ppc64: Minor compilation fixes
[linux-2.6/libata-dev.git] / drivers / net / starfire.c
blobefdb179ecc8c9cffa49be61b8b8ec2a88cf449b3
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
26 -----------------------------------------------------------
28 Linux kernel-specific changes:
30 LK1.1.1 (jgarzik):
31 - Use PCI driver interface
32 - Fix MOD_xxx races
33 - softnet fixups
35 LK1.1.2 (jgarzik):
36 - Merge Becker version 0.15
38 LK1.1.3 (Andrew Morton)
39 - Timer cleanups
41 LK1.1.4 (jgarzik):
42 - Merge Becker version 1.03
44 LK1.2.1 (Ion Badulescu <ionut@cs.columbia.edu>)
45 - Support hardware Rx/Tx checksumming
46 - Use the GFP firmware taken from Adaptec's Netware driver
48 LK1.2.2 (Ion Badulescu)
49 - Backported to 2.2.x
51 LK1.2.3 (Ion Badulescu)
52 - Fix the flaky mdio interface
53 - More compat clean-ups
55 LK1.2.4 (Ion Badulescu)
56 - More 2.2.x initialization fixes
58 LK1.2.5 (Ion Badulescu)
59 - Several fixes from Manfred Spraul
61 LK1.2.6 (Ion Badulescu)
62 - Fixed ifup/ifdown/ifup problem in 2.4.x
64 LK1.2.7 (Ion Badulescu)
65 - Removed unused code
66 - Made more functions static and __init
68 LK1.2.8 (Ion Badulescu)
69 - Quell bogus error messages, inform about the Tx threshold
70 - Removed #ifdef CONFIG_PCI, this driver is PCI only
72 LK1.2.9 (Ion Badulescu)
73 - Merged Jeff Garzik's changes from 2.4.4-pre5
74 - Added 2.2.x compatibility stuff required by the above changes
76 LK1.2.9a (Ion Badulescu)
77 - More updates from Jeff Garzik
79 LK1.3.0 (Ion Badulescu)
80 - Merged zerocopy support
82 LK1.3.1 (Ion Badulescu)
83 - Added ethtool support
84 - Added GPIO (media change) interrupt support
86 LK1.3.2 (Ion Badulescu)
87 - Fixed 2.2.x compatibility issues introduced in 1.3.1
88 - Fixed ethtool ioctl returning uninitialized memory
90 LK1.3.3 (Ion Badulescu)
91 - Initialize the TxMode register properly
92 - Don't dereference dev->priv after freeing it
94 LK1.3.4 (Ion Badulescu)
95 - Fixed initialization timing problems
96 - Fixed interrupt mask definitions
98 LK1.3.5 (jgarzik)
99 - ethtool NWAY_RST, GLINK, [GS]MSGLVL support
101 LK1.3.6:
102 - Sparc64 support and fixes (Ion Badulescu)
103 - Better stats and error handling (Ion Badulescu)
104 - Use new pci_set_mwi() PCI API function (jgarzik)
106 LK1.3.7 (Ion Badulescu)
107 - minimal implementation of tx_timeout()
108 - correctly shutdown the Rx/Tx engines in netdev_close()
109 - added calls to netif_carrier_on/off
110 (patch from Stefan Rompf <srompf@isg.de>)
111 - VLAN support
113 LK1.3.8 (Ion Badulescu)
114 - adjust DMA burst size on sparc64
115 - 64-bit support
116 - reworked zerocopy support for 64-bit buffers
117 - working and usable interrupt mitigation/latency
118 - reduced Tx interrupt frequency for lower interrupt overhead
120 LK1.3.9 (Ion Badulescu)
121 - bugfix for mcast filter
122 - enable the right kind of Tx interrupts (TxDMADone, not TxDone)
124 LK1.4.0 (Ion Badulescu)
125 - NAPI support
127 LK1.4.1 (Ion Badulescu)
128 - flush PCI posting buffers after disabling Rx interrupts
129 - put the chip to a D3 slumber on driver unload
130 - added config option to enable/disable NAPI
132 LK1.4.2 (Ion Badulescu)
133 - finally added firmware (GPL'ed by Adaptec)
134 - removed compatibility code for 2.2.x
136 LK1.4.2.1 (Ion Badulescu)
137 - fixed 32/64 bit issues on i386 + CONFIG_HIGHMEM
138 - added 32-bit padding to outgoing skb's, removed previous workaround
140 TODO: - fix forced speed/duplexing code (broken a long time ago, when
141 somebody converted the driver to use the generic MII code)
142 - fix VLAN support
145 #define DRV_NAME "starfire"
146 #define DRV_VERSION "1.03+LK1.4.2.1"
147 #define DRV_RELDATE "October 3, 2005"
149 #include <linux/config.h>
150 #include <linux/version.h>
151 #include <linux/module.h>
152 #include <linux/kernel.h>
153 #include <linux/pci.h>
154 #include <linux/netdevice.h>
155 #include <linux/etherdevice.h>
156 #include <linux/init.h>
157 #include <linux/delay.h>
158 #include <linux/crc32.h>
159 #include <linux/ethtool.h>
160 #include <linux/mii.h>
161 #include <linux/if_vlan.h>
162 #include <asm/processor.h> /* Processor type for cache alignment. */
163 #include <asm/uaccess.h>
164 #include <asm/io.h>
166 #include "starfire_firmware.h"
168 * The current frame processor firmware fails to checksum a fragment
169 * of length 1. If and when this is fixed, the #define below can be removed.
171 #define HAS_BROKEN_FIRMWARE
174 * If using the broken firmware, data must be padded to the next 32-bit boundary.
176 #ifdef HAS_BROKEN_FIRMWARE
177 #define PADDING_MASK 3
178 #endif
181 * Define this if using the driver with the zero-copy patch
183 #define ZEROCOPY
185 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
186 #define VLAN_SUPPORT
187 #endif
189 #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
190 #undef HAVE_NETDEV_POLL
191 #endif
193 /* The user-configurable values.
194 These may be modified when a driver module is loaded.*/
196 /* Used for tuning interrupt latency vs. overhead. */
197 static int intr_latency;
198 static int small_frames;
200 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
201 static int max_interrupt_work = 20;
202 static int mtu;
203 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
204 The Starfire has a 512 element hash table based on the Ethernet CRC. */
205 static int multicast_filter_limit = 512;
206 /* Whether to do TCP/UDP checksums in hardware */
207 static int enable_hw_cksum = 1;
209 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
211 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 * Setting to > 1518 effectively disables this feature.
214 * NOTE:
215 * The ia64 doesn't allow for unaligned loads even of integers being
216 * misaligned on a 2 byte boundary. Thus always force copying of
217 * packets as the starfire doesn't allow for misaligned DMAs ;-(
218 * 23/10/2000 - Jes
220 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
221 * at least, having unaligned frames leads to a rather serious performance
222 * penalty. -Ion
224 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
225 static int rx_copybreak = PKT_BUF_SZ;
226 #else
227 static int rx_copybreak /* = 0 */;
228 #endif
230 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
231 #ifdef __sparc__
232 #define DMA_BURST_SIZE 64
233 #else
234 #define DMA_BURST_SIZE 128
235 #endif
237 /* Used to pass the media type, etc.
238 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
239 The media type is usually passed in 'options[]'.
240 These variables are deprecated, use ethtool instead. -Ion
242 #define MAX_UNITS 8 /* More are supported, limit only on options */
243 static int options[MAX_UNITS] = {0, };
244 static int full_duplex[MAX_UNITS] = {0, };
246 /* Operational parameters that are set at compile time. */
248 /* The "native" ring sizes are either 256 or 2048.
