[POWERPC] spufs: allow isolated mode apps by starting the SPE loader
[linux-2.6/libata-dev.git] / arch / powerpc / platforms / cell / spu_base.c
blobd78b0af038e6ab0da8b25c5baedac271b20f697e
1 /*
2 * Low-level SPU handling
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #undef DEBUG
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/pci.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/slab.h>
32 #include <linux/wait.h>
34 #include <asm/firmware.h>
35 #include <asm/io.h>
36 #include <asm/prom.h>
37 #include <linux/mutex.h>
38 #include <asm/spu.h>
39 #include <asm/spu_priv1.h>
40 #include <asm/mmu_context.h>
42 #include "interrupt.h"
44 const struct spu_priv1_ops *spu_priv1_ops;
46 EXPORT_SYMBOL_GPL(spu_priv1_ops);
48 static int __spu_trap_invalid_dma(struct spu *spu)
50 pr_debug("%s\n", __FUNCTION__);
51 spu->dma_callback(spu, SPE_EVENT_INVALID_DMA);
52 return 0;
55 static int __spu_trap_dma_align(struct spu *spu)
57 pr_debug("%s\n", __FUNCTION__);
58 spu->dma_callback(spu, SPE_EVENT_DMA_ALIGNMENT);
59 return 0;
62 static int __spu_trap_error(struct spu *spu)
64 pr_debug("%s\n", __FUNCTION__);
65 spu->dma_callback(spu, SPE_EVENT_SPE_ERROR);
66 return 0;
69 static void spu_restart_dma(struct spu *spu)
71 struct spu_priv2 __iomem *priv2 = spu->priv2;
73 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
74 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
77 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
79 struct spu_priv2 __iomem *priv2 = spu->priv2;
80 struct mm_struct *mm = spu->mm;
81 u64 esid, vsid, llp;
83 pr_debug("%s\n", __FUNCTION__);
85 if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) {
86 /* SLBs are pre-loaded for context switch, so
87 * we should never get here!
89 printk("%s: invalid access during switch!\n", __func__);
90 return 1;
92 esid = (ea & ESID_MASK) | SLB_ESID_V;
94 switch(REGION_ID(ea)) {
95 case USER_REGION_ID:
96 #ifdef CONFIG_HUGETLB_PAGE
97 if (in_hugepage_area(mm->context, ea))
98 llp = mmu_psize_defs[mmu_huge_psize].sllp;
99 else
100 #endif
101 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
102 vsid = (get_vsid(mm->context.id, ea) << SLB_VSID_SHIFT) |
103 SLB_VSID_USER | llp;
104 break;
105 case VMALLOC_REGION_ID:
106 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
107 vsid = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
108 SLB_VSID_KERNEL | llp;
109 break;
110 case KERNEL_REGION_ID:
111 llp = mmu_psize_defs[mmu_linear_psize].sllp;
112 vsid = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
113 SLB_VSID_KERNEL | llp;
114 break;
115 default:
116 /* Future: support kernel segments so that drivers
117 * can use SPUs.
119 pr_debug("invalid region access at %016lx\n", ea);
120 return 1;
123 out_be64(&priv2->slb_index_W, spu->slb_replace);
124 out_be64(&priv2->slb_vsid_RW, vsid);
125 out_be64(&priv2->slb_esid_RW, esid);
127 spu->slb_replace++;
128 if (spu->slb_replace >= 8)
129 spu->slb_replace = 0;
131 spu_restart_dma(spu);
133 return 0;
136 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
137 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
139 pr_debug("%s, %lx, %lx\n", __FUNCTION__, dsisr, ea);
141 /* Handle kernel space hash faults immediately.
