1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targeted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
98 #include <net/checksum.h>
100 #include <asm/atomic.h>
101 #include <asm/system.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
106 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define CAS_NCPUS num_online_cpus()
110 #define cas_skb_release(x) netif_rx(x)
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
119 #define USE_TX_COMPWB /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
121 #define USE_RX_BLANK /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV /* don't test for entropy device */
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125 * also, we need to make cp->lock finer-grained.
132 #undef USE_VPD_DEBUG /* debug vpd information if defined */
134 /* rx processing options */
135 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
138 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
139 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
141 #define DRV_MODULE_NAME "cassini"
142 #define DRV_MODULE_VERSION "1.6"
143 #define DRV_MODULE_RELDATE "21 May 2008"
145 #define CAS_DEF_MSG_ENABLE \
155 /* length of time before we decide the hardware is borked,
156 * and dev->tx_timeout() should be called to fix the problem
158 #define CAS_TX_TIMEOUT (HZ)
159 #define CAS_LINK_TIMEOUT (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT (1)
162 /* timeout values for state changing. these specify the number
163 * of 10us delays to be used before giving up.
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES 5000
168 /* specify a minimum frame size to deal with some fifo issues
169 * max mtu == 2 * page size - ethernet header - 64 - swivel =
170 * 2 * page_size - 0x50
172 #define CAS_MIN_FRAME 97
173 #define CAS_1000MB_MIN_FRAME 255
174 #define CAS_MIN_MTU 60
175 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
179 * Eliminate these and use separate atomic counters for each, to
180 * avoid a race condition.
183 #define CAS_RESET_MTU 1
184 #define CAS_RESET_ALL 2
185 #define CAS_RESET_SPARE 3
188 static char version
[] __devinitdata
=
189 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
191 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode
;
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug
, int, 0);
199 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode
, int, 0);
201 MODULE_PARM_DESC(link_mode
, "default link mode");
204 * Work around for a PCS bug in which the link goes down due to the chip
205 * being confused and never showing a link status of "up."
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 * Value in seconds, for user input.
211 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
212 module_param(linkdown_timeout
, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout
,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217 * value in 'ticks' (units used by jiffies). Set when we init the
218 * module because 'HZ' in actually a function call on some flavors of
219 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221 static int link_transition_timeout
;
225 static u16 link_modes
[] __devinitdata
= {
226 BMCR_ANENABLE
, /* 0 : autoneg */
227 0, /* 1 : 10bt half duplex */
228 BMCR_SPEED100
, /* 2 : 100bt half duplex */
229 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
230 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
231 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl
) = {
235 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
236 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
237 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
238 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
242 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
244 static void cas_set_link_modes(struct cas
*cp
);
246 static inline void cas_lock_tx(struct cas
*cp
)
250 for (i
= 0; i
< N_TX_RINGS
; i
++)
251 spin_lock(&cp
->tx_lock
[i
]);
254 static inline void cas_lock_all(struct cas
*cp
)
256 spin_lock_irq(&cp
->lock
);
260 /* WTZ: QA was finding deadlock problems with the previous
261 * versions after long test runs with multiple cards per machine.
262 * See if replacing cas_lock_all with safer versions helps. The
263 * symptoms QA is reporting match those we'd expect if interrupts
264 * aren't being properly restored, and we fixed a previous deadlock
265 * with similar symptoms by using save/restore versions in other
268 #define cas_lock_all_save(cp, flags) \
270 struct cas *xxxcp = (cp); \
271 spin_lock_irqsave(&xxxcp->lock, flags); \
272 cas_lock_tx(xxxcp); \
275 static inline void cas_unlock_tx(struct cas
*cp
)
279 for (i
= N_TX_RINGS
; i
> 0; i
--)
280 spin_unlock(&cp
->tx_lock
[i
- 1]);
283 static inline void cas_unlock_all(struct cas
*cp
)
286 spin_unlock_irq(&cp
->lock
);
289 #define cas_unlock_all_restore(cp, flags) \
291 struct cas *xxxcp = (cp); \
292 cas_unlock_tx(xxxcp); \
293 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 static void cas_disable_irq(struct cas
*cp
, const int ring
)
298 /* Make sure we won't get any more interrupts */
300 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
304 /* disable completion interrupts and selectively mask */
305 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
317 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
318 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
322 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
323 REG_PLUS_INTRN_MASK(ring
));
329 static inline void cas_mask_intr(struct cas
*cp
)
333 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
334 cas_disable_irq(cp
, i
);
337 static void cas_enable_irq(struct cas
*cp
, const int ring
)
339 if (ring
== 0) { /* all but TX_DONE */
340 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
344 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
356 writel(INTRN_MASK_RX_EN
, cp
->regs
+
357 REG_PLUS_INTRN_MASK(ring
));
366 static inline void cas_unmask_intr(struct cas
*cp
)
370 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
371 cas_enable_irq(cp
, i
);
374 static inline void cas_entropy_gather(struct cas
*cp
)
376 #ifdef USE_ENTROPY_DEV
377 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
380 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
381 readl(cp
->regs
+ REG_ENTROPY_IV
),
386 static inline void cas_entropy_reset(struct cas
*cp
)
388 #ifdef USE_ENTROPY_DEV
389 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
392 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
393 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
394 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
395 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
397 /* if we read back 0x0, we don't have an entropy device */
398 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
399 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
403 /* access to the phy. the following assumes that we've initialized the MIF to
404 * be in frame rather than bit-bang mode
406 static u16
cas_phy_read(struct cas
*cp
, int reg
)
409 int limit
= STOP_TRIES_PHY
;
411 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
412 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
413 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
414 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
415 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
417 /* poll for completion */
418 while (limit
-- > 0) {
420 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
421 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
422 return cmd
& MIF_FRAME_DATA_MASK
;
424 return 0xFFFF; /* -1 */
427 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
429 int limit
= STOP_TRIES_PHY
;
432 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
433 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
434 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
435 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
436 cmd
|= val
& MIF_FRAME_DATA_MASK
;
437 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
439 /* poll for completion */
440 while (limit
-- > 0) {
442 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
443 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
449 static void cas_phy_powerup(struct cas
*cp
)
451 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
453 if ((ctl
& BMCR_PDOWN
) == 0)
456 cas_phy_write(cp
, MII_BMCR
, ctl
);
459 static void cas_phy_powerdown(struct cas
*cp
)
461 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
463 if (ctl
& BMCR_PDOWN
)
466 cas_phy_write(cp
, MII_BMCR
, ctl
);
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
472 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
474 __free_pages(page
->buffer
, cp
->page_order
);
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y) ((x)->used += (y))
481 #define RX_USED_SET(x, y) ((x)->used = (y))
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
487 /* local page allocation routines for the receive buffers. jumbo pages
488 * require at least 8K contiguous and 8K aligned buffers.
490 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
494 page
= kmalloc(sizeof(cas_page_t
), flags
);
498 INIT_LIST_HEAD(&page
->list
);
499 RX_USED_SET(page
, 0);
500 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
503 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
504 cp
->page_size
, PCI_DMA_FROMDEVICE
);
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas
*cp
)
515 spin_lock(&cp
->rx_inuse_lock
);
516 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
517 spin_unlock(&cp
->rx_inuse_lock
);
519 spin_lock(&cp
->rx_spare_lock
);
520 INIT_LIST_HEAD(&cp
->rx_spare_list
);
521 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
522 spin_unlock(&cp
->rx_spare_lock
);
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas
*cp
)
528 struct list_head list
, *elem
, *tmp
;
530 /* free spare buffers */
531 INIT_LIST_HEAD(&list
);
532 spin_lock(&cp
->rx_spare_lock
);
533 list_splice_init(&cp
->rx_spare_list
, &list
);
534 spin_unlock(&cp
->rx_spare_lock
);
535 list_for_each_safe(elem
, tmp
, &list
) {
536 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
539 INIT_LIST_HEAD(&list
);
542 * Looks like Adrian had protected this with a different
543 * lock than used everywhere else to manipulate this list.
545 spin_lock(&cp
->rx_inuse_lock
);
546 list_splice_init(&cp
->rx_inuse_list
, &list
);
547 spin_unlock(&cp
->rx_inuse_lock
);
549 spin_lock(&cp
->rx_spare_lock
);
550 list_splice_init(&cp
->rx_inuse_list
, &list
);
551 spin_unlock(&cp
->rx_spare_lock
);
553 list_for_each_safe(elem
, tmp
, &list
) {
554 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
561 struct list_head list
, *elem
, *tmp
;
564 /* check inuse list. if we don't need any more free buffers,
568 /* make a local copy of the list */
569 INIT_LIST_HEAD(&list
);
570 spin_lock(&cp
->rx_inuse_lock
);
571 list_splice_init(&cp
->rx_inuse_list
, &list
);
572 spin_unlock(&cp
->rx_inuse_lock
);
574 list_for_each_safe(elem
, tmp
, &list
) {
575 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
578 * With the lockless pagecache, cassini buffering scheme gets
579 * slightly less accurate: we might find that a page has an
580 * elevated reference count here, due to a speculative ref,
581 * and skip it as in-use. Ideally we would be able to reclaim
582 * it. However this would be such a rare case, it doesn't
583 * matter too much as we should pick it up the next time round.
585 * Importantly, if we find that the page has a refcount of 1
586 * here (our refcount), then we know it is definitely not inuse
587 * so we can reuse it.
589 if (page_count(page
->buffer
) > 1)
593 spin_lock(&cp
->rx_spare_lock
);
594 if (cp
->rx_spares_needed
> 0) {
595 list_add(elem
, &cp
->rx_spare_list
);
596 cp
->rx_spares_needed
--;
597 spin_unlock(&cp
->rx_spare_lock
);
599 spin_unlock(&cp
->rx_spare_lock
);
600 cas_page_free(cp
, page
);
604 /* put any inuse buffers back on the list */
605 if (!list_empty(&list
)) {
606 spin_lock(&cp
->rx_inuse_lock
);
607 list_splice(&list
, &cp
->rx_inuse_list
);
608 spin_unlock(&cp
->rx_inuse_lock
);
611 spin_lock(&cp
->rx_spare_lock
);
612 needed
= cp
->rx_spares_needed
;
613 spin_unlock(&cp
->rx_spare_lock
);
617 /* we still need spares, so try to allocate some */
618 INIT_LIST_HEAD(&list
);
621 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
624 list_add(&spare
->list
, &list
);
628 spin_lock(&cp
->rx_spare_lock
);
629 list_splice(&list
, &cp
->rx_spare_list
);
630 cp
->rx_spares_needed
-= i
;
631 spin_unlock(&cp
->rx_spare_lock
);
634 /* pull a page from the list. */
635 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
637 struct list_head
*entry
;
640 spin_lock(&cp
->rx_spare_lock
);
641 if (list_empty(&cp
->rx_spare_list
)) {
642 /* try to do a quick recovery */
643 spin_unlock(&cp
->rx_spare_lock
);
644 cas_spare_recover(cp
, GFP_ATOMIC
);
645 spin_lock(&cp
->rx_spare_lock
);
646 if (list_empty(&cp
->rx_spare_list
)) {
647 netif_err(cp
, rx_err
, cp
->dev
,
648 "no spare buffers available\n");
649 spin_unlock(&cp
->rx_spare_lock
);
654 entry
= cp
->rx_spare_list
.next
;
656 recover
= ++cp
->rx_spares_needed
;
657 spin_unlock(&cp
->rx_spare_lock
);
659 /* trigger the timer to do the recovery */
660 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
662 atomic_inc(&cp
->reset_task_pending
);
663 atomic_inc(&cp
->reset_task_pending_spare
);
664 schedule_work(&cp
->reset_task
);
666 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
667 schedule_work(&cp
->reset_task
);
670 return list_entry(entry
, cas_page_t
, list
);
674 static void cas_mif_poll(struct cas
*cp
, const int enable
)
678 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
679 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
681 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
682 cfg
|= MIF_CFG_PHY_SELECT
;
684 /* poll and interrupt on link status change. */
686 cfg
|= MIF_CFG_POLL_EN
;
687 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
688 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
690 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
691 cp
->regs
+ REG_MIF_MASK
);
692 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
702 int oldstate
= cp
->lstate
;
703 int link_was_not_down
= !(oldstate
== link_down
);
705 /* Setup link parameters */
708 lcntl
= cp
->link_cntl
;
709 if (ep
->autoneg
== AUTONEG_ENABLE
)
710 cp
->link_cntl
= BMCR_ANENABLE
;
712 u32 speed
= ethtool_cmd_speed(ep
);
714 if (speed
== SPEED_100
)
715 cp
->link_cntl
|= BMCR_SPEED100
;
716 else if (speed
== SPEED_1000
)
717 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
718 if (ep
->duplex
== DUPLEX_FULL
)
719 cp
->link_cntl
|= BMCR_FULLDPLX
;
722 changed
= (lcntl
!= cp
->link_cntl
);
725 if (cp
->lstate
== link_up
) {
726 netdev_info(cp
->dev
, "PCS link down\n");
729 netdev_info(cp
->dev
, "link configuration changed\n");
732 cp
->lstate
= link_down
;
733 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
738 * WTZ: If the old state was link_up, we turn off the carrier
739 * to replicate everything we do elsewhere on a link-down
740 * event when we were already in a link-up state..
742 if (oldstate
== link_up
)
743 netif_carrier_off(cp
->dev
);
744 if (changed
&& link_was_not_down
) {
746 * WTZ: This branch will simply schedule a full reset after
747 * we explicitly changed link modes in an ioctl. See if this
748 * fixes the link-problems we were having for forced mode.
