[PATCH] md: simplify checking of available size when resizing an array
[linux-2.6/libata-dev.git] / drivers / md / md.c
blob50ab4a936e30a3e405e314f648049c518446e018
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/suspend.h>
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
47 #include <linux/init.h>
49 #include <linux/file.h>
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
55 #include <asm/unaligned.h>
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
74 static void md_print_devices(void);
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80 * is 1000 KB/sec, so the extra system load does not show up that much.
81 * Increase it if you want to have more _guaranteed_ speed. Note that
82 * the RAID driver will use the maximum available bandwidth if the IO
83 * subsystem is idle. There is also an 'absolute maximum' reconstruction
84 * speed limit - in case reconstruction slows down your system despite
85 * idle IO detection.
87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88 * or /sys/block/mdX/md/sync_speed_{min,max}
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
95 return mddev->sync_speed_min ?
96 mddev->sync_speed_min : sysctl_speed_limit_min;
99 static inline int speed_max(mddev_t *mddev)
101 return mddev->sync_speed_max ?
102 mddev->sync_speed_max : sysctl_speed_limit_max;
105 static struct ctl_table_header *raid_table_header;
107 static ctl_table raid_table[] = {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = &proc_dointvec,
124 { .ctl_name = 0 }
127 static ctl_table raid_dir_table[] = {
129 .ctl_name = DEV_RAID,
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
135 { .ctl_name = 0 }
138 static ctl_table raid_root_table[] = {
140 .ctl_name = CTL_DEV,
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
146 { .ctl_name = 0 }
149 static struct block_device_operations md_fops;
151 static int start_readonly;
154 * We have a system wide 'event count' that is incremented
155 * on any 'interesting' event, and readers of /proc/mdstat
156 * can use 'poll' or 'select' to find out when the event
157 * count increases.
159 * Events are:
160 * start array, stop array, error, add device, remove device,
161 * start build, activate spare
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
167 atomic_inc(&md_event_count);
168 wake_up(&md_event_waiters);
169 sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 EXPORT_SYMBOL_GPL(md_new_event);
173 /* Alternate version that can be called from interrupts
174 * when calling sysfs_notify isn't needed.
176 static void md_new_event_inintr(mddev_t *mddev)
178 atomic_inc(&md_event_count);
179 wake_up(&md_event_waiters);
183 * Enables to iterate over all existing md arrays
184 * all_mddevs_lock protects this list.
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
191 * iterates through all used mddevs in the system.
192 * We take care to grab the all_mddevs_lock whenever navigating
193 * the list, and to always hold a refcount when unlocked.
194 * Any code which breaks out of this loop while own
195 * a reference to the current mddev and must mddev_put it.
197 #define ITERATE_MDDEV(mddev,tmp) \
199 for (({ spin_lock(&all_mddevs_lock); \
200 tmp = all_mddevs.next; \
201 mddev = NULL;}); \
202 ({ if (tmp != &all_mddevs) \
203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 spin_unlock(&all_mddevs_lock); \
205 if (mddev) mddev_put(mddev); \
206 mddev = list_entry(tmp, mddev_t, all_mddevs); \
207 tmp != &all_mddevs;}); \
208 ({ spin_lock(&all_mddevs_lock); \
209 tmp = tmp->next;}) \
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
215 bio_io_error(bio, bio->bi_size);
216 return 0;
219 static inline mddev_t *mddev_get(mddev_t *mddev)
221 atomic_inc(&mddev->active);
222 return mddev;
225 static void mddev_put(mddev_t *mddev)
227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 return;
229 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 list_del(&mddev->all_mddevs);
231 spin_unlock(&all_mddevs_lock);
232 blk_cleanup_queue(mddev->queue);
233 kobject_unregister(&mddev->kobj);
234 } else
235 spin_unlock(&all_mddevs_lock);
238 static mddev_t * mddev_find(dev_t unit)
240 mddev_t *mddev, *new = NULL;
242 retry:
243 spin_lock(&all_mddevs_lock);
244 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 if (mddev->unit == unit) {
246 mddev_get(mddev);
247 spin_unlock(&all_mddevs_lock);
248 kfree(new);
249 return mddev;
252 if (new) {
253 list_add(&new->all_mddevs, &all_mddevs);
254 spin_unlock(&all_mddevs_lock);
255 return new;
257 spin_unlock(&all_mddevs_lock);
259 new = kzalloc(sizeof(*new), GFP_KERNEL);
260 if (!new)
261 return NULL;
263 new->unit = unit;
264 if (MAJOR(unit) == MD_MAJOR)
265 new->md_minor = MINOR(unit);
266 else
267 new->md_minor = MINOR(unit) >> MdpMinorShift;
269 mutex_init(&new->reconfig_mutex);
270 INIT_LIST_HEAD(&new->disks);
271 INIT_LIST_HEAD(&new->all_mddevs);
272 init_timer(&new->safemode_timer);
273 atomic_set(&new->active, 1);
274 spin_lock_init(&new->write_lock);
275 init_waitqueue_head(&new->sb_wait);
277 new->queue = blk_alloc_queue(GFP_KERNEL);
278 if (!new->queue) {
279 kfree(new);
280 return NULL;
282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
284 blk_queue_make_request(new->queue, md_fail_request);
286 goto retry;
289 static inline int mddev_lock(mddev_t * mddev)
291 return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 static inline int mddev_trylock(mddev_t * mddev)
296 return mutex_trylock(&mddev->reconfig_mutex);
299 static inline void mddev_unlock(mddev_t * mddev)
301 mutex_unlock(&mddev->reconfig_mutex);
303 md_wakeup_thread(mddev->thread);
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
308 mdk_rdev_t * rdev;
309 struct list_head *tmp;
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->desc_nr == nr)
313 return rdev;
315 return NULL;
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
320 struct list_head *tmp;
321 mdk_rdev_t *rdev;
323 ITERATE_RDEV(mddev,rdev,tmp) {
324 if (rdev->bdev->bd_dev == dev)
325 return rdev;
327 return NULL;
330 static struct mdk_personality *find_pers(int level, char *clevel)
332 struct mdk_personality *pers;
333 list_for_each_entry(pers, &pers_list, list) {
334 if (level != LEVEL_NONE && pers->level == level)
335 return pers;
336 if (strcmp(pers->name, clevel)==0)
337 return pers;
339 return NULL;
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 return MD_NEW_SIZE_BLOCKS(size);
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
350 sector_t size;
352 size = rdev->sb_offset;
354 if (chunk_size)
355 size &= ~((sector_t)chunk_size/1024 - 1);
356 return size;
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
361 if (rdev->sb_page)
362 MD_BUG();
364 rdev->sb_page = alloc_page(GFP_KERNEL);
365 if (!rdev->sb_page) {
366 printk(KERN_ALERT "md: out of memory.\n");
367 return -EINVAL;
370 return 0;
373 static void free_disk_sb(mdk_rdev_t * rdev)
375 if (rdev->sb_page) {
376 put_page(rdev->sb_page);
377 rdev->sb_loaded = 0;
378 rdev->sb_page = NULL;
379 rdev->sb_offset = 0;
380 rdev->size = 0;
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
387 mdk_rdev_t *rdev = bio->bi_private;
388 mddev_t *mddev = rdev->mddev;
389 if (bio->bi_size)
390 return 1;
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 printk("md: super_written gets error=%d, uptodate=%d\n",
394 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 md_error(mddev, rdev);
399 if (atomic_dec_and_test(&mddev->pending_writes))
400 wake_up(&mddev->sb_wait);
401 bio_put(bio);
402 return 0;
405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
407 struct bio *bio2 = bio->bi_private;
408 mdk_rdev_t *rdev = bio2->bi_private;
409 mddev_t *mddev = rdev->mddev;
410 if (bio->bi_size)
411 return 1;
413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 error == -EOPNOTSUPP) {
415 unsigned long flags;
416 /* barriers don't appear to be supported :-( */
417 set_bit(BarriersNotsupp, &rdev->flags);
418 mddev->barriers_work = 0;
419 spin_lock_irqsave(&mddev->write_lock, flags);
420 bio2->bi_next = mddev->biolist;
421 mddev->biolist = bio2;
422 spin_unlock_irqrestore(&mddev->write_lock, flags);
423 wake_up(&mddev->sb_wait);
424 bio_put(bio);
425 return 0;
427 bio_put(bio2);
428 bio->bi_private = rdev;
429 return super_written(bio, bytes_done, error);
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 sector_t sector, int size, struct page *page)
435 /* write first size bytes of page to sector of rdev
436 * Increment mddev->pending_writes before returning
437 * and decrement it on completion, waking up sb_wait
438 * if zero is reached.
439 * If an error occurred, call md_error
441 * As we might need to resubmit the request if BIO_RW_BARRIER
442 * causes ENOTSUPP, we allocate a spare bio...
444 struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
447 bio->bi_bdev = rdev->bdev;
448 bio->bi_sector = sector;
449 bio_add_page(bio, page, size, 0);
450 bio->bi_private = rdev;
451 bio->bi_end_io = super_written;
452 bio->bi_rw = rw;
454 atomic_inc(&mddev->pending_writes);
455 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
456 struct bio *rbio;
457 rw |= (1<<BIO_RW_BARRIER);
458 rbio = bio_clone(bio, GFP_NOIO);
459 rbio->bi_private = bio;
460 rbio->bi_end_io = super_written_barrier;
461 submit_bio(rw, rbio);
462 } else
463 submit_bio(rw, bio);
466 void md_super_wait(mddev_t *mddev)
468 /* wait for all superblock writes that were scheduled to complete.
469 * if any had to be retried (due to BARRIER problems), retry them
471 DEFINE_WAIT(wq);
472 for(;;) {
473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 if (atomic_read(&mddev->pending_writes)==0)
475 break;
476 while (mddev->biolist) {
477 struct bio *bio;
478 spin_lock_irq(&mddev->write_lock);
479 bio = mddev->biolist;
480 mddev->biolist = bio->bi_next ;
481 bio->bi_next = NULL;
482 spin_unlock_irq(&mddev->write_lock);
483 submit_bio(bio->bi_rw, bio);
485 schedule();
487 finish_wait(&mddev->sb_wait, &wq);
490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
492 if (bio->bi_size)
493 return 1;
495 complete((struct completion*)bio->bi_private);
496 return 0;
499 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
500 struct page *page, int rw)
502 struct bio *bio = bio_alloc(GFP_NOIO, 1);
503 struct completion event;
504 int ret;
506 rw |= (1 << BIO_RW_SYNC);
508 bio->bi_bdev = bdev;
509 bio->bi_sector = sector;
510 bio_add_page(bio, page, size, 0);
511 init_completion(&event);
512 bio->bi_private = &event;
513 bio->bi_end_io = bi_complete;
514 submit_bio(rw, bio);
515 wait_for_completion(&event);
517 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
518 bio_put(bio);
519 return ret;
521 EXPORT_SYMBOL_GPL(sync_page_io);
523 static int read_disk_sb(mdk_rdev_t * rdev, int size)
525 char b[BDEVNAME_SIZE];
526 if (!rdev->sb_page) {
527 MD_BUG();
528 return -EINVAL;
530 if (rdev->sb_loaded)
531 return 0;
534 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
535 goto fail;
536 rdev->sb_loaded = 1;
537 return 0;
539 fail:
540 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
541 bdevname(rdev->bdev,b));
542 return -EINVAL;
545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
547 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
548 (sb1->set_uuid1 == sb2->set_uuid1) &&
549 (sb1->set_uuid2 == sb2->set_uuid2) &&
550 (sb1->set_uuid3 == sb2->set_uuid3))
552 return 1;
554 return 0;
558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
560 int ret;
561 mdp_super_t *tmp1, *tmp2;
563 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
564 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
566 if (!tmp1 || !tmp2) {
567 ret = 0;
568 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
569 goto abort;
572 *tmp1 = *sb1;
573 *tmp2 = *sb2;
576 * nr_disks is not constant
578 tmp1->nr_disks = 0;
579 tmp2->nr_disks = 0;
581 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
582 ret = 0;
583 else
584 ret = 1;
586 abort:
587 kfree(tmp1);
588 kfree(tmp2);
589 return ret;
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
594 unsigned int disk_csum, csum;
596 disk_csum = sb->sb_csum;
597 sb->sb_csum = 0;
598 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
599 sb->sb_csum = disk_csum;
600 return csum;
605 * Handle superblock details.
606 * We want to be able to handle multiple superblock formats
607 * so we have a common interface to them all, and an array of
608 * different handlers.
609 * We rely on user-space to write the initial superblock, and support
610 * reading and updating of superblocks.
611 * Interface methods are:
612 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
613 * loads and validates a superblock on dev.
614 * if refdev != NULL, compare superblocks on both devices
615 * Return:
616 * 0 - dev has a superblock that is compatible with refdev
617 * 1 - dev has a superblock that is compatible and newer than refdev
618 * so dev should be used as the refdev in future
619 * -EINVAL superblock incompatible or invalid
620 * -othererror e.g. -EIO
622 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
623 * Verify that dev is acceptable into mddev.
624 * The first time, mddev->raid_disks will be 0, and data from
625 * dev should be merged in. Subsequent calls check that dev
626 * is new enough. Return 0 or -EINVAL
628 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
629 * Update the superblock for rdev with data in mddev
630 * This does not write to disc.
634 struct super_type {
635 char *name;
636 struct module *owner;
637 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
638 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
643 * load_super for 0.90.0
645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
648 mdp_super_t *sb;
649 int ret;
650 sector_t sb_offset;
653 * Calculate the position of the superblock,
654 * it's at the end of the disk.
656 * It also happens to be a multiple of 4Kb.
658 sb_offset = calc_dev_sboffset(rdev->bdev);
659 rdev->sb_offset = sb_offset;
661 ret = read_disk_sb(rdev, MD_SB_BYTES);
662 if (ret) return ret;
664 ret = -EINVAL;
666 bdevname(rdev->bdev, b);
667 sb = (mdp_super_t*)page_address(rdev->sb_page);
669 if (sb->md_magic != MD_SB_MAGIC) {
670 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
672 goto abort;
675 if (sb->major_version != 0 ||
676 sb->minor_version < 90 ||
677 sb->minor_version > 91) {
678 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
679 sb->major_version, sb->minor_version,
681 goto abort;
684 if (sb->raid_disks <= 0)
685 goto abort;
687 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
688 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
690 goto abort;
693 rdev->preferred_minor = sb->md_minor;
694 rdev->data_offset = 0;
695 rdev->sb_size = MD_SB_BYTES;
697 if (sb->level == LEVEL_MULTIPATH)
698 rdev->desc_nr = -1;
699 else
700 rdev->desc_nr = sb->this_disk.number;
702 if (refdev == 0)
703 ret = 1;
704 else {
705 __u64 ev1, ev2;
706 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
707 if (!uuid_equal(refsb, sb)) {
708 printk(KERN_WARNING "md: %s has different UUID to %s\n",
709 b, bdevname(refdev->bdev,b2));
710 goto abort;
712 if (!sb_equal(refsb, sb)) {
713 printk(KERN_WARNING "md: %s has same UUID"
714 " but different superblock to %s\n",
715 b, bdevname(refdev->bdev, b2));
716 goto abort;
718 ev1 = md_event(sb);
719 ev2 = md_event(refsb);
720 if (ev1 > ev2)
721 ret = 1;
722 else
723 ret = 0;
725 rdev->size = calc_dev_size(rdev, sb->chunk_size);
727 if (rdev->size < sb->size && sb->level > 1)
728 /* "this cannot possibly happen" ... */
729 ret = -EINVAL;
731 abort:
732 return ret;
736 * validate_super for 0.90.0
738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
740 mdp_disk_t *desc;
741 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
742 __u64 ev1 = md_event(sb);
744 rdev->raid_disk = -1;
745 rdev->flags = 0;
746 if (mddev->raid_disks == 0) {
747 mddev->major_version = 0;
748 mddev->minor_version = sb->minor_version;
749 mddev->patch_version = sb->patch_version;
750 mddev->persistent = ! sb->not_persistent;
751 mddev->chunk_size = sb->chunk_size;
752 mddev->ctime = sb->ctime;
753 mddev->utime = sb->utime;
754 mddev->level = sb->level;
755 mddev->clevel[0] = 0;
756 mddev->layout = sb->layout;
757 mddev->raid_disks = sb->raid_disks;
758 mddev->size = sb->size;
759 mddev->events = ev1;
760 mddev->bitmap_offset = 0;
761 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
763 if (mddev->minor_version >= 91) {
764 mddev->reshape_position = sb->reshape_position;
765 mddev->delta_disks = sb->delta_disks;
766 mddev->new_level = sb->new_level;
767 mddev->new_layout = sb->new_layout;
768 mddev->new_chunk = sb->new_chunk;
769 } else {
770 mddev->reshape_position = MaxSector;
771 mddev->delta_disks = 0;
772 mddev->new_level = mddev->level;
773 mddev->new_layout = mddev->layout;
774 mddev->new_chunk = mddev->chunk_size;
777 if (sb->state & (1<<MD_SB_CLEAN))
778 mddev->recovery_cp = MaxSector;
779 else {
780 if (sb->events_hi == sb->cp_events_hi &&
781 sb->events_lo == sb->cp_events_lo) {
782 mddev->recovery_cp = sb->recovery_cp;
783 } else
784 mddev->recovery_cp = 0;
787 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
788 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
789 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
790 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
792 mddev->max_disks = MD_SB_DISKS;
794 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
795 mddev->bitmap_file == NULL) {
796 if (mddev->level != 1 && mddev->level != 4
797 && mddev->level != 5 && mddev->level != 6
798 && mddev->level != 10) {
799 /* FIXME use a better test */
800 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
801 return -EINVAL;
803 mddev->bitmap_offset = mddev->default_bitmap_offset;
806 } else if (mddev->pers == NULL) {
807 /* Insist on good event counter while assembling */
808 ++ev1;
809 if (ev1 < mddev->events)
810 return -EINVAL;
811 } else if (mddev->bitmap) {
812 /* if adding to array with a bitmap, then we can accept an
813 * older device ... but not too old.
815 if (ev1 < mddev->bitmap->events_cleared)
816 return 0;
817 } else {
818 if (ev1 < mddev->events)
819 /* just a hot-add of a new device, leave raid_disk at -1 */
820 return 0;
823 if (mddev->level != LEVEL_MULTIPATH) {
824 desc = sb->disks + rdev->desc_nr;
826 if (desc->state & (1<<MD_DISK_FAULTY))
827 set_bit(Faulty, &rdev->flags);
828 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
829 desc->raid_disk < mddev->raid_disks */) {
830 set_bit(In_sync, &rdev->flags);
831 rdev->raid_disk = desc->raid_disk;
833 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
834 set_bit(WriteMostly, &rdev->flags);
835 } else /* MULTIPATH are always insync */
836 set_bit(In_sync, &rdev->flags);
837 return 0;
841 * sync_super for 0.90.0
843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
845 mdp_super_t *sb;
846 struct list_head *tmp;
847 mdk_rdev_t *rdev2;
848 int next_spare = mddev->raid_disks;
851 /* make rdev->sb match mddev data..
