gpio: move U300 GPIO driver to drivers/gpio
[linux-2.6/libata-dev.git] / drivers / usb / gadget / pch_udc.c
blob68dbcc3e4cc2cb005bd2606a8bb64a4c35a12d81
1 /*
2 * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
28 /* Address offset of Registers */
29 #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
31 #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
32 #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
33 #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
34 #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
35 #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
36 #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
37 #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
39 #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
40 #define UDC_DEVCTL_ADDR 0x404 /* Device control */
41 #define UDC_DEVSTS_ADDR 0x408 /* Device status */
42 #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
43 #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
44 #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
45 #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
46 #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
47 #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
48 #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
49 #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
51 /* Endpoint control register */
52 /* Bit position */
53 #define UDC_EPCTL_MRXFLUSH (1 << 12)
54 #define UDC_EPCTL_RRDY (1 << 9)
55 #define UDC_EPCTL_CNAK (1 << 8)
56 #define UDC_EPCTL_SNAK (1 << 7)
57 #define UDC_EPCTL_NAK (1 << 6)
58 #define UDC_EPCTL_P (1 << 3)
59 #define UDC_EPCTL_F (1 << 1)
60 #define UDC_EPCTL_S (1 << 0)
61 #define UDC_EPCTL_ET_SHIFT 4
62 /* Mask patern */
63 #define UDC_EPCTL_ET_MASK 0x00000030
64 /* Value for ET field */
65 #define UDC_EPCTL_ET_CONTROL 0
66 #define UDC_EPCTL_ET_ISO 1
67 #define UDC_EPCTL_ET_BULK 2
68 #define UDC_EPCTL_ET_INTERRUPT 3
70 /* Endpoint status register */
71 /* Bit position */
72 #define UDC_EPSTS_XFERDONE (1 << 27)
73 #define UDC_EPSTS_RSS (1 << 26)
74 #define UDC_EPSTS_RCS (1 << 25)
75 #define UDC_EPSTS_TXEMPTY (1 << 24)
76 #define UDC_EPSTS_TDC (1 << 10)
77 #define UDC_EPSTS_HE (1 << 9)
78 #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
79 #define UDC_EPSTS_BNA (1 << 7)
80 #define UDC_EPSTS_IN (1 << 6)
81 #define UDC_EPSTS_OUT_SHIFT 4
82 /* Mask patern */
83 #define UDC_EPSTS_OUT_MASK 0x00000030
84 #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
85 /* Value for OUT field */
86 #define UDC_EPSTS_OUT_SETUP 2
87 #define UDC_EPSTS_OUT_DATA 1
89 /* Device configuration register */
90 /* Bit position */
91 #define UDC_DEVCFG_CSR_PRG (1 << 17)
92 #define UDC_DEVCFG_SP (1 << 3)
93 /* SPD Valee */
94 #define UDC_DEVCFG_SPD_HS 0x0
95 #define UDC_DEVCFG_SPD_FS 0x1
96 #define UDC_DEVCFG_SPD_LS 0x2
98 /* Device control register */
99 /* Bit position */
100 #define UDC_DEVCTL_THLEN_SHIFT 24
101 #define UDC_DEVCTL_BRLEN_SHIFT 16
102 #define UDC_DEVCTL_CSR_DONE (1 << 13)
103 #define UDC_DEVCTL_SD (1 << 10)
104 #define UDC_DEVCTL_MODE (1 << 9)
105 #define UDC_DEVCTL_BREN (1 << 8)
106 #define UDC_DEVCTL_THE (1 << 7)
107 #define UDC_DEVCTL_DU (1 << 4)
108 #define UDC_DEVCTL_TDE (1 << 3)
109 #define UDC_DEVCTL_RDE (1 << 2)
110 #define UDC_DEVCTL_RES (1 << 0)
112 /* Device status register */
113 /* Bit position */
114 #define UDC_DEVSTS_TS_SHIFT 18
115 #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
116 #define UDC_DEVSTS_ALT_SHIFT 8
117 #define UDC_DEVSTS_INTF_SHIFT 4
118 #define UDC_DEVSTS_CFG_SHIFT 0
119 /* Mask patern */
120 #define UDC_DEVSTS_TS_MASK 0xfffc0000
121 #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
122 #define UDC_DEVSTS_ALT_MASK 0x00000f00
123 #define UDC_DEVSTS_INTF_MASK 0x000000f0
124 #define UDC_DEVSTS_CFG_MASK 0x0000000f
125 /* value for maximum speed for SPEED field */
126 #define UDC_DEVSTS_ENUM_SPEED_FULL 1
127 #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
128 #define UDC_DEVSTS_ENUM_SPEED_LOW 2
129 #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
131 /* Device irq register */
132 /* Bit position */
133 #define UDC_DEVINT_RWKP (1 << 7)
134 #define UDC_DEVINT_ENUM (1 << 6)
135 #define UDC_DEVINT_SOF (1 << 5)
136 #define UDC_DEVINT_US (1 << 4)
137 #define UDC_DEVINT_UR (1 << 3)
138 #define UDC_DEVINT_ES (1 << 2)
139 #define UDC_DEVINT_SI (1 << 1)
140 #define UDC_DEVINT_SC (1 << 0)
141 /* Mask patern */
142 #define UDC_DEVINT_MSK 0x7f
144 /* Endpoint irq register */
145 /* Bit position */
146 #define UDC_EPINT_IN_SHIFT 0
147 #define UDC_EPINT_OUT_SHIFT 16
148 #define UDC_EPINT_IN_EP0 (1 << 0)
149 #define UDC_EPINT_OUT_EP0 (1 << 16)
150 /* Mask patern */
151 #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
153 /* UDC_CSR_BUSY Status register */
154 /* Bit position */
155 #define UDC_CSR_BUSY (1 << 0)
157 /* SOFT RESET register */
158 /* Bit position */
159 #define UDC_PSRST (1 << 1)
160 #define UDC_SRST (1 << 0)
162 /* USB_DEVICE endpoint register */
163 /* Bit position */
164 #define UDC_CSR_NE_NUM_SHIFT 0
165 #define UDC_CSR_NE_DIR_SHIFT 4
166 #define UDC_CSR_NE_TYPE_SHIFT 5
167 #define UDC_CSR_NE_CFG_SHIFT 7
168 #define UDC_CSR_NE_INTF_SHIFT 11
169 #define UDC_CSR_NE_ALT_SHIFT 15
170 #define UDC_CSR_NE_MAX_PKT_SHIFT 19
171 /* Mask patern */
172 #define UDC_CSR_NE_NUM_MASK 0x0000000f
173 #define UDC_CSR_NE_DIR_MASK 0x00000010
174 #define UDC_CSR_NE_TYPE_MASK 0x00000060
175 #define UDC_CSR_NE_CFG_MASK 0x00000780
176 #define UDC_CSR_NE_INTF_MASK 0x00007800
177 #define UDC_CSR_NE_ALT_MASK 0x00078000
178 #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
180 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
181 #define PCH_UDC_EPINT(in, num)\
182 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
184 /* Index of endpoint */
185 #define UDC_EP0IN_IDX 0
186 #define UDC_EP0OUT_IDX 1
187 #define UDC_EPIN_IDX(ep) (ep * 2)
188 #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
189 #define PCH_UDC_EP0 0
190 #define PCH_UDC_EP1 1
191 #define PCH_UDC_EP2 2
192 #define PCH_UDC_EP3 3
194 /* Number of endpoint */
195 #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
196 #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
197 /* Length Value */
198 #define PCH_UDC_BRLEN 0x0F /* Burst length */
199 #define PCH_UDC_THLEN 0x1F /* Threshold length */
200 /* Value of EP Buffer Size */
201 #define UDC_EP0IN_BUFF_SIZE 16
202 #define UDC_EPIN_BUFF_SIZE 256
203 #define UDC_EP0OUT_BUFF_SIZE 16
204 #define UDC_EPOUT_BUFF_SIZE 256
205 /* Value of EP maximum packet size */
206 #define UDC_EP0IN_MAX_PKT_SIZE 64
207 #define UDC_EP0OUT_MAX_PKT_SIZE 64
208 #define UDC_BULK_MAX_PKT_SIZE 512
210 /* DMA */
211 #define DMA_DIR_RX 1 /* DMA for data receive */
212 #define DMA_DIR_TX 2 /* DMA for data transmit */
213 #define DMA_ADDR_INVALID (~(dma_addr_t)0)
214 #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
217 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
218 * for data
219 * @status: Status quadlet
220 * @reserved: Reserved
221 * @dataptr: Buffer descriptor
222 * @next: Next descriptor
224 struct pch_udc_data_dma_desc {
225 u32 status;
226 u32 reserved;
227 u32 dataptr;
228 u32 next;
232 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
233 * for control data
234 * @status: Status
235 * @reserved: Reserved
236 * @data12: First setup word
237 * @data34: Second setup word
239 struct pch_udc_stp_dma_desc {
240 u32 status;
241 u32 reserved;
242 struct usb_ctrlrequest request;
243 } __attribute((packed));
245 /* DMA status definitions */
246 /* Buffer status */
247 #define PCH_UDC_BUFF_STS 0xC0000000
248 #define PCH_UDC_BS_HST_RDY 0x00000000
249 #define PCH_UDC_BS_DMA_BSY 0x40000000
250 #define PCH_UDC_BS_DMA_DONE 0x80000000
251 #define PCH_UDC_BS_HST_BSY 0xC0000000
252 /* Rx/Tx Status */
253 #define PCH_UDC_RXTX_STS 0x30000000
254 #define PCH_UDC_RTS_SUCC 0x00000000
255 #define PCH_UDC_RTS_DESERR 0x10000000
256 #define PCH_UDC_RTS_BUFERR 0x30000000
257 /* Last Descriptor Indication */
258 #define PCH_UDC_DMA_LAST 0x08000000
259 /* Number of Rx/Tx Bytes Mask */
260 #define PCH_UDC_RXTX_BYTES 0x0000ffff
263 * struct pch_udc_cfg_data - Structure to hold current configuration
264 * and interface information
265 * @cur_cfg: current configuration in use
266 * @cur_intf: current interface in use
267 * @cur_alt: current alt interface in use
269 struct pch_udc_cfg_data {
270 u16 cur_cfg;
271 u16 cur_intf;
272 u16 cur_alt;
276 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
277 * @ep: embedded ep request
278 * @td_stp_phys: for setup request
279 * @td_data_phys: for data request
280 * @td_stp: for setup request
281 * @td_data: for data request
282 * @dev: reference to device struct
283 * @offset_addr: offset address of ep register
284 * @desc: for this ep
285 * @queue: queue for requests
286 * @num: endpoint number
287 * @in: endpoint is IN
288 * @halted: endpoint halted?
