2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104 static struct kmem_cache
*policy_cache
;
105 static struct kmem_cache
*sn_cache
;
107 /* Highest zone. An specific allocation for a zone below that is not
109 enum zone_type policy_zone
= 0;
112 * run-time system-wide default policy => local allocation
114 static struct mempolicy default_policy
= {
115 .refcnt
= ATOMIC_INIT(1), /* never free it */
116 .mode
= MPOL_PREFERRED
,
117 .flags
= MPOL_F_LOCAL
,
120 static const struct mempolicy_operations
{
121 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
128 * If we have a lock to protect task->mempolicy in read-side, we do
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
136 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
137 enum mpol_rebind_step step
);
138 } mpol_ops
[MPOL_MAX
];
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t
*nodemask
)
145 for_each_node_mask(nd
, *nodemask
) {
148 for (k
= 0; k
<= policy_zone
; k
++) {
149 z
= &NODE_DATA(nd
)->node_zones
[k
];
150 if (z
->present_pages
> 0)
158 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
160 return pol
->flags
& MPOL_MODE_FLAGS
;
163 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
164 const nodemask_t
*rel
)
167 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
168 nodes_onto(*ret
, tmp
, *rel
);
171 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
173 if (nodes_empty(*nodes
))
175 pol
->v
.nodes
= *nodes
;
179 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
182 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
183 else if (nodes_empty(*nodes
))
184 return -EINVAL
; /* no allowed nodes */
186 pol
->v
.preferred_node
= first_node(*nodes
);
190 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
192 if (!is_valid_nodemask(nodes
))
194 pol
->v
.nodes
= *nodes
;
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
207 static int mpol_set_nodemask(struct mempolicy
*pol
,
208 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc
->mask1
,
217 cpuset_current_mems_allowed
, node_states
[N_HIGH_MEMORY
]);
220 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
221 nodes
= NULL
; /* explicit local allocation */
223 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
224 mpol_relative_nodemask(&nsc
->mask2
, nodes
,&nsc
->mask1
);
226 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
228 if (mpol_store_user_nodemask(pol
))
229 pol
->w
.user_nodemask
= *nodes
;
231 pol
->w
.cpuset_mems_allowed
=
232 cpuset_current_mems_allowed
;
236 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
238 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
246 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
249 struct mempolicy
*policy
;
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : -1);
254 if (mode
== MPOL_DEFAULT
) {
255 if (nodes
&& !nodes_empty(*nodes
))
256 return ERR_PTR(-EINVAL
);
257 return NULL
; /* simply delete any existing policy */
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
266 if (mode
== MPOL_PREFERRED
) {
267 if (nodes_empty(*nodes
)) {
268 if (((flags
& MPOL_F_STATIC_NODES
) ||
269 (flags
& MPOL_F_RELATIVE_NODES
)))
270 return ERR_PTR(-EINVAL
);
272 } else if (nodes_empty(*nodes
))
273 return ERR_PTR(-EINVAL
);
274 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
276 return ERR_PTR(-ENOMEM
);
277 atomic_set(&policy
->refcnt
, 1);
279 policy
->flags
= flags
;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy
*p
)
287 if (!atomic_dec_and_test(&p
->refcnt
))
289 kmem_cache_free(policy_cache
, p
);
292 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
293 enum mpol_rebind_step step
)
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
303 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
304 enum mpol_rebind_step step
)
308 if (pol
->flags
& MPOL_F_STATIC_NODES
)
309 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
310 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
311 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
317 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
318 nodes_remap(tmp
, pol
->v
.nodes
,
319 pol
->w
.cpuset_mems_allowed
, *nodes
);
320 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
321 } else if (step
== MPOL_REBIND_STEP2
) {
322 tmp
= pol
->w
.cpuset_mems_allowed
;
323 pol
->w
.cpuset_mems_allowed
= *nodes
;
328 if (nodes_empty(tmp
))
331 if (step
== MPOL_REBIND_STEP1
)
332 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
333 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
338 if (!node_isset(current
->il_next
, tmp
)) {
339 current
->il_next
= next_node(current
->il_next
, tmp
);
340 if (current
->il_next
>= MAX_NUMNODES
)
341 current
->il_next
= first_node(tmp
);
342 if (current
->il_next
>= MAX_NUMNODES
)
343 current
->il_next
= numa_node_id();
347 static void mpol_rebind_preferred(struct mempolicy
*pol
,
348 const nodemask_t
*nodes
,
349 enum mpol_rebind_step step
)
353 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
354 int node
= first_node(pol
->w
.user_nodemask
);
356 if (node_isset(node
, *nodes
)) {
357 pol
->v
.preferred_node
= node
;
358 pol
->flags
&= ~MPOL_F_LOCAL
;
360 pol
->flags
|= MPOL_F_LOCAL
;
361 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
362 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
363 pol
->v
.preferred_node
= first_node(tmp
);
364 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
365 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
366 pol
->w
.cpuset_mems_allowed
,
368 pol
->w
.cpuset_mems_allowed
= *nodes
;
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
380 * If we have a lock to protect task->mempolicy in read-side, we do
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
388 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
389 enum mpol_rebind_step step
)
393 if (!mpol_store_user_nodemask(pol
) && step
== MPOL_REBIND_ONCE
&&
394 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
397 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
400 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
403 if (step
== MPOL_REBIND_STEP1
)
404 pol
->flags
|= MPOL_F_REBINDING
;
405 else if (step
== MPOL_REBIND_STEP2
)
406 pol
->flags
&= ~MPOL_F_REBINDING
;
407 else if (step
>= MPOL_REBIND_NSTEP
)
410 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
417 * Called with task's alloc_lock held.
420 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
421 enum mpol_rebind_step step
)
423 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
427 * Rebind each vma in mm to new nodemask.