853 * 1/ zero out disks
854 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
855 * 3/ any empty disks < next_spare become removed
857 * disks[0] gets initialised to REMOVED because
858 * we cannot be sure from other fields if it has
859 * been initialised or not.
861 int i;
862 int active=0, working=0,failed=0,spare=0,nr_disks=0;
864 rdev->sb_size = MD_SB_BYTES;
866 sb = (mdp_super_t*)page_address(rdev->sb_page);
868 memset(sb, 0, sizeof(*sb));
870 sb->md_magic = MD_SB_MAGIC;
871 sb->major_version = mddev->major_version;
872 sb->patch_version = mddev->patch_version;
873 sb->gvalid_words = 0; /* ignored */
874 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
875 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
876 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
877 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
879 sb->ctime = mddev->ctime;
880 sb->level = mddev->level;
881 sb->size = mddev->size;
882 sb->raid_disks = mddev->raid_disks;
883 sb->md_minor = mddev->md_minor;
884 sb->not_persistent = !mddev->persistent;
885 sb->utime = mddev->utime;
886 sb->state = 0;
887 sb->events_hi = (mddev->events>>32);
888 sb->events_lo = (u32)mddev->events;
890 if (mddev->reshape_position == MaxSector)
891 sb->minor_version = 90;
892 else {
893 sb->minor_version = 91;
894 sb->reshape_position = mddev->reshape_position;
895 sb->new_level = mddev->new_level;
896 sb->delta_disks = mddev->delta_disks;
897 sb->new_layout = mddev->new_layout;
898 sb->new_chunk = mddev->new_chunk;
900 mddev->minor_version = sb->minor_version;
901 if (mddev->in_sync)
903 sb->recovery_cp = mddev->recovery_cp;
904 sb->cp_events_hi = (mddev->events>>32);
905 sb->cp_events_lo = (u32)mddev->events;
906 if (mddev->recovery_cp == MaxSector)
907 sb->state = (1<< MD_SB_CLEAN);
908 } else
909 sb->recovery_cp = 0;
911 sb->layout = mddev->layout;
912 sb->chunk_size = mddev->chunk_size;
914 if (mddev->bitmap && mddev->bitmap_file == NULL)
915 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
917 sb->disks[0].state = (1<<MD_DISK_REMOVED);
918 ITERATE_RDEV(mddev,rdev2,tmp) {
919 mdp_disk_t *d;
920 int desc_nr;
921 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
922 && !test_bit(Faulty, &rdev2->flags))
923 desc_nr = rdev2->raid_disk;
924 else
925 desc_nr = next_spare++;
926 rdev2->desc_nr = desc_nr;
927 d = &sb->disks[rdev2->desc_nr];
928 nr_disks++;
929 d->number = rdev2->desc_nr;
930 d->major = MAJOR(rdev2->bdev->bd_dev);
931 d->minor = MINOR(rdev2->bdev->bd_dev);
932 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
933 && !test_bit(Faulty, &rdev2->flags))
934 d->raid_disk = rdev2->raid_disk;
935 else
936 d->raid_disk = rdev2->desc_nr; /* compatibility */
937 if (test_bit(Faulty, &rdev2->flags))
938 d->state = (1<<MD_DISK_FAULTY);
939 else if (test_bit(In_sync, &rdev2->flags)) {
940 d->state = (1<<MD_DISK_ACTIVE);
941 d->state |= (1<<MD_DISK_SYNC);
942 active++;
943 working++;
944 } else {
945 d->state = 0;
946 spare++;
947 working++;
949 if (test_bit(WriteMostly, &rdev2->flags))
950 d->state |= (1<<MD_DISK_WRITEMOSTLY);
952 /* now set the "removed" and "faulty" bits on any missing devices */
953 for (i=0 ; i < mddev->raid_disks ; i++) {
954 mdp_disk_t *d = &sb->disks[i];
955 if (d->state == 0 && d->number == 0) {
956 d->number = i;
957 d->raid_disk = i;
958 d->state = (1<<MD_DISK_REMOVED);
959 d->state |= (1<<MD_DISK_FAULTY);
960 failed++;
963 sb->nr_disks = nr_disks;
964 sb->active_disks = active;
965 sb->working_disks = working;
966 sb->failed_disks = failed;
967 sb->spare_disks = spare;
969 sb->this_disk = sb->disks[rdev->desc_nr];
970 sb->sb_csum = calc_sb_csum(sb);
974 * version 1 superblock
977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
979 __le32 disk_csum;
980 u32 csum;
981 unsigned long long newcsum;
982 int size = 256 + le32_to_cpu(sb->max_dev)*2;
983 __le32 *isuper = (__le32*)sb;
984 int i;
986 disk_csum = sb->sb_csum;
987 sb->sb_csum = 0;
988 newcsum = 0;
989 for (i=0; size>=4; size -= 4 )
990 newcsum += le32_to_cpu(*isuper++);
992 if (size == 2)
993 newcsum += le16_to_cpu(*(__le16*) isuper);
995 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
996 sb->sb_csum = disk_csum;
997 return cpu_to_le32(csum);
1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1002 struct mdp_superblock_1 *sb;
1003 int ret;
1004 sector_t sb_offset;
1005 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1006 int bmask;
1009 * Calculate the position of the superblock.
1010 * It is always aligned to a 4K boundary and
1011 * depeding on minor_version, it can be:
1012 * 0: At least 8K, but less than 12K, from end of device
1013 * 1: At start of device
1014 * 2: 4K from start of device.
1016 switch(minor_version) {
1017 case 0:
1018 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1019 sb_offset -= 8*2;
1020 sb_offset &= ~(sector_t)(4*2-1);
1021 /* convert from sectors to K */
1022 sb_offset /= 2;
1023 break;
1024 case 1:
1025 sb_offset = 0;
1026 break;
1027 case 2:
1028 sb_offset = 4;
1029 break;
1030 default:
1031 return -EINVAL;
1033 rdev->sb_offset = sb_offset;
1035 /* superblock is rarely larger than 1K, but it can be larger,
1036 * and it is safe to read 4k, so we do that
1038 ret = read_disk_sb(rdev, 4096);
1039 if (ret) return ret;
1042 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1044 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1045 sb->major_version != cpu_to_le32(1) ||
1046 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1047 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1048 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1049 return -EINVAL;
1051 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1052 printk("md: invalid superblock checksum on %s\n",
1053 bdevname(rdev->bdev,b));
1054 return -EINVAL;
1056 if (le64_to_cpu(sb->data_size) < 10) {
1057 printk("md: data_size too small on %s\n",
1058 bdevname(rdev->bdev,b));
1059 return -EINVAL;
1061 rdev->preferred_minor = 0xffff;
1062 rdev->data_offset = le64_to_cpu(sb->data_offset);
1063 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1065 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1066 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1067 if (rdev->sb_size & bmask)
1068 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1070 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1071 rdev->desc_nr = -1;
1072 else
1073 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1075 if (refdev == 0)
1076 ret = 1;
1077 else {
1078 __u64 ev1, ev2;
1079 struct mdp_superblock_1 *refsb =
1080 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1082 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1083 sb->level != refsb->level ||
1084 sb->layout != refsb->layout ||
1085 sb->chunksize != refsb->chunksize) {
1086 printk(KERN_WARNING "md: %s has strangely different"
1087 " superblock to %s\n",
1088 bdevname(rdev->bdev,b),
1089 bdevname(refdev->bdev,b2));
1090 return -EINVAL;
1092 ev1 = le64_to_cpu(sb->events);
1093 ev2 = le64_to_cpu(refsb->events);
1095 if (ev1 > ev2)
1096 ret = 1;
1097 else
1098 ret = 0;
1100 if (minor_version)
1101 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1102 else
1103 rdev->size = rdev->sb_offset;
1104 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1105 return -EINVAL;
1106 rdev->size = le64_to_cpu(sb->data_size)/2;
1107 if (le32_to_cpu(sb->chunksize))
1108 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1110 if (le64_to_cpu(sb->size) > rdev->size*2)
1111 return -EINVAL;
1112 return ret;
1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1117 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1118 __u64 ev1 = le64_to_cpu(sb->events);
1120 rdev->raid_disk = -1;
1121 rdev->flags = 0;
1122 if (mddev->raid_disks == 0) {
1123 mddev->major_version = 1;
1124 mddev->patch_version = 0;
1125 mddev->persistent = 1;
1126 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1127 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1128 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1129 mddev->level = le32_to_cpu(sb->level);
1130 mddev->clevel[0] = 0;
1131 mddev->layout = le32_to_cpu(sb->layout);
1132 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1133 mddev->size = le64_to_cpu(sb->size)/2;
1134 mddev->events = ev1;
1135 mddev->bitmap_offset = 0;
1136 mddev->default_bitmap_offset = 1024 >> 9;
1138 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1139 memcpy(mddev->uuid, sb->set_uuid, 16);
1141 mddev->max_disks = (4096-256)/2;
1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1144 mddev->bitmap_file == NULL ) {
1145 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1146 && mddev->level != 10) {
1147 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1148 return -EINVAL;
1150 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1152 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1153 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1154 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1155 mddev->new_level = le32_to_cpu(sb->new_level);
1156 mddev->new_layout = le32_to_cpu(sb->new_layout);
1157 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1158 } else {
1159 mddev->reshape_position = MaxSector;
1160 mddev->delta_disks = 0;
1161 mddev->new_level = mddev->level;
1162 mddev->new_layout = mddev->layout;
1163 mddev->new_chunk = mddev->chunk_size;
1166 } else if (mddev->pers == NULL) {
1167 /* Insist of good event counter while assembling */
1168 ++ev1;
1169 if (ev1 < mddev->events)
1170 return -EINVAL;
1171 } else if (mddev->bitmap) {
1172 /* If adding to array with a bitmap, then we can accept an
1173 * older device, but not too old.
1175 if (ev1 < mddev->bitmap->events_cleared)
1176 return 0;
1177 } else {
1178 if (ev1 < mddev->events)
1179 /* just a hot-add of a new device, leave raid_disk at -1 */
1180 return 0;
1182 if (mddev->level != LEVEL_MULTIPATH) {
1183 int role;
1184 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1185 switch(role) {
1186 case 0xffff: /* spare */
1187 break;
1188 case 0xfffe: /* faulty */
1189 set_bit(Faulty, &rdev->flags);
1190 break;
1191 default:
1192 if ((le32_to_cpu(sb->feature_map) &
1193 MD_FEATURE_RECOVERY_OFFSET))
1194 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1195 else
1196 set_bit(In_sync, &rdev->flags);
1197 rdev->raid_disk = role;
1198 break;
1200 if (sb->devflags & WriteMostly1)
1201 set_bit(WriteMostly, &rdev->flags);
1202 } else /* MULTIPATH are always insync */
1203 set_bit(In_sync, &rdev->flags);
1205 return 0;
1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1210 struct mdp_superblock_1 *sb;
1211 struct list_head *tmp;
1212 mdk_rdev_t *rdev2;
1213 int max_dev, i;
1214 /* make rdev->sb match mddev and rdev data. */
1216 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1218 sb->feature_map = 0;
1219 sb->pad0 = 0;
1220 sb->recovery_offset = cpu_to_le64(0);
1221 memset(sb->pad1, 0, sizeof(sb->pad1));
1222 memset(sb->pad2, 0, sizeof(sb->pad2));
1223 memset(sb->pad3, 0, sizeof(sb->pad3));
1225 sb->utime = cpu_to_le64((__u64)mddev->utime);
1226 sb->events = cpu_to_le64(mddev->events);
1227 if (mddev->in_sync)
1228 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1229 else
1230 sb->resync_offset = cpu_to_le64(0);
1232 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1234 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1235 sb->size = cpu_to_le64(mddev->size<<1);
1237 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1238 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1239 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1242 if (rdev->raid_disk >= 0 &&
1243 !test_bit(In_sync, &rdev->flags) &&
1244 rdev->recovery_offset > 0) {
1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1246 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1249 if (mddev->reshape_position != MaxSector) {
1250 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1251 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1252 sb->new_layout = cpu_to_le32(mddev->new_layout);
1253 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1254 sb->new_level = cpu_to_le32(mddev->new_level);
1255 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1258 max_dev = 0;
1259 ITERATE_RDEV(mddev,rdev2,tmp)
1260 if (rdev2->desc_nr+1 > max_dev)
1261 max_dev = rdev2->desc_nr+1;
1263 sb->max_dev = cpu_to_le32(max_dev);
1264 for (i=0; i<max_dev;i++)
1265 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1267 ITERATE_RDEV(mddev,rdev2,tmp) {
1268 i = rdev2->desc_nr;
1269 if (test_bit(Faulty, &rdev2->flags))
1270 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1271 else if (test_bit(In_sync, &rdev2->flags))
1272 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1273 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1274 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1275 else
1276 sb->dev_roles[i] = cpu_to_le16(0xffff);
1279 sb->sb_csum = calc_sb_1_csum(sb);
1283 static struct super_type super_types[] = {
1284 [0] = {
1285 .name = "0.90.0",
1286 .owner = THIS_MODULE,
1287 .load_super = super_90_load,
1288 .validate_super = super_90_validate,
1289 .sync_super = super_90_sync,
1291 [1] = {
1292 .name = "md-1",
1293 .owner = THIS_MODULE,
1294 .load_super = super_1_load,
1295 .validate_super = super_1_validate,
1296 .sync_super = super_1_sync,
1300 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1302 struct list_head *tmp;
1303 mdk_rdev_t *rdev;
1305 ITERATE_RDEV(mddev,rdev,tmp)
1306 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1307 return rdev;
1309 return NULL;
1312 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1314 struct list_head *tmp;
1315 mdk_rdev_t *rdev;
1317 ITERATE_RDEV(mddev1,rdev,tmp)
1318 if (match_dev_unit(mddev2, rdev))
1319 return 1;
1321 return 0;
1324 static LIST_HEAD(pending_raid_disks);
1326 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1328 mdk_rdev_t *same_pdev;
1329 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1330 struct kobject *ko;
1331 char *s;
1333 if (rdev->mddev) {
1334 MD_BUG();
1335 return -EINVAL;
1337 /* make sure rdev->size exceeds mddev->size */
1338 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1339 if (mddev->pers)
1340 /* Cannot change size, so fail */
1341 return -ENOSPC;
1342 else
1343 mddev->size = rdev->size;
1345 same_pdev = match_dev_unit(mddev, rdev);
1346 if (same_pdev)
1347 printk(KERN_WARNING
1348 "%s: WARNING: %s appears to be on the same physical"
1349 " disk as %s. True\n protection against single-disk"
1350 " failure might be compromised.\n",
1351 mdname(mddev), bdevname(rdev->bdev,b),
1352 bdevname(same_pdev->bdev,b2));
1354 /* Verify rdev->desc_nr is unique.
1355 * If it is -1, assign a free number, else
1356 * check number is not in use
1358 if (rdev->desc_nr < 0) {
1359 int choice = 0;
1360 if (mddev->pers) choice = mddev->raid_disks;
1361 while (find_rdev_nr(mddev, choice))
1362 choice++;
1363 rdev->desc_nr = choice;
1364 } else {
1365 if (find_rdev_nr(mddev, rdev->desc_nr))
1366 return -EBUSY;
1368 bdevname(rdev->bdev,b);
1369 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1370 return -ENOMEM;
1371 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1372 *s = '!';
1374 list_add(&rdev->same_set, &mddev->disks);
1375 rdev->mddev = mddev;
1376 printk(KERN_INFO "md: bind<%s>\n", b);
1378 rdev->kobj.parent = &mddev->kobj;
1379 kobject_add(&rdev->kobj);
1381 if (rdev->bdev->bd_part)
1382 ko = &rdev->bdev->bd_part->kobj;
1383 else
1384 ko = &rdev->bdev->bd_disk->kobj;
1385 sysfs_create_link(&rdev->kobj, ko, "block");
1386 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1387 return 0;
1390 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1392 char b[BDEVNAME_SIZE];
1393 if (!rdev->mddev) {
1394 MD_BUG();
1395 return;
1397 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1398 list_del_init(&rdev->same_set);
1399 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1400 rdev->mddev = NULL;
1401 sysfs_remove_link(&rdev->kobj, "block");
1402 kobject_del(&rdev->kobj);
1406 * prevent the device from being mounted, repartitioned or
1407 * otherwise reused by a RAID array (or any other kernel
1408 * subsystem), by bd_claiming the device.
1410 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1412 int err = 0;
1413 struct block_device *bdev;
1414 char b[BDEVNAME_SIZE];
1416 bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1417 if (IS_ERR(bdev)) {
1418 printk(KERN_ERR "md: could not open %s.\n",
1419 __bdevname(dev, b));
1420 return PTR_ERR(bdev);
1422 err = bd_claim(bdev, rdev);
1423 if (err) {
1424 printk(KERN_ERR "md: could not bd_claim %s.\n",
1425 bdevname(bdev, b));
1426 blkdev_put_partition(bdev);
1427 return err;
1429 rdev->bdev = bdev;
1430 return err;
1433 static void unlock_rdev(mdk_rdev_t *rdev)
1435 struct block_device *bdev = rdev->bdev;
1436 rdev->bdev = NULL;
1437 if (!bdev)
1438 MD_BUG();
1439 bd_release(bdev);
1440 blkdev_put_partition(bdev);
1443 void md_autodetect_dev(dev_t dev);
1445 static void export_rdev(mdk_rdev_t * rdev)
1447 char b[BDEVNAME_SIZE];
1448 printk(KERN_INFO "md: export_rdev(%s)\n",
1449 bdevname(rdev->bdev,b));
1450 if (rdev->mddev)
1451 MD_BUG();
1452 free_disk_sb(rdev);
1453 list_del_init(&rdev->same_set);
1454 #ifndef MODULE
1455 md_autodetect_dev(rdev->bdev->bd_dev);
1456 #endif
1457 unlock_rdev(rdev);
1458 kobject_put(&rdev->kobj);
1461 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1463 unbind_rdev_from_array(rdev);
1464 export_rdev(rdev);
1467 static void export_array(mddev_t *mddev)
1469 struct list_head *tmp;
1470 mdk_rdev_t *rdev;
1472 ITERATE_RDEV(mddev,rdev,tmp) {
1473 if (!rdev->mddev) {
1474 MD_BUG();
1475 continue;
1477 kick_rdev_from_array(rdev);
1479 if (!list_empty(&mddev->disks))
1480 MD_BUG();
1481 mddev->raid_disks = 0;
1482 mddev->major_version = 0;
1485 static void print_desc(mdp_disk_t *desc)
1487 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1488 desc->major,desc->minor,desc->raid_disk,desc->state);
1491 static void print_sb(mdp_super_t *sb)
1493 int i;
1495 printk(KERN_INFO
1496 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1497 sb->major_version, sb->minor_version, sb->patch_version,
1498 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1499 sb->ctime);
1500 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1501 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1502 sb->md_minor, sb->layout, sb->chunk_size);
1503 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1504 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1505 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1506 sb->failed_disks, sb->spare_disks,
1507 sb->sb_csum, (unsigned long)sb->events_lo);
1509 printk(KERN_INFO);
1510 for (i = 0; i < MD_SB_DISKS; i++) {
1511 mdp_disk_t *desc;
1513 desc = sb->disks + i;
1514 if (desc->number || desc->major || desc->minor ||
1515 desc->raid_disk || (desc->state && (desc->state != 4))) {
1516 printk(" D %2d: ", i);
1517 print_desc(desc);
1520 printk(KERN_INFO "md: THIS: ");
1521 print_desc(&sb->this_disk);
1525 static void print_rdev(mdk_rdev_t *rdev)
1527 char b[BDEVNAME_SIZE];
1528 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1529 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1530 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1531 rdev->desc_nr);
1532 if (rdev->sb_loaded) {
1533 printk(KERN_INFO "md: rdev superblock:\n");
1534 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1535 } else
1536 printk(KERN_INFO "md: no rdev superblock!\n");
1539 static void md_print_devices(void)
1541 struct list_head *tmp, *tmp2;
1542 mdk_rdev_t *rdev;
1543 mddev_t *mddev;
1544 char b[BDEVNAME_SIZE];
1546 printk("\n");
1547 printk("md: **********************************\n");
1548 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1549 printk("md: **********************************\n");
1550 ITERATE_MDDEV(mddev,tmp) {
1552 if (mddev->bitmap)
1553 bitmap_print_sb(mddev->bitmap);
1554 else
1555 printk("%s: ", mdname(mddev));
1556 ITERATE_RDEV(mddev,rdev,tmp2)
1557 printk("<%s>", bdevname(rdev->bdev,b));
1558 printk("\n");
1560 ITERATE_RDEV(mddev,rdev,tmp2)
1561 print_rdev(rdev);
1563 printk("md: **********************************\n");
1564 printk("\n");
1568 static void sync_sbs(mddev_t * mddev, int nospares)
1570 /* Update each superblock (in-memory image), but
1571 * if we are allowed to, skip spares which already
1572 * have the right event counter, or have one earlier
1573 * (which would mean they aren't being marked as dirty
1574 * with the rest of the array)
1576 mdk_rdev_t *rdev;
1577 struct list_head *tmp;
1579 ITERATE_RDEV(mddev,rdev,tmp) {
1580 if (rdev->sb_events == mddev->events ||
1581 (nospares &&
1582 rdev->raid_disk < 0 &&
1583 (rdev->sb_events&1)==0 &&
1584 rdev->sb_events+1 == mddev->events)) {
1585 /* Don't update this superblock */
1586 rdev->sb_loaded = 2;
1587 } else {
1588 super_types[mddev->major_version].
