2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
49 #include <asm/atomic.h>
51 static DEFINE_MUTEX(cgroup_mutex
);
53 /* Generate an array of cgroup subsystem pointers */
54 #define SUBSYS(_x) &_x ## _subsys,
56 static struct cgroup_subsys
*subsys
[] = {
57 #include <linux/cgroup_subsys.h>
61 * A cgroupfs_root represents the root of a cgroup hierarchy,
62 * and may be associated with a superblock to form an active
65 struct cgroupfs_root
{
66 struct super_block
*sb
;
69 * The bitmask of subsystems intended to be attached to this
72 unsigned long subsys_bits
;
74 /* The bitmask of subsystems currently attached to this hierarchy */
75 unsigned long actual_subsys_bits
;
77 /* A list running through the attached subsystems */
78 struct list_head subsys_list
;
80 /* The root cgroup for this hierarchy */
81 struct cgroup top_cgroup
;
83 /* Tracks how many cgroups are currently defined in hierarchy.*/
84 int number_of_cgroups
;
86 /* A list running through the mounted hierarchies */
87 struct list_head root_list
;
89 /* Hierarchy-specific flags */
92 /* The path to use for release notifications. No locking
93 * between setting and use - so if userspace updates this
94 * while child cgroups exist, you could miss a
95 * notification. We ensure that it's always a valid
96 * NUL-terminated string */
97 char release_agent_path
[PATH_MAX
];
102 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
103 * subsystems that are otherwise unattached - it never has more than a
104 * single cgroup, and all tasks are part of that cgroup.
106 static struct cgroupfs_root rootnode
;
108 /* The list of hierarchy roots */
110 static LIST_HEAD(roots
);
111 static int root_count
;
113 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
114 #define dummytop (&rootnode.top_cgroup)
116 /* This flag indicates whether tasks in the fork and exit paths should
117 * check for fork/exit handlers to call. This avoids us having to do
118 * extra work in the fork/exit path if none of the subsystems need to
121 static int need_forkexit_callback
;
122 static int need_mm_owner_callback __read_mostly
;
124 /* convenient tests for these bits */
125 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
127 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
130 /* bits in struct cgroupfs_root flags field */
132 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
135 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
138 (1 << CGRP_RELEASABLE
) |
139 (1 << CGRP_NOTIFY_ON_RELEASE
);
140 return (cgrp
->flags
& bits
) == bits
;
143 static int notify_on_release(const struct cgroup
*cgrp
)
145 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
149 * for_each_subsys() allows you to iterate on each subsystem attached to
150 * an active hierarchy
152 #define for_each_subsys(_root, _ss) \
153 list_for_each_entry(_ss, &_root->subsys_list, sibling)
155 /* for_each_root() allows you to iterate across the active hierarchies */
156 #define for_each_root(_root) \
157 list_for_each_entry(_root, &roots, root_list)
159 /* the list of cgroups eligible for automatic release. Protected by
160 * release_list_lock */
161 static LIST_HEAD(release_list
);
162 static DEFINE_SPINLOCK(release_list_lock
);
163 static void cgroup_release_agent(struct work_struct
*work
);
164 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
165 static void check_for_release(struct cgroup
*cgrp
);
167 /* Link structure for associating css_set objects with cgroups */
168 struct cg_cgroup_link
{
170 * List running through cg_cgroup_links associated with a
171 * cgroup, anchored on cgroup->css_sets
173 struct list_head cgrp_link_list
;
175 * List running through cg_cgroup_links pointing at a
176 * single css_set object, anchored on css_set->cg_links
178 struct list_head cg_link_list
;
182 /* The default css_set - used by init and its children prior to any
183 * hierarchies being mounted. It contains a pointer to the root state
184 * for each subsystem. Also used to anchor the list of css_sets. Not
185 * reference-counted, to improve performance when child cgroups
186 * haven't been created.
189 static struct css_set init_css_set
;
190 static struct cg_cgroup_link init_css_set_link
;
192 /* css_set_lock protects the list of css_set objects, and the
193 * chain of tasks off each css_set. Nests outside task->alloc_lock
194 * due to cgroup_iter_start() */
195 static DEFINE_RWLOCK(css_set_lock
);
196 static int css_set_count
;
198 /* hash table for cgroup groups. This improves the performance to
199 * find an existing css_set */
200 #define CSS_SET_HASH_BITS 7
201 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
202 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
204 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
208 unsigned long tmp
= 0UL;
210 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
211 tmp
+= (unsigned long)css
[i
];
212 tmp
= (tmp
>> 16) ^ tmp
;
214 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
216 return &css_set_table
[index
];
219 /* We don't maintain the lists running through each css_set to its
220 * task until after the first call to cgroup_iter_start(). This
221 * reduces the fork()/exit() overhead for people who have cgroups
222 * compiled into their kernel but not actually in use */
223 static int use_task_css_set_links
;
225 /* When we create or destroy a css_set, the operation simply
226 * takes/releases a reference count on all the cgroups referenced
227 * by subsystems in this css_set. This can end up multiple-counting
228 * some cgroups, but that's OK - the ref-count is just a
229 * busy/not-busy indicator; ensuring that we only count each cgroup
230 * once would require taking a global lock to ensure that no
231 * subsystems moved between hierarchies while we were doing so.