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
432 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
434 struct vm_area_struct
*vma
;
436 down_write(&mm
->mmap_sem
);
437 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
438 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
439 up_write(&mm
->mmap_sem
);
442 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
444 .rebind
= mpol_rebind_default
,
446 [MPOL_INTERLEAVE
] = {
447 .create
= mpol_new_interleave
,
448 .rebind
= mpol_rebind_nodemask
,
451 .create
= mpol_new_preferred
,
452 .rebind
= mpol_rebind_preferred
,
455 .create
= mpol_new_bind
,
456 .rebind
= mpol_rebind_nodemask
,
460 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
461 unsigned long flags
);
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
465 unsigned long addr
, unsigned long end
,
466 const nodemask_t
*nodes
, unsigned long flags
,
473 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
478 if (!pte_present(*pte
))
480 page
= vm_normal_page(vma
, addr
, *pte
);
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
488 if (PageReserved(page
) || PageKsm(page
))
490 nid
= page_to_nid(page
);
491 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
494 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
495 migrate_page_add(page
, private, flags
);
498 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
499 pte_unmap_unlock(orig_pte
, ptl
);
503 static inline int check_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
504 unsigned long addr
, unsigned long end
,
505 const nodemask_t
*nodes
, unsigned long flags
,
511 pmd
= pmd_offset(pud
, addr
);
513 next
= pmd_addr_end(addr
, end
);
514 split_huge_page_pmd(vma
->vm_mm
, pmd
);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
517 if (check_pte_range(vma
, pmd
, addr
, next
, nodes
,
520 } while (pmd
++, addr
= next
, addr
!= end
);
524 static inline int check_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
525 unsigned long addr
, unsigned long end
,
526 const nodemask_t
*nodes
, unsigned long flags
,
532 pud
= pud_offset(pgd
, addr
);
534 next
= pud_addr_end(addr
, end
);
535 if (pud_none_or_clear_bad(pud
))
537 if (check_pmd_range(vma
, pud
, addr
, next
, nodes
,
540 } while (pud
++, addr
= next
, addr
!= end
);
544 static inline int check_pgd_range(struct vm_area_struct
*vma
,
545 unsigned long addr
, unsigned long end
,
546 const nodemask_t
*nodes
, unsigned long flags
,
552 pgd
= pgd_offset(vma
->vm_mm
, addr
);
554 next
= pgd_addr_end(addr
, end
);
555 if (pgd_none_or_clear_bad(pgd
))
557 if (check_pud_range(vma
, pgd
, addr
, next
, nodes
,
560 } while (pgd
++, addr
= next
, addr
!= end
);
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
569 static struct vm_area_struct
*
570 check_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
571 const nodemask_t
*nodes
, unsigned long flags
, void *private)
574 struct vm_area_struct
*first
, *vma
, *prev
;
577 first
= find_vma(mm
, start
);
579 return ERR_PTR(-EFAULT
);
581 for (vma
= first
; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
582 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
583 if (!vma
->vm_next
&& vma
->vm_end
< end
)
584 return ERR_PTR(-EFAULT
);
585 if (prev
&& prev
->vm_end
< vma
->vm_start
)
586 return ERR_PTR(-EFAULT
);
588 if (!is_vm_hugetlb_page(vma
) &&
589 ((flags
& MPOL_MF_STRICT
) ||
590 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
591 vma_migratable(vma
)))) {
592 unsigned long endvma
= vma
->vm_end
;
596 if (vma
->vm_start
> start
)
597 start
= vma
->vm_start
;
598 err
= check_pgd_range(vma
, start
, endvma
, nodes
,
601 first
= ERR_PTR(err
);
610 /* Step 2: apply policy to a range and do splits. */
611 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
612 unsigned long end
, struct mempolicy
*new_pol
)
614 struct vm_area_struct
*next
;
615 struct vm_area_struct
*prev
;
616 struct vm_area_struct
*vma
;
619 unsigned long vmstart
;
622 vma
= find_vma(mm
, start
);
623 if (!vma
|| vma
->vm_start
> start
)
627 if (start
> vma
->vm_start
)
630 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
632 vmstart
= max(start
, vma
->vm_start
);
633 vmend
= min(end
, vma
->vm_end
);
635 if (mpol_equal(vma_policy(vma
), new_pol
))
638 pgoff
= vma
->vm_pgoff
+
639 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
640 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
641 vma
->anon_vma
, vma
->vm_file
, pgoff
,
648 if (vma
->vm_start
!= vmstart
) {
649 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
653 if (vma
->vm_end
!= vmend
) {
654 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
660 * Apply policy to a single VMA. The reference counting of
661 * policy for vma_policy linkages has already been handled by
662 * vma_merge and split_vma as necessary. If this is a shared
663 * policy then ->set_policy will increment the reference count
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
668 vma
->vm_ops
, vma
->vm_file
,
669 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
670 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
671 err
= vma
->vm_ops
->set_policy(vma
, new_pol
);
682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
683 * mempolicy. Allows more rapid checking of this (combined perhaps
684 * with other PF_* flag bits) on memory allocation hot code paths.
686 * If called from outside this file, the task 'p' should -only- be
687 * a newly forked child not yet visible on the task list, because
688 * manipulating the task flags of a visible task is not safe.
690 * The above limitation is why this routine has the funny name
691 * mpol_fix_fork_child_flag().
693 * It is also safe to call this with a task pointer of current,
694 * which the static wrapper mpol_set_task_struct_flag() does,
695 * for use within this file.
698 void mpol_fix_fork_child_flag(struct task_struct
*p
)
701 p
->flags
|= PF_MEMPOLICY
;
703 p
->flags
&= ~PF_MEMPOLICY
;
706 static void mpol_set_task_struct_flag(void)
708 mpol_fix_fork_child_flag(current
);
711 /* Set the process memory policy */
712 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
715 struct mempolicy
*new, *old
;
716 struct mm_struct
*mm
= current
->mm
;
717 NODEMASK_SCRATCH(scratch
);
723 new = mpol_new(mode
, flags
, nodes
);
729 * prevent changing our mempolicy while show_numa_maps()
731 * Note: do_set_mempolicy() can be called at init time
735 down_write(&mm
->mmap_sem
);
737 ret
= mpol_set_nodemask(new, nodes
, scratch
);
739 task_unlock(current
);
741 up_write(&mm
->mmap_sem
);
745 old
= current
->mempolicy
;
746 current
->mempolicy
= new;
747 mpol_set_task_struct_flag();
748 if (new && new->mode
== MPOL_INTERLEAVE
&&
749 nodes_weight(new->v
.nodes
))
750 current
->il_next
= first_node(new->v
.nodes
);
751 task_unlock(current
);
753 up_write(&mm
->mmap_sem
);
758 NODEMASK_SCRATCH_FREE(scratch
);
763 * Return nodemask for policy for get_mempolicy() query
765 * Called with task's alloc_lock held
767 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
770 if (p
== &default_policy
)
776 case MPOL_INTERLEAVE
:
780 if (!(p
->flags
& MPOL_F_LOCAL
))
781 node_set(p
->v
.preferred_node
, *nodes
);
782 /* else return empty node mask for local allocation */
789 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
794 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
796 err
= page_to_nid(p
);
802 /* Retrieve NUMA policy */
803 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
804 unsigned long addr
, unsigned long flags
)
807 struct mm_struct
*mm
= current
->mm
;
808 struct vm_area_struct
*vma
= NULL
;
809 struct mempolicy
*pol
= current
->mempolicy
;
812 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
815 if (flags
& MPOL_F_MEMS_ALLOWED
) {
816 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
818 *policy
= 0; /* just so it's initialized */
820 *nmask
= cpuset_current_mems_allowed
;
821 task_unlock(current
);
825 if (flags
& MPOL_F_ADDR
) {
827 * Do NOT fall back to task policy if the
828 * vma/shared policy at addr is NULL. We
829 * want to return MPOL_DEFAULT in this case.