1589 sync_super(mddev, rdev);
1590 rdev->sb_loaded = 1;
1595 static void md_update_sb(mddev_t * mddev, int force_change)
1597 int err;
1598 struct list_head *tmp;
1599 mdk_rdev_t *rdev;
1600 int sync_req;
1601 int nospares = 0;
1603 repeat:
1604 spin_lock_irq(&mddev->write_lock);
1606 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1607 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1608 force_change = 1;
1609 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1610 /* just a clean<-> dirty transition, possibly leave spares alone,
1611 * though if events isn't the right even/odd, we will have to do
1612 * spares after all
1614 nospares = 1;
1615 if (force_change)
1616 nospares = 0;
1617 if (mddev->degraded)
1618 /* If the array is degraded, then skipping spares is both
1619 * dangerous and fairly pointless.
1620 * Dangerous because a device that was removed from the array
1621 * might have a event_count that still looks up-to-date,
1622 * so it can be re-added without a resync.
1623 * Pointless because if there are any spares to skip,
1624 * then a recovery will happen and soon that array won't
1625 * be degraded any more and the spare can go back to sleep then.
1627 nospares = 0;
1629 sync_req = mddev->in_sync;
1630 mddev->utime = get_seconds();
1632 /* If this is just a dirty<->clean transition, and the array is clean
1633 * and 'events' is odd, we can roll back to the previous clean state */
1634 if (nospares
1635 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1636 && (mddev->events & 1))
1637 mddev->events--;
1638 else {
1639 /* otherwise we have to go forward and ... */
1640 mddev->events ++;
1641 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1642 /* .. if the array isn't clean, insist on an odd 'events' */
1643 if ((mddev->events&1)==0) {
1644 mddev->events++;
1645 nospares = 0;
1647 } else {
1648 /* otherwise insist on an even 'events' (for clean states) */
1649 if ((mddev->events&1)) {
1650 mddev->events++;
1651 nospares = 0;
1656 if (!mddev->events) {
1658 * oops, this 64-bit counter should never wrap.
1659 * Either we are in around ~1 trillion A.C., assuming
1660 * 1 reboot per second, or we have a bug:
1662 MD_BUG();
1663 mddev->events --;
1665 sync_sbs(mddev, nospares);
1668 * do not write anything to disk if using
1669 * nonpersistent superblocks
1671 if (!mddev->persistent) {
1672 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1673 spin_unlock_irq(&mddev->write_lock);
1674 wake_up(&mddev->sb_wait);
1675 return;
1677 spin_unlock_irq(&mddev->write_lock);
1679 dprintk(KERN_INFO
1680 "md: updating %s RAID superblock on device (in sync %d)\n",
1681 mdname(mddev),mddev->in_sync);
1683 err = bitmap_update_sb(mddev->bitmap);
1684 ITERATE_RDEV(mddev,rdev,tmp) {
1685 char b[BDEVNAME_SIZE];
1686 dprintk(KERN_INFO "md: ");
1687 if (rdev->sb_loaded != 1)
1688 continue; /* no noise on spare devices */
1689 if (test_bit(Faulty, &rdev->flags))
1690 dprintk("(skipping faulty ");
1692 dprintk("%s ", bdevname(rdev->bdev,b));
1693 if (!test_bit(Faulty, &rdev->flags)) {
1694 md_super_write(mddev,rdev,
1695 rdev->sb_offset<<1, rdev->sb_size,
1696 rdev->sb_page);
1697 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1698 bdevname(rdev->bdev,b),
1699 (unsigned long long)rdev->sb_offset);
1700 rdev->sb_events = mddev->events;
1702 } else
1703 dprintk(")\n");
1704 if (mddev->level == LEVEL_MULTIPATH)
1705 /* only need to write one superblock... */
1706 break;
1708 md_super_wait(mddev);
1709 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1711 spin_lock_irq(&mddev->write_lock);
1712 if (mddev->in_sync != sync_req ||
1713 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1714 /* have to write it out again */
1715 spin_unlock_irq(&mddev->write_lock);
1716 goto repeat;
1718 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1719 spin_unlock_irq(&mddev->write_lock);
1720 wake_up(&mddev->sb_wait);
1724 /* words written to sysfs files may, or my not, be \n terminated.
1725 * We want to accept with case. For this we use cmd_match.
1727 static int cmd_match(const char *cmd, const char *str)
1729 /* See if cmd, written into a sysfs file, matches
1730 * str. They must either be the same, or cmd can
1731 * have a trailing newline
1733 while (*cmd && *str && *cmd == *str) {
1734 cmd++;
1735 str++;
1737 if (*cmd == '\n')
1738 cmd++;
1739 if (*str || *cmd)
1740 return 0;
1741 return 1;
1744 struct rdev_sysfs_entry {
1745 struct attribute attr;
1746 ssize_t (*show)(mdk_rdev_t *, char *);
1747 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1750 static ssize_t
1751 state_show(mdk_rdev_t *rdev, char *page)
1753 char *sep = "";
1754 int len=0;
1756 if (test_bit(Faulty, &rdev->flags)) {
1757 len+= sprintf(page+len, "%sfaulty",sep);
1758 sep = ",";
1760 if (test_bit(In_sync, &rdev->flags)) {
1761 len += sprintf(page+len, "%sin_sync",sep);
1762 sep = ",";
1764 if (test_bit(WriteMostly, &rdev->flags)) {
1765 len += sprintf(page+len, "%swrite_mostly",sep);
1766 sep = ",";
1768 if (!test_bit(Faulty, &rdev->flags) &&
1769 !test_bit(In_sync, &rdev->flags)) {
1770 len += sprintf(page+len, "%sspare", sep);
1771 sep = ",";
1773 return len+sprintf(page+len, "\n");
1776 static ssize_t
1777 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1779 /* can write
1780 * faulty - simulates and error
1781 * remove - disconnects the device
1782 * writemostly - sets write_mostly
1783 * -writemostly - clears write_mostly
1785 int err = -EINVAL;
1786 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1787 md_error(rdev->mddev, rdev);
1788 err = 0;
1789 } else if (cmd_match(buf, "remove")) {
1790 if (rdev->raid_disk >= 0)
1791 err = -EBUSY;
1792 else {
1793 mddev_t *mddev = rdev->mddev;
1794 kick_rdev_from_array(rdev);
1795 md_update_sb(mddev, 1);
1796 md_new_event(mddev);
1797 err = 0;
1799 } else if (cmd_match(buf, "writemostly")) {
1800 set_bit(WriteMostly, &rdev->flags);
1801 err = 0;
1802 } else if (cmd_match(buf, "-writemostly")) {
1803 clear_bit(WriteMostly, &rdev->flags);
1804 err = 0;
1806 return err ? err : len;
1808 static struct rdev_sysfs_entry rdev_state =
1809 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1811 static ssize_t
1812 super_show(mdk_rdev_t *rdev, char *page)
1814 if (rdev->sb_loaded && rdev->sb_size) {
1815 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1816 return rdev->sb_size;
1817 } else
1818 return 0;
1820 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1822 static ssize_t
1823 errors_show(mdk_rdev_t *rdev, char *page)
1825 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1828 static ssize_t
1829 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1831 char *e;
1832 unsigned long n = simple_strtoul(buf, &e, 10);
1833 if (*buf && (*e == 0 || *e == '\n')) {
1834 atomic_set(&rdev->corrected_errors, n);
1835 return len;
1837 return -EINVAL;
1839 static struct rdev_sysfs_entry rdev_errors =
1840 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1842 static ssize_t
1843 slot_show(mdk_rdev_t *rdev, char *page)
1845 if (rdev->raid_disk < 0)
1846 return sprintf(page, "none\n");
1847 else
1848 return sprintf(page, "%d\n", rdev->raid_disk);
1851 static ssize_t
1852 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1854 char *e;
1855 int slot = simple_strtoul(buf, &e, 10);
1856 if (strncmp(buf, "none", 4)==0)
1857 slot = -1;
1858 else if (e==buf || (*e && *e!= '\n'))
1859 return -EINVAL;
1860 if (rdev->mddev->pers)
1861 /* Cannot set slot in active array (yet) */
1862 return -EBUSY;
1863 if (slot >= rdev->mddev->raid_disks)
1864 return -ENOSPC;
1865 rdev->raid_disk = slot;
1866 /* assume it is working */
1867 rdev->flags = 0;
1868 set_bit(In_sync, &rdev->flags);
1869 return len;
1873 static struct rdev_sysfs_entry rdev_slot =
1874 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1876 static ssize_t
1877 offset_show(mdk_rdev_t *rdev, char *page)
1879 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1882 static ssize_t
1883 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1885 char *e;
1886 unsigned long long offset = simple_strtoull(buf, &e, 10);
1887 if (e==buf || (*e && *e != '\n'))
1888 return -EINVAL;
1889 if (rdev->mddev->pers)
1890 return -EBUSY;
1891 rdev->data_offset = offset;
1892 return len;
1895 static struct rdev_sysfs_entry rdev_offset =
1896 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1898 static ssize_t
1899 rdev_size_show(mdk_rdev_t *rdev, char *page)
1901 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1904 static ssize_t
1905 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1907 char *e;
1908 unsigned long long size = simple_strtoull(buf, &e, 10);
1909 if (e==buf || (*e && *e != '\n'))
1910 return -EINVAL;
1911 if (rdev->mddev->pers)
1912 return -EBUSY;
1913 rdev->size = size;
1914 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1915 rdev->mddev->size = size;
1916 return len;
1919 static struct rdev_sysfs_entry rdev_size =
1920 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1922 static struct attribute *rdev_default_attrs[] = {
1923 &rdev_state.attr,
1924 &rdev_super.attr,
1925 &rdev_errors.attr,
1926 &rdev_slot.attr,
1927 &rdev_offset.attr,
1928 &rdev_size.attr,
1929 NULL,
1931 static ssize_t
1932 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1934 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1935 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1937 if (!entry->show)
1938 return -EIO;
1939 return entry->show(rdev, page);
1942 static ssize_t
1943 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1944 const char *page, size_t length)
1946 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1947 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1949 if (!entry->store)
1950 return -EIO;
1951 if (!capable(CAP_SYS_ADMIN))
1952 return -EACCES;
1953 return entry->store(rdev, page, length);
1956 static void rdev_free(struct kobject *ko)
1958 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1959 kfree(rdev);
1961 static struct sysfs_ops rdev_sysfs_ops = {
1962 .show = rdev_attr_show,
1963 .store = rdev_attr_store,
1965 static struct kobj_type rdev_ktype = {
1966 .release = rdev_free,
1967 .sysfs_ops = &rdev_sysfs_ops,
1968 .default_attrs = rdev_default_attrs,
1972 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1974 * mark the device faulty if:
1976 * - the device is nonexistent (zero size)
1977 * - the device has no valid superblock
1979 * a faulty rdev _never_ has rdev->sb set.
1981 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1983 char b[BDEVNAME_SIZE];
1984 int err;
1985 mdk_rdev_t *rdev;
1986 sector_t size;
1988 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1989 if (!rdev) {
1990 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1991 return ERR_PTR(-ENOMEM);
1994 if ((err = alloc_disk_sb(rdev)))
1995 goto abort_free;
1997 err = lock_rdev(rdev, newdev);
1998 if (err)
1999 goto abort_free;
2001 rdev->kobj.parent = NULL;
2002 rdev->kobj.ktype = &rdev_ktype;
2003 kobject_init(&rdev->kobj);
2005 rdev->desc_nr = -1;
2006 rdev->saved_raid_disk = -1;
2007 rdev->flags = 0;
2008 rdev->data_offset = 0;
2009 rdev->sb_events = 0;
2010 atomic_set(&rdev->nr_pending, 0);
2011 atomic_set(&rdev->read_errors, 0);
2012 atomic_set(&rdev->corrected_errors, 0);
2014 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2015 if (!size) {
2016 printk(KERN_WARNING
2017 "md: %s has zero or unknown size, marking faulty!\n",
2018 bdevname(rdev->bdev,b));
2019 err = -EINVAL;
2020 goto abort_free;
2023 if (super_format >= 0) {
2024 err = super_types[super_format].
2025 load_super(rdev, NULL, super_minor);
2026 if (err == -EINVAL) {
2027 printk(KERN_WARNING
2028 "md: %s has invalid sb, not importing!\n",
2029 bdevname(rdev->bdev,b));
2030 goto abort_free;
2032 if (err < 0) {
2033 printk(KERN_WARNING
2034 "md: could not read %s's sb, not importing!\n",
2035 bdevname(rdev->bdev,b));
2036 goto abort_free;
2039 INIT_LIST_HEAD(&rdev->same_set);
2041 return rdev;
2043 abort_free:
2044 if (rdev->sb_page) {
2045 if (rdev->bdev)
2046 unlock_rdev(rdev);
2047 free_disk_sb(rdev);
2049 kfree(rdev);
2050 return ERR_PTR(err);
2054 * Check a full RAID array for plausibility
2058 static void analyze_sbs(mddev_t * mddev)
2060 int i;
2061 struct list_head *tmp;
2062 mdk_rdev_t *rdev, *freshest;
2063 char b[BDEVNAME_SIZE];
2065 freshest = NULL;
2066 ITERATE_RDEV(mddev,rdev,tmp)
2067 switch (super_types[mddev->major_version].
2068 load_super(rdev, freshest, mddev->minor_version)) {
2069 case 1:
2070 freshest = rdev;
2071 break;
2072 case 0:
2073 break;
2074 default:
2075 printk( KERN_ERR \
2076 "md: fatal superblock inconsistency in %s"
2077 " -- removing from array\n",
2078 bdevname(rdev->bdev,b));
2079 kick_rdev_from_array(rdev);
2083 super_types[mddev->major_version].
2084 validate_super(mddev, freshest);
2086 i = 0;
2087 ITERATE_RDEV(mddev,rdev,tmp) {
2088 if (rdev != freshest)
2089 if (super_types[mddev->major_version].
