3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfreds@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
66 #include <linux/config.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/init.h>
70 #include <linux/proc_fs.h>
71 #include <linux/time.h>
72 #include <linux/smp_lock.h>
73 #include <linux/security.h>
74 #include <linux/syscalls.h>
75 #include <linux/audit.h>
76 #include <linux/seq_file.h>
77 #include <asm/uaccess.h>
81 #define sem_lock(id) ((struct sem_array*)ipc_lock(&sem_ids,id))
82 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
83 #define sem_rmid(id) ((struct sem_array*)ipc_rmid(&sem_ids,id))
84 #define sem_checkid(sma, semid) \
85 ipc_checkid(&sem_ids,&sma->sem_perm,semid)
86 #define sem_buildid(id, seq) \
87 ipc_buildid(&sem_ids, id, seq)
88 static struct ipc_ids sem_ids
;
90 static int newary (key_t
, int, int);
91 static void freeary (struct sem_array
*sma
, int id
);
93 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
96 #define SEMMSL_FAST 256 /* 512 bytes on stack */
97 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
100 * linked list protection:
102 * sem_array.sem_pending{,last},
103 * sem_array.sem_undo: sem_lock() for read/write
104 * sem_undo.proc_next: only "current" is allowed to read/write that field.
108 int sem_ctls
[4] = {SEMMSL
, SEMMNS
, SEMOPM
, SEMMNI
};
109 #define sc_semmsl (sem_ctls[0])
110 #define sc_semmns (sem_ctls[1])
111 #define sc_semopm (sem_ctls[2])
112 #define sc_semmni (sem_ctls[3])
114 static int used_sems
;
116 void __init
sem_init (void)
119 ipc_init_ids(&sem_ids
,sc_semmni
);
120 ipc_init_proc_interface("sysvipc/sem",
121 " key semid perms nsems uid gid cuid cgid otime ctime\n",
123 sysvipc_sem_proc_show
);
127 * Lockless wakeup algorithm:
128 * Without the check/retry algorithm a lockless wakeup is possible:
129 * - queue.status is initialized to -EINTR before blocking.
130 * - wakeup is performed by
131 * * unlinking the queue entry from sma->sem_pending
132 * * setting queue.status to IN_WAKEUP
133 * This is the notification for the blocked thread that a
134 * result value is imminent.
135 * * call wake_up_process
136 * * set queue.status to the final value.
137 * - the previously blocked thread checks queue.status:
138 * * if it's IN_WAKEUP, then it must wait until the value changes
139 * * if it's not -EINTR, then the operation was completed by
140 * update_queue. semtimedop can return queue.status without
141 * performing any operation on the semaphore array.
142 * * otherwise it must acquire the spinlock and check what's up.
144 * The two-stage algorithm is necessary to protect against the following
146 * - if queue.status is set after wake_up_process, then the woken up idle
147 * thread could race forward and try (and fail) to acquire sma->lock
148 * before update_queue had a chance to set queue.status
149 * - if queue.status is written before wake_up_process and if the
150 * blocked process is woken up by a signal between writing
151 * queue.status and the wake_up_process, then the woken up
152 * process could return from semtimedop and die by calling
153 * sys_exit before wake_up_process is called. Then wake_up_process
154 * will oops, because the task structure is already invalid.
155 * (yes, this happened on s390 with sysv msg).