289 * @epsts: Endpoint status
291 struct pch_udc_ep {
292 struct usb_ep ep;
293 dma_addr_t td_stp_phys;
294 dma_addr_t td_data_phys;
295 struct pch_udc_stp_dma_desc *td_stp;
296 struct pch_udc_data_dma_desc *td_data;
297 struct pch_udc_dev *dev;
298 unsigned long offset_addr;
299 const struct usb_endpoint_descriptor *desc;
300 struct list_head queue;
301 unsigned num:5,
302 in:1,
303 halted:1;
304 unsigned long epsts;
308 * struct pch_udc_dev - Structure holding complete information
309 * of the PCH USB device
310 * @gadget: gadget driver data
311 * @driver: reference to gadget driver bound
312 * @pdev: reference to the PCI device
313 * @ep: array of endpoints
314 * @lock: protects all state
315 * @active: enabled the PCI device
316 * @stall: stall requested
317 * @prot_stall: protcol stall requested
318 * @irq_registered: irq registered with system
319 * @mem_region: device memory mapped
320 * @registered: driver regsitered with system
321 * @suspended: driver in suspended state
322 * @connected: gadget driver associated
323 * @set_cfg_not_acked: pending acknowledgement 4 setup
324 * @waiting_zlp_ack: pending acknowledgement 4 ZLP
325 * @data_requests: DMA pool for data requests
326 * @stp_requests: DMA pool for setup requests
327 * @dma_addr: DMA pool for received
328 * @ep0out_buf: Buffer for DMA
329 * @setup_data: Received setup data
330 * @phys_addr: of device memory
331 * @base_addr: for mapped device memory
332 * @irq: IRQ line for the device
333 * @cfg_data: current cfg, intf, and alt in use
335 struct pch_udc_dev {
336 struct usb_gadget gadget;
337 struct usb_gadget_driver *driver;
338 struct pci_dev *pdev;
339 struct pch_udc_ep ep[PCH_UDC_EP_NUM];
340 spinlock_t lock; /* protects all state */
341 unsigned active:1,
342 stall:1,
343 prot_stall:1,
344 irq_registered:1,
345 mem_region:1,
346 registered:1,
347 suspended:1,
348 connected:1,
349 set_cfg_not_acked:1,
350 waiting_zlp_ack:1;
351 struct pci_pool *data_requests;
352 struct pci_pool *stp_requests;
353 dma_addr_t dma_addr;
354 void *ep0out_buf;
355 struct usb_ctrlrequest setup_data;
356 unsigned long phys_addr;
357 void __iomem *base_addr;
358 unsigned irq;
359 struct pch_udc_cfg_data cfg_data;
362 #define PCH_UDC_PCI_BAR 1
363 #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
364 #define PCI_VENDOR_ID_ROHM 0x10DB
365 #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
367 static const char ep0_string[] = "ep0in";
368 static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
369 struct pch_udc_dev *pch_udc; /* pointer to device object */
370 static int speed_fs;
371 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
372 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
375 * struct pch_udc_request - Structure holding a PCH USB device request packet
376 * @req: embedded ep request
377 * @td_data_phys: phys. address
378 * @td_data: first dma desc. of chain
379 * @td_data_last: last dma desc. of chain
380 * @queue: associated queue
381 * @dma_going: DMA in progress for request
382 * @dma_mapped: DMA memory mapped for request
383 * @dma_done: DMA completed for request
384 * @chain_len: chain length
385 * @buf: Buffer memory for align adjustment
386 * @dma: DMA memory for align adjustment
388 struct pch_udc_request {
389 struct usb_request req;
390 dma_addr_t td_data_phys;
391 struct pch_udc_data_dma_desc *td_data;
392 struct pch_udc_data_dma_desc *td_data_last;
393 struct list_head queue;
394 unsigned dma_going:1,
395 dma_mapped:1,
396 dma_done:1;
397 unsigned chain_len;
398 void *buf;
399 dma_addr_t dma;
402 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
404 return ioread32(dev->base_addr + reg);
407 static inline void pch_udc_writel(struct pch_udc_dev *dev,
408 unsigned long val, unsigned long reg)
410 iowrite32(val, dev->base_addr + reg);
413 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
414 unsigned long reg,
415 unsigned long bitmask)
417 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
420 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
421 unsigned long reg,
422 unsigned long bitmask)
424 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
427 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
429 return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
432 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
433 unsigned long val, unsigned long reg)
435 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
438 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
439 unsigned long reg,
440 unsigned long bitmask)
442 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
445 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
446 unsigned long reg,
447 unsigned long bitmask)
449 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
453 * pch_udc_csr_busy() - Wait till idle.
454 * @dev: Reference to pch_udc_dev structure
456 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
458 unsigned int count = 200;
460 /* Wait till idle */
461 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
462 && --count)
463 cpu_relax();
464 if (!count)
465 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
469 * pch_udc_write_csr() - Write the command and status registers.
470 * @dev: Reference to pch_udc_dev structure
471 * @val: value to be written to CSR register
472 * @addr: address of CSR register
474 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
475 unsigned int ep)
477 unsigned long reg = PCH_UDC_CSR(ep);
479 pch_udc_csr_busy(dev); /* Wait till idle */
480 pch_udc_writel(dev, val, reg);
481 pch_udc_csr_busy(dev); /* Wait till idle */
485 * pch_udc_read_csr() - Read the command and status registers.
486 * @dev: Reference to pch_udc_dev structure
487 * @addr: address of CSR register
489 * Return codes: content of CSR register
491 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
493 unsigned long reg = PCH_UDC_CSR(ep);
495 pch_udc_csr_busy(dev); /* Wait till idle */
496 pch_udc_readl(dev, reg); /* Dummy read */
497 pch_udc_csr_busy(dev); /* Wait till idle */
498 return pch_udc_readl(dev, reg);
502 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
503 * @dev: Reference to pch_udc_dev structure
505 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
507 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
508 mdelay(1);
509 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
513 * pch_udc_get_frame() - Get the current frame from device status register
514 * @dev: Reference to pch_udc_dev structure
515 * Retern current frame
517 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
519 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
520 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
524 * pch_udc_clear_selfpowered() - Clear the self power control
525 * @dev: Reference to pch_udc_regs structure
527 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
529 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
533 * pch_udc_set_selfpowered() - Set the self power control
534 * @dev: Reference to pch_udc_regs structure
536 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
538 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
542 * pch_udc_set_disconnect() - Set the disconnect status.
543 * @dev: Reference to pch_udc_regs structure
545 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
547 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
551 * pch_udc_clear_disconnect() - Clear the disconnect status.
552 * @dev: Reference to pch_udc_regs structure
554 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
556 /* Clear the disconnect */
557 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
558 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
559 mdelay(1);
560 /* Resume USB signalling */
561 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
565 * pch_udc_vbus_session() - set or clearr the disconnect status.
566 * @dev: Reference to pch_udc_regs structure
567 * @is_active: Parameter specifying the action
568 * 0: indicating VBUS power is ending
569 * !0: indicating VBUS power is starting
571 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
572 int is_active)
574 if (is_active)
575 pch_udc_clear_disconnect(dev);
576 else
577 pch_udc_set_disconnect(dev);
581 * pch_udc_ep_set_stall() - Set the stall of endpoint
582 * @ep: Reference to structure of type pch_udc_ep_regs
584 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
586 if (ep->in) {
587 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
588 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
589 } else {
590 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
595 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
596 * @ep: Reference to structure of type pch_udc_ep_regs
598 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
600 /* Clear the stall */
601 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
602 /* Clear NAK by writing CNAK */
603 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
607 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
608 * @ep: Reference to structure of type pch_udc_ep_regs
609 * @type: Type of endpoint
611 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
612 u8 type)
614 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
615 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
619 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
620 * @ep: Reference to structure of type pch_udc_ep_regs
621 * @buf_size: The buffer word size
623 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
624 u32 buf_size, u32 ep_in)
626 u32 data;
627 if (ep_in) {
628 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
629 data = (data & 0xffff0000) | (buf_size & 0xffff);
630 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
631 } else {
632 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
633 data = (buf_size << 16) | (data & 0xffff);
634 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
639 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
640 * @ep: Reference to structure of type pch_udc_ep_regs
641 * @pkt_size: The packet byte size
643 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
645 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
646 data = (data & 0xffff0000) | (pkt_size & 0xffff);
647 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
651 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
652 * @ep: Reference to structure of type pch_udc_ep_regs
653 * @addr: Address of the register
655 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
657 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
661 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
662 * @ep: Reference to structure of type pch_udc_ep_regs
663 * @addr: Address of the register
665 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
667 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
671 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
672 * @ep: Reference to structure of type pch_udc_ep_regs
674 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
676 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
680 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
681 * @ep: Reference to structure of type pch_udc_ep_regs
683 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
685 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
689 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
690 * @ep: Reference to structure of type pch_udc_ep_regs
692 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
694 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
698 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
699 * register depending on the direction specified
700 * @dev: Reference to structure of type pch_udc_regs
701 * @dir: whether Tx or Rx
702 * DMA_DIR_RX: Receive
703 * DMA_DIR_TX: Transmit
705 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
