1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2 * bbc_envctrl.c: UltraSPARC-III environment control driver.
4 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
7 #include <linux/kthread.h>
8 #include <linux/delay.h>
9 #include <linux/kmod.h>
10 #include <linux/reboot.h>
11 #include <asm/oplib.h>
19 /* WARNING: Making changes to this driver is very dangerous.
20 * If you misprogram the sensor chips they can
21 * cut the power on you instantly.
24 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
25 * Both are implemented using max1617 i2c devices. Each max1617
26 * monitors 2 temperatures, one for one of the cpu dies and the other
27 * for the ambient temperature.
29 * The max1617 is capable of being programmed with power-off
30 * temperature values, one low limit and one high limit. These
31 * can be controlled independently for the cpu or ambient temperature.
32 * If a limit is violated, the power is simply shut off. The frequency
33 * with which the max1617 does temperature sampling can be controlled
36 * Three fans exist inside the machine, all three are controlled with
37 * an i2c digital to analog converter. There is a fan directed at the
38 * two processor slots, another for the rest of the enclosure, and the
39 * third is for the power supply. The first two fans may be speed
40 * controlled by changing the voltage fed to them. The third fan may
41 * only be completely off or on. The third fan is meant to only be
42 * disabled/enabled when entering/exiting the lowest power-saving
43 * mode of the machine.
45 * An environmental control kernel thread periodically monitors all
46 * temperature sensors. Based upon the samples it will adjust the
47 * fan speeds to try and keep the system within a certain temperature
48 * range (the goal being to make the fans as quiet as possible without
49 * allowing the system to get too hot).
51 * If the temperature begins to rise/fall outside of the acceptable
52 * operating range, a periodic warning will be sent to the kernel log.
53 * The fans will be put on full blast to attempt to deal with this
54 * situation. After exceeding the acceptable operating range by a
55 * certain threshold, the kernel thread will shut down the system.
56 * Here, the thread is attempting to shut the machine down cleanly
57 * before the hardware based power-off event is triggered.
60 /* These settings are in Celsius. We use these defaults only
61 * if we cannot interrogate the cpu-fru SEEPROM.
64 s8 high_pwroff
, high_shutdown
, high_warn
;
65 s8 low_warn
, low_shutdown
, low_pwroff
;
68 static struct temp_limits cpu_temp_limits
[2] = {
69 { 100, 85, 80, 5, -5, -10 },
70 { 100, 85, 80, 5, -5, -10 },
73 static struct temp_limits amb_temp_limits
[2] = {
74 { 65, 55, 40, 5, -5, -10 },
75 { 65, 55, 40, 5, -5, -10 },
78 enum fan_action
{ FAN_SLOWER
, FAN_SAME
, FAN_FASTER
, FAN_FULLBLAST
, FAN_STATE_MAX
};
80 struct bbc_cpu_temperature
{
81 struct bbc_cpu_temperature
*next
;
83 struct bbc_i2c_client
*client
;
86 /* Current readings, and history. */
96 enum fan_action fan_todo
[2];
101 struct bbc_cpu_temperature
*all_bbc_temps
;
103 struct bbc_fan_control
{
104 struct bbc_fan_control
*next
;
106 struct bbc_i2c_client
*client
;
111 int system_fan_speed
;
114 struct bbc_fan_control
*all_bbc_fans
;
116 #define CPU_FAN_REG 0xf0
117 #define SYS_FAN_REG 0xf2
118 #define PSUPPLY_FAN_REG 0xf4
120 #define FAN_SPEED_MIN 0x0c
121 #define FAN_SPEED_MAX 0x3f
123 #define PSUPPLY_FAN_ON 0x1f
124 #define PSUPPLY_FAN_OFF 0x00
126 static void set_fan_speeds(struct bbc_fan_control
*fp
)
128 /* Put temperatures into range so we don't mis-program
131 if (fp
->cpu_fan_speed
< FAN_SPEED_MIN
)
132 fp
->cpu_fan_speed
= FAN_SPEED_MIN
;
133 if (fp
->cpu_fan_speed
> FAN_SPEED_MAX
)
134 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
135 if (fp
->system_fan_speed
< FAN_SPEED_MIN
)
136 fp
->system_fan_speed
= FAN_SPEED_MIN
;
137 if (fp
->system_fan_speed
> FAN_SPEED_MAX
)
138 fp
->system_fan_speed
= FAN_SPEED_MAX
;
140 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
142 fp
->cpu_fan_speed
, fp
->system_fan_speed
);
145 bbc_i2c_writeb(fp
->client
, fp
->cpu_fan_speed
, CPU_FAN_REG
);
146 bbc_i2c_writeb(fp
->client
, fp
->system_fan_speed
, SYS_FAN_REG
);
147 bbc_i2c_writeb(fp
->client
,
148 (fp
->psupply_fan_on
?
