4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/swap.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/ptrace.h>
48 #include <linux/mount.h>
49 #include <linux/security.h>
50 #include <linux/syscalls.h>
51 #include <linux/rmap.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/audit.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
61 #include <linux/kmod.h>
65 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
66 int suid_dumpable
= 0;
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats
);
71 static DEFINE_RWLOCK(binfmt_lock
);
73 int register_binfmt(struct linux_binfmt
* fmt
)
77 write_lock(&binfmt_lock
);
78 list_add(&fmt
->lh
, &formats
);
79 write_unlock(&binfmt_lock
);
83 EXPORT_SYMBOL(register_binfmt
);
85 void unregister_binfmt(struct linux_binfmt
* fmt
)
87 write_lock(&binfmt_lock
);
89 write_unlock(&binfmt_lock
);
92 EXPORT_SYMBOL(unregister_binfmt
);
94 static inline void put_binfmt(struct linux_binfmt
* fmt
)
96 module_put(fmt
->module
);
100 * Note that a shared library must be both readable and executable due to
103 * Also note that we take the address to load from from the file itself.
105 asmlinkage
long sys_uselib(const char __user
* library
)
111 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
116 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
119 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
123 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
124 error
= PTR_ERR(file
);
130 struct linux_binfmt
* fmt
;
132 read_lock(&binfmt_lock
);
133 list_for_each_entry(fmt
, &formats
, lh
) {
134 if (!fmt
->load_shlib
)
136 if (!try_module_get(fmt
->module
))
138 read_unlock(&binfmt_lock
);
139 error
= fmt
->load_shlib(file
);
140 read_lock(&binfmt_lock
);
142 if (error
!= -ENOEXEC
)
145 read_unlock(&binfmt_lock
);
151 release_open_intent(&nd
);
158 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
164 #ifdef CONFIG_STACK_GROWSUP
166 ret
= expand_stack_downwards(bprm
->vma
, pos
);
171 ret
= get_user_pages(current
, bprm
->mm
, pos
,
172 1, write
, 1, &page
, NULL
);
177 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
181 * We've historically supported up to 32 pages (ARG_MAX)
182 * of argument strings even with small stacks
188 * Limit to 1/4-th the stack size for the argv+env strings.
190 * - the remaining binfmt code will not run out of stack space,
191 * - the program will have a reasonable amount of stack left
194 rlim
= current
->signal
->rlim
;
195 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
204 static void put_arg_page(struct page
*page
)
209 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
213 static void free_arg_pages(struct linux_binprm
*bprm
)
217 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
220 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
223 static int __bprm_mm_init(struct linux_binprm
*bprm
)
226 struct vm_area_struct
*vma
= NULL
;
227 struct mm_struct
*mm
= bprm
->mm
;
229 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
233 down_write(&mm
->mmap_sem
);
237 * Place the stack at the largest stack address the architecture
238 * supports. Later, we'll move this to an appropriate place. We don't
239 * use STACK_TOP because that can depend on attributes which aren't
242 vma
->vm_end
= STACK_TOP_MAX
;
243 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
245 vma
->vm_flags
= VM_STACK_FLAGS
;
246 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
247 err
= insert_vm_struct(mm
, vma
);
249 up_write(&mm
->mmap_sem
);
253 mm
->stack_vm
= mm
->total_vm
= 1;
254 up_write(&mm
->mmap_sem
);
256 bprm
->p
= vma
->vm_end
- sizeof(void *);
263 kmem_cache_free(vm_area_cachep
, vma
);
269 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
271 return len
<= MAX_ARG_STRLEN
;
276 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
281 page
= bprm
->page
[pos
/ PAGE_SIZE
];
282 if (!page
&& write
) {
283 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
286 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
292 static void put_arg_page(struct page
*page
)
296 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
299 __free_page(bprm
->page
[i
]);
300 bprm
->page
[i
] = NULL
;
304 static void free_arg_pages(struct linux_binprm
*bprm
)
308 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
309 free_arg_page(bprm
, i
);
312 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
317 static int __bprm_mm_init(struct linux_binprm
*bprm
)
319 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
323 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
325 return len
<= bprm
->p
;
328 #endif /* CONFIG_MMU */
331 * Create a new mm_struct and populate it with a temporary stack
332 * vm_area_struct. We don't have enough context at this point to set the stack
333 * flags, permissions, and offset, so we use temporary values. We'll update
334 * them later in setup_arg_pages().