707 if (dir == DMA_DIR_RX)
708 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
709 else if (dir == DMA_DIR_TX)
710 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
714 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
715 * register depending on the direction specified
716 * @dev: Reference to structure of type pch_udc_regs
717 * @dir: Whether Tx or Rx
718 * DMA_DIR_RX: Receive
719 * DMA_DIR_TX: Transmit
721 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
723 if (dir == DMA_DIR_RX)
724 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
725 else if (dir == DMA_DIR_TX)
726 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
730 * pch_udc_set_csr_done() - Set the device control register
731 * CSR done field (bit 13)
732 * @dev: reference to structure of type pch_udc_regs
734 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
736 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
740 * pch_udc_disable_interrupts() - Disables the specified interrupts
741 * @dev: Reference to structure of type pch_udc_regs
742 * @mask: Mask to disable interrupts
744 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
745 u32 mask)
747 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
751 * pch_udc_enable_interrupts() - Enable the specified interrupts
752 * @dev: Reference to structure of type pch_udc_regs
753 * @mask: Mask to enable interrupts
755 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
756 u32 mask)
758 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
762 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
763 * @dev: Reference to structure of type pch_udc_regs
764 * @mask: Mask to disable interrupts
766 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
767 u32 mask)
769 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
773 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
774 * @dev: Reference to structure of type pch_udc_regs
775 * @mask: Mask to enable interrupts
777 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
778 u32 mask)
780 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
784 * pch_udc_read_device_interrupts() - Read the device interrupts
785 * @dev: Reference to structure of type pch_udc_regs
786 * Retern The device interrupts
788 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
790 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
794 * pch_udc_write_device_interrupts() - Write device interrupts
795 * @dev: Reference to structure of type pch_udc_regs
796 * @val: The value to be written to interrupt register
798 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
799 u32 val)
801 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
805 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
806 * @dev: Reference to structure of type pch_udc_regs
807 * Retern The endpoint interrupt
809 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
811 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
815 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
816 * @dev: Reference to structure of type pch_udc_regs
817 * @val: The value to be written to interrupt register
819 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
820 u32 val)
822 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
826 * pch_udc_read_device_status() - Read the device status
827 * @dev: Reference to structure of type pch_udc_regs
828 * Retern The device status
830 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
832 return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
836 * pch_udc_read_ep_control() - Read the endpoint control
837 * @ep: Reference to structure of type pch_udc_ep_regs
838 * Retern The endpoint control register value
840 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
842 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
846 * pch_udc_clear_ep_control() - Clear the endpoint control register
847 * @ep: Reference to structure of type pch_udc_ep_regs
848 * Retern The endpoint control register value
850 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
852 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
856 * pch_udc_read_ep_status() - Read the endpoint status
857 * @ep: Reference to structure of type pch_udc_ep_regs
858 * Retern The endpoint status
860 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
862 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
866 * pch_udc_clear_ep_status() - Clear the endpoint status
867 * @ep: Reference to structure of type pch_udc_ep_regs
868 * @stat: Endpoint status
870 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
871 u32 stat)
873 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
877 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
878 * of the endpoint control register
879 * @ep: Reference to structure of type pch_udc_ep_regs
881 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
883 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
887 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
888 * of the endpoint control register
889 * @ep: reference to structure of type pch_udc_ep_regs
891 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
893 unsigned int loopcnt = 0;
894 struct pch_udc_dev *dev = ep->dev;
896 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
897 return;
898 if (!ep->in) {
899 loopcnt = 10000;
900 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
901 --loopcnt)
902 udelay(5);
903 if (!loopcnt)
904 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
905 __func__);
907 loopcnt = 10000;
908 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
909 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
910 udelay(5);
912 if (!loopcnt)
913 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
914 __func__, ep->num, (ep->in ? "in" : "out"));
918 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
919 * @ep: reference to structure of type pch_udc_ep_regs
920 * @dir: direction of endpoint
921 * 0: endpoint is OUT
922 * !0: endpoint is IN
924 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
926 if (dir) { /* IN ep */
927 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
928 return;
933 * pch_udc_ep_enable() - This api enables endpoint
934 * @regs: Reference to structure pch_udc_ep_regs
935 * @desc: endpoint descriptor
937 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
938 struct pch_udc_cfg_data *cfg,
939 const struct usb_endpoint_descriptor *desc)
941 u32 val = 0;
942 u32 buff_size = 0;
944 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
945 if (ep->in)
946 buff_size = UDC_EPIN_BUFF_SIZE;
947 else
948 buff_size = UDC_EPOUT_BUFF_SIZE;
949 pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
950 pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
951 pch_udc_ep_set_nak(ep);
952 pch_udc_ep_fifo_flush(ep, ep->in);
953 /* Configure the endpoint */
954 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
955 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
956 UDC_CSR_NE_TYPE_SHIFT) |
957 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
958 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
959 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
960 le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
962 if (ep->in)
963 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
964 else
965 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
969 * pch_udc_ep_disable() - This api disables endpoint
970 * @regs: Reference to structure pch_udc_ep_regs
972 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
974 if (ep->in) {
975 /* flush the fifo */
976 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
977 /* set NAK */
978 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
979 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
980 } else {
981 /* set NAK */
982 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
984 /* reset desc pointer */
985 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
989 * pch_udc_wait_ep_stall() - Wait EP stall.
990 * @dev: Reference to pch_udc_dev structure
992 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
994 unsigned int count = 10000;
996 /* Wait till idle */
997 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
998 udelay(5);
999 if (!count)
1000 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1004 * pch_udc_init() - This API initializes usb device controller
1005 * @dev: Rreference to pch_udc_regs structure
1007 static void pch_udc_init(struct pch_udc_dev *dev)
1009 if (NULL == dev) {
1010 pr_err("%s: Invalid address\n", __func__);
1011 return;
1013 /* Soft Reset and Reset PHY */
1014 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1015 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1016 mdelay(1);
1017 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1018 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1019 mdelay(1);
1020 /* mask and clear all device interrupts */
1021 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1022 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1024 /* mask and clear all ep interrupts */
1025 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1026 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1028 /* enable dynamic CSR programmingi, self powered and device speed */
1029 if (speed_fs)
1030 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1031 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1032 else /* defaul high speed */
1033 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1034 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1035 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1036 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1037 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1038 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1039 UDC_DEVCTL_THE);
1043 * pch_udc_exit() - This API exit usb device controller
1044 * @dev: Reference to pch_udc_regs structure
1046 static void pch_udc_exit(struct pch_udc_dev *dev)
1048 /* mask all device interrupts */
1049 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1050 /* mask all ep interrupts */
1051 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1052 /* put device in disconnected state */
1053 pch_udc_set_disconnect(dev);
1057 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1058 * @gadget: Reference to the gadget driver
1060 * Return codes:
1061 * 0: Success
1062 * -EINVAL: If the gadget passed is NULL
1064 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1066 struct pch_udc_dev *dev;
1068 if (!gadget)
1069 return -EINVAL;
1070 dev = container_of(gadget, struct pch_udc_dev, gadget);
1071 return pch_udc_get_frame(dev);
1075 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1076 * @gadget: Reference to the gadget driver
1078 * Return codes:
1079 * 0: Success
1080 * -EINVAL: If the gadget passed is NULL
1082 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1084 struct pch_udc_dev *dev;
1085 unsigned long flags;
1087 if (!gadget)
1088 return -EINVAL;
1089 dev = container_of(gadget, struct pch_udc_dev, gadget);
1090 spin_lock_irqsave(&dev->lock, flags);
1091 pch_udc_rmt_wakeup(dev);
1092 spin_unlock_irqrestore(&dev->lock, flags);
1093 return 0;
1097 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1098 * is self powered or not
1099 * @gadget: Reference to the gadget driver
1100 * @value: Specifies self powered or not
1102 * Return codes:
1103 * 0: Success
1104 * -EINVAL: If the gadget passed is NULL
1106 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1108 struct pch_udc_dev *dev;
1110 if (!gadget)
1111 return -EINVAL;
1112 dev = container_of(gadget, struct pch_udc_dev, gadget);
1113 if (value)
1114 pch_udc_set_selfpowered(dev);
1115 else
1116 pch_udc_clear_selfpowered(dev);
1117 return 0;
1121 * pch_udc_pcd_pullup() - This API is invoked to make the device