233 * Possible TODO: decide at boot time based on the number of
234 * registered subsystems and the number of CPUs or NUMA nodes whether
235 * it's better for performance to ref-count every subsystem, or to
236 * take a global lock and only add one ref count to each hierarchy.
240 * unlink a css_set from the list and free it
242 static void unlink_css_set(struct css_set
*cg
)
244 write_lock(&css_set_lock
);
245 hlist_del(&cg
->hlist
);
247 while (!list_empty(&cg
->cg_links
)) {
248 struct cg_cgroup_link
*link
;
249 link
= list_entry(cg
->cg_links
.next
,
250 struct cg_cgroup_link
, cg_link_list
);
251 list_del(&link
->cg_link_list
);
252 list_del(&link
->cgrp_link_list
);
255 write_unlock(&css_set_lock
);
258 static void __release_css_set(struct kref
*k
, int taskexit
)
261 struct css_set
*cg
= container_of(k
, struct css_set
, ref
);
266 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
267 struct cgroup
*cgrp
= cg
->subsys
[i
]->cgroup
;
268 if (atomic_dec_and_test(&cgrp
->count
) &&
269 notify_on_release(cgrp
)) {
271 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
272 check_for_release(cgrp
);
279 static void release_css_set(struct kref
*k
)
281 __release_css_set(k
, 0);
284 static void release_css_set_taskexit(struct kref
*k
)
286 __release_css_set(k
, 1);
290 * refcounted get/put for css_set objects
292 static inline void get_css_set(struct css_set
*cg
)
297 static inline void put_css_set(struct css_set
*cg
)
299 kref_put(&cg
->ref
, release_css_set
);
302 static inline void put_css_set_taskexit(struct css_set
*cg
)
304 kref_put(&cg
->ref
, release_css_set_taskexit
);
308 * find_existing_css_set() is a helper for
309 * find_css_set(), and checks to see whether an existing
310 * css_set is suitable.
312 * oldcg: the cgroup group that we're using before the cgroup
315 * cgrp: the cgroup that we're moving into
317 * template: location in which to build the desired set of subsystem
318 * state objects for the new cgroup group
320 static struct css_set
*find_existing_css_set(
321 struct css_set
*oldcg
,
323 struct cgroup_subsys_state
*template[])
326 struct cgroupfs_root
*root
= cgrp
->root
;
327 struct hlist_head
*hhead
;
328 struct hlist_node
*node
;
331 /* Built the set of subsystem state objects that we want to
332 * see in the new css_set */
333 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
334 if (root
->subsys_bits
& (1UL << i
)) {
335 /* Subsystem is in this hierarchy. So we want
336 * the subsystem state from the new
338 template[i
] = cgrp
->subsys
[i
];
340 /* Subsystem is not in this hierarchy, so we
341 * don't want to change the subsystem state */
342 template[i
] = oldcg
->subsys
[i
];
346 hhead
= css_set_hash(template);
347 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
348 if (!memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
349 /* All subsystems matched */
354 /* No existing cgroup group matched */
359 * allocate_cg_links() allocates "count" cg_cgroup_link structures
360 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
361 * success or a negative error
363 static int allocate_cg_links(int count
, struct list_head
*tmp
)
365 struct cg_cgroup_link
*link
;
368 for (i
= 0; i
< count
; i
++) {
369 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
371 while (!list_empty(tmp
)) {
372 link
= list_entry(tmp
->next
,
373 struct cg_cgroup_link
,
375 list_del(&link
->cgrp_link_list
);
380 list_add(&link
->cgrp_link_list
, tmp
);
385 static void free_cg_links(struct list_head
*tmp
)
387 while (!list_empty(tmp
)) {
388 struct cg_cgroup_link
*link
;
389 link
= list_entry(tmp
->next
,
390 struct cg_cgroup_link
,
392 list_del(&link
->cgrp_link_list
);
398 * find_css_set() takes an existing cgroup group and a
399 * cgroup object, and returns a css_set object that's
400 * equivalent to the old group, but with the given cgroup
401 * substituted into the appropriate hierarchy. Must be called with
404 static struct css_set
*find_css_set(
405 struct css_set
*oldcg
, struct cgroup
*cgrp
)
408 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
411 struct list_head tmp_cg_links
;
412 struct cg_cgroup_link
*link
;
414 struct hlist_head
*hhead
;
416 /* First see if we already have a cgroup group that matches
418 write_lock(&css_set_lock
);
419 res
= find_existing_css_set(oldcg
, cgrp
, template);
422 write_unlock(&css_set_lock
