[MTD] NAND: Add hardware ECC correction support to CAFÉ NAND driver
[linux-2.6/libata-dev.git] / drivers / mtd / nand / cafe.c
blob1fe110836cc18c39f850cc1632ab6b082e2783ce
1 /*
2 * cafe_nand.c
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
6 */
8 #define DEBUG
10 #include <linux/device.h>
11 #undef DEBUG
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <asm/io.h>
19 #define CAFE_NAND_CTRL1 0x00
20 #define CAFE_NAND_CTRL2 0x04
21 #define CAFE_NAND_CTRL3 0x08
22 #define CAFE_NAND_STATUS 0x0c
23 #define CAFE_NAND_IRQ 0x10
24 #define CAFE_NAND_IRQ_MASK 0x14
25 #define CAFE_NAND_DATA_LEN 0x18
26 #define CAFE_NAND_ADDR1 0x1c
27 #define CAFE_NAND_ADDR2 0x20
28 #define CAFE_NAND_TIMING1 0x24
29 #define CAFE_NAND_TIMING2 0x28
30 #define CAFE_NAND_TIMING3 0x2c
31 #define CAFE_NAND_NONMEM 0x30
32 #define CAFE_NAND_ECC_RESULT 0x3C
33 #define CAFE_NAND_ECC_SYN01 0x50
34 #define CAFE_NAND_ECC_SYN23 0x54
35 #define CAFE_NAND_ECC_SYN45 0x58
36 #define CAFE_NAND_ECC_SYN67 0x5c
37 #define CAFE_NAND_DMA_CTRL 0x40
38 #define CAFE_NAND_DMA_ADDR0 0x44
39 #define CAFE_NAND_DMA_ADDR1 0x48
40 #define CAFE_NAND_READ_DATA 0x1000
41 #define CAFE_NAND_WRITE_DATA 0x2000
43 int cafe_correct_ecc(unsigned char *buf,
44 unsigned short *chk_syndrome_list);
46 struct cafe_priv {
47 struct nand_chip nand;
48 struct pci_dev *pdev;
49 void __iomem *mmio;
50 uint32_t ctl1;
51 uint32_t ctl2;
52 int datalen;
53 int nr_data;
54 int data_pos;
55 int page_addr;
56 dma_addr_t dmaaddr;
57 unsigned char *dmabuf;
61 static int usedma = 0;
62 module_param(usedma, int, 0644);
64 static int skipbbt = 0;
65 module_param(skipbbt, int, 0644);
67 static int debug = 0;
68 module_param(debug, int, 0644);
70 /* Hrm. Why isn't this already conditional on something in the struct device? */
71 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
74 static int cafe_device_ready(struct mtd_info *mtd)
76 struct cafe_priv *cafe = mtd->priv;
77 int result = !!(readl(cafe->mmio + CAFE_NAND_STATUS) | 0x40000000);
79 uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
80 writel(irqs, cafe->mmio+CAFE_NAND_IRQ);
81 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
82 result?"":" not", irqs, readl(cafe->mmio + CAFE_NAND_IRQ),
83 readl(cafe->mmio + 0x3008), readl(cafe->mmio + 0x300c));
84 return result;
88 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
90 struct cafe_priv *cafe = mtd->priv;
92 if (usedma)
93 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
94 else
95 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
96 cafe->datalen += len;
98 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
99 len, cafe->datalen);
102 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
104 struct cafe_priv *cafe = mtd->priv;
106 if (usedma)
107 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
108 else
109 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
111 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
112 len, cafe->datalen);
113 cafe->datalen += len;
116 static uint8_t cafe_read_byte(struct mtd_info *mtd)
118 struct cafe_priv *cafe = mtd->priv;
119 uint8_t d;
121 cafe_read_buf(mtd, &d, 1);
122 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
124 return d;
127 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
128 int column, int page_addr)
130 struct cafe_priv *cafe = mtd->priv;
131 int adrbytes = 0;
132 uint32_t ctl1;
133 uint32_t doneint = 0x80000000;
134 int i;
136 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
137 command, column, page_addr);
139 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
140 /* Second half of a command we already calculated */
141 writel(cafe->ctl2 | 0x100 | command, cafe->mmio + 0x04);
142 ctl1 = cafe->ctl1;
143 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
144 cafe->ctl1, cafe->nr_data);
145 goto do_command;
147 /* Reset ECC engine */
148 writel(0, cafe->mmio + CAFE_NAND_CTRL2);
150 /* Emulate NAND_CMD_READOOB on large-page chips */
151 if (mtd->writesize > 512 &&
152 command == NAND_CMD_READOOB) {
153 column += mtd->writesize;
154 command = NAND_CMD_READ0;
157 /* FIXME: Do we need to send read command before sending data