142 User hash faults need to be deferred to process context. */
143 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND)
144 && REGION_ID(ea) != USER_REGION_ID
145 && hash_page(ea, _PAGE_PRESENT, 0x300) == 0) {
146 spu_restart_dma(spu);
147 return 0;
150 if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) {
151 printk("%s: invalid access during switch!\n", __func__);
152 return 1;
155 spu->dar = ea;
156 spu->dsisr = dsisr;
157 mb();
158 spu->stop_callback(spu);
159 return 0;
162 static irqreturn_t
163 spu_irq_class_0(int irq, void *data)
165 struct spu *spu;
167 spu = data;
168 spu->class_0_pending = 1;
169 spu->stop_callback(spu);
171 return IRQ_HANDLED;
175 spu_irq_class_0_bottom(struct spu *spu)
177 unsigned long stat, mask;
179 spu->class_0_pending = 0;
181 mask = spu_int_mask_get(spu, 0);
182 stat = spu_int_stat_get(spu, 0);
184 stat &= mask;
186 if (stat & 1) /* invalid DMA alignment */
187 __spu_trap_dma_align(spu);
189 if (stat & 2) /* invalid MFC DMA */
190 __spu_trap_invalid_dma(spu);
192 if (stat & 4) /* error on SPU */
193 __spu_trap_error(spu);
195 spu_int_stat_clear(spu, 0, stat);
197 return (stat & 0x7) ? -EIO : 0;
199 EXPORT_SYMBOL_GPL(spu_irq_class_0_bottom);
201 static irqreturn_t
202 spu_irq_class_1(int irq, void *data)
204 struct spu *spu;
205 unsigned long stat, mask, dar, dsisr;
207 spu = data;
209 /* atomically read & clear class1 status. */
210 spin_lock(&spu->register_lock);
211 mask = spu_int_mask_get(spu, 1);
212 stat = spu_int_stat_get(spu, 1) & mask;
213 dar = spu_mfc_dar_get(spu);
214 dsisr = spu_mfc_dsisr_get(spu);
215 if (stat & 2) /* mapping fault */
216 spu_mfc_dsisr_set(spu, 0ul);
217 spu_int_stat_clear(spu, 1, stat);
218 spin_unlock(&spu->register_lock);
219 pr_debug("%s: %lx %lx %lx %lx\n", __FUNCTION__, mask, stat,
220 dar, dsisr);
222 if (stat & 1) /* segment fault */
223 __spu_trap_data_seg(spu, dar);
225 if (stat & 2) { /* mapping fault */
226 __spu_trap_data_map(spu, dar, dsisr);
229 if (stat & 4) /* ls compare & suspend on get */
232 if (stat & 8) /* ls compare & suspend on put */
235 return stat ? IRQ_HANDLED : IRQ_NONE;
237 EXPORT_SYMBOL_GPL(spu_irq_class_1_bottom);
239 static irqreturn_t
240 spu_irq_class_2(int irq, void *data)
242 struct spu *spu;
243 unsigned long stat;
244 unsigned long mask;
246 spu = data;
247 spin_lock(&spu->register_lock);
248 stat = spu_int_stat_get(spu, 2);
249 mask = spu_int_mask_get(spu, 2);
250 /* ignore interrupts we're not waiting for */
251 stat &= mask;
253 * mailbox interrupts (0x1 and 0x10) are level triggered.
254 * mask them now before acknowledging.
256 if (stat & 0x11)
257 spu_int_mask_and(spu, 2, ~(stat & 0x11));
258 /* acknowledge all interrupts before the callbacks */
259 spu_int_stat_clear(spu, 2, stat);
260 spin_unlock(&spu->register_lock);
262 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
264 if (stat & 1) /* PPC core mailbox */
265 spu->ibox_callback(spu);
267 if (stat & 2) /* SPU stop-and-signal */
268 spu->stop_callback(spu);
270 if (stat & 4) /* SPU halted */
271 spu->stop_callback(spu);
273 if (stat & 8) /* DMA tag group complete */
274 spu->mfc_callback(spu);
276 if (stat & 0x10) /* SPU mailbox threshold */
277 spu->wbox_callback(spu);
279 return stat ? IRQ_HANDLED : IRQ_NONE;
282 static int spu_request_irqs(struct spu *spu)
284 int ret = 0;
286 if (spu->irqs[0] != NO_IRQ) {
287 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
288 spu->number);
289 ret = request_irq(spu->irqs[0], spu_irq_class_0,