);
427 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
431 /* Allocate all the cg_cgroup_link objects that we'll need */
432 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
437 kref_init(&res
->ref
);
438 INIT_LIST_HEAD(&res
->cg_links
);
439 INIT_LIST_HEAD(&res
->tasks
);
440 INIT_HLIST_NODE(&res
->hlist
);
442 /* Copy the set of subsystem state objects generated in
443 * find_existing_css_set() */
444 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
446 write_lock(&css_set_lock
);
447 /* Add reference counts and links from the new css_set. */
448 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
449 struct cgroup
*cgrp
= res
->subsys
[i
]->cgroup
;
450 struct cgroup_subsys
*ss
= subsys
[i
];
451 atomic_inc(&cgrp
->count
);
453 * We want to add a link once per cgroup, so we
454 * only do it for the first subsystem in each
457 if (ss
->root
->subsys_list
.next
== &ss
->sibling
) {
458 BUG_ON(list_empty(&tmp_cg_links
));
459 link
= list_entry(tmp_cg_links
.next
,
460 struct cg_cgroup_link
,
462 list_del(&link
->cgrp_link_list
);
463 list_add(&link
->cgrp_link_list
, &cgrp
->css_sets
);
465 list_add(&link
->cg_link_list
, &res
->cg_links
);
468 if (list_empty(&rootnode
.subsys_list
)) {
469 link
= list_entry(tmp_cg_links
.next
,
470 struct cg_cgroup_link
,
472 list_del(&link
->cgrp_link_list
);
473 list_add(&link
->cgrp_link_list
, &dummytop
->css_sets
);
475 list_add(&link
->cg_link_list
, &res
->cg_links
);
478 BUG_ON(!list_empty(&tmp_cg_links
));
482 /* Add this cgroup group to the hash table */
483 hhead
= css_set_hash(res
->subsys
);
484 hlist_add_head(&res
->hlist
, hhead
);
486 write_unlock(&css_set_lock
);
492 * There is one global cgroup mutex. We also require taking
493 * task_lock() when dereferencing a task's cgroup subsys pointers.
494 * See "The task_lock() exception", at the end of this comment.
496 * A task must hold cgroup_mutex to modify cgroups.
498 * Any task can increment and decrement the count field without lock.
499 * So in general, code holding cgroup_mutex can't rely on the count
500 * field not changing. However, if the count goes to zero, then only
501 * cgroup_attach_task() can increment it again. Because a count of zero
502 * means that no tasks are currently attached, therefore there is no
503 * way a task attached to that cgroup can fork (the other way to
504 * increment the count). So code holding cgroup_mutex can safely
505 * assume that if the count is zero, it will stay zero. Similarly, if
506 * a task holds cgroup_mutex on a cgroup with zero count, it
507 * knows that the cgroup won't be removed, as cgroup_rmdir()
510 * The cgroup_common_file_write handler for operations that modify
511 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
512 * single threading all such cgroup modifications across the system.
514 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
515 * (usually) take cgroup_mutex. These are the two most performance
516 * critical pieces of code here. The exception occurs on cgroup_exit(),
517 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
518 * is taken, and if the cgroup count is zero, a usermode call made
519 * to the release agent with the name of the cgroup (path relative to
520 * the root of cgroup file system) as the argument.
522 * A cgroup can only be deleted if both its 'count' of using tasks
523 * is zero, and its list of 'children' cgroups is empty. Since all
524 * tasks in the system use _some_ cgroup, and since there is always at
525 * least one task in the system (init, pid == 1), therefore, top_cgroup
526 * always has either children cgroups and/or using tasks. So we don't
527 * need a special hack to ensure that top_cgroup cannot be deleted.
529 * The task_lock() exception
531 * The need for this exception arises from the action of
532 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
533 * another. It does so using cgroup_mutex, however there are
534 * several performance critical places that need to reference
535 * task->cgroup without the expense of grabbing a system global
536 * mutex. Therefore except as noted below, when dereferencing or, as
537 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
538 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
539 * the task_struct routinely used for such matters.
541 * P.S. One more locking exception