149 PSUPPLY_FAN_ON
: PSUPPLY_FAN_OFF
),
153 static void get_current_temps(struct bbc_cpu_temperature
*tp
)
155 tp
->prev_amb_temp
= tp
->curr_amb_temp
;
156 bbc_i2c_readb(tp
->client
,
157 (unsigned char *) &tp
->curr_amb_temp
,
159 tp
->prev_cpu_temp
= tp
->curr_cpu_temp
;
160 bbc_i2c_readb(tp
->client
,
161 (unsigned char *) &tp
->curr_cpu_temp
,
164 printk("temp%d: cpu(%d C) amb(%d C)\n",
166 (int) tp
->curr_cpu_temp
, (int) tp
->curr_amb_temp
);
171 static void do_envctrl_shutdown(struct bbc_cpu_temperature
*tp
)
173 static int shutting_down
= 0;
177 if (shutting_down
!= 0)
180 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
181 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
183 val
= tp
->curr_amb_temp
;
184 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
185 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
187 val
= tp
->curr_cpu_temp
;
190 printk(KERN_CRIT
"temp%d: Outside of safe %s "
191 "operating temperature, %d C.\n",
192 tp
->index
, type
, val
);
194 printk(KERN_CRIT
"kenvctrld: Shutting down the system now.\n");
197 if (orderly_poweroff(true) < 0)
198 printk(KERN_CRIT
"envctrl: shutdown execution failed\n");
201 #define WARN_INTERVAL (30 * HZ)
203 static void analyze_ambient_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
207 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
208 if (tp
->curr_amb_temp
>=
209 amb_temp_limits
[tp
->index
].high_warn
) {
210 printk(KERN_WARNING
"temp%d: "
211 "Above safe ambient operating temperature, %d C.\n",
212 tp
->index
, (int) tp
->curr_amb_temp
);
214 } else if (tp
->curr_amb_temp
<
215 amb_temp_limits
[tp
->index
].low_warn
) {
216 printk(KERN_WARNING
"temp%d: "
217 "Below safe ambient operating temperature, %d C.\n",
218 tp
->index
, (int) tp
->curr_amb_temp
);
222 *last_warn
= jiffies
;
223 } else if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_warn
||
224 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_warn
)
227 /* Now check the shutdown limits. */
228 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
229 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
230 do_envctrl_shutdown(tp
);
235 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FULLBLAST
;
236 } else if ((tick
& (8 - 1)) == 0) {
237 s8 amb_goal_hi
= amb_temp_limits
[tp
->index
].high_warn
- 10;
240 amb_goal_lo
= amb_goal_hi
- 3;
242 /* We do not try to avoid 'too cold' events. Basically we
243 * only try to deal with over-heating and fan noise reduction.
245 if (tp
->avg_amb_temp
< amb_goal_hi
) {
246 if (tp
->avg_amb_temp
>= amb_goal_lo
)
247 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
249 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SLOWER
;
251 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FASTER
;
254 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
258 static void analyze_cpu_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
262 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
263 if (tp
->curr_cpu_temp
>=
264 cpu_temp_limits
[tp
->index
].high_warn
) {
265 printk(KERN_WARNING
"temp%d: "
266 "Above safe CPU operating temperature, %d C.\n",
267 tp
->index
, (int) tp
->curr_cpu_temp
);
269 } else if (tp
->curr_cpu_temp
<
270 cpu_temp_limits
[tp
->index
].low_warn
) {
271 printk(KERN_WARNING
"temp%d: "
272 "Below safe CPU operating temperature, %d C.\n",
273 tp
->index
, (int) tp
->curr_cpu_temp
);
277 *last_warn
= jiffies
;
278 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_warn
||
279 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_warn
)
282 /* Now check the shutdown limits. */
283 if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
284 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
285 do_envctrl_shutdown(tp
);
290 tp
->fan_todo
[FAN_CPU
] = FAN_FULLBLAST
;
291 } else if ((tick
& (8 - 1)) == 0) {
292 s8 cpu_goal_hi
= cpu_temp_limits
[tp
->index
].high_warn
- 10;
295 cpu_goal_lo
= cpu_goal_hi
- 3;
297 /* We do not try to avoid 'too cold' events. Basically we
298 * only try to deal with over-heating and fan noise reduction.