290 IRQF_DISABLED,
291 spu->irq_c0, spu);
292 if (ret)
293 goto bail0;
295 if (spu->irqs[1] != NO_IRQ) {
296 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
297 spu->number);
298 ret = request_irq(spu->irqs[1], spu_irq_class_1,
299 IRQF_DISABLED,
300 spu->irq_c1, spu);
301 if (ret)
302 goto bail1;
304 if (spu->irqs[2] != NO_IRQ) {
305 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
306 spu->number);
307 ret = request_irq(spu->irqs[2], spu_irq_class_2,
308 IRQF_DISABLED,
309 spu->irq_c2, spu);
310 if (ret)
311 goto bail2;
313 return 0;
315 bail2:
316 if (spu->irqs[1] != NO_IRQ)
317 free_irq(spu->irqs[1], spu);
318 bail1:
319 if (spu->irqs[0] != NO_IRQ)
320 free_irq(spu->irqs[0], spu);
321 bail0:
322 return ret;
325 static void spu_free_irqs(struct spu *spu)
327 if (spu->irqs[0] != NO_IRQ)
328 free_irq(spu->irqs[0], spu);
329 if (spu->irqs[1] != NO_IRQ)
330 free_irq(spu->irqs[1], spu);
331 if (spu->irqs[2] != NO_IRQ)
332 free_irq(spu->irqs[2], spu);
335 static struct list_head spu_list[MAX_NUMNODES];
336 static DEFINE_MUTEX(spu_mutex);
338 static void spu_init_channels(struct spu *spu)
340 static const struct {
341 unsigned channel;
342 unsigned count;
343 } zero_list[] = {
344 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
345 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
346 }, count_list[] = {
347 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
348 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
349 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
351 struct spu_priv2 __iomem *priv2;
352 int i;
354 priv2 = spu->priv2;
356 /* initialize all channel data to zero */
357 for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
358 int count;
360 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
361 for (count = 0; count < zero_list[i].count; count++)
362 out_be64(&priv2->spu_chnldata_RW, 0);
365 /* initialize channel counts to meaningful values */
366 for (i = 0; i < ARRAY_SIZE(count_list); i++) {
367 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
368 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
372 struct spu *spu_alloc_node(int node)
374 struct spu *spu = NULL;
376 mutex_lock(&spu_mutex);
377 if (!list_empty(&spu_list[node])) {
378 spu = list_entry(spu_list[node].next, struct spu, list);
379 list_del_init(&spu->list);
380 pr_debug("Got SPU %d %d\n", spu->number, spu->node);
381 spu_init_channels(spu);
383 mutex_unlock(&spu_mutex);
385 return spu;
387 EXPORT_SYMBOL_GPL(spu_alloc_node);
389 struct spu *spu_alloc(void)
391 struct spu *spu = NULL;
392 int node;
394 for (node = 0; node < MAX_NUMNODES; node++) {
395 spu = spu_alloc_node(node);
396 if (spu)
397 break;
400 return spu;
403 void spu_free(struct spu *spu)
405 mutex_lock(&spu_mutex);
406 list_add_tail(&spu->list, &spu_list[spu->node]);
407 mutex_unlock(&spu_mutex);
409 EXPORT_SYMBOL_GPL(spu_free);
411 static int spu_handle_mm_fault(struct spu *spu)
413 struct mm_struct *mm = spu->mm;
414 struct vm_area_struct *vma;
415 u64 ea, dsisr, is_write;
416 int ret;
418 ea = spu->dar;
419 dsisr = spu->dsisr;
420 #if 0
421 if (!IS_VALID_EA(ea)) {
422 return -EFAULT;
424 #endif /* XXX */
425 if (mm == NULL) {
426 return -EFAULT;
428 if (mm->pgd == NULL) {
429 return -EFAULT;
432 down_read(&mm->mmap_sem);
433 vma = find_vma(mm, ea);
434 if (!vma)
435 goto bad_area;
436 if (vma->vm_start <= ea)
437 goto good_area;
438 if (!(vma->vm_flags & VM_GROWSDOWN))
439 goto bad_area;
440 #if 0