750 atomic_inc(&cp
->reset_task_pending
);
751 atomic_inc(&cp
->reset_task_pending_all
);
752 schedule_work(&cp
->reset_task
);
754 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
758 if (cp
->phy_type
& CAS_PHY_SERDES
) {
759 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
761 if (cp
->link_cntl
& BMCR_ANENABLE
) {
762 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
763 cp
->lstate
= link_aneg
;
765 if (cp
->link_cntl
& BMCR_FULLDPLX
)
766 val
|= PCS_MII_CTRL_DUPLEX
;
767 val
&= ~PCS_MII_AUTONEG_EN
;
768 cp
->lstate
= link_force_ok
;
770 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
771 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
775 ctl
= cas_phy_read(cp
, MII_BMCR
);
776 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
777 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
778 ctl
|= cp
->link_cntl
;
779 if (ctl
& BMCR_ANENABLE
) {
780 ctl
|= BMCR_ANRESTART
;
781 cp
->lstate
= link_aneg
;
783 cp
->lstate
= link_force_ok
;
785 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
786 cas_phy_write(cp
, MII_BMCR
, ctl
);
791 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas
*cp
)
797 int limit
= STOP_TRIES_PHY
;
800 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
803 val
= cas_phy_read(cp
, MII_BMCR
);
804 if ((val
& BMCR_RESET
) == 0)
811 static int cas_saturn_firmware_init(struct cas
*cp
)
813 const struct firmware
*fw
;
814 const char fw_name
[] = "sun/cassini.bin";
817 if (PHY_NS_DP83065
!= cp
->phy_id
)
820 err
= request_firmware(&fw
, fw_name
, &cp
->pdev
->dev
);
822 pr_err("Failed to load firmware \"%s\"\n",
827 pr_err("bogus length %zu in \"%s\"\n",
832 cp
->fw_load_addr
= fw
->data
[1] << 8 | fw
->data
[0];
833 cp
->fw_size
= fw
->size
- 2;
834 cp
->fw_data
= vmalloc(cp
->fw_size
);
837 pr_err("\"%s\" Failed %d\n", fw_name
, err
);
840 memcpy(cp
->fw_data
, &fw
->data
[2], cp
->fw_size
);
842 release_firmware(fw
);
846 static void cas_saturn_firmware_load(struct cas
*cp
)
850 cas_phy_powerdown(cp
);
852 /* expanded memory access mode */
853 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
855 /* pointer configuration for new firmware */
856 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
857 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
858 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
859 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
860 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
861 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
862 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
863 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
865 /* download new firmware */
866 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
867 cas_phy_write(cp
, DP83065_MII_REGE
, cp
->fw_load_addr
);
868 for (i
= 0; i
< cp
->fw_size
; i
++)
869 cas_phy_write(cp
, DP83065_MII_REGD
, cp
->fw_data
[i
]);
871 /* enable firmware */
872 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
873 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
877 /* phy initialization */
878 static void cas_phy_init(struct cas
*cp
)
882 /* if we're in MII/GMII mode, set up phy */
883 if (CAS_PHY_MII(cp
->phy_type
)) {
884 writel(PCS_DATAPATH_MODE_MII
,
885 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
888 cas_reset_mii_phy(cp
); /* take out of isolate mode */
890 if (PHY_LUCENT_B0
== cp
->phy_id
) {
891 /* workaround link up/down issue with lucent */
892 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
893 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
894 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
896 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
897 /* workarounds for broadcom phy */
898 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
899 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
900 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
901 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
902 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
903 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
904 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
905 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
906 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
907 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
908 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
910 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
911 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
912 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
914 /* link workaround */
915 cas_phy_write(cp
, BROADCOM_MII_REG4
,
919 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
920 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
921 SATURN_PCFG_FSI
: 0x0,
922 cp
->regs
+ REG_SATURN_PCFG
);
924 /* load firmware to address 10Mbps auto-negotiation
925 * issue. NOTE: this will need to be changed if the
926 * default firmware gets fixed.
928 if (PHY_NS_DP83065
== cp
->phy_id
) {
929 cas_saturn_firmware_load(cp
);
934 /* advertise capabilities */
935 val
= cas_phy_read(cp
, MII_BMCR
);
936 val
&= ~BMCR_ANENABLE
;
937 cas_phy_write(cp
, MII_BMCR
, val
);
940 cas_phy_write(cp
, MII_ADVERTISE
,
941 cas_phy_read(cp
, MII_ADVERTISE
) |
942 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
943 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
944 CAS_ADVERTISE_PAUSE
|
945 CAS_ADVERTISE_ASYM_PAUSE
));
947 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
948 /* make sure that we don't advertise half
949 * duplex to avoid a chip issue
951 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
952 val
&= ~CAS_ADVERTISE_1000HALF
;
953 val
|= CAS_ADVERTISE_1000FULL
;
954 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
958 /* reset pcs for serdes */
962 writel(PCS_DATAPATH_MODE_SERDES
,
963 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
965 /* enable serdes pins on saturn */
966 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
967 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
969 /* Reset PCS unit. */
970 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
971 val
|= PCS_MII_RESET
;
972 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
975 while (--limit
> 0) {
977 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
982 netdev_warn(cp
->dev
, "PCS reset bit would not clear [%08x]\n",
983 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
985 /* Make sure PCS is disabled while changing advertisement
988 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
990 /* Advertise all capabilities except half-duplex. */
991 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
992 val
&= ~PCS_MII_ADVERT_HD
;
993 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
994 PCS_MII_ADVERT_ASYM_PAUSE
);
995 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
998 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
1000 /* pcs workaround: enable sync detect */
1001 writel(PCS_SERDES_CTRL_SYNCD_EN
,
1002 cp
->regs
+ REG_PCS_SERDES_CTRL
);
1007 static int cas_pcs_link_check(struct cas
*cp
)
1009 u32 stat
, state_machine
;
1012 /* The link status bit latches on zero, so you must
1013 * read it twice in such a case to see a transition
1014 * to the link being up.
1016 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1017 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1018 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1020 /* The remote-fault indication is only valid
1021 * when autoneg has completed.
1023 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1024 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1025 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
))
1026 netif_info(cp
, link
, cp
->dev
, "PCS RemoteFault\n");
1028 /* work around link detection issue by querying the PCS state
1031 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1032 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1033 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1034 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1035 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1038 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1039 if (cp
->lstate
!= link_up
) {
1041 cp
->lstate
= link_up
;
1042 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1044 cas_set_link_modes(cp
);
1045 netif_carrier_on(cp
->dev
);
1048 } else if (cp
->lstate
== link_up
) {
1049 cp
->lstate
= link_down
;
1050 if (link_transition_timeout
!= 0 &&
1051 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1052 !cp
->link_transition_jiffies_valid
) {
1054 * force a reset, as a workaround for the
1055 * link-failure problem. May want to move this to a
1056 * point a bit earlier in the sequence. If we had
1057 * generated a reset a short time ago, we'll wait for
1058 * the link timer to check the status until a
1059 * timer expires (link_transistion_jiffies_valid is
1060 * true when the timer is running.) Instead of using
1061 * a system timer, we just do a check whenever the
1062 * link timer is running - this clears the flag after
1066 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1067 cp
->link_transition_jiffies
= jiffies
;
1068 cp
->link_transition_jiffies_valid
= 1;
1070 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1072 netif_carrier_off(cp
->dev
);
1074 netif_info(cp
, link
, cp
->dev
, "PCS link down\n");
1076 /* Cassini only: if you force a mode, there can be
1077 * sync problems on link down. to fix that, the following
1078 * things need to be checked:
1079 * 1) read serialink state register
1080 * 2) read pcs status register to verify link down.
1081 * 3) if link down and serial link == 0x03, then you need
1082 * to global reset the chip.
1084 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1085 /* should check to see if we're in a forced mode */
1086 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1090 } else if (cp
->lstate
== link_down
) {
1091 if (link_transition_timeout
!= 0 &&
1092 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1093 !cp
->link_transition_jiffies_valid
) {
1094 /* force a reset, as a workaround for the
1095 * link-failure problem. May want to move
1096 * this to a point a bit earlier in the
1100 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1101 cp
->link_transition_jiffies
= jiffies
;
1102 cp
->link_transition_jiffies_valid
= 1;
1104 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1111 static int cas_pcs_interrupt(struct net_device
*dev
,
1112 struct cas
*cp
, u32 status
)
1114 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1116 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1118 return cas_pcs_link_check(cp
);
1121 static int cas_txmac_interrupt(struct net_device
*dev
,
1122 struct cas
*cp
, u32 status
)
1124 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1129 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1130 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat
);
1132 /* Defer timer expiration is quite normal,
1133 * don't even log the event.
1135 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1136 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1139 spin_lock(&cp
->stat_lock
[0]);
1140 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1141 netdev_err(dev
, "TX MAC xmit underrun\n");
1142 cp
->net_stats
[0].tx_fifo_errors
++;
1145 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1146 netdev_err(dev
, "TX MAC max packet size error\n");
1147 cp
->net_stats
[0].tx_errors
++;
1150 /* The rest are all cases of one of the 16-bit TX
1151 * counters expiring.
1153 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1154 cp
->net_stats
[0].collisions
+= 0x10000;
1156 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1157 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1158 cp
->net_stats
[0].collisions
+= 0x10000;
1161 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1162 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1163 cp
->net_stats
[0].collisions
+= 0x10000;
1165 spin_unlock(&cp
->stat_lock
[0]);
1167 /* We do not keep track of MAC_TX_COLL_FIRST and
1168 * MAC_TX_PEAK_ATTEMPTS events.
1173 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1175 cas_hp_inst_t
*inst
;
1180 while ((inst
= firmware
) && inst
->note
) {
1181 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1183 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1184 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1185 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1187 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1188 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1189 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1190 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1191 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1192 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1193 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1194 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1196 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1197 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1198 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1199 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1200 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1206 static void cas_init_rx_dma(struct cas
*cp
)
1208 u64 desc_dma
= cp
->block_dvma
;
1212 /* rx free descriptors */
1213 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1214 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1215 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1216 if ((N_RX_DESC_RINGS
> 1) &&
1217 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1218 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1219 writel(val
, cp
->regs
+ REG_RX_CFG
);
1221 val
= (unsigned long) cp
->init_rxds
[0] -
1222 (unsigned long) cp
->init_block
;
1223 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1224 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1225 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1227 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1228 /* rx desc 2 is for IPSEC packets. however,
1229 * we don't it that for that purpose.
1231 val
= (unsigned long) cp
->init_rxds
[1] -
1232 (unsigned long) cp
->init_block
;
1233 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1234 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1235 REG_PLUS_RX_DB1_LOW
);
1236 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1240 /* rx completion registers */
1241 val
= (unsigned long) cp
->init_rxcs
[0] -
1242 (unsigned long) cp
->init_block
;
1243 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1244 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1246 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1248 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1249 val
= (unsigned long) cp
->init_rxcs
[i
] -
1250 (unsigned long) cp
->init_block
;
1251 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1252 REG_PLUS_RX_CBN_HI(i
));
1253 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1254 REG_PLUS_RX_CBN_LOW(i
));
1258 /* read selective clear regs to prevent spurious interrupts
1259 * on reset because complete == kick.
1260 * selective clear set up to prevent interrupts on resets
1262 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1263 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1264 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1265 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1266 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1268 /* 2 is different from 3 and 4 */
1269 if (N_RX_COMP_RINGS
> 1)
1270 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1271 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1273 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1274 writel(INTR_RX_DONE_ALT
,
1275 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1278 /* set up pause thresholds */
1279 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1280 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1281 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1282 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1283 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1285 /* zero out dma reassembly buffers */
1286 for (i
= 0; i
< 64; i
++) {
1287 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1288 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1289 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1290 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1293 /* make sure address register is 0 for normal operation */
1294 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1295 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1297 /* interrupt mitigation */
1299 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1300 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1301 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1303 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1306 /* interrupt generation as a function of low water marks for
1307 * free desc and completion entries. these are used to trigger
1308 * housekeeping for rx descs. we don't use the free interrupt
1309 * as it's not very useful
1311 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1312 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1313 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1314 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1315 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1316 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1319 /* Random early detect registers. useful for congestion avoidance.
1320 * this should be tunable.
1322 writel(0x0, cp
->regs
+ REG_RX_RED
);
1324 /* receive page sizes. default == 2K (0x800) */
1326 if (cp
->page_size
== 0x1000)
1328 else if (cp
->page_size
== 0x2000)
1330 else if (cp
->page_size
== 0x4000)
1333 /* round mtu + offset. constrain to page size. */
1334 size
= cp
->dev
->mtu
+ 64;
1335 if (size
> cp
->page_size
)
1336 size
= cp
->page_size
;
1340 else if (size
<= 0x800)
1342 else if (size
<= 0x1000)
1347 cp
->mtu_stride
= 1 << (i
+ 10);
1348 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1349 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1350 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1351 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1352 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1354 /* enable the header parser if desired */
1355 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1358 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1359 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1360 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1361 writel(val
, cp
->regs
+ REG_HP_CFG
);
1364 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1366 memset(rxc
, 0, sizeof(*rxc
));
1367 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1370 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1371 * flipping is protected by the fact that the chip will not
1372 * hand back the same page index while it's being processed.
1374 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1376 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1379 if (page_count(page
->buffer
) == 1)
1382 new = cas_page_dequeue(cp
);
1384 spin_lock(&cp
->rx_inuse_lock
);
1385 list_add(&page
->list
, &cp
->rx_inuse_list
);
1386 spin_unlock(&cp
->rx_inuse_lock
);
1391 /* this needs to be changed if we actually use the ENC RX DESC ring */
1392 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1395 cas_page_t
**page0
= cp
->rx_pages
[0];
1396 cas_page_t
**page1
= cp
->rx_pages
[1];
1398 /* swap if buffer is in use */
1399 if (page_count(page0
[index
]->buffer
) > 1) {
1400 cas_page_t
*new = cas_page_spare(cp
, index
);
1402 page1
[index
] = page0
[index
];
1406 RX_USED_SET(page0
[index
], 0);
1407 return page0
[index
];
1410 static void cas_clean_rxds(struct cas
*cp
)
1412 /* only clean ring 0 as ring 1 is used for spare buffers */
1413 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1416 /* release all rx flows */
1417 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1418 struct sk_buff
*skb
;
1419 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1420 cas_skb_release(skb
);
1424 /* initialize descriptors */
1425 size
= RX_DESC_RINGN_SIZE(0);
1426 for (i
= 0; i
< size
; i
++) {
1427 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1428 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1429 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1430 CAS_BASE(RX_INDEX_RING
, 0));
1433 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1435 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1438 static void cas_clean_rxcs(struct cas
*cp
)
1442 /* take ownership of rx comp descriptors */
1443 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1444 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1445 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1446 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1447 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1448 cas_rxc_init(rxc
+ j
);
1454 /* When we get a RX fifo overflow, the RX unit is probably hung
1455 * so we do the following.
1457 * If any part of the reset goes wrong, we return 1 and that causes the
1458 * whole chip to be reset.