249 However in some modes a descriptor may be marked to wrap the ring earlier.
251 #define RX_RING_SIZE 256
252 #define TX_RING_SIZE 32
253 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
254 #define DONE_Q_SIZE 1024
255 /* All queues must be aligned on a 256-byte boundary */
256 #define QUEUE_ALIGN 256
258 #if RX_RING_SIZE > 256
259 #define RX_Q_ENTRIES Rx2048QEntries
260 #else
261 #define RX_Q_ENTRIES Rx256QEntries
262 #endif
264 /* Operational parameters that usually are not changed. */
265 /* Time in jiffies before concluding the transmitter is hung. */
266 #define TX_TIMEOUT (2 * HZ)
269 * This SUCKS.
270 * We need a much better method to determine if dma_addr_t is 64-bit.
272 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
273 /* 64-bit dma_addr_t */
274 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
275 #define netdrv_addr_t u64
276 #define cpu_to_dma(x) cpu_to_le64(x)
277 #define dma_to_cpu(x) le64_to_cpu(x)
278 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
279 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
280 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
281 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
282 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
283 #else /* 32-bit dma_addr_t */
284 #define netdrv_addr_t u32
285 #define cpu_to_dma(x) cpu_to_le32(x)
286 #define dma_to_cpu(x) le32_to_cpu(x)
287 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
288 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
289 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
290 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
291 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
292 #endif
294 #define skb_first_frag_len(skb) skb_headlen(skb)
295 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
297 #ifdef HAVE_NETDEV_POLL
298 #define init_poll(dev) \
299 do { \
300 dev->poll = &netdev_poll; \
301 dev->weight = max_interrupt_work; \
302 } while (0)
303 #define netdev_rx(dev, ioaddr) \
304 do { \
305 u32 intr_enable; \
306 if (netif_rx_schedule_prep(dev)) { \
307 __netif_rx_schedule(dev); \
308 intr_enable = readl(ioaddr + IntrEnable); \
309 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
310 writel(intr_enable, ioaddr + IntrEnable); \
311 readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
312 } else { \
313 /* Paranoia check */ \
314 intr_enable = readl(ioaddr + IntrEnable); \
315 if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
316 printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
317 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
318 writel(intr_enable, ioaddr + IntrEnable); \
321 } while (0)
322 #define netdev_receive_skb(skb) netif_receive_skb(skb)
323 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
324 static int netdev_poll(struct net_device *dev, int *budget);
325 #else /* not HAVE_NETDEV_POLL */
326 #define init_poll(dev)
327 #define netdev_receive_skb(skb) netif_rx(skb)
328 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
329 #define netdev_rx(dev, ioaddr) \
330 do { \
331 int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
332 __netdev_rx(dev, &quota);\
333 } while (0)
334 #endif /* not HAVE_NETDEV_POLL */
335 /* end of compatibility code */
338 /* These identify the driver base version and may not be removed. */
339 static char version[] __devinitdata =
340 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
341 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
343 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
344 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
345 MODULE_LICENSE("GPL");
346 MODULE_VERSION(DRV_VERSION);
348 module_param(max_interrupt_work, int, 0);
349 module_param(mtu, int, 0);
350 module_param(debug, int, 0);
351 module_param(rx_copybreak, int, 0);
352 module_param(intr_latency, int, 0);
353 module_param(small_frames, int, 0);
354 module_param_array(options, int, NULL, 0);
355 module_param_array(full_duplex, int, NULL, 0);
356 module_param(enable_hw_cksum, int, 0);
357 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
358 MODULE_PARM_DESC(mtu, "MTU (all boards)");
359 MODULE_PARM_DESC(debug, "Debug level (0-6)");
360 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
361 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
362 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
363 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
364 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
365 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
368 Theory of Operation
370 I. Board Compatibility
372 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
374 II. Board-specific settings
376 III. Driver operation
378 IIIa. Ring buffers
380 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
381 ring sizes are set fixed by the hardware, but may optionally be wrapped
382 earlier by the END bit in the descriptor.
383 This driver uses that hardware queue size for the Rx ring, where a large
384 number of entries has no ill effect beyond increases the potential backlog.
385 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
386 disables the queue layer priority ordering and we have no mechanism to
387 utilize the hardware two-level priority queue. When modifying the
388 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
389 levels.
391 IIIb/c. Transmit/Receive Structure
393 See the Adaptec manual for the many possible structures, and options for
394 each structure. There are far too many to document all of them here.
396 For transmit this driver uses type 0/1 transmit descriptors (depending
397 on the 32/64 bitness of the architecture), and relies on automatic
398 minimum-length padding. It does not use the completion queue
399 consumer index, but instead checks for non-zero status entries.
401 For receive this driver uses type 2/3 receive descriptors. The driver
402 allocates full frame size skbuffs for the Rx ring buffers, so all frames
403 should fit in a single descriptor. The driver does not use the completion
404 queue consumer index, but instead checks for non-zero status entries.
406 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
407 is allocated and the frame is copied to the new skbuff. When the incoming
408 frame is larger, the skbuff is passed directly up the protocol stack.
409 Buffers consumed this way are replaced by newly allocated skbuffs in a later
410 phase of receive.
412 A notable aspect of operation is that unaligned buffers are not permitted by
413 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
414 isn't longword aligned, which may cause problems on some machine
415 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
416 the frame into a new skbuff unconditionally. Copied frames are put into the
417 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
419 IIId. Synchronization
421 The driver runs as two independent, single-threaded flows of control. One
422 is the send-packet routine, which enforces single-threaded use by the
423 dev->tbusy flag. The other thread is the interrupt handler, which is single
424 threaded by the hardware and interrupt handling software.
426 The send packet thread has partial control over the Tx ring and the netif_queue
427 status. If the number of free Tx slots in the ring falls below a certain number
428 (currently hardcoded to 4), it signals the upper layer to stop the queue.
430 The interrupt handler has exclusive control over the Rx ring and records stats
431 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
432 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
433 number of free Tx slow is above the threshold, it signals the upper layer to
434 restart the queue.
436 IV. Notes
438 IVb. References
440 The Adaptec Starfire manuals, available only from Adaptec.
441 http://www.scyld.com/expert/100mbps.html
442 http://www.scyld.com/expert/NWay.html
444 IVc. Errata
446 - StopOnPerr is broken, don't enable
447 - Hardware ethernet padding exposes random data, perform software padding
448 instead (unverified -- works correctly for all the hardware I have)
454 enum chip_capability_flags {CanHaveMII=1, };
456 enum chipset {
457 CH_6915 = 0,
460 static struct pci_device_id starfire_pci_tbl[] = {
461 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
462 { 0, }
464 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
466 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
467 static struct chip_info {
468 const char *name;
469 int drv_flags;
470 } netdrv_tbl[] __devinitdata = {
471 { "Adaptec Starfire 6915", CanHaveMII },
475 /* Offsets to the device registers.
476 Unlike software-only systems, device drivers interact with complex hardware.
477 It's not useful to define symbolic names for every register bit in the
478 device. The name can only partially document the semantics and make
479 the driver longer and more difficult to read.
480 In general, only the important configuration values or bits changed
481 multiple times should be defined symbolically.
483 enum register_offsets {
484 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
485 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
486 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
487 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
488 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
489 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
490 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
491 TxThreshold=0x500B0,
492 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
493 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
494 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
495 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
496 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
497 TxMode=0x55000, VlanType=0x55064,
498 PerfFilterTable=0x56000, HashTable=0x56100,
499 TxGfpMem=0x58000, RxGfpMem=0x5a000,
503 * Bits in the interrupt status/mask registers.
504 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
505 * enables all the interrupt sources that are or'ed into those status bits.