160 static int newary (key_t key
, int nsems
, int semflg
)
164 struct sem_array
*sma
;
169 if (used_sems
+ nsems
> sc_semmns
)
172 size
= sizeof (*sma
) + nsems
* sizeof (struct sem
);
173 sma
= ipc_rcu_alloc(size
);
177 memset (sma
, 0, size
);
179 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
180 sma
->sem_perm
.key
= key
;
182 sma
->sem_perm
.security
= NULL
;
183 retval
= security_sem_alloc(sma
);
189 id
= ipc_addid(&sem_ids
, &sma
->sem_perm
, sc_semmni
);
191 security_sem_free(sma
);
197 sma
->sem_id
= sem_buildid(id
, sma
->sem_perm
.seq
);
198 sma
->sem_base
= (struct sem
*) &sma
[1];
199 /* sma->sem_pending = NULL; */
200 sma
->sem_pending_last
= &sma
->sem_pending
;
201 /* sma->undo = NULL; */
202 sma
->sem_nsems
= nsems
;
203 sma
->sem_ctime
= get_seconds();
209 asmlinkage
long sys_semget (key_t key
, int nsems
, int semflg
)
211 int id
, err
= -EINVAL
;
212 struct sem_array
*sma
;
214 if (nsems
< 0 || nsems
> sc_semmsl
)
218 if (key
== IPC_PRIVATE
) {
219 err
= newary(key
, nsems
, semflg
);
220 } else if ((id
= ipc_findkey(&sem_ids
, key
)) == -1) { /* key not used */
221 if (!(semflg
& IPC_CREAT
))
224 err
= newary(key
, nsems
, semflg
);
225 } else if (semflg
& IPC_CREAT
&& semflg
& IPC_EXCL
) {
231 if (nsems
> sma
->sem_nsems
)
233 else if (ipcperms(&sma
->sem_perm
, semflg
))
236 int semid
= sem_buildid(id
, sma
->sem_perm
.seq
);
237 err
= security_sem_associate(sma
, semflg
);
248 /* Manage the doubly linked list sma->sem_pending as a FIFO:
249 * insert new queue elements at the tail sma->sem_pending_last.
251 static inline void append_to_queue (struct sem_array
* sma
,
252 struct sem_queue
* q
)
254 *(q
->prev
= sma
->sem_pending_last
) = q
;
255 *(sma
->sem_pending_last
= &q
->next
) = NULL
;
258 static inline void prepend_to_queue (struct sem_array
* sma
,
259 struct sem_queue
* q
)
261 q
->next
= sma
->sem_pending
;
262 *(q
->prev
= &sma
->sem_pending
) = q
;
264 q
->next
->prev
= &q
->next
;
265 else /* sma->sem_pending_last == &sma->sem_pending */
266 sma
->sem_pending_last
= &q
->next
;
269 static inline void remove_from_queue (struct sem_array
* sma
,
270 struct sem_queue
* q
)
272 *(q
->prev
) = q
->next
;
274 q
->next
->prev
= q
->prev
;
275 else /* sma->sem_pending_last == &q->next */
276 sma
->sem_pending_last
= q
->prev
;
277 q
->prev
= NULL
; /* mark as removed */
281 * Determine whether a sequence of semaphore operations would succeed
282 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
285 static int try_atomic_semop (struct sem_array
* sma
, struct sembuf
* sops
,
286 int nsops
, struct sem_undo
*un
, int pid
)
292 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
293 curr
= sma
->sem_base
+ sop
->sem_num
;
294 sem_op
= sop
->sem_op
;
295 result
= curr
->semval
;
297 if (!sem_op
&& result
)
305 if (sop
->sem_flg
& SEM_UNDO
) {
306 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
308 * Exceeding the undo range is an error.
310 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
313 curr
->semval
= result
;
317 while (sop
>= sops
) {
318 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
319 if (sop
->sem_flg
& SEM_UNDO
)
320 un
->semadj
[sop
->sem_num
] -= sop
->sem_op
;
324 sma
->sem_otime
= get_seconds();
332 if (sop
->sem_flg
& IPC_NOWAIT
)
339 while (sop
>= sops
) {
340 sma
->sem_base
[sop
->sem_num
].semval
-= sop
->sem_op
;
347 /* Go through the pending queue for the indicated semaphore
348 * looking for tasks that can be completed.
350 static void update_queue (struct sem_array
* sma
)
353 struct sem_queue
* q
;
355 q
= sma
->sem_pending
;
357 error
= try_atomic_semop(sma
, q
->sops
, q
->nsops
,
360 /* Does q->sleeper still need to sleep? */
363 remove_from_queue(sma
,q
);
364 q
->status
= IN_WAKEUP
;
366 * Continue scanning. The next operation
367 * that must be checked depends on the type of the
368 * completed operation:
369 * - if the operation modified the array, then
370 * restart from the head of the queue and
371 * check for threads that might be waiting
372 * for semaphore values to become 0.
373 * - if the operation didn't modify the array,
374 * then just continue.