1122 * visible/invisible to the host
1123 * @gadget: Reference to the gadget driver
1124 * @is_on: Specifies whether the pull up is made active or inactive
1126 * Return codes:
1127 * 0: Success
1128 * -EINVAL: If the gadget passed is NULL
1130 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1132 struct pch_udc_dev *dev;
1134 if (!gadget)
1135 return -EINVAL;
1136 dev = container_of(gadget, struct pch_udc_dev, gadget);
1137 pch_udc_vbus_session(dev, is_on);
1138 return 0;
1142 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1143 * transceiver (or GPIO) that
1144 * detects a VBUS power session starting/ending
1145 * @gadget: Reference to the gadget driver
1146 * @is_active: specifies whether the session is starting or ending
1148 * Return codes:
1149 * 0: Success
1150 * -EINVAL: If the gadget passed is NULL
1152 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1154 struct pch_udc_dev *dev;
1156 if (!gadget)
1157 return -EINVAL;
1158 dev = container_of(gadget, struct pch_udc_dev, gadget);
1159 pch_udc_vbus_session(dev, is_active);
1160 return 0;
1164 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1165 * SET_CONFIGURATION calls to
1166 * specify how much power the device can consume
1167 * @gadget: Reference to the gadget driver
1168 * @mA: specifies the current limit in 2mA unit
1170 * Return codes:
1171 * -EINVAL: If the gadget passed is NULL
1172 * -EOPNOTSUPP:
1174 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1176 return -EOPNOTSUPP;
1179 static const struct usb_gadget_ops pch_udc_ops = {
1180 .get_frame = pch_udc_pcd_get_frame,
1181 .wakeup = pch_udc_pcd_wakeup,
1182 .set_selfpowered = pch_udc_pcd_selfpowered,
1183 .pullup = pch_udc_pcd_pullup,
1184 .vbus_session = pch_udc_pcd_vbus_session,
1185 .vbus_draw = pch_udc_pcd_vbus_draw,
1189 * complete_req() - This API is invoked from the driver when processing
1190 * of a request is complete
1191 * @ep: Reference to the endpoint structure
1192 * @req: Reference to the request structure
1193 * @status: Indicates the success/failure of completion
1195 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1196 int status)
1198 struct pch_udc_dev *dev;
1199 unsigned halted = ep->halted;
1201 list_del_init(&req->queue);
1203 /* set new status if pending */
1204 if (req->req.status == -EINPROGRESS)
1205 req->req.status = status;
1206 else
1207 status = req->req.status;
1209 dev = ep->dev;
1210 if (req->dma_mapped) {
1211 if (req->dma == DMA_ADDR_INVALID) {
1212 if (ep->in)
1213 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1214 req->req.length,
1215 DMA_TO_DEVICE);
1216 else
1217 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1218 req->req.length,
1219 DMA_FROM_DEVICE);
1220 req->req.dma = DMA_ADDR_INVALID;
1221 } else {
1222 if (ep->in)
1223 dma_unmap_single(&dev->pdev->dev, req->dma,
1224 req->req.length,
1225 DMA_TO_DEVICE);
1226 else {
1227 dma_unmap_single(&dev->pdev->dev, req->dma,
1228 req->req.length,
1229 DMA_FROM_DEVICE);
1230 memcpy(req->req.buf, req->buf, req->req.length);
1232 kfree(req->buf);
1233 req->dma = DMA_ADDR_INVALID;
1235 req->dma_mapped = 0;
1237 ep->halted = 1;
1238 spin_unlock(&dev->lock);
1239 if (!ep->in)
1240 pch_udc_ep_clear_rrdy(ep);
1241 req->req.complete(&ep->ep, &req->req);
1242 spin_lock(&dev->lock);
1243 ep->halted = halted;
1247 * empty_req_queue() - This API empties the request queue of an endpoint
1248 * @ep: Reference to the endpoint structure
1250 static void empty_req_queue(struct pch_udc_ep *ep)
1252 struct pch_udc_request *req;
1254 ep->halted = 1;
1255 while (!list_empty(&ep->queue)) {
1256 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1257 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
1262 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1263 * for the request
1264 * @dev Reference to the driver structure
1265 * @req Reference to the request to be freed
1267 * Return codes:
1268 * 0: Success
1270 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1271 struct pch_udc_request *req)
1273 struct pch_udc_data_dma_desc *td = req->td_data;
1274 unsigned i = req->chain_len;
1276 dma_addr_t addr2;
1277 dma_addr_t addr = (dma_addr_t)td->next;
1278 td->next = 0x00;
1279 for (; i > 1; --i) {
1280 /* do not free first desc., will be done by free for request */
1281 td = phys_to_virt(addr);
1282 addr2 = (dma_addr_t)td->next;
1283 pci_pool_free(dev->data_requests, td, addr);
1284 td->next = 0x00;
1285 addr = addr2;
1287 req->chain_len = 1;
1291 * pch_udc_create_dma_chain() - This function creates or reinitializes
1292 * a DMA chain
1293 * @ep: Reference to the endpoint structure
1294 * @req: Reference to the request
1295 * @buf_len: The buffer length
1296 * @gfp_flags: Flags to be used while mapping the data buffer
1298 * Return codes:
1299 * 0: success,
1300 * -ENOMEM: pci_pool_alloc invocation fails
1302 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1303 struct pch_udc_request *req,
1304 unsigned long buf_len,
1305 gfp_t gfp_flags)
1307 struct pch_udc_data_dma_desc *td = req->td_data, *last;
1308 unsigned long bytes = req->req.length, i = 0;
1309 dma_addr_t dma_addr;
1310 unsigned len = 1;
1312 if (req->chain_len > 1)
1313 pch_udc_free_dma_chain(ep->dev, req);
1315 if (req->dma == DMA_ADDR_INVALID)
1316 td->dataptr = req->req.dma;
1317 else
1318 td->dataptr = req->dma;
1320 td->status = PCH_UDC_BS_HST_BSY;
1321 for (; ; bytes -= buf_len, ++len) {
1322 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1323 if (bytes <= buf_len)
1324 break;
1325 last = td;
1326 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1327 &dma_addr);
1328 if (!td)
1329 goto nomem;
1330 i += buf_len;
1331 td->dataptr = req->td_data->dataptr + i;
1332 last->next = dma_addr;
1335 req->td_data_last = td;
1336 td->status |= PCH_UDC_DMA_LAST;
1337 td->next = req->td_data_phys;
1338 req->chain_len = len;
1339 return 0;
1341 nomem:
1342 if (len > 1) {
1343 req->chain_len = len;
1344 pch_udc_free_dma_chain(ep->dev, req);
1346 req->chain_len = 1;
1347 return -ENOMEM;
1351 * prepare_dma() - This function creates and initializes the DMA chain
1352 * for the request
1353 * @ep: Reference to the endpoint structure
1354 * @req: Reference to the request
1355 * @gfp: Flag to be used while mapping the data buffer
1357 * Return codes:
1358 * 0: Success
1359 * Other 0: linux error number on failure
1361 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1362 gfp_t gfp)
1364 int retval;
1366 /* Allocate and create a DMA chain */
1367 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1368 if (retval) {
1369 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1370 return retval;
1372 if (ep->in)
1373 req->td_data->status = (req->td_data->status &
1374 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1375 return 0;
1379 * process_zlp() - This function process zero length packets
1380 * from the gadget driver
1381 * @ep: Reference to the endpoint structure
1382 * @req: Reference to the request
1384 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1386 struct pch_udc_dev *dev = ep->dev;
1388 /* IN zlp's are handled by hardware */
1389 complete_req(ep, req, 0);
1391 /* if set_config or set_intf is waiting for ack by zlp
1392 * then set CSR_DONE
1394 if (dev->set_cfg_not_acked) {
1395 pch_udc_set_csr_done(dev);
1396 dev->set_cfg_not_acked = 0;
1398 /* setup command is ACK'ed now by zlp */
1399 if (!dev->stall && dev->waiting_zlp_ack) {
1400 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1401 dev->waiting_zlp_ack = 0;
1406 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1407 * @ep: Reference to the endpoint structure
1408 * @req: Reference to the request structure
1410 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1411 struct pch_udc_request *req)
1413 struct pch_udc_data_dma_desc *td_data;
1415 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1416 td_data = req->td_data;
1417 /* Set the status bits for all descriptors */
1418 while (1) {
1419 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1420 PCH_UDC_BS_HST_RDY;
1421 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1422 break;
1423 td_data = phys_to_virt(td_data->next);
1425 /* Write the descriptor pointer */
1426 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1427 req->dma_going = 1;
1428 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1429 pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1430 pch_udc_ep_clear_nak(ep);
1431 pch_udc_ep_set_rrdy(ep);
1435 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1436 * from gadget driver
1437 * @usbep: Reference to the USB endpoint structure
1438 * @desc: Reference to the USB endpoint descriptor structure
1440 * Return codes:
1441 * 0: Success
1442 * -EINVAL:
1443 * -ESHUTDOWN:
1445 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1446 const struct usb_endpoint_descriptor *desc)
1448 struct pch_udc_ep *ep;
1449 struct pch_udc_dev *dev;
1450 unsigned long iflags;
1452 if (!usbep || (usbep->name == ep0_string) || !desc ||
1453 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1454 return -EINVAL;
1456 ep = container_of(usbep, struct pch_udc_ep, ep);
1457 dev = ep->dev;
1458 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1459 return -ESHUTDOWN;
1460 spin_lock_irqsave(&dev->lock, iflags);
1461 ep->desc = desc;
1462 ep->halted = 0;
1463 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1464 ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
1465 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1466 spin_unlock_irqrestore(&dev->lock, iflags);
1467 return 0;
1471 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1472 * from gadget driver
1473 * @usbep Reference to the USB endpoint structure
1475 * Return codes:
1476 * 0: Success
1477 * -EINVAL:
1479 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1481 struct pch_udc_ep *ep;
1482 struct pch_udc_dev *dev;
1483 unsigned long iflags;
1485 if (!usbep)
1486 return -EINVAL;
1488 ep = container_of(usbep, struct pch_udc_ep, ep);
1489 dev = ep->dev;
1490 if ((usbep->name == ep0_string) || !ep->desc)
1491 return -EINVAL;
1493 spin_lock_irqsave(&ep->dev->lock, iflags);
1494 empty_req_queue(ep);
1495 ep->halted = 1;
1496 pch_udc_ep_disable(ep);
1497 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1498 ep->desc = NULL;
1499 INIT_LIST_HEAD(&ep->queue);
1500 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1501 return 0;
1505 * pch_udc_alloc_request() - This function allocates request structure.
1506 * It is called by gadget driver
1507 * @usbep: Reference to the USB endpoint structure
1508 * @gfp: Flag to be used while allocating memory
1510 * Return codes:
1511 * NULL: Failure
1512 * Allocated address: Success
1514 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1515 gfp_t gfp)
1517 struct pch_udc_request *req;
1518 struct pch_udc_ep *ep;
1519 struct pch_udc_data_dma_desc *dma_desc;
1520 struct pch_udc_dev *dev;
1522 if (!usbep)
1523 return NULL;
1524 ep = container_of(usbep, struct pch_udc_ep, ep);
1525 dev = ep->dev;
1526 req = kzalloc(sizeof *req, gfp);
1527 if (!req)
1528 return NULL;
1529 req->req.dma = DMA_ADDR_INVALID;
1530 req->dma = DMA_ADDR_INVALID;
1531 INIT_LIST_HEAD(&req->queue);
1532 if (!ep->dev->dma_addr)
1533 return &req->req;
1534 /* ep0 in requests are allocated from data pool here */
1535 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1536 &req->td_data_phys);
1537 if (NULL == dma_desc) {
1538 kfree(req);
1539 return NULL;
1541 /* prevent from using desc. - set HOST BUSY */
1542 dma_desc->status |= PCH_UDC_BS_HST_BSY;
1543 dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
1544 req->td_data = dma_desc;
1545 req->td_data_last = dma_desc;
1546 req->chain_len = 1;
1547 return &req->req;
1551 * pch_udc_free_request() - This function frees request structure.
1552 * It is called by gadget driver
1553 * @usbep: Reference to the USB endpoint structure
1554 * @usbreq: Reference to the USB request
1556 static void pch_udc_free_request(struct usb_ep *usbep,
1557 struct usb_request *usbreq)
1559 struct pch_udc_ep *ep;
1560 struct pch_udc_request *req;
1561 struct pch_udc_dev *dev;
1563 if (!usbep || !usbreq)
1564 return;
1565 ep = container_of(usbep, struct pch_udc_ep, ep);
1566 req = container_of(usbreq, struct pch_udc_request, req);
1567 dev = ep->dev;
1568 if (!list_empty(&req->queue))
1569 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1570 __func__, usbep->name, req);
1571 if (req->td_data != NULL) {
1572 if (req->chain_len > 1)
1573 pch_udc_free_dma_chain(ep->dev, req);
1574 pci_pool_free(ep->dev->data_requests, req->td_data,
1575 req->td_data_phys);
1577 kfree(req);
1581 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1582 * by gadget driver
1583 * @usbep: Reference to the USB endpoint structure
1584 * @usbreq: Reference to the USB request
1585 * @gfp: Flag to be used while mapping the data buffer
1587 * Return codes:
1588 * 0: Success
1589 * linux error number: Failure
1591 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1592 gfp_t gfp)
1594 int retval = 0;
1595 struct pch_udc_ep *ep;
1596 struct pch_udc_dev *dev;
1597 struct pch_udc_request *req;
1598 unsigned long iflags;
1600 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1601 return -EINVAL;
1602 ep = container_of(usbep, struct pch_udc_ep, ep);
1603 dev = ep->dev;
1604 if (!ep->desc && ep->num)
1605 return -EINVAL;
1606 req = container_of(usbreq, struct pch_udc_request, req);
1607 if (!list_empty(&req->queue))
1608 return -EINVAL;
1609 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1610 return -ESHUTDOWN;
1611 spin_lock_irqsave(&dev->lock, iflags);
1612 /* map the buffer for dma */
1613 if (usbreq->length &&
1614 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1615 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1616 if (ep->in)
1617 usbreq->dma = dma_map_single(&dev->pdev->dev,
1618 usbreq->buf,
1619 usbreq->length,
1620 DMA_TO_DEVICE);
1621 else
1622 usbreq->dma = dma_map_single(&dev->pdev->dev,
1623 usbreq->buf,
1624 usbreq->length,
1625 DMA_FROM_DEVICE);
1626 } else {
1627 req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1628 if (!req->buf) {
1629 retval = -ENOMEM;
1630 goto probe_end;
1632 if (ep->in) {
1633 memcpy(req->buf, usbreq->buf, usbreq->length);
1634 req->dma = dma_map_single(&dev->pdev->dev,
1635 req->buf,
1636 usbreq->length,
1637 DMA_TO_DEVICE);
1638 } else
1639 req->dma = dma_map_single(&dev->pdev->dev,
1640 req->buf,
1641 usbreq->length,
1642 DMA_FROM_DEVICE);
1644 req->dma_mapped = 1;
1646 if (usbreq->length > 0) {
1647 retval = prepare_dma(ep, req, GFP_ATOMIC);
1648 if (retval)
1649 goto probe_end;
1651 usbreq->actual = 0;
1652 usbreq->status = -EINPROGRESS;
1653 req->dma_done = 0;
1654 if (list_empty(&ep->queue) && !ep->halted) {
1655 /* no pending transfer, so start this req */
1656 if (!usbreq->length) {
1657 process_zlp(ep, req);
1658 retval = 0;
1659 goto probe_end;
1661 if (!ep->in) {
1662 pch_udc_start_rxrequest(ep, req);
1663 } else {
1665 * For IN trfr the descriptors will be programmed and
1666 * P bit will be set when
1667 * we get an IN token
1669 pch_udc_wait_ep_stall(ep);
1670 pch_udc_ep_clear_nak(ep);
1671 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1674 /* Now add this request to the ep's pending requests */
1675 if (req != NULL)
1676 list_add_tail(&req->queue, &ep->queue);
1678 probe_end:
1679 spin_unlock_irqrestore(&dev->lock, iflags);
1680 return retval;
1684 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1685 * It is called by gadget driver
1686 * @usbep: Reference to the USB endpoint structure
1687 * @usbreq: Reference to the USB request
1689 * Return codes:
1690 * 0: Success
1691 * linux error number: Failure
1693 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1694 struct usb_request *usbreq)
1696 struct pch_udc_ep *ep;
1697 struct pch_udc_request *req;
1698 struct pch_udc_dev *dev;
1699 unsigned long flags;
1700 int ret = -EINVAL;
1702 ep = container_of(usbep, struct pch_udc_ep, ep);
1703 dev = ep->dev;
1704 if (!usbep || !usbreq || (!ep->desc && ep->num))
1705 return ret;
1706 req = container_of(usbreq, struct pch_udc_request, req);
1707 spin_lock_irqsave(&ep->dev->lock, flags);
1708 /* make sure it's still queued on this endpoint */
1709 list_for_each_entry(req, &ep->queue, queue) {
1710 if (&req->req == usbreq) {
1711 pch_udc_ep_set_nak(ep);
1712 if (!list_empty(&req->queue))
1713 complete_req(ep, req, -ECONNRESET);
1714 ret = 0;
1715 break;
1718 spin_unlock_irqrestore(&ep->dev->lock, flags);
1719 return ret;
1723 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1724 * feature
1725 * @usbep: Reference to the USB endpoint structure
1726 * @halt: Specifies whether to set or clear the feature
1728 * Return codes:
1729 * 0: Success
1730 * linux error number: Failure
1732 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1734 struct pch_udc_ep *ep;
1735 struct pch_udc_dev *dev;
1736 unsigned long iflags;
1737 int ret;
1739 if (!usbep)
1740 return -EINVAL;
1741 ep = container_of(usbep, struct pch_udc_ep, ep);
1742 dev = ep->dev;
1743 if (!ep->desc && !ep->num)
1744 return -EINVAL;
1745 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1746 return -ESHUTDOWN;
1747 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1748 if (list_empty(&ep->queue)) {
1749 if (halt) {
1750 if (ep->num == PCH_UDC_EP0)
1751 ep->dev->stall = 1;
1752 pch_udc_ep_set_stall(ep);
1753 pch_udc_enable_ep_interrupts(ep->dev,
1754 PCH_UDC_EPINT(ep->in,
1755 ep->num));
1756 } else {
1757 pch_udc_ep_clear_stall(ep);
1759 ret = 0;
1760 } else {
1761 ret = -EAGAIN;
1763 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1764 return ret;
1768 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
1769 * halt feature
1770 * @usbep: Reference to the USB endpoint structure
1771 * @halt: Specifies whether to set or clear the feature
1773 * Return codes:
1774 * 0: Success
1775 * linux error number: Failure
1777 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
1779 struct pch_udc_ep *ep;
1780 struct pch_udc_dev *dev;
1781 unsigned long iflags;
1782 int ret;
1784 if (!usbep)
1785 return -EINVAL;
1786 ep = container_of(usbep, struct pch_udc_ep, ep);
1787 dev = ep->dev;
1788 if (!ep->desc && !ep->num)
1789 return -EINVAL;
1790 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1791 return -ESHUTDOWN;
1792 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1793 if (!list_empty(&ep->queue)) {
1794 ret = -EAGAIN;
1795 } else {
1796 if (ep->num == PCH_UDC_EP0)
1797 ep->dev->stall = 1;
1798 pch_udc_ep_set_stall(ep);
1799 pch_udc_enable_ep_interrupts(ep->dev,
1800 PCH_UDC_EPINT(ep->in, ep->num));
1801 ep->dev->prot_stall = 1;
1802 ret = 0;
1804 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1805 return ret;
1809 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
1810 * @usbep: Reference to the USB endpoint structure
1812 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
1814 struct pch_udc_ep *ep;
1816 if (!usbep)
1817 return;
1819 ep = container_of(usbep, struct pch_udc_ep, ep);
1820 if (ep->desc || !ep->num)
1821 pch_udc_ep_fifo_flush(ep, ep->in);
1824 static const struct usb_ep_ops pch_udc_ep_ops = {
1825 .enable = pch_udc_pcd_ep_enable,
1826 .disable = pch_udc_pcd_ep_disable,
1827 .alloc_request = pch_udc_alloc_request,
1828 .free_request = pch_udc_free_request,
1829 .queue = pch_udc_pcd_queue,
1830 .dequeue = pch_udc_pcd_dequeue,
1831 .set_halt = pch_udc_pcd_set_halt,
1832 .set_wedge = pch_udc_pcd_set_wedge,
1833 .fifo_status = NULL,
1834 .fifo_flush = pch_udc_pcd_fifo_flush,
1838 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
1839 * @td_stp: Reference to the SETP buffer structure
1841 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
1843 static u32 pky_marker;
1845 if (!td_stp)
1846 return;
1847 td_stp->reserved = ++pky_marker;
1848 memset(&td_stp->request, 0xFF, sizeof td_stp->request);
1849 td_stp->status = PCH_UDC_BS_HST_RDY;
1853 * pch_udc_start_next_txrequest() - This function starts
1854 * the next transmission requirement
1855 * @ep: Reference to the endpoint structure
1857 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
1859 struct pch_udc_request *req;
1860 struct pch_udc_data_dma_desc *td_data;
1862 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
1863 return;
1865 if (list_empty(&ep->queue))
1866 return;
1868 /* next request */
1869 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1870 if (req->dma_going)
1871 return;
1872 if (!req->td_data)
1873 return;
1874 pch_udc_wait_ep_stall(ep);
1875 req->dma_going = 1;
1876 pch_udc_ep_set_ddptr(ep, 0);
1877 td_data = req->td_data;
1878 while (1) {
1879 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1880 PCH_UDC_BS_HST_RDY;
1881 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1882 break;
1883 td_data = phys_to_virt(td_data->next);
1885 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1886 pch_udc_set_dma(ep->dev, DMA_DIR_TX);
1887 pch_udc_ep_set_pd(ep);
1888 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1889 pch_udc_ep_clear_nak(ep);
1893 * pch_udc_complete_transfer() - This function completes a transfer
1894 * @ep: Reference to the endpoint structure
1896 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
1898 struct pch_udc_request *req;
1899 struct pch_udc_dev *dev = ep->dev;
1901 if (list_empty(&ep->queue))
1902 return;
1903 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1904 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
1905 PCH_UDC_BS_DMA_DONE)
1906 return;
1907 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
1908 PCH_UDC_RTS_SUCC) {
1909 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
1910 "epstatus=0x%08x\n",
1911 (req->td_data_last->status & PCH_UDC_RXTX_STS),
1912 (int)(ep->epsts));
1913 return;
1916 req->req.actual = req->req.length;
1917 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1918 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1919 complete_req(ep, req, 0);
1920 req->dma_going = 0;
1921 if (!list_empty(&ep->queue)) {
1922 pch_udc_wait_ep_stall(ep);
1923 pch_udc_ep_clear_nak(ep);
1924 pch_udc_enable_ep_interrupts(ep->dev,
1925 PCH_UDC_EPINT(ep->in, ep->num));
1926 } else {
1927 pch_udc_disable_ep_interrupts(ep->dev,
1928 PCH_UDC_EPINT(ep->in, ep->num));
1933 * pch_udc_complete_receiver() - This function completes a receiver
1934 * @ep: Reference to the endpoint structure
1936 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
1938 struct pch_udc_request *req;
1939 struct pch_udc_dev *dev = ep->dev;
1940 unsigned int count;
1941 struct pch_udc_data_dma_desc *td;
1942 dma_addr_t addr;
1944 if (list_empty(&ep->queue))
1945 return;
1946 /* next request */
1947 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1948 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1949 pch_udc_ep_set_ddptr(ep, 0);
1950 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
1951 PCH_UDC_BS_DMA_DONE)
1952 td = req->td_data_last;
1953 else
1954 td = req->td_data;
1956 while (1) {
1957 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
1958 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
1959 "epstatus=0x%08x\n",
1960 (req->td_data->status & PCH_UDC_RXTX_STS),
1961 (int)(ep->epsts));
1962 return;
1964 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
1965 if (td->status | PCH_UDC_DMA_LAST) {
1966 count = td->status & PCH_UDC_RXTX_BYTES;
1967 break;
1969 if (td == req->td_data_last) {
1970 dev_err(&dev->pdev->dev, "Not complete RX descriptor");
1971 return;
1973 addr = (dma_addr_t)td->next;
1974 td = phys_to_virt(addr);
1976 /* on 64k packets the RXBYTES field is zero */
1977 if (!count && (req->req.length == UDC_DMA_MAXPACKET))
1978 count = UDC_DMA_MAXPACKET;
1979 req->td_data->status |= PCH_UDC_DMA_LAST;
1980 td->status |= PCH_UDC_BS_HST_BSY;
1982 req->dma_going = 0;
1983 req->req.actual = count;
1984 complete_req(ep, req, 0);
1985 /* If there is a new/failed requests try that now */
1986 if (!list_empty(&ep->queue)) {
1987 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1988 pch_udc_start_rxrequest(ep, req);
1993 * pch_udc_svc_data_in() - This function process endpoint interrupts
1994 * for IN endpoints
1995 * @dev: Reference to the device structure
1996 * @ep_num: Endpoint that generated the interrupt
1998 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2000 u32 epsts;
2001 struct pch_udc_ep *ep;
2003 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2004 epsts = ep->epsts;
2005 ep->epsts = 0;
2007 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2008 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2009 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2010 return;
2011 if ((epsts & UDC_EPSTS_BNA))
2012 return;
2013 if (epsts & UDC_EPSTS_HE)
2014 return;
2015 if (epsts & UDC_EPSTS_RSS) {
2016 pch_udc_ep_set_stall(ep);
2017 pch_udc_enable_ep_interrupts(ep->dev,
2018 PCH_UDC_EPINT(ep->in, ep->num));
2020 if (epsts & UDC_EPSTS_RCS) {
2021 if (!dev->prot_stall) {
2022 pch_udc_ep_clear_stall(ep);
2023 } else {
2024 pch_udc_ep_set_stall(ep);
2025 pch_udc_enable_ep_interrupts(ep->dev,
2026 PCH_UDC_EPINT(ep->in, ep->num));
2029 if (epsts & UDC_EPSTS_TDC)
2030 pch_udc_complete_transfer(ep);
2031 /* On IN interrupt, provide data if we have any */
2032 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2033 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2034 pch_udc_start_next_txrequest(ep);
2038 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2039 * @dev: Reference to the device structure
2040 * @ep_num: Endpoint that generated the interrupt
2042 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2044 u32 epsts;
2045 struct pch_udc_ep *ep;
2046 struct pch_udc_request *req = NULL;
2048 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2049 epsts = ep->epsts;
2050 ep->epsts = 0;
2052 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2053 /* next request */
2054 req = list_entry(ep->queue.next, struct pch_udc_request,
2055 queue);
2056 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2057 PCH_UDC_BS_DMA_DONE) {
2058 if (!req->dma_going)
2059 pch_udc_start_rxrequest(ep, req);
2060 return;
2063 if (epsts & UDC_EPSTS_HE)
2064 return;
2065 if (epsts & UDC_EPSTS_RSS) {
2066 pch_udc_ep_set_stall(ep);
2067 pch_udc_enable_ep_interrupts(ep->dev,
2068 PCH_UDC_EPINT(ep->in, ep->num));
2070 if (epsts & UDC_EPSTS_RCS) {
2071 if (!dev->prot_stall) {
2072 pch_udc_ep_clear_stall(ep);
2073 } else {
2074 pch_udc_ep_set_stall(ep);
2075 pch_udc_enable_ep_interrupts(ep->dev,
2076 PCH_UDC_EPINT(ep->in, ep->num));
2079 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2080 UDC_EPSTS_OUT_DATA) {
2081 if (ep->dev->prot_stall == 1) {
2082 pch_udc_ep_set_stall(ep);
2083 pch_udc_enable_ep_interrupts(ep->dev,
2084 PCH_UDC_EPINT(ep->in, ep->num));
2085 } else {
2086 pch_udc_complete_receiver(ep);
2089 if (list_empty(&ep->queue))
2090 pch_udc_set_dma(dev, DMA_DIR_RX);
2094 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2095 * @dev: Reference to the device structure
2097 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2099 u32 epsts;
2100 struct pch_udc_ep *ep;
2101 struct pch_udc_ep *ep_out;
2103 ep = &dev->ep[UDC_EP0IN_IDX];
2104 ep_out = &dev->ep[UDC_EP0OUT_IDX];
2105 epsts = ep->epsts;
2106 ep->epsts = 0;
2108 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2109 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2110 UDC_EPSTS_XFERDONE)))
2111 return;
2112 if ((epsts & UDC_EPSTS_BNA))
2113 return;
2114 if (epsts & UDC_EPSTS_HE)
2115 return;
2116 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2117 pch_udc_complete_transfer(ep);
2118 pch_udc_clear_dma(dev, DMA_DIR_RX);
2119 ep_out->td_data->status = (ep_out->td_data->status &
2120 ~PCH_UDC_BUFF_STS) |
2121 PCH_UDC_BS_HST_RDY;
2122 pch_udc_ep_clear_nak(ep_out);
2123 pch_udc_set_dma(dev, DMA_DIR_RX);
2124 pch_udc_ep_set_rrdy(ep_out);
2126 /* On IN interrupt, provide data if we have any */
2127 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2128 !(epsts & UDC_EPSTS_TXEMPTY))
2129 pch_udc_start_next_txrequest(ep);
2133 * pch_udc_svc_control_out() - Routine that handle Control
2134 * OUT endpoint interrupts
2135 * @dev: Reference to the device structure
2137 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2139 u32 stat;
2140 int setup_supported;
2141 struct pch_udc_ep *ep;
2143 ep = &dev->ep[UDC_EP0OUT_IDX];
2144 stat = ep->epsts;
2145 ep->epsts = 0;
2147 /* If setup data */
2148 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2149 UDC_EPSTS_OUT_SETUP) {
2150 dev->stall = 0;
2151 dev->ep[UDC_EP0IN_IDX].halted = 0;
2152 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2153 dev->setup_data = ep->td_stp->request;
2154 pch_udc_init_setup_buff(ep->td_stp);
2155 pch_udc_clear_dma(dev, DMA_DIR_RX);
2156 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2157 dev->ep[UDC_EP0IN_IDX].in);
2158 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2159 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2160 else /* OUT */
2161 dev->gadget.ep0 = &ep->ep;
2162 spin_unlock(&dev->lock);
2163 /* If Mass storage Reset */
2164 if ((dev->setup_data.bRequestType == 0x21) &&
2165 (dev->setup_data.bRequest == 0xFF))
2166 dev->prot_stall = 0;
2167 /* call gadget with setup data received */
2168 setup_supported = dev->driver->setup(&dev->gadget,
2169 &dev->setup_data);
2170 spin_lock(&dev->lock);
2172 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2173 ep->td_data->status = (ep->td_data->status &
2174 ~PCH_UDC_BUFF_STS) |
2175 PCH_UDC_BS_HST_RDY;
2176 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2178 /* ep0 in returns data on IN phase */
2179 if (setup_supported >= 0 && setup_supported <
2180 UDC_EP0IN_MAX_PKT_SIZE) {
2181 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2182 /* Gadget would have queued a request when
2183 * we called the setup */
2184 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2185 pch_udc_set_dma(dev, DMA_DIR_RX);
2186 pch_udc_ep_clear_nak(ep);
2188 } else if (setup_supported < 0) {
2189 /* if unsupported request, then stall */
2190 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2191 pch_udc_enable_ep_interrupts(ep->dev,
2192 PCH_UDC_EPINT(ep->in, ep->num));
2193 dev->stall = 0;
2194 pch_udc_set_dma(dev, DMA_DIR_RX);
2195 } else {
2196 dev->waiting_zlp_ack = 1;
2198 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2199 UDC_EPSTS_OUT_DATA) && !dev->stall) {
2200 pch_udc_clear_dma(dev, DMA_DIR_RX);
2201 pch_udc_ep_set_ddptr(ep, 0);
2202 if (!list_empty(&ep->queue)) {
2203 ep->epsts = stat;
2204 pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2206 pch_udc_set_dma(dev, DMA_DIR_RX);
2208 pch_udc_ep_set_rrdy(ep);
2213 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2214 * and clears NAK status
2215 * @dev: Reference to the device structure
2216 * @ep_num: End point number
2218 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2220 struct pch_udc_ep *ep;
2221 struct pch_udc_request *req;
2223 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2224 if (!list_empty(&ep->queue)) {
2225 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2226 pch_udc_enable_ep_interrupts(ep->dev,
2227 PCH_UDC_EPINT(ep->in, ep->num));
2228 pch_udc_ep_clear_nak(ep);
2233 * pch_udc_read_all_epstatus() - This function read all endpoint status
2234 * @dev: Reference to the device structure
2235 * @ep_intr: Status of endpoint interrupt
2237 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2239 int i;
2240 struct pch_udc_ep *ep;
2242 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2243 /* IN */
2244 if (ep_intr & (0x1 << i)) {
2245 ep = &dev->ep[UDC_EPIN_IDX(i)];
2246 ep->epsts = pch_udc_read_ep_status(ep);
2247 pch_udc_clear_ep_status(ep, ep->epsts);
2249 /* OUT */
2250 if (ep_intr & (0x10000 << i)) {
2251 ep = &dev->ep[UDC_EPOUT_IDX(i)];
2252 ep->epsts = pch_udc_read_ep_status(ep);
2253 pch_udc_clear_ep_status(ep, ep->epsts);
2259 * pch_udc_activate_control_ep() - This function enables the control endpoints
2260 * for traffic after a reset
2261 * @dev: Reference to the device structure
2263 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2265 struct pch_udc_ep *ep;
2266 u32 val;
2268 /* Setup the IN endpoint */
2269 ep = &dev->ep[UDC_EP0IN_IDX];
2270 pch_udc_clear_ep_control(ep);
2271 pch_udc_ep_fifo_flush(ep, ep->in);
2272 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2273 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2274 /* Initialize the IN EP Descriptor */
2275 ep->td_data = NULL;
2276 ep->td_stp = NULL;
2277 ep->td_data_phys = 0;
2278 ep->td_stp_phys = 0;
2280 /* Setup the OUT endpoint */
2281 ep = &dev->ep[UDC_EP0OUT_IDX];
2282 pch_udc_clear_ep_control(ep);
2283 pch_udc_ep_fifo_flush(ep, ep->in);
2284 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2285 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2286 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2287 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2289 /* Initialize the SETUP buffer */
2290 pch_udc_init_setup_buff(ep->td_stp);
2291 /* Write the pointer address of dma descriptor */
2292 pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2293 /* Write the pointer address of Setup descriptor */
2294 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2296 /* Initialize the dma descriptor */
2297 ep->td_data->status = PCH_UDC_DMA_LAST;
2298 ep->td_data->dataptr = dev->dma_addr;
2299 ep->td_data->next = ep->td_data_phys;
2301 pch_udc_ep_clear_nak(ep);
2306 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2307 * @dev: Reference to driver structure
2309 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2311 struct pch_udc_ep *ep;
2312 int i;
2314 pch_udc_clear_dma(dev, DMA_DIR_TX);
2315 pch_udc_clear_dma(dev, DMA_DIR_RX);
2316 /* Mask all endpoint interrupts */
2317 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2318 /* clear all endpoint interrupts */
2319 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2321 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2322 ep = &dev->ep[i];
2323 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2324 pch_udc_clear_ep_control(ep);
2325 pch_udc_ep_set_ddptr(ep, 0);
2326 pch_udc_write_csr(ep->dev, 0x00, i);
2328 dev->stall = 0;
2329 dev->prot_stall = 0;
2330 dev->waiting_zlp_ack = 0;
2331 dev->set_cfg_not_acked = 0;
2333 /* disable ep to empty req queue. Skip the control EP's */
2334 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2335 ep = &dev->ep[i];
2336 pch_udc_ep_set_nak(ep);
2337 pch_udc_ep_fifo_flush(ep, ep->in);
2338 /* Complete request queue */
2339 empty_req_queue(ep);
2341 if (dev->driver && dev->driver->disconnect)
2342 dev->driver->disconnect(&dev->gadget);
2346 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2347 * done interrupt
2348 * @dev: Reference to driver structure
2350 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2352 u32 dev_stat, dev_speed;
2353 u32 speed = USB_SPEED_FULL;
2355 dev_stat = pch_udc_read_device_status(dev);
2356 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2357 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2358 switch (dev_speed) {
2359 case UDC_DEVSTS_ENUM_SPEED_HIGH:
2360 speed = USB_SPEED_HIGH;
2361 break;
2362 case UDC_DEVSTS_ENUM_SPEED_FULL:
2363 speed = USB_SPEED_FULL;
2364 break;
2365 case UDC_DEVSTS_ENUM_SPEED_LOW:
2366 speed = USB_SPEED_LOW;
2367 break;
2368 default:
2369 BUG();
2371 dev->gadget.speed = speed;
2372 pch_udc_activate_control_ep(dev);
2373 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2374 pch_udc_set_dma(dev, DMA_DIR_TX);
2375 pch_udc_set_dma(dev, DMA_DIR_RX);
2376 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2380 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2381 * interrupt
2382 * @dev: Reference to driver structure
2384 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2386 u32 reg, dev_stat = 0;
2387 int i, ret;
2389 dev_stat = pch_udc_read_device_status(dev);
2390 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2391 UDC_DEVSTS_INTF_SHIFT;
2392 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2393 UDC_DEVSTS_ALT_SHIFT;
2394 dev->set_cfg_not_acked = 1;
2395 /* Construct the usb request for gadget driver and inform it */
2396 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2397 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2398 dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2399 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2400 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2401 /* programm the Endpoint Cfg registers */
2402 /* Only one end point cfg register */
2403 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2404 reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2405 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2406 reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2407 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2408 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2409 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2410 /* clear stall bits */
2411 pch_udc_ep_clear_stall(&(dev->ep[i]));
2412 dev->ep[i].halted = 0;
2414 dev->stall = 0;
2415 spin_unlock(&dev->lock);
2416 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2417 spin_lock(&dev->lock);
2421 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2422 * interrupt
2423 * @dev: Reference to driver structure
2425 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2427 int i, ret;
2428 u32 reg, dev_stat = 0;
2430 dev_stat = pch_udc_read_device_status(dev);
2431 dev->set_cfg_not_acked = 1;
2432 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2433 UDC_DEVSTS_CFG_SHIFT;
2434 /* make usb request for gadget driver */
2435 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2436 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2437 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2438 /* program the NE registers */
2439 /* Only one end point cfg register */
2440 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2441 reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2442 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2443 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2444 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2445 /* clear stall bits */
2446 pch_udc_ep_clear_stall(&(dev->ep[i]));
2447 dev->ep[i].halted = 0;
2449 dev->stall = 0;
2451 /* call gadget zero with setup data received */
2452 spin_unlock(&dev->lock);
2453 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2454 spin_lock(&dev->lock);
2458 * pch_udc_dev_isr() - This function services device interrupts
2459 * by invoking appropriate routines.
2460 * @dev: Reference to the device structure
2461 * @dev_intr: The Device interrupt status.
2463 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2465 /* USB Reset Interrupt */
2466 if (dev_intr & UDC_DEVINT_UR)
2467 pch_udc_svc_ur_interrupt(dev);
2468 /* Enumeration Done Interrupt */
2469 if (dev_intr & UDC_DEVINT_ENUM)
2470 pch_udc_svc_enum_interrupt(dev);
2471 /* Set Interface Interrupt */
2472 if (dev_intr & UDC_DEVINT_SI)
2473 pch_udc_svc_intf_interrupt(dev);
2474 /* Set Config Interrupt */
2475 if (dev_intr & UDC_DEVINT_SC)
2476 pch_udc_svc_cfg_interrupt(dev);
2477 /* USB Suspend interrupt */
2478 if (dev_intr & UDC_DEVINT_US)
2479 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2480 /* Clear the SOF interrupt, if enabled */
2481 if (dev_intr & UDC_DEVINT_SOF)
2482 dev_dbg(&dev->pdev->dev, "SOF\n");
2483 /* ES interrupt, IDLE > 3ms on the USB */
2484 if (dev_intr & UDC_DEVINT_ES)
2485 dev_dbg(&dev->pdev->dev, "ES\n");
2486 /* RWKP interrupt */
2487 if (dev_intr & UDC_DEVINT_RWKP)
2488 dev_dbg(&dev->pdev->dev, "RWKP\n");
2492 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2493 * @irq: Interrupt request number
2494 * @dev: Reference to the device structure
2496 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2498 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2499 u32 dev_intr, ep_intr;
2500 int i;
2502 dev_intr = pch_udc_read_device_interrupts(dev);
2503 ep_intr = pch_udc_read_ep_interrupts(dev);
2505 if (dev_intr)
2506 /* Clear device interrupts */
2507 pch_udc_write_device_interrupts(dev, dev_intr);
2508 if (ep_intr)
2509 /* Clear ep interrupts */
2510 pch_udc_write_ep_interrupts(dev, ep_intr);
2511 if (!dev_intr && !ep_intr)
2512 return IRQ_NONE;
2513 spin_lock(&dev->lock);
2514 if (dev_intr)
2515 pch_udc_dev_isr(dev, dev_intr);
2516 if (ep_intr) {
2517 pch_udc_read_all_epstatus(dev, ep_intr);
2518 /* Process Control In interrupts, if present */
2519 if (ep_intr & UDC_EPINT_IN_EP0) {
2520 pch_udc_svc_control_in(dev);
2521 pch_udc_postsvc_epinters(dev, 0);
2523 /* Process Control Out interrupts, if present */
2524 if (ep_intr & UDC_EPINT_OUT_EP0)
2525 pch_udc_svc_control_out(dev);
2526 /* Process data in end point interrupts */
2527 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2528 if (ep_intr & (1 << i)) {
2529 pch_udc_svc_data_in(dev, i);
2530 pch_udc_postsvc_epinters(dev, i);
2533 /* Process data out end point interrupts */
2534 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2535 PCH_UDC_USED_EP_NUM); i++)
2536 if (ep_intr & (1 << i))
2537 pch_udc_svc_data_out(dev, i -
2538 UDC_EPINT_OUT_SHIFT);
2540 spin_unlock(&dev->lock);
2541 return IRQ_HANDLED;
2545 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2546 * @dev: Reference to the device structure
2548 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2550 /* enable ep0 interrupts */
2551 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2552 UDC_EPINT_OUT_EP0);
2553 /* enable device interrupts */
2554 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2555 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2556 UDC_DEVINT_SI | UDC_DEVINT_SC);
2560 * gadget_release() - Free the gadget driver private data
2561 * @pdev reference to struct pci_dev
2563 static void gadget_release(struct device *pdev)
2565 struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2567 kfree(dev);
2571 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2572 * @dev: Reference to the driver structure
2574 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2576 const char *const ep_string[] = {
2577 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2578 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2579 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2580 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2581 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2582 "ep15in", "ep15out",
2584 int i;
2586 dev->gadget.speed = USB_SPEED_UNKNOWN;
2587 INIT_LIST_HEAD(&dev->gadget.ep_list);
2589 /* Initialize the endpoints structures */
2590 memset(dev->ep, 0, sizeof dev->ep);
2591 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2592 struct pch_udc_ep *ep = &dev->ep[i];
2593 ep->dev = dev;
2594 ep->halted = 1;
2595 ep->num = i / 2;
2596 ep->in = ~i & 1;
2597 ep->ep.name = ep_string[i];
2598 ep->ep.ops = &pch_udc_ep_ops;
2599 if (ep->in)
2600 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2601 else
2602 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2603 UDC_EP_REG_SHIFT;
2604 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2605 ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
2606 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2607 INIT_LIST_HEAD(&ep->queue);
2609 dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
2610 dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
2612 /* remove ep0 in and out from the list. They have own pointer */