158 for small-page chips, to position the buffer correctly? */
160 if (column != -1) {
161 writel(column, cafe->mmio + 0x1c);
162 adrbytes = 2;
163 if (page_addr != -1)
164 goto write_adr2;
165 } else if (page_addr != -1) {
166 writel(page_addr & 0xffff, cafe->mmio + 0x1c);
167 page_addr >>= 16;
168 write_adr2:
169 writel(page_addr, cafe->mmio+0x20);
170 adrbytes += 2;
171 if (mtd->size > mtd->writesize << 16)
172 adrbytes++;
175 cafe->data_pos = cafe->datalen = 0;
177 /* Set command valid bit */
178 ctl1 = 0x80000000 | command;
180 /* Set RD or WR bits as appropriate */
181 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
182 ctl1 |= (1<<26); /* rd */
183 /* Always 5 bytes, for now */
184 cafe->datalen = 4;
185 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
186 adrbytes = 1;
187 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
188 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
189 ctl1 |= 1<<26; /* rd */
190 /* For now, assume just read to end of page */
191 cafe->datalen = mtd->writesize + mtd->oobsize - column;
192 } else if (command == NAND_CMD_SEQIN)
193 ctl1 |= 1<<25; /* wr */
195 /* Set number of address bytes */
196 if (adrbytes)
197 ctl1 |= ((adrbytes-1)|8) << 27;
199 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
200 /* Ignore the first command of a pair; the hardware
201 deals with them both at once, later */
202 cafe->ctl1 = ctl1;
203 cafe->ctl2 = 0;
204 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
205 cafe->ctl1, cafe->datalen);
206 return;
208 /* RNDOUT and READ0 commands need a following byte */
209 if (command == NAND_CMD_RNDOUT)
210 writel(cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, cafe->mmio + CAFE_NAND_CTRL2);
211 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
212 writel(cafe->ctl2 | 0x100 | NAND_CMD_READSTART, cafe->mmio + CAFE_NAND_CTRL2);
214 do_command:
215 #if 0
216 // ECC on read only works if we ...
217 if (cafe->datalen == 2112)
218 cafe->datalen = 2062;
219 #endif
220 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
221 cafe->datalen, ctl1, readl(cafe->mmio+CAFE_NAND_CTRL2));
222 /* NB: The datasheet lies -- we really should be subtracting 1 here */
223 writel(cafe->datalen, cafe->mmio + CAFE_NAND_DATA_LEN);
224 writel(0x90000000, cafe->mmio + CAFE_NAND_IRQ);
225 if (usedma && (ctl1 & (3<<25))) {
226 uint32_t dmactl = 0xc0000000 + cafe->datalen;
227 /* If WR or RD bits set, set up DMA */
228 if (ctl1 & (1<<26)) {
229 /* It's a read */
230 dmactl |= (1<<29);
231 /* ... so it's done when the DMA is done, not just
232 the command. */
233 doneint = 0x10000000;
235 writel(dmactl, cafe->mmio + 0x40);
237 #if 0
238 printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
239 printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
240 #endif
241 cafe->datalen = 0;
243 #if 0
244 printk("About to write command %08x\n", ctl1);
245 for (i=0; i< 0x5c; i+=4)
246 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
247 #endif
248 writel(ctl1, cafe->mmio + CAFE_NAND_CTRL1);
249 /* Apply this short delay always to ensure that we do wait tWB in
250 * any case on any machine. */
251 ndelay(100);
253 if (1) {
254 int c = 500000;
255 uint32_t irqs;
257 while (c--) {
258 irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
259 if (irqs & doneint)
260 break;
261 udelay(1);
262 if (!(c % 100000))
263 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
264 cpu_relax();
266 writel(doneint, cafe->mmio + CAFE_NAND_IRQ);
267 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", command, 50000-c, irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
271 cafe->ctl2 &= ~(1<<8);
272 cafe->ctl2 &= ~(1<<30);
274 switch (command) {
276 case NAND_CMD_CACHEDPROG:
277 case NAND_CMD_PAGEPROG:
278 case NAND_CMD_ERASE1:
279 case NAND_CMD_ERASE2:
280 case NAND_CMD_SEQIN:
281 case NAND_CMD_RNDIN:
282 case NAND_CMD_STATUS:
283 case NAND_CMD_DEPLETE1:
284 case NAND_CMD_RNDOUT:
285 case NAND_CMD_STATUS_ERROR:
286 case NAND_CMD_STATUS_ERROR0:
287 case NAND_CMD_STATUS_ERROR1:
288 case NAND_CMD_STATUS_ERROR2:
289 case NAND_CMD_STATUS_ERROR3:
290 writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
291 return;