507 enum intr_status_bits {
508 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
509 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
510 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
511 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
512 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
513 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
514 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
515 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
516 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
517 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
518 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
519 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
520 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
521 IntrTxGfp=0x02, IntrPCIPad=0x01,
522 /* not quite bits */
523 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
524 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
525 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
528 /* Bits in the RxFilterMode register. */
529 enum rx_mode_bits {
530 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
531 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
532 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
533 WakeupOnGFP=0x0800,
536 /* Bits in the TxMode register */
537 enum tx_mode_bits {
538 MiiSoftReset=0x8000, MIILoopback=0x4000,
539 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
540 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
543 /* Bits in the TxDescCtrl register. */
544 enum tx_ctrl_bits {
545 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
546 TxDescSpace128=0x30, TxDescSpace256=0x40,
547 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
548 TxDescType3=0x03, TxDescType4=0x04,
549 TxNoDMACompletion=0x08,
550 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
551 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
552 TxDMABurstSizeShift=8,
555 /* Bits in the RxDescQCtrl register. */
556 enum rx_ctrl_bits {
557 RxBufferLenShift=16, RxMinDescrThreshShift=0,
558 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
559 Rx2048QEntries=0x4000, Rx256QEntries=0,
560 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
561 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
562 RxDescSpace4=0x000, RxDescSpace8=0x100,
563 RxDescSpace16=0x200, RxDescSpace32=0x300,
564 RxDescSpace64=0x400, RxDescSpace128=0x500,
565 RxConsumerWrEn=0x80,
568 /* Bits in the RxDMACtrl register. */
569 enum rx_dmactrl_bits {
570 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
571 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
572 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
573 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
574 RxChecksumRejectTCPOnly=0x01000000,
575 RxCompletionQ2Enable=0x800000,
576 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
577 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
578 RxDMAQ2NonIP=0x400000,
579 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
580 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
581 RxBurstSizeShift=0,
584 /* Bits in the RxCompletionAddr register */
585 enum rx_compl_bits {
586 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
587 RxComplProducerWrEn=0x40,
588 RxComplType0=0x00, RxComplType1=0x10,
589 RxComplType2=0x20, RxComplType3=0x30,
590 RxComplThreshShift=0,
593 /* Bits in the TxCompletionAddr register */
594 enum tx_compl_bits {
595 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
596 TxComplProducerWrEn=0x40,
597 TxComplIntrStatus=0x20,
598 CommonQueueMode=0x10,
599 TxComplThreshShift=0,
602 /* Bits in the GenCtrl register */
603 enum gen_ctrl_bits {
604 RxEnable=0x05, TxEnable=0x0a,
605 RxGFPEnable=0x10, TxGFPEnable=0x20,
608 /* Bits in the IntrTimerCtrl register */
609 enum intr_ctrl_bits {
610 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
611 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
612 IntrLatencyMask=0x1f,
615 /* The Rx and Tx buffer descriptors. */
616 struct starfire_rx_desc {
617 dma_addr_t rxaddr;
619 enum rx_desc_bits {
620 RxDescValid=1, RxDescEndRing=2,
623 /* Completion queue entry. */
624 struct short_rx_done_desc {
625 u32 status; /* Low 16 bits is length. */
627 struct basic_rx_done_desc {
628 u32 status; /* Low 16 bits is length. */
629 u16 vlanid;
630 u16 status2;
632 struct csum_rx_done_desc {
633 u32 status; /* Low 16 bits is length. */
634 u16 csum; /* Partial checksum */
635 u16 status2;
637 struct full_rx_done_desc {
638 u32 status; /* Low 16 bits is length. */
639 u16 status3;
640 u16 status2;
641 u16 vlanid;
642 u16 csum; /* partial checksum */
643 u32 timestamp;
645 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
646 #ifdef VLAN_SUPPORT
647 typedef struct full_rx_done_desc rx_done_desc;
648 #define RxComplType RxComplType3
649 #else /* not VLAN_SUPPORT */
650 typedef struct csum_rx_done_desc rx_done_desc;
651 #define RxComplType RxComplType2
652 #endif /* not VLAN_SUPPORT */
654 enum rx_done_bits {
655 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
658 /* Type 1 Tx descriptor. */
659 struct starfire_tx_desc_1 {
660 u32 status; /* Upper bits are status, lower 16 length. */
661 u32 addr;
664 /* Type 2 Tx descriptor. */
665 struct starfire_tx_desc_2 {
666 u32 status; /* Upper bits are status, lower 16 length. */
667 u32 reserved;
668 u64 addr;
671 #ifdef ADDR_64BITS
672 typedef struct starfire_tx_desc_2 starfire_tx_desc;
673 #define TX_DESC_TYPE TxDescType2
674 #else /* not ADDR_64BITS */
675 typedef struct starfire_tx_desc_1 starfire_tx_desc;
676 #define TX_DESC_TYPE TxDescType1
677 #endif /* not ADDR_64BITS */
678 #define TX_DESC_SPACING TxDescSpaceUnlim
680 enum tx_desc_bits {
681 TxDescID=0xB0000000,
682 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
683 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
685 struct tx_done_desc {
686 u32 status; /* timestamp, index. */
687 #if 0
688 u32 intrstatus; /* interrupt status */
689 #endif
692 struct rx_ring_info {
693 struct sk_buff *skb;
694 dma_addr_t mapping;
696 struct tx_ring_info {
697 struct sk_buff *skb;
698 dma_addr_t mapping;
699 unsigned int used_slots;
702 #define PHY_CNT 2
703 struct netdev_private {
704 /* Descriptor rings first for alignment. */
705 struct starfire_rx_desc *rx_ring;
706 starfire_tx_desc *tx_ring;
707 dma_addr_t rx_ring_dma;
708 dma_addr_t tx_ring_dma;
709 /* The addresses of rx/tx-in-place skbuffs. */
710 struct rx_ring_info rx_info[RX_RING_SIZE];
711 struct tx_ring_info tx_info[TX_RING_SIZE];
712 /* Pointers to completion queues (full pages). */
713 rx_done_desc *rx_done_q;
714 dma_addr_t rx_done_q_dma;
715 unsigned int rx_done;
716 struct tx_done_desc *tx_done_q;
717 dma_addr_t tx_done_q_dma;
718 unsigned int tx_done;
719 struct net_device_stats stats;
720 struct pci_dev *pci_dev;
721 #ifdef VLAN_SUPPORT
722 struct vlan_group *vlgrp;
723 #endif
724 void *queue_mem;
725 dma_addr_t queue_mem_dma;
726 size_t queue_mem_size;
728 /* Frequently used values: keep some adjacent for cache effect. */
729 spinlock_t lock;
730 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
731 unsigned int cur_tx, dirty_tx, reap_tx;
732 unsigned int rx_buf_sz; /* Based on MTU+slack. */
733 /* These values keep track of the transceiver/media in use. */
734 int speed100; /* Set if speed == 100MBit. */
735 u32 tx_mode;
736 u32 intr_timer_ctrl;
737 u8 tx_threshold;
738 /* MII transceiver section. */
739 struct mii_if_info mii_if; /* MII lib hooks/info */
740 int phy_cnt; /* MII device addresses. */
741 unsigned char phys[PHY_CNT]; /* MII device addresses. */
742 void __iomem *base;
746 static int mdio_read(struct net_device *dev, int phy_id, int location);
747 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
748 static int netdev_open(struct net_device *dev);
749 static void check_duplex(struct net_device *dev);
750 static void tx_timeout(struct net_device *dev);
751 static void init_ring(struct net_device *dev);
752 static int start_tx(struct sk_buff *skb, struct net_device *dev);
753 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
754 static void netdev_error(struct net_device *dev, int intr_status);
755 static int __netdev_rx(struct net_device *dev, int *quota);
756 static void refill_rx_ring(struct net_device *dev);
757 static void netdev_error(struct net_device *dev, int intr_status);
758 static void set_rx_mode(struct net_device *dev);
759 static struct net_device_stats *get_stats(struct net_device *dev);
760 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
761 static int netdev_close(struct net_device *dev);