1460 static int cas_rxmac_reset(struct cas
*cp
)
1462 struct net_device
*dev
= cp
->dev
;
1466 /* First, reset MAC RX. */
1467 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1468 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1469 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1473 if (limit
== STOP_TRIES
) {
1474 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
1478 /* Second, disable RX DMA. */
1479 writel(0, cp
->regs
+ REG_RX_CFG
);
1480 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1481 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1485 if (limit
== STOP_TRIES
) {
1486 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
1492 /* Execute RX reset command. */
1493 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1494 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1495 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1499 if (limit
== STOP_TRIES
) {
1500 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
1504 /* reset driver rx state */
1508 /* Now, reprogram the rest of RX unit. */
1509 cas_init_rx_dma(cp
);
1512 val
= readl(cp
->regs
+ REG_RX_CFG
);
1513 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1514 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1515 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1516 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1521 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1524 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1529 netif_dbg(cp
, intr
, cp
->dev
, "rxmac interrupt, stat: 0x%x\n", stat
);
1531 /* these are all rollovers */
1532 spin_lock(&cp
->stat_lock
[0]);
1533 if (stat
& MAC_RX_ALIGN_ERR
)
1534 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1536 if (stat
& MAC_RX_CRC_ERR
)
1537 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1539 if (stat
& MAC_RX_LEN_ERR
)
1540 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1542 if (stat
& MAC_RX_OVERFLOW
) {
1543 cp
->net_stats
[0].rx_over_errors
++;
1544 cp
->net_stats
[0].rx_fifo_errors
++;
1547 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1550 spin_unlock(&cp
->stat_lock
[0]);
1554 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1557 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1562 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1563 "mac interrupt, stat: 0x%x\n", stat
);
1565 /* This interrupt is just for pause frame and pause
1566 * tracking. It is useful for diagnostics and debug
1567 * but probably by default we will mask these events.
1569 if (stat
& MAC_CTRL_PAUSE_STATE
)
1570 cp
->pause_entered
++;
1572 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1573 cp
->pause_last_time_recvd
= (stat
>> 16);
1579 /* Must be invoked under cp->lock. */
1580 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1584 switch (cp
->lstate
) {
1585 case link_force_ret
:
1586 netif_info(cp
, link
, cp
->dev
, "Autoneg failed again, keeping forced mode\n");
1587 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1588 cp
->timer_ticks
= 5;
1589 cp
->lstate
= link_force_ok
;
1590 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1594 val
= cas_phy_read(cp
, MII_BMCR
);
1596 /* Try forced modes. we try things in the following order:
1597 * 1000 full -> 100 full/half -> 10 half
1599 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1600 val
|= BMCR_FULLDPLX
;
1601 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1602 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1603 cas_phy_write(cp
, MII_BMCR
, val
);
1604 cp
->timer_ticks
= 5;
1605 cp
->lstate
= link_force_try
;
1606 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1609 case link_force_try
:
1610 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1611 val
= cas_phy_read(cp
, MII_BMCR
);
1612 cp
->timer_ticks
= 5;
1613 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1614 val
&= ~CAS_BMCR_SPEED1000
;
1615 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1616 cas_phy_write(cp
, MII_BMCR
, val
);
1620 if (val
& BMCR_SPEED100
) {
1621 if (val
& BMCR_FULLDPLX
) /* fd failed */
1622 val
&= ~BMCR_FULLDPLX
;
1623 else { /* 100Mbps failed */
1624 val
&= ~BMCR_SPEED100
;
1626 cas_phy_write(cp
, MII_BMCR
, val
);
1636 /* must be invoked with cp->lock held */
1637 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1641 if (bmsr
& BMSR_LSTATUS
) {
1642 /* Ok, here we got a link. If we had it due to a forced
1643 * fallback, and we were configured for autoneg, we
1644 * retry a short autoneg pass. If you know your hub is
1645 * broken, use ethtool ;)
1647 if ((cp
->lstate
== link_force_try
) &&
1648 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1649 cp
->lstate
= link_force_ret
;
1650 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1651 cas_mif_poll(cp
, 0);
1652 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1653 cp
->timer_ticks
= 5;
1655 netif_info(cp
, link
, cp
->dev
,
1656 "Got link after fallback, retrying autoneg once...\n");
1657 cas_phy_write(cp
, MII_BMCR
,
1658 cp
->link_fcntl
| BMCR_ANENABLE
|
1660 cas_mif_poll(cp
, 1);
1662 } else if (cp
->lstate
!= link_up
) {
1663 cp
->lstate
= link_up
;
1664 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1667 cas_set_link_modes(cp
);
1668 netif_carrier_on(cp
->dev
);
1674 /* link not up. if the link was previously up, we restart the
1678 if (cp
->lstate
== link_up
) {
1679 cp
->lstate
= link_down
;
1680 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1682 netif_carrier_off(cp
->dev
);
1684 netif_info(cp
, link
, cp
->dev
, "Link down\n");
1687 } else if (++cp
->timer_ticks
> 10)
1688 cas_mdio_link_not_up(cp
);
1693 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1696 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1699 /* check for a link change */
1700 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1703 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1704 return cas_mii_link_check(cp
, bmsr
);
1707 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1710 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1715 netdev_err(dev
, "PCI error [%04x:%04x]",
1716 stat
, readl(cp
->regs
+ REG_BIM_DIAG
));
1718 /* cassini+ has this reserved */
1719 if ((stat
& PCI_ERR_BADACK
) &&
1720 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1721 pr_cont(" <No ACK64# during ABS64 cycle>");
1723 if (stat
& PCI_ERR_DTRTO
)
1724 pr_cont(" <Delayed transaction timeout>");
1725 if (stat
& PCI_ERR_OTHER
)
1726 pr_cont(" <other>");
1727 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1728 pr_cont(" <BIM DMA 0 write req>");
1729 if (stat
& PCI_ERR_BIM_DMA_READ
)
1730 pr_cont(" <BIM DMA 0 read req>");
1733 if (stat
& PCI_ERR_OTHER
) {
1736 /* Interrogate PCI config space for the
1739 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1740 netdev_err(dev
, "Read PCI cfg space status [%04x]\n", cfg
);
1741 if (cfg
& PCI_STATUS_PARITY
)
1742 netdev_err(dev
, "PCI parity error detected\n");
1743 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1744 netdev_err(dev
, "PCI target abort\n");
1745 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1746 netdev_err(dev
, "PCI master acks target abort\n");
1747 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1748 netdev_err(dev
, "PCI master abort\n");
1749 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1750 netdev_err(dev
, "PCI system error SERR#\n");
1751 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1752 netdev_err(dev
, "PCI parity error\n");
1754 /* Write the error bits back to clear them. */
1755 cfg
&= (PCI_STATUS_PARITY
|
1756 PCI_STATUS_SIG_TARGET_ABORT
|
1757 PCI_STATUS_REC_TARGET_ABORT
|
1758 PCI_STATUS_REC_MASTER_ABORT
|
1759 PCI_STATUS_SIG_SYSTEM_ERROR
|
1760 PCI_STATUS_DETECTED_PARITY
);
1761 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1764 /* For all PCI errors, we should reset the chip. */
1768 /* All non-normal interrupt conditions get serviced here.
1769 * Returns non-zero if we should just exit the interrupt
1770 * handler right now (ie. if we reset the card which invalidates
1771 * all of the other original irq status bits).
1773 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1776 if (status
& INTR_RX_TAG_ERROR
) {
1777 /* corrupt RX tag framing */
1778 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1779 "corrupt rx tag framing\n");
1780 spin_lock(&cp
->stat_lock
[0]);
1781 cp
->net_stats
[0].rx_errors
++;
1782 spin_unlock(&cp
->stat_lock
[0]);
1786 if (status
& INTR_RX_LEN_MISMATCH
) {
1787 /* length mismatch. */
1788 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1789 "length mismatch for rx frame\n");
1790 spin_lock(&cp
->stat_lock
[0]);
1791 cp
->net_stats
[0].rx_errors
++;
1792 spin_unlock(&cp
->stat_lock
[0]);
1796 if (status
& INTR_PCS_STATUS
) {
1797 if (cas_pcs_interrupt(dev
, cp
, status
))
1801 if (status
& INTR_TX_MAC_STATUS
) {
1802 if (cas_txmac_interrupt(dev
, cp
, status
))
1806 if (status
& INTR_RX_MAC_STATUS
) {
1807 if (cas_rxmac_interrupt(dev
, cp
, status
))
1811 if (status
& INTR_MAC_CTRL_STATUS
) {
1812 if (cas_mac_interrupt(dev
, cp
, status
))
1816 if (status
& INTR_MIF_STATUS
) {
1817 if (cas_mif_interrupt(dev
, cp
, status
))
1821 if (status
& INTR_PCI_ERROR_STATUS
) {
1822 if (cas_pci_interrupt(dev
, cp
, status
))
1829 atomic_inc(&cp
->reset_task_pending
);
1830 atomic_inc(&cp
->reset_task_pending_all
);
1831 netdev_err(dev
, "reset called in cas_abnormal_irq [0x%x]\n", status
);
1832 schedule_work(&cp
->reset_task
);
1834 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1835 netdev_err(dev
, "reset called in cas_abnormal_irq\n");
1836 schedule_work(&cp
->reset_task
);
1841 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1842 * determining whether to do a netif_stop/wakeup
1844 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1845 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1846 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1849 unsigned long off
= addr
+ len
;
1851 if (CAS_TABORT(cp
) == 1)
1853 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1855 return TX_TARGET_ABORT_LEN
;
1858 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1860 struct cas_tx_desc
*txds
;
1861 struct sk_buff
**skbs
;
1862 struct net_device
*dev
= cp
->dev
;
1865 spin_lock(&cp
->tx_lock
[ring
]);
1866 txds
= cp
->init_txds
[ring
];
1867 skbs
= cp
->tx_skbs
[ring
];
1868 entry
= cp
->tx_old
[ring
];
1870 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1871 while (entry
!= limit
) {
1872 struct sk_buff
*skb
= skbs
[entry
];
1878 /* this should never occur */
1879 entry
= TX_DESC_NEXT(ring
, entry
);
1883 /* however, we might get only a partial skb release. */
1884 count
-= skb_shinfo(skb
)->nr_frags
+
1885 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1889 netif_printk(cp
, tx_done
, KERN_DEBUG
, cp
->dev
,
1890 "tx[%d] done, slot %d\n", ring
, entry
);
1893 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1895 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1896 struct cas_tx_desc
*txd
= txds
+ entry
;
1898 daddr
= le64_to_cpu(txd
->buffer
);
1899 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1900 le64_to_cpu(txd
->control
));
1901 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1903 entry
= TX_DESC_NEXT(ring
, entry
);
1905 /* tiny buffer may follow */
1906 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1907 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1908 entry
= TX_DESC_NEXT(ring
, entry
);
1912 spin_lock(&cp
->stat_lock
[ring
]);
1913 cp
->net_stats
[ring
].tx_packets
++;
1914 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1915 spin_unlock(&cp
->stat_lock
[ring
]);
1916 dev_kfree_skb_irq(skb
);
1918 cp
->tx_old
[ring
] = entry
;
1920 /* this is wrong for multiple tx rings. the net device needs
1921 * multiple queues for this to do the right thing. we wait
1922 * for 2*packets to be available when using tiny buffers
1924 if (netif_queue_stopped(dev
) &&
1925 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1926 netif_wake_queue(dev
);
1927 spin_unlock(&cp
->tx_lock
[ring
]);
1930 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1934 #ifdef USE_TX_COMPWB
1935 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1937 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1938 "tx interrupt, status: 0x%x, %llx\n",
1939 status
, (unsigned long long)compwb
);
1940 /* process all the rings */
1941 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1942 #ifdef USE_TX_COMPWB
1943 /* use the completion writeback registers */
1944 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1945 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1946 compwb
= TX_COMPWB_NEXT(compwb
);
1948 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1950 if (cp
->tx_old
[ring
] != limit
)
1951 cas_tx_ringN(cp
, ring
, limit
);
1956 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1957 int entry
, const u64
*words
,
1958 struct sk_buff
**skbref
)
1960 int dlen
, hlen
, len
, i
, alloclen
;
1961 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1962 struct cas_page
*page
;
1963 struct sk_buff
*skb
;
1964 void *addr
, *crcaddr
;
1968 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1969 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1972 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1975 alloclen
= max(hlen
, RX_COPY_MIN
);
1977 skb
= dev_alloc_skb(alloclen
+ swivel
+ cp
->crc_size
);
1982 skb_reserve(skb
, swivel
);
1985 addr
= crcaddr
= NULL
;
1986 if (hlen
) { /* always copy header pages */
1987 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1988 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1989 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1993 if (!dlen
) /* attach FCS */
1995 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
1996 PCI_DMA_FROMDEVICE
);
1997 addr
= cas_page_map(page
->buffer
);
1998 memcpy(p
, addr
+ off
, i
);
1999 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2000 PCI_DMA_FROMDEVICE
);
2001 cas_page_unmap(addr
);
2002 RX_USED_ADD(page
, 0x100);
2008 if (alloclen
< (hlen
+ dlen
)) {
2009 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2011 /* normal or jumbo packets. we use frags */
2012 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2013 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2014 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2016 hlen
= min(cp
->page_size
- off
, dlen
);
2018 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2019 "rx page overflow: %d\n", hlen
);
2020 dev_kfree_skb_irq(skb
);
2024 if (i
== dlen
) /* attach FCS */
2026 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2027 PCI_DMA_FROMDEVICE
);
2029 /* make sure we always copy a header */
2031 if (p
== (char *) skb
->data
) { /* not split */
2032 addr
= cas_page_map(page
->buffer
);
2033 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2034 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2035 PCI_DMA_FROMDEVICE
);
2036 cas_page_unmap(addr
);
2038 swivel
= RX_COPY_MIN
;
2039 RX_USED_ADD(page
, cp
->mtu_stride
);
2041 RX_USED_ADD(page
, hlen
);
2043 skb_put(skb
, alloclen
);
2045 skb_shinfo(skb
)->nr_frags
++;
2046 skb
->data_len
+= hlen
- swivel
;
2047 skb
->truesize
+= hlen
- swivel
;
2048 skb
->len
+= hlen
- swivel
;
2050 get_page(page
->buffer
);
2051 frag
->page
= page
->buffer
;
2052 frag
->page_offset
= off
;
2053 frag
->size
= hlen
- swivel
;
2055 /* any more data? */
2056 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2060 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2061 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2062 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2063 hlen
+ cp
->crc_size
,
2064 PCI_DMA_FROMDEVICE
);
2065 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2066 hlen
+ cp
->crc_size
,
2067 PCI_DMA_FROMDEVICE
);
2069 skb_shinfo(skb
)->nr_frags
++;
2070 skb
->data_len
+= hlen
;
2074 get_page(page
->buffer
);
2075 frag
->page
= page
->buffer
;
2076 frag
->page_offset
= 0;
2078 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2082 addr
= cas_page_map(page
->buffer
);
2083 crcaddr
= addr
+ off
+ hlen
;
2087 /* copying packet */
2091 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2092 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2093 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2094 hlen
= min(cp
->page_size
- off
, dlen
);
2096 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2097 "rx page overflow: %d\n", hlen
);
2098 dev_kfree_skb_irq(skb
);
2102 if (i
== dlen
) /* attach FCS */
2104 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2105 PCI_DMA_FROMDEVICE
);
2106 addr
= cas_page_map(page
->buffer
);
2107 memcpy(p
, addr
+ off
, i
);
2108 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2109 PCI_DMA_FROMDEVICE
);
2110 cas_page_unmap(addr
);
2111 if (p
== (char *) skb
->data
) /* not split */
2112 RX_USED_ADD(page
, cp
->mtu_stride
);
2114 RX_USED_ADD(page
, i
);
2116 /* any more data? */
2117 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2119 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2120 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2121 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2122 dlen
+ cp
->crc_size
,
2123 PCI_DMA_FROMDEVICE
);
2124 addr
= cas_page_map(page
->buffer
);
2125 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2126 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2127 dlen
+ cp
->crc_size
,
2128 PCI_DMA_FROMDEVICE
);
2129 cas_page_unmap(addr
);
2130 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2135 crcaddr
= skb
->data
+ alloclen
;
2137 skb_put(skb
, alloclen
);
2140 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2142 /* checksum includes FCS. strip it out. */
2143 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2144 csum_unfold(csum
)));
2146 cas_page_unmap(addr
);
2148 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2149 if (skb
->protocol
== htons(ETH_P_IP
)) {
2150 skb
->csum
= csum_unfold(~csum
);
2151 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2153 skb_checksum_none_assert(skb
);
2158 /* we can handle up to 64 rx flows at a time. we do the same thing
2159 * as nonreassm except that we batch up the buffers.