377 n
= sma
->sem_pending
;
380 wake_up_process(q
->sleeper
);
381 /* hands-off: q will disappear immediately after
393 /* The following counts are associated to each semaphore:
394 * semncnt number of tasks waiting on semval being nonzero
395 * semzcnt number of tasks waiting on semval being zero
396 * This model assumes that a task waits on exactly one semaphore.
397 * Since semaphore operations are to be performed atomically, tasks actually
398 * wait on a whole sequence of semaphores simultaneously.
399 * The counts we return here are a rough approximation, but still
400 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
402 static int count_semncnt (struct sem_array
* sma
, ushort semnum
)
405 struct sem_queue
* q
;
408 for (q
= sma
->sem_pending
; q
; q
= q
->next
) {
409 struct sembuf
* sops
= q
->sops
;
410 int nsops
= q
->nsops
;
412 for (i
= 0; i
< nsops
; i
++)
413 if (sops
[i
].sem_num
== semnum
414 && (sops
[i
].sem_op
< 0)
415 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
420 static int count_semzcnt (struct sem_array
* sma
, ushort semnum
)
423 struct sem_queue
* q
;
426 for (q
= sma
->sem_pending
; q
; q
= q
->next
) {
427 struct sembuf
* sops
= q
->sops
;
428 int nsops
= q
->nsops
;
430 for (i
= 0; i
< nsops
; i
++)
431 if (sops
[i
].sem_num
== semnum
432 && (sops
[i
].sem_op
== 0)
433 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
439 /* Free a semaphore set. freeary() is called with sem_ids.sem down and
440 * the spinlock for this semaphore set hold. sem_ids.sem remains locked
443 static void freeary (struct sem_array
*sma
, int id
)
449 /* Invalidate the existing undo structures for this semaphore set.
450 * (They will be freed without any further action in exit_sem()
451 * or during the next semop.)
453 for (un
= sma
->undo
; un
; un
= un
->id_next
)
456 /* Wake up all pending processes and let them fail with EIDRM. */
457 q
= sma
->sem_pending
;
460 /* lazy remove_from_queue: we are killing the whole queue */
463 q
->status
= IN_WAKEUP
;
464 wake_up_process(q
->sleeper
); /* doesn't sleep */
466 q
->status
= -EIDRM
; /* hands-off q */
470 /* Remove the semaphore set from the ID array*/
474 used_sems
-= sma
->sem_nsems
;
475 size
= sizeof (*sma
) + sma
->sem_nsems
* sizeof (struct sem
);
476 security_sem_free(sma
);
480 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
484 return copy_to_user(buf
, in
, sizeof(*in
));
489 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
491 out
.sem_otime
= in
->sem_otime
;
492 out
.sem_ctime
= in
->sem_ctime
;
493 out
.sem_nsems
= in
->sem_nsems
;
495 return copy_to_user(buf
, &out
, sizeof(out
));
502 static int semctl_nolock(int semid
, int semnum
, int cmd
, int version
, union semun arg
)
505 struct sem_array
*sma
;
511 struct seminfo seminfo
;
514 err
= security_sem_semctl(NULL
, cmd
);
518 memset(&seminfo
,0,sizeof(seminfo
));
519 seminfo
.semmni
= sc_semmni
;
520 seminfo
.semmns
= sc_semmns
;
521 seminfo
.semmsl
= sc_semmsl
;
522 seminfo
.semopm
= sc_semopm
;
523 seminfo
.semvmx
= SEMVMX
;
524 seminfo
.semmnu
= SEMMNU
;
525 seminfo
.semmap
= SEMMAP
;
526 seminfo
.semume
= SEMUME
;
528 if (cmd
== SEM_INFO
) {
529 seminfo
.semusz
= sem_ids
.in_use
;
530 seminfo
.semaem
= used_sems
;
532 seminfo
.semusz
= SEMUSZ
;
533 seminfo
.semaem
= SEMAEM
;
535 max_id
= sem_ids
.max_id
;
537 if (copy_to_user (arg
.__buf
, &seminfo
, sizeof(struct seminfo
)))
539 return (max_id
< 0) ? 0: max_id
;
543 struct semid64_ds tbuf
;
546 if(semid
>= sem_ids
.entries
->size
)
549 memset(&tbuf
,0,sizeof(tbuf
));
551 sma
= sem_lock(semid
);
556 if (ipcperms (&sma
->sem_perm
, S_IRUGO
))
559 err
= security_sem_semctl(sma
, cmd
);
563 id
= sem_buildid(semid
, sma
->sem_perm
.seq
);
565 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
566 tbuf
.sem_otime
= sma
->sem_otime
;
567 tbuf
.sem_ctime
= sma
->sem_ctime
;
568 tbuf
.sem_nsems
= sma
->sem_nsems
;
570 if (copy_semid_to_user (arg
.buf
, &tbuf
, version
))
583 static int semctl_main(int semid
, int semnum
, int cmd
, int version
, union semun arg
)
585 struct sem_array
*sma
;
588 ushort fast_sem_io
[SEMMSL_FAST
];
589 ushort
* sem_io
= fast_sem_io
;
592 sma
= sem_lock(semid
);
596 nsems
= sma
->sem_nsems
;
599 if (sem_checkid(sma
,semid
))
603 if (ipcperms (&sma
->sem_perm
, (cmd
==SETVAL
||cmd
==SETALL
)?S_IWUGO
:S_IRUGO
))
606 err
= security_sem_semctl(sma
, cmd
);
614 ushort __user
*array
= arg
.array
;
617 if(nsems
> SEMMSL_FAST
) {
621 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
623 ipc_lock_by_ptr(&sma
->sem_perm
);
629 ipc_lock_by_ptr(&sma
->sem_perm
);
631 if (sma
->sem_perm
.deleted
) {
638 for (i
= 0; i
< sma
->sem_nsems
; i
++)
639 sem_io
[i
] = sma
->sem_base
[i
].semval
;
642 if(copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
654 if(nsems
> SEMMSL_FAST
) {
655 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
657 ipc_lock_by_ptr(&sma
->sem_perm
);
664 if (copy_from_user (sem_io
, arg
.array
, nsems
*sizeof(ushort
))) {
665 ipc_lock_by_ptr(&sma
->sem_perm
);
672 for (i
= 0; i
< nsems
; i
++) {
673 if (sem_io
[i
] > SEMVMX
) {
674 ipc_lock_by_ptr(&sma
->sem_perm
);
681 ipc_lock_by_ptr(&sma
->sem_perm
);
683 if (sma
->sem_perm
.deleted
) {
689 for (i
= 0; i
< nsems
; i
++)
690 sma
->sem_base
[i
].semval
= sem_io
[i
];
691 for (un
= sma
->undo
; un
; un
= un
->id_next
)
692 for (i
= 0; i
< nsems
; i
++)
694 sma
->sem_ctime
= get_seconds();
695 /* maybe some queued-up processes were waiting for this */
702 struct semid64_ds tbuf
;
703 memset(&tbuf
,0,sizeof(tbuf
));
704 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
705 tbuf
.sem_otime
= sma
->sem_otime
;
706 tbuf
.sem_ctime
= sma
->sem_ctime
;
707 tbuf
.sem_nsems
= sma
->sem_nsems
;
709 if (copy_semid_to_user (arg
.buf
, &tbuf
, version
))
713 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
716 if(semnum
< 0 || semnum
>= nsems
)
719 curr
= &sma
->sem_base
[semnum
];
729 err
= count_semncnt(sma
,semnum
);
732 err
= count_semzcnt(sma
,semnum
);
739 if (val
> SEMVMX
|| val
< 0)
742 for (un
= sma
->undo
; un
; un
= un
->id_next
)
743 un
->semadj
[semnum
] = 0;
745 curr
->sempid
= current
->tgid
;
746 sma
->sem_ctime
= get_seconds();
747 /* maybe some queued-up processes were waiting for this */
756 if(sem_io
!= fast_sem_io
)
757 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
767 static inline unsigned long copy_semid_from_user(struct sem_setbuf
*out
, void __user
*buf
, int version
)
772 struct semid64_ds tbuf
;
774 if(copy_from_user(&tbuf
, buf
, sizeof(tbuf
)))
777 out
->uid
= tbuf
.sem_perm
.uid
;
778 out
->gid
= tbuf
.sem_perm
.gid
;
779 out
->mode
= tbuf
.sem_perm
.mode
;
785 struct semid_ds tbuf_old
;
787 if(copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
790 out
->uid
= tbuf_old
.sem_perm
.uid
;
791 out
->gid
= tbuf_old
.sem_perm
.gid
;
792 out
->mode
= tbuf_old
.sem_perm
.mode
;
801 static int semctl_down(int semid
, int semnum
, int cmd
, int version
, union semun arg
)
803 struct sem_array
*sma
;
805 struct sem_setbuf setbuf
;
806 struct kern_ipc_perm
*ipcp
;
809 if(copy_semid_from_user (&setbuf
, arg
.buf
, version
))
811 if ((err
= audit_ipc_perms(0, setbuf
.uid
, setbuf
.gid
, setbuf
.mode
)))
814 sma
= sem_lock(semid
);
818 if (sem_checkid(sma
,semid
)) {
822 ipcp
= &sma
->sem_perm
;
824 if (current
->euid
!= ipcp
->cuid
&&
825 current
->euid
!= ipcp
->uid
&& !capable(CAP_SYS_ADMIN
)) {
830 err
= security_sem_semctl(sma
, cmd
);
840 ipcp
->uid
= setbuf
.uid
;
841 ipcp
->gid
= setbuf
.gid
;
842 ipcp
->mode
= (ipcp
->mode
& ~S_IRWXUGO
)
843 | (setbuf
.mode
& S_IRWXUGO
);
844 sma
->sem_ctime
= get_seconds();
860 asmlinkage
long sys_semctl (int semid
, int semnum
, int cmd
, union semun arg
)
868 version
= ipc_parse_version(&cmd
);
874 err
= semctl_nolock(semid
,semnum
,cmd
,version
,arg
);
884 err
= semctl_main(semid
,semnum
,cmd
,version
,arg
);
889 err
= semctl_down(semid
,semnum
,cmd
,version
,arg
);
897 static inline void lock_semundo(void)
899 struct sem_undo_list
*undo_list
;
901 undo_list
= current
->sysvsem
.undo_list
;
903 spin_lock(&undo_list
->lock
);
906 /* This code has an interaction with copy_semundo().
907 * Consider; two tasks are sharing the undo_list. task1
908 * acquires the undo_list lock in lock_semundo(). If task2 now
909 * exits before task1 releases the lock (by calling
910 * unlock_semundo()), then task1 will never call spin_unlock().
911 * This leave the sem_undo_list in a locked state. If task1 now creats task3
912 * and once again shares the sem_undo_list, the sem_undo_list will still be
913 * locked, and future SEM_UNDO operations will deadlock. This case is
914 * dealt with in copy_semundo() by having it reinitialize the spin lock when
915 * the refcnt goes from 1 to 2.
917 static inline void unlock_semundo(void)
919 struct sem_undo_list
*undo_list
;
921 undo_list
= current
->sysvsem
.undo_list
;
923 spin_unlock(&undo_list
->lock
);
927 /* If the task doesn't already have a undo_list, then allocate one
928 * here. We guarantee there is only one thread using this undo list,
929 * and current is THE ONE
931 * If this allocation and assignment succeeds, but later
932 * portions of this code fail, there is no need to free the sem_undo_list.
933 * Just let it stay associated with the task, and it'll be freed later
936 * This can block, so callers must hold no locks.