300 if (tp
->avg_cpu_temp
< cpu_goal_hi
) {
301 if (tp
->avg_cpu_temp
>= cpu_goal_lo
)
302 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
304 tp
->fan_todo
[FAN_CPU
] = FAN_SLOWER
;
306 tp
->fan_todo
[FAN_CPU
] = FAN_FASTER
;
309 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
313 static void analyze_temps(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
)
315 tp
->avg_amb_temp
= (s8
)((int)((int)tp
->avg_amb_temp
+ (int)tp
->curr_amb_temp
) / 2);
316 tp
->avg_cpu_temp
= (s8
)((int)((int)tp
->avg_cpu_temp
+ (int)tp
->curr_cpu_temp
) / 2);
318 analyze_ambient_temp(tp
, last_warn
, tp
->sample_tick
);
319 analyze_cpu_temp(tp
, last_warn
, tp
->sample_tick
);
324 static enum fan_action
prioritize_fan_action(int which_fan
)
326 struct bbc_cpu_temperature
*tp
;
327 enum fan_action decision
= FAN_STATE_MAX
;
329 /* Basically, prioritize what the temperature sensors
330 * recommend we do, and perform that action on all the
333 for (tp
= all_bbc_temps
; tp
; tp
= tp
->next
) {
334 if (tp
->fan_todo
[which_fan
] == FAN_FULLBLAST
) {
335 decision
= FAN_FULLBLAST
;
338 if (tp
->fan_todo
[which_fan
] == FAN_SAME
&&
339 decision
!= FAN_FASTER
)
341 else if (tp
->fan_todo
[which_fan
] == FAN_FASTER
)
342 decision
= FAN_FASTER
;
343 else if (decision
!= FAN_FASTER
&&
344 decision
!= FAN_SAME
&&
345 tp
->fan_todo
[which_fan
] == FAN_SLOWER
)
346 decision
= FAN_SLOWER
;
348 if (decision
== FAN_STATE_MAX
)
354 static int maybe_new_ambient_fan_speed(struct bbc_fan_control
*fp
)
356 enum fan_action decision
= prioritize_fan_action(FAN_AMBIENT
);
359 if (decision
== FAN_SAME
)
363 if (decision
== FAN_FULLBLAST
) {
364 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
367 fp
->system_fan_speed
= FAN_SPEED_MAX
;
369 if (decision
== FAN_FASTER
) {
370 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
373 fp
->system_fan_speed
+= 2;
375 int orig_speed
= fp
->system_fan_speed
;
377 if (orig_speed
<= FAN_SPEED_MIN
||
378 orig_speed
<= (fp
->cpu_fan_speed
- 3))
381 fp
->system_fan_speed
-= 1;
388 static int maybe_new_cpu_fan_speed(struct bbc_fan_control
*fp
)
390 enum fan_action decision
= prioritize_fan_action(FAN_CPU
);
393 if (decision
== FAN_SAME
)
397 if (decision
== FAN_FULLBLAST
) {
398 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
401 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
403 if (decision
== FAN_FASTER
) {
404 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
407 fp
->cpu_fan_speed
+= 2;
408 if (fp
->system_fan_speed
<
409 (fp
->cpu_fan_speed
- 3))
410 fp
->system_fan_speed
=
411 fp
->cpu_fan_speed
- 3;
414 if (fp
->cpu_fan_speed
<= FAN_SPEED_MIN
)
417 fp
->cpu_fan_speed
-= 1;
424 static void maybe_new_fan_speeds(struct bbc_fan_control
*fp
)
428 new = maybe_new_ambient_fan_speed(fp
);
429 new |= maybe_new_cpu_fan_speed(fp
);
435 static void fans_full_blast(void)
437 struct bbc_fan_control
*fp
;
439 /* Since we will not be monitoring things anymore, put
440 * the fans on full blast.