831 down_read(&mm
->mmap_sem
);
832 vma
= find_vma_intersection(mm
, addr
, addr
+1);
834 up_read(&mm
->mmap_sem
);
837 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
838 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
840 pol
= vma
->vm_policy
;
845 pol
= &default_policy
; /* indicates default behavior */
847 if (flags
& MPOL_F_NODE
) {
848 if (flags
& MPOL_F_ADDR
) {
849 err
= lookup_node(mm
, addr
);
853 } else if (pol
== current
->mempolicy
&&
854 pol
->mode
== MPOL_INTERLEAVE
) {
855 *policy
= current
->il_next
;
861 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
864 * Internal mempolicy flags must be masked off before exposing
865 * the policy to userspace.
867 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
871 up_read(¤t
->mm
->mmap_sem
);
877 if (mpol_store_user_nodemask(pol
)) {
878 *nmask
= pol
->w
.user_nodemask
;
881 get_policy_nodemask(pol
, nmask
);
882 task_unlock(current
);
889 up_read(¤t
->mm
->mmap_sem
);
893 #ifdef CONFIG_MIGRATION
897 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
901 * Avoid migrating a page that is shared with others.
903 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
904 if (!isolate_lru_page(page
)) {
905 list_add_tail(&page
->lru
, pagelist
);
906 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
907 page_is_file_cache(page
));
912 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
914 return alloc_pages_exact_node(node
, GFP_HIGHUSER_MOVABLE
, 0);
918 * Migrate pages from one node to a target node.
919 * Returns error or the number of pages not migrated.
921 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
927 struct vm_area_struct
*vma
;
930 node_set(source
, nmask
);
932 vma
= check_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
933 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
937 if (!list_empty(&pagelist
)) {
938 err
= migrate_pages(&pagelist
, new_node_page
, dest
,
939 false, MIGRATE_SYNC
);
941 putback_lru_pages(&pagelist
);
948 * Move pages between the two nodesets so as to preserve the physical
949 * layout as much as possible.
951 * Returns the number of page that could not be moved.
953 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
954 const nodemask_t
*to
, int flags
)
960 err
= migrate_prep();
964 down_read(&mm
->mmap_sem
);
966 err
= migrate_vmas(mm
, from
, to
, flags
);
971 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
972 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
973 * bit in 'tmp', and return that <source, dest> pair for migration.
974 * The pair of nodemasks 'to' and 'from' define the map.
976 * If no pair of bits is found that way, fallback to picking some
977 * pair of 'source' and 'dest' bits that are not the same. If the
978 * 'source' and 'dest' bits are the same, this represents a node
979 * that will be migrating to itself, so no pages need move.
981 * If no bits are left in 'tmp', or if all remaining bits left
982 * in 'tmp' correspond to the same bit in 'to', return false
983 * (nothing left to migrate).
985 * This lets us pick a pair of nodes to migrate between, such that
986 * if possible the dest node is not already occupied by some other
987 * source node, minimizing the risk of overloading the memory on a
988 * node that would happen if we migrated incoming memory to a node
989 * before migrating outgoing memory source that same node.
991 * A single scan of tmp is sufficient. As we go, we remember the
992 * most recent <s, d> pair that moved (s != d). If we find a pair
993 * that not only moved, but what's better, moved to an empty slot
994 * (d is not set in tmp), then we break out then, with that pair.
995 * Otherwise when we finish scanning from_tmp, we at least have the
996 * most recent <s, d> pair that moved. If we get all the way through
997 * the scan of tmp without finding any node that moved, much less
998 * moved to an empty node, then there is nothing left worth migrating.
1002 while (!nodes_empty(tmp
)) {
1007 for_each_node_mask(s
, tmp
) {
1010 * do_migrate_pages() tries to maintain the relative
1011 * node relationship of the pages established between
1012 * threads and memory areas.
1014 * However if the number of source nodes is not equal to
1015 * the number of destination nodes we can not preserve
1016 * this node relative relationship. In that case, skip
1017 * copying memory from a node that is in the destination
1020 * Example: [2,3,4] -> [3,4,5] moves everything.
1021 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1024 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1025 (node_isset(s
, *to
)))
1028 d
= node_remap(s
, *from
, *to
);
1032 source
= s
; /* Node moved. Memorize */
1035 /* dest not in remaining from nodes? */
1036 if (!node_isset(dest
, tmp
))
1042 node_clear(source
, tmp
);
1043 err
= migrate_to_node(mm
, source
, dest
, flags
);
1050 up_read(&mm
->mmap_sem
);
1058 * Allocate a new page for page migration based on vma policy.
1059 * Start assuming that page is mapped by vma pointed to by @private.
1060 * Search forward from there, if not. N.B., this assumes that the
1061 * list of pages handed to migrate_pages()--which is how we get here--
1062 * is in virtual address order.