938 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
940 struct sem_undo_list
*undo_list
;
943 undo_list
= current
->sysvsem
.undo_list
;
945 size
= sizeof(struct sem_undo_list
);
946 undo_list
= (struct sem_undo_list
*) kmalloc(size
, GFP_KERNEL
);
947 if (undo_list
== NULL
)
949 memset(undo_list
, 0, size
);
950 spin_lock_init(&undo_list
->lock
);
951 atomic_set(&undo_list
->refcnt
, 1);
952 current
->sysvsem
.undo_list
= undo_list
;
954 *undo_listp
= undo_list
;
958 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
960 struct sem_undo
**last
, *un
;
962 last
= &ulp
->proc_list
;
978 static struct sem_undo
*find_undo(int semid
)
980 struct sem_array
*sma
;
981 struct sem_undo_list
*ulp
;
982 struct sem_undo
*un
, *new;
986 error
= get_undo_list(&ulp
);
988 return ERR_PTR(error
);
991 un
= lookup_undo(ulp
, semid
);
993 if (likely(un
!=NULL
))
996 /* no undo structure around - allocate one. */
997 sma
= sem_lock(semid
);
998 un
= ERR_PTR(-EINVAL
);
1001 un
= ERR_PTR(-EIDRM
);
1002 if (sem_checkid(sma
,semid
)) {
1006 nsems
= sma
->sem_nsems
;
1007 ipc_rcu_getref(sma
);
1010 new = (struct sem_undo
*) kmalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1012 ipc_lock_by_ptr(&sma
->sem_perm
);
1013 ipc_rcu_putref(sma
);
1015 return ERR_PTR(-ENOMEM
);
1017 memset(new, 0, sizeof(struct sem_undo
) + sizeof(short)*nsems
);
1018 new->semadj
= (short *) &new[1];
1022 un
= lookup_undo(ulp
, semid
);
1026 ipc_lock_by_ptr(&sma
->sem_perm
);
1027 ipc_rcu_putref(sma
);
1031 ipc_lock_by_ptr(&sma
->sem_perm
);
1032 ipc_rcu_putref(sma
);
1033 if (sma
->sem_perm
.deleted
) {
1037 un
= ERR_PTR(-EIDRM
);
1040 new->proc_next
= ulp
->proc_list
;
1041 ulp
->proc_list
= new;
1042 new->id_next
= sma
->undo
;
1051 asmlinkage
long sys_semtimedop(int semid
, struct sembuf __user
*tsops
,
1052 unsigned nsops
, const struct timespec __user
*timeout
)
1054 int error
= -EINVAL
;
1055 struct sem_array
*sma
;
1056 struct sembuf fast_sops
[SEMOPM_FAST
];
1057 struct sembuf
* sops
= fast_sops
, *sop
;
1058 struct sem_undo
*un
;
1059 int undos
= 0, alter
= 0, max
;
1060 struct sem_queue queue
;
1061 unsigned long jiffies_left
= 0;
1063 if (nsops
< 1 || semid
< 0)
1065 if (nsops
> sc_semopm
)
1067 if(nsops
> SEMOPM_FAST
) {
1068 sops
= kmalloc(sizeof(*sops
)*nsops
,GFP_KERNEL
);
1072 if (copy_from_user (sops
, tsops
, nsops
* sizeof(*tsops
))) {
1077 struct timespec _timeout
;
1078 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1082 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1083 _timeout
.tv_nsec
>= 1000000000L) {
1087 jiffies_left
= timespec_to_jiffies(&_timeout
);
1090 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1091 if (sop
->sem_num
>= max
)
1093 if (sop
->sem_flg
& SEM_UNDO
)
1095 if (sop
->sem_op
!= 0)
1101 un
= find_undo(semid
);
1103 error
= PTR_ERR(un
);
1109 sma
= sem_lock(semid
);
1114 if (sem_checkid(sma
,semid
))
1115 goto out_unlock_free
;
1117 * semid identifies are not unique - find_undo may have
1118 * allocated an undo structure, it was invalidated by an RMID
1119 * and now a new array with received the same id. Check and retry.
1121 if (un
&& un
->semid
== -1) {
1126 if (max
>= sma
->sem_nsems
)
1127 goto out_unlock_free
;
1130 if (ipcperms(&sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1131 goto out_unlock_free
;
1133 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1135 goto out_unlock_free
;
1137 error
= try_atomic_semop (sma
, sops
, nsops
, un
, current
->tgid
);
1139 if (alter
&& error
== 0)
1141 goto out_unlock_free
;
1144 /* We need to sleep on this operation, so we put the current
1145 * task into the pending queue and go to sleep.