2160 * NOTE: we currently just treat each flow as a bunch of packets that
2161 * we pass up. a better way would be to coalesce the packets
2162 * into a jumbo packet. to do that, we need to do the following:
2163 * 1) the first packet will have a clean split between header and
2165 * 2) each time the next flow packet comes in, extend the
2166 * data length and merge the checksums.
2167 * 3) on flow release, fix up the header.
2168 * 4) make sure the higher layer doesn't care.
2169 * because packets get coalesced, we shouldn't run into fragment count
2172 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2173 struct sk_buff
*skb
)
2175 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2176 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2178 /* this is protected at a higher layer, so no need to
2179 * do any additional locking here. stick the buffer
2182 __skb_queue_tail(flow
, skb
);
2183 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2184 while ((skb
= __skb_dequeue(flow
))) {
2185 cas_skb_release(skb
);
2190 /* put rx descriptor back on ring. if a buffer is in use by a higher
2191 * layer, this will need to put in a replacement.
2193 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2198 entry
= cp
->rx_old
[ring
];
2200 new = cas_page_swap(cp
, ring
, index
);
2201 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2202 cp
->init_rxds
[ring
][entry
].index
=
2203 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2204 CAS_BASE(RX_INDEX_RING
, ring
));
2206 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2207 cp
->rx_old
[ring
] = entry
;
2213 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2214 else if ((N_RX_DESC_RINGS
> 1) &&
2215 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2216 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2220 /* only when things are bad */
2221 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2223 unsigned int entry
, last
, count
, released
;
2225 cas_page_t
**page
= cp
->rx_pages
[ring
];
2227 entry
= cp
->rx_old
[ring
];
2229 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2230 "rxd[%d] interrupt, done: %d\n", ring
, entry
);
2233 count
= entry
& 0x3;
2234 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2236 while (entry
!= last
) {
2237 /* make a new buffer if it's still in use */
2238 if (page_count(page
[entry
]->buffer
) > 1) {
2239 cas_page_t
*new = cas_page_dequeue(cp
);
2241 /* let the timer know that we need to
2244 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2245 if (!timer_pending(&cp
->link_timer
))
2246 mod_timer(&cp
->link_timer
, jiffies
+
2247 CAS_LINK_FAST_TIMEOUT
);
2248 cp
->rx_old
[ring
] = entry
;
2249 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2252 spin_lock(&cp
->rx_inuse_lock
);
2253 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2254 spin_unlock(&cp
->rx_inuse_lock
);
2255 cp
->init_rxds
[ring
][entry
].buffer
=
2256 cpu_to_le64(new->dma_addr
);
2266 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2268 cp
->rx_old
[ring
] = entry
;
2274 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2275 else if ((N_RX_DESC_RINGS
> 1) &&
2276 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2277 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2282 /* process a completion ring. packets are set up in three basic ways:
2283 * small packets: should be copied header + data in single buffer.
2284 * large packets: header and data in a single buffer.
2285 * split packets: header in a separate buffer from data.
2286 * data may be in multiple pages. data may be > 256
2287 * bytes but in a single page.
2289 * NOTE: RX page posting is done in this routine as well. while there's
2290 * the capability of using multiple RX completion rings, it isn't
2291 * really worthwhile due to the fact that the page posting will
2292 * force serialization on the single descriptor ring.
2294 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2296 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2300 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2301 "rx[%d] interrupt, done: %d/%d\n",
2303 readl(cp
->regs
+ REG_RX_COMP_HEAD
), cp
->rx_new
[ring
]);
2305 entry
= cp
->rx_new
[ring
];
2308 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2309 struct sk_buff
*uninitialized_var(skb
);
2314 words
[0] = le64_to_cpu(rxc
->word1
);
2315 words
[1] = le64_to_cpu(rxc
->word2
);
2316 words
[2] = le64_to_cpu(rxc
->word3
);
2317 words
[3] = le64_to_cpu(rxc
->word4
);
2319 /* don't touch if still owned by hw */
2320 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2324 /* hw hasn't cleared the zero bit yet */
2325 if (words
[3] & RX_COMP4_ZERO
) {
2329 /* get info on the packet */
2330 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2331 spin_lock(&cp
->stat_lock
[ring
]);
2332 cp
->net_stats
[ring
].rx_errors
++;
2333 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2334 cp
->net_stats
[ring
].rx_length_errors
++;
2335 if (words
[3] & RX_COMP4_BAD
)
2336 cp
->net_stats
[ring
].rx_crc_errors
++;
2337 spin_unlock(&cp
->stat_lock
[ring
]);
2339 /* We'll just return it to Cassini. */
2341 spin_lock(&cp
->stat_lock
[ring
]);
2342 ++cp
->net_stats
[ring
].rx_dropped
;
2343 spin_unlock(&cp
->stat_lock
[ring
]);
2347 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2353 /* see if it's a flow re-assembly or not. the driver
2354 * itself handles release back up.
2356 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2357 /* non-reassm: these always get released */
2358 cas_skb_release(skb
);
2360 cas_rx_flow_pkt(cp
, words
, skb
);
2363 spin_lock(&cp
->stat_lock
[ring
]);
2364 cp
->net_stats
[ring
].rx_packets
++;
2365 cp
->net_stats
[ring
].rx_bytes
+= len
;
2366 spin_unlock(&cp
->stat_lock
[ring
]);
2371 /* should it be released? */
2372 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2373 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2374 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2375 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2376 cas_post_page(cp
, dring
, i
);
2379 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2380 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2381 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2382 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2383 cas_post_page(cp
, dring
, i
);
2386 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2387 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2388 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2389 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2390 cas_post_page(cp
, dring
, i
);
2393 /* skip to the next entry */
2394 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2395 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2397 if (budget
&& (npackets
>= budget
))
2401 cp
->rx_new
[ring
] = entry
;
2404 netdev_info(cp
->dev
, "Memory squeeze, deferring packet\n");
2409 /* put completion entries back on the ring */
2410 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2411 struct cas
*cp
, int ring
)
2413 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2416 last
= cp
->rx_cur
[ring
];
2417 entry
= cp
->rx_new
[ring
];
2418 netif_printk(cp
, intr
, KERN_DEBUG
, dev
,
2419 "rxc[%d] interrupt, done: %d/%d\n",
2420 ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
), entry
);
2422 /* zero and re-mark descriptors */
2423 while (last
!= entry
) {
2424 cas_rxc_init(rxc
+ last
);
2425 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2427 cp
->rx_cur
[ring
] = last
;
2430 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2431 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2432 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2437 /* cassini can use all four PCI interrupts for the completion ring.
2438 * rings 3 and 4 are identical
2440 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2441 static inline void cas_handle_irqN(struct net_device
*dev
,
2442 struct cas
*cp
, const u32 status
,
2445 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2446 cas_post_rxcs_ringN(dev
, cp
, ring
);
2449 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2451 struct net_device
*dev
= dev_id
;
2452 struct cas
*cp
= netdev_priv(dev
);
2453 unsigned long flags
;
2455 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2457 /* check for shared irq */
2461 ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2462 spin_lock_irqsave(&cp
->lock
, flags
);
2463 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2466 napi_schedule(&cp
->napi
);
2468 cas_rx_ringN(cp
, ring
, 0);
2470 status
&= ~INTR_RX_DONE_ALT
;
2474 cas_handle_irqN(dev
, cp
, status
, ring
);
2475 spin_unlock_irqrestore(&cp
->lock
, flags
);
2481 /* everything but rx packets */
2482 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2484 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2485 /* Frame arrived, no free RX buffers available.
2486 * NOTE: we can get this on a link transition. */
2487 cas_post_rxds_ringN(cp
, 1, 0);
2488 spin_lock(&cp
->stat_lock
[1]);
2489 cp
->net_stats
[1].rx_dropped
++;
2490 spin_unlock(&cp
->stat_lock
[1]);
2493 if (status
& INTR_RX_BUF_AE_1
)
2494 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2495 RX_AE_FREEN_VAL(1));
2497 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2498 cas_post_rxcs_ringN(cp
, 1);
2501 /* ring 2 handles a few more events than 3 and 4 */
2502 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2504 struct net_device
*dev
= dev_id
;
2505 struct cas
*cp
= netdev_priv(dev
);
2506 unsigned long flags
;
2507 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2509 /* check for shared interrupt */
2513 spin_lock_irqsave(&cp
->lock
, flags
);
2514 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2517 napi_schedule(&cp
->napi
);
2519 cas_rx_ringN(cp
, 1, 0);
2521 status
&= ~INTR_RX_DONE_ALT
;
2524 cas_handle_irq1(cp
, status
);
2525 spin_unlock_irqrestore(&cp
->lock
, flags
);
2530 static inline void cas_handle_irq(struct net_device
*dev
,
2531 struct cas
*cp
, const u32 status
)
2533 /* housekeeping interrupts */
2534 if (status
& INTR_ERROR_MASK
)
2535 cas_abnormal_irq(dev
, cp
, status
);
2537 if (status
& INTR_RX_BUF_UNAVAIL
) {
2538 /* Frame arrived, no free RX buffers available.
2539 * NOTE: we can get this on a link transition.
2541 cas_post_rxds_ringN(cp
, 0, 0);
2542 spin_lock(&cp
->stat_lock
[0]);
2543 cp
->net_stats
[0].rx_dropped
++;
2544 spin_unlock(&cp
->stat_lock
[0]);
2545 } else if (status
& INTR_RX_BUF_AE
) {
2546 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2547 RX_AE_FREEN_VAL(0));
2550 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2551 cas_post_rxcs_ringN(dev
, cp
, 0);
2554 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2556 struct net_device
*dev
= dev_id
;
2557 struct cas
*cp
= netdev_priv(dev
);
2558 unsigned long flags
;
2559 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2564 spin_lock_irqsave(&cp
->lock
, flags
);
2565 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2566 cas_tx(dev
, cp
, status
);
2567 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2570 if (status
& INTR_RX_DONE
) {
2573 napi_schedule(&cp
->napi
);
2575 cas_rx_ringN(cp
, 0, 0);
2577 status
&= ~INTR_RX_DONE
;
2581 cas_handle_irq(dev
, cp
, status
);
2582 spin_unlock_irqrestore(&cp
->lock
, flags
);
2588 static int cas_poll(struct napi_struct
*napi
, int budget
)
2590 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2591 struct net_device
*dev
= cp
->dev
;
2592 int i
, enable_intr
, credits
;
2593 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2594 unsigned long flags
;
2596 spin_lock_irqsave(&cp
->lock
, flags
);
2597 cas_tx(dev
, cp
, status
);
2598 spin_unlock_irqrestore(&cp
->lock
, flags
);
2600 /* NAPI rx packets. we spread the credits across all of the
2603 * to make sure we're fair with the work we loop through each
2604 * ring N_RX_COMP_RING times with a request of
2605 * budget / N_RX_COMP_RINGS
2609 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2611 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2612 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2613 if (credits
>= budget
) {
2621 /* final rx completion */
2622 spin_lock_irqsave(&cp
->lock
, flags
);
2624 cas_handle_irq(dev
, cp
, status
);
2627 if (N_RX_COMP_RINGS
> 1) {
2628 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2630 cas_handle_irq1(dev
, cp
, status
);
2635 if (N_RX_COMP_RINGS
> 2) {
2636 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2638 cas_handle_irqN(dev
, cp
, status
, 2);
2643 if (N_RX_COMP_RINGS
> 3) {
2644 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2646 cas_handle_irqN(dev
, cp
, status
, 3);
2649 spin_unlock_irqrestore(&cp
->lock
, flags
);
2651 napi_complete(napi
);
2652 cas_unmask_intr(cp
);
2658 #ifdef CONFIG_NET_POLL_CONTROLLER
2659 static void cas_netpoll(struct net_device
*dev
)
2661 struct cas
*cp
= netdev_priv(dev
);
2663 cas_disable_irq(cp
, 0);
2664 cas_interrupt(cp
->pdev
->irq
, dev
);
2665 cas_enable_irq(cp
, 0);
2668 if (N_RX_COMP_RINGS
> 1) {
2669 /* cas_interrupt1(); */
2673 if (N_RX_COMP_RINGS
> 2) {
2674 /* cas_interruptN(); */
2678 if (N_RX_COMP_RINGS
> 3) {
2679 /* cas_interruptN(); */
2685 static void cas_tx_timeout(struct net_device
*dev
)
2687 struct cas
*cp
= netdev_priv(dev
);
2689 netdev_err(dev
, "transmit timed out, resetting\n");
2690 if (!cp
->hw_running
) {
2691 netdev_err(dev
, "hrm.. hw not running!\n");
2695 netdev_err(dev
, "MIF_STATE[%08x]\n",
2696 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2698 netdev_err(dev
, "MAC_STATE[%08x]\n",
2699 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2701 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2702 readl(cp
->regs
+ REG_TX_CFG
),
2703 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2704 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2705 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2706 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2707 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2708 readl(cp
->regs
+ REG_TX_SM_1
),
2709 readl(cp
->regs
+ REG_TX_SM_2
));
2711 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
2712 readl(cp
->regs
+ REG_RX_CFG
),
2713 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2714 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2716 netdev_err(dev
, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2717 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2718 readl(cp
->regs
+ REG_HP_STATUS0
),
2719 readl(cp
->regs
+ REG_HP_STATUS1
),
2720 readl(cp
->regs
+ REG_HP_STATUS2
));
2723 atomic_inc(&cp
->reset_task_pending
);
2724 atomic_inc(&cp
->reset_task_pending_all
);
2725 schedule_work(&cp
->reset_task
);
2727 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2728 schedule_work(&cp
->reset_task
);
2732 static inline int cas_intme(int ring
, int entry
)
2734 /* Algorithm: IRQ every 1/2 of descriptors. */
2735 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2741 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2742 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2744 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2746 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2747 if (cas_intme(ring
, entry
))
2748 ctrl
|= TX_DESC_INTME
;
2750 ctrl
|= TX_DESC_EOF
;
2751 txd
->control
= cpu_to_le64(ctrl
);
2752 txd
->buffer
= cpu_to_le64(mapping
);
2755 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2758 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2761 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2762 const int entry
, const int tentry
)
2764 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2765 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2766 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2769 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2770 struct sk_buff
*skb
)
2772 struct net_device
*dev
= cp
->dev
;
2773 int entry
, nr_frags
, frag
, tabort
, tentry
;
2775 unsigned long flags
;
2779 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2781 /* This is a hard error, log it. */
2782 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2783 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2784 netif_stop_queue(dev
);
2785 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2786 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
2791 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2792 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
2793 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2795 ctrl
= TX_DESC_CSUM_EN
|
2796 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2797 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2800 entry
= cp
->tx_new
[ring
];
2801 cp
->tx_skbs
[ring
][entry
] = skb
;
2803 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2804 len
= skb_headlen(skb
);
2805 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2806 offset_in_page(skb
->data
), len
,
2810 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2811 if (unlikely(tabort
)) {
2812 /* NOTE: len is always > tabort */
2813 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2814 ctrl
| TX_DESC_SOF
, 0);
2815 entry
= TX_DESC_NEXT(ring
, entry
);
2817 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2818 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2819 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2820 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2823 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2824 TX_DESC_SOF
, (nr_frags
== 0));
2826 entry
= TX_DESC_NEXT(ring
, entry
);
2828 for (frag
= 0; frag
< nr_frags
; frag
++) {
2829 skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2832 mapping
= pci_map_page(cp
->pdev
, fragp
->page
,
2833 fragp
->page_offset
, len
,
2836 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2837 if (unlikely(tabort
)) {
2840 /* NOTE: len is always > tabort */
2841 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2843 entry
= TX_DESC_NEXT(ring
, entry
);
2845 addr
= cas_page_map(fragp
->page
);
2846 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2847 addr
+ fragp
->page_offset
+ len
- tabort
,
2849 cas_page_unmap(addr
);
2850 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2854 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2855 (frag
+ 1 == nr_frags
));
2856 entry
= TX_DESC_NEXT(ring
, entry
);
2859 cp
->tx_new
[ring
] = entry
;
2860 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2861 netif_stop_queue(dev
);
2863 netif_printk(cp
, tx_queued
, KERN_DEBUG
, dev
,
2864 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2865 ring
, entry
, skb
->len
, TX_BUFFS_AVAIL(cp
, ring
));
2866 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2867 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2871 static netdev_tx_t
cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2873 struct cas
*cp
= netdev_priv(dev
);
2875 /* this is only used as a load-balancing hint, so it doesn't
2876 * need to be SMP safe
2880 if (skb_padto(skb
, cp
->min_frame_size
))
2881 return NETDEV_TX_OK
;
2883 /* XXX: we need some higher-level QoS hooks to steer packets to
2884 * individual queues.