1064 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1066 struct vm_area_struct
*vma
= (struct vm_area_struct
*)private;
1067 unsigned long uninitialized_var(address
);
1070 address
= page_address_in_vma(page
, vma
);
1071 if (address
!= -EFAULT
)
1077 * if !vma, alloc_page_vma() will use task or system default policy
1079 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1083 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1084 unsigned long flags
)
1088 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1089 const nodemask_t
*to
, int flags
)
1094 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1100 static long do_mbind(unsigned long start
, unsigned long len
,
1101 unsigned short mode
, unsigned short mode_flags
,
1102 nodemask_t
*nmask
, unsigned long flags
)
1104 struct vm_area_struct
*vma
;
1105 struct mm_struct
*mm
= current
->mm
;
1106 struct mempolicy
*new;
1109 LIST_HEAD(pagelist
);
1111 if (flags
& ~(unsigned long)(MPOL_MF_STRICT
|
1112 MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
1114 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1117 if (start
& ~PAGE_MASK
)
1120 if (mode
== MPOL_DEFAULT
)
1121 flags
&= ~MPOL_MF_STRICT
;
1123 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1131 new = mpol_new(mode
, mode_flags
, nmask
);
1133 return PTR_ERR(new);
1136 * If we are using the default policy then operation
1137 * on discontinuous address spaces is okay after all
1140 flags
|= MPOL_MF_DISCONTIG_OK
;
1142 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1143 start
, start
+ len
, mode
, mode_flags
,
1144 nmask
? nodes_addr(*nmask
)[0] : -1);
1146 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1148 err
= migrate_prep();
1153 NODEMASK_SCRATCH(scratch
);
1155 down_write(&mm
->mmap_sem
);
1157 err
= mpol_set_nodemask(new, nmask
, scratch
);
1158 task_unlock(current
);
1160 up_write(&mm
->mmap_sem
);
1163 NODEMASK_SCRATCH_FREE(scratch
);
1168 vma
= check_range(mm
, start
, end
, nmask
,
1169 flags
| MPOL_MF_INVERT
, &pagelist
);
1175 err
= mbind_range(mm
, start
, end
, new);
1177 if (!list_empty(&pagelist
)) {
1178 nr_failed
= migrate_pages(&pagelist
, new_vma_page
,
1180 false, MIGRATE_SYNC
);
1182 putback_lru_pages(&pagelist
);
1185 if (!err
&& nr_failed
&& (flags
& MPOL_MF_STRICT
))
1188 putback_lru_pages(&pagelist
);
1190 up_write(&mm
->mmap_sem
);
1197 * User space interface with variable sized bitmaps for nodelists.
1200 /* Copy a node mask from user space. */
1201 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1202 unsigned long maxnode
)
1205 unsigned long nlongs
;
1206 unsigned long endmask
;
1209 nodes_clear(*nodes
);
1210 if (maxnode
== 0 || !nmask
)
1212 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1215 nlongs
= BITS_TO_LONGS(maxnode
);
1216 if ((maxnode
% BITS_PER_LONG
) == 0)
1219 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1221 /* When the user specified more nodes than supported just check
1222 if the non supported part is all zero. */
1223 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1224 if (nlongs
> PAGE_SIZE
/sizeof(long))
1226 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1228 if (get_user(t
, nmask
+ k
))
1230 if (k
== nlongs
- 1) {
1236 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1240 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1242 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1246 /* Copy a kernel node mask to user space */
1247 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1250 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1251 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1253 if (copy
> nbytes
) {
1254 if (copy
> PAGE_SIZE
)
1256 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1260 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1263 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1264 unsigned long, mode
, unsigned long __user
*, nmask
,
1265 unsigned long, maxnode
, unsigned, flags
)
1269 unsigned short mode_flags
;
1271 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1272 mode
&= ~MPOL_MODE_FLAGS
;
1273 if (mode
>= MPOL_MAX
)
1275 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1276 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1278 err
= get_nodes(&nodes
, nmask
, maxnode
);
1281 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1284 /* Set the process memory policy */
1285 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, unsigned long __user
*, nmask
,
1286 unsigned long, maxnode
)
1290 unsigned short flags
;
1292 flags
= mode
& MPOL_MODE_FLAGS
;
1293 mode
&= ~MPOL_MODE_FLAGS
;
1294 if ((unsigned int)mode
>= MPOL_MAX
)
1296 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1298 err
= get_nodes(&nodes
, nmask
, maxnode
);
1301 return do_set_mempolicy(mode
, flags
, &nodes
);
1304 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1305 const unsigned long __user
*, old_nodes
,
1306 const unsigned long __user
*, new_nodes
)
1308 const struct cred
*cred
= current_cred(), *tcred
;
1309 struct mm_struct
*mm
= NULL
;
1310 struct task_struct
*task
;
1311 nodemask_t task_nodes
;
1315 NODEMASK_SCRATCH(scratch
);
1320 old
= &scratch
->mask1
;
1321 new = &scratch
->mask2
;
1323 err
= get_nodes(old
, old_nodes
, maxnode
);
1327 err
= get_nodes(new, new_nodes
, maxnode
);
1331 /* Find the mm_struct */
1333 task
= pid
? find_task_by_vpid(pid
) : current
;
1339 get_task_struct(task
);
1344 * Check if this process has the right to modify the specified
1345 * process. The right exists if the process has administrative
1346 * capabilities, superuser privileges or the same
1347 * userid as the target process.
1349 tcred
= __task_cred(task
);
1350 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1351 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1352 !capable(CAP_SYS_NICE
)) {
1359 task_nodes
= cpuset_mems_allowed(task
);
1360 /* Is the user allowed to access the target nodes? */
1361 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1366 if (!nodes_subset(*new, node_states
[N_HIGH_MEMORY
])) {
1371 err
= security_task_movememory(task
);
1375 mm
= get_task_mm(task
);
1376 put_task_struct(task
);
1383 err
= do_migrate_pages(mm
, old
, new,
1384 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1388 NODEMASK_SCRATCH_FREE(scratch
);
1393 put_task_struct(task
);
1399 /* Retrieve NUMA policy */
1400 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1401 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1402 unsigned long, addr
, unsigned long, flags
)
1405 int uninitialized_var(pval
);
1408 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1411 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1416 if (policy
&& put_user(pval
, policy
))
1420 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1425 #ifdef CONFIG_COMPAT
1427 asmlinkage
long compat_sys_get_mempolicy(int __user
*policy
,
1428 compat_ulong_t __user
*nmask
,
1429 compat_ulong_t maxnode
,
1430 compat_ulong_t addr
, compat_ulong_t flags
)
1433 unsigned long __user
*nm
= NULL
;
1434 unsigned long nr_bits
, alloc_size
;
1435 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1437 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1438 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1441 nm
= compat_alloc_user_space(alloc_size
);
1443 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1445 if (!err
&& nmask
) {
1446 unsigned long copy_size
;
1447 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1448 err
= copy_from_user(bm
, nm
, copy_size
);
1449 /* ensure entire bitmap is zeroed */
1450 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1451 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1457 asmlinkage
long compat_sys_set_mempolicy(int mode
, compat_ulong_t __user
*nmask
,
1458 compat_ulong_t maxnode
)
1461 unsigned long __user
*nm
= NULL
;
1462 unsigned long nr_bits
, alloc_size
;
1463 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1465 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1466 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1469 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1470 nm
= compat_alloc_user_space(alloc_size
);
1471 err
|= copy_to_user(nm
, bm
, alloc_size
);
1477 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1480 asmlinkage
long compat_sys_mbind(compat_ulong_t start
, compat_ulong_t len
,
1481 compat_ulong_t mode
, compat_ulong_t __user
*nmask
,
1482 compat_ulong_t maxnode
, compat_ulong_t flags
)
1485 unsigned long __user
*nm
= NULL
;
1486 unsigned long nr_bits
, alloc_size
;
1489 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1490 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1493 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1494 nm
= compat_alloc_user_space(alloc_size
);
1495 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1501 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1507 * get_vma_policy(@task, @vma, @addr)
1508 * @task - task for fallback if vma policy == default
1509 * @vma - virtual memory area whose policy is sought
1510 * @addr - address in @vma for shared policy lookup
1512 * Returns effective policy for a VMA at specified address.
