (unlikely(inode_init_always(sb
, inode
))) {
225 if (inode
->i_sb
->s_op
->destroy_inode
)
226 inode
->i_sb
->s_op
->destroy_inode(inode
);
228 kmem_cache_free(inode_cachep
, inode
);
235 void free_inode_nonrcu(struct inode
*inode
)
237 kmem_cache_free(inode_cachep
, inode
);
239 EXPORT_SYMBOL(free_inode_nonrcu
);
241 void __destroy_inode(struct inode
*inode
)
243 BUG_ON(inode_has_buffers(inode
));
244 security_inode_free(inode
);
245 fsnotify_inode_delete(inode
);
246 if (!inode
->i_nlink
) {
247 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
248 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
251 #ifdef CONFIG_FS_POSIX_ACL
252 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
253 posix_acl_release(inode
->i_acl
);
254 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
255 posix_acl_release(inode
->i_default_acl
);
257 this_cpu_dec(nr_inodes
);
259 EXPORT_SYMBOL(__destroy_inode
);
261 static void i_callback(struct rcu_head
*head
)
263 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
264 kmem_cache_free(inode_cachep
, inode
);
267 static void destroy_inode(struct inode
*inode
)
269 BUG_ON(!list_empty(&inode
->i_lru
));
270 __destroy_inode(inode
);
271 if (inode
->i_sb
->s_op
->destroy_inode
)
272 inode
->i_sb
->s_op
->destroy_inode(inode
);
274 call_rcu(&inode
->i_rcu
, i_callback
);
278 * drop_nlink - directly drop an inode's link count
281 * This is a low-level filesystem helper to replace any
282 * direct filesystem manipulation of i_nlink. In cases
283 * where we are attempting to track writes to the
284 * filesystem, a decrement to zero means an imminent
285 * write when the file is truncated and actually unlinked
288 void drop_nlink(struct inode
*inode
)
290 WARN_ON(inode
->i_nlink
== 0);
293 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
295 EXPORT_SYMBOL(drop_nlink
);
298 * clear_nlink - directly zero an inode's link count
301 * This is a low-level filesystem helper to replace any
302 * direct filesystem manipulation of i_nlink. See
303 * drop_nlink() for why we care about i_nlink hitting zero.
305 void clear_nlink(struct inode
*inode
)
307 if (inode
->i_nlink
) {
308 inode
->__i_nlink
= 0;
309 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
312 EXPORT_SYMBOL(clear_nlink
);
315 * set_nlink - directly set an inode's link count
317 * @nlink: new nlink (should be non-zero)
319 * This is a low-level filesystem helper to replace any
320 * direct filesystem manipulation of i_nlink.
322 void set_nlink(struct inode
*inode
, unsigned int nlink
)
325 printk_ratelimited(KERN_INFO
326 "set_nlink() clearing i_nlink on %s inode %li\n",
327 inode
->i_sb
->s_type
->name
, inode
->i_ino
);
330 /* Yes, some filesystems do change nlink from zero to one */
331 if (inode
->i_nlink
== 0)
332 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
334 inode
->__i_nlink
= nlink
;
337 EXPORT_SYMBOL(set_nlink
);
340 * inc_nlink - directly increment an inode's link count
343 * This is a low-level filesystem helper to replace any
344 * direct filesystem manipulation of i_nlink. Currently,
345 * it is only here for parity with dec_nlink().
347 void inc_nlink(struct inode
*inode
)
349 if (WARN_ON(inode
->i_nlink
== 0))
350 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
354 EXPORT_SYMBOL(inc_nlink
);
356 void address_space_init_once(struct address_space
*mapping
)
358 memset(mapping
, 0, sizeof(*mapping
));
359 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
360 spin_lock_init(&mapping
->tree_lock
);
361 mutex_init(&mapping
->i_mmap_mutex
);
362 INIT_LIST_HEAD(&mapping
->private_list
);
363 spin_lock_init(&mapping
->private_lock
);
364 INIT_RAW_PRIO_TREE_ROOT(&mapping
->i_mmap
);
365 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
367 EXPORT_SYMBOL(address_space_init_once
);
370 * These are initializations that only need to be done
371 * once, because the fields are idempotent across use
372 * of the inode, so let the slab aware of that.
374 void inode_init_once(struct inode
*inode
)
376 memset(inode
, 0, sizeof(*inode
));
377 INIT_HLIST_NODE(&inode
->i_hash
);
378 INIT_LIST_HEAD(&inode
->i_devices
);
379 INIT_LIST_HEAD(&inode
->i_wb_list
);
380 INIT_LIST_HEAD(&inode
->i_lru
);
381 address_space_init_once(&inode
->i_data
);
382 i_size_ordered_init(inode
);
383 #ifdef CONFIG_FSNOTIFY
384 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
387 EXPORT_SYMBOL(inode_init_once
);
389 static void init_once(void *foo
)
391 struct inode
*inode
= (struct inode
*) foo
;
393 inode_init_once(inode
);
397 * inode->i_lock must be held
399 void __iget(struct inode
*inode
)
401 atomic_inc(&inode
->i_count
);
405 * get additional reference to inode; caller must already hold one.