2090 validate_super(mddev, rdev)) {
2091 printk(KERN_WARNING "md: kicking non-fresh %s"
2092 " from array!\n",
2093 bdevname(rdev->bdev,b));
2094 kick_rdev_from_array(rdev);
2095 continue;
2097 if (mddev->level == LEVEL_MULTIPATH) {
2098 rdev->desc_nr = i++;
2099 rdev->raid_disk = rdev->desc_nr;
2100 set_bit(In_sync, &rdev->flags);
2106 if (mddev->recovery_cp != MaxSector &&
2107 mddev->level >= 1)
2108 printk(KERN_ERR "md: %s: raid array is not clean"
2109 " -- starting background reconstruction\n",
2110 mdname(mddev));
2114 static ssize_t
2115 safe_delay_show(mddev_t *mddev, char *page)
2117 int msec = (mddev->safemode_delay*1000)/HZ;
2118 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2120 static ssize_t
2121 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2123 int scale=1;
2124 int dot=0;
2125 int i;
2126 unsigned long msec;
2127 char buf[30];
2128 char *e;
2129 /* remove a period, and count digits after it */
2130 if (len >= sizeof(buf))
2131 return -EINVAL;
2132 strlcpy(buf, cbuf, len);
2133 buf[len] = 0;
2134 for (i=0; i<len; i++) {
2135 if (dot) {
2136 if (isdigit(buf[i])) {
2137 buf[i-1] = buf[i];
2138 scale *= 10;
2140 buf[i] = 0;
2141 } else if (buf[i] == '.') {
2142 dot=1;
2143 buf[i] = 0;
2146 msec = simple_strtoul(buf, &e, 10);
2147 if (e == buf || (*e && *e != '\n'))
2148 return -EINVAL;
2149 msec = (msec * 1000) / scale;
2150 if (msec == 0)
2151 mddev->safemode_delay = 0;
2152 else {
2153 mddev->safemode_delay = (msec*HZ)/1000;
2154 if (mddev->safemode_delay == 0)
2155 mddev->safemode_delay = 1;
2157 return len;
2159 static struct md_sysfs_entry md_safe_delay =
2160 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2162 static ssize_t
2163 level_show(mddev_t *mddev, char *page)
2165 struct mdk_personality *p = mddev->pers;
2166 if (p)
2167 return sprintf(page, "%s\n", p->name);
2168 else if (mddev->clevel[0])
2169 return sprintf(page, "%s\n", mddev->clevel);
2170 else if (mddev->level != LEVEL_NONE)
2171 return sprintf(page, "%d\n", mddev->level);
2172 else
2173 return 0;
2176 static ssize_t
2177 level_store(mddev_t *mddev, const char *buf, size_t len)
2179 int rv = len;
2180 if (mddev->pers)
2181 return -EBUSY;
2182 if (len == 0)
2183 return 0;
2184 if (len >= sizeof(mddev->clevel))
2185 return -ENOSPC;
2186 strncpy(mddev->clevel, buf, len);
2187 if (mddev->clevel[len-1] == '\n')
2188 len--;
2189 mddev->clevel[len] = 0;
2190 mddev->level = LEVEL_NONE;
2191 return rv;
2194 static struct md_sysfs_entry md_level =
2195 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2198 static ssize_t
2199 layout_show(mddev_t *mddev, char *page)
2201 /* just a number, not meaningful for all levels */
2202 return sprintf(page, "%d\n", mddev->layout);
2205 static ssize_t
2206 layout_store(mddev_t *mddev, const char *buf, size_t len)
2208 char *e;
2209 unsigned long n = simple_strtoul(buf, &e, 10);
2210 if (mddev->pers)
2211 return -EBUSY;
2213 if (!*buf || (*e && *e != '\n'))
2214 return -EINVAL;
2216 mddev->layout = n;
2217 return len;
2219 static struct md_sysfs_entry md_layout =
2220 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2223 static ssize_t
2224 raid_disks_show(mddev_t *mddev, char *page)
2226 if (mddev->raid_disks == 0)
2227 return 0;
2228 return sprintf(page, "%d\n", mddev->raid_disks);
2231 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2233 static ssize_t
2234 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2236 /* can only set raid_disks if array is not yet active */
2237 char *e;
2238 int rv = 0;
2239 unsigned long n = simple_strtoul(buf, &e, 10);
2241 if (!*buf || (*e && *e != '\n'))
2242 return -EINVAL;
2244 if (mddev->pers)
2245 rv = update_raid_disks(mddev, n);
2246 else
2247 mddev->raid_disks = n;
2248 return rv ? rv : len;
2250 static struct md_sysfs_entry md_raid_disks =
2251 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2253 static ssize_t
2254 chunk_size_show(mddev_t *mddev, char *page)
2256 return sprintf(page, "%d\n", mddev->chunk_size);
2259 static ssize_t
2260 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2262 /* can only set chunk_size if array is not yet active */
2263 char *e;
2264 unsigned long n = simple_strtoul(buf, &e, 10);
2266 if (mddev->pers)
2267 return -EBUSY;
2268 if (!*buf || (*e && *e != '\n'))
2269 return -EINVAL;
2271 mddev->chunk_size = n;
2272 return len;
2274 static struct md_sysfs_entry md_chunk_size =
2275 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2277 static ssize_t
2278 resync_start_show(mddev_t *mddev, char *page)
2280 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2283 static ssize_t
2284 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2286 /* can only set chunk_size if array is not yet active */
2287 char *e;
2288 unsigned long long n = simple_strtoull(buf, &e, 10);
2290 if (mddev->pers)
2291 return -EBUSY;
2292 if (!*buf || (*e && *e != '\n'))
2293 return -EINVAL;
2295 mddev->recovery_cp = n;
2296 return len;
2298 static struct md_sysfs_entry md_resync_start =
2299 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2302 * The array state can be:
2304 * clear
2305 * No devices, no size, no level
2306 * Equivalent to STOP_ARRAY ioctl
2307 * inactive
2308 * May have some settings, but array is not active
2309 * all IO results in error
2310 * When written, doesn't tear down array, but just stops it
2311 * suspended (not supported yet)
2312 * All IO requests will block. The array can be reconfigured.
2313 * Writing this, if accepted, will block until array is quiessent
2314 * readonly
2315 * no resync can happen. no superblocks get written.
2316 * write requests fail
2317 * read-auto
2318 * like readonly, but behaves like 'clean' on a write request.
2320 * clean - no pending writes, but otherwise active.
2321 * When written to inactive array, starts without resync
2322 * If a write request arrives then
2323 * if metadata is known, mark 'dirty' and switch to 'active'.
2324 * if not known, block and switch to write-pending
2325 * If written to an active array that has pending writes, then fails.
2326 * active
2327 * fully active: IO and resync can be happening.
2328 * When written to inactive array, starts with resync
2330 * write-pending
2331 * clean, but writes are blocked waiting for 'active' to be written.
2333 * active-idle
2334 * like active, but no writes have been seen for a while (100msec).
2337 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2338 write_pending, active_idle, bad_word};
2339 static char *array_states[] = {
2340 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2341 "write-pending", "active-idle", NULL };
2343 static int match_word(const char *word, char **list)
2345 int n;
2346 for (n=0; list[n]; n++)
2347 if (cmd_match(word, list[n]))
2348 break;
2349 return n;
2352 static ssize_t
2353 array_state_show(mddev_t *mddev, char *page)
2355 enum array_state st = inactive;
2357 if (mddev->pers)
2358 switch(mddev->ro) {
2359 case 1:
2360 st = readonly;
2361 break;
2362 case 2:
2363 st = read_auto;
2364 break;
2365 case 0:
2366 if (mddev->in_sync)
2367 st = clean;
2368 else if (mddev->safemode)
2369 st = active_idle;
2370 else
2371 st = active;
2373 else {
2374 if (list_empty(&mddev->disks) &&
2375 mddev->raid_disks == 0 &&
2376 mddev->size == 0)
2377 st = clear;
2378 else
2379 st = inactive;
2381 return sprintf(page, "%s\n", array_states[st]);
2384 static int do_md_stop(mddev_t * mddev, int ro);
2385 static int do_md_run(mddev_t * mddev);
2386 static int restart_array(mddev_t *mddev);
2388 static ssize_t
2389 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2391 int err = -EINVAL;
2392 enum array_state st = match_word(buf, array_states);
2393 switch(st) {
2394 case bad_word:
2395 break;
2396 case clear:
2397 /* stopping an active array */
2398 if (mddev->pers) {
2399 if (atomic_read(&mddev->active) > 1)
2400 return -EBUSY;
2401 err = do_md_stop(mddev, 0);
2403 break;
2404 case inactive:
2405 /* stopping an active array */
2406 if (mddev->pers) {
2407 if (atomic_read(&mddev->active) > 1)
2408 return -EBUSY;
2409 err = do_md_stop(mddev, 2);
2411 break;
2412 case suspended:
2413 break; /* not supported yet */
2414 case readonly:
2415 if (mddev->pers)
2416 err = do_md_stop(mddev, 1);
2417 else {
2418 mddev->ro = 1;
2419 err = do_md_run(mddev);
2421 break;
2422 case read_auto:
2423 /* stopping an active array */
2424 if (mddev->pers) {
2425 err = do_md_stop(mddev, 1);
2426 if (err == 0)
2427 mddev->ro = 2; /* FIXME mark devices writable */
2428 } else {
2429 mddev->ro = 2;
2430 err = do_md_run(mddev);
2432 break;
2433 case clean:
2434 if (mddev->pers) {
2435 restart_array(mddev);
2436 spin_lock_irq(&mddev->write_lock);
2437 if (atomic_read(&mddev->writes_pending) == 0) {
2438 mddev->in_sync = 1;
2439 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2441 spin_unlock_irq(&mddev->write_lock);
2442 } else {
2443 mddev->ro = 0;
2444 mddev->recovery_cp = MaxSector;
2445 err = do_md_run(mddev);
2447 break;
2448 case active:
2449 if (mddev->pers) {
2450 restart_array(mddev);
2451 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2452 wake_up(&mddev->sb_wait);
2453 err = 0;
2454 } else {
2455 mddev->ro = 0;
2456 err = do_md_run(mddev);
2458 break;
2459 case write_pending:
2460 case active_idle:
2461 /* these cannot be set */
2462 break;
2464 if (err)
2465 return err;
2466 else
2467 return len;
2469 static struct md_sysfs_entry md_array_state =
2470 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2472 static ssize_t
2473 null_show(mddev_t *mddev, char *page)
2475 return -EINVAL;
2478 static ssize_t
2479 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2481 /* buf must be %d:%d\n? giving major and minor numbers */
2482 /* The new device is added to the array.
2483 * If the array has a persistent superblock, we read the
2484 * superblock to initialise info and check validity.
2485 * Otherwise, only checking done is that in bind_rdev_to_array,
2486 * which mainly checks size.
2488 char *e;
2489 int major = simple_strtoul(buf, &e, 10);
2490 int minor;
2491 dev_t dev;
2492 mdk_rdev_t *rdev;
2493 int err;
2495 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2496 return -EINVAL;
2497 minor = simple_strtoul(e+1, &e, 10);
2498 if (*e && *e != '\n')
2499 return -EINVAL;
2500 dev = MKDEV(major, minor);
2501 if (major != MAJOR(dev) ||
2502 minor != MINOR(dev))
2503 return -EOVERFLOW;
2506 if (mddev->persistent) {
2507 rdev = md_import_device(dev, mddev->major_version,
2508 mddev->minor_version);
2509 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2510 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2511 mdk_rdev_t, same_set);
2512 err = super_types[mddev->major_version]
2513 .load_super(rdev, rdev0, mddev->minor_version);
2514 if (err < 0)
2515 goto out;
2517 } else
2518 rdev = md_import_device(dev, -1, -1);
2520 if (IS_ERR(rdev))
2521 return PTR_ERR(rdev);
2522 err = bind_rdev_to_array(rdev, mddev);
2523 out:
2524 if (err)
2525 export_rdev(rdev);
2526 return err ? err : len;
2529 static struct md_sysfs_entry md_new_device =
2530 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2532 static ssize_t
2533 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2535 char *end;
2536 unsigned long chunk, end_chunk;
2538 if (!mddev->bitmap)
2539 goto out;
2540 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2541 while (*buf) {
2542 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2543 if (buf == end) break;
2544 if (*end == '-') { /* range */
2545 buf = end + 1;
2546 end_chunk = simple_strtoul(buf, &end, 0);
2547 if (buf == end) break;
2549 if (*end && !isspace(*end)) break;
2550 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2551 buf = end;
2552 while (isspace(*buf)) buf++;
2554 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2555 out:
2556 return len;
2559 static struct md_sysfs_entry md_bitmap =
2560 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2562 static ssize_t
2563 size_show(mddev_t *mddev, char *page)
2565 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2568 static int update_size(mddev_t *mddev, unsigned long size);
2570 static ssize_t
2571 size_store(mddev_t *mddev, const char *buf, size_t len)
2573 /* If array is inactive, we can reduce the component size, but
2574 * not increase it (except from 0).
2575 * If array is active, we can try an on-line resize
2577 char *e;
2578 int err = 0;
2579 unsigned long long size = simple_strtoull(buf, &e, 10);
2580 if (!*buf || *buf == '\n' ||
2581 (*e && *e != '\n'))
2582 return -EINVAL;
2584 if (mddev->pers) {
2585 err = update_size(mddev, size);
2586 md_update_sb(mddev, 1);
2587 } else {
2588 if (mddev->size == 0 ||
2589 mddev->size > size)
2590 mddev->size = size;
2591 else
2592 err = -ENOSPC;
2594 return err ? err : len;
2597 static struct md_sysfs_entry md_size =
2598 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2601 /* Metdata version.
2602 * This is either 'none' for arrays with externally managed metadata,
2603 * or N.M for internally known formats
2605 static ssize_t
2606 metadata_show(mddev_t *mddev, char *page)
2608 if (mddev->persistent)
2609 return sprintf(page, "%d.%d\n",
2610 mddev->major_version, mddev->minor_version);
2611 else
2612 return sprintf(page, "none\n");
2615 static ssize_t
2616 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2618 int major, minor;
2619 char *e;
2620 if (!list_empty(&mddev->disks))
2621 return -EBUSY;
2623 if (cmd_match(buf, "none")) {
2624 mddev->persistent = 0;
2625 mddev->major_version = 0;
2626 mddev->minor_version = 90;
2627 return len;
2629 major = simple_strtoul(buf, &e, 10);
2630 if (e==buf || *e != '.')
2631 return -EINVAL;
2632 buf = e+1;
2633 minor = simple_strtoul(buf, &e, 10);
2634 if (e==buf || *e != '\n')
2635 return -EINVAL;
2636 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2637 super_types[major].name == NULL)
2638 return -ENOENT;
2639 mddev->major_version = major;
2640 mddev->minor_version = minor;
2641 mddev->persistent = 1;
2642 return len;
2645 static struct md_sysfs_entry md_metadata =
2646 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2648 static ssize_t
2649 action_show(mddev_t *mddev, char *page)
2651 char *type = "idle";
2652 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2653 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2654 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2655 type = "reshape";
2656 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2657 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2658 type = "resync";
2659 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2660 type = "check";
2661 else
2662 type = "repair";
2663 } else
2664 type = "recover";
2666 return sprintf(page, "%s\n", type);
2669 static ssize_t
2670 action_store(mddev_t *mddev, const char *page, size_t len)
2672 if (!mddev->pers || !mddev->pers->sync_request)
2673 return -EINVAL;
2675 if (cmd_match(page, "idle")) {
2676 if (mddev->sync_thread) {
2677 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2678 md_unregister_thread(mddev->sync_thread);
2679 mddev->sync_thread = NULL;
2680 mddev->recovery = 0;
2682 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2683 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2684 return -EBUSY;
2685 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2686 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2687 else if (cmd_match(page, "reshape")) {
2688 int err;
2689 if (mddev->pers->start_reshape == NULL)
2690 return -EINVAL;
2691 err = mddev->pers->start_reshape(mddev);
2692 if (err)
2693 return err;
2694 } else {
2695 if (cmd_match(page, "check"))
2696 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2697 else if (!cmd_match(page, "repair"))
2698 return -EINVAL;
2699 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2700 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2702 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2703 md_wakeup_thread(mddev->thread);
2704 return len;
2707 static ssize_t
2708 mismatch_cnt_show(mddev_t *mddev, char *page)
2710 return sprintf(page, "%llu\n",
2711 (unsigned long long) mddev->resync_mismatches);
2714 static struct md_sysfs_entry md_scan_mode =
2715 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2718 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2720 static ssize_t
2721 sync_min_show(mddev_t *mddev, char *page)
2723 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2724 mddev->sync_speed_min ? "local": "system");
2727 static ssize_t
2728 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2730 int min;
2731 char *e;
2732 if (strncmp(buf, "system", 6)==0) {
2733 mddev->sync_speed_min = 0;
2734 return len;
2736 min = simple_strtoul(buf, &e, 10);
2737 if (buf == e || (*e && *e != '\n') || min <= 0)
2738 return -EINVAL;
2739 mddev->sync_speed_min = min;
2740 return len;
2743 static struct md_sysfs_entry md_sync_min =
2744 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2746 static ssize_t
2747 sync_max_show(mddev_t *mddev, char *page)
2749 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2750 mddev->sync_speed_max ? "local": "system");
2753 static ssize_t
2754 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2756 int max;
2757 char *e;
2758 if (strncmp(buf, "system", 6)==0) {
2759 mddev->sync_speed_max = 0;
2760 return len;
2762 max = simple_strtoul(buf, &e, 10);
2763 if (buf == e || (*e && *e != '\n') || max <= 0)
2764 return -EINVAL;
2765 mddev->sync_speed_max = max;
2766 return len;
2769 static struct md_sysfs_entry md_sync_max =
2770 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2773 static ssize_t
2774 sync_speed_show(mddev_t *mddev, char *page)
2776 unsigned long resync, dt, db;
2777 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2778 dt = ((jiffies - mddev->resync_mark) / HZ);
2779 if (!dt) dt++;
2780 db = resync - (mddev->resync_mark_cnt);
2781 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2784 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2786 static ssize_t
2787 sync_completed_show(mddev_t *mddev, char *page)
2789 unsigned long max_blocks, resync;
2791 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2792 max_blocks = mddev->resync_max_sectors;
2793 else
2794 max_blocks = mddev->size << 1;
2796 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2797 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2800 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2802 static ssize_t
2803 suspend_lo_show(mddev_t *mddev, char *page)
2805 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2808 static ssize_t
2809 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2811 char *e;
2812 unsigned long long new = simple_strtoull(buf, &e, 10);
2814 if (mddev->pers->quiesce == NULL)
2815 return -EINVAL;
2816 if (buf == e || (*e && *e != '\n'))
2817 return -EINVAL;
2818 if (new >= mddev->suspend_hi ||
2819 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2820 mddev->suspend_lo = new;
2821 mddev->pers->quiesce(mddev, 2);
2822 return len;
2823 } else
2824 return -EINVAL;
2826 static struct md_sysfs_entry md_suspend_lo =
2827 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2830 static ssize_t
2831 suspend_hi_show(mddev_t *mddev, char *page)
2833 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2836 static ssize_t
2837 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2839 char *e;
2840 unsigned long long new = simple_strtoull(buf, &e, 10);
2842 if (mddev->pers->quiesce == NULL)
2843 return -EINVAL;
2844 if (buf == e || (*e && *e != '\n'))
2845 return -EINVAL;
2846 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2847 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2848 mddev->suspend_hi = new;
2849 mddev->pers->quiesce(mddev, 1);
2850 mddev->pers->quiesce(mddev, 0);
2851 return len;
2852 } else
2853 return -EINVAL;
2855 static struct md_sysfs_entry md_suspend_hi =
2856 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2859 static struct attribute *md_default_attrs[] = {
2860 &md_level.attr,
2861 &md_layout.attr,
2862 &md_raid_disks.attr,
2863 &md_chunk_size.attr,
2864 &md_size.attr,
2865 &md_resync_start.attr,
2866 &md_metadata.attr,
2867 &md_new_device.attr,
2868 &md_safe_delay.attr,
2869 &md_array_state.attr,
2870 NULL,
2873 static struct attribute *md_redundancy_attrs[] = {
2874 &md_scan_mode.attr,
2875 &md_mismatches.attr,
2876 &md_sync_min.attr,
2877 &md_sync_max.attr,
2878 &md_sync_speed.attr,
2879 &md_sync_completed.attr,
2880 &md_suspend_lo.attr,
2881 &md_suspend_hi.attr,
2882 &md_bitmap.attr,
2883 NULL,
2885 static struct attribute_group md_redundancy_group = {
2886 .name = NULL,
2887 .attrs = md_redundancy_attrs,
2891 static ssize_t
2892 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2894 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2895 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2896 ssize_t rv;
2898 if (!entry->show)
2899 return -EIO;
2900 rv = mddev_lock(mddev);
2901 if (!rv) {
2902 rv = entry->show(mddev, page);
2903 mddev_unlock(mddev);
2905 return rv;
2908 static ssize_t
2909 md_attr_store(struct kobject *kobj, struct attribute *attr,
2910 const char *page, size_t length)
2912 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2913 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2914 ssize_t rv;
2916 if (!entry->store)
2917 return -EIO;
2918 if (!capable(CAP_SYS_ADMIN))
2919 return -EACCES;
2920 rv = mddev_lock(mddev);
2921 if (!rv) {
2922 rv = entry->store(mddev, page, length);
2923 mddev_unlock(mddev);
2925 return rv;
2928 static void md_free(struct kobject *ko)
2930 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2931 kfree(mddev);
2934 static struct sysfs_ops md_sysfs_ops = {
2935 .show = md_attr_show,
2936 .store = md_attr_store,
2938 static struct kobj_type md_ktype = {
2939 .release = md_free,
2940 .sysfs_ops = &md_sysfs_ops,
2941 .default_attrs = md_default_attrs,
2944 int mdp_major = 0;
2946 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2948 static DEFINE_MUTEX(disks_mutex);
2949 mddev_t *mddev = mddev_find(dev);
2950 struct gendisk *disk;
2951 int partitioned = (MAJOR(dev) != MD_MAJOR);
2952 int shift = partitioned ? MdpMinorShift : 0;
2953 int unit = MINOR(dev) >> shift;
2955 if (!mddev)
2956 return NULL;
2958 mutex_lock(&disks_mutex);
2959 if (mddev->gendisk) {
2960 mutex_unlock(&disks_mutex);
2961 mddev_put(mddev);
2962 return NULL;
2964 disk = alloc_disk(1 << shift);
2965 if (!disk) {
2966 mutex_unlock(&disks_mutex);
2967 mddev_put(mddev);
2968 return NULL;
2970 disk->major = MAJOR(dev);
2971 disk->first_minor = unit << shift;
2972 if (partitioned)
2973 sprintf(disk->disk_name, "md_d%d", unit);
2974 else
2975 sprintf(disk->disk_name, "md%d", unit);
2976 disk->fops = &md_fops;
2977 disk->private_data = mddev;
2978 disk->queue = mddev->queue;
2979 add_disk(disk);
2980 mddev->gendisk = disk;
2981 mutex_unlock(&disks_mutex);
2982 mddev->kobj.parent = &disk->kobj;
2983 mddev->kobj.k_name = NULL;
2984 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2985 mddev->kobj.ktype = &md_ktype;
2986 kobject_register(&mddev->kobj);
2987 return NULL;
2990 static void md_safemode_timeout(unsigned long data)
2992 mddev_t *mddev = (mddev_t *) data;
2994 mddev->safemode = 1;
2995 md_wakeup_thread(mddev->thread);
2998 static int start_dirty_degraded;
3000 static int do_md_run(mddev_t * mddev)
3002 int err;
3003 int chunk_size;
3004 struct list_head *tmp;
3005 mdk_rdev_t *rdev;
3006 struct gendisk *disk;
3007 struct mdk_personality *pers;
3008 char b[BDEVNAME_SIZE];
3010 if (list_empty(&mddev->disks))
3011 /* cannot run an array with no devices.. */
3012 return -EINVAL;
3014 if (mddev->pers)
3015 return -EBUSY;
3018 * Analyze all RAID superblock(s)
3020 if (!mddev->raid_disks)
3021 analyze_sbs(mddev);
3023 chunk_size = mddev->chunk_size;
3025 if (chunk_size) {
3026 if (chunk_size > MAX_CHUNK_SIZE) {
3027 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3028 chunk_size, MAX_CHUNK_SIZE);
3029 return -EINVAL;
3032 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3034 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3035 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3036 return -EINVAL;
3038 if (chunk_size < PAGE_SIZE) {
3039 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3040 chunk_size, PAGE_SIZE);
3041 return -EINVAL;
3044 /* devices must have minimum size of one chunk */
3045 ITERATE_RDEV(mddev,rdev,tmp) {
3046 if (test_bit(Faulty, &rdev->flags))
3047 continue;
3048 if (rdev->size < chunk_size / 1024) {
3049 printk(KERN_WARNING
3050 "md: Dev %s smaller than chunk_size:"
3051 " %lluk < %dk\n",
3052 bdevname(rdev->bdev,b),
3053 (unsigned long long)rdev->size,
3054 chunk_size / 1024);
3055 return -EINVAL;
3060 #ifdef CONFIG_KMOD
3061 if (mddev->level != LEVEL_NONE)
3062 request_module("md-level-%d", mddev->level);
3063 else if (mddev->clevel[0])
3064 request_module("md-%s", mddev->clevel);
3065 #endif
3068 * Drop all container device buffers, from now on
3069 * the only valid external interface is through the md
3070 * device.