293 nand_wait_ready(mtd);
294 writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
297 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
299 //struct cafe_priv *cafe = mtd->priv;
300 // cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
302 static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
304 struct mtd_info *mtd = id;
305 struct cafe_priv *cafe = mtd->priv;
306 uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
307 writel(irqs & ~0x90000000, cafe->mmio + CAFE_NAND_IRQ);
308 if (!irqs)
309 return IRQ_NONE;
311 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
312 return IRQ_HANDLED;
315 static void cafe_nand_bug(struct mtd_info *mtd)
317 BUG();
320 static int cafe_nand_write_oob(struct mtd_info *mtd,
321 struct nand_chip *chip, int page)
323 int status = 0;
325 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
326 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
327 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
328 status = chip->waitfunc(mtd, chip);
330 return status & NAND_STATUS_FAIL ? -EIO : 0;
333 /* Don't use -- use nand_read_oob_std for now */
334 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
335 int page, int sndcmd)
337 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
338 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
339 return 1;
342 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
343 * @mtd: mtd info structure
344 * @chip: nand chip info structure
345 * @buf: buffer to store read data
347 * The hw generator calculates the error syndrome automatically. Therefor
348 * we need a special oob layout and handling.
350 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
351 uint8_t *buf)
353 struct cafe_priv *cafe = mtd->priv;
355 dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
356 readl(cafe->mmio + CAFE_NAND_ECC_RESULT),
357 readl(cafe->mmio + CAFE_NAND_ECC_SYN01));
359 chip->read_buf(mtd, buf, mtd->writesize);
360 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
362 if (readl(cafe->mmio + CAFE_NAND_ECC_RESULT) & (1<<18)) {
363 unsigned short syn[8];
364 int i;
366 for (i=0; i<8; i+=2) {
367 uint32_t tmp = readl(cafe->mmio + CAFE_NAND_ECC_SYN01 + (i*2));
368 syn[i] = tmp & 0xfff;
369 syn[i+1] = (tmp >> 16) & 0xfff;
372 if ((i = cafe_correct_ecc(buf, syn)) < 0) {
373 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC\n");
374 mtd->ecc_stats.failed++;
375 } else {
376 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
377 mtd->ecc_stats.corrected += i;
382 return 0;
385 static struct nand_ecclayout cafe_oobinfo_2048 = {
386 .eccbytes = 14,
387 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
388 .oobfree = {{14, 50}}
391 /* Ick. The BBT code really ought to be able to work this bit out
392 for itself from the above */
393 static uint8_t cafe_bbt_pattern[] = {'B', 'b', 't', '0' };
394 static uint8_t cafe_mirror_pattern[] = {'1', 't', 'b', 'B' };
396 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
397 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
398 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
399 .offs = 14,
400 .len = 4,
401 .veroffs = 18,
402 .maxblocks = 4,
403 .pattern = cafe_bbt_pattern
406 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
407 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
408 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
409 .offs = 14,
410 .len = 4,
411 .veroffs = 18,
412 .maxblocks = 4,
413 .pattern = cafe_mirror_pattern
416 static struct nand_ecclayout cafe_oobinfo_512 = {
417 .eccbytes = 14,
418 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
419 .oobfree = {{14, 2}}
422 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
423 struct nand_chip *chip, const uint8_t *buf)
425 struct cafe_priv *cafe = mtd->priv;
427 chip->write_buf(mtd, buf, mtd->writesize);
428 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
430 /* Set up ECC autogeneration */
431 cafe->ctl2 |= (1<<27) | (1<<30);
432 if (mtd->writesize == 2048)
433 cafe->ctl2 |= (1<<29);
436 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
437 const uint8_t *buf, int page, int cached, int raw)
439 int status;