1513 * Falls back to @task or system default policy, as necessary.
1514 * Current or other task's task mempolicy and non-shared vma policies
1515 * are protected by the task's mmap_sem, which must be held for read by
1517 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1518 * count--added by the get_policy() vm_op, as appropriate--to protect against
1519 * freeing by another task. It is the caller's responsibility to free the
1520 * extra reference for shared policies.
1522 struct mempolicy
*get_vma_policy(struct task_struct
*task
,
1523 struct vm_area_struct
*vma
, unsigned long addr
)
1525 struct mempolicy
*pol
= task
->mempolicy
;
1528 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1529 struct mempolicy
*vpol
= vma
->vm_ops
->get_policy(vma
,
1533 } else if (vma
->vm_policy
)
1534 pol
= vma
->vm_policy
;
1537 pol
= &default_policy
;
1542 * Return a nodemask representing a mempolicy for filtering nodes for
1545 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1547 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1548 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1549 gfp_zone(gfp
) >= policy_zone
&&
1550 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1551 return &policy
->v
.nodes
;
1556 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1557 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1560 switch (policy
->mode
) {
1561 case MPOL_PREFERRED
:
1562 if (!(policy
->flags
& MPOL_F_LOCAL
))
1563 nd
= policy
->v
.preferred_node
;
1567 * Normally, MPOL_BIND allocations are node-local within the
1568 * allowed nodemask. However, if __GFP_THISNODE is set and the
1569 * current node isn't part of the mask, we use the zonelist for
1570 * the first node in the mask instead.
1572 if (unlikely(gfp
& __GFP_THISNODE
) &&
1573 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1574 nd
= first_node(policy
->v
.nodes
);
1579 return node_zonelist(nd
, gfp
);
1582 /* Do dynamic interleaving for a process */
1583 static unsigned interleave_nodes(struct mempolicy
*policy
)
1586 struct task_struct
*me
= current
;
1589 next
= next_node(nid
, policy
->v
.nodes
);
1590 if (next
>= MAX_NUMNODES
)
1591 next
= first_node(policy
->v
.nodes
);
1592 if (next
< MAX_NUMNODES
)
1598 * Depending on the memory policy provide a node from which to allocate the
1600 * @policy must be protected by freeing by the caller. If @policy is
1601 * the current task's mempolicy, this protection is implicit, as only the
1602 * task can change it's policy. The system default policy requires no
1605 unsigned slab_node(struct mempolicy
*policy
)
1607 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1608 return numa_node_id();
1610 switch (policy
->mode
) {
1611 case MPOL_PREFERRED
:
1613 * handled MPOL_F_LOCAL above
1615 return policy
->v
.preferred_node
;
1617 case MPOL_INTERLEAVE
:
1618 return interleave_nodes(policy
);
1622 * Follow bind policy behavior and start allocation at the
1625 struct zonelist
*zonelist
;
1627 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1628 zonelist
= &NODE_DATA(numa_node_id())->node_zonelists
[0];
1629 (void)first_zones_zonelist(zonelist
, highest_zoneidx
,
1632 return zone
? zone
->node
: numa_node_id();
1640 /* Do static interleaving for a VMA with known offset. */
1641 static unsigned offset_il_node(struct mempolicy
*pol
,
1642 struct vm_area_struct
*vma
, unsigned long off
)
1644 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1650 return numa_node_id();
1651 target
= (unsigned int)off
% nnodes
;
1654 nid
= next_node(nid
, pol
->v
.nodes
);
1656 } while (c
<= target
);
1660 /* Determine a node number for interleave */
1661 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1662 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1668 * for small pages, there is no difference between
1669 * shift and PAGE_SHIFT, so the bit-shift is safe.
1670 * for huge pages, since vm_pgoff is in units of small
1671 * pages, we need to shift off the always 0 bits to get
1674 BUG_ON(shift
< PAGE_SHIFT
);
1675 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1676 off
+= (addr
- vma
->vm_start
) >> shift
;
1677 return offset_il_node(pol
, vma
, off
);
1679 return interleave_nodes(pol
);
1683 * Return the bit number of a random bit set in the nodemask.
1684 * (returns -1 if nodemask is empty)
1686 int node_random(const nodemask_t
*maskp
)
1690 w
= nodes_weight(*maskp
);
1692 bit
= bitmap_ord_to_pos(maskp
->bits
,
1693 get_random_int() % w
, MAX_NUMNODES
);
1697 #ifdef CONFIG_HUGETLBFS
1699 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1700 * @vma = virtual memory area whose policy is sought
1701 * @addr = address in @vma for shared policy lookup and interleave policy
1702 * @gfp_flags = for requested zone
1703 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1704 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1706 * Returns a zonelist suitable for a huge page allocation and a pointer
1707 * to the struct mempolicy for conditional unref after allocation.
1708 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1709 * @nodemask for filtering the zonelist.
1711 * Must be protected by get_mems_allowed()
1713 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1714 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1715 nodemask_t
**nodemask
)
1717 struct zonelist
*zl
;
1719 *mpol
= get_vma_policy(current
, vma
, addr
);
1720 *nodemask
= NULL
; /* assume !MPOL_BIND */
1722 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1723 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1724 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1726 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1727 if ((*mpol
)->mode
== MPOL_BIND
)
1728 *nodemask
= &(*mpol
)->v
.nodes
;
1734 * init_nodemask_of_mempolicy
1736 * If the current task's mempolicy is "default" [NULL], return 'false'
1737 * to indicate default policy. Otherwise, extract the policy nodemask
1738 * for 'bind' or 'interleave' policy into the argument nodemask, or
1739 * initialize the argument nodemask to contain the single node for
1740 * 'preferred' or 'local' policy and return 'true' to indicate presence
1741 * of non-default mempolicy.