442 for (fp
= all_bbc_fans
; fp
; fp
= fp
->next
) {
443 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
444 fp
->system_fan_speed
= FAN_SPEED_MAX
;
445 fp
->psupply_fan_on
= 1;
450 #define POLL_INTERVAL (5 * 1000)
451 static unsigned long last_warning_jiffies
;
452 static struct task_struct
*kenvctrld_task
;
454 static int kenvctrld(void *__unused
)
456 printk(KERN_INFO
"bbc_envctrl: kenvctrld starting...\n");
457 last_warning_jiffies
= jiffies
- WARN_INTERVAL
;
459 struct bbc_cpu_temperature
*tp
;
460 struct bbc_fan_control
*fp
;
462 msleep_interruptible(POLL_INTERVAL
);
463 if (kthread_should_stop())
466 for (tp
= all_bbc_temps
; tp
; tp
= tp
->next
) {
467 get_current_temps(tp
);
468 analyze_temps(tp
, &last_warning_jiffies
);
470 for (fp
= all_bbc_fans
; fp
; fp
= fp
->next
)
471 maybe_new_fan_speeds(fp
);
473 printk(KERN_INFO
"bbc_envctrl: kenvctrld exiting...\n");
480 static void attach_one_temp(struct linux_ebus_child
*echild
, int temp_idx
)
482 struct bbc_cpu_temperature
*tp
;
484 tp
= kzalloc(sizeof(*tp
), GFP_KERNEL
);
488 tp
->client
= bbc_i2c_attach(echild
);
494 tp
->index
= temp_idx
;
496 struct bbc_cpu_temperature
**tpp
= &all_bbc_temps
;
498 tpp
= &((*tpp
)->next
);
503 /* Tell it to convert once every 5 seconds, clear all cfg
506 bbc_i2c_writeb(tp
->client
, 0x00, MAX1617_WR_CFG_BYTE
);
507 bbc_i2c_writeb(tp
->client
, 0x02, MAX1617_WR_CVRATE_BYTE
);
509 /* Program the hard temperature limits into the chip. */
510 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].high_pwroff
,
511 MAX1617_WR_AMB_HIGHLIM
);
512 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].low_pwroff
,
513 MAX1617_WR_AMB_LOWLIM
);
514 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].high_pwroff
,
515 MAX1617_WR_CPU_HIGHLIM
);
516 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].low_pwroff
,
517 MAX1617_WR_CPU_LOWLIM
);
519 get_current_temps(tp
);
520 tp
->prev_cpu_temp
= tp
->avg_cpu_temp
= tp
->curr_cpu_temp
;
521 tp
->prev_amb_temp
= tp
->avg_amb_temp
= tp
->curr_amb_temp
;
523 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
524 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
527 static void attach_one_fan(struct linux_ebus_child
*echild
, int fan_idx
)
529 struct bbc_fan_control
*fp
;
531 fp
= kzalloc(sizeof(*fp
), GFP_KERNEL
);
535 fp
->client
= bbc_i2c_attach(echild
);
544 struct bbc_fan_control
**fpp
= &all_bbc_fans
;
546 fpp
= &((*fpp
)->next
);
551 /* The i2c device controlling the fans is write-only.
552 * So the only way to keep track of the current power
553 * level fed to the fans is via software. Choose half
554 * power for cpu/system and 'on' fo the powersupply fan
557 fp
->psupply_fan_on
= 1;
558 fp
->cpu_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
559 fp
->cpu_fan_speed
+= FAN_SPEED_MIN
;
560 fp
->system_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
561 fp
->system_fan_speed
+= FAN_SPEED_MIN
;
566 int bbc_envctrl_init(void)
568 struct linux_ebus_child
*echild
;
573 while ((echild
= bbc_i2c_getdev(devidx
++)) != NULL
) {
574 if (!strcmp(echild
->prom_node
->name
, "temperature"))
575 attach_one_temp(echild
, temp_index
++);
576 if (!strcmp(echild
->prom_node
->name
, "fan-control"))
577 attach_one_fan(echild
, fan_index
++);
579 if (temp_index
!= 0 && fan_index
!= 0) {
580 kenvctrld_task
= kthread_run(kenvctrld
, NULL
, "kenvctrld");
581 if (IS_ERR(kenvctrld_task
))
582 return PTR_ERR(kenvctrld_task
);
588 static void destroy_one_temp(struct bbc_cpu_temperature
*tp
)
590 bbc_i2c_detach(tp
->client
);
594 static void destroy_one_fan(struct bbc_fan_control
*fp
)
596 bbc_i2c_detach(fp
->client
);
600 void bbc_envctrl_cleanup(void)
602 struct bbc_cpu_temperature
*tp
;
603 struct bbc_fan_control
*fp
;
605 kthread_stop(kenvctrld_task
);
609 struct bbc_cpu_temperature
*next
= tp
->next
;
610 destroy_one_temp(tp
);
613 all_bbc_temps
= NULL
;
617 struct bbc_fan_control
*next
= fp
->next
;