2886 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2887 return NETDEV_TX_BUSY
;
2888 return NETDEV_TX_OK
;
2891 static void cas_init_tx_dma(struct cas
*cp
)
2893 u64 desc_dma
= cp
->block_dvma
;
2898 /* set up tx completion writeback registers. must be 8-byte aligned */
2899 #ifdef USE_TX_COMPWB
2900 off
= offsetof(struct cas_init_block
, tx_compwb
);
2901 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2902 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2905 /* enable completion writebacks, enable paced mode,
2906 * disable read pipe, and disable pre-interrupt compwbs
2908 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2909 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2910 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2911 TX_CFG_INTR_COMPWB_DIS
;
2913 /* write out tx ring info and tx desc bases */
2914 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2915 off
= (unsigned long) cp
->init_txds
[i
] -
2916 (unsigned long) cp
->init_block
;
2918 val
|= CAS_TX_RINGN_BASE(i
);
2919 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2920 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2922 /* don't zero out the kick register here as the system
2926 writel(val
, cp
->regs
+ REG_TX_CFG
);
2928 /* program max burst sizes. these numbers should be different
2932 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2933 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2934 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2935 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2937 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2938 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2939 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2940 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2944 /* Must be invoked under cp->lock. */
2945 static inline void cas_init_dma(struct cas
*cp
)
2947 cas_init_tx_dma(cp
);
2948 cas_init_rx_dma(cp
);
2951 static void cas_process_mc_list(struct cas
*cp
)
2955 struct netdev_hw_addr
*ha
;
2958 memset(hash_table
, 0, sizeof(hash_table
));
2959 netdev_for_each_mc_addr(ha
, cp
->dev
) {
2960 if (i
<= CAS_MC_EXACT_MATCH_SIZE
) {
2961 /* use the alternate mac address registers for the
2962 * first 15 multicast addresses
2964 writel((ha
->addr
[4] << 8) | ha
->addr
[5],
2965 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2966 writel((ha
->addr
[2] << 8) | ha
->addr
[3],
2967 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2968 writel((ha
->addr
[0] << 8) | ha
->addr
[1],
2969 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2973 /* use hw hash table for the next series of
2974 * multicast addresses
2976 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2978 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
2981 for (i
= 0; i
< 16; i
++)
2982 writel(hash_table
[i
], cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2985 /* Must be invoked under cp->lock. */
2986 static u32
cas_setup_multicast(struct cas
*cp
)
2991 if (cp
->dev
->flags
& IFF_PROMISC
) {
2992 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2994 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2995 for (i
=0; i
< 16; i
++)
2996 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2997 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3000 cas_process_mc_list(cp
);
3001 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3007 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3008 static void cas_clear_mac_err(struct cas
*cp
)
3010 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3011 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3012 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3013 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3014 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3015 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3016 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3017 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3018 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3019 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3020 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3024 static void cas_mac_reset(struct cas
*cp
)
3028 /* do both TX and RX reset */
3029 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3030 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3035 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3043 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3048 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3049 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3050 netdev_err(cp
->dev
, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3051 readl(cp
->regs
+ REG_MAC_TX_RESET
),
3052 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3053 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3057 /* Must be invoked under cp->lock. */
3058 static void cas_init_mac(struct cas
*cp
)
3060 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3064 /* setup core arbitration weight register */
3065 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3067 /* XXX Use pci_dma_burst_advice() */
3068 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3069 /* set the infinite burst register for chips that don't have
3072 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3073 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3076 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3078 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3079 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3080 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3082 /* change later for 802.3z */
3083 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3085 /* min frame + FCS */
3086 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3088 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3089 * specify the maximum frame size to prevent RX tag errors on
3092 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3093 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3094 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3095 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3097 /* NOTE: crc_size is used as a surrogate for half-duplex.
3098 * workaround saturn half-duplex issue by increasing preamble
3101 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3102 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3104 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3105 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3106 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3107 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3109 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3111 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3112 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3113 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3114 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3115 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3117 /* setup mac address in perfect filter array */
3118 for (i
= 0; i
< 45; i
++)
3119 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3121 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3122 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3123 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3125 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3126 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3127 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3129 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3131 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3132 cas_clear_mac_err(cp
);
3133 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3135 /* Setup MAC interrupts. We want to get all of the interesting
3136 * counter expiration events, but we do not want to hear about
3137 * normal rx/tx as the DMA engine tells us that.
3139 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3140 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3142 /* Don't enable even the PAUSE interrupts for now, we
3143 * make no use of those events other than to record them.
3145 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3148 /* Must be invoked under cp->lock. */
3149 static void cas_init_pause_thresholds(struct cas
*cp
)
3151 /* Calculate pause thresholds. Setting the OFF threshold to the
3152 * full RX fifo size effectively disables PAUSE generation
3154 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3155 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3157 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3158 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3159 cp
->rx_pause_off
= 7104;
3160 cp
->rx_pause_on
= 960;
3162 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3163 int on
= off
- max_frame
;
3164 cp
->rx_pause_off
= off
;
3165 cp
->rx_pause_on
= on
;
3170 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3172 int len
= strlen(str
) + 1;
3175 for (i
= 0; i
< len
; i
++) {
3176 if (readb(p
+ i
) != str
[i
])
3183 /* get the mac address by reading the vpd information in the rom.
3184 * also get the phy type and determine if there's an entropy generator.
3185 * NOTE: this is a bit convoluted for the following reasons:
3186 * 1) vpd info has order-dependent mac addresses for multinic cards
3187 * 2) the only way to determine the nic order is to use the slot
3189 * 3) fiber cards don't have bridges, so their slot numbers don't
3191 * 4) we don't actually know we have a fiber card until after
3192 * the mac addresses are parsed.
3194 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3197 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3198 void __iomem
*base
, *kstart
;
3201 #define VPD_FOUND_MAC 0x01
3202 #define VPD_FOUND_PHY 0x02
3204 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3207 #if defined(CONFIG_SPARC)
3208 const unsigned char *addr
;
3211 /* give us access to the PROM */
3212 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3213 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3215 /* check for an expansion rom */
3216 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3217 goto use_random_mac_addr
;
3219 /* search for beginning of vpd */
3221 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3222 /* check for PCIR */
3223 if ((readb(p
+ i
+ 0) == 0x50) &&
3224 (readb(p
+ i
+ 1) == 0x43) &&
3225 (readb(p
+ i
+ 2) == 0x49) &&
3226 (readb(p
+ i
+ 3) == 0x52)) {
3227 base
= p
+ (readb(p
+ i
+ 8) |
3228 (readb(p
+ i
+ 9) << 8));
3233 if (!base
|| (readb(base
) != 0x82))
3234 goto use_random_mac_addr
;
3236 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3237 while (i
< EXPANSION_ROM_SIZE
) {
3238 if (readb(base
+ i
) != 0x90) /* no vpd found */
3239 goto use_random_mac_addr
;
3241 /* found a vpd field */
3242 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3244 /* extract keywords */
3245 kstart
= base
+ i
+ 3;
3247 while ((p
- kstart
) < len
) {
3248 int klen
= readb(p
+ 2);
3254 /* look for the following things:
3255 * -- correct length == 29
3256 * 3 (type) + 2 (size) +
3257 * 18 (strlen("local-mac-address") + 1) +
3259 * -- VPD Instance 'I'
3260 * -- VPD Type Bytes 'B'
3261 * -- VPD data length == 6
3262 * -- property string == local-mac-address
3264 * -- correct length == 24
3265 * 3 (type) + 2 (size) +
3266 * 12 (strlen("entropy-dev") + 1) +
3267 * 7 (strlen("vms110") + 1)
3268 * -- VPD Instance 'I'
3269 * -- VPD Type String 'B'
3270 * -- VPD data length == 7
3271 * -- property string == entropy-dev
3273 * -- correct length == 18
3274 * 3 (type) + 2 (size) +
3275 * 9 (strlen("phy-type") + 1) +
3276 * 4 (strlen("pcs") + 1)
3277 * -- VPD Instance 'I'
3278 * -- VPD Type String 'S'
3279 * -- VPD data length == 4
3280 * -- property string == phy-type
3282 * -- correct length == 23
3283 * 3 (type) + 2 (size) +
3284 * 14 (strlen("phy-interface") + 1) +
3285 * 4 (strlen("pcs") + 1)
3286 * -- VPD Instance 'I'
3287 * -- VPD Type String 'S'
3288 * -- VPD data length == 4
3289 * -- property string == phy-interface
3291 if (readb(p
) != 'I')
3294 /* finally, check string and length */
3295 type
= readb(p
+ 3);
3297 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3298 cas_vpd_match(p
+ 5,
3299 "local-mac-address")) {
3300 if (mac_off
++ > offset
)
3303 /* set mac address */
3304 for (j
= 0; j
< 6; j
++)
3314 #ifdef USE_ENTROPY_DEV
3316 cas_vpd_match(p
+ 5, "entropy-dev") &&
3317 cas_vpd_match(p
+ 17, "vms110")) {
3318 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3323 if (found
& VPD_FOUND_PHY
)
3326 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3327 cas_vpd_match(p
+ 5, "phy-type")) {
3328 if (cas_vpd_match(p
+ 14, "pcs")) {
3329 phy_type
= CAS_PHY_SERDES
;
3334 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3335 cas_vpd_match(p
+ 5, "phy-interface")) {
3336 if (cas_vpd_match(p
+ 19, "pcs")) {
3337 phy_type
= CAS_PHY_SERDES
;
3342 found
|= VPD_FOUND_MAC
;
3346 found
|= VPD_FOUND_PHY
;
3354 use_random_mac_addr
:
3355 if (found
& VPD_FOUND_MAC
)
3358 #if defined(CONFIG_SPARC)
3359 addr
= of_get_property(cp
->of_node
, "local-mac-address", NULL
);
3361 memcpy(dev_addr
, addr
, 6);
3366 /* Sun MAC prefix then 3 random bytes. */
3367 pr_info("MAC address not found in ROM VPD\n");
3371 get_random_bytes(dev_addr
+ 3, 3);
3374 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3378 /* check pci invariants */
3379 static void cas_check_pci_invariants(struct cas
*cp
)
3381 struct pci_dev
*pdev
= cp
->pdev
;
3384 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3385 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3386 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3387 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3388 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3389 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3391 /* Original Cassini supports HW CSUM, but it's not
3392 * enabled by default as it can trigger TX hangs.
3394 if (pdev
->revision
< CAS_ID_REV2
)
3395 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3397 /* Only sun has original cassini chips. */
3398 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3400 /* We use a flag because the same phy might be externally
3403 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3404 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3405 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3410 static int cas_check_invariants(struct cas
*cp
)
3412 struct pci_dev
*pdev
= cp
->pdev
;
3416 /* get page size for rx buffers. */
3418 #ifdef USE_PAGE_ORDER
3419 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3420 /* see if we can allocate larger pages */
3421 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3422 CAS_JUMBO_PAGE_SHIFT
-
3425 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3426 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3428 printk("MTU limited to %d bytes\n", CAS_MAX_MTU
);
3432 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3434 /* Fetch the FIFO configurations. */
3435 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3436 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3438 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3439 * they're both connected.