3071 * Also find largest hardsector size
3073 ITERATE_RDEV(mddev,rdev,tmp) {
3074 if (test_bit(Faulty, &rdev->flags))
3075 continue;
3076 sync_blockdev(rdev->bdev);
3077 invalidate_bdev(rdev->bdev, 0);
3080 md_probe(mddev->unit, NULL, NULL);
3081 disk = mddev->gendisk;
3082 if (!disk)
3083 return -ENOMEM;
3085 spin_lock(&pers_lock);
3086 pers = find_pers(mddev->level, mddev->clevel);
3087 if (!pers || !try_module_get(pers->owner)) {
3088 spin_unlock(&pers_lock);
3089 if (mddev->level != LEVEL_NONE)
3090 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3091 mddev->level);
3092 else
3093 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3094 mddev->clevel);
3095 return -EINVAL;
3097 mddev->pers = pers;
3098 spin_unlock(&pers_lock);
3099 mddev->level = pers->level;
3100 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3102 if (mddev->reshape_position != MaxSector &&
3103 pers->start_reshape == NULL) {
3104 /* This personality cannot handle reshaping... */
3105 mddev->pers = NULL;
3106 module_put(pers->owner);
3107 return -EINVAL;
3110 mddev->recovery = 0;
3111 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3112 mddev->barriers_work = 1;
3113 mddev->ok_start_degraded = start_dirty_degraded;
3115 if (start_readonly)
3116 mddev->ro = 2; /* read-only, but switch on first write */
3118 err = mddev->pers->run(mddev);
3119 if (!err && mddev->pers->sync_request) {
3120 err = bitmap_create(mddev);
3121 if (err) {
3122 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3123 mdname(mddev), err);
3124 mddev->pers->stop(mddev);
3127 if (err) {
3128 printk(KERN_ERR "md: pers->run() failed ...\n");
3129 module_put(mddev->pers->owner);
3130 mddev->pers = NULL;
3131 bitmap_destroy(mddev);
3132 return err;
3134 if (mddev->pers->sync_request)
3135 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3136 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3137 mddev->ro = 0;
3139 atomic_set(&mddev->writes_pending,0);
3140 mddev->safemode = 0;
3141 mddev->safemode_timer.function = md_safemode_timeout;
3142 mddev->safemode_timer.data = (unsigned long) mddev;
3143 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3144 mddev->in_sync = 1;
3146 ITERATE_RDEV(mddev,rdev,tmp)
3147 if (rdev->raid_disk >= 0) {
3148 char nm[20];
3149 sprintf(nm, "rd%d", rdev->raid_disk);
3150 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3155 if (mddev->flags)
3156 md_update_sb(mddev, 0);
3158 set_capacity(disk, mddev->array_size<<1);
3160 /* If we call blk_queue_make_request here, it will
3161 * re-initialise max_sectors etc which may have been
3162 * refined inside -> run. So just set the bits we need to set.
3163 * Most initialisation happended when we called
3164 * blk_queue_make_request(..., md_fail_request)
3165 * earlier.
3167 mddev->queue->queuedata = mddev;
3168 mddev->queue->make_request_fn = mddev->pers->make_request;
3170 /* If there is a partially-recovered drive we need to
3171 * start recovery here. If we leave it to md_check_recovery,
3172 * it will remove the drives and not do the right thing
3174 if (mddev->degraded && !mddev->sync_thread) {
3175 struct list_head *rtmp;
3176 int spares = 0;
3177 ITERATE_RDEV(mddev,rdev,rtmp)
3178 if (rdev->raid_disk >= 0 &&
3179 !test_bit(In_sync, &rdev->flags) &&
3180 !test_bit(Faulty, &rdev->flags))
3181 /* complete an interrupted recovery */
3182 spares++;
3183 if (spares && mddev->pers->sync_request) {
3184 mddev->recovery = 0;
3185 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3186 mddev->sync_thread = md_register_thread(md_do_sync,
3187 mddev,
3188 "%s_resync");
3189 if (!mddev->sync_thread) {
3190 printk(KERN_ERR "%s: could not start resync"
3191 " thread...\n",
3192 mdname(mddev));
3193 /* leave the spares where they are, it shouldn't hurt */
3194 mddev->recovery = 0;
3198 md_wakeup_thread(mddev->thread);
3199 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3201 mddev->changed = 1;
3202 md_new_event(mddev);
3203 return 0;
3206 static int restart_array(mddev_t *mddev)
3208 struct gendisk *disk = mddev->gendisk;
3209 int err;
3212 * Complain if it has no devices
3214 err = -ENXIO;
3215 if (list_empty(&mddev->disks))
3216 goto out;
3218 if (mddev->pers) {
3219 err = -EBUSY;
3220 if (!mddev->ro)
3221 goto out;
3223 mddev->safemode = 0;
3224 mddev->ro = 0;
3225 set_disk_ro(disk, 0);
3227 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3228 mdname(mddev));
3230 * Kick recovery or resync if necessary
3232 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3233 md_wakeup_thread(mddev->thread);
3234 md_wakeup_thread(mddev->sync_thread);
3235 err = 0;
3236 } else
3237 err = -EINVAL;
3239 out:
3240 return err;
3243 /* similar to deny_write_access, but accounts for our holding a reference
3244 * to the file ourselves */
3245 static int deny_bitmap_write_access(struct file * file)
3247 struct inode *inode = file->f_mapping->host;
3249 spin_lock(&inode->i_lock);
3250 if (atomic_read(&inode->i_writecount) > 1) {
3251 spin_unlock(&inode->i_lock);
3252 return -ETXTBSY;
3254 atomic_set(&inode->i_writecount, -1);
3255 spin_unlock(&inode->i_lock);
3257 return 0;
3260 static void restore_bitmap_write_access(struct file *file)
3262 struct inode *inode = file->f_mapping->host;
3264 spin_lock(&inode->i_lock);
3265 atomic_set(&inode->i_writecount, 1);
3266 spin_unlock(&inode->i_lock);
3269 /* mode:
3270 * 0 - completely stop and dis-assemble array
3271 * 1 - switch to readonly
3272 * 2 - stop but do not disassemble array
3274 static int do_md_stop(mddev_t * mddev, int mode)
3276 int err = 0;
3277 struct gendisk *disk = mddev->gendisk;
3279 if (mddev->pers) {
3280 if (atomic_read(&mddev->active)>2) {
3281 printk("md: %s still in use.\n",mdname(mddev));
3282 return -EBUSY;
3285 if (mddev->sync_thread) {
3286 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3287 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3288 md_unregister_thread(mddev->sync_thread);
3289 mddev->sync_thread = NULL;
3292 del_timer_sync(&mddev->safemode_timer);
3294 invalidate_partition(disk, 0);
3296 switch(mode) {
3297 case 1: /* readonly */
3298 err = -ENXIO;
3299 if (mddev->ro==1)
3300 goto out;
3301 mddev->ro = 1;
3302 break;
3303 case 0: /* disassemble */
3304 case 2: /* stop */
3305 bitmap_flush(mddev);
3306 md_super_wait(mddev);
3307 if (mddev->ro)
3308 set_disk_ro(disk, 0);
3309 blk_queue_make_request(mddev->queue, md_fail_request);
3310 mddev->pers->stop(mddev);
3311 if (mddev->pers->sync_request)
3312 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3314 module_put(mddev->pers->owner);
3315 mddev->pers = NULL;
3316 if (mddev->ro)
3317 mddev->ro = 0;
3319 if (!mddev->in_sync || mddev->flags) {
3320 /* mark array as shutdown cleanly */
3321 mddev->in_sync = 1;
3322 md_update_sb(mddev, 1);
3324 if (mode == 1)
3325 set_disk_ro(disk, 1);
3326 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3330 * Free resources if final stop
3332 if (mode == 0) {
3333 mdk_rdev_t *rdev;
3334 struct list_head *tmp;
3335 struct gendisk *disk;
3336 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3338 bitmap_destroy(mddev);
3339 if (mddev->bitmap_file) {
3340 restore_bitmap_write_access(mddev->bitmap_file);
3341 fput(mddev->bitmap_file);
3342 mddev->bitmap_file = NULL;
3344 mddev->bitmap_offset = 0;
3346 ITERATE_RDEV(mddev,rdev,tmp)
3347 if (rdev->raid_disk >= 0) {
3348 char nm[20];
3349 sprintf(nm, "rd%d", rdev->raid_disk);
3350 sysfs_remove_link(&mddev->kobj, nm);
3353 export_array(mddev);
3355 mddev->array_size = 0;
3356 mddev->size = 0;
3357 mddev->raid_disks = 0;
3358 mddev->recovery_cp = 0;
3360 disk = mddev->gendisk;
3361 if (disk)
3362 set_capacity(disk, 0);
3363 mddev->changed = 1;
3364 } else if (mddev->pers)
3365 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3366 mdname(mddev));
3367 err = 0;
3368 md_new_event(mddev);
3369 out:
3370 return err;
3373 static void autorun_array(mddev_t *mddev)
3375 mdk_rdev_t *rdev;
3376 struct list_head *tmp;
3377 int err;
3379 if (list_empty(&mddev->disks))
3380 return;
3382 printk(KERN_INFO "md: running: ");
3384 ITERATE_RDEV(mddev,rdev,tmp) {
3385 char b[BDEVNAME_SIZE];
3386 printk("<%s>", bdevname(rdev->bdev,b));
3388 printk("\n");
3390 err = do_md_run (mddev);
3391 if (err) {
3392 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3393 do_md_stop (mddev, 0);
3398 * lets try to run arrays based on all disks that have arrived
3399 * until now. (those are in pending_raid_disks)
3401 * the method: pick the first pending disk, collect all disks with
3402 * the same UUID, remove all from the pending list and put them into
3403 * the 'same_array' list. Then order this list based on superblock
3404 * update time (freshest comes first), kick out 'old' disks and
3405 * compare superblocks. If everything's fine then run it.
3407 * If "unit" is allocated, then bump its reference count
3409 static void autorun_devices(int part)
3411 struct list_head *tmp;
3412 mdk_rdev_t *rdev0, *rdev;
3413 mddev_t *mddev;
3414 char b[BDEVNAME_SIZE];
3416 printk(KERN_INFO "md: autorun ...\n");
3417 while (!list_empty(&pending_raid_disks)) {
3418 int unit;
3419 dev_t dev;
3420 LIST_HEAD(candidates);
3421 rdev0 = list_entry(pending_raid_disks.next,
3422 mdk_rdev_t, same_set);
3424 printk(KERN_INFO "md: considering %s ...\n",
3425 bdevname(rdev0->bdev,b));
3426 INIT_LIST_HEAD(&candidates);
3427 ITERATE_RDEV_PENDING(rdev,tmp)
3428 if (super_90_load(rdev, rdev0, 0) >= 0) {
3429 printk(KERN_INFO "md: adding %s ...\n",
3430 bdevname(rdev->bdev,b));
3431 list_move(&rdev->same_set, &candidates);
3434 * now we have a set of devices, with all of them having
3435 * mostly sane superblocks. It's time to allocate the
3436 * mddev.
3438 if (part) {
3439 dev = MKDEV(mdp_major,
3440 rdev0->preferred_minor << MdpMinorShift);
3441 unit = MINOR(dev) >> MdpMinorShift;
3442 } else {
3443 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3444 unit = MINOR(dev);
3446 if (rdev0->preferred_minor != unit) {
3447 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3448 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3449 break;
3452 md_probe(dev, NULL, NULL);
3453 mddev = mddev_find(dev);
3454 if (!mddev) {
3455 printk(KERN_ERR
3456 "md: cannot allocate memory for md drive.\n");
3457 break;
3459 if (mddev_lock(mddev))
3460 printk(KERN_WARNING "md: %s locked, cannot run\n",
3461 mdname(mddev));
3462 else if (mddev->raid_disks || mddev->major_version
3463 || !list_empty(&mddev->disks)) {
3464 printk(KERN_WARNING
3465 "md: %s already running, cannot run %s\n",
3466 mdname(mddev), bdevname(rdev0->bdev,b));
3467 mddev_unlock(mddev);
3468 } else {
3469 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3470 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3471 list_del_init(&rdev->same_set);
3472 if (bind_rdev_to_array(rdev, mddev))
3473 export_rdev(rdev);
3475 autorun_array(mddev);
3476 mddev_unlock(mddev);
3478 /* on success, candidates will be empty, on error
3479 * it won't...