1743 * We don't bother with reference counting the mempolicy [mpol_get/put]
1744 * because the current task is examining it's own mempolicy and a task's
1745 * mempolicy is only ever changed by the task itself.
1747 * N.B., it is the caller's responsibility to free a returned nodemask.
1749 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1751 struct mempolicy
*mempolicy
;
1754 if (!(mask
&& current
->mempolicy
))
1758 mempolicy
= current
->mempolicy
;
1759 switch (mempolicy
->mode
) {
1760 case MPOL_PREFERRED
:
1761 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1762 nid
= numa_node_id();
1764 nid
= mempolicy
->v
.preferred_node
;
1765 init_nodemask_of_node(mask
, nid
);
1770 case MPOL_INTERLEAVE
:
1771 *mask
= mempolicy
->v
.nodes
;
1777 task_unlock(current
);
1784 * mempolicy_nodemask_intersects
1786 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1787 * policy. Otherwise, check for intersection between mask and the policy
1788 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1789 * policy, always return true since it may allocate elsewhere on fallback.
1791 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1793 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1794 const nodemask_t
*mask
)
1796 struct mempolicy
*mempolicy
;
1802 mempolicy
= tsk
->mempolicy
;
1806 switch (mempolicy
->mode
) {
1807 case MPOL_PREFERRED
:
1809 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1810 * allocate from, they may fallback to other nodes when oom.
1811 * Thus, it's possible for tsk to have allocated memory from
1816 case MPOL_INTERLEAVE
:
1817 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1827 /* Allocate a page in interleaved policy.
1828 Own path because it needs to do special accounting. */
1829 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1832 struct zonelist
*zl
;
1835 zl
= node_zonelist(nid
, gfp
);
1836 page
= __alloc_pages(gfp
, order
, zl
);
1837 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1838 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1843 * alloc_pages_vma - Allocate a page for a VMA.
1846 * %GFP_USER user allocation.
1847 * %GFP_KERNEL kernel allocations,
1848 * %GFP_HIGHMEM highmem/user allocations,
1849 * %GFP_FS allocation should not call back into a file system.
1850 * %GFP_ATOMIC don't sleep.
1852 * @order:Order of the GFP allocation.
1853 * @vma: Pointer to VMA or NULL if not available.
1854 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1856 * This function allocates a page from the kernel page pool and applies
1857 * a NUMA policy associated with the VMA or the current process.
1858 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1859 * mm_struct of the VMA to prevent it from going away. Should be used for
1860 * all allocations for pages that will be mapped into
1861 * user space. Returns NULL when no page can be allocated.
1863 * Should be called with the mm_sem of the vma hold.
1866 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
1867 unsigned long addr
, int node
)
1869 struct mempolicy
*pol
;
1870 struct zonelist
*zl
;
1872 unsigned int cpuset_mems_cookie
;
1875 pol
= get_vma_policy(current
, vma
, addr
);
1876 cpuset_mems_cookie
= get_mems_allowed();
1878 if (unlikely(pol
->mode
== MPOL_INTERLEAVE
)) {
1881 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
1883 page
= alloc_page_interleave(gfp
, order
, nid
);
1884 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1889 zl
= policy_zonelist(gfp
, pol
, node
);
1890 if (unlikely(mpol_needs_cond_ref(pol
))) {
1892 * slow path: ref counted shared policy
1894 struct page
*page
= __alloc_pages_nodemask(gfp
, order
,
1895 zl
, policy_nodemask(gfp
, pol
));
1897 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1902 * fast path: default or task policy
1904 page
= __alloc_pages_nodemask(gfp
, order
, zl
,
1905 policy_nodemask(gfp
, pol
));
1906 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1912 * alloc_pages_current - Allocate pages.
1915 * %GFP_USER user allocation,
1916 * %GFP_KERNEL kernel allocation,
1917 * %GFP_HIGHMEM highmem allocation,
1918 * %GFP_FS don't call back into a file system.
1919 * %GFP_ATOMIC don't sleep.
1920 * @order: Power of two of allocation size in pages. 0 is a single page.
1922 * Allocate a page from the kernel page pool. When not in
1923 * interrupt context and apply the current process NUMA policy.
1924 * Returns NULL when no page can be allocated.
1926 * Don't call cpuset_update_task_memory_state() unless
1927 * 1) it's ok to take cpuset_sem (can WAIT), and
1928 * 2) allocating for current task (not interrupt).
1930 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
1932 struct mempolicy
*pol
= current
->mempolicy
;
1934 unsigned int cpuset_mems_cookie
;
1936 if (!pol
|| in_interrupt() || (gfp
& __GFP_THISNODE
))
1937 pol
= &default_policy
;
1940 cpuset_mems_cookie
= get_mems_allowed();
1943 * No reference counting needed for current->mempolicy
1944 * nor system default_policy
1946 if (pol
->mode
== MPOL_INTERLEAVE
)
1947 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
1949 page
= __alloc_pages_nodemask(gfp
, order
,
1950 policy_zonelist(gfp
, pol
, numa_node_id()),
1951 policy_nodemask(gfp
, pol
));
1953 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
1958 EXPORT_SYMBOL(alloc_pages_current
);
1961 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1962 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1963 * with the mems_allowed returned by cpuset_mems_allowed(). This
1964 * keeps mempolicies cpuset relative after its cpuset moves. See
1965 * further kernel/cpuset.c update_nodemask().
1967 * current's mempolicy may be rebinded by the other task(the task that changes
1968 * cpuset's mems), so we needn't do rebind work for current task.
1971 /* Slow path of a mempolicy duplicate */
1972 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
1974 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
1977 return ERR_PTR(-ENOMEM
);
1979 /* task's mempolicy is protected by alloc_lock */
1980 if (old
== current
->mempolicy
) {
1983 task_unlock(current
);
1988 if (current_cpuset_is_being_rebound()) {
1989 nodemask_t mems
= cpuset_mems_allowed(current
);
1990 if (new->flags
& MPOL_F_REBINDING
)
1991 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
1993 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
1996 atomic_set(&new->refcnt
, 1);
2001 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2002 * eliminate the * MPOL_F_* flags that require conditional ref and
2003 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
2004 * after return. Use the returned value.