441 if (expand_stack(vma, ea))
442 goto bad_area;
443 #endif /* XXX */
444 good_area:
445 is_write = dsisr & MFC_DSISR_ACCESS_PUT;
446 if (is_write) {
447 if (!(vma->vm_flags & VM_WRITE))
448 goto bad_area;
449 } else {
450 if (dsisr & MFC_DSISR_ACCESS_DENIED)
451 goto bad_area;
452 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
453 goto bad_area;
455 ret = 0;
456 switch (handle_mm_fault(mm, vma, ea, is_write)) {
457 case VM_FAULT_MINOR:
458 current->min_flt++;
459 break;
460 case VM_FAULT_MAJOR:
461 current->maj_flt++;
462 break;
463 case VM_FAULT_SIGBUS:
464 ret = -EFAULT;
465 goto bad_area;
466 case VM_FAULT_OOM:
467 ret = -ENOMEM;
468 goto bad_area;
469 default:
470 BUG();
472 up_read(&mm->mmap_sem);
473 return ret;
475 bad_area:
476 up_read(&mm->mmap_sem);
477 return -EFAULT;
480 int spu_irq_class_1_bottom(struct spu *spu)
482 u64 ea, dsisr, access, error = 0UL;
483 int ret = 0;
485 ea = spu->dar;
486 dsisr = spu->dsisr;
487 if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)) {
488 u64 flags;
490 access = (_PAGE_PRESENT | _PAGE_USER);
491 access |= (dsisr & MFC_DSISR_ACCESS_PUT) ? _PAGE_RW : 0UL;
492 local_irq_save(flags);
493 if (hash_page(ea, access, 0x300) != 0)
494 error |= CLASS1_ENABLE_STORAGE_FAULT_INTR;
495 local_irq_restore(flags);
497 if (error & CLASS1_ENABLE_STORAGE_FAULT_INTR) {
498 if ((ret = spu_handle_mm_fault(spu)) != 0)
499 error |= CLASS1_ENABLE_STORAGE_FAULT_INTR;
500 else
501 error &= ~CLASS1_ENABLE_STORAGE_FAULT_INTR;
503 spu->dar = 0UL;
504 spu->dsisr = 0UL;
505 if (!error) {
506 spu_restart_dma(spu);
507 } else {
508 __spu_trap_invalid_dma(spu);
510 return ret;
513 static int __init find_spu_node_id(struct device_node *spe)
515 const unsigned int *id;
516 struct device_node *cpu;
517 cpu = spe->parent->parent;
518 id = get_property(cpu, "node-id", NULL);
519 return id ? *id : 0;
522 static int __init cell_spuprop_present(struct spu *spu, struct device_node *spe,
523 const char *prop)
525 static DEFINE_MUTEX(add_spumem_mutex);
527 const struct address_prop {
528 unsigned long address;
529 unsigned int len;
530 } __attribute__((packed)) *p;
531 int proplen;
533 unsigned long start_pfn, nr_pages;
534 struct pglist_data *pgdata;
535 struct zone *zone;
536 int ret;
538 p = get_property(spe, prop, &proplen);
539 WARN_ON(proplen != sizeof (*p));
541 start_pfn = p->address >> PAGE_SHIFT;
542 nr_pages = ((unsigned long)p->len + PAGE_SIZE - 1) >> PAGE_SHIFT;
544 pgdata = NODE_DATA(spu->nid);
545 zone = pgdata->node_zones;
547 /* XXX rethink locking here */
548 mutex_lock(&add_spumem_mutex);
549 ret = __add_pages(zone, start_pfn, nr_pages);
550 mutex_unlock(&add_spumem_mutex);
552 return ret;
555 static void __iomem * __init map_spe_prop(struct spu *spu,
556 struct device_node *n, const char *name)
558 const struct address_prop {
559 unsigned long address;
560 unsigned int len;
561 } __attribute__((packed)) *prop;
563 const void *p;
564 int proplen;
565 void __iomem *ret = NULL;
566 int err = 0;
568 p = get_property(n, name, &proplen);
569 if (proplen != sizeof (struct address_prop))
570 return NULL;
572 prop = p;
574 err = cell_spuprop_present(spu, n, name);
575 if (err && (err != -EEXIST))
576 goto out;
578 ret = ioremap(prop->address, prop->len);
580 out:
581 return ret;
584 static void spu_unmap(struct spu *spu)
586 iounmap(spu->priv2);
587 iounmap(spu->priv1);
588 iounmap(spu->problem);
589 iounmap((__force u8 __iomem *)spu->local_store);