3481 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3482 export_rdev(rdev);
3483 mddev_put(mddev);
3485 printk(KERN_INFO "md: ... autorun DONE.\n");
3488 static int get_version(void __user * arg)
3490 mdu_version_t ver;
3492 ver.major = MD_MAJOR_VERSION;
3493 ver.minor = MD_MINOR_VERSION;
3494 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3496 if (copy_to_user(arg, &ver, sizeof(ver)))
3497 return -EFAULT;
3499 return 0;
3502 static int get_array_info(mddev_t * mddev, void __user * arg)
3504 mdu_array_info_t info;
3505 int nr,working,active,failed,spare;
3506 mdk_rdev_t *rdev;
3507 struct list_head *tmp;
3509 nr=working=active=failed=spare=0;
3510 ITERATE_RDEV(mddev,rdev,tmp) {
3511 nr++;
3512 if (test_bit(Faulty, &rdev->flags))
3513 failed++;
3514 else {
3515 working++;
3516 if (test_bit(In_sync, &rdev->flags))
3517 active++;
3518 else
3519 spare++;
3523 info.major_version = mddev->major_version;
3524 info.minor_version = mddev->minor_version;
3525 info.patch_version = MD_PATCHLEVEL_VERSION;
3526 info.ctime = mddev->ctime;
3527 info.level = mddev->level;
3528 info.size = mddev->size;
3529 if (info.size != mddev->size) /* overflow */
3530 info.size = -1;
3531 info.nr_disks = nr;
3532 info.raid_disks = mddev->raid_disks;
3533 info.md_minor = mddev->md_minor;
3534 info.not_persistent= !mddev->persistent;
3536 info.utime = mddev->utime;
3537 info.state = 0;
3538 if (mddev->in_sync)
3539 info.state = (1<<MD_SB_CLEAN);
3540 if (mddev->bitmap && mddev->bitmap_offset)
3541 info.state = (1<<MD_SB_BITMAP_PRESENT);
3542 info.active_disks = active;
3543 info.working_disks = working;
3544 info.failed_disks = failed;
3545 info.spare_disks = spare;
3547 info.layout = mddev->layout;
3548 info.chunk_size = mddev->chunk_size;
3550 if (copy_to_user(arg, &info, sizeof(info)))
3551 return -EFAULT;
3553 return 0;
3556 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3558 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3559 char *ptr, *buf = NULL;
3560 int err = -ENOMEM;
3562 file = kmalloc(sizeof(*file), GFP_KERNEL);
3563 if (!file)
3564 goto out;
3566 /* bitmap disabled, zero the first byte and copy out */
3567 if (!mddev->bitmap || !mddev->bitmap->file) {
3568 file->pathname[0] = '\0';
3569 goto copy_out;
3572 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3573 if (!buf)
3574 goto out;
3576 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3577 if (!ptr)
3578 goto out;
3580 strcpy(file->pathname, ptr);
3582 copy_out:
3583 err = 0;
3584 if (copy_to_user(arg, file, sizeof(*file)))
3585 err = -EFAULT;
3586 out:
3587 kfree(buf);
3588 kfree(file);
3589 return err;
3592 static int get_disk_info(mddev_t * mddev, void __user * arg)
3594 mdu_disk_info_t info;
3595 unsigned int nr;
3596 mdk_rdev_t *rdev;
3598 if (copy_from_user(&info, arg, sizeof(info)))
3599 return -EFAULT;
3601 nr = info.number;
3603 rdev = find_rdev_nr(mddev, nr);
3604 if (rdev) {
3605 info.major = MAJOR(rdev->bdev->bd_dev);
3606 info.minor = MINOR(rdev->bdev->bd_dev);
3607 info.raid_disk = rdev->raid_disk;
3608 info.state = 0;
3609 if (test_bit(Faulty, &rdev->flags))
3610 info.state |= (1<<MD_DISK_FAULTY);
3611 else if (test_bit(In_sync, &rdev->flags)) {
3612 info.state |= (1<<MD_DISK_ACTIVE);
3613 info.state |= (1<<MD_DISK_SYNC);
3615 if (test_bit(WriteMostly, &rdev->flags))
3616 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3617 } else {
3618 info.major = info.minor = 0;
3619 info.raid_disk = -1;
3620 info.state = (1<<MD_DISK_REMOVED);
3623 if (copy_to_user(arg, &info, sizeof(info)))
3624 return -EFAULT;
3626 return 0;
3629 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3631 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3632 mdk_rdev_t *rdev;
3633 dev_t dev = MKDEV(info->major,info->minor);
3635 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3636 return -EOVERFLOW;
3638 if (!mddev->raid_disks) {
3639 int err;
3640 /* expecting a device which has a superblock */
3641 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3642 if (IS_ERR(rdev)) {
3643 printk(KERN_WARNING
3644 "md: md_import_device returned %ld\n",
3645 PTR_ERR(rdev));
3646 return PTR_ERR(rdev);
3648 if (!list_empty(&mddev->disks)) {
3649 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3650 mdk_rdev_t, same_set);
3651 int err = super_types[mddev->major_version]
3652 .load_super(rdev, rdev0, mddev->minor_version);
3653 if (err < 0) {
3654 printk(KERN_WARNING
3655 "md: %s has different UUID to %s\n",
3656 bdevname(rdev->bdev,b),
3657 bdevname(rdev0->bdev,b2));
3658 export_rdev(rdev);
3659 return -EINVAL;
3662 err = bind_rdev_to_array(rdev, mddev);
3663 if (err)
3664 export_rdev(rdev);
3665 return err;
3669 * add_new_disk can be used once the array is assembled
3670 * to add "hot spares". They must already have a superblock
3671 * written
3673 if (mddev->pers) {
3674 int err;
3675 if (!mddev->pers->hot_add_disk) {
3676 printk(KERN_WARNING
3677 "%s: personality does not support diskops!\n",
3678 mdname(mddev));
3679 return -EINVAL;
3681 if (mddev->persistent)
3682 rdev = md_import_device(dev, mddev->major_version,
3683 mddev->minor_version);
3684 else
3685 rdev = md_import_device(dev, -1, -1);
3686 if (IS_ERR(rdev)) {
3687 printk(KERN_WARNING
3688 "md: md_import_device returned %ld\n",
3689 PTR_ERR(rdev));
3690 return PTR_ERR(rdev);
3692 /* set save_raid_disk if appropriate */
3693 if (!mddev->persistent) {
3694 if (info->state & (1<<MD_DISK_SYNC) &&
3695 info->raid_disk < mddev->raid_disks)
3696 rdev->raid_disk = info->raid_disk;
3697 else
3698 rdev->raid_disk = -1;
3699 } else
3700 super_types[mddev->major_version].
3701 validate_super(mddev, rdev);
3702 rdev->saved_raid_disk = rdev->raid_disk;
3704 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3705 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3706 set_bit(WriteMostly, &rdev->flags);
3708 rdev->raid_disk = -1;
3709 err = bind_rdev_to_array(rdev, mddev);
3710 if (!err && !mddev->pers->hot_remove_disk) {
3711 /* If there is hot_add_disk but no hot_remove_disk
3712 * then added disks for geometry changes,
3713 * and should be added immediately.
3715 super_types[mddev->major_version].
3716 validate_super(mddev, rdev);
3717 err = mddev->pers->hot_add_disk(mddev, rdev);
3718 if (err)
3719 unbind_rdev_from_array(rdev);
3721 if (err)
3722 export_rdev(rdev);
3724 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3725 md_wakeup_thread(mddev->thread);
3726 return err;
3729 /* otherwise, add_new_disk is only allowed
3730 * for major_version==0 superblocks
3732 if (mddev->major_version != 0) {
3733 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3734 mdname(mddev));
3735 return -EINVAL;
3738 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3739 int err;
3740 rdev = md_import_device (dev, -1, 0);
3741 if (IS_ERR(rdev)) {
3742 printk(KERN_WARNING
3743 "md: error, md_import_device() returned %ld\n",
3744 PTR_ERR(rdev));
3745 return PTR_ERR(rdev);
3747 rdev->desc_nr = info->number;
3748 if (info->raid_disk < mddev->raid_disks)
3749 rdev->raid_disk = info->raid_disk;
3750 else
3751 rdev->raid_disk = -1;
3753 rdev->flags = 0;
3755 if (rdev->raid_disk < mddev->raid_disks)
3756 if (info->state & (1<<MD_DISK_SYNC))
3757 set_bit(In_sync, &rdev->flags);
3759 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3760 set_bit(WriteMostly, &rdev->flags);
3762 if (!mddev->persistent) {
3763 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3764 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3765 } else
3766 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3767 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3769 err = bind_rdev_to_array(rdev, mddev);
3770 if (err) {
3771 export_rdev(rdev);
3772 return err;
3776 return 0;
3779 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3781 char b[BDEVNAME_SIZE];
3782 mdk_rdev_t *rdev;
3784 if (!mddev->pers)
3785 return -ENODEV;
3787 rdev = find_rdev(mddev, dev);
3788 if (!rdev)
3789 return -ENXIO;
3791 if (rdev->raid_disk >= 0)
3792 goto busy;
3794 kick_rdev_from_array(rdev);
3795 md_update_sb(mddev, 1);
3796 md_new_event(mddev);
3798 return 0;
3799 busy:
3800 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3801 bdevname(rdev->bdev,b), mdname(mddev));
3802 return -EBUSY;
3805 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3807 char b[BDEVNAME_SIZE];
3808 int err;
3809 unsigned int size;
3810 mdk_rdev_t *rdev;
3812 if (!mddev->pers)
3813 return -ENODEV;
3815 if (mddev->major_version != 0) {
3816 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3817 " version-0 superblocks.\n",
3818 mdname(mddev));
3819 return -EINVAL;
3821 if (!mddev->pers->hot_add_disk) {
3822 printk(KERN_WARNING
3823 "%s: personality does not support diskops!\n",
3824 mdname(mddev));
3825 return -EINVAL;
3828 rdev = md_import_device (dev, -1, 0);
3829 if (IS_ERR(rdev)) {
3830 printk(KERN_WARNING
3831 "md: error, md_import_device() returned %ld\n",
3832 PTR_ERR(rdev));
3833 return -EINVAL;
3836 if (mddev->persistent)
3837 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3838 else
3839 rdev->sb_offset =
3840 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3842 size = calc_dev_size(rdev, mddev->chunk_size);
3843 rdev->size = size;
3845 if (test_bit(Faulty, &rdev->flags)) {
3846 printk(KERN_WARNING
3847 "md: can not hot-add faulty %s disk to %s!\n",
3848 bdevname(rdev->bdev,b), mdname(mddev));
3849 err = -EINVAL;
3850 goto abort_export;
3852 clear_bit(In_sync, &rdev->flags);
3853 rdev->desc_nr = -1;
3854 rdev->saved_raid_disk = -1;
3855 err = bind_rdev_to_array(rdev, mddev);
3856 if (err)
3857 goto abort_export;
3860 * The rest should better be atomic, we can have disk failures
3861 * noticed in interrupt contexts ...
3864 if (rdev->desc_nr == mddev->max_disks) {
3865 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3866 mdname(mddev));
3867 err = -EBUSY;
3868 goto abort_unbind_export;
3871 rdev->raid_disk = -1;
3873 md_update_sb(mddev, 1);
3876 * Kick recovery, maybe this spare has to be added to the
3877 * array immediately.
3879 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3880 md_wakeup_thread(mddev->thread);
3881 md_new_event(mddev);
3882 return 0;
3884 abort_unbind_export:
3885 unbind_rdev_from_array(rdev);
3887 abort_export:
3888 export_rdev(rdev);
3889 return err;
3892 static int set_bitmap_file(mddev_t *mddev, int fd)
3894 int err;
3896 if (mddev->pers) {
3897 if (!mddev->pers->quiesce)
3898 return -EBUSY;
3899 if (mddev->recovery || mddev->sync_thread)
3900 return -EBUSY;
3901 /* we should be able to change the bitmap.. */
3905 if (fd >= 0) {
3906 if (mddev->bitmap)
3907 return -EEXIST; /* cannot add when bitmap is present */
3908 mddev->bitmap_file = fget(fd);
3910 if (mddev->bitmap_file == NULL) {
3911 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3912 mdname(mddev));
3913 return -EBADF;
3916 err = deny_bitmap_write_access(mddev->bitmap_file);
3917 if (err) {
3918 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3919 mdname(mddev));
3920 fput(mddev->bitmap_file);
3921 mddev->bitmap_file = NULL;
3922 return err;
3924 mddev->bitmap_offset = 0; /* file overrides offset */
3925 } else if (mddev->bitmap == NULL)
3926 return -ENOENT; /* cannot remove what isn't there */
3927 err = 0;
3928 if (mddev->pers) {
3929 mddev->pers->quiesce(mddev, 1);
3930 if (fd >= 0)
3931 err = bitmap_create(mddev);
3932 if (fd < 0 || err) {
3933 bitmap_destroy(mddev);
3934 fd = -1; /* make sure to put the file */
3936 mddev->pers->quiesce(mddev, 0);
3938 if (fd < 0) {
3939 if (mddev->bitmap_file) {
3940 restore_bitmap_write_access(mddev->bitmap_file);
3941 fput(mddev->bitmap_file);
3943 mddev->bitmap_file = NULL;
3946 return err;
3950 * set_array_info is used two different ways
3951 * The original usage is when creating a new array.
3952 * In this usage, raid_disks is > 0 and it together with
3953 * level, size, not_persistent,layout,chunksize determine the
3954 * shape of the array.
3955 * This will always create an array with a type-0.90.0 superblock.
3956 * The newer usage is when assembling an array.
3957 * In this case raid_disks will be 0, and the major_version field is
3958 * use to determine which style super-blocks are to be found on the devices.
3959 * The minor and patch _version numbers are also kept incase the
3960 * super_block handler wishes to interpret them.
3962 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3965 if (info->raid_disks == 0) {
3966 /* just setting version number for superblock loading */
3967 if (info->major_version < 0 ||
3968 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3969 super_types[info->major_version].name == NULL) {
3970 /* maybe try to auto-load a module? */
3971 printk(KERN_INFO
3972 "md: superblock version %d not known\n",
3973 info->major_version);
3974 return -EINVAL;
3976 mddev->major_version = info->major_version;
3977 mddev->minor_version = info->minor_version;
3978 mddev->patch_version = info->patch_version;
3979 return 0;
3981 mddev->major_version = MD_MAJOR_VERSION;
3982 mddev->minor_version = MD_MINOR_VERSION;
3983 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3984 mddev->ctime = get_seconds();
3986 mddev->level = info->level;
3987 mddev->clevel[0] = 0;
3988 mddev->size = info->size;
3989 mddev->raid_disks = info->raid_disks;
3990 /* don't set md_minor, it is determined by which /dev/md* was
3991 * openned
3993 if (info->state & (1<<MD_SB_CLEAN))
3994 mddev->recovery_cp = MaxSector;
3995 else
3996 mddev->recovery_cp = 0;
3997 mddev->persistent = ! info->not_persistent;
3999 mddev->layout = info->layout;
4000 mddev->chunk_size = info->chunk_size;
4002 mddev->max_disks = MD_SB_DISKS;
4004 mddev->flags = 0;
4005 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4007 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4008 mddev->bitmap_offset = 0;
4010 mddev->reshape_position = MaxSector;
4013 * Generate a 128 bit UUID
4015 get_random_bytes(mddev->uuid, 16);
4017 mddev->new_level = mddev->level;
4018 mddev->new_chunk = mddev->chunk_size;
4019 mddev->new_layout = mddev->layout;
4020 mddev->delta_disks = 0;
4022 return 0;
4025 static int update_size(mddev_t *mddev, unsigned long size)
4027 mdk_rdev_t * rdev;
4028 int rv;
4029 struct list_head *tmp;
4030 int fit = (size == 0);
4032 if (mddev->pers->resize == NULL)
4033 return -EINVAL;
4034 /* The "size" is the amount of each device that is used.
4035 * This can only make sense for arrays with redundancy.
4036 * linear and raid0 always use whatever space is available
4037 * We can only consider changing the size if no resync
4038 * or reconstruction is happening, and if the new size
4039 * is acceptable. It must fit before the sb_offset or,
4040 * if that is <data_offset, it must fit before the
4041 * size of each device.
4042 * If size is zero, we find the largest size that fits.
4044 if (mddev->sync_thread)
4045 return -EBUSY;
4046 ITERATE_RDEV(mddev,rdev,tmp) {
4047 sector_t avail;
4048 avail = rdev->size * 2;
4050 if (fit && (size == 0 || size > avail/2))
4051 size = avail/2;
4052 if (avail < ((sector_t)size << 1))
4053 return -ENOSPC;
4055 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4056 if (!rv) {
4057 struct block_device *bdev;
4059 bdev = bdget_disk(mddev->gendisk, 0);
4060 if (bdev) {
4061 mutex_lock(&bdev->bd_inode->i_mutex);
4062 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4063 mutex_unlock(&bdev->bd_inode->i_mutex);
4064 bdput(bdev);
4067 return rv;
4070 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4072 int rv;
4073 /* change the number of raid disks */
4074 if (mddev->pers->check_reshape == NULL)
4075 return -EINVAL;
4076 if (raid_disks <= 0 ||
4077 raid_disks >= mddev->max_disks)
4078 return -EINVAL;
4079 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4080 return -EBUSY;
4081 mddev->delta_disks = raid_disks - mddev->raid_disks;
4083 rv = mddev->pers->check_reshape(mddev);
4084 return rv;
4089 * update_array_info is used to change the configuration of an
4090 * on-line array.
4091 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4092 * fields in the info are checked against the array.
4093 * Any differences that cannot be handled will cause an error.
4094 * Normally, only one change can be managed at a time.
4096 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4098 int rv = 0;
4099 int cnt = 0;
4100 int state = 0;
4102 /* calculate expected state,ignoring low bits */
4103 if (mddev->bitmap && mddev->bitmap_offset)
4104 state |= (1 << MD_SB_BITMAP_PRESENT);
4106 if (mddev->major_version != info->major_version ||
4107 mddev->minor_version != info->minor_version ||
4108 /* mddev->patch_version != info->patch_version || */
4109 mddev->ctime != info->ctime ||
4110 mddev->level != info->level ||
4111 /* mddev->layout != info->layout || */
4112 !mddev->persistent != info->not_persistent||
4113 mddev->chunk_size != info->chunk_size ||
4114 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4115 ((state^info->state) & 0xfffffe00)
4117 return -EINVAL;
4118 /* Check there is only one change */
4119 if (info->size >= 0 && mddev->size != info->size) cnt++;
4120 if (mddev->raid_disks != info->raid_disks) cnt++;
4121 if (mddev->layout != info->layout) cnt++;
4122 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4123 if (cnt == 0) return 0;
4124 if (cnt > 1) return -EINVAL;
4126 if (mddev->layout != info->layout) {
4127 /* Change layout
4128 * we don't need to do anything at the md level, the
4129 * personality will take care of it all.
4131 if (mddev->pers->reconfig == NULL)
4132 return -EINVAL;
4133 else
4134 return mddev->pers->reconfig(mddev, info->layout, -1);
4136 if (info->size >= 0 && mddev->size != info->size)
4137 rv = update_size(mddev, info->size);
4139 if (mddev->raid_disks != info->raid_disks)
4140 rv = update_raid_disks(mddev, info->raid_disks);
4142 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4143 if (mddev->pers->quiesce == NULL)
4144 return -EINVAL;
4145 if (mddev->recovery || mddev->sync_thread)
4146 return -EBUSY;
4147 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4148 /* add the bitmap */
4149 if (mddev->bitmap)
4150 return -EEXIST;
4151 if (mddev->default_bitmap_offset == 0)
4152 return -EINVAL;
4153 mddev->bitmap_offset = mddev->default_bitmap_offset;
4154 mddev->pers->quiesce(mddev, 1);
4155 rv = bitmap_create(mddev);
4156 if (rv)
4157 bitmap_destroy(mddev);
4158 mddev->pers->quiesce(mddev, 0);
4159 } else {
4160 /* remove the bitmap */
4161 if (!mddev->bitmap)
4162 return -ENOENT;
4163 if (mddev->bitmap->file)
4164 return -EINVAL;
4165 mddev->pers->quiesce(mddev, 1);
4166 bitmap_destroy(mddev);
4167 mddev->pers->quiesce(mddev, 0);
4168 mddev->bitmap_offset = 0;
4171 md_update_sb(mddev, 1);
4172 return rv;
4175 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4177 mdk_rdev_t *rdev;
4179 if (mddev->pers == NULL)
4180 return -ENODEV;
4182 rdev = find_rdev(mddev, dev);
4183 if (!rdev)
4184 return -ENODEV;
4186 md_error(mddev, rdev);
4187 return 0;
4190 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4192 mddev_t *mddev = bdev->bd_disk->private_data;
4194 geo->heads = 2;
4195 geo->sectors = 4;
4196 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4197 return 0;
4200 static int md_ioctl(struct inode *inode, struct file *file,
4201 unsigned int cmd, unsigned long arg)
4203 int err = 0;
4204 void __user *argp = (void __user *)arg;
4205 mddev_t *mddev = NULL;
4207 if (!capable(CAP_SYS_ADMIN))
4208 return -EACCES;
4211 * Commands dealing with the RAID driver but not any
4212 * particular array:
4214 switch (cmd)
4216 case RAID_VERSION:
4217 err = get_version(argp);
4218 goto done;
4220 case PRINT_RAID_DEBUG:
4221 err = 0;
4222 md_print_devices();
4223 goto done;
4225 #ifndef MODULE
4226 case RAID_AUTORUN:
4227 err = 0;
4228 autostart_arrays(arg);
4229 goto done;
4230 #endif
4231 default:;
4235 * Commands creating/starting a new array:
4238 mddev = inode->i_bdev->bd_disk->private_data;
4240 if (!mddev) {
4241 BUG();
4242 goto abort;
4245 err = mddev_lock(mddev);
4246 if (err) {
4247 printk(KERN_INFO
4248 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4249 err, cmd);
4250 goto abort;
4253 switch (cmd)
4255 case SET_ARRAY_INFO:
4257 mdu_array_info_t info;
4258 if (!arg)
4259 memset(&info, 0, sizeof(info));
4260 else if (copy_from_user(&info, argp, sizeof(info))) {
4261 err = -EFAULT;
4262 goto abort_unlock;
4264 if (mddev->pers) {
4265 err = update_array_info(mddev, &info);
4266 if (err) {
4267 printk(KERN_WARNING "md: couldn't update"
4268 " array info. %d\n", err);
4269 goto abort_unlock;
4271 goto done_unlock;
4273 if (!list_empty(&mddev->disks)) {
4274 printk(KERN_WARNING
4275 "md: array %s already has disks!\n",
4276 mdname(mddev));
4277 err = -EBUSY;
4278 goto abort_unlock;
4280 if (mddev->raid_disks) {
4281 printk(KERN_WARNING
4282 "md: array %s already initialised!\n",
4283 mdname(mddev));
4284 err = -EBUSY;
4285 goto abort_unlock;
4287 err = set_array_info(mddev, &info);
4288 if (err) {
4289 printk(KERN_WARNING "md: couldn't set"
4290 " array info. %d\n", err);
4291 goto abort_unlock;
4294 goto done_unlock;
4296 default:;
4300 * Commands querying/configuring an existing array:
4302 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4303 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
4304 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4305 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
4306 err = -ENODEV;
4307 goto abort_unlock;
4311 * Commands even a read-only array can execute:
4313 switch (cmd)
4315 case GET_ARRAY_INFO:
4316 err = get_array_info(mddev, argp);
4317 goto done_unlock;
4319 case GET_BITMAP_FILE:
4320 err = get_bitmap_file(mddev, argp);
4321 goto done_unlock;
4323 case GET_DISK_INFO:
4324 err = get_disk_info(mddev, argp);
4325 goto done_unlock;
4327 case RESTART_ARRAY_RW:
4328 err = restart_array(mddev);
4329 goto done_unlock;
4331 case STOP_ARRAY:
4332 err = do_md_stop (mddev, 0);
4333 goto done_unlock;
4335 case STOP_ARRAY_RO:
4336 err = do_md_stop (mddev, 1);
4337 goto done_unlock;
4340 * We have a problem here : there is no easy way to give a CHS
4341 * virtual geometry. We currently pretend that we have a 2 heads
4342 * 4 sectors (with a BIG number of cylinders...). This drives
4343 * dosfs just mad... ;-)
4348 * The remaining ioctls are changing the state of the
4349 * superblock, so we do not allow them on read-only arrays.