762 static void netdev_media_change(struct net_device *dev);
763 static struct ethtool_ops ethtool_ops;
766 #ifdef VLAN_SUPPORT
767 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
769 struct netdev_private *np = netdev_priv(dev);
771 spin_lock(&np->lock);
772 if (debug > 2)
773 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
774 np->vlgrp = grp;
775 set_rx_mode(dev);
776 spin_unlock(&np->lock);
779 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
781 struct netdev_private *np = netdev_priv(dev);
783 spin_lock(&np->lock);
784 if (debug > 1)
785 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
786 set_rx_mode(dev);
787 spin_unlock(&np->lock);
790 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
792 struct netdev_private *np = netdev_priv(dev);
794 spin_lock(&np->lock);
795 if (debug > 1)
796 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
797 if (np->vlgrp)
798 np->vlgrp->vlan_devices[vid] = NULL;
799 set_rx_mode(dev);
800 spin_unlock(&np->lock);
802 #endif /* VLAN_SUPPORT */
805 static int __devinit starfire_init_one(struct pci_dev *pdev,
806 const struct pci_device_id *ent)
808 struct netdev_private *np;
809 int i, irq, option, chip_idx = ent->driver_data;
810 struct net_device *dev;
811 static int card_idx = -1;
812 long ioaddr;
813 void __iomem *base;
814 int drv_flags, io_size;
815 int boguscnt;
817 /* when built into the kernel, we only print version if device is found */
818 #ifndef MODULE
819 static int printed_version;
820 if (!printed_version++)
821 printk(version);
822 #endif
824 card_idx++;
826 if (pci_enable_device (pdev))
827 return -EIO;
829 ioaddr = pci_resource_start(pdev, 0);
830 io_size = pci_resource_len(pdev, 0);
831 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
832 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
833 return -ENODEV;
836 dev = alloc_etherdev(sizeof(*np));
837 if (!dev) {
838 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
839 return -ENOMEM;
841 SET_MODULE_OWNER(dev);
842 SET_NETDEV_DEV(dev, &pdev->dev);
844 irq = pdev->irq;
846 if (pci_request_regions (pdev, DRV_NAME)) {
847 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
848 goto err_out_free_netdev;
851 /* ioremap is borken in Linux-2.2.x/sparc64 */
852 base = ioremap(ioaddr, io_size);
853 if (!base) {
854 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
855 card_idx, io_size, ioaddr);
856 goto err_out_free_res;
859 pci_set_master(pdev);
861 /* enable MWI -- it vastly improves Rx performance on sparc64 */
862 pci_set_mwi(pdev);
864 #ifdef ZEROCOPY
865 /* Starfire can do TCP/UDP checksumming */
866 if (enable_hw_cksum)
867 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
868 #endif /* ZEROCOPY */
869 #ifdef VLAN_SUPPORT
870 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
871 dev->vlan_rx_register = netdev_vlan_rx_register;
872 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
873 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
874 #endif /* VLAN_RX_KILL_VID */
875 #ifdef ADDR_64BITS
876 dev->features |= NETIF_F_HIGHDMA;
877 #endif /* ADDR_64BITS */
879 /* Serial EEPROM reads are hidden by the hardware. */
880 for (i = 0; i < 6; i++)
881 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
883 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
884 if (debug > 4)
885 for (i = 0; i < 0x20; i++)
886 printk("%2.2x%s",
887 (unsigned int)readb(base + EEPROMCtrl + i),
888 i % 16 != 15 ? " " : "\n");
889 #endif
891 /* Issue soft reset */
892 writel(MiiSoftReset, base + TxMode);
893 udelay(1000);
894 writel(0, base + TxMode);
896 /* Reset the chip to erase previous misconfiguration. */
897 writel(1, base + PCIDeviceConfig);
898 boguscnt = 1000;
899 while (--boguscnt > 0) {
900 udelay(10);
901 if ((readl(base + PCIDeviceConfig) & 1) == 0)
902 break;
904 if (boguscnt == 0)
905 printk("%s: chipset reset never completed!\n", dev->name);
906 /* wait a little longer */
907 udelay(1000);
909 dev->base_addr = (unsigned long)base;
910 dev->irq = irq;
912 np = netdev_priv(dev);
913 np->base = base;
914 spin_lock_init(&np->lock);
915 pci_set_drvdata(pdev, dev);
917 np->pci_dev = pdev;
919 np->mii_if.dev = dev;
920 np->mii_if.mdio_read = mdio_read;
921 np->mii_if.mdio_write = mdio_write;
922 np->mii_if.phy_id_mask = 0x1f;
923 np->mii_if.reg_num_mask = 0x1f;
925 drv_flags = netdrv_tbl[chip_idx].drv_flags;
927 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
928 if (dev->mem_start)
929 option = dev->mem_start;
931 /* The lower four bits are the media type. */
932 if (option & 0x200)
933 np->mii_if.full_duplex = 1;
935 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
936 np->mii_if.full_duplex = 1;
938 if (np->mii_if.full_duplex)
939 np->mii_if.force_media = 1;
940 else
941 np->mii_if.force_media = 0;
942 np->speed100 = 1;
944 /* timer resolution is 128 * 0.8us */
945 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
946 Timer10X | EnableIntrMasking;
948 if (small_frames > 0) {
949 np->intr_timer_ctrl |= SmallFrameBypass;
950 switch (small_frames) {
951 case 1 ... 64:
952 np->intr_timer_ctrl |= SmallFrame64;
953 break;
954 case 65 ... 128:
955 np->intr_timer_ctrl |= SmallFrame128;
956 break;
957 case 129 ... 256:
958 np->intr_timer_ctrl |= SmallFrame256;
959 break;
960 default:
961 np->intr_timer_ctrl |= SmallFrame512;
962 if (small_frames > 512)
963 printk("Adjusting small_frames down to 512\n");
964 break;
968 /* The chip-specific entries in the device structure. */
969 dev->open = &netdev_open;
970 dev->hard_start_xmit = &start_tx;
971 dev->tx_timeout = tx_timeout;
972 dev->watchdog_timeo = TX_TIMEOUT;
973 init_poll(dev);
974 dev->stop = &netdev_close;
975 dev->get_stats = &get_stats;
976 dev->set_multicast_list = &set_rx_mode;
977 dev->do_ioctl = &netdev_ioctl;
978 SET_ETHTOOL_OPS(dev, &ethtool_ops);
980 if (mtu)
981 dev->mtu = mtu;
983 if (register_netdev(dev))
984 goto err_out_cleardev;
986 printk(KERN_INFO "%s: %s at %p, ",
987 dev->name, netdrv_tbl[chip_idx].name, base);
988 for (i = 0; i < 5; i++)
989 printk("%2.2x:", dev->dev_addr[i]);
990 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
992 if (drv_flags & CanHaveMII) {
993 int phy, phy_idx = 0;
994 int mii_status;
995 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
996 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
997 mdelay(100);
998 boguscnt = 1000;
999 while (--boguscnt > 0)
1000 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
1001 break;
1002 if (boguscnt == 0) {
1003 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1004 continue;
1006 mii_status = mdio_read(dev, phy, MII_BMSR);
1007 if (mii_status != 0) {
1008 np->phys[phy_idx++] = phy;
1009 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
1010 printk(KERN_INFO "%s: MII PHY found at address %d, status "
1011 "%#4.4x advertising %#4.4x.\n",
1012 dev->name, phy, mii_status, np->mii_if.advertising);
1013 /* there can be only one PHY on-board */
1014 break;
1017 np->phy_cnt = phy_idx;
1018 if (np->phy_cnt > 0)
1019 np->mii_if.phy_id = np->phys[0];
1020 else
1021 memset(&np->mii_if, 0, sizeof(np->mii_if));
1024 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
1025 dev->name, enable_hw_cksum ? "enabled" : "disabled");
1026 return 0;
1028 err_out_cleardev:
1029 pci_set_drvdata(pdev, NULL);
1030 iounmap(base);
1031 err_out_free_res:
1032 pci_release_regions (pdev);
1033 err_out_free_netdev:
1034 free_netdev(dev);
1035 return -ENODEV;
1039 /* Read the MII Management Data I/O (MDIO) interfaces. */
1040 static int mdio_read(struct net_device *dev, int phy_id, int location)
1042 struct netdev_private *np = netdev_priv(dev);
1043 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1044 int result, boguscnt=1000;
1045 /* ??? Should we add a busy-wait here? */
1047 result = readl(mdio_addr);
1048 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1049 if (boguscnt == 0)
1050 return 0;
1051 if ((result & 0xffff) == 0xffff)
1052 return 0;
1053 return result & 0xffff;
1057 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
1059 struct netdev_private *np = netdev_priv(dev);
1060 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1061 writel(value, mdio_addr);
1062 /* The busy-wait will occur before a read. */
1066 static int netdev_open(struct net_device *dev)
1068 struct netdev_private *np = netdev_priv(dev);
1069 void __iomem *ioaddr = np->base;
1070 int i, retval;
1071 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
1073 /* Do we ever need to reset the chip??? */
1075 retval = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
1076 if (retval)
1077 return retval;
1079 /* Disable the Rx and Tx, and reset the chip. */