592 /* This function shall be abstracted for HV platforms */
593 static int __init spu_map_interrupts_old(struct spu *spu, struct device_node *np)
595 unsigned int isrc;
596 const u32 *tmp;
598 /* Get the interrupt source unit from the device-tree */
599 tmp = get_property(np, "isrc", NULL);
600 if (!tmp)
601 return -ENODEV;
602 isrc = tmp[0];
604 /* Add the node number */
605 isrc |= spu->node << IIC_IRQ_NODE_SHIFT;
607 /* Now map interrupts of all 3 classes */
608 spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
609 spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
610 spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
612 /* Right now, we only fail if class 2 failed */
613 return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
616 static int __init spu_map_device_old(struct spu *spu, struct device_node *node)
618 const char *prop;
619 int ret;
621 ret = -ENODEV;
622 spu->name = get_property(node, "name", NULL);
623 if (!spu->name)
624 goto out;
626 prop = get_property(node, "local-store", NULL);
627 if (!prop)
628 goto out;
629 spu->local_store_phys = *(unsigned long *)prop;
631 /* we use local store as ram, not io memory */
632 spu->local_store = (void __force *)
633 map_spe_prop(spu, node, "local-store");
634 if (!spu->local_store)
635 goto out;
637 prop = get_property(node, "problem", NULL);
638 if (!prop)
639 goto out_unmap;
640 spu->problem_phys = *(unsigned long *)prop;
642 spu->problem= map_spe_prop(spu, node, "problem");
643 if (!spu->problem)
644 goto out_unmap;
646 spu->priv1= map_spe_prop(spu, node, "priv1");
647 /* priv1 is not available on a hypervisor */
649 spu->priv2= map_spe_prop(spu, node, "priv2");
650 if (!spu->priv2)
651 goto out_unmap;
652 ret = 0;
653 goto out;
655 out_unmap:
656 spu_unmap(spu);
657 out:
658 return ret;
661 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
663 struct of_irq oirq;
664 int ret;
665 int i;
667 for (i=0; i < 3; i++) {
668 ret = of_irq_map_one(np, i, &oirq);
669 if (ret)
670 goto err;
672 ret = -EINVAL;
673 spu->irqs[i] = irq_create_of_mapping(oirq.controller,
674 oirq.specifier, oirq.size);
675 if (spu->irqs[i] == NO_IRQ)
676 goto err;
678 return 0;
680 err:
681 pr_debug("failed to map irq %x for spu %s\n", *oirq.specifier, spu->name);
682 for (; i >= 0; i--) {
683 if (spu->irqs[i] != NO_IRQ)
684 irq_dispose_mapping(spu->irqs[i]);
686 return ret;
689 static int spu_map_resource(struct device_node *node, int nr,
690 void __iomem** virt, unsigned long *phys)
692 struct resource resource = { };
693 int ret;
695 ret = of_address_to_resource(node, 0, &resource);
696 if (ret)
697 goto out;
699 if (phys)
700 *phys = resource.start;
701 *virt = ioremap(resource.start, resource.end - resource.start);
702 if (!*virt)
703 ret = -EINVAL;
705 out:
706 return ret;
709 static int __init spu_map_device(struct spu *spu, struct device_node *node)
711 int ret = -ENODEV;
712 spu->name = get_property(node, "name", NULL);
713 if (!spu->name)
714 goto out;
716 ret = spu_map_resource(node, 0, (void __iomem**)&spu->local_store,
717 &spu->local_store_phys);
718 if (ret)
719 goto out;
720 ret = spu_map_resource(node, 1, (void __iomem**)&spu->problem,
721 &spu->problem_phys);
722 if (ret)
723 goto out_unmap;
724 ret = spu_map_resource(node, 2, (void __iomem**)&spu->priv2,
725 NULL);
726 if (ret)
727 goto out_unmap;
729 if (!firmware_has_feature(FW_FEATURE_LPAR))
730 ret = spu_map_resource(node, 3, (void __iomem**)&spu->priv1,
731 NULL);
732 if (ret)
733 goto out_unmap;