2613 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2614 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2616 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2617 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2621 * pch_udc_pcd_init() - This API initializes the driver structure
2622 * @dev: Reference to the driver structure
2624 * Return codes:
2625 * 0: Success
2627 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2629 pch_udc_init(dev);
2630 pch_udc_pcd_reinit(dev);
2631 return 0;
2635 * init_dma_pools() - create dma pools during initialization
2636 * @pdev: reference to struct pci_dev
2638 static int init_dma_pools(struct pch_udc_dev *dev)
2640 struct pch_udc_stp_dma_desc *td_stp;
2641 struct pch_udc_data_dma_desc *td_data;
2643 /* DMA setup */
2644 dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2645 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2646 if (!dev->data_requests) {
2647 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2648 __func__);
2649 return -ENOMEM;
2652 /* dma desc for setup data */
2653 dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2654 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2655 if (!dev->stp_requests) {
2656 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2657 __func__);
2658 return -ENOMEM;
2660 /* setup */
2661 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2662 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2663 if (!td_stp) {
2664 dev_err(&dev->pdev->dev,
2665 "%s: can't allocate setup dma descriptor\n", __func__);
2666 return -ENOMEM;
2668 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2670 /* data: 0 packets !? */
2671 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2672 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2673 if (!td_data) {
2674 dev_err(&dev->pdev->dev,
2675 "%s: can't allocate data dma descriptor\n", __func__);
2676 return -ENOMEM;
2678 dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2679 dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2680 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2681 dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2682 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2684 dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
2685 if (!dev->ep0out_buf)
2686 return -ENOMEM;
2687 dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
2688 UDC_EP0OUT_BUFF_SIZE * 4,
2689 DMA_FROM_DEVICE);
2690 return 0;
2693 int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
2694 int (*bind)(struct usb_gadget *))
2696 struct pch_udc_dev *dev = pch_udc;
2697 int retval;
2699 if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
2700 !driver->setup || !driver->unbind || !driver->disconnect) {
2701 dev_err(&dev->pdev->dev,
2702 "%s: invalid driver parameter\n", __func__);
2703 return -EINVAL;
2706 if (!dev)
2707 return -ENODEV;
2709 if (dev->driver) {
2710 dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
2711 return -EBUSY;
2713 driver->driver.bus = NULL;
2714 dev->driver = driver;
2715 dev->gadget.dev.driver = &driver->driver;
2717 /* Invoke the bind routine of the gadget driver */
2718 retval = bind(&dev->gadget);
2720 if (retval) {
2721 dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
2722 __func__, driver->driver.name, retval);
2723 dev->driver = NULL;
2724 dev->gadget.dev.driver = NULL;
2725 return retval;
2727 /* get ready for ep0 traffic */
2728 pch_udc_setup_ep0(dev);
2730 /* clear SD */
2731 pch_udc_clear_disconnect(dev);
2733 dev->connected = 1;
2734 return 0;
2736 EXPORT_SYMBOL(usb_gadget_probe_driver);
2738 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2740 struct pch_udc_dev *dev = pch_udc;
2742 if (!dev)
2743 return -ENODEV;
2745 if (!driver || (driver != dev->driver)) {
2746 dev_err(&dev->pdev->dev,
2747 "%s: invalid driver parameter\n", __func__);
2748 return -EINVAL;
2751 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2753 /* Assures that there are no pending requests with this driver */
2754 driver->disconnect(&dev->gadget);
2755 driver->unbind(&dev->gadget);
2756 dev->gadget.dev.driver = NULL;
2757 dev->driver = NULL;
2758 dev->connected = 0;
2760 /* set SD */
2761 pch_udc_set_disconnect(dev);
2762 return 0;
2764 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2766 static void pch_udc_shutdown(struct pci_dev *pdev)
2768 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2770 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2771 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2773 /* disable the pullup so the host will think we're gone */
2774 pch_udc_set_disconnect(dev);
2777 static void pch_udc_remove(struct pci_dev *pdev)
2779 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2781 /* gadget driver must not be registered */
2782 if (dev->driver)
2783 dev_err(&pdev->dev,
2784 "%s: gadget driver still bound!!!\n", __func__);
2785 /* dma pool cleanup */
2786 if (dev->data_requests)
2787 pci_pool_destroy(dev->data_requests);
2789 if (dev->stp_requests) {
2790 /* cleanup DMA desc's for ep0in */
2791 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
2792 pci_pool_free(dev->stp_requests,
2793 dev->ep[UDC_EP0OUT_IDX].td_stp,
2794 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2796 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
2797 pci_pool_free(dev->stp_requests,
2798 dev->ep[UDC_EP0OUT_IDX].td_data,
2799 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2801 pci_pool_destroy(dev->stp_requests);
2804 if (dev->dma_addr)
2805 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
2806 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
2807 kfree(dev->ep0out_buf);
2809 pch_udc_exit(dev);
2811 if (dev->irq_registered)
2812 free_irq(pdev->irq, dev);
2813 if (dev->base_addr)
2814 iounmap(dev->base_addr);
2815 if (dev->mem_region)
2816 release_mem_region(dev->phys_addr,
2817 pci_resource_len(pdev, PCH_UDC_PCI_BAR));
2818 if (dev->active)
2819 pci_disable_device(pdev);
2820 if (dev->registered)
2821 device_unregister(&dev->gadget.dev);
2822 kfree(dev);
2823 pci_set_drvdata(pdev, NULL);
2826 #ifdef CONFIG_PM
2827 static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
2829 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2831 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2832 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2834 pci_disable_device(pdev);
2835 pci_enable_wake(pdev, PCI_D3hot, 0);
2837 if (pci_save_state(pdev)) {
2838 dev_err(&pdev->dev,
2839 "%s: could not save PCI config state\n", __func__);
2840 return -ENOMEM;
2842 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2843 return 0;
2846 static int pch_udc_resume(struct pci_dev *pdev)
2848 int ret;
2850 pci_set_power_state(pdev, PCI_D0);
2851 pci_restore_state(pdev);
2852 ret = pci_enable_device(pdev);
2853 if (ret) {
2854 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
2855 return ret;
2857 pci_enable_wake(pdev, PCI_D3hot, 0);
2858 return 0;
2860 #else
2861 #define pch_udc_suspend NULL
2862 #define pch_udc_resume NULL
2863 #endif /* CONFIG_PM */
2865 static int pch_udc_probe(struct pci_dev *pdev,
2866 const struct pci_device_id *id)
2868 unsigned long resource;
2869 unsigned long len;
2870 int retval;
2871 struct pch_udc_dev *dev;
2873 /* one udc only */
2874 if (pch_udc) {
2875 pr_err("%s: already probed\n", __func__);
2876 return -EBUSY;
2878 /* init */
2879 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2880 if (!dev) {
2881 pr_err("%s: no memory for device structure\n", __func__);
2882 return -ENOMEM;
2884 /* pci setup */
2885 if (pci_enable_device(pdev) < 0) {
2886 kfree(dev);
2887 pr_err("%s: pci_enable_device failed\n", __func__);
2888 return -ENODEV;
2890 dev->active = 1;
2891 pci_set_drvdata(pdev, dev);
2893 /* PCI resource allocation */
2894 resource = pci_resource_start(pdev, 1);
2895 len = pci_resource_len(pdev, 1);
2897 if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
2898 dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
2899 retval = -EBUSY;
2900 goto finished;
2902 dev->phys_addr = resource;
2903 dev->mem_region = 1;
2905 dev->base_addr = ioremap_nocache(resource, len);
2906 if (!dev->base_addr) {
2907 pr_err("%s: device memory cannot be mapped\n", __func__);
2908 retval = -ENOMEM;
2909 goto finished;
2911 if (!pdev->irq) {
2912 dev_err(&pdev->dev, "%s: irq not set\n", __func__);
2913 retval = -ENODEV;
2914 goto finished;
2916 pch_udc = dev;
2917 /* initialize the hardware */
2918 if (pch_udc_pcd_init(dev))
2919 goto finished;
2920 if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
2921 dev)) {
2922 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
2923 pdev->irq);
2924 retval = -ENODEV;
2925 goto finished;
2927 dev->irq = pdev->irq;
2928 dev->irq_registered = 1;
2930 pci_set_master(pdev);
2931 pci_try_set_mwi(pdev);
2933 /* device struct setup */
2934 spin_lock_init(&dev->lock);
2935 dev->pdev = pdev;
2936 dev->gadget.ops = &pch_udc_ops;
2938 retval = init_dma_pools(dev);
2939 if (retval)
2940 goto finished;
2942 dev_set_name(&dev->gadget.dev, "gadget");
2943 dev->gadget.dev.parent = &pdev->dev;
2944 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
2945 dev->gadget.dev.release = gadget_release;
2946 dev->gadget.name = KBUILD_MODNAME;
2947 dev->gadget.is_dualspeed = 1;
2949 retval = device_register(&dev->gadget.dev);
2950 if (retval)
2951 goto finished;
2952 dev->registered = 1;
2954 /* Put the device in disconnected state till a driver is bound */
2955 pch_udc_set_disconnect(dev);
2956 return 0;
2958 finished:
2959 pch_udc_remove(pdev);
2960 return retval;
2963 static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
2965 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
2966 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2967 .class_mask = 0xffffffff,
2970 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
2971 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2972 .class_mask = 0xffffffff,
2974 { 0 },
2977 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
2980 static struct pci_driver pch_udc_driver = {
2981 .name = KBUILD_MODNAME,
2982 .id_table = pch_udc_pcidev_id,
2983 .probe = pch_udc_probe,
2984 .remove = pch_udc_remove,
2985 .suspend = pch_udc_suspend,
2986 .resume = pch_udc_resume,
2987 .shutdown = pch_udc_shutdown,
2990 static int __init pch_udc_pci_init(void)
2992 return pci_register_driver(&pch_udc_driver);
2994 module_init(pch_udc_pci_init);
2996 static void __exit pch_udc_pci_exit(void)
2998 pci_unregister_driver(&pch_udc_driver);
3000 module_exit(pch_udc_pci_exit);
3002 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3003 MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
3004 MODULE_LICENSE("GPL");