1080 writel(0, ioaddr + GenCtrl);
1081 writel(1, ioaddr + PCIDeviceConfig);
1082 if (debug > 1)
1083 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1084 dev->name, dev->irq);
1086 /* Allocate the various queues. */
1087 if (np->queue_mem == 0) {
1088 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1089 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1090 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1091 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
1092 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
1093 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
1094 if (np->queue_mem == 0)
1095 return -ENOMEM;
1097 np->tx_done_q = np->queue_mem;
1098 np->tx_done_q_dma = np->queue_mem_dma;
1099 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
1100 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
1101 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
1102 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
1103 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
1104 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
1107 /* Start with no carrier, it gets adjusted later */
1108 netif_carrier_off(dev);
1109 init_ring(dev);
1110 /* Set the size of the Rx buffers. */
1111 writel((np->rx_buf_sz << RxBufferLenShift) |
1112 (0 << RxMinDescrThreshShift) |
1113 RxPrefetchMode | RxVariableQ |
1114 RX_Q_ENTRIES |
1115 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
1116 RxDescSpace4,
1117 ioaddr + RxDescQCtrl);
1119 /* Set up the Rx DMA controller. */
1120 writel(RxChecksumIgnore |
1121 (0 << RxEarlyIntThreshShift) |
1122 (6 << RxHighPrioThreshShift) |
1123 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
1124 ioaddr + RxDMACtrl);
1126 /* Set Tx descriptor */
1127 writel((2 << TxHiPriFIFOThreshShift) |
1128 (0 << TxPadLenShift) |
1129 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
1130 TX_DESC_Q_ADDR_SIZE |
1131 TX_DESC_SPACING | TX_DESC_TYPE,
1132 ioaddr + TxDescCtrl);
1134 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
1135 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
1136 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
1137 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
1138 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
1140 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
1141 writel(np->rx_done_q_dma |
1142 RxComplType |
1143 (0 << RxComplThreshShift),
1144 ioaddr + RxCompletionAddr);
1146 if (debug > 1)
1147 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1149 /* Fill both the Tx SA register and the Rx perfect filter. */
1150 for (i = 0; i < 6; i++)
1151 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1152 /* The first entry is special because it bypasses the VLAN filter.
1153 Don't use it. */
1154 writew(0, ioaddr + PerfFilterTable);
1155 writew(0, ioaddr + PerfFilterTable + 4);
1156 writew(0, ioaddr + PerfFilterTable + 8);
1157 for (i = 1; i < 16; i++) {
1158 u16 *eaddrs = (u16 *)dev->dev_addr;
1159 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1160 writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
1161 writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
1162 writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
1165 /* Initialize other registers. */
1166 /* Configure the PCI bus bursts and FIFO thresholds. */
1167 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1168 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1169 udelay(1000);
1170 writel(np->tx_mode, ioaddr + TxMode);
1171 np->tx_threshold = 4;
1172 writel(np->tx_threshold, ioaddr + TxThreshold);
1174 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1176 netif_start_queue(dev);
1178 if (debug > 1)
1179 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1180 set_rx_mode(dev);
1182 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1183 check_duplex(dev);
1185 /* Enable GPIO interrupts on link change */
1186 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1188 /* Set the interrupt mask */
1189 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1190 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1191 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1192 ioaddr + IntrEnable);
1193 /* Enable PCI interrupts. */
1194 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1195 ioaddr + PCIDeviceConfig);
1197 #ifdef VLAN_SUPPORT
1198 /* Set VLAN type to 802.1q */
1199 writel(ETH_P_8021Q, ioaddr + VlanType);
1200 #endif /* VLAN_SUPPORT */
1202 /* Load Rx/Tx firmware into the frame processors */
1203 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1204 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1205 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1206 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1207 if (enable_hw_cksum)
1208 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1209 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1210 else
1211 /* Enable the Rx and Tx units only. */
1212 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1214 if (debug > 1)
1215 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1216 dev->name);
1218 return 0;
1222 static void check_duplex(struct net_device *dev)
1224 struct netdev_private *np = netdev_priv(dev);
1225 u16 reg0;
1226 int silly_count = 1000;
1228 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1229 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1230 udelay(500);
1231 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1232 /* do nothing */;
1233 if (!silly_count) {
1234 printk("%s: MII reset failed!\n", dev->name);
1235 return;
1238 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1240 if (!np->mii_if.force_media) {
1241 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1242 } else {
1243 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1244 if (np->speed100)
1245 reg0 |= BMCR_SPEED100;
1246 if (np->mii_if.full_duplex)
1247 reg0 |= BMCR_FULLDPLX;
1248 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1249 dev->name,
1250 np->speed100 ? "100" : "10",
1251 np->mii_if.full_duplex ? "full" : "half");
1253 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1257 static void tx_timeout(struct net_device *dev)
1259 struct netdev_private *np = netdev_priv(dev);
1260 void __iomem *ioaddr = np->base;
1261 int old_debug;
1263 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1264 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1266 /* Perhaps we should reinitialize the hardware here. */
1269 * Stop and restart the interface.
1270 * Cheat and increase the debug level temporarily.
1272 old_debug = debug;
1273 debug = 2;
1274 netdev_close(dev);
1275 netdev_open(dev);
1276 debug = old_debug;
1278 /* Trigger an immediate transmit demand. */
1280 dev->trans_start = jiffies;
1281 np->stats.tx_errors++;
1282 netif_wake_queue(dev);
1286 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1287 static void init_ring(struct net_device *dev)
1289 struct netdev_private *np = netdev_priv(dev);
1290 int i;
1292 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1293 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1295 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1297 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1298 for (i = 0; i < RX_RING_SIZE; i++) {
1299 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1300 np->rx_info[i].skb = skb;
1301 if (skb == NULL)
1302 break;
1303 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1304 skb->dev = dev; /* Mark as being used by this device. */
1305 /* Grrr, we cannot offset to correctly align the IP header. */
1306 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1308 writew(i - 1, np->base + RxDescQIdx);
1309 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1311 /* Clear the remainder of the Rx buffer ring. */
1312 for ( ; i < RX_RING_SIZE; i++) {
1313 np->rx_ring[i].rxaddr = 0;
1314 np->rx_info[i].skb = NULL;
1315 np->rx_info[i].mapping = 0;
1317 /* Mark the last entry as wrapping the ring. */
1318 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1320 /* Clear the completion rings. */
1321 for (i = 0; i < DONE_Q_SIZE; i++) {
1322 np->rx_done_q[i].status = 0;
1323 np->tx_done_q[i].status = 0;
1326 for (i = 0; i < TX_RING_SIZE; i++)
1327 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1329 return;
1333 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1335 struct netdev_private *np = netdev_priv(dev);
1336 unsigned int entry;
1337 u32 status;
1338 int i;
1341 * be cautious here, wrapping the queue has weird semantics
1342 * and we may not have enough slots even when it seems we do.