441 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
443 if (unlikely(raw))
444 chip->ecc.write_page_raw(mtd, chip, buf);
445 else
446 chip->ecc.write_page(mtd, chip, buf);
449 * Cached progamming disabled for now, Not sure if its worth the
450 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
452 cached = 0;
454 if (!cached || !(chip->options & NAND_CACHEPRG)) {
456 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
457 status = chip->waitfunc(mtd, chip);
459 * See if operation failed and additional status checks are
460 * available
462 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
463 status = chip->errstat(mtd, chip, FL_WRITING, status,
464 page);
466 if (status & NAND_STATUS_FAIL)
467 return -EIO;
468 } else {
469 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
470 status = chip->waitfunc(mtd, chip);
473 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
474 /* Send command to read back the data */
475 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
477 if (chip->verify_buf(mtd, buf, mtd->writesize))
478 return -EIO;
479 #endif
480 return 0;
483 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
485 return 0;
488 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
489 const struct pci_device_id *ent)
491 struct mtd_info *mtd;
492 struct cafe_priv *cafe;
493 uint32_t ctrl;
494 int err = 0;
496 err = pci_enable_device(pdev);
497 if (err)
498 return err;
500 pci_set_master(pdev);
502 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
503 if (!mtd) {
504 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
505 return -ENOMEM;
507 cafe = (void *)(&mtd[1]);
509 mtd->priv = cafe;
510 mtd->owner = THIS_MODULE;
512 cafe->pdev = pdev;
513 cafe->mmio = pci_iomap(pdev, 0, 0);
514 if (!cafe->mmio) {
515 dev_warn(&pdev->dev, "failed to iomap\n");
516 err = -ENOMEM;
517 goto out_free_mtd;
519 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
520 &cafe->dmaaddr, GFP_KERNEL);
521 if (!cafe->dmabuf) {
522 err = -ENOMEM;
523 goto out_ior;
525 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
527 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
528 cafe->nand.dev_ready = cafe_device_ready;
529 cafe->nand.read_byte = cafe_read_byte;
530 cafe->nand.read_buf = cafe_read_buf;
531 cafe->nand.write_buf = cafe_write_buf;
532 cafe->nand.select_chip = cafe_select_chip;
534 cafe->nand.chip_delay = 0;
536 /* Enable the following for a flash based bad block table */
537 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
539 if (skipbbt) {
540 cafe->nand.options |= NAND_SKIP_BBTSCAN;
541 cafe->nand.block_bad = cafe_nand_block_bad;
544 /* Timings from Marvell's test code (not verified or calculated by us) */
545 writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
546 #if 1
547 writel(0x01010a0a, cafe->mmio + CAFE_NAND_TIMING1);
548 writel(0x24121212, cafe->mmio + CAFE_NAND_TIMING2);
549 writel(0x11000000, cafe->mmio + CAFE_NAND_TIMING3);
550 #else
551 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING1);
552 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING2);
553 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING3);
554 #endif
555 writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
556 err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
557 if (err) {
558 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
560 goto out_free_dma;
562 #if 1
563 /* Disable master reset, enable NAND clock */
564 ctrl = readl(cafe->mmio + 0x3004);
565 ctrl &= 0xffffeff0;
566 ctrl |= 0x00007000;
567 writel(ctrl | 0x05, cafe->mmio + 0x3004);
568 writel(ctrl | 0x0a, cafe->mmio + 0x3004);
569 writel(0, cafe->mmio + 0x40);
571 writel(0x7006, cafe->mmio + 0x3004);
572 writel(0x700a, cafe->mmio + 0x3004);
574 /* Set up DMA address */
575 writel(cafe->dmaaddr & 0xffffffff, cafe->mmio + 0x44);
576 if (sizeof(cafe->dmaaddr) > 4)
577 writel((cafe->dmaaddr >> 16) >> 16, cafe->mmio + 0x48);
578 else
579 writel(0, cafe->mmio + 0x48);
580 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
581 readl(cafe->mmio+0x44), cafe->dmabuf);
583 /* Enable NAND IRQ in global IRQ mask register */
584 writel(0x80000007, cafe->mmio + 0x300c);