734 return 0;
736 out_unmap:
737 spu_unmap(spu);
738 out:
739 pr_debug("failed to map spe %s: %d\n", spu->name, ret);
740 return ret;
743 struct sysdev_class spu_sysdev_class = {
744 set_kset_name("spu")
747 static int spu_create_sysdev(struct spu *spu)
749 int ret;
751 spu->sysdev.id = spu->number;
752 spu->sysdev.cls = &spu_sysdev_class;
753 ret = sysdev_register(&spu->sysdev);
754 if (ret) {
755 printk(KERN_ERR "Can't register SPU %d with sysfs\n",
756 spu->number);
757 return ret;
760 sysfs_add_device_to_node(&spu->sysdev, spu->nid);
762 return 0;
765 static void spu_destroy_sysdev(struct spu *spu)
767 sysfs_remove_device_from_node(&spu->sysdev, spu->nid);
768 sysdev_unregister(&spu->sysdev);
771 static int __init create_spu(struct device_node *spe)
773 struct spu *spu;
774 int ret;
775 static int number;
777 ret = -ENOMEM;
778 spu = kzalloc(sizeof (*spu), GFP_KERNEL);
779 if (!spu)
780 goto out;
782 spu->node = find_spu_node_id(spe);
783 if (spu->node >= MAX_NUMNODES) {
784 printk(KERN_WARNING "SPE %s on node %d ignored,"
785 " node number too big\n", spe->full_name, spu->node);
786 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
787 return -ENODEV;
789 spu->nid = of_node_to_nid(spe);
790 if (spu->nid == -1)
791 spu->nid = 0;
793 ret = spu_map_device(spu, spe);
794 /* try old method */
795 if (ret)
796 ret = spu_map_device_old(spu, spe);
797 if (ret)
798 goto out_free;
800 ret = spu_map_interrupts(spu, spe);
801 if (ret)
802 ret = spu_map_interrupts_old(spu, spe);
803 if (ret)
804 goto out_unmap;
805 spin_lock_init(&spu->register_lock);
806 spu_mfc_sdr_setup(spu);
807 spu_mfc_sr1_set(spu, 0x33);
808 mutex_lock(&spu_mutex);
810 spu->number = number++;
811 ret = spu_request_irqs(spu);
812 if (ret)
813 goto out_unlock;
815 ret = spu_create_sysdev(spu);
816 if (ret)
817 goto out_free_irqs;
819 list_add(&spu->list, &spu_list[spu->node]);
820 mutex_unlock(&spu_mutex);
822 pr_debug(KERN_DEBUG "Using SPE %s %p %p %p %p %d\n",
823 spu->name, spu->local_store,
824 spu->problem, spu->priv1, spu->priv2, spu->number);
825 goto out;
827 out_free_irqs:
828 spu_free_irqs(spu);
829 out_unlock:
830 mutex_unlock(&spu_mutex);
831 out_unmap:
832 spu_unmap(spu);
833 out_free:
834 kfree(spu);
835 out:
836 return ret;
839 static void destroy_spu(struct spu *spu)
841 list_del_init(&spu->list);
843 spu_destroy_sysdev(spu);
844 spu_free_irqs(spu);
845 spu_unmap(spu);
846 kfree(spu);
849 static void cleanup_spu_base(void)
851 struct spu *spu, *tmp;
852 int node;
854 mutex_lock(&spu_mutex);
855 for (node = 0; node < MAX_NUMNODES; node++) {
856 list_for_each_entry_safe(spu, tmp, &spu_list[node], list)
857 destroy_spu(spu);
859 mutex_unlock(&spu_mutex);
860 sysdev_class_unregister(&spu_sysdev_class);
862 module_exit(cleanup_spu_base);
864 static int __init init_spu_base(void)
866 struct device_node *node;
867 int i, ret;
869 /* create sysdev class for spus */
870 ret = sysdev_class_register(&spu_sysdev_class);
871 if (ret)
872 return ret;
874 for (i = 0; i < MAX_NUMNODES; i++)
875 INIT_LIST_HEAD(&spu_list[i]);
877 ret = -ENODEV;
878 for (node = of_find_node_by_type(NULL, "spe");
879 node; node = of_find_node_by_type(node, "spe")) {
880 ret = create_spu(node);
881 if (ret) {
882 printk(KERN_WARNING "%s: Error initializing %s\n",
883 __FUNCTION__, node->name);
884 cleanup_spu_base();
885 break;
888 return ret;
890 module_init(init_spu_base);
892 MODULE_LICENSE("GPL");
893 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");