1344 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1345 netif_stop_queue(dev);
1346 return 1;
1349 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1350 if (skb->ip_summed == CHECKSUM_HW) {
1351 skb = skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK);
1352 if (skb == NULL)
1353 return NETDEV_TX_OK;
1355 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1357 entry = np->cur_tx % TX_RING_SIZE;
1358 for (i = 0; i < skb_num_frags(skb); i++) {
1359 int wrap_ring = 0;
1360 status = TxDescID;
1362 if (i == 0) {
1363 np->tx_info[entry].skb = skb;
1364 status |= TxCRCEn;
1365 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1366 status |= TxRingWrap;
1367 wrap_ring = 1;
1369 if (np->reap_tx) {
1370 status |= TxDescIntr;
1371 np->reap_tx = 0;
1373 if (skb->ip_summed == CHECKSUM_HW) {
1374 status |= TxCalTCP;
1375 np->stats.tx_compressed++;
1377 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1379 np->tx_info[entry].mapping =
1380 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1381 } else {
1382 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1383 status |= this_frag->size;
1384 np->tx_info[entry].mapping =
1385 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1388 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1389 np->tx_ring[entry].status = cpu_to_le32(status);
1390 if (debug > 3)
1391 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1392 dev->name, np->cur_tx, np->dirty_tx,
1393 entry, status);
1394 if (wrap_ring) {
1395 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1396 np->cur_tx += np->tx_info[entry].used_slots;
1397 entry = 0;
1398 } else {
1399 np->tx_info[entry].used_slots = 1;
1400 np->cur_tx += np->tx_info[entry].used_slots;
1401 entry++;
1403 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1404 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1405 np->reap_tx = 1;
1408 /* Non-x86: explicitly flush descriptor cache lines here. */
1409 /* Ensure all descriptors are written back before the transmit is
1410 initiated. - Jes */
1411 wmb();
1413 /* Update the producer index. */
1414 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1416 /* 4 is arbitrary, but should be ok */
1417 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1418 netif_stop_queue(dev);
1420 dev->trans_start = jiffies;
1422 return 0;
1426 /* The interrupt handler does all of the Rx thread work and cleans up
1427 after the Tx thread. */
1428 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1430 struct net_device *dev = dev_instance;
1431 struct netdev_private *np = netdev_priv(dev);
1432 void __iomem *ioaddr = np->base;
1433 int boguscnt = max_interrupt_work;
1434 int consumer;
1435 int tx_status;
1436 int handled = 0;
1438 do {
1439 u32 intr_status = readl(ioaddr + IntrClear);
1441 if (debug > 4)
1442 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1443 dev->name, intr_status);
1445 if (intr_status == 0 || intr_status == (u32) -1)
1446 break;
1448 handled = 1;
1450 if (intr_status & (IntrRxDone | IntrRxEmpty))
1451 netdev_rx(dev, ioaddr);
1453 /* Scavenge the skbuff list based on the Tx-done queue.
1454 There are redundant checks here that may be cleaned up
1455 after the driver has proven to be reliable. */
1456 consumer = readl(ioaddr + TxConsumerIdx);
1457 if (debug > 3)
1458 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1459 dev->name, consumer);
1461 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1462 if (debug > 3)
1463 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1464 dev->name, np->dirty_tx, np->tx_done, tx_status);
1465 if ((tx_status & 0xe0000000) == 0xa0000000) {
1466 np->stats.tx_packets++;
1467 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1468 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1469 struct sk_buff *skb = np->tx_info[entry].skb;
1470 np->tx_info[entry].skb = NULL;
1471 pci_unmap_single(np->pci_dev,
1472 np->tx_info[entry].mapping,
1473 skb_first_frag_len(skb),
1474 PCI_DMA_TODEVICE);
1475 np->tx_info[entry].mapping = 0;
1476 np->dirty_tx += np->tx_info[entry].used_slots;
1477 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1479 int i;
1480 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1481 pci_unmap_single(np->pci_dev,
1482 np->tx_info[entry].mapping,
1483 skb_shinfo(skb)->frags[i].size,
1484 PCI_DMA_TODEVICE);
1485 np->dirty_tx++;
1486 entry++;
1490 dev_kfree_skb_irq(skb);
1492 np->tx_done_q[np->tx_done].status = 0;
1493 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1495 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1497 if (netif_queue_stopped(dev) &&
1498 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1499 /* The ring is no longer full, wake the queue. */
1500 netif_wake_queue(dev);
1503 /* Stats overflow */
1504 if (intr_status & IntrStatsMax)
1505 get_stats(dev);
1507 /* Media change interrupt. */
1508 if (intr_status & IntrLinkChange)
1509 netdev_media_change(dev);
1511 /* Abnormal error summary/uncommon events handlers. */
1512 if (intr_status & IntrAbnormalSummary)
1513 netdev_error(dev, intr_status);
1515 if (--boguscnt < 0) {
1516 if (debug > 1)
1517 printk(KERN_WARNING "%s: Too much work at interrupt, "
1518 "status=%#8.8x.\n",
1519 dev->name, intr_status);
1520 break;
1522 } while (1);
1524 if (debug > 4)
1525 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1526 dev->name, (int) readl(ioaddr + IntrStatus));
1527 return IRQ_RETVAL(handled);
1531 /* This routine is logically part of the interrupt/poll handler, but separated
1532 for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
1533 static int __netdev_rx(struct net_device *dev, int *quota)
1535 struct netdev_private *np = netdev_priv(dev);
1536 u32 desc_status;
1537 int retcode = 0;
1539 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1540 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1541 struct sk_buff *skb;
1542 u16 pkt_len;
1543 int entry;
1544 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1546 if (debug > 4)
1547 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1548 if (!(desc_status & RxOK)) {
1549 /* There was an error. */
1550 if (debug > 2)
1551 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1552 np->stats.rx_errors++;
1553 if (desc_status & RxFIFOErr)
1554 np->stats.rx_fifo_errors++;
1555 goto next_rx;
1558 if (*quota <= 0) { /* out of rx quota */
1559 retcode = 1;
1560 goto out;
1562 (*quota)--;
1564 pkt_len = desc_status; /* Implicitly Truncate */
1565 entry = (desc_status >> 16) & 0x7ff;
1567 if (debug > 4)
1568 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1569 /* Check if the packet is long enough to accept without copying
1570 to a minimally-sized skbuff. */
1571 if (pkt_len < rx_copybreak
1572 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1573 skb->dev = dev;
1574 skb_reserve(skb, 2); /* 16 byte align the IP header */
1575 pci_dma_sync_single_for_cpu(np->pci_dev,
1576 np->rx_info[entry].mapping,
1577 pkt_len, PCI_DMA_FROMDEVICE);
1578 eth_copy_and_sum(skb, np->rx_info[entry].skb->data, pkt_len, 0);
1579 pci_dma_sync_single_for_device(np->pci_dev,
1580 np->rx_info[entry].mapping,
1581 pkt_len, PCI_DMA_FROMDEVICE);
1582 skb_put(skb, pkt_len);
1583 } else {
1584 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1585 skb = np->rx_info[entry].skb;
1586 skb_put(skb, pkt_len);
1587 np->rx_info[entry].skb = NULL;
1588 np->rx_info[entry].mapping = 0;
1590 #ifndef final_version /* Remove after testing. */
1591 /* You will want this info for the initial debug. */
1592 if (debug > 5)
1593 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1594 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
1595 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1596 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1597 skb->data[8], skb->data[9], skb->data[10],
1598 skb->data[11], skb->data[12], skb->data[13]);
1599 #endif
1601 skb->protocol = eth_type_trans(skb, dev);
1602 #ifdef VLAN_SUPPORT
1603 if (debug > 4)
1604 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1605 #endif
1606 if (le16_to_cpu(desc->status2) & 0x0100) {
1607 skb->ip_summed = CHECKSUM_UNNECESSARY;
1608 np->stats.rx_compressed++;
1611 * This feature doesn't seem to be working, at least
1612 * with the two firmware versions I have. If the GFP sees
1613 * an IP fragment, it either ignores it completely, or reports
1614 * "bad checksum" on it.