3441 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3442 PCI_SLOT(pdev
->devfn
));
3443 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3444 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3445 return 0; /* no more checking needed */
3449 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3450 if (cfg
& MIF_CFG_MDIO_1
) {
3451 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3452 } else if (cfg
& MIF_CFG_MDIO_0
) {
3453 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3456 cas_mif_poll(cp
, 0);
3457 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3459 for (i
= 0; i
< 32; i
++) {
3463 for (j
= 0; j
< 3; j
++) {
3465 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3466 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3467 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3468 cp
->phy_id
= phy_id
;
3473 pr_err("MII phy did not respond [%08x]\n",
3474 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3478 /* see if we can do gigabit */
3479 cfg
= cas_phy_read(cp
, MII_BMSR
);
3480 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3481 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3482 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3486 /* Must be invoked under cp->lock. */
3487 static inline void cas_start_dma(struct cas
*cp
)
3494 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3495 writel(val
, cp
->regs
+ REG_TX_CFG
);
3496 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3497 writel(val
, cp
->regs
+ REG_RX_CFG
);
3499 /* enable the mac */
3500 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3501 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3502 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3503 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3507 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3508 if ((val
& MAC_TX_CFG_EN
))
3512 if (i
< 0) txfailed
= 1;
3515 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3516 if ((val
& MAC_RX_CFG_EN
)) {
3519 "enabling mac failed [tx:%08x:%08x]\n",
3520 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3521 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3523 goto enable_rx_done
;
3527 netdev_err(cp
->dev
, "enabling mac failed [%s:%08x:%08x]\n",
3528 (txfailed
? "tx,rx" : "rx"),
3529 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3530 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3533 cas_unmask_intr(cp
); /* enable interrupts */
3534 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3535 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3537 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3538 if (N_RX_DESC_RINGS
> 1)
3539 writel(RX_DESC_RINGN_SIZE(1) - 4,
3540 cp
->regs
+ REG_PLUS_RX_KICK1
);
3542 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3543 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3547 /* Must be invoked under cp->lock. */
3548 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3551 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3552 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3553 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3554 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3559 /* Must be invoked under cp->lock. */
3560 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3569 /* use GMII registers */
3570 val
= cas_phy_read(cp
, MII_LPA
);
3571 if (val
& CAS_LPA_PAUSE
)
3574 if (val
& CAS_LPA_ASYM_PAUSE
)
3577 if (val
& LPA_DUPLEX
)
3582 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3583 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3584 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3586 if (val
& CAS_LPA_1000FULL
)
3591 /* A link-up condition has occurred, initialize and enable the
3594 * Must be invoked under cp->lock.
3596 static void cas_set_link_modes(struct cas
*cp
)
3599 int full_duplex
, speed
, pause
;
3605 if (CAS_PHY_MII(cp
->phy_type
)) {
3606 cas_mif_poll(cp
, 0);
3607 val
= cas_phy_read(cp
, MII_BMCR
);
3608 if (val
& BMCR_ANENABLE
) {
3609 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3612 if (val
& BMCR_FULLDPLX
)
3615 if (val
& BMCR_SPEED100
)
3617 else if (val
& CAS_BMCR_SPEED1000
)
3618 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3621 cas_mif_poll(cp
, 1);
3624 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3625 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3626 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3627 if (val
& PCS_MII_CTRL_DUPLEX
)
3632 netif_info(cp
, link
, cp
->dev
, "Link up at %d Mbps, %s-duplex\n",
3633 speed
, full_duplex
? "full" : "half");
3635 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3636 if (CAS_PHY_MII(cp
->phy_type
)) {
3637 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3639 val
|= MAC_XIF_DISABLE_ECHO
;
3642 val
|= MAC_XIF_FDPLX_LED
;
3644 val
|= MAC_XIF_GMII_MODE
;
3645 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3647 /* deal with carrier and collision detect. */
3648 val
= MAC_TX_CFG_IPG_EN
;
3650 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3651 val
|= MAC_TX_CFG_IGNORE_COLL
;
3653 #ifndef USE_CSMA_CD_PROTO
3654 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3655 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3658 /* val now set up for REG_MAC_TX_CFG */
3660 /* If gigabit and half-duplex, enable carrier extension
3661 * mode. increase slot time to 512 bytes as well.
3662 * else, disable it and make sure slot time is 64 bytes.
3663 * also activate checksum bug workaround
3665 if ((speed
== 1000) && !full_duplex
) {
3666 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3667 cp
->regs
+ REG_MAC_TX_CFG
);
3669 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3670 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3671 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3672 cp
->regs
+ REG_MAC_RX_CFG
);
3674 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3677 /* minimum size gigabit frame at half duplex */
3678 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3681 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3683 /* checksum bug workaround. don't strip FCS when in
3686 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3688 val
|= MAC_RX_CFG_STRIP_FCS
;
3690 cp
->min_frame_size
= CAS_MIN_MTU
;
3692 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3694 cp
->min_frame_size
= CAS_MIN_FRAME
;
3696 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3697 cp
->regs
+ REG_MAC_RX_CFG
);
3698 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3701 if (netif_msg_link(cp
)) {
3703 netdev_info(cp
->dev
, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3707 } else if (pause
& 0x10) {
3708 netdev_info(cp
->dev
, "TX pause enabled\n");
3710 netdev_info(cp
->dev
, "Pause is disabled\n");
3714 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3715 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3716 if (pause
) { /* symmetric or asymmetric pause */
3717 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3718 if (pause
& 0x01) { /* symmetric pause */
3719 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3722 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3726 /* Must be invoked under cp->lock. */
3727 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3732 cas_init_pause_thresholds(cp
);
3737 /* Default aneg parameters */
3738 cp
->timer_ticks
= 0;
3739 cas_begin_auto_negotiation(cp
, NULL
);
3740 } else if (cp
->lstate
== link_up
) {
3741 cas_set_link_modes(cp
);
3742 netif_carrier_on(cp
->dev
);
3746 /* Must be invoked under cp->lock. on earlier cassini boards,
3747 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3748 * let it settle out, and then restore pci state.
3750 static void cas_hard_reset(struct cas
*cp
)
3752 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3754 pci_restore_state(cp
->pdev
);
3758 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3762 /* issue a global reset. don't use RSTOUT. */
3763 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3764 /* For PCS, when the blkflag is set, we should set the
3765 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3766 * the last autonegotiation from being cleared. We'll
3767 * need some special handling if the chip is set into a
3770 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3771 cp
->regs
+ REG_SW_RESET
);
3773 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3776 /* need to wait at least 3ms before polling register */
3780 while (limit
-- > 0) {
3781 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3782 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3786 netdev_err(cp
->dev
, "sw reset failed\n");
3789 /* enable various BIM interrupts */
3790 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3791 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3793 /* clear out pci error status mask for handled errors.
3794 * we don't deal with DMA counter overflows as they happen
3797 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3798 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3799 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3800 REG_PCI_ERR_STATUS_MASK
);
3802 /* set up for MII by default to address mac rx reset timeout
3805 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3808 static void cas_reset(struct cas
*cp
, int blkflag
)
3813 cas_global_reset(cp
, blkflag
);
3815 cas_entropy_reset(cp
);
3817 /* disable dma engines. */
3818 val
= readl(cp
->regs
+ REG_TX_CFG
);
3819 val
&= ~TX_CFG_DMA_EN
;
3820 writel(val
, cp
->regs
+ REG_TX_CFG
);
3822 val
= readl(cp
->regs
+ REG_RX_CFG
);
3823 val
&= ~RX_CFG_DMA_EN
;
3824 writel(val
, cp
->regs
+ REG_RX_CFG
);
3826 /* program header parser */
3827 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3828 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3829 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3831 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3834 /* clear out error registers */
3835 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3836 cas_clear_mac_err(cp
);
3837 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3840 /* Shut down the chip, must be called with pm_mutex held. */
3841 static void cas_shutdown(struct cas
*cp
)
3843 unsigned long flags
;
3845 /* Make us not-running to avoid timers respawning */
3848 del_timer_sync(&cp
->link_timer
);
3850 /* Stop the reset task */
3852 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3853 atomic_read(&cp
->reset_task_pending_spare
) ||
3854 atomic_read(&cp
->reset_task_pending_all
))
3858 while (atomic_read(&cp
->reset_task_pending
))
3861 /* Actually stop the chip */
3862 cas_lock_all_save(cp
, flags
);
3864 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3865 cas_phy_powerdown(cp
);
3866 cas_unlock_all_restore(cp
, flags
);
3869 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3871 struct cas
*cp
= netdev_priv(dev
);
3873 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3877 if (!netif_running(dev
) || !netif_device_present(dev
))
3880 /* let the reset task handle it */
3882 atomic_inc(&cp
->reset_task_pending
);
3883 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3884 atomic_inc(&cp
->reset_task_pending_all
);
3886 atomic_inc(&cp
->reset_task_pending_mtu
);
3888 schedule_work(&cp
->reset_task
);
3890 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3891 CAS_RESET_ALL
: CAS_RESET_MTU
);
3892 pr_err("reset called in cas_change_mtu\n");
3893 schedule_work(&cp
->reset_task
);
3896 flush_work_sync(&cp
->reset_task
);
3900 static void cas_clean_txd(struct cas
*cp
, int ring
)
3902 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3903 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3907 size
= TX_DESC_RINGN_SIZE(ring
);
3908 for (i
= 0; i
< size
; i
++) {
3911 if (skbs
[i
] == NULL
)
3917 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3918 int ent
= i
& (size
- 1);
3920 /* first buffer is never a tiny buffer and so
3921 * needs to be unmapped.
3923 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3924 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3925 le64_to_cpu(txd
[ent
].control
));
3926 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3929 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3932 /* next buffer might by a tiny buffer.
3935 ent
= i
& (size
- 1);
3936 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3940 dev_kfree_skb_any(skb
);
3943 /* zero out tiny buf usage */
3944 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3947 /* freed on close */
3948 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3950 cas_page_t
**page
= cp
->rx_pages
[ring
];
3953 size
= RX_DESC_RINGN_SIZE(ring
);
3954 for (i
= 0; i
< size
; i
++) {
3956 cas_page_free(cp
, page
[i
]);
3962 static void cas_free_rxds(struct cas
*cp
)
3966 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3967 cas_free_rx_desc(cp
, i
);
3970 /* Must be invoked under cp->lock. */
3971 static void cas_clean_rings(struct cas
*cp
)
3975 /* need to clean all tx rings */
3976 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
3977 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
3978 for (i
= 0; i
< N_TX_RINGS
; i
++)
3979 cas_clean_txd(cp
, i
);
3981 /* zero out init block */
3982 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
3987 /* allocated on open */
3988 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
3990 cas_page_t
**page
= cp
->rx_pages
[ring
];
3993 size
= RX_DESC_RINGN_SIZE(ring
);
3994 for (i
= 0; i
< size
; i
++) {
3995 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
4001 static int cas_alloc_rxds(struct cas
*cp
)
4005 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4006 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4014 static void cas_reset_task(struct work_struct
*work
)
4016 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
4018 int pending
= atomic_read(&cp
->reset_task_pending
);
4020 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4021 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4022 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4024 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4025 /* We can have more tasks scheduled than actually
4028 atomic_dec(&cp
->reset_task_pending
);
4032 /* The link went down, we reset the ring, but keep
4033 * DMA stopped. Use this function for reset
4036 if (cp
->hw_running
) {
4037 unsigned long flags
;
4039 /* Make sure we don't get interrupts or tx packets */
4040 netif_device_detach(cp
->dev
);
4041 cas_lock_all_save(cp
, flags
);
4044 /* We call cas_spare_recover when we call cas_open.
4045 * but we do not initialize the lists cas_spare_recover
4046 * uses until cas_open is called.
4048 cas_spare_recover(cp
, GFP_ATOMIC
);
4051 /* test => only pending_spare set */
4052 if (!pending_all
&& !pending_mtu
)
4055 if (pending
== CAS_RESET_SPARE
)
4058 /* when pending == CAS_RESET_ALL, the following
4059 * call to cas_init_hw will restart auto negotiation.
4060 * Setting the second argument of cas_reset to
4061 * !(pending == CAS_RESET_ALL) will set this argument
4062 * to 1 (avoiding reinitializing the PHY for the normal
4063 * PCS case) when auto negotiation is not restarted.
4066 cas_reset(cp
, !(pending_all
> 0));
4068 cas_clean_rings(cp
);
4069 cas_init_hw(cp
, (pending_all
> 0));
4071 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4073 cas_clean_rings(cp
);
4074 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4078 cas_unlock_all_restore(cp
, flags
);
4079 netif_device_attach(cp
->dev
);
4082 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4083 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4084 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4085 atomic_dec(&cp
->reset_task_pending
);
4087 atomic_set(&cp
->reset_task_pending
, 0);
4091 static void cas_link_timer(unsigned long data
)
4093 struct cas
*cp
= (struct cas
*) data
;
4094 int mask
, pending
= 0, reset
= 0;
4095 unsigned long flags
;
4097 if (link_transition_timeout
!= 0 &&
4098 cp
->link_transition_jiffies_valid
&&
4099 ((jiffies
- cp
->link_transition_jiffies
) >
4100 (link_transition_timeout
))) {
4101 /* One-second counter so link-down workaround doesn't
4102 * cause resets to occur so fast as to fool the switch
4103 * into thinking the link is down.