407 void ihold(struct inode
*inode
)
409 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
411 EXPORT_SYMBOL(ihold
);
413 static void inode_lru_list_add(struct inode
*inode
)
415 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
416 if (list_empty(&inode
->i_lru
)) {
417 list_add(&inode
->i_lru
, &inode
->i_sb
->s_inode_lru
);
418 inode
->i_sb
->s_nr_inodes_unused
++;
419 this_cpu_inc(nr_unused
);
421 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
424 static void inode_lru_list_del(struct inode
*inode
)
426 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
427 if (!list_empty(&inode
->i_lru
)) {
428 list_del_init(&inode
->i_lru
);
429 inode
->i_sb
->s_nr_inodes_unused
--;
430 this_cpu_dec(nr_unused
);
432 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
439 void inode_sb_list_add(struct inode
*inode
)
441 spin_lock(&inode_sb_list_lock
);
442 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
443 spin_unlock(&inode_sb_list_lock
);
445 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
447 static inline void inode_sb_list_del(struct inode
*inode
)
449 if (!list_empty(&inode
->i_sb_list
)) {
450 spin_lock(&inode_sb_list_lock
);
451 list_del_init(&inode
->i_sb_list
);
452 spin_unlock(&inode_sb_list_lock
);
456 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
460 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
462 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
463 return tmp
& i_hash_mask
;
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
472 * Add an inode to the inode hash for this superblock.
474 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
476 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
478 spin_lock(&inode_hash_lock
);
479 spin_lock(&inode
->i_lock
);
480 hlist_add_head(&inode
->i_hash
, b
);
481 spin_unlock(&inode
->i_lock
);
482 spin_unlock(&inode_hash_lock
);
484 EXPORT_SYMBOL(__insert_inode_hash
);
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
490 * Remove an inode from the superblock.
492 void __remove_inode_hash(struct inode
*inode
)
494 spin_lock(&inode_hash_lock
);
495 spin_lock(&inode
->i_lock
);
496 hlist_del_init(&inode
->i_hash
);
497 spin_unlock(&inode
->i_lock
);
498 spin_unlock(&inode_hash_lock
);
500 EXPORT_SYMBOL(__remove_inode_hash
);
502 void end_writeback(struct inode
*inode
)
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
510 spin_lock_irq(&inode
->i_data
.tree_lock
);
511 BUG_ON(inode
->i_data
.nrpages
);
512 spin_unlock_irq(&inode
->i_data
.tree_lock
);
513 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
514 BUG_ON(!(inode
->i_state
& I_FREEING
));
515 BUG_ON(inode
->i_state
& I_CLEAR
);
516 inode_sync_wait(inode
);
517 /* don't need i_lock here, no concurrent mods to i_state */
518 inode
->i_state
= I_FREEING
| I_CLEAR
;
520 EXPORT_SYMBOL(end_writeback
);
523 * Free the inode passed in, removing it from the lists it is still connected
524 * to. We remove any pages still attached to the inode and wait for any IO that
525 * is still in progress before finally destroying the inode.
527 * An inode must already be marked I_FREEING so that we avoid the inode being
528 * moved back onto lists if we race with other code that manipulates the lists
529 * (e.g. writeback_single_inode). The caller is responsible for setting this.
531 * An inode must already be removed from the LRU list before being evicted from
532 * the cache. This should occur atomically with setting the I_FREEING state
533 * flag, so no inodes here should ever be on the LRU when being evicted.
535 static void evict(struct inode
*inode
)
537 const struct super_operations
*op
= inode
->i_sb
->s_op
;
539 BUG_ON(!(inode
->i_state
& I_FREEING
));
540 BUG_ON(!list_empty(&inode
->i_lru
));
542 if (!list_empty(&inode
->i_wb_list
))
543 inode_wb_list_del(inode
);
545 inode_sb_list_del(inode
);
547 if (op
->evict_inode
) {
548 op
->evict_inode(inode
);
550 if (inode
->i_data
.nrpages
)
551 truncate_inode_pages(&inode
->i_data
, 0);
552 end_writeback(inode
);
554 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
556 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
559 remove_inode_hash(inode
);
561 spin_lock(&inode
->i_lock
);
562 wake_up_bit(&inode
->i_state
, __I_NEW
);
563 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
564 spin_unlock(&inode
->i_lock
);
566 destroy_inode(inode
);
570 * dispose_list - dispose of the contents of a local list
571 * @head: the head of the list to free
573 * Dispose-list gets a local list with local inodes in it, so it doesn't
574 * need to worry about list corruption and SMP locks.
576 static void dispose_list(struct list_head
*head
)
578 while (!list_empty(head
)) {
581 inode
= list_first_entry(head
, struct inode
, i_lru
);
582 list_del_init(&inode
->i_lru
);
589 * evict_inodes - evict all evictable inodes for a superblock
590 * @sb: superblock to operate on
592 * Make sure that no inodes with zero refcount are retained. This is
593 * called by superblock shutdown after having MS_ACTIVE flag removed,
594 * so any inode reaching zero refcount during or after that call will
595 * be immediately evicted.