4350 * However non-MD ioctls (e.g. get-size) will still come through
4351 * here and hit the 'default' below, so only disallow
4352 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4354 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4355 mddev->ro && mddev->pers) {
4356 if (mddev->ro == 2) {
4357 mddev->ro = 0;
4358 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4359 md_wakeup_thread(mddev->thread);
4361 } else {
4362 err = -EROFS;
4363 goto abort_unlock;
4367 switch (cmd)
4369 case ADD_NEW_DISK:
4371 mdu_disk_info_t info;
4372 if (copy_from_user(&info, argp, sizeof(info)))
4373 err = -EFAULT;
4374 else
4375 err = add_new_disk(mddev, &info);
4376 goto done_unlock;
4379 case HOT_REMOVE_DISK:
4380 err = hot_remove_disk(mddev, new_decode_dev(arg));
4381 goto done_unlock;
4383 case HOT_ADD_DISK:
4384 err = hot_add_disk(mddev, new_decode_dev(arg));
4385 goto done_unlock;
4387 case SET_DISK_FAULTY:
4388 err = set_disk_faulty(mddev, new_decode_dev(arg));
4389 goto done_unlock;
4391 case RUN_ARRAY:
4392 err = do_md_run (mddev);
4393 goto done_unlock;
4395 case SET_BITMAP_FILE:
4396 err = set_bitmap_file(mddev, (int)arg);
4397 goto done_unlock;
4399 default:
4400 err = -EINVAL;
4401 goto abort_unlock;
4404 done_unlock:
4405 abort_unlock:
4406 mddev_unlock(mddev);
4408 return err;
4409 done:
4410 if (err)
4411 MD_BUG();
4412 abort:
4413 return err;
4416 static int md_open(struct inode *inode, struct file *file)
4419 * Succeed if we can lock the mddev, which confirms that
4420 * it isn't being stopped right now.
4422 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4423 int err;
4425 if ((err = mddev_lock(mddev)))
4426 goto out;
4428 err = 0;
4429 mddev_get(mddev);
4430 mddev_unlock(mddev);
4432 check_disk_change(inode->i_bdev);
4433 out:
4434 return err;
4437 static int md_release(struct inode *inode, struct file * file)
4439 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4441 BUG_ON(!mddev);
4442 mddev_put(mddev);
4444 return 0;
4447 static int md_media_changed(struct gendisk *disk)
4449 mddev_t *mddev = disk->private_data;
4451 return mddev->changed;
4454 static int md_revalidate(struct gendisk *disk)
4456 mddev_t *mddev = disk->private_data;
4458 mddev->changed = 0;
4459 return 0;
4461 static struct block_device_operations md_fops =
4463 .owner = THIS_MODULE,
4464 .open = md_open,
4465 .release = md_release,
4466 .ioctl = md_ioctl,
4467 .getgeo = md_getgeo,
4468 .media_changed = md_media_changed,
4469 .revalidate_disk= md_revalidate,
4472 static int md_thread(void * arg)
4474 mdk_thread_t *thread = arg;
4477 * md_thread is a 'system-thread', it's priority should be very
4478 * high. We avoid resource deadlocks individually in each
4479 * raid personality. (RAID5 does preallocation) We also use RR and
4480 * the very same RT priority as kswapd, thus we will never get
4481 * into a priority inversion deadlock.
4483 * we definitely have to have equal or higher priority than
4484 * bdflush, otherwise bdflush will deadlock if there are too
4485 * many dirty RAID5 blocks.
4488 allow_signal(SIGKILL);
4489 while (!kthread_should_stop()) {
4491 /* We need to wait INTERRUPTIBLE so that
4492 * we don't add to the load-average.
4493 * That means we need to be sure no signals are
4494 * pending
4496 if (signal_pending(current))
4497 flush_signals(current);
4499 wait_event_interruptible_timeout
4500 (thread->wqueue,
4501 test_bit(THREAD_WAKEUP, &thread->flags)
4502 || kthread_should_stop(),
4503 thread->timeout);
4504 try_to_freeze();
4506 clear_bit(THREAD_WAKEUP, &thread->flags);
4508 thread->run(thread->mddev);
4511 return 0;
4514 void md_wakeup_thread(mdk_thread_t *thread)
4516 if (thread) {
4517 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4518 set_bit(THREAD_WAKEUP, &thread->flags);
4519 wake_up(&thread->wqueue);
4523 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4524 const char *name)
4526 mdk_thread_t *thread;
4528 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4529 if (!thread)
4530 return NULL;
4532 init_waitqueue_head(&thread->wqueue);
4534 thread->run = run;
4535 thread->mddev = mddev;
4536 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4537 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4538 if (IS_ERR(thread->tsk)) {
4539 kfree(thread);
4540 return NULL;
4542 return thread;
4545 void md_unregister_thread(mdk_thread_t *thread)
4547 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4549 kthread_stop(thread->tsk);
4550 kfree(thread);
4553 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4555 if (!mddev) {
4556 MD_BUG();
4557 return;
4560 if (!rdev || test_bit(Faulty, &rdev->flags))
4561 return;
4563 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4564 mdname(mddev),
4565 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4566 __builtin_return_address(0),__builtin_return_address(1),
4567 __builtin_return_address(2),__builtin_return_address(3));
4569 if (!mddev->pers)
4570 return;
4571 if (!mddev->pers->error_handler)
4572 return;
4573 mddev->pers->error_handler(mddev,rdev);
4574 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4575 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4576 md_wakeup_thread(mddev->thread);
4577 md_new_event_inintr(mddev);
4580 /* seq_file implementation /proc/mdstat */
4582 static void status_unused(struct seq_file *seq)
4584 int i = 0;
4585 mdk_rdev_t *rdev;
4586 struct list_head *tmp;
4588 seq_printf(seq, "unused devices: ");
4590 ITERATE_RDEV_PENDING(rdev,tmp) {
4591 char b[BDEVNAME_SIZE];
4592 i++;
4593 seq_printf(seq, "%s ",
4594 bdevname(rdev->bdev,b));
4596 if (!i)
4597 seq_printf(seq, "<none>");
4599 seq_printf(seq, "\n");
4603 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4605 sector_t max_blocks, resync, res;
4606 unsigned long dt, db, rt;
4607 int scale;
4608 unsigned int per_milli;
4610 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4612 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4613 max_blocks = mddev->resync_max_sectors >> 1;
4614 else
4615 max_blocks = mddev->size;
4618 * Should not happen.
4620 if (!max_blocks) {
4621 MD_BUG();
4622 return;
4624 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4625 * in a sector_t, and (max_blocks>>scale) will fit in a
4626 * u32, as those are the requirements for sector_div.
4627 * Thus 'scale' must be at least 10
4629 scale = 10;
4630 if (sizeof(sector_t) > sizeof(unsigned long)) {
4631 while ( max_blocks/2 > (1ULL<<(scale+32)))
4632 scale++;
4634 res = (resync>>scale)*1000;
4635 sector_div(res, (u32)((max_blocks>>scale)+1));
4637 per_milli = res;
4639 int i, x = per_milli/50, y = 20-x;
4640 seq_printf(seq, "[");
4641 for (i = 0; i < x; i++)
4642 seq_printf(seq, "=");
4643 seq_printf(seq, ">");
4644 for (i = 0; i < y; i++)
4645 seq_printf(seq, ".");
4646 seq_printf(seq, "] ");
4648 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4649 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4650 "reshape" :
4651 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4652 "check" :
4653 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4654 "resync" : "recovery"))),
4655 per_milli/10, per_milli % 10,
4656 (unsigned long long) resync,
4657 (unsigned long long) max_blocks);
4660 * We do not want to overflow, so the order of operands and
4661 * the * 100 / 100 trick are important. We do a +1 to be
4662 * safe against division by zero. We only estimate anyway.
4664 * dt: time from mark until now
4665 * db: blocks written from mark until now
4666 * rt: remaining time
4668 dt = ((jiffies - mddev->resync_mark) / HZ);
4669 if (!dt) dt++;
4670 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4671 - mddev->resync_mark_cnt;
4672 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4674 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4676 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4679 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4681 struct list_head *tmp;
4682 loff_t l = *pos;
4683 mddev_t *mddev;
4685 if (l >= 0x10000)
4686 return NULL;
4687 if (!l--)
4688 /* header */
4689 return (void*)1;
4691 spin_lock(&all_mddevs_lock);
4692 list_for_each(tmp,&all_mddevs)
4693 if (!l--) {
4694 mddev = list_entry(tmp, mddev_t, all_mddevs);
4695 mddev_get(mddev);
4696 spin_unlock(&all_mddevs_lock);
4697 return mddev;
4699 spin_unlock(&all_mddevs_lock);
4700 if (!l--)
4701 return (void*)2;/* tail */
4702 return NULL;
4705 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4707 struct list_head *tmp;
4708 mddev_t *next_mddev, *mddev = v;
4710 ++*pos;
4711 if (v == (void*)2)
4712 return NULL;
4714 spin_lock(&all_mddevs_lock);
4715 if (v == (void*)1)
4716 tmp = all_mddevs.next;
4717 else
4718 tmp = mddev->all_mddevs.next;
4719 if (tmp != &all_mddevs)
4720 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4721 else {
4722 next_mddev = (void*)2;
4723 *pos = 0x10000;
4725 spin_unlock(&all_mddevs_lock);
4727 if (v != (void*)1)
4728 mddev_put(mddev);
4729 return next_mddev;
4733 static void md_seq_stop(struct seq_file *seq, void *v)
4735 mddev_t *mddev = v;
4737 if (mddev && v != (void*)1 && v != (void*)2)
4738 mddev_put(mddev);
4741 struct mdstat_info {
4742 int event;
4745 static int md_seq_show(struct seq_file *seq, void *v)
4747 mddev_t *mddev = v;
4748 sector_t size;
4749 struct list_head *tmp2;
4750 mdk_rdev_t *rdev;
4751 struct mdstat_info *mi = seq->private;
4752 struct bitmap *bitmap;
4754 if (v == (void*)1) {
4755 struct mdk_personality *pers;
4756 seq_printf(seq, "Personalities : ");
4757 spin_lock(&pers_lock);
4758 list_for_each_entry(pers, &pers_list, list)
4759 seq_printf(seq, "[%s] ", pers->name);
4761 spin_unlock(&pers_lock);
4762 seq_printf(seq, "\n");
4763 mi->event = atomic_read(&md_event_count);
4764 return 0;
4766 if (v == (void*)2) {
4767 status_unused(seq);
4768 return 0;
4771 if (mddev_lock(mddev) < 0)
4772 return -EINTR;
4774 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4775 seq_printf(seq, "%s : %sactive", mdname(mddev),
4776 mddev->pers ? "" : "in");
4777 if (mddev->pers) {
4778 if (mddev->ro==1)
4779 seq_printf(seq, " (read-only)");
4780 if (mddev->ro==2)
4781 seq_printf(seq, "(auto-read-only)");
4782 seq_printf(seq, " %s", mddev->pers->name);
4785 size = 0;
4786 ITERATE_RDEV(mddev,rdev,tmp2) {
4787 char b[BDEVNAME_SIZE];
4788 seq_printf(seq, " %s[%d]",
4789 bdevname(rdev->bdev,b), rdev->desc_nr);
4790 if (test_bit(WriteMostly, &rdev->flags))
4791 seq_printf(seq, "(W)");
4792 if (test_bit(Faulty, &rdev->flags)) {
4793 seq_printf(seq, "(F)");
4794 continue;
4795 } else if (rdev->raid_disk < 0)
4796 seq_printf(seq, "(S)"); /* spare */
4797 size += rdev->size;
4800 if (!list_empty(&mddev->disks)) {
4801 if (mddev->pers)
4802 seq_printf(seq, "\n %llu blocks",
4803 (unsigned long long)mddev->array_size);
4804 else
4805 seq_printf(seq, "\n %llu blocks",
4806 (unsigned long long)size);
4808 if (mddev->persistent) {
4809 if (mddev->major_version != 0 ||
4810 mddev->minor_version != 90) {
4811 seq_printf(seq," super %d.%d",
4812 mddev->major_version,
4813 mddev->minor_version);
4815 } else
4816 seq_printf(seq, " super non-persistent");
4818 if (mddev->pers) {
4819 mddev->pers->status (seq, mddev);
4820 seq_printf(seq, "\n ");
4821 if (mddev->pers->sync_request) {
4822 if (mddev->curr_resync > 2) {
4823 status_resync (seq, mddev);
4824 seq_printf(seq, "\n ");
4825 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4826 seq_printf(seq, "\tresync=DELAYED\n ");
4827 else if (mddev->recovery_cp < MaxSector)
4828 seq_printf(seq, "\tresync=PENDING\n ");
4830 } else
4831 seq_printf(seq, "\n ");
4833 if ((bitmap = mddev->bitmap)) {
4834 unsigned long chunk_kb;
4835 unsigned long flags;
4836 spin_lock_irqsave(&bitmap->lock, flags);
4837 chunk_kb = bitmap->chunksize >> 10;
4838 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4839 "%lu%s chunk",
4840 bitmap->pages - bitmap->missing_pages,
4841 bitmap->pages,
4842 (bitmap->pages - bitmap->missing_pages)
4843 << (PAGE_SHIFT - 10),
4844 chunk_kb ? chunk_kb : bitmap->chunksize,
4845 chunk_kb ? "KB" : "B");
4846 if (bitmap->file) {
4847 seq_printf(seq, ", file: ");
4848 seq_path(seq, bitmap->file->f_vfsmnt,
4849 bitmap->file->f_dentry," \t\n");
4852 seq_printf(seq, "\n");
4853 spin_unlock_irqrestore(&bitmap->lock, flags);
4856 seq_printf(seq, "\n");
4858 mddev_unlock(mddev);
4860 return 0;
4863 static struct seq_operations md_seq_ops = {
4864 .start = md_seq_start,
4865 .next = md_seq_next,
4866 .stop = md_seq_stop,
4867 .show = md_seq_show,
4870 static int md_seq_open(struct inode *inode, struct file *file)
4872 int error;
4873 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4874 if (mi == NULL)
4875 return -ENOMEM;
4877 error = seq_open(file, &md_seq_ops);
4878 if (error)
4879 kfree(mi);
4880 else {
4881 struct seq_file *p = file->private_data;
4882 p->private = mi;
4883 mi->event = atomic_read(&md_event_count);
4885 return error;
4888 static int md_seq_release(struct inode *inode, struct file *file)
4890 struct seq_file *m = file->private_data;
4891 struct mdstat_info *mi = m->private;
4892 m->private = NULL;
4893 kfree(mi);
4894 return seq_release(inode, file);
4897 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4899 struct seq_file *m = filp->private_data;
4900 struct mdstat_info *mi = m->private;
4901 int mask;
4903 poll_wait(filp, &md_event_waiters, wait);
4905 /* always allow read */
4906 mask = POLLIN | POLLRDNORM;
4908 if (mi->event != atomic_read(&md_event_count))
4909 mask |= POLLERR | POLLPRI;
4910 return mask;
4913 static struct file_operations md_seq_fops = {
4914 .owner = THIS_MODULE,
4915 .open = md_seq_open,
4916 .read = seq_read,
4917 .llseek = seq_lseek,
4918 .release = md_seq_release,
4919 .poll = mdstat_poll,
4922 int register_md_personality(struct mdk_personality *p)
4924 spin_lock(&pers_lock);
4925 list_add_tail(&p->list, &pers_list);
4926 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4927 spin_unlock(&pers_lock);
4928 return 0;
4931 int unregister_md_personality(struct mdk_personality *p)
4933 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4934 spin_lock(&pers_lock);
4935 list_del_init(&p->list);
4936 spin_unlock(&pers_lock);
4937 return 0;
4940 static int is_mddev_idle(mddev_t *mddev)
4942 mdk_rdev_t * rdev;
4943 struct list_head *tmp;
4944 int idle;
4945 unsigned long curr_events;
4947 idle = 1;
4948 ITERATE_RDEV(mddev,rdev,tmp) {
4949 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4950 curr_events = disk_stat_read(disk, sectors[0]) +
4951 disk_stat_read(disk, sectors[1]) -
4952 atomic_read(&disk->sync_io);
4953 /* The difference between curr_events and last_events
4954 * will be affected by any new non-sync IO (making
4955 * curr_events bigger) and any difference in the amount of
4956 * in-flight syncio (making current_events bigger or smaller)
4957 * The amount in-flight is currently limited to
4958 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4959 * which is at most 4096 sectors.
4960 * These numbers are fairly fragile and should be made
4961 * more robust, probably by enforcing the
4962 * 'window size' that md_do_sync sort-of uses.
4964 * Note: the following is an unsigned comparison.