4105 cp
->link_transition_jiffies_valid
= 0;
4108 if (!cp
->hw_running
)
4111 spin_lock_irqsave(&cp
->lock
, flags
);
4113 cas_entropy_gather(cp
);
4115 /* If the link task is still pending, we just
4116 * reschedule the link timer
4119 if (atomic_read(&cp
->reset_task_pending_all
) ||
4120 atomic_read(&cp
->reset_task_pending_spare
) ||
4121 atomic_read(&cp
->reset_task_pending_mtu
))
4124 if (atomic_read(&cp
->reset_task_pending
))
4128 /* check for rx cleaning */
4129 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4132 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4133 rmask
= CAS_FLAG_RXD_POST(i
);
4134 if ((mask
& rmask
) == 0)
4137 /* post_rxds will do a mod_timer */
4138 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4142 cp
->cas_flags
&= ~rmask
;
4146 if (CAS_PHY_MII(cp
->phy_type
)) {
4148 cas_mif_poll(cp
, 0);
4149 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4150 /* WTZ: Solaris driver reads this twice, but that
4151 * may be due to the PCS case and the use of a
4152 * common implementation. Read it twice here to be
4155 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4156 cas_mif_poll(cp
, 1);
4157 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4158 reset
= cas_mii_link_check(cp
, bmsr
);
4160 reset
= cas_pcs_link_check(cp
);
4166 /* check for tx state machine confusion */
4167 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4168 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4170 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4172 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4173 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4174 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4175 "tx err: MAC_STATE[%08x]\n", val
);
4180 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4181 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4182 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4183 if ((val
== 0) && (wptr
!= rptr
)) {
4184 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4185 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4197 atomic_inc(&cp
->reset_task_pending
);
4198 atomic_inc(&cp
->reset_task_pending_all
);
4199 schedule_work(&cp
->reset_task
);
4201 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4202 pr_err("reset called in cas_link_timer\n");
4203 schedule_work(&cp
->reset_task
);
4208 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4210 spin_unlock_irqrestore(&cp
->lock
, flags
);
4213 /* tiny buffers are used to avoid target abort issues with
4216 static void cas_tx_tiny_free(struct cas
*cp
)
4218 struct pci_dev
*pdev
= cp
->pdev
;
4221 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4222 if (!cp
->tx_tiny_bufs
[i
])
4225 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4226 cp
->tx_tiny_bufs
[i
],
4227 cp
->tx_tiny_dvma
[i
]);
4228 cp
->tx_tiny_bufs
[i
] = NULL
;
4232 static int cas_tx_tiny_alloc(struct cas
*cp
)
4234 struct pci_dev
*pdev
= cp
->pdev
;
4237 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4238 cp
->tx_tiny_bufs
[i
] =
4239 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4240 &cp
->tx_tiny_dvma
[i
]);
4241 if (!cp
->tx_tiny_bufs
[i
]) {
4242 cas_tx_tiny_free(cp
);
4250 static int cas_open(struct net_device
*dev
)
4252 struct cas
*cp
= netdev_priv(dev
);
4254 unsigned long flags
;
4256 mutex_lock(&cp
->pm_mutex
);
4258 hw_was_up
= cp
->hw_running
;
4260 /* The power-management mutex protects the hw_running
4261 * etc. state so it is safe to do this bit without cp->lock
4263 if (!cp
->hw_running
) {
4264 /* Reset the chip */
4265 cas_lock_all_save(cp
, flags
);
4266 /* We set the second arg to cas_reset to zero
4267 * because cas_init_hw below will have its second
4268 * argument set to non-zero, which will force
4269 * autonegotiation to start.
4273 cas_unlock_all_restore(cp
, flags
);
4277 if (cas_tx_tiny_alloc(cp
) < 0)
4280 /* alloc rx descriptors */
4281 if (cas_alloc_rxds(cp
) < 0)
4284 /* allocate spares */
4286 cas_spare_recover(cp
, GFP_KERNEL
);
4288 /* We can now request the interrupt as we know it's masked
4289 * on the controller. cassini+ has up to 4 interrupts
4290 * that can be used, but you need to do explicit pci interrupt
4291 * mapping to expose them
4293 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4294 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4295 netdev_err(cp
->dev
, "failed to request irq !\n");
4301 napi_enable(&cp
->napi
);
4304 cas_lock_all_save(cp
, flags
);
4305 cas_clean_rings(cp
);
4306 cas_init_hw(cp
, !hw_was_up
);
4308 cas_unlock_all_restore(cp
, flags
);
4310 netif_start_queue(dev
);
4311 mutex_unlock(&cp
->pm_mutex
);
4318 cas_tx_tiny_free(cp
);
4320 mutex_unlock(&cp
->pm_mutex
);
4324 static int cas_close(struct net_device
*dev
)
4326 unsigned long flags
;
4327 struct cas
*cp
= netdev_priv(dev
);
4330 napi_disable(&cp
->napi
);
4332 /* Make sure we don't get distracted by suspend/resume */
4333 mutex_lock(&cp
->pm_mutex
);
4335 netif_stop_queue(dev
);
4337 /* Stop traffic, mark us closed */
4338 cas_lock_all_save(cp
, flags
);
4342 cas_begin_auto_negotiation(cp
, NULL
);
4343 cas_clean_rings(cp
);
4344 cas_unlock_all_restore(cp
, flags
);
4346 free_irq(cp
->pdev
->irq
, (void *) dev
);
4349 cas_tx_tiny_free(cp
);
4350 mutex_unlock(&cp
->pm_mutex
);
4355 const char name
[ETH_GSTRING_LEN
];
4356 } ethtool_cassini_statnames
[] = {
4363 {"rx_frame_errors"},
4364 {"rx_length_errors"},
4367 {"tx_aborted_errors"},
4374 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4377 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4378 } ethtool_register_table
[] = {
4393 {REG_PCS_MII_STATUS
},
4394 {REG_PCS_STATE_MACHINE
},
4395 {REG_MAC_COLL_EXCESS
},
4398 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4399 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4401 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4405 unsigned long flags
;
4407 spin_lock_irqsave(&cp
->lock
, flags
);
4408 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4411 if (ethtool_register_table
[i
].offsets
< 0) {
4412 hval
= cas_phy_read(cp
,
4413 -ethtool_register_table
[i
].offsets
);
4416 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4418 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4420 spin_unlock_irqrestore(&cp
->lock
, flags
);
4423 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4425 struct cas
*cp
= netdev_priv(dev
);
4426 struct net_device_stats
*stats
= cp
->net_stats
;
4427 unsigned long flags
;
4431 /* we collate all of the stats into net_stats[N_TX_RING] */
4432 if (!cp
->hw_running
)
4433 return stats
+ N_TX_RINGS
;
4435 /* collect outstanding stats */
4436 /* WTZ: the Cassini spec gives these as 16 bit counters but
4437 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4438 * in case the chip somehow puts any garbage in the other bits.
4439 * Also, counter usage didn't seem to mach what Adrian did
4440 * in the parts of the code that set these quantities. Made
4443 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4444 stats
[N_TX_RINGS
].rx_crc_errors
+=
4445 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4446 stats
[N_TX_RINGS
].rx_frame_errors
+=
4447 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4448 stats
[N_TX_RINGS
].rx_length_errors
+=
4449 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4451 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4452 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4453 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4454 stats
[N_TX_RINGS
].collisions
+=
4455 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4457 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4458 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4459 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4460 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4462 cas_clear_mac_err(cp
);
4464 /* saved bits that are unique to ring 0 */
4465 spin_lock(&cp
->stat_lock
[0]);
4466 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4467 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4468 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4469 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4470 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4471 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4472 spin_unlock(&cp
->stat_lock
[0]);
4474 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4475 spin_lock(&cp
->stat_lock
[i
]);
4476 stats
[N_TX_RINGS
].rx_length_errors
+=
4477 stats
[i
].rx_length_errors
;
4478 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4479 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4480 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4481 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4482 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4483 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4484 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4485 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4486 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4487 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4488 spin_unlock(&cp
->stat_lock
[i
]);
4490 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4491 return stats
+ N_TX_RINGS
;
4495 static void cas_set_multicast(struct net_device
*dev
)
4497 struct cas
*cp
= netdev_priv(dev
);
4498 u32 rxcfg
, rxcfg_new
;
4499 unsigned long flags
;
4500 int limit
= STOP_TRIES
;
4502 if (!cp
->hw_running
)
4505 spin_lock_irqsave(&cp
->lock
, flags
);
4506 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4508 /* disable RX MAC and wait for completion */
4509 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4510 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4516 /* disable hash filter and wait for completion */
4518 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4519 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4520 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4526 /* program hash filters */
4527 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4529 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4530 spin_unlock_irqrestore(&cp
->lock
, flags
);
4533 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4535 struct cas
*cp
= netdev_priv(dev
);
4536 strncpy(info
->driver
, DRV_MODULE_NAME
, ETHTOOL_BUSINFO_LEN
);
4537 strncpy(info
->version
, DRV_MODULE_VERSION
, ETHTOOL_BUSINFO_LEN
);
4538 info
->fw_version
[0] = '\0';
4539 strncpy(info
->bus_info
, pci_name(cp
->pdev
), ETHTOOL_BUSINFO_LEN
);
4540 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4541 cp
->casreg_len
: CAS_MAX_REGS
;
4542 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4545 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4547 struct cas
*cp
= netdev_priv(dev
);
4549 int full_duplex
, speed
, pause
;
4550 unsigned long flags
;
4551 enum link_state linkstate
= link_up
;
4553 cmd
->advertising
= 0;
4554 cmd
->supported
= SUPPORTED_Autoneg
;
4555 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4556 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4557 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4560 /* Record PHY settings if HW is on. */
4561 spin_lock_irqsave(&cp
->lock
, flags
);
4563 linkstate
= cp
->lstate
;
4564 if (CAS_PHY_MII(cp
->phy_type
)) {
4565 cmd
->port
= PORT_MII
;
4566 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4567 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4568 cmd
->phy_address
= cp
->phy_addr
;
4569 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4570 ADVERTISED_10baseT_Half
|
4571 ADVERTISED_10baseT_Full
|
4572 ADVERTISED_100baseT_Half
|
4573 ADVERTISED_100baseT_Full
;
4576 (SUPPORTED_10baseT_Half
|
4577 SUPPORTED_10baseT_Full
|
4578 SUPPORTED_100baseT_Half
|
4579 SUPPORTED_100baseT_Full
|
4580 SUPPORTED_TP
| SUPPORTED_MII
);
4582 if (cp
->hw_running
) {
4583 cas_mif_poll(cp
, 0);
4584 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4585 cas_read_mii_link_mode(cp
, &full_duplex
,
4587 cas_mif_poll(cp
, 1);
4591 cmd
->port
= PORT_FIBRE
;
4592 cmd
->transceiver
= XCVR_INTERNAL
;
4593 cmd
->phy_address
= 0;
4594 cmd
->supported
|= SUPPORTED_FIBRE
;
4595 cmd
->advertising
|= ADVERTISED_FIBRE
;
4597 if (cp
->hw_running
) {
4598 /* pcs uses the same bits as mii */
4599 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4600 cas_read_pcs_link_mode(cp
, &full_duplex
,
4604 spin_unlock_irqrestore(&cp
->lock
, flags
);
4606 if (bmcr
& BMCR_ANENABLE
) {
4607 cmd
->advertising
|= ADVERTISED_Autoneg
;
4608 cmd
->autoneg
= AUTONEG_ENABLE
;
4609 ethtool_cmd_speed_set(cmd
, ((speed
== 10) ?
4612 SPEED_1000
: SPEED_100
)));
4613 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4615 cmd
->autoneg
= AUTONEG_DISABLE
;
4616 ethtool_cmd_speed_set(cmd
, ((bmcr
& CAS_BMCR_SPEED1000
) ?
4618 ((bmcr
& BMCR_SPEED100
) ?
4619 SPEED_100
: SPEED_10
)));
4621 (bmcr
& BMCR_FULLDPLX
) ?
4622 DUPLEX_FULL
: DUPLEX_HALF
;
4624 if (linkstate
!= link_up
) {
4625 /* Force these to "unknown" if the link is not up and
4626 * autonogotiation in enabled. We can set the link
4627 * speed to 0, but not cmd->duplex,
4628 * because its legal values are 0 and 1. Ethtool will
4629 * print the value reported in parentheses after the
4630 * word "Unknown" for unrecognized values.
4632 * If in forced mode, we report the speed and duplex
4633 * settings that we configured.
4635 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4636 ethtool_cmd_speed_set(cmd
, 0);
4639 ethtool_cmd_speed_set(cmd
, SPEED_10
);
4640 if (cp
->link_cntl
& BMCR_SPEED100
) {
4641 ethtool_cmd_speed_set(cmd
, SPEED_100
);
4642 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4643 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
4645 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4646 DUPLEX_FULL
: DUPLEX_HALF
;
4652 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4654 struct cas
*cp
= netdev_priv(dev
);
4655 unsigned long flags
;
4656 u32 speed
= ethtool_cmd_speed(cmd
);
4658 /* Verify the settings we care about. */
4659 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4660 cmd
->autoneg
!= AUTONEG_DISABLE
)
4663 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4664 ((speed
!= SPEED_1000
&&
4665 speed
!= SPEED_100
&&
4666 speed
!= SPEED_10
) ||
4667 (cmd
->duplex
!= DUPLEX_HALF
&&
4668 cmd
->duplex
!= DUPLEX_FULL
)))
4671 /* Apply settings and restart link process. */
4672 spin_lock_irqsave(&cp
->lock
, flags
);
4673 cas_begin_auto_negotiation(cp
, cmd
);
4674 spin_unlock_irqrestore(&cp
->lock
, flags
);
4678 static int cas_nway_reset(struct net_device
*dev
)
4680 struct cas
*cp
= netdev_priv(dev
);
4681 unsigned long flags
;
4683 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4686 /* Restart link process. */
4687 spin_lock_irqsave(&cp
->lock
, flags
);
4688 cas_begin_auto_negotiation(cp
, NULL
);
4689 spin_unlock_irqrestore(&cp
->lock
, flags
);
4694 static u32
cas_get_link(struct net_device
*dev
)
4696 struct cas
*cp
= netdev_priv(dev
);
4697 return cp
->lstate
== link_up
;
4700 static u32
cas_get_msglevel(struct net_device
*dev
)
4702 struct cas
*cp
= netdev_priv(dev
);
4703 return cp
->msg_enable
;
4706 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4708 struct cas
*cp
= netdev_priv(dev
);
4709 cp
->msg_enable
= value
;
4712 static int cas_get_regs_len(struct net_device
*dev
)
4714 struct cas
*cp
= netdev_priv(dev
);
4715 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4718 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4721 struct cas
*cp
= netdev_priv(dev
);
4723 /* cas_read_regs handles locks (cp->lock). */
4724 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4727 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4731 return CAS_NUM_STAT_KEYS
;
4737 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4739 memcpy(data
, ðtool_cassini_statnames
,
4740 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4743 static void cas_get_ethtool_stats(struct net_device
*dev
,
4744 struct ethtool_stats
*estats
, u64
*data
)
4746 struct cas
*cp
= netdev_priv(dev
);
4747 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4749 data
[i
++] = stats
->collisions
;
4750 data
[i
++] = stats
->rx_bytes
;
4751 data
[i
++] = stats
->rx_crc_errors
;
4752 data
[i
++] = stats
->rx_dropped
;
4753 data
[i
++] = stats
->rx_errors
;
4754 data
[i
++] = stats
->rx_fifo_errors
;
4755 data
[i
++] = stats
->rx_frame_errors
;
4756 data
[i
++] = stats
->rx_length_errors
;
4757 data
[i
++] = stats
->rx_over_errors
;
4758 data
[i
++] = stats
->rx_packets
;
4759 data
[i
++] = stats
->tx_aborted_errors
;
4760 data
[i
++] = stats
->tx_bytes
;
4761 data
[i
++] = stats
->tx_dropped
;
4762 data
[i
++] = stats
->tx_errors
;
4763 data
[i
++] = stats
->tx_fifo_errors
;
4764 data
[i
++] = stats
->tx_packets
;
4765 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4768 static const struct ethtool_ops cas_ethtool_ops
= {
4769 .get_drvinfo
= cas_get_drvinfo
,
4770 .get_settings
= cas_get_settings
,
4771 .set_settings
= cas_set_settings
,
4772 .nway_reset
= cas_nway_reset
,
4773 .get_link
= cas_get_link
,
4774 .get_msglevel
= cas_get_msglevel
,
4775 .set_msglevel
= cas_set_msglevel
,
4776 .get_regs_len
= cas_get_regs_len
,
4777 .get_regs
= cas_get_regs
,
4778 .get_sset_count
= cas_get_sset_count
,
4779 .get_strings
= cas_get_strings
,
4780 .get_ethtool_stats
= cas_get_ethtool_stats
,
4783 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4785 struct cas
*cp
= netdev_priv(dev
);
4786 struct mii_ioctl_data
*data
= if_mii(ifr
);
4787 unsigned long flags
;
4788 int rc
= -EOPNOTSUPP
;
4790 /* Hold the PM mutex while doing ioctl's or we may collide
4791 * with open/close and power management and oops.