597 void evict_inodes(struct super_block
*sb
)
599 struct inode
*inode
, *next
;
602 spin_lock(&inode_sb_list_lock
);
603 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
604 if (atomic_read(&inode
->i_count
))
607 spin_lock(&inode
->i_lock
);
608 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
609 spin_unlock(&inode
->i_lock
);
613 inode
->i_state
|= I_FREEING
;
614 inode_lru_list_del(inode
);
615 spin_unlock(&inode
->i_lock
);
616 list_add(&inode
->i_lru
, &dispose
);
618 spin_unlock(&inode_sb_list_lock
);
620 dispose_list(&dispose
);
624 * invalidate_inodes - attempt to free all inodes on a superblock
625 * @sb: superblock to operate on
626 * @kill_dirty: flag to guide handling of dirty inodes
628 * Attempts to free all inodes for a given superblock. If there were any
629 * busy inodes return a non-zero value, else zero.
630 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
633 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
636 struct inode
*inode
, *next
;
639 spin_lock(&inode_sb_list_lock
);
640 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
641 spin_lock(&inode
->i_lock
);
642 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
643 spin_unlock(&inode
->i_lock
);
646 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
647 spin_unlock(&inode
->i_lock
);
651 if (atomic_read(&inode
->i_count
)) {
652 spin_unlock(&inode
->i_lock
);
657 inode
->i_state
|= I_FREEING
;
658 inode_lru_list_del(inode
);
659 spin_unlock(&inode
->i_lock
);
660 list_add(&inode
->i_lru
, &dispose
);
662 spin_unlock(&inode_sb_list_lock
);
664 dispose_list(&dispose
);
669 static int can_unuse(struct inode
*inode
)
671 if (inode
->i_state
& ~I_REFERENCED
)
673 if (inode_has_buffers(inode
))
675 if (atomic_read(&inode
->i_count
))
677 if (inode
->i_data
.nrpages
)
683 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
684 * This is called from the superblock shrinker function with a number of inodes
685 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
686 * then are freed outside inode_lock by dispose_list().
688 * Any inodes which are pinned purely because of attached pagecache have their
689 * pagecache removed. If the inode has metadata buffers attached to
690 * mapping->private_list then try to remove them.
692 * If the inode has the I_REFERENCED flag set, then it means that it has been
693 * used recently - the flag is set in iput_final(). When we encounter such an
694 * inode, clear the flag and move it to the back of the LRU so it gets another
695 * pass through the LRU before it gets reclaimed. This is necessary because of
696 * the fact we are doing lazy LRU updates to minimise lock contention so the
697 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
698 * with this flag set because they are the inodes that are out of order.
700 void prune_icache_sb(struct super_block
*sb
, int nr_to_scan
)
704 unsigned long reap
= 0;
706 spin_lock(&sb
->s_inode_lru_lock
);
707 for (nr_scanned
= nr_to_scan
; nr_scanned
>= 0; nr_scanned
--) {
710 if (list_empty(&sb
->s_inode_lru
))
713 inode
= list_entry(sb
->s_inode_lru
.prev
, struct inode
, i_lru
);
716 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
717 * so use a trylock. If we fail to get the lock, just move the
718 * inode to the back of the list so we don't spin on it.
720 if (!spin_trylock(&inode
->i_lock
)) {
721 list_move_tail(&inode
->i_lru
, &sb
->s_inode_lru
);
726 * Referenced or dirty inodes are still in use. Give them
727 * another pass through the LRU as we canot reclaim them now.
729 if (atomic_read(&inode
->i_count
) ||
730 (inode
->i_state
& ~I_REFERENCED
)) {
731 list_del_init(&inode
->i_lru
);
732 spin_unlock(&inode
->i_lock
);
733 sb
->s_nr_inodes_unused
--;
734 this_cpu_dec(nr_unused
);
738 /* recently referenced inodes get one more pass */
739 if (inode
->i_state
& I_REFERENCED
) {
740 inode
->i_state
&= ~I_REFERENCED
;
741 list_move(&inode
->i_lru
, &sb
->s_inode_lru
);
742 spin_unlock(&inode
->i_lock
);
745 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
747 spin_unlock(&inode
->i_lock
);
748 spin_unlock(&sb
->s_inode_lru_lock
);
749 if (remove_inode_buffers(inode
))
750 reap
+= invalidate_mapping_pages(&inode
->i_data
,
753 spin_lock(&sb
->s_inode_lru_lock
);
755 if (inode
!= list_entry(sb
->s_inode_lru
.next
,
756 struct inode
, i_lru
))
757 continue; /* wrong inode or list_empty */
758 /* avoid lock inversions with trylock */
759 if (!spin_trylock(&inode
->i_lock
))
761 if (!can_unuse(inode
)) {
762 spin_unlock(&inode
->i_lock
);
766 WARN_ON(inode
->i_state
& I_NEW
);
767 inode
->i_state
|= I_FREEING
;
768 spin_unlock(&inode
->i_lock
);
770 list_move(&inode
->i_lru
, &freeable
);
771 sb
->s_nr_inodes_unused
--;
772 this_cpu_dec(nr_unused
);
774 if (current_is_kswapd())
775 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
777 __count_vm_events(PGINODESTEAL
, reap
);
778 spin_unlock(&sb
->s_inode_lru_lock
);
779 if (current
->reclaim_state
)
780 current
->reclaim_state
->reclaimed_slab
+= reap
;
782 dispose_list(&freeable
);
785 static void __wait_on_freeing_inode(struct inode
*inode
);
787 * Called with the inode lock held.