4966 if ((curr_events - rdev->last_events + 4096) > 8192) {
4967 rdev->last_events = curr_events;
4968 idle = 0;
4971 return idle;
4974 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4976 /* another "blocks" (512byte) blocks have been synced */
4977 atomic_sub(blocks, &mddev->recovery_active);
4978 wake_up(&mddev->recovery_wait);
4979 if (!ok) {
4980 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4981 md_wakeup_thread(mddev->thread);
4982 // stop recovery, signal do_sync ....
4987 /* md_write_start(mddev, bi)
4988 * If we need to update some array metadata (e.g. 'active' flag
4989 * in superblock) before writing, schedule a superblock update
4990 * and wait for it to complete.
4992 void md_write_start(mddev_t *mddev, struct bio *bi)
4994 if (bio_data_dir(bi) != WRITE)
4995 return;
4997 BUG_ON(mddev->ro == 1);
4998 if (mddev->ro == 2) {
4999 /* need to switch to read/write */
5000 mddev->ro = 0;
5001 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5002 md_wakeup_thread(mddev->thread);
5004 atomic_inc(&mddev->writes_pending);
5005 if (mddev->in_sync) {
5006 spin_lock_irq(&mddev->write_lock);
5007 if (mddev->in_sync) {
5008 mddev->in_sync = 0;
5009 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5010 md_wakeup_thread(mddev->thread);
5012 spin_unlock_irq(&mddev->write_lock);
5014 wait_event(mddev->sb_wait, mddev->flags==0);
5017 void md_write_end(mddev_t *mddev)
5019 if (atomic_dec_and_test(&mddev->writes_pending)) {
5020 if (mddev->safemode == 2)
5021 md_wakeup_thread(mddev->thread);
5022 else if (mddev->safemode_delay)
5023 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5027 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5029 #define SYNC_MARKS 10
5030 #define SYNC_MARK_STEP (3*HZ)
5031 void md_do_sync(mddev_t *mddev)
5033 mddev_t *mddev2;
5034 unsigned int currspeed = 0,
5035 window;
5036 sector_t max_sectors,j, io_sectors;
5037 unsigned long mark[SYNC_MARKS];
5038 sector_t mark_cnt[SYNC_MARKS];
5039 int last_mark,m;
5040 struct list_head *tmp;
5041 sector_t last_check;
5042 int skipped = 0;
5043 struct list_head *rtmp;
5044 mdk_rdev_t *rdev;
5045 char *desc;
5047 /* just incase thread restarts... */
5048 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5049 return;
5050 if (mddev->ro) /* never try to sync a read-only array */
5051 return;
5053 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5054 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5055 desc = "data-check";
5056 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5057 desc = "requested-resync";
5058 else
5059 desc = "resync";
5060 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5061 desc = "reshape";
5062 else
5063 desc = "recovery";
5065 /* we overload curr_resync somewhat here.
5066 * 0 == not engaged in resync at all
5067 * 2 == checking that there is no conflict with another sync
5068 * 1 == like 2, but have yielded to allow conflicting resync to
5069 * commense
5070 * other == active in resync - this many blocks
5072 * Before starting a resync we must have set curr_resync to
5073 * 2, and then checked that every "conflicting" array has curr_resync
5074 * less than ours. When we find one that is the same or higher
5075 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5076 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5077 * This will mean we have to start checking from the beginning again.
5081 do {
5082 mddev->curr_resync = 2;
5084 try_again:
5085 if (kthread_should_stop()) {
5086 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5087 goto skip;
5089 ITERATE_MDDEV(mddev2,tmp) {
5090 if (mddev2 == mddev)
5091 continue;
5092 if (mddev2->curr_resync &&
5093 match_mddev_units(mddev,mddev2)) {
5094 DEFINE_WAIT(wq);
5095 if (mddev < mddev2 && mddev->curr_resync == 2) {
5096 /* arbitrarily yield */
5097 mddev->curr_resync = 1;
5098 wake_up(&resync_wait);
5100 if (mddev > mddev2 && mddev->curr_resync == 1)
5101 /* no need to wait here, we can wait the next
5102 * time 'round when curr_resync == 2
5104 continue;
5105 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5106 if (!kthread_should_stop() &&
5107 mddev2->curr_resync >= mddev->curr_resync) {
5108 printk(KERN_INFO "md: delaying %s of %s"
5109 " until %s has finished (they"
5110 " share one or more physical units)\n",
5111 desc, mdname(mddev), mdname(mddev2));
5112 mddev_put(mddev2);
5113 schedule();
5114 finish_wait(&resync_wait, &wq);
5115 goto try_again;
5117 finish_wait(&resync_wait, &wq);
5120 } while (mddev->curr_resync < 2);
5122 j = 0;
5123 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5124 /* resync follows the size requested by the personality,
5125 * which defaults to physical size, but can be virtual size
5127 max_sectors = mddev->resync_max_sectors;
5128 mddev->resync_mismatches = 0;
5129 /* we don't use the checkpoint if there's a bitmap */
5130 if (!mddev->bitmap &&
5131 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5132 j = mddev->recovery_cp;
5133 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5134 max_sectors = mddev->size << 1;
5135 else {
5136 /* recovery follows the physical size of devices */
5137 max_sectors = mddev->size << 1;
5138 j = MaxSector;
5139 ITERATE_RDEV(mddev,rdev,rtmp)
5140 if (rdev->raid_disk >= 0 &&
5141 !test_bit(Faulty, &rdev->flags) &&
5142 !test_bit(In_sync, &rdev->flags) &&
5143 rdev->recovery_offset < j)
5144 j = rdev->recovery_offset;
5147 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5148 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5149 " %d KB/sec/disk.\n", speed_min(mddev));
5150 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5151 "(but not more than %d KB/sec) for %s.\n",
5152 speed_max(mddev), desc);
5154 is_mddev_idle(mddev); /* this also initializes IO event counters */
5156 io_sectors = 0;
5157 for (m = 0; m < SYNC_MARKS; m++) {
5158 mark[m] = jiffies;
5159 mark_cnt[m] = io_sectors;
5161 last_mark = 0;
5162 mddev->resync_mark = mark[last_mark];
5163 mddev->resync_mark_cnt = mark_cnt[last_mark];
5166 * Tune reconstruction:
5168 window = 32*(PAGE_SIZE/512);
5169 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5170 window/2,(unsigned long long) max_sectors/2);
5172 atomic_set(&mddev->recovery_active, 0);
5173 init_waitqueue_head(&mddev->recovery_wait);
5174 last_check = 0;
5176 if (j>2) {
5177 printk(KERN_INFO
5178 "md: resuming %s of %s from checkpoint.\n",
5179 desc, mdname(mddev));
5180 mddev->curr_resync = j;
5183 while (j < max_sectors) {
5184 sector_t sectors;
5186 skipped = 0;
5187 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5188 currspeed < speed_min(mddev));
5189 if (sectors == 0) {
5190 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5191 goto out;
5194 if (!skipped) { /* actual IO requested */
5195 io_sectors += sectors;
5196 atomic_add(sectors, &mddev->recovery_active);
5199 j += sectors;
5200 if (j>1) mddev->curr_resync = j;
5201 mddev->curr_mark_cnt = io_sectors;
5202 if (last_check == 0)
5203 /* this is the earliers that rebuilt will be
5204 * visible in /proc/mdstat
5206 md_new_event(mddev);
5208 if (last_check + window > io_sectors || j == max_sectors)
5209 continue;
5211 last_check = io_sectors;
5213 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5214 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5215 break;
5217 repeat:
5218 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5219 /* step marks */
5220 int next = (last_mark+1) % SYNC_MARKS;
5222 mddev->resync_mark = mark[next];
5223 mddev->resync_mark_cnt = mark_cnt[next];
5224 mark[next] = jiffies;
5225 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5226 last_mark = next;
5230 if (kthread_should_stop()) {
5232 * got a signal, exit.
5234 printk(KERN_INFO
5235 "md: md_do_sync() got signal ... exiting\n");
5236 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5237 goto out;
5241 * this loop exits only if either when we are slower than
5242 * the 'hard' speed limit, or the system was IO-idle for
5243 * a jiffy.
5244 * the system might be non-idle CPU-wise, but we only care
5245 * about not overloading the IO subsystem. (things like an
5246 * e2fsck being done on the RAID array should execute fast)
5248 mddev->queue->unplug_fn(mddev->queue);
5249 cond_resched();
5251 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5252 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5254 if (currspeed > speed_min(mddev)) {
5255 if ((currspeed > speed_max(mddev)) ||
5256 !is_mddev_idle(mddev)) {
5257 msleep(500);
5258 goto repeat;
5262 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5264 * this also signals 'finished resyncing' to md_stop
5266 out:
5267 mddev->queue->unplug_fn(mddev->queue);
5269 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5271 /* tell personality that we are finished */
5272 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5274 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5275 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
5276 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5277 mddev->curr_resync > 2) {
5278 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5279 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5280 if (mddev->curr_resync >= mddev->recovery_cp) {
5281 printk(KERN_INFO
5282 "md: checkpointing %s of %s.\n",
5283 desc, mdname(mddev));
5284 mddev->recovery_cp = mddev->curr_resync;
5286 } else
5287 mddev->recovery_cp = MaxSector;
5288 } else {
5289 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5290 mddev->curr_resync = MaxSector;
5291 ITERATE_RDEV(mddev,rdev,rtmp)
5292 if (rdev->raid_disk >= 0 &&
5293 !test_bit(Faulty, &rdev->flags) &&
5294 !test_bit(In_sync, &rdev->flags) &&
5295 rdev->recovery_offset < mddev->curr_resync)
5296 rdev->recovery_offset = mddev->curr_resync;
5300 skip:
5301 mddev->curr_resync = 0;
5302 wake_up(&resync_wait);
5303 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5304 md_wakeup_thread(mddev->thread);
5306 EXPORT_SYMBOL_GPL(md_do_sync);
5310 * This routine is regularly called by all per-raid-array threads to
5311 * deal with generic issues like resync and super-block update.
5312 * Raid personalities that don't have a thread (linear/raid0) do not
5313 * need this as they never do any recovery or update the superblock.
5315 * It does not do any resync itself, but rather "forks" off other threads
5316 * to do that as needed.
5317 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5318 * "->recovery" and create a thread at ->sync_thread.
5319 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5320 * and wakeups up this thread which will reap the thread and finish up.
5321 * This thread also removes any faulty devices (with nr_pending == 0).
5323 * The overall approach is:
5324 * 1/ if the superblock needs updating, update it.
5325 * 2/ If a recovery thread is running, don't do anything else.
5326 * 3/ If recovery has finished, clean up, possibly marking spares active.
5327 * 4/ If there are any faulty devices, remove them.
5328 * 5/ If array is degraded, try to add spares devices
5329 * 6/ If array has spares or is not in-sync, start a resync thread.
5331 void md_check_recovery(mddev_t *mddev)
5333 mdk_rdev_t *rdev;
5334 struct list_head *rtmp;
5337 if (mddev->bitmap)
5338 bitmap_daemon_work(mddev->bitmap);
5340 if (mddev->ro)
5341 return;
5343 if (signal_pending(current)) {
5344 if (mddev->pers->sync_request) {
5345 printk(KERN_INFO "md: %s in immediate safe mode\n",
5346 mdname(mddev));
5347 mddev->safemode = 2;
5349 flush_signals(current);
5352 if ( ! (
5353 mddev->flags ||
5354 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5355 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5356 (mddev->safemode == 1) ||
5357 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5358 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5360 return;
5362 if (mddev_trylock(mddev)) {
5363 int spares =0;
5365 spin_lock_irq(&mddev->write_lock);
5366 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5367 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5368 mddev->in_sync = 1;
5369 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5371 if (mddev->safemode == 1)
5372 mddev->safemode = 0;
5373 spin_unlock_irq(&mddev->write_lock);
5375 if (mddev->flags)
5376 md_update_sb(mddev, 0);
5379 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5380 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5381 /* resync/recovery still happening */
5382 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5383 goto unlock;
5385 if (mddev->sync_thread) {
5386 /* resync has finished, collect result */
5387 md_unregister_thread(mddev->sync_thread);
5388 mddev->sync_thread = NULL;
5389 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5390 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5391 /* success...*/
5392 /* activate any spares */
5393 mddev->pers->spare_active(mddev);
5395 md_update_sb(mddev, 1);
5397 /* if array is no-longer degraded, then any saved_raid_disk
5398 * information must be scrapped
5400 if (!mddev->degraded)
5401 ITERATE_RDEV(mddev,rdev,rtmp)
5402 rdev->saved_raid_disk = -1;
5404 mddev->recovery = 0;
5405 /* flag recovery needed just to double check */
5406 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5407 md_new_event(mddev);
5408 goto unlock;
5410 /* Clear some bits that don't mean anything, but
5411 * might be left set
5413 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5414 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5415 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5416 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5418 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5419 goto unlock;
5420 /* no recovery is running.
5421 * remove any failed drives, then
5422 * add spares if possible.
5423 * Spare are also removed and re-added, to allow
5424 * the personality to fail the re-add.
5426 ITERATE_RDEV(mddev,rdev,rtmp)
5427 if (rdev->raid_disk >= 0 &&
5428 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5429 atomic_read(&rdev->nr_pending)==0) {
5430 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5431 char nm[20];
5432 sprintf(nm,"rd%d", rdev->raid_disk);
5433 sysfs_remove_link(&mddev->kobj, nm);
5434 rdev->raid_disk = -1;
5438 if (mddev->degraded) {
5439 ITERATE_RDEV(mddev,rdev,rtmp)
5440 if (rdev->raid_disk < 0
5441 && !test_bit(Faulty, &rdev->flags)) {
5442 rdev->recovery_offset = 0;
5443 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5444 char nm[20];
5445 sprintf(nm, "rd%d", rdev->raid_disk);
5446 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5447 spares++;
5448 md_new_event(mddev);
5449 } else
5450 break;
5454 if (spares) {
5455 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5456 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5457 } else if (mddev->recovery_cp < MaxSector) {
5458 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5459 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5460 /* nothing to be done ... */
5461 goto unlock;
5463 if (mddev->pers->sync_request) {
5464 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5465 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5466 /* We are adding a device or devices to an array
5467 * which has the bitmap stored on all devices.
5468 * So make sure all bitmap pages get written
5470 bitmap_write_all(mddev->bitmap);
5472 mddev->sync_thread = md_register_thread(md_do_sync,
5473 mddev,
5474 "%s_resync");
5475 if (!mddev->sync_thread) {
5476 printk(KERN_ERR "%s: could not start resync"
5477 " thread...\n",
5478 mdname(mddev));
5479 /* leave the spares where they are, it shouldn't hurt */
5480 mddev->recovery = 0;
5481 } else
5482 md_wakeup_thread(mddev->sync_thread);
5483 md_new_event(mddev);
5485 unlock:
5486 mddev_unlock(mddev);
5490 static int md_notify_reboot(struct notifier_block *this,
5491 unsigned long code, void *x)
5493 struct list_head *tmp;
5494 mddev_t *mddev;
5496 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5498 printk(KERN_INFO "md: stopping all md devices.\n");
5500 ITERATE_MDDEV(mddev,tmp)
5501 if (mddev_trylock(mddev)) {
5502 do_md_stop (mddev, 1);
5503 mddev_unlock(mddev);
5506 * certain more exotic SCSI devices are known to be
5507 * volatile wrt too early system reboots. While the
5508 * right place to handle this issue is the given
5509 * driver, we do want to have a safe RAID driver ...
5511 mdelay(1000*1);
5513 return NOTIFY_DONE;
5516 static struct notifier_block md_notifier = {
5517 .notifier_call = md_notify_reboot,
5518 .next = NULL,
5519 .priority = INT_MAX, /* before any real devices */
5522 static void md_geninit(void)
5524 struct proc_dir_entry *p;
5526 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5528 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5529 if (p)
5530 p->proc_fops = &md_seq_fops;
5533 static int __init md_init(void)
5535 if (register_blkdev(MAJOR_NR, "md"))
5536 return -1;
5537 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5538 unregister_blkdev(MAJOR_NR, "md");
5539 return -1;
5541 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5542 md_probe, NULL, NULL);
5543 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5544 md_probe, NULL, NULL);
5546 register_reboot_notifier(&md_notifier);
5547 raid_table_header = register_sysctl_table(raid_root_table, 1);
5549 md_geninit();
5550 return (0);
5554 #ifndef MODULE
5557 * Searches all registered partitions for autorun RAID arrays
5558 * at boot time.
5560 static dev_t detected_devices[128];
5561 static int dev_cnt;
5563 void md_autodetect_dev(dev_t dev)
5565 if (dev_cnt >= 0 && dev_cnt < 127)
5566 detected_devices[dev_cnt++] = dev;
5570 static void autostart_arrays(int part)
5572 mdk_rdev_t *rdev;
5573 int i;
5575 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5577 for (i = 0; i < dev_cnt; i++) {
5578 dev_t dev = detected_devices[i];
5580 rdev = md_import_device(dev,0, 0);
5581 if (IS_ERR(rdev))
5582 continue;
5584 if (test_bit(Faulty, &rdev->flags)) {
5585 MD_BUG();
5586 continue;
5588 list_add(&rdev->same_set, &pending_raid_disks);
5590 dev_cnt = 0;
5592 autorun_devices(part);
5595 #endif
5597 static __exit void md_exit(void)
5599 mddev_t *mddev;
5600 struct list_head *tmp;
5602 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5603 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5605 unregister_blkdev(MAJOR_NR,"md");
5606 unregister_blkdev(mdp_major, "mdp");
5607 unregister_reboot_notifier(&md_notifier);
5608 unregister_sysctl_table(raid_table_header);
5609 remove_proc_entry("mdstat", NULL);
5610 ITERATE_MDDEV(mddev,tmp) {
5611 struct gendisk *disk = mddev->gendisk;
5612 if (!disk)
5613 continue;
5614 export_array(mddev);
5615 del_gendisk(disk);
5616 put_disk(disk);
5617 mddev->gendisk = NULL;
5618 mddev_put(mddev);
5622 module_init(md_init)
5623 module_exit(md_exit)
5625 static int get_ro(char *buffer, struct kernel_param *kp)
5627 return sprintf(buffer, "%d", start_readonly);
5629 static int set_ro(const char *val, struct kernel_param *kp)
5631 char *e;
5632 int num = simple_strtoul(val, &e, 10);
5633 if (*val && (*e == '\0' || *e == '\n')) {
5634 start_readonly = num;
5635 return 0;
5637 return -EINVAL;
5640 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5641 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5644 EXPORT_SYMBOL(register_md_personality);
5645 EXPORT_SYMBOL(unregister_md_personality);
5646 EXPORT_SYMBOL(md_error);
5647 EXPORT_SYMBOL(md_done_sync);
5648 EXPORT_SYMBOL(md_write_start);
5649 EXPORT_SYMBOL(md_write_end);
5650 EXPORT_SYMBOL(md_register_thread);
5651 EXPORT_SYMBOL(md_unregister_thread);
5652 EXPORT_SYMBOL(md_wakeup_thread);
5653 EXPORT_SYMBOL(md_check_recovery);
5654 MODULE_LICENSE("GPL");
5655 MODULE_ALIAS("md");
5656 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);