4793 mutex_lock(&cp
->pm_mutex
);
4795 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4796 data
->phy_id
= cp
->phy_addr
;
4797 /* Fallthrough... */
4799 case SIOCGMIIREG
: /* Read MII PHY register. */
4800 spin_lock_irqsave(&cp
->lock
, flags
);
4801 cas_mif_poll(cp
, 0);
4802 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4803 cas_mif_poll(cp
, 1);
4804 spin_unlock_irqrestore(&cp
->lock
, flags
);
4808 case SIOCSMIIREG
: /* Write MII PHY register. */
4809 spin_lock_irqsave(&cp
->lock
, flags
);
4810 cas_mif_poll(cp
, 0);
4811 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4812 cas_mif_poll(cp
, 1);
4813 spin_unlock_irqrestore(&cp
->lock
, flags
);
4819 mutex_unlock(&cp
->pm_mutex
);
4823 /* When this chip sits underneath an Intel 31154 bridge, it is the
4824 * only subordinate device and we can tweak the bridge settings to
4825 * reflect that fact.
4827 static void __devinit
cas_program_bridge(struct pci_dev
*cas_pdev
)
4829 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4835 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4838 /* Clear bit 10 (Bus Parking Control) in the Secondary
4839 * Arbiter Control/Status Register which lives at offset
4840 * 0x41. Using a 32-bit word read/modify/write at 0x40
4841 * is much simpler so that's how we do this.
4843 pci_read_config_dword(pdev
, 0x40, &val
);
4845 pci_write_config_dword(pdev
, 0x40, val
);
4847 /* Max out the Multi-Transaction Timer settings since
4848 * Cassini is the only device present.
4850 * The register is 16-bit and lives at 0x50. When the
4851 * settings are enabled, it extends the GRANT# signal
4852 * for a requestor after a transaction is complete. This
4853 * allows the next request to run without first needing
4854 * to negotiate the GRANT# signal back.
4856 * Bits 12:10 define the grant duration:
4864 * All other values are illegal.
4866 * Bits 09:00 define which REQ/GNT signal pairs get the
4867 * GRANT# signal treatment. We set them all.
4869 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4871 /* The Read Prefecth Policy register is 16-bit and sits at
4872 * offset 0x52. It enables a "smart" pre-fetch policy. We
4873 * enable it and max out all of the settings since only one
4874 * device is sitting underneath and thus bandwidth sharing is
4877 * The register has several 3 bit fields, which indicates a
4878 * multiplier applied to the base amount of prefetching the
4879 * chip would do. These fields are at:
4881 * 15:13 --- ReRead Primary Bus
4882 * 12:10 --- FirstRead Primary Bus
4883 * 09:07 --- ReRead Secondary Bus
4884 * 06:04 --- FirstRead Secondary Bus
4886 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4887 * get enabled on. Bit 3 is a grouped enabler which controls
4888 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4889 * the individual REQ/GNT pairs [2:0].
4891 pci_write_config_word(pdev
, 0x52,
4898 /* Force cacheline size to 0x8 */
4899 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4901 /* Force latency timer to maximum setting so Cassini can
4902 * sit on the bus as long as it likes.
4904 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4907 static const struct net_device_ops cas_netdev_ops
= {
4908 .ndo_open
= cas_open
,
4909 .ndo_stop
= cas_close
,
4910 .ndo_start_xmit
= cas_start_xmit
,
4911 .ndo_get_stats
= cas_get_stats
,
4912 .ndo_set_multicast_list
= cas_set_multicast
,
4913 .ndo_do_ioctl
= cas_ioctl
,
4914 .ndo_tx_timeout
= cas_tx_timeout
,
4915 .ndo_change_mtu
= cas_change_mtu
,
4916 .ndo_set_mac_address
= eth_mac_addr
,
4917 .ndo_validate_addr
= eth_validate_addr
,
4918 #ifdef CONFIG_NET_POLL_CONTROLLER
4919 .ndo_poll_controller
= cas_netpoll
,
4923 static int __devinit
cas_init_one(struct pci_dev
*pdev
,
4924 const struct pci_device_id
*ent
)
4926 static int cas_version_printed
= 0;
4927 unsigned long casreg_len
;
4928 struct net_device
*dev
;
4930 int i
, err
, pci_using_dac
;
4932 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4934 if (cas_version_printed
++ == 0)
4935 pr_info("%s", version
);
4937 err
= pci_enable_device(pdev
);
4939 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
4943 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4944 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
4945 "base address, aborting\n");
4947 goto err_out_disable_pdev
;
4950 dev
= alloc_etherdev(sizeof(*cp
));
4952 dev_err(&pdev
->dev
, "Etherdev alloc failed, aborting\n");
4954 goto err_out_disable_pdev
;
4956 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4958 err
= pci_request_regions(pdev
, dev
->name
);
4960 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
4961 goto err_out_free_netdev
;
4963 pci_set_master(pdev
);
4965 /* we must always turn on parity response or else parity
4966 * doesn't get generated properly. disable SERR/PERR as well.
4967 * in addition, we want to turn MWI on.
4969 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4970 pci_cmd
&= ~PCI_COMMAND_SERR
;
4971 pci_cmd
|= PCI_COMMAND_PARITY
;
4972 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4973 if (pci_try_set_mwi(pdev
))
4974 pr_warning("Could not enable MWI for %s\n", pci_name(pdev
));
4976 cas_program_bridge(pdev
);
4979 * On some architectures, the default cache line size set
4980 * by pci_try_set_mwi reduces perforamnce. We have to increase
4981 * it for this case. To start, we'll print some configuration
4985 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4986 &orig_cacheline_size
);
4987 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4988 cas_cacheline_size
=
4989 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4990 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
4991 if (pci_write_config_byte(pdev
,
4992 PCI_CACHE_LINE_SIZE
,
4993 cas_cacheline_size
)) {
4994 dev_err(&pdev
->dev
, "Could not set PCI cache "
4996 goto err_write_cacheline
;
5002 /* Configure DMA attributes. */
5003 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
5005 err
= pci_set_consistent_dma_mask(pdev
,
5008 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
5009 "for consistent allocations\n");
5010 goto err_out_free_res
;
5014 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
5016 dev_err(&pdev
->dev
, "No usable DMA configuration, "
5018 goto err_out_free_res
;
5023 casreg_len
= pci_resource_len(pdev
, 0);
5025 cp
= netdev_priv(dev
);
5028 /* A value of 0 indicates we never explicitly set it */
5029 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5032 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5035 #if defined(CONFIG_SPARC)
5036 cp
->of_node
= pci_device_to_OF_node(pdev
);
5039 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5040 cp
->link_transition_jiffies_valid
= 0;
5042 spin_lock_init(&cp
->lock
);
5043 spin_lock_init(&cp
->rx_inuse_lock
);
5044 spin_lock_init(&cp
->rx_spare_lock
);
5045 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5046 spin_lock_init(&cp
->stat_lock
[i
]);
5047 spin_lock_init(&cp
->tx_lock
[i
]);
5049 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5050 mutex_init(&cp
->pm_mutex
);
5052 init_timer(&cp
->link_timer
);
5053 cp
->link_timer
.function
= cas_link_timer
;
5054 cp
->link_timer
.data
= (unsigned long) cp
;
5057 /* Just in case the implementation of atomic operations
5058 * change so that an explicit initialization is necessary.
5060 atomic_set(&cp
->reset_task_pending
, 0);
5061 atomic_set(&cp
->reset_task_pending_all
, 0);
5062 atomic_set(&cp
->reset_task_pending_spare
, 0);
5063 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5065 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5067 /* Default link parameters */
5068 if (link_mode
>= 0 && link_mode
< 6)
5069 cp
->link_cntl
= link_modes
[link_mode
];
5071 cp
->link_cntl
= BMCR_ANENABLE
;
5072 cp
->lstate
= link_down
;
5073 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5074 netif_carrier_off(cp
->dev
);
5075 cp
->timer_ticks
= 0;
5077 /* give us access to cassini registers */
5078 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5080 dev_err(&pdev
->dev
, "Cannot map device registers, aborting\n");
5081 goto err_out_free_res
;
5083 cp
->casreg_len
= casreg_len
;
5085 pci_save_state(pdev
);
5086 cas_check_pci_invariants(cp
);
5089 if (cas_check_invariants(cp
))
5090 goto err_out_iounmap
;
5091 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
5092 if (cas_saturn_firmware_init(cp
))
5093 goto err_out_iounmap
;
5095 cp
->init_block
= (struct cas_init_block
*)
5096 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5098 if (!cp
->init_block
) {
5099 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting\n");
5100 goto err_out_iounmap
;
5103 for (i
= 0; i
< N_TX_RINGS
; i
++)
5104 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5106 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5107 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5109 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5110 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5112 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5113 skb_queue_head_init(&cp
->rx_flows
[i
]);
5115 dev
->netdev_ops
= &cas_netdev_ops
;
5116 dev
->ethtool_ops
= &cas_ethtool_ops
;
5117 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5120 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5122 dev
->irq
= pdev
->irq
;
5125 /* Cassini features. */
5126 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5127 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5130 dev
->features
|= NETIF_F_HIGHDMA
;
5132 if (register_netdev(dev
)) {
5133 dev_err(&pdev
->dev
, "Cannot register net device, aborting\n");
5134 goto err_out_free_consistent
;
5137 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5138 netdev_info(dev
, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5139 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5140 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5141 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5142 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5145 pci_set_drvdata(pdev
, dev
);
5147 cas_entropy_reset(cp
);
5149 cas_begin_auto_negotiation(cp
, NULL
);
5152 err_out_free_consistent
:
5153 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5154 cp
->init_block
, cp
->block_dvma
);
5157 mutex_lock(&cp
->pm_mutex
);
5160 mutex_unlock(&cp
->pm_mutex
);
5162 pci_iounmap(pdev
, cp
->regs
);
5166 pci_release_regions(pdev
);
5168 err_write_cacheline
:
5169 /* Try to restore it in case the error occurred after we
5172 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5174 err_out_free_netdev
:
5177 err_out_disable_pdev
:
5178 pci_disable_device(pdev
);
5179 pci_set_drvdata(pdev
, NULL
);
5183 static void __devexit
cas_remove_one(struct pci_dev
*pdev
)
5185 struct net_device
*dev
= pci_get_drvdata(pdev
);
5190 cp
= netdev_priv(dev
);
5191 unregister_netdev(dev
);
5196 mutex_lock(&cp
->pm_mutex
);
5197 cancel_work_sync(&cp
->reset_task
);
5200 mutex_unlock(&cp
->pm_mutex
);
5203 if (cp
->orig_cacheline_size
) {
5204 /* Restore the cache line size if we had modified
5207 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5208 cp
->orig_cacheline_size
);
5211 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5212 cp
->init_block
, cp
->block_dvma
);
5213 pci_iounmap(pdev
, cp
->regs
);
5215 pci_release_regions(pdev
);
5216 pci_disable_device(pdev
);
5217 pci_set_drvdata(pdev
, NULL
);
5221 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5223 struct net_device
*dev
= pci_get_drvdata(pdev
);
5224 struct cas
*cp
= netdev_priv(dev
);
5225 unsigned long flags
;
5227 mutex_lock(&cp
->pm_mutex
);
5229 /* If the driver is opened, we stop the DMA */
5231 netif_device_detach(dev
);
5233 cas_lock_all_save(cp
, flags
);
5235 /* We can set the second arg of cas_reset to 0
5236 * because on resume, we'll call cas_init_hw with
5237 * its second arg set so that autonegotiation is
5241 cas_clean_rings(cp
);
5242 cas_unlock_all_restore(cp
, flags
);
5247 mutex_unlock(&cp
->pm_mutex
);
5252 static int cas_resume(struct pci_dev
*pdev
)
5254 struct net_device
*dev
= pci_get_drvdata(pdev
);
5255 struct cas
*cp
= netdev_priv(dev
);
5257 netdev_info(dev
, "resuming\n");
5259 mutex_lock(&cp
->pm_mutex
);
5262 unsigned long flags
;
5263 cas_lock_all_save(cp
, flags
);
5266 cas_clean_rings(cp
);
5268 cas_unlock_all_restore(cp
, flags
);
5270 netif_device_attach(dev
);
5272 mutex_unlock(&cp
->pm_mutex
);
5275 #endif /* CONFIG_PM */
5277 static struct pci_driver cas_driver
= {
5278 .name
= DRV_MODULE_NAME
,
5279 .id_table
= cas_pci_tbl
,
5280 .probe
= cas_init_one
,
5281 .remove
= __devexit_p(cas_remove_one
),
5283 .suspend
= cas_suspend
,
5284 .resume
= cas_resume
5288 static int __init
cas_init(void)
5290 if (linkdown_timeout
> 0)
5291 link_transition_timeout
= linkdown_timeout
* HZ
;
5293 link_transition_timeout
= 0;
5295 return pci_register_driver(&cas_driver
);
5298 static void __exit
cas_cleanup(void)
5300 pci_unregister_driver(&cas_driver
);
5303 module_init(cas_init
);
5304 module_exit(cas_cleanup
);