336 int bprm_mm_init(struct linux_binprm
*bprm
)
339 struct mm_struct
*mm
= NULL
;
341 bprm
->mm
= mm
= mm_alloc();
346 err
= init_new_context(current
, mm
);
350 err
= __bprm_mm_init(bprm
);
366 * count() counts the number of strings in array ARGV.
368 static int count(char __user
* __user
* argv
, int max
)
376 if (get_user(p
, argv
))
390 * 'copy_strings()' copies argument/environment strings from the old
391 * processes's memory to the new process's stack. The call to get_user_pages()
392 * ensures the destination page is created and not swapped out.
394 static int copy_strings(int argc
, char __user
* __user
* argv
,
395 struct linux_binprm
*bprm
)
397 struct page
*kmapped_page
= NULL
;
399 unsigned long kpos
= 0;
407 if (get_user(str
, argv
+argc
) ||
408 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
413 if (!valid_arg_len(bprm
, len
)) {
418 /* We're going to work our way backwords. */
424 int offset
, bytes_to_copy
;
426 offset
= pos
% PAGE_SIZE
;
430 bytes_to_copy
= offset
;
431 if (bytes_to_copy
> len
)
434 offset
-= bytes_to_copy
;
435 pos
-= bytes_to_copy
;
436 str
-= bytes_to_copy
;
437 len
-= bytes_to_copy
;
439 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
442 page
= get_arg_page(bprm
, pos
, 1);
449 flush_kernel_dcache_page(kmapped_page
);
450 kunmap(kmapped_page
);
451 put_arg_page(kmapped_page
);
454 kaddr
= kmap(kmapped_page
);
455 kpos
= pos
& PAGE_MASK
;
456 flush_arg_page(bprm
, kpos
, kmapped_page
);
458 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
467 flush_kernel_dcache_page(kmapped_page
);
468 kunmap(kmapped_page
);
469 put_arg_page(kmapped_page
);
475 * Like copy_strings, but get argv and its values from kernel memory.
477 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
480 mm_segment_t oldfs
= get_fs();
482 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
486 EXPORT_SYMBOL(copy_strings_kernel
);
491 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
492 * the binfmt code determines where the new stack should reside, we shift it to
493 * its final location. The process proceeds as follows:
495 * 1) Use shift to calculate the new vma endpoints.
496 * 2) Extend vma to cover both the old and new ranges. This ensures the
497 * arguments passed to subsequent functions are consistent.
498 * 3) Move vma's page tables to the new range.
499 * 4) Free up any cleared pgd range.
500 * 5) Shrink the vma to cover only the new range.
502 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
504 struct mm_struct
*mm
= vma
->vm_mm
;
505 unsigned long old_start
= vma
->vm_start
;
506 unsigned long old_end
= vma
->vm_end
;
507 unsigned long length
= old_end
- old_start
;
508 unsigned long new_start
= old_start
- shift
;
509 unsigned long new_end
= old_end
- shift
;
510 struct mmu_gather
*tlb
;
512 BUG_ON(new_start
> new_end
);
515 * ensure there are no vmas between where we want to go
518 if (vma
!= find_vma(mm
, new_start
))
522 * cover the whole range: [new_start, old_end)
524 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
527 * move the page tables downwards, on failure we rely on
528 * process cleanup to remove whatever mess we made.
530 if (length
!= move_page_tables(vma
, old_start
,
531 vma
, new_start
, length
))
535 tlb
= tlb_gather_mmu(mm
, 0);
536 if (new_end
> old_start
) {
538 * when the old and new regions overlap clear from new_end.
540 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
541 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
544 * otherwise, clean from old_start; this is done to not touch
545 * the address space in [new_end, old_start) some architectures
546 * have constraints on va-space that make this illegal (IA64) -
547 * for the others its just a little faster.
549 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
550 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
552 tlb_finish_mmu(tlb
, new_end
, old_end
);
555 * shrink the vma to just the new range.
557 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
562 #define EXTRA_STACK_VM_PAGES 20 /* random */
565 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
566 * the stack is optionally relocated, and some extra space is added.
568 int setup_arg_pages(struct linux_binprm
*bprm
,
569 unsigned long stack_top
,
570 int executable_stack
)
573 unsigned long stack_shift
;
574 struct mm_struct
*mm
= current
->mm
;
575 struct vm_area_struct
*vma
= bprm
->vma
;
576 struct vm_area_struct
*prev
= NULL
;
577 unsigned long vm_flags
;
578 unsigned long stack_base
;
580 #ifdef CONFIG_STACK_GROWSUP
581 /* Limit stack size to 1GB */
582 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
583 if (stack_base
> (1 << 30))
584 stack_base
= 1 << 30;
586 /* Make sure we didn't let the argument array grow too large. */
587 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
590 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
592 stack_shift
= vma
->vm_start
- stack_base
;
593 mm
->arg_start
= bprm
->p
- stack_shift
;
594 bprm
->p
= vma
->vm_end
- stack_shift
;
596 stack_top
= arch_align_stack(stack_top
);
597 stack_top
= PAGE_ALIGN(stack_top
);
598 stack_shift
= vma
->vm_end
- stack_top
;
600 bprm
->p
-= stack_shift
;
601 mm
->arg_start
= bprm
->p
;
605 bprm
->loader
-= stack_shift
;
606 bprm
->exec
-= stack_shift
;
608 down_write(&mm
->mmap_sem
);
609 vm_flags
= vma
->vm_flags
;
612 * Adjust stack execute permissions; explicitly enable for
613 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
614 * (arch default) otherwise.
616 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
618 else if (executable_stack
== EXSTACK_DISABLE_X
)
619 vm_flags
&= ~VM_EXEC
;
620 vm_flags
|= mm
->def_flags
;
622 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
628 /* Move stack pages down in memory. */
630 ret
= shift_arg_pages(vma
, stack_shift
);
632 up_write(&mm
->mmap_sem
);
637 #ifdef CONFIG_STACK_GROWSUP
638 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
640 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
642 ret
= expand_stack(vma
, stack_base
);
647 up_write(&mm
->mmap_sem
);
650 EXPORT_SYMBOL(setup_arg_pages
);
652 #endif /* CONFIG_MMU */
654 struct file
*open_exec(const char *name
)
660 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
664 struct inode
*inode
= nd
.path
.dentry
->d_inode
;
665 file
= ERR_PTR(-EACCES
);
666 if (S_ISREG(inode
->i_mode
)) {
667 int err
= vfs_permission(&nd
, MAY_EXEC
);
670 file
= nameidata_to_filp(&nd
,
671 O_RDONLY
|O_LARGEFILE
);
673 err
= deny_write_access(file
);
683 release_open_intent(&nd
);
689 EXPORT_SYMBOL(open_exec
);
691 int kernel_read(struct file
*file
, unsigned long offset
,
692 char *addr
, unsigned long count
)
700 /* The cast to a user pointer is valid due to the set_fs() */
701 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
706 EXPORT_SYMBOL(kernel_read
);
708 static int exec_mmap(struct mm_struct
*mm
)
710 struct task_struct
*tsk
;
711 struct mm_struct
* old_mm
, *active_mm
;
713 /* Notify parent that we're no longer interested in the old VM */
715 old_mm
= current
->mm
;
716 mm_release(tsk
, old_mm
);
720 * Make sure that if there is a core dump in progress
721 * for the old mm, we get out and die instead of going
722 * through with the exec. We must hold mmap_sem around
723 * checking core_waiters and changing tsk->mm. The
724 * core-inducing thread will increment core_waiters for
725 * each thread whose ->mm == old_mm.
727 down_read(&old_mm
->mmap_sem
);
728 if (unlikely(old_mm
->core_waiters
)) {
729 up_read(&old_mm
->mmap_sem
);
734 active_mm
= tsk
->active_mm
;
737 activate_mm(active_mm
, mm
);
739 mm_update_next_owner(mm
);
740 arch_pick_mmap_layout(mm
);
742 up_read(&old_mm
->mmap_sem
);
743 BUG_ON(active_mm
!= old_mm
);
752 * This function makes sure the current process has its own signal table,
753 * so that flush_signal_handlers can later reset the handlers without
754 * disturbing other processes. (Other processes might share the signal
755 * table via the CLONE_SIGHAND option to clone().)
757 static int de_thread(struct task_struct
*tsk
)
759 struct signal_struct
*sig
= tsk
->signal
;
760 struct sighand_struct
*oldsighand
= tsk
->sighand
;
761 spinlock_t
*lock
= &oldsighand
->siglock
;
762 struct task_struct
*leader
= NULL
;
765 if (thread_group_empty(tsk
))
766 goto no_thread_group
;
769 * Kill all other threads in the thread group.
772 if (signal_group_exit(sig
)) {
774 * Another group action in progress, just
775 * return so that the signal is processed.
777 spin_unlock_irq(lock
);
780 sig
->group_exit_task
= tsk
;
781 zap_other_threads(tsk
);
783 /* Account for the thread group leader hanging around: */
784 count
= thread_group_leader(tsk
) ? 1 : 2;
785 sig
->notify_count
= count
;
786 while (atomic_read(&sig
->count
) > count
) {
787 __set_current_state(TASK_UNINTERRUPTIBLE
);
788 spin_unlock_irq(lock
);
792 spin_unlock_irq(lock
);
795 * At this point all other threads have exited, all we have to
796 * do is to wait for the thread group leader to become inactive,
797 * and to assume its PID:
799 if (!thread_group_leader(tsk
)) {
800 leader
= tsk
->group_leader
;
802 sig
->notify_count
= -1; /* for exit_notify() */
804 write_lock_irq(&tasklist_lock
);
805 if (likely(leader
->exit_state
))
807 __set_current_state(TASK_UNINTERRUPTIBLE
);
808 write_unlock_irq(&tasklist_lock
);
812 if (unlikely(task_child_reaper(tsk
) == leader
))
813 task_active_pid_ns(tsk
)->child_reaper
= tsk
;
815 * The only record we have of the real-time age of a
816 * process, regardless of execs it's done, is start_time.
817 * All the past CPU time is accumulated in signal_struct
818 * from sister threads now dead. But in this non-leader
819 * exec, nothing survives from the original leader thread,
820 * whose birth marks the true age of this process now.
821 * When we take on its identity by switching to its PID, we
822 * also take its birthdate (always earlier than our own).
824 tsk
->start_time
= leader
->start_time
;
826 BUG_ON(!same_thread_group(leader
, tsk
));
827 BUG_ON(has_group_leader_pid(tsk
));
829 * An exec() starts a new thread group with the
830 * TGID of the previous thread group. Rehash the
831 * two threads with a switched PID, and release
832 * the former thread group leader:
835 /* Become a process group leader with the old leader's pid.
836 * The old leader becomes a thread of the this thread group.
837 * Note: The old leader also uses this pid until release_task
838 * is called. Odd but simple and correct.
840 detach_pid(tsk
, PIDTYPE_PID
);
841 tsk
->pid
= leader
->pid
;
842 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
843 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
844 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
845 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
847 tsk
->group_leader
= tsk
;
848 leader
->group_leader
= tsk
;
850 tsk
->exit_signal
= SIGCHLD
;
852 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
853 leader
->exit_state
= EXIT_DEAD
;
855 write_unlock_irq(&tasklist_lock
);
858 sig
->group_exit_task
= NULL
;
859 sig
->notify_count
= 0;
864 release_task(leader
);
866 if (atomic_read(&oldsighand
->count
) != 1) {
867 struct sighand_struct
*newsighand
;
869 * This ->sighand is shared with the CLONE_SIGHAND
870 * but not CLONE_THREAD task, switch to the new one.
872 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
876 atomic_set(&newsighand
->count
, 1);
877 memcpy(newsighand
->action
, oldsighand
->action
,
878 sizeof(newsighand
->action
));
880 write_lock_irq(&tasklist_lock
);
881 spin_lock(&oldsighand
->siglock
);
882 rcu_assign_pointer(tsk
->sighand
, newsighand
);
883 spin_unlock(&oldsighand
->siglock
);
884 write_unlock_irq(&tasklist_lock
);
886 __cleanup_sighand(oldsighand
);
889 BUG_ON(!thread_group_leader(tsk
));
894 * These functions flushes out all traces of the currently running executable
895 * so that a new one can be started
897 static void flush_old_files(struct files_struct
* files
)
902 spin_lock(&files
->file_lock
);
904 unsigned long set
, i
;
908 fdt
= files_fdtable(files
);
909 if (i
>= fdt
->max_fds
)
911 set
= fdt
->close_on_exec
->fds_bits
[j
];
914 fdt
->close_on_exec
->fds_bits
[j
] = 0;
915 spin_unlock(&files
->file_lock
);
916 for ( ; set
; i
++,set
>>= 1) {
921 spin_lock(&files
->file_lock
);
924 spin_unlock(&files
->file_lock
);
927 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
929 /* buf must be at least sizeof(tsk->comm) in size */
931 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
936 void set_task_comm(struct task_struct
*tsk
, char *buf
)
939 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
943 int flush_old_exec(struct linux_binprm
* bprm
)
947 char tcomm
[sizeof(current
->comm
)];
950 * Make sure we have a private signal table and that
951 * we are unassociated from the previous thread group.
953 retval
= de_thread(current
);
957 set_mm_exe_file(bprm
->mm
, bprm
->file
);
960 * Release all of the old mmap stuff
962 retval
= exec_mmap(bprm
->mm
);
966 bprm
->mm
= NULL
; /* We're using it now */
968 /* This is the point of no return */
969 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
971 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
972 set_dumpable(current
->mm
, 1);
974 set_dumpable(current
->mm
, suid_dumpable
);
976 name
= bprm
->filename
;
978 /* Copies the binary name from after last slash */
979 for (i
=0; (ch
= *(name
++)) != '\0';) {
981 i
= 0; /* overwrite what we wrote */
983 if (i
< (sizeof(tcomm
) - 1))
987 set_task_comm(current
, tcomm
);
989 current
->flags
&= ~PF_RANDOMIZE
;
992 /* Set the new mm task size. We have to do that late because it may
993 * depend on TIF_32BIT which is only updated in flush_thread() on
994 * some architectures like powerpc
996 current
->mm
->task_size
= TASK_SIZE
;
998 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1000 set_dumpable(current
->mm
, suid_dumpable
);
1001 current
->pdeath_signal
= 0;
1002 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1003 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1005 set_dumpable(current
->mm
, suid_dumpable
);
1008 /* An exec changes our domain. We are no longer part of the thread
1011 current
->self_exec_id
++;
1013 flush_signal_handlers(current
, 0);
1014 flush_old_files(current
->files
);
1022 EXPORT_SYMBOL(flush_old_exec
);
1025 * Fill the binprm structure from the inode.
1026 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1028 int prepare_binprm(struct linux_binprm
*bprm
)
1031 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1034 mode
= inode
->i_mode
;
1035 if (bprm
->file
->f_op
== NULL
)
1038 bprm
->e_uid
= current
->euid
;
1039 bprm
->e_gid
= current
->egid
;
1041 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1043 if (mode
& S_ISUID
) {
1044 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1045 bprm
->e_uid
= inode
->i_uid
;
1050 * If setgid is set but no group execute bit then this
1051 * is a candidate for mandatory locking, not a setgid
1054 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1055 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1056 bprm
->e_gid
= inode
->i_gid
;
1060 /* fill in binprm security blob */
1061 retval
= security_bprm_set(bprm
);
1065 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1066 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1069 EXPORT_SYMBOL(prepare_binprm
);
1071 static int unsafe_exec(struct task_struct
*p
)
1074 if (p
->ptrace
& PT_PTRACED
) {
1075 if (p
->ptrace
& PT_PTRACE_CAP
)
1076 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1078 unsafe
|= LSM_UNSAFE_PTRACE
;
1080 if (atomic_read(&p
->fs
->count
) > 1 ||
1081 atomic_read(&p
->files
->count
) > 1 ||
1082 atomic_read(&p
->sighand
->count
) > 1)
1083 unsafe
|= LSM_UNSAFE_SHARE
;
1088 void compute_creds(struct linux_binprm
*bprm
)
1092 if (bprm
->e_uid
!= current
->uid
) {
1094 current
->pdeath_signal
= 0;
1099 unsafe
= unsafe_exec(current
);
1100 security_bprm_apply_creds(bprm
, unsafe
);
1101 task_unlock(current
);
1102 security_bprm_post_apply_creds(bprm
);
1104 EXPORT_SYMBOL(compute_creds
);
1107 * Arguments are '\0' separated strings found at the location bprm->p
1108 * points to; chop off the first by relocating brpm->p to right after
1109 * the first '\0' encountered.
1111 int remove_arg_zero(struct linux_binprm
*bprm
)
1114 unsigned long offset
;
1122 offset
= bprm
->p
& ~PAGE_MASK
;
1123 page
= get_arg_page(bprm
, bprm
->p
, 0);
1128 kaddr
= kmap_atomic(page
, KM_USER0
);
1130 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1131 offset
++, bprm
->p
++)
1134 kunmap_atomic(kaddr
, KM_USER0
);
1137 if (offset
== PAGE_SIZE
)
1138 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1139 } while (offset
== PAGE_SIZE
);
1148 EXPORT_SYMBOL(remove_arg_zero
);
1151 * cycle the list of binary formats handler, until one recognizes the image
1153 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1156 struct linux_binfmt
*fmt
;
1157 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1158 /* handle /sbin/loader.. */
1160 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1162 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1163 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1166 unsigned long loader
;
1168 allow_write_access(bprm
->file
);
1172 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1174 file
= open_exec("/sbin/loader");
1175 retval
= PTR_ERR(file
);
1179 /* Remember if the application is TASO. */
1180 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1183 bprm
->loader
= loader
;
1184 retval
= prepare_binprm(bprm
);
1187 /* should call search_binary_handler recursively here,
1188 but it does not matter */
1192 retval
= security_bprm_check(bprm
);
1196 /* kernel module loader fixup */
1197 /* so we don't try to load run modprobe in kernel space. */
1200 retval
= audit_bprm(bprm
);
1205 for (try=0; try<2; try++) {
1206 read_lock(&binfmt_lock
);
1207 list_for_each_entry(fmt
, &formats
, lh
) {
1208 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1211 if (!try_module_get(fmt
->module
))
1213 read_unlock(&binfmt_lock
);
1214 retval
= fn(bprm
, regs
);
1217 allow_write_access(bprm
->file
);
1221 current
->did_exec
= 1;
1222 proc_exec_connector(current
);
1225 read_lock(&binfmt_lock
);
1227 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1230 read_unlock(&binfmt_lock
);
1234 read_unlock(&binfmt_lock
);
1235 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1239 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1240 if (printable(bprm
->buf
[0]) &&
1241 printable(bprm
->buf
[1]) &&
1242 printable(bprm
->buf
[2]) &&
1243 printable(bprm
->buf
[3]))
1244 break; /* -ENOEXEC */
1245 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1252 EXPORT_SYMBOL(search_binary_handler
);
1255 * sys_execve() executes a new program.
1257 int do_execve(char * filename
,
1258 char __user
*__user
*argv
,
1259 char __user
*__user
*envp
,
1260 struct pt_regs
* regs
)
1262 struct linux_binprm
*bprm
;
1264 struct files_struct
*displaced
;
1267 retval
= unshare_files(&displaced
);
1272 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1276 file
= open_exec(filename
);
1277 retval
= PTR_ERR(file
);
1284 bprm
->filename
= filename
;
1285 bprm
->interp
= filename
;
1287 retval
= bprm_mm_init(bprm
);
1291 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1292 if ((retval
= bprm
->argc
) < 0)
1295 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1296 if ((retval
= bprm
->envc
) < 0)
1299 retval
= security_bprm_alloc(bprm
);
1303 retval
= prepare_binprm(bprm
);
1307 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1311 bprm
->exec
= bprm
->p
;
1312 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1316 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1320 retval
= search_binary_handler(bprm
,regs
);
1322 /* execve success */
1323 free_arg_pages(bprm
);
1324 security_bprm_free(bprm
);
1325 acct_update_integrals(current
);
1328 put_files_struct(displaced
);
1333 free_arg_pages(bprm
);
1335 security_bprm_free(bprm
);
1343 allow_write_access(bprm
->file
);
1351 reset_files_struct(displaced
);
1356 int set_binfmt(struct linux_binfmt
*new)
1358 struct linux_binfmt
*old
= current
->binfmt
;
1361 if (!try_module_get(new->module
))
1364 current
->binfmt
= new;
1366 module_put(old
->module
);
1370 EXPORT_SYMBOL(set_binfmt
);
1372 /* format_corename will inspect the pattern parameter, and output a
1373 * name into corename, which must have space for at least
1374 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1376 static int format_corename(char *corename
, const char *pattern
, long signr
)
1378 const char *pat_ptr
= pattern
;
1379 char *out_ptr
= corename
;
1380 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1382 int pid_in_pattern
= 0;
1385 if (*pattern
== '|')
1388 /* Repeat as long as we have more pattern to process and more output
1391 if (*pat_ptr
!= '%') {
1392 if (out_ptr
== out_end
)
1394 *out_ptr
++ = *pat_ptr
++;
1396 switch (*++pat_ptr
) {
1399 /* Double percent, output one percent */
1401 if (out_ptr
== out_end
)
1408 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1409 "%d", task_tgid_vnr(current
));
1410 if (rc
> out_end
- out_ptr
)
1416 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1417 "%d", current
->uid
);
1418 if (rc
> out_end
- out_ptr
)
1424 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1425 "%d", current
->gid
);
1426 if (rc
> out_end
- out_ptr
)
1430 /* signal that caused the coredump */
1432 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1434 if (rc
> out_end
- out_ptr
)
1438 /* UNIX time of coredump */
1441 do_gettimeofday(&tv
);
1442 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1444 if (rc
> out_end
- out_ptr
)
1451 down_read(&uts_sem
);
1452 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1453 "%s", utsname()->nodename
);
1455 if (rc
> out_end
- out_ptr
)
1461 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1462 "%s", current
->comm
);
1463 if (rc
> out_end
- out_ptr
)
1467 /* core limit size */
1469 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1470 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1471 if (rc
> out_end
- out_ptr
)
1481 /* Backward compatibility with core_uses_pid:
1483 * If core_pattern does not include a %p (as is the default)
1484 * and core_uses_pid is set, then .%pid will be appended to
1485 * the filename. Do not do this for piped commands. */
1486 if (!ispipe
&& !pid_in_pattern
1487 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1488 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1489 ".%d", task_tgid_vnr(current
));
1490 if (rc
> out_end
- out_ptr
)
1499 static void zap_process(struct task_struct
*start
)
1501 struct task_struct
*t
;
1503 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1504 start
->signal
->group_stop_count
= 0;
1508 if (t
!= current
&& t
->mm
) {
1509 t
->mm
->core_waiters
++;
1510 sigaddset(&t
->pending
.signal
, SIGKILL
);
1511 signal_wake_up(t
, 1);
1513 } while ((t
= next_thread(t
)) != start
);
1516 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1519 struct task_struct
*g
, *p
;
1520 unsigned long flags
;
1523 spin_lock_irq(&tsk
->sighand
->siglock
);
1524 if (!signal_group_exit(tsk
->signal
)) {
1525 tsk
->signal
->group_exit_code
= exit_code
;
1529 spin_unlock_irq(&tsk
->sighand
->siglock
);
1533 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1537 for_each_process(g
) {
1538 if (g
== tsk
->group_leader
)
1546 * p->sighand can't disappear, but
1547 * may be changed by de_thread()
1549 lock_task_sighand(p
, &flags
);
1551 unlock_task_sighand(p
, &flags
);
1555 } while ((p
= next_thread(p
)) != g
);
1559 return mm
->core_waiters
;
1562 static int coredump_wait(int exit_code
)
1564 struct task_struct
*tsk
= current
;
1565 struct mm_struct
*mm
= tsk
->mm
;
1566 struct completion startup_done
;
1567 struct completion
*vfork_done
;
1570 init_completion(&mm
->core_done
);
1571 init_completion(&startup_done
);
1572 mm
->core_startup_done
= &startup_done
;
1574 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1575 up_write(&mm
->mmap_sem
);
1577 if (unlikely(core_waiters
< 0))
1581 * Make sure nobody is waiting for us to release the VM,
1582 * otherwise we can deadlock when we wait on each other
1584 vfork_done
= tsk
->vfork_done
;
1586 tsk
->vfork_done
= NULL
;
1587 complete(vfork_done
);
1591 wait_for_completion(&startup_done
);
1593 BUG_ON(mm
->core_waiters
);
1594 return core_waiters
;
1598 * set_dumpable converts traditional three-value dumpable to two flags and
1599 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1600 * these bits are not changed atomically. So get_dumpable can observe the
1601 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1602 * return either old dumpable or new one by paying attention to the order of
1603 * modifying the bits.
1605 * dumpable | mm->flags (binary)
1606 * old new | initial interim final
1607 * ---------+-----------------------
1615 * (*) get_dumpable regards interim value of 10 as 11.
1617 void set_dumpable(struct mm_struct
*mm
, int value
)
1621 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1623 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1626 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1628 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1631 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1633 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1638 int get_dumpable(struct mm_struct
*mm
)
1642 ret
= mm
->flags
& 0x3;
1643 return (ret
>= 2) ? 2 : ret
;
1646 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1648 char corename
[CORENAME_MAX_SIZE
+ 1];
1649 struct mm_struct
*mm
= current
->mm
;
1650 struct linux_binfmt
* binfmt
;
1651 struct inode
* inode
;
1654 int fsuid
= current
->fsuid
;
1657 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1658 char **helper_argv
= NULL
;
1659 int helper_argc
= 0;
1662 audit_core_dumps(signr
);
1664 binfmt
= current
->binfmt
;
1665 if (!binfmt
|| !binfmt
->core_dump
)
1667 down_write(&mm
->mmap_sem
);
1669 * If another thread got here first, or we are not dumpable, bail out.
1671 if (mm
->core_waiters
|| !get_dumpable(mm
)) {
1672 up_write(&mm
->mmap_sem
);
1677 * We cannot trust fsuid as being the "true" uid of the
1678 * process nor do we know its entire history. We only know it
1679 * was tainted so we dump it as root in mode 2.
1681 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1682 flag
= O_EXCL
; /* Stop rewrite attacks */
1683 current
->fsuid
= 0; /* Dump root private */
1686 retval
= coredump_wait(exit_code
);
1691 * Clear any false indication of pending signals that might
1692 * be seen by the filesystem code called to write the core file.
1694 clear_thread_flag(TIF_SIGPENDING
);
1697 * lock_kernel() because format_corename() is controlled by sysctl, which
1698 * uses lock_kernel()
1701 ispipe
= format_corename(corename
, core_pattern
, signr
);
1704 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1705 * to a pipe. Since we're not writing directly to the filesystem
1706 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1707 * created unless the pipe reader choses to write out the core file
1708 * at which point file size limits and permissions will be imposed
1709 * as it does with any other process
1711 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1715 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1716 /* Terminate the string before the first option */
1717 delimit
= strchr(corename
, ' ');
1720 delimit
= strrchr(helper_argv
[0], '/');
1724 delimit
= helper_argv
[0];
1725 if (!strcmp(delimit
, current
->comm
)) {
1726 printk(KERN_NOTICE
"Recursive core dump detected, "
1731 core_limit
= RLIM_INFINITY
;
1733 /* SIGPIPE can happen, but it's just never processed */
1734 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1736 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1741 file
= filp_open(corename
,
1742 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1746 inode
= file
->f_path
.dentry
->d_inode
;
1747 if (inode
->i_nlink
> 1)
1748 goto close_fail
; /* multiple links - don't dump */
1749 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1752 /* AK: actually i see no reason to not allow this for named pipes etc.,
1753 but keep the previous behaviour for now. */
1754 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1757 * Dont allow local users get cute and trick others to coredump
1758 * into their pre-created files:
1760 if (inode
->i_uid
!= current
->fsuid
)
1764 if (!file
->f_op
->write
)
1766 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1769 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1772 current
->signal
->group_exit_code
|= 0x80;
1774 filp_close(file
, NULL
);
1777 argv_free(helper_argv
);
1779 current
->fsuid
= fsuid
;
1780 complete_all(&mm
->core_done
);