1150 queue
.nsops
= nsops
;
1152 queue
.pid
= current
->tgid
;
1154 queue
.alter
= alter
;
1156 append_to_queue(sma
,&queue
);
1158 prepend_to_queue(sma
,&queue
);
1160 queue
.status
= -EINTR
;
1161 queue
.sleeper
= current
;
1162 current
->state
= TASK_INTERRUPTIBLE
;
1166 jiffies_left
= schedule_timeout(jiffies_left
);
1170 error
= queue
.status
;
1171 while(unlikely(error
== IN_WAKEUP
)) {
1173 error
= queue
.status
;
1176 if (error
!= -EINTR
) {
1177 /* fast path: update_queue already obtained all requested
1182 sma
= sem_lock(semid
);
1184 if(queue
.prev
!= NULL
)
1191 * If queue.status != -EINTR we are woken up by another process
1193 error
= queue
.status
;
1194 if (error
!= -EINTR
) {
1195 goto out_unlock_free
;
1199 * If an interrupt occurred we have to clean up the queue
1201 if (timeout
&& jiffies_left
== 0)
1203 remove_from_queue(sma
,&queue
);
1204 goto out_unlock_free
;
1209 if(sops
!= fast_sops
)
1214 asmlinkage
long sys_semop (int semid
, struct sembuf __user
*tsops
, unsigned nsops
)
1216 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
1219 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1220 * parent and child tasks.
1222 * See the notes above unlock_semundo() regarding the spin_lock_init()
1223 * in this code. Initialize the undo_list->lock here instead of get_undo_list()
1224 * because of the reasoning in the comment above unlock_semundo.
1227 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
1229 struct sem_undo_list
*undo_list
;
1232 if (clone_flags
& CLONE_SYSVSEM
) {
1233 error
= get_undo_list(&undo_list
);
1236 atomic_inc(&undo_list
->refcnt
);
1237 tsk
->sysvsem
.undo_list
= undo_list
;
1239 tsk
->sysvsem
.undo_list
= NULL
;
1245 * add semadj values to semaphores, free undo structures.
1246 * undo structures are not freed when semaphore arrays are destroyed
1247 * so some of them may be out of date.
1248 * IMPLEMENTATION NOTE: There is some confusion over whether the
1249 * set of adjustments that needs to be done should be done in an atomic
1250 * manner or not. That is, if we are attempting to decrement the semval
1251 * should we queue up and wait until we can do so legally?
1252 * The original implementation attempted to do this (queue and wait).
1253 * The current implementation does not do so. The POSIX standard
1254 * and SVID should be consulted to determine what behavior is mandated.
1256 void exit_sem(struct task_struct
*tsk
)
1258 struct sem_undo_list
*undo_list
;
1259 struct sem_undo
*u
, **up
;
1261 undo_list
= tsk
->sysvsem
.undo_list
;
1265 if (!atomic_dec_and_test(&undo_list
->refcnt
))
1268 /* There's no need to hold the semundo list lock, as current
1269 * is the last task exiting for this undo list.
1271 for (up
= &undo_list
->proc_list
; (u
= *up
); *up
= u
->proc_next
, kfree(u
)) {
1272 struct sem_array
*sma
;
1274 struct sem_undo
*un
, **unp
;
1281 sma
= sem_lock(semid
);
1288 BUG_ON(sem_checkid(sma
,u
->semid
));
1290 /* remove u from the sma->undo list */
1291 for (unp
= &sma
->undo
; (un
= *unp
); unp
= &un
->id_next
) {
1295 printk ("exit_sem undo list error id=%d\n", u
->semid
);
1299 /* perform adjustments registered in u */
1300 nsems
= sma
->sem_nsems
;
1301 for (i
= 0; i
< nsems
; i
++) {
1302 struct sem
* sem
= &sma
->sem_base
[i
];
1304 sem
->semval
+= u
->semadj
[i
];
1306 * Range checks of the new semaphore value,
1307 * not defined by sus:
1308 * - Some unices ignore the undo entirely
1309 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1310 * - some cap the value (e.g. FreeBSD caps
1311 * at 0, but doesn't enforce SEMVMX)
1313 * Linux caps the semaphore value, both at 0
1316 * Manfred <manfred@colorfullife.com>
1318 if (sem
->semval
< 0)
1320 if (sem
->semval
> SEMVMX
)
1321 sem
->semval
= SEMVMX
;
1322 sem
->sempid
= current
->tgid
;
1325 sma
->sem_otime
= get_seconds();
1326 /* maybe some queued-up processes were waiting for this */
1334 #ifdef CONFIG_PROC_FS
1335 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
1337 struct sem_array
*sma
= it
;
1339 return seq_printf(s
,
1340 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",