585 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
586 readl(cafe->mmio + 0x3004), readl(cafe->mmio + 0x300c));
587 #endif
588 #if 1
589 mtd->writesize=2048;
590 mtd->oobsize = 0x40;
591 memset(cafe->dmabuf, 0x5a, 2112);
592 cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
593 cafe->nand.read_byte(mtd);
594 cafe->nand.read_byte(mtd);
595 cafe->nand.read_byte(mtd);
596 cafe->nand.read_byte(mtd);
597 cafe->nand.read_byte(mtd);
598 #endif
599 #if 0
600 cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
601 // nand_wait_ready(mtd);
602 cafe->nand.read_byte(mtd);
603 cafe->nand.read_byte(mtd);
604 cafe->nand.read_byte(mtd);
605 cafe->nand.read_byte(mtd);
606 #endif
607 #if 0
608 writel(0x84600070, cafe->mmio);
609 udelay(10);
610 cafe_dev_dbg(&cafe->pdev->dev, "Status %x\n", readl(cafe->mmio + 0x30));
611 #endif
612 /* Scan to find existance of the device */
613 if (nand_scan_ident(mtd, 1)) {
614 err = -ENXIO;
615 goto out_irq;
618 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
619 if (mtd->writesize == 2048)
620 cafe->ctl2 |= 1<<29; /* 2KiB page size */
622 /* Set up ECC according to the type of chip we found */
623 if (mtd->writesize == 512 || mtd->writesize == 2048) {
624 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
625 cafe->nand.ecc.size = mtd->writesize;
626 cafe->nand.ecc.bytes = 14;
627 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
628 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
629 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
630 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
631 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
632 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
633 cafe->nand.write_page = cafe_nand_write_page;
634 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
635 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
636 cafe->nand.ecc.read_page = cafe_nand_read_page;
637 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
639 } else {
640 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Using software ECC\n",
641 mtd->writesize);
642 cafe->nand.ecc.mode = NAND_ECC_NONE;
645 err = nand_scan_tail(mtd);
646 if (err)
647 goto out_irq;
649 pci_set_drvdata(pdev, mtd);
650 add_mtd_device(mtd);
651 goto out;
653 out_irq:
654 /* Disable NAND IRQ in global IRQ mask register */
655 writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
656 free_irq(pdev->irq, mtd);
657 out_free_dma:
658 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
659 out_ior:
660 pci_iounmap(pdev, cafe->mmio);
661 out_free_mtd:
662 kfree(mtd);
663 out:
664 return err;
667 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
669 struct mtd_info *mtd = pci_get_drvdata(pdev);
670 struct cafe_priv *cafe = mtd->priv;
672 del_mtd_device(mtd);
673 /* Disable NAND IRQ in global IRQ mask register */
674 writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
675 free_irq(pdev->irq, mtd);
676 nand_release(mtd);
677 pci_iounmap(pdev, cafe->mmio);
678 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
679 kfree(mtd);
682 static struct pci_device_id cafe_nand_tbl[] = {
683 { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
686 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
688 static struct pci_driver cafe_nand_pci_driver = {
689 .name = "CAFÉ NAND",
690 .id_table = cafe_nand_tbl,
691 .probe = cafe_nand_probe,
692 .remove = __devexit_p(cafe_nand_remove),
693 #ifdef CONFIG_PMx
694 .suspend = cafe_nand_suspend,
695 .resume = cafe_nand_resume,
696 #endif
699 static int cafe_nand_init(void)
701 return pci_register_driver(&cafe_nand_pci_driver);
704 static void cafe_nand_exit(void)
706 pci_unregister_driver(&cafe_nand_pci_driver);
708 module_init(cafe_nand_init);
709 module_exit(cafe_nand_exit);
711 MODULE_LICENSE("GPL");
712 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
713 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
715 /* Correct ECC for 2048 bytes of 0xff:
716 41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */
718 /* dwmw2's B-test board, in case of completely screwing it:
719 Bad eraseblock 2394 at 0x12b40000
720 Bad eraseblock 2627 at 0x14860000
721 Bad eraseblock 3349 at 0x1a2a0000