2006 * Allows use of a mempolicy for, e.g., multiple allocations with a single
2007 * policy lookup, even if the policy needs/has extra ref on lookup.
2008 * shmem_readahead needs this.
2010 struct mempolicy
*__mpol_cond_copy(struct mempolicy
*tompol
,
2011 struct mempolicy
*frompol
)
2013 if (!mpol_needs_cond_ref(frompol
))
2017 tompol
->flags
&= ~MPOL_F_SHARED
; /* copy doesn't need unref */
2018 __mpol_put(frompol
);
2022 /* Slow path of a mempolicy comparison */
2023 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2027 if (a
->mode
!= b
->mode
)
2029 if (a
->flags
!= b
->flags
)
2031 if (mpol_store_user_nodemask(a
))
2032 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2038 case MPOL_INTERLEAVE
:
2039 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2040 case MPOL_PREFERRED
:
2041 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2049 * Shared memory backing store policy support.
2051 * Remember policies even when nobody has shared memory mapped.
2052 * The policies are kept in Red-Black tree linked from the inode.
2053 * They are protected by the sp->lock spinlock, which should be held
2054 * for any accesses to the tree.
2057 /* lookup first element intersecting start-end */
2058 /* Caller holds sp->lock */
2059 static struct sp_node
*
2060 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2062 struct rb_node
*n
= sp
->root
.rb_node
;
2065 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2067 if (start
>= p
->end
)
2069 else if (end
<= p
->start
)
2077 struct sp_node
*w
= NULL
;
2078 struct rb_node
*prev
= rb_prev(n
);
2081 w
= rb_entry(prev
, struct sp_node
, nd
);
2082 if (w
->end
<= start
)
2086 return rb_entry(n
, struct sp_node
, nd
);
2089 /* Insert a new shared policy into the list. */
2090 /* Caller holds sp->lock */
2091 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2093 struct rb_node
**p
= &sp
->root
.rb_node
;
2094 struct rb_node
*parent
= NULL
;
2099 nd
= rb_entry(parent
, struct sp_node
, nd
);
2100 if (new->start
< nd
->start
)
2102 else if (new->end
> nd
->end
)
2103 p
= &(*p
)->rb_right
;
2107 rb_link_node(&new->nd
, parent
, p
);
2108 rb_insert_color(&new->nd
, &sp
->root
);
2109 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2110 new->policy
? new->policy
->mode
: 0);
2113 /* Find shared policy intersecting idx */
2115 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2117 struct mempolicy
*pol
= NULL
;
2120 if (!sp
->root
.rb_node
)
2122 spin_lock(&sp
->lock
);
2123 sn
= sp_lookup(sp
, idx
, idx
+1);
2125 mpol_get(sn
->policy
);
2128 spin_unlock(&sp
->lock
);
2132 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2134 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2135 rb_erase(&n
->nd
, &sp
->root
);
2136 mpol_put(n
->policy
);
2137 kmem_cache_free(sn_cache
, n
);
2140 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2141 struct mempolicy
*pol
)
2143 struct sp_node
*n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2150 pol
->flags
|= MPOL_F_SHARED
; /* for unref */
2155 /* Replace a policy range. */
2156 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2157 unsigned long end
, struct sp_node
*new)
2159 struct sp_node
*n
, *new2
= NULL
;
2162 spin_lock(&sp
->lock
);
2163 n
= sp_lookup(sp
, start
, end
);
2164 /* Take care of old policies in the same range. */
2165 while (n
&& n
->start
< end
) {
2166 struct rb_node
*next
= rb_next(&n
->nd
);
2167 if (n
->start
>= start
) {
2173 /* Old policy spanning whole new range. */
2176 spin_unlock(&sp
->lock
);
2177 new2
= sp_alloc(end
, n
->end
, n
->policy
);
2183 sp_insert(sp
, new2
);
2191 n
= rb_entry(next
, struct sp_node
, nd
);
2195 spin_unlock(&sp
->lock
);
2197 mpol_put(new2
->policy
);
2198 kmem_cache_free(sn_cache
, new2
);
2204 * mpol_shared_policy_init - initialize shared policy for inode
2205 * @sp: pointer to inode shared policy
2206 * @mpol: struct mempolicy to install
2208 * Install non-NULL @mpol in inode's shared policy rb-tree.
2209 * On entry, the current task has a reference on a non-NULL @mpol.
2210 * This must be released on exit.
2211 * This is called at get_inode() calls and we can use GFP_KERNEL.
2213 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2217 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2218 spin_lock_init(&sp
->lock
);
2221 struct vm_area_struct pvma
;
2222 struct mempolicy
*new;
2223 NODEMASK_SCRATCH(scratch
);
2227 /* contextualize the tmpfs mount point mempolicy */
2228 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2230 goto free_scratch
; /* no valid nodemask intersection */
2233 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2234 task_unlock(current
);
2238 /* Create pseudo-vma that contains just the policy */
2239 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2240 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2241 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2244 mpol_put(new); /* drop initial ref */
2246 NODEMASK_SCRATCH_FREE(scratch
);
2248 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2252 int mpol_set_shared_policy(struct shared_policy
*info
,
2253 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2256 struct sp_node
*new = NULL
;
2257 unsigned long sz
= vma_pages(vma
);
2259 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2261 sz
, npol
? npol
->mode
: -1,
2262 npol
? npol
->flags
: -1,
2263 npol
? nodes_addr(npol
->v
.nodes
)[0] : -1);
2266 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2270 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2272 kmem_cache_free(sn_cache
, new);
2276 /* Free a backing policy store on inode delete. */
2277 void mpol_free_shared_policy(struct shared_policy
*p
)
2280 struct rb_node
*next
;
2282 if (!p
->root
.rb_node
)
2284 spin_lock(&p
->lock
);
2285 next
= rb_first(&p
->root
);
2287 n
= rb_entry(next
, struct sp_node
, nd
);
2288 next
= rb_next(&n
->nd
);
2289 rb_erase(&n
->nd
, &p
->root
);
2290 mpol_put(n
->policy
);
2291 kmem_cache_free(sn_cache
, n
);
2293 spin_unlock(&p
->lock
);
2296 /* assumes fs == KERNEL_DS */
2297 void __init
numa_policy_init(void)
2299 nodemask_t interleave_nodes
;
2300 unsigned long largest
= 0;
2301 int nid
, prefer
= 0;
2303 policy_cache
= kmem_cache_create("numa_policy",
2304 sizeof(struct mempolicy
),
2305 0, SLAB_PANIC
, NULL
);
2307 sn_cache
= kmem_cache_create("shared_policy_node",
2308 sizeof(struct sp_node
),
2309 0, SLAB_PANIC
, NULL
);
2312 * Set interleaving policy for system init. Interleaving is only
2313 * enabled across suitably sized nodes (default is >= 16MB), or
2314 * fall back to the largest node if they're all smaller.
2316 nodes_clear(interleave_nodes
);
2317 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2318 unsigned long total_pages
= node_present_pages(nid
);
2320 /* Preserve the largest node */
2321 if (largest
< total_pages
) {
2322 largest
= total_pages
;
2326 /* Interleave this node? */
2327 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2328 node_set(nid
, interleave_nodes
);
2331 /* All too small, use the largest */
2332 if (unlikely(nodes_empty(interleave_nodes
)))
2333 node_set(prefer
, interleave_nodes
);
2335 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2336 printk("numa_policy_init: interleaving failed\n");
2339 /* Reset policy of current process to default */
2340 void numa_default_policy(void)
2342 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2346 * Parse and format mempolicy from/to strings
2350 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2351 * Used only for mpol_parse_str() and mpol_to_str()
2353 #define MPOL_LOCAL MPOL_MAX
2354 static const char * const policy_modes
[] =
2356 [MPOL_DEFAULT
] = "default",
2357 [MPOL_PREFERRED
] = "prefer",
2358 [MPOL_BIND
] = "bind",
2359 [MPOL_INTERLEAVE
] = "interleave",
2360 [MPOL_LOCAL
] = "local"
2366 * mpol_parse_str - parse string to mempolicy
2367 * @str: string containing mempolicy to parse
2368 * @mpol: pointer to struct mempolicy pointer, returned on success.
2369 * @no_context: flag whether to "contextualize" the mempolicy
2372 * <mode>[=<flags>][:<nodelist>]
2374 * if @no_context is true, save the input nodemask in w.user_nodemask in
2375 * the returned mempolicy. This will be used to "clone" the mempolicy in
2376 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2377 * mount option. Note that if 'static' or 'relative' mode flags were
2378 * specified, the input nodemask will already have been saved. Saving
2379 * it again is redundant, but safe.
2381 * On success, returns 0, else 1
2383 int mpol_parse_str(char *str
, struct mempolicy
**mpol
, int no_context
)
2385 struct mempolicy
*new = NULL
;
2386 unsigned short mode
;
2387 unsigned short uninitialized_var(mode_flags
);
2389 char *nodelist
= strchr(str
, ':');
2390 char *flags
= strchr(str
, '=');
2394 /* NUL-terminate mode or flags string */
2396 if (nodelist_parse(nodelist
, nodes
))
2398 if (!nodes_subset(nodes
, node_states
[N_HIGH_MEMORY
]))
2404 *flags
++ = '\0'; /* terminate mode string */
2406 for (mode
= 0; mode
<= MPOL_LOCAL
; mode
++) {
2407 if (!strcmp(str
, policy_modes
[mode
])) {
2411 if (mode
> MPOL_LOCAL
)
2415 case MPOL_PREFERRED
:
2417 * Insist on a nodelist of one node only
2420 char *rest
= nodelist
;
2421 while (isdigit(*rest
))
2427 case MPOL_INTERLEAVE
:
2429 * Default to online nodes with memory if no nodelist
2432 nodes
= node_states
[N_HIGH_MEMORY
];
2436 * Don't allow a nodelist; mpol_new() checks flags
2440 mode
= MPOL_PREFERRED
;
2444 * Insist on a empty nodelist
2451 * Insist on a nodelist
2460 * Currently, we only support two mutually exclusive
2463 if (!strcmp(flags
, "static"))
2464 mode_flags
|= MPOL_F_STATIC_NODES
;
2465 else if (!strcmp(flags
, "relative"))
2466 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2471 new = mpol_new(mode
, mode_flags
, &nodes
);
2476 /* save for contextualization */
2477 new->w
.user_nodemask
= nodes
;
2480 NODEMASK_SCRATCH(scratch
);
2483 ret
= mpol_set_nodemask(new, &nodes
, scratch
);
2484 task_unlock(current
);
2487 NODEMASK_SCRATCH_FREE(scratch
);
2496 /* Restore string for error message */
2505 #endif /* CONFIG_TMPFS */
2508 * mpol_to_str - format a mempolicy structure for printing
2509 * @buffer: to contain formatted mempolicy string
2510 * @maxlen: length of @buffer
2511 * @pol: pointer to mempolicy to be formatted
2512 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2514 * Convert a mempolicy into a string.
2515 * Returns the number of characters in buffer (if positive)
2516 * or an error (negative)
2518 int mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
, int no_context
)
2523 unsigned short mode
;
2524 unsigned short flags
= pol
? pol
->flags
: 0;
2527 * Sanity check: room for longest mode, flag and some nodes
2529 VM_BUG_ON(maxlen
< strlen("interleave") + strlen("relative") + 16);
2531 if (!pol
|| pol
== &default_policy
)
2532 mode
= MPOL_DEFAULT
;
2541 case MPOL_PREFERRED
:
2543 if (flags
& MPOL_F_LOCAL
)
2544 mode
= MPOL_LOCAL
; /* pseudo-policy */
2546 node_set(pol
->v
.preferred_node
, nodes
);
2551 case MPOL_INTERLEAVE
:
2553 nodes
= pol
->w
.user_nodemask
;
2555 nodes
= pol
->v
.nodes
;
2562 l
= strlen(policy_modes
[mode
]);
2563 if (buffer
+ maxlen
< p
+ l
+ 1)
2566 strcpy(p
, policy_modes
[mode
]);
2569 if (flags
& MPOL_MODE_FLAGS
) {
2570 if (buffer
+ maxlen
< p
+ 2)
2575 * Currently, the only defined flags are mutually exclusive
2577 if (flags
& MPOL_F_STATIC_NODES
)
2578 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2579 else if (flags
& MPOL_F_RELATIVE_NODES
)
2580 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2583 if (!nodes_empty(nodes
)) {
2584 if (buffer
+ maxlen
< p
+ 2)
2587 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);