1616 * Maybe I missed something -- corrections are welcome.
1617 * Until then, the printk stays. :-) -Ion
1619 else if (le16_to_cpu(desc->status2) & 0x0040) {
1620 skb->ip_summed = CHECKSUM_HW;
1621 skb->csum = le16_to_cpu(desc->csum);
1622 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1624 #ifdef VLAN_SUPPORT
1625 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1626 if (debug > 4)
1627 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
1628 /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
1629 vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
1630 } else
1631 #endif /* VLAN_SUPPORT */
1632 netdev_receive_skb(skb);
1633 dev->last_rx = jiffies;
1634 np->stats.rx_packets++;
1636 next_rx:
1637 np->cur_rx++;
1638 desc->status = 0;
1639 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1641 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1643 out:
1644 refill_rx_ring(dev);
1645 if (debug > 5)
1646 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1647 retcode, np->rx_done, desc_status);
1648 return retcode;
1652 #ifdef HAVE_NETDEV_POLL
1653 static int netdev_poll(struct net_device *dev, int *budget)
1655 u32 intr_status;
1656 struct netdev_private *np = netdev_priv(dev);
1657 void __iomem *ioaddr = np->base;
1658 int retcode = 0, quota = dev->quota;
1660 do {
1661 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1663 retcode = __netdev_rx(dev, &quota);
1664 *budget -= (dev->quota - quota);
1665 dev->quota = quota;
1666 if (retcode)
1667 goto out;
1669 intr_status = readl(ioaddr + IntrStatus);
1670 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1672 netif_rx_complete(dev);
1673 intr_status = readl(ioaddr + IntrEnable);
1674 intr_status |= IntrRxDone | IntrRxEmpty;
1675 writel(intr_status, ioaddr + IntrEnable);
1677 out:
1678 if (debug > 5)
1679 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", retcode);
1681 /* Restart Rx engine if stopped. */
1682 return retcode;
1684 #endif /* HAVE_NETDEV_POLL */
1687 static void refill_rx_ring(struct net_device *dev)
1689 struct netdev_private *np = netdev_priv(dev);
1690 struct sk_buff *skb;
1691 int entry = -1;
1693 /* Refill the Rx ring buffers. */
1694 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1695 entry = np->dirty_rx % RX_RING_SIZE;
1696 if (np->rx_info[entry].skb == NULL) {
1697 skb = dev_alloc_skb(np->rx_buf_sz);
1698 np->rx_info[entry].skb = skb;
1699 if (skb == NULL)
1700 break; /* Better luck next round. */
1701 np->rx_info[entry].mapping =
1702 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1703 skb->dev = dev; /* Mark as being used by this device. */
1704 np->rx_ring[entry].rxaddr =
1705 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1707 if (entry == RX_RING_SIZE - 1)
1708 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1710 if (entry >= 0)
1711 writew(entry, np->base + RxDescQIdx);
1715 static void netdev_media_change(struct net_device *dev)
1717 struct netdev_private *np = netdev_priv(dev);
1718 void __iomem *ioaddr = np->base;
1719 u16 reg0, reg1, reg4, reg5;
1720 u32 new_tx_mode;
1721 u32 new_intr_timer_ctrl;
1723 /* reset status first */
1724 mdio_read(dev, np->phys[0], MII_BMCR);
1725 mdio_read(dev, np->phys[0], MII_BMSR);
1727 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1728 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1730 if (reg1 & BMSR_LSTATUS) {
1731 /* link is up */
1732 if (reg0 & BMCR_ANENABLE) {
1733 /* autonegotiation is enabled */
1734 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1735 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1736 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1737 np->speed100 = 1;
1738 np->mii_if.full_duplex = 1;
1739 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1740 np->speed100 = 1;
1741 np->mii_if.full_duplex = 0;
1742 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1743 np->speed100 = 0;
1744 np->mii_if.full_duplex = 1;
1745 } else {
1746 np->speed100 = 0;
1747 np->mii_if.full_duplex = 0;
1749 } else {
1750 /* autonegotiation is disabled */
1751 if (reg0 & BMCR_SPEED100)
1752 np->speed100 = 1;
1753 else
1754 np->speed100 = 0;
1755 if (reg0 & BMCR_FULLDPLX)
1756 np->mii_if.full_duplex = 1;
1757 else
1758 np->mii_if.full_duplex = 0;
1760 netif_carrier_on(dev);
1761 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1762 dev->name,
1763 np->speed100 ? "100" : "10",
1764 np->mii_if.full_duplex ? "full" : "half");
1766 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1767 if (np->mii_if.full_duplex)
1768 new_tx_mode |= FullDuplex;
1769 if (np->tx_mode != new_tx_mode) {
1770 np->tx_mode = new_tx_mode;
1771 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1772 udelay(1000);
1773 writel(np->tx_mode, ioaddr + TxMode);
1776 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1777 if (np->speed100)
1778 new_intr_timer_ctrl |= Timer10X;
1779 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1780 np->intr_timer_ctrl = new_intr_timer_ctrl;
1781 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1783 } else {
1784 netif_carrier_off(dev);
1785 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1790 static void netdev_error(struct net_device *dev, int intr_status)
1792 struct netdev_private *np = netdev_priv(dev);
1794 /* Came close to underrunning the Tx FIFO, increase threshold. */
1795 if (intr_status & IntrTxDataLow) {
1796 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1797 writel(++np->tx_threshold, np->base + TxThreshold);
1798 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1799 dev->name, np->tx_threshold * 16);
1800 } else
1801 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1803 if (intr_status & IntrRxGFPDead) {
1804 np->stats.rx_fifo_errors++;
1805 np->stats.rx_errors++;
1807 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1808 np->stats.tx_fifo_errors++;
1809 np->stats.tx_errors++;
1811 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1812 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1813 dev->name, intr_status);
1817 static struct net_device_stats *get_stats(struct net_device *dev)
1819 struct netdev_private *np = netdev_priv(dev);
1820 void __iomem *ioaddr = np->base;
1822 /* This adapter architecture needs no SMP locks. */
1823 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1824 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1825 np->stats.tx_packets = readl(ioaddr + 0x57000);
1826 np->stats.tx_aborted_errors =
1827 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1828 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1829 np->stats.collisions =
1830 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1832 /* The chip only need report frame silently dropped. */
1833 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1834 writew(0, ioaddr + RxDMAStatus);
1835 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1836 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1837 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1838 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1840 return &np->stats;
1844 static void set_rx_mode(struct net_device *dev)
1846 struct netdev_private *np = netdev_priv(dev);
1847 void __iomem *ioaddr = np->base;
1848 u32 rx_mode = MinVLANPrio;
1849 struct dev_mc_list *mclist;
1850 int i;
1851 #ifdef VLAN_SUPPORT
1853 rx_mode |= VlanMode;
1854 if (np->vlgrp) {
1855 int vlan_count = 0;
1856 void __iomem *filter_addr = ioaddr + HashTable + 8;
1857 for (i = 0; i < VLAN_VID_MASK; i++) {
1858 if (np->vlgrp->vlan_devices[i]) {
1859 if (vlan_count >= 32)
1860 break;
1861 writew(cpu_to_be16(i), filter_addr);
1862 filter_addr += 16;
1863 vlan_count++;
1866 if (i == VLAN_VID_MASK) {
1867 rx_mode |= PerfectFilterVlan;
1868 while (vlan_count < 32) {
1869 writew(0, filter_addr);
1870 filter_addr += 16;
1871 vlan_count++;
1875 #endif /* VLAN_SUPPORT */
1877 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1878 rx_mode |= AcceptAll;