789 static struct inode
*find_inode(struct super_block
*sb
,
790 struct hlist_head
*head
,
791 int (*test
)(struct inode
*, void *),
794 struct hlist_node
*node
;
795 struct inode
*inode
= NULL
;
798 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
799 spin_lock(&inode
->i_lock
);
800 if (inode
->i_sb
!= sb
) {
801 spin_unlock(&inode
->i_lock
);
804 if (!test(inode
, data
)) {
805 spin_unlock(&inode
->i_lock
);
808 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
809 __wait_on_freeing_inode(inode
);
813 spin_unlock(&inode
->i_lock
);
820 * find_inode_fast is the fast path version of find_inode, see the comment at
821 * iget_locked for details.
823 static struct inode
*find_inode_fast(struct super_block
*sb
,
824 struct hlist_head
*head
, unsigned long ino
)
826 struct hlist_node
*node
;
827 struct inode
*inode
= NULL
;
830 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
831 spin_lock(&inode
->i_lock
);
832 if (inode
->i_ino
!= ino
) {
833 spin_unlock(&inode
->i_lock
);
836 if (inode
->i_sb
!= sb
) {
837 spin_unlock(&inode
->i_lock
);
840 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
841 __wait_on_freeing_inode(inode
);
845 spin_unlock(&inode
->i_lock
);
852 * Each cpu owns a range of LAST_INO_BATCH numbers.
853 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
854 * to renew the exhausted range.
856 * This does not significantly increase overflow rate because every CPU can
857 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
858 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
859 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
860 * overflow rate by 2x, which does not seem too significant.
862 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
863 * error if st_ino won't fit in target struct field. Use 32bit counter
864 * here to attempt to avoid that.
866 #define LAST_INO_BATCH 1024
867 static DEFINE_PER_CPU(unsigned int, last_ino
);
869 unsigned int get_next_ino(void)
871 unsigned int *p
= &get_cpu_var(last_ino
);
872 unsigned int res
= *p
;
875 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
876 static atomic_t shared_last_ino
;
877 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
879 res
= next
- LAST_INO_BATCH
;
884 put_cpu_var(last_ino
);
887 EXPORT_SYMBOL(get_next_ino
);
890 * new_inode_pseudo - obtain an inode
893 * Allocates a new inode for given superblock.
894 * Inode wont be chained in superblock s_inodes list
896 * - fs can't be unmount
897 * - quotas, fsnotify, writeback can't work
899 struct inode
*new_inode_pseudo(struct super_block
*sb
)
901 struct inode
*inode
= alloc_inode(sb
);
904 spin_lock(&inode
->i_lock
);
906 spin_unlock(&inode
->i_lock
);
907 INIT_LIST_HEAD(&inode
->i_sb_list
);
913 * new_inode - obtain an inode
916 * Allocates a new inode for given superblock. The default gfp_mask
917 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
918 * If HIGHMEM pages are unsuitable or it is known that pages allocated
919 * for the page cache are not reclaimable or migratable,
920 * mapping_set_gfp_mask() must be called with suitable flags on the
921 * newly created inode's mapping
924 struct inode
*new_inode(struct super_block
*sb
)
928 spin_lock_prefetch(&inode_sb_list_lock
);
930 inode
= new_inode_pseudo(sb
);
932 inode_sb_list_add(inode
);
935 EXPORT_SYMBOL(new_inode
);
937 #ifdef CONFIG_DEBUG_LOCK_ALLOC
938 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
940 if (S_ISDIR(inode
->i_mode
)) {
941 struct file_system_type
*type
= inode
->i_sb
->s_type
;
943 /* Set new key only if filesystem hasn't already changed it */
944 if (!lockdep_match_class(&inode
->i_mutex
,
945 &type
->i_mutex_key
)) {
947 * ensure nobody is actually holding i_mutex
949 mutex_destroy(&inode
->i_mutex
);
950 mutex_init(&inode
->i_mutex
);
951 lockdep_set_class(&inode
->i_mutex
,
952 &type
->i_mutex_dir_key
);
956 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
960 * unlock_new_inode - clear the I_NEW state and wake up any waiters
961 * @inode: new inode to unlock
963 * Called when the inode is fully initialised to clear the new state of the
964 * inode and wake up anyone waiting for the inode to finish initialisation.
966 void unlock_new_inode(struct inode
*inode
)
968 lockdep_annotate_inode_mutex_key(inode
);
969 spin_lock(&inode
->i_lock
);
970 WARN_ON(!(inode
->i_state
& I_NEW
));
971 inode
->i_state
&= ~I_NEW
;
972 wake_up_bit(&inode
->i_state
, __I_NEW
);
973 spin_unlock(&inode
->i_lock
);
975 EXPORT_SYMBOL(unlock_new_inode
);
978 * iget5_locked - obtain an inode from a mounted file system
979 * @sb: super block of file system
980 * @hashval: hash value (usually inode number) to get
981 * @test: callback used for comparisons between inodes
982 * @set: callback used to initialize a new struct inode
983 * @data: opaque data pointer to pass to @test and @set
985 * Search for the inode specified by @hashval and @data in the inode cache,
986 * and if present it is return it with an increased reference count. This is
987 * a generalized version of iget_locked() for file systems where the inode
988 * number is not sufficient for unique identification of an inode.
990 * If the inode is not in cache, allocate a new inode and return it locked,
991 * hashed, and with the I_NEW flag set. The file system gets to fill it in
992 * before unlocking it via unlock_new_inode().
994 * Note both @test and @set are called with the inode_hash_lock held, so can't
997 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
998 int (*test
)(struct inode
*, void *),
999 int (*set
)(struct inode
*, void *), void *data
)
1001 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1002 struct inode
*inode
;
1004 spin_lock(&inode_hash_lock
);
1005 inode
= find_inode(sb
, head
, test
, data
);
1006 spin_unlock(&inode_hash_lock
);
1009 wait_on_inode(inode
);
1013 inode
= alloc_inode(sb
);
1017 spin_lock(&inode_hash_lock
);
1018 /* We released the lock, so.. */
1019 old
= find_inode(sb
, head
, test
, data
);
1021 if (set(inode
, data
))
1024 spin_lock(&inode
->i_lock
);
1025 inode
->i_state
= I_NEW
;
1026 hlist_add_head(&inode
->i_hash
, head
);
1027 spin_unlock(&inode
->i_lock
);
1028 inode_sb_list_add(inode
);
1029 spin_unlock(&inode_hash_lock
);
1031 /* Return the locked inode with I_NEW set, the
1032 * caller is responsible for filling in the contents
1038 * Uhhuh, somebody else created the same inode under
1039 * us. Use the old inode instead of the one we just
1042 spin_unlock(&inode_hash_lock
);
1043 destroy_inode(inode
);
1045 wait_on_inode(inode
);
1050 spin_unlock(&inode_hash_lock
);
1051 destroy_inode(inode
);
1054 EXPORT_SYMBOL(iget5_locked
);
1057 * iget_locked - obtain an inode from a mounted file system
1058 * @sb: super block of file system
1059 * @ino: inode number to get
1061 * Search for the inode specified by @ino in the inode cache and if present
1062 * return it with an increased reference count. This is for file systems
1063 * where the inode number is sufficient for unique identification of an inode.
1065 * If the inode is not in cache, allocate a new inode and return it locked,
1066 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1067 * before unlocking it via unlock_new_inode().
1069 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1071 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1072 struct inode
*inode
;
1074 spin_lock(&inode_hash_lock
);
1075 inode
= find_inode_fast(sb
, head
, ino
);
1076 spin_unlock(&inode_hash_lock
);
1078 wait_on_inode(inode
);
1082 inode
= alloc_inode(sb
);
1086 spin_lock(&inode_hash_lock
);
1087 /* We released the lock, so.. */
1088 old
= find_inode_fast(sb
, head
, ino
);
1091 spin_lock(&inode
->i_lock
);
1092 inode
->i_state
= I_NEW
;
1093 hlist_add_head(&inode
->i_hash
, head
);
1094 spin_unlock(&inode
->i_lock
);
1095 inode_sb_list_add(inode
);
1096 spin_unlock(&inode_hash_lock
);
1098 /* Return the locked inode with I_NEW set, the
1099 * caller is responsible for filling in the contents
1105 * Uhhuh, somebody else created the same inode under
1106 * us. Use the old inode instead of the one we just
1109 spin_unlock(&inode_hash_lock
);
1110 destroy_inode(inode
);
1112 wait_on_inode(inode
);
1116 EXPORT_SYMBOL(iget_locked
);
1119 * search the inode cache for a matching inode number.
1120 * If we find one, then the inode number we are trying to
1121 * allocate is not unique and so we should not use it.
1123 * Returns 1 if the inode number is unique, 0 if it is not.
1125 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1127 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1128 struct hlist_node
*node
;
1129 struct inode
*inode
;
1131 spin_lock(&inode_hash_lock
);
1132 hlist_for_each_entry(inode
, node
, b
, i_hash
) {
1133 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1134 spin_unlock(&inode_hash_lock
);
1138 spin_unlock(&inode_hash_lock
);
1144 * iunique - get a unique inode number
1146 * @max_reserved: highest reserved inode number
1148 * Obtain an inode number that is unique on the system for a given
1149 * superblock. This is used by file systems that have no natural
1150 * permanent inode numbering system. An inode number is returned that
1151 * is higher than the reserved limit but unique.
1154 * With a large number of inodes live on the file system this function
1155 * currently becomes quite slow.
1157 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1160 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1161 * error if st_ino won't fit in target struct field. Use 32bit counter
1162 * here to attempt to avoid that.
1164 static DEFINE_SPINLOCK(iunique_lock
);
1165 static unsigned int counter
;
1168 spin_lock(&iunique_lock
);
1170 if (counter
<= max_reserved
)
1171 counter
= max_reserved
+ 1;
1173 } while (!test_inode_iunique(sb
, res
));
1174 spin_unlock(&iunique_lock
);
1178 EXPORT_SYMBOL(iunique
);
1180 struct inode
*igrab(struct inode
*inode
)
1182 spin_lock(&inode
->i_lock
);
1183 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1185 spin_unlock(&inode
->i_lock
);
1187 spin_unlock(&inode
->i_lock
);
1189 * Handle the case where s_op->clear_inode is not been
1190 * called yet, and somebody is calling igrab
1191 * while the inode is getting freed.
1197 EXPORT_SYMBOL(igrab
);
1200 * ilookup5_nowait - search for an inode in the inode cache
1201 * @sb: super block of file system to search
1202 * @hashval: hash value (usually inode number) to search for
1203 * @test: callback used for comparisons between inodes
1204 * @data: opaque data pointer to pass to @test
1206 * Search for the inode specified by @hashval and @data in the inode cache.
1207 * If the inode is in the cache, the inode is returned with an incremented
1210 * Note: I_NEW is not waited upon so you have to be very careful what you do
1211 * with the returned inode. You probably should be using ilookup5() instead.
1213 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1215 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1216 int (*test
)(struct inode
*, void *), void *data
)
1218 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1219 struct inode
*inode
;
1221 spin_lock(&inode_hash_lock
);
1222 inode
= find_inode(sb
, head
, test
, data
);
1223 spin_unlock(&inode_hash_lock
);
1227 EXPORT_SYMBOL(ilookup5_nowait
);
1230 * ilookup5 - search for an inode in the inode cache
1231 * @sb: super block of file system to search
1232 * @hashval: hash value (usually inode number) to search for
1233 * @test: callback used for comparisons between inodes
1234 * @data: opaque data pointer to pass to @test
1236 * Search for the inode specified by @hashval and @data in the inode cache,
1237 * and if the inode is in the cache, return the inode with an incremented
1238 * reference count. Waits on I_NEW before returning the inode.
1239 * returned with an incremented reference count.
1241 * This is a generalized version of ilookup() for file systems where the
1242 * inode number is not sufficient for unique identification of an inode.
1244 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1246 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1247 int (*test
)(struct inode
*, void *), void *data
)
1249 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1252 wait_on_inode(inode
);
1255 EXPORT_SYMBOL(ilookup5
);
1258 * ilookup - search for an inode in the inode cache
1259 * @sb: super block of file system to search
1260 * @ino: inode number to search for
1262 * Search for the inode @ino in the inode cache, and if the inode is in the
1263 * cache, the inode is returned with an incremented reference count.
1265 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1267 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1268 struct inode
*inode
;
1270 spin_lock(&inode_hash_lock
);
1271 inode
= find_inode_fast(sb
, head
, ino
);
1272 spin_unlock(&inode_hash_lock
);
1275 wait_on_inode(inode
);
1278 EXPORT_SYMBOL(ilookup
);
1280 int insert_inode_locked(struct inode
*inode
)
1282 struct super_block
*sb
= inode
->i_sb
;
1283 ino_t ino
= inode
->i_ino
;
1284 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1287 struct hlist_node
*node
;
1288 struct inode
*old
= NULL
;
1289 spin_lock(&inode_hash_lock
);
1290 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1291 if (old
->i_ino
!= ino
)
1293 if (old
->i_sb
!= sb
)
1295 spin_lock(&old
->i_lock
);
1296 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1297 spin_unlock(&old
->i_lock
);
1302 if (likely(!node
)) {
1303 spin_lock(&inode
->i_lock
);
1304 inode
->i_state
|= I_NEW
;
1305 hlist_add_head(&inode
->i_hash
, head
);
1306 spin_unlock(&inode
->i_lock
);
1307 spin_unlock(&inode_hash_lock
);
1311 spin_unlock(&old
->i_lock
);
1312 spin_unlock(&inode_hash_lock
);
1314 if (unlikely(!inode_unhashed(old
))) {
1321 EXPORT_SYMBOL(insert_inode_locked
);
1323 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1324 int (*test
)(struct inode
*, void *), void *data
)
1326 struct super_block
*sb
= inode
->i_sb
;
1327 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1330 struct hlist_node
*node
;
1331 struct inode
*old
= NULL
;
1333 spin_lock(&inode_hash_lock
);
1334 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1335 if (old
->i_sb
!= sb
)
1337 if (!test(old
, data
))
1339 spin_lock(&old
->i_lock
);
1340 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1341 spin_unlock(&old
->i_lock
);
1346 if (likely(!node
)) {
1347 spin_lock(&inode
->i_lock
);
1348 inode
->i_state
|= I_NEW
;
1349 hlist_add_head(&inode
->i_hash
, head
);
1350 spin_unlock(&inode
->i_lock
);
1351 spin_unlock(&inode_hash_lock
);
1355 spin_unlock(&old
->i_lock
);
1356 spin_unlock(&inode_hash_lock
);
1358 if (unlikely(!inode_unhashed(old
))) {
1365 EXPORT_SYMBOL(insert_inode_locked4
);
1368 int generic_delete_inode(struct inode
*inode
)
1372 EXPORT_SYMBOL(generic_delete_inode
);
1375 * Normal UNIX filesystem behaviour: delete the
1376 * inode when the usage count drops to zero, and
1379 int generic_drop_inode(struct inode
*inode
)
1381 return !inode
->i_nlink
|| inode_unhashed(inode
);
1383 EXPORT_SYMBOL_GPL(generic_drop_inode
);
1386 * Called when we're dropping the last reference
1389 * Call the FS "drop_inode()" function, defaulting to
1390 * the legacy UNIX filesystem behaviour. If it tells
1391 * us to evict inode, do so. Otherwise, retain inode
1392 * in cache if fs is alive, sync and evict if fs is
1395 static void iput_final(struct inode
*inode
)
1397 struct super_block
*sb
= inode
->i_sb
;
1398 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1401 WARN_ON(inode
->i_state
& I_NEW
);
1404 drop
= op
->drop_inode(inode
);
1406 drop
= generic_drop_inode(inode
);
1408 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1409 inode
->i_state
|= I_REFERENCED
;
1410 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
1411 inode_lru_list_add(inode
);
1412 spin_unlock(&inode
->i_lock
);
1417 inode
->i_state
|= I_WILL_FREE
;
1418 spin_unlock(&inode
->i_lock
);
1419 write_inode_now(inode
, 1);
1420 spin_lock(&inode
->i_lock
);
1421 WARN_ON(inode
->i_state
& I_NEW
);
1422 inode
->i_state
&= ~I_WILL_FREE
;
1425 inode
->i_state
|= I_FREEING
;
1426 if (!list_empty(&inode
->i_lru
))
1427 inode_lru_list_del(inode
);
1428 spin_unlock(&inode
->i_lock
);
1434 * iput - put an inode
1435 * @inode: inode to put
1437 * Puts an inode, dropping its usage count. If the inode use count hits
1438 * zero, the inode is then freed and may also be destroyed.
1440 * Consequently, iput() can sleep.
1442 void iput(struct inode
*inode
)
1445 BUG_ON(inode
->i_state
& I_CLEAR
);
1447 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1451 EXPORT_SYMBOL(iput
);
1454 * bmap - find a block number in a file
1455 * @inode: inode of file
1456 * @block: block to find
1458 * Returns the block number on the device holding the inode that
1459 * is the disk block number for the block of the file requested.
1460 * That is, asked for block 4 of inode 1 the function will return the
1461 * disk block relative to the disk start that holds that block of the
1464 sector_t
bmap(struct inode
*inode
, sector_t block
)
1467 if (inode
->i_mapping
->a_ops
->bmap
)
1468 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1471 EXPORT_SYMBOL(bmap
);
1474 * With relative atime, only update atime if the previous atime is
1475 * earlier than either the ctime or mtime or if at least a day has
1476 * passed since the last atime update.
1478 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1479 struct timespec now
)
1482 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1485 * Is mtime younger than atime? If yes, update atime:
1487 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1490 * Is ctime younger than atime? If yes, update atime:
1492 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1496 * Is the previous atime value older than a day? If yes,
1499 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1502 * Good, we can skip the atime update:
1508 * touch_atime - update the access time
1509 * @mnt: mount the inode is accessed on
1510 * @dentry: dentry accessed
1512 * Update the accessed time on an inode and mark it for writeback.
1513 * This function automatically handles read only file systems and media,
1514 * as well as the "noatime" flag and inode specific "noatime" markers.
1516 void touch_atime(struct vfsmount
*mnt
, struct dentry
*dentry
)
1518 struct inode
*inode
= dentry
->d_inode
;
1519 struct timespec now
;
1521 if (inode
->i_flags
& S_NOATIME
)
1523 if (IS_NOATIME(inode
))
1525 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1528 if (mnt
->mnt_flags
& MNT_NOATIME
)
1530 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1533 now
= current_fs_time(inode
->i_sb
);
1535 if (!relatime_need_update(mnt
, inode
, now
))
1538 if (timespec_equal(&inode
->i_atime
, &now
))
1541 if (mnt_want_write(mnt
))
1544 inode
->i_atime
= now
;
1545 mark_inode_dirty_sync(inode
);
1546 mnt_drop_write(mnt
);
1548 EXPORT_SYMBOL(touch_atime
);
1551 * file_update_time - update mtime and ctime time
1552 * @file: file accessed
1554 * Update the mtime and ctime members of an inode and mark the inode
1555 * for writeback. Note that this function is meant exclusively for
1556 * usage in the file write path of filesystems, and filesystems may
1557 * choose to explicitly ignore update via this function with the
1558 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1559 * timestamps are handled by the server.
1562 void file_update_time(struct file
*file
)
1564 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1565 struct timespec now
;
1566 enum { S_MTIME
= 1, S_CTIME
= 2, S_VERSION
= 4 } sync_it
= 0;
1568 /* First try to exhaust all avenues to not sync */
1569 if (IS_NOCMTIME(inode
))
1572 now
= current_fs_time(inode
->i_sb
);
1573 if (!timespec_equal(&inode
->i_mtime
, &now
))
1576 if (!timespec_equal(&inode
->i_ctime
, &now
))
1579 if (IS_I_VERSION(inode
))
1580 sync_it
|= S_VERSION
;
1585 /* Finally allowed to write? Takes lock. */
1586 if (mnt_want_write_file(file
))
1589 /* Only change inode inside the lock region */
1590 if (sync_it
& S_VERSION
)
1591 inode_inc_iversion(inode
);
1592 if (sync_it
& S_CTIME
)
1593 inode
->i_ctime
= now
;
1594 if (sync_it
& S_MTIME
)
1595 inode
->i_mtime
= now
;
1596 mark_inode_dirty_sync(inode
);
1597 mnt_drop_write_file(file
);
1599 EXPORT_SYMBOL(file_update_time
);
1601 int inode_needs_sync(struct inode
*inode
)
1605 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1609 EXPORT_SYMBOL(inode_needs_sync
);
1611 int inode_wait(void *word
)
1616 EXPORT_SYMBOL(inode_wait
);
1619 * If we try to find an inode in the inode hash while it is being
1620 * deleted, we have to wait until the filesystem completes its
1621 * deletion before reporting that it isn't found. This function waits
1622 * until the deletion _might_ have completed. Callers are responsible
1623 * to recheck inode state.
1625 * It doesn't matter if I_NEW is not set initially, a call to
1626 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1629 static void __wait_on_freeing_inode(struct inode
*inode
)
1631 wait_queue_head_t
*wq
;
1632 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1633 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1634 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1635 spin_unlock(&inode
->i_lock
);
1636 spin_unlock(&inode_hash_lock
);
1638 finish_wait(wq
, &wait
.wait
);
1639 spin_lock(&inode_hash_lock
);
1642 static __initdata
unsigned long ihash_entries
;
1643 static int __init
set_ihash_entries(char *str
)
1647 ihash_entries
= simple_strtoul(str
, &str
, 0);
1650 __setup("ihash_entries=", set_ihash_entries
);
1653 * Initialize the waitqueues and inode hash table.
1655 void __init
inode_init_early(void)
1659 /* If hashes are distributed across NUMA nodes, defer
1660 * hash allocation until vmalloc space is available.
1666 alloc_large_system_hash("Inode-cache",
1667 sizeof(struct hlist_head
),
1675 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1676 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1679 void __init
inode_init(void)
1683 /* inode slab cache */
1684 inode_cachep
= kmem_cache_create("inode_cache",
1685 sizeof(struct inode
),
1687 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1691 /* Hash may have been set up in inode_init_early */
1696 alloc_large_system_hash("Inode-cache",
1697 sizeof(struct hlist_head
),
1705 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1706 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1709 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1711 inode
->i_mode
= mode
;
1712 if (S_ISCHR(mode
)) {
1713 inode
->i_fop
= &def_chr_fops
;
1714 inode
->i_rdev
= rdev
;
1715 } else if (S_ISBLK(mode
)) {
1716 inode
->i_fop
= &def_blk_fops
;
1717 inode
->i_rdev
= rdev
;
1718 } else if (S_ISFIFO(mode
))
1719 inode
->i_fop
= &def_fifo_fops
;
1720 else if (S_ISSOCK(mode
))
1721 inode
->i_fop
= &bad_sock_fops
;
1723 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1724 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1727 EXPORT_SYMBOL(init_special_inode
);
1730 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1732 * @dir: Directory inode
1733 * @mode: mode of the new inode
1735 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1738 inode
->i_uid
= current_fsuid();
1739 if (dir
&& dir
->i_mode
& S_ISGID
) {
1740 inode
->i_gid
= dir
->i_gid
;
1744 inode
->i_gid
= current_fsgid();
1745 inode
->i_mode
= mode
;
1747 EXPORT_SYMBOL(inode_init_owner
);
1750 * inode_owner_or_capable - check current task permissions to inode
1751 * @inode: inode being checked
1753 * Return true if current either has CAP_FOWNER to the inode, or
1756 bool inode_owner_or_capable(const struct inode
*inode
)
1758 struct user_namespace
*ns
= inode_userns(inode
);
1760 if (current_user_ns() == ns
&& current_fsuid() == inode
->i_uid
)
1762 if (ns_capable(ns
, CAP_FOWNER
))
1766 EXPORT_SYMBOL(inode_owner_or_capable
);