1879 } else if ((dev->mc_count > multicast_filter_limit)
1880 || (dev->flags & IFF_ALLMULTI)) {
1881 /* Too many to match, or accept all multicasts. */
1882 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1883 } else if (dev->mc_count <= 14) {
1884 /* Use the 16 element perfect filter, skip first two entries. */
1885 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1886 u16 *eaddrs;
1887 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1888 i++, mclist = mclist->next) {
1889 eaddrs = (u16 *)mclist->dmi_addr;
1890 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
1891 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1892 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
1894 eaddrs = (u16 *)dev->dev_addr;
1895 while (i++ < 16) {
1896 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1897 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1898 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1900 rx_mode |= AcceptBroadcast|PerfectFilter;
1901 } else {
1902 /* Must use a multicast hash table. */
1903 void __iomem *filter_addr;
1904 u16 *eaddrs;
1905 u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1907 memset(mc_filter, 0, sizeof(mc_filter));
1908 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1909 i++, mclist = mclist->next) {
1910 /* The chip uses the upper 9 CRC bits
1911 as index into the hash table */
1912 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1913 __u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];
1915 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1917 /* Clear the perfect filter list, skip first two entries. */
1918 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1919 eaddrs = (u16 *)dev->dev_addr;
1920 for (i = 2; i < 16; i++) {
1921 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1922 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1923 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1925 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1926 writew(mc_filter[i], filter_addr);
1927 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1929 writel(rx_mode, ioaddr + RxFilterMode);
1932 static int check_if_running(struct net_device *dev)
1934 if (!netif_running(dev))
1935 return -EINVAL;
1936 return 0;
1939 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1941 struct netdev_private *np = netdev_priv(dev);
1942 strcpy(info->driver, DRV_NAME);
1943 strcpy(info->version, DRV_VERSION);
1944 strcpy(info->bus_info, pci_name(np->pci_dev));
1947 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1949 struct netdev_private *np = netdev_priv(dev);
1950 spin_lock_irq(&np->lock);
1951 mii_ethtool_gset(&np->mii_if, ecmd);
1952 spin_unlock_irq(&np->lock);
1953 return 0;
1956 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1958 struct netdev_private *np = netdev_priv(dev);
1959 int res;
1960 spin_lock_irq(&np->lock);
1961 res = mii_ethtool_sset(&np->mii_if, ecmd);
1962 spin_unlock_irq(&np->lock);
1963 check_duplex(dev);
1964 return res;
1967 static int nway_reset(struct net_device *dev)
1969 struct netdev_private *np = netdev_priv(dev);
1970 return mii_nway_restart(&np->mii_if);
1973 static u32 get_link(struct net_device *dev)
1975 struct netdev_private *np = netdev_priv(dev);
1976 return mii_link_ok(&np->mii_if);
1979 static u32 get_msglevel(struct net_device *dev)
1981 return debug;
1984 static void set_msglevel(struct net_device *dev, u32 val)
1986 debug = val;
1989 static struct ethtool_ops ethtool_ops = {
1990 .begin = check_if_running,
1991 .get_drvinfo = get_drvinfo,
1992 .get_settings = get_settings,
1993 .set_settings = set_settings,
1994 .nway_reset = nway_reset,
1995 .get_link = get_link,
1996 .get_msglevel = get_msglevel,
1997 .set_msglevel = set_msglevel,
2000 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2002 struct netdev_private *np = netdev_priv(dev);
2003 struct mii_ioctl_data *data = if_mii(rq);
2004 int rc;
2006 if (!netif_running(dev))
2007 return -EINVAL;
2009 spin_lock_irq(&np->lock);
2010 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
2011 spin_unlock_irq(&np->lock);
2013 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
2014 check_duplex(dev);
2016 return rc;
2019 static int netdev_close(struct net_device *dev)
2021 struct netdev_private *np = netdev_priv(dev);
2022 void __iomem *ioaddr = np->base;
2023 int i;
2025 netif_stop_queue(dev);
2027 if (debug > 1) {
2028 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
2029 dev->name, (int) readl(ioaddr + IntrStatus));
2030 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
2031 dev->name, np->cur_tx, np->dirty_tx,
2032 np->cur_rx, np->dirty_rx);
2035 /* Disable interrupts by clearing the interrupt mask. */
2036 writel(0, ioaddr + IntrEnable);
2038 /* Stop the chip's Tx and Rx processes. */
2039 writel(0, ioaddr + GenCtrl);
2040 readl(ioaddr + GenCtrl);
2042 if (debug > 5) {
2043 printk(KERN_DEBUG" Tx ring at %#llx:\n",
2044 (long long) np->tx_ring_dma);
2045 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
2046 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
2047 i, le32_to_cpu(np->tx_ring[i].status),
2048 (long long) dma_to_cpu(np->tx_ring[i].addr),
2049 le32_to_cpu(np->tx_done_q[i].status));
2050 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
2051 (long long) np->rx_ring_dma, np->rx_done_q);
2052 if (np->rx_done_q)
2053 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
2054 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
2055 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
2059 free_irq(dev->irq, dev);
2061 /* Free all the skbuffs in the Rx queue. */
2062 for (i = 0; i < RX_RING_SIZE; i++) {
2063 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
2064 if (np->rx_info[i].skb != NULL) {
2065 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
2066 dev_kfree_skb(np->rx_info[i].skb);
2068 np->rx_info[i].skb = NULL;
2069 np->rx_info[i].mapping = 0;
2071 for (i = 0; i < TX_RING_SIZE; i++) {
2072 struct sk_buff *skb = np->tx_info[i].skb;
2073 if (skb == NULL)
2074 continue;
2075 pci_unmap_single(np->pci_dev,
2076 np->tx_info[i].mapping,
2077 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
2078 np->tx_info[i].mapping = 0;
2079 dev_kfree_skb(skb);
2080 np->tx_info[i].skb = NULL;
2083 return 0;
2087 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2089 struct net_device *dev = pci_get_drvdata(pdev);
2090 struct netdev_private *np = netdev_priv(dev);
2092 if (!dev)
2093 BUG();
2095 unregister_netdev(dev);
2097 if (np->queue_mem)
2098 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2101 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2102 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2103 pci_disable_device(pdev);
2105 iounmap(np->base);
2106 pci_release_regions(pdev);
2108 pci_set_drvdata(pdev, NULL);
2109 free_netdev(dev); /* Will also free np!! */
2113 static struct pci_driver starfire_driver = {
2114 .name = DRV_NAME,
2115 .probe = starfire_init_one,
2116 .remove = __devexit_p(starfire_remove_one),
2117 .id_table = starfire_pci_tbl,
2121 static int __init starfire_init (void)
2123 /* when a module, this is printed whether or not devices are found in probe */
2124 #ifdef MODULE
2125 printk(version);
2126 #ifdef HAVE_NETDEV_POLL
2127 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2128 #else
2129 printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
2130 #endif
2131 #endif
2133 /* we can do this test only at run-time... sigh */
2134 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2135 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2136 return -ENODEV;
2139 return pci_module_init (&starfire_driver);
2143 static void __exit starfire_cleanup (void)
2145 pci_unregister_driver (&starfire_driver);
2149 module_init(starfire_init);
2150 module_exit(starfire_cleanup);
2154 * Local variables:
2155 * c-basic-offset: 8
2156 * tab-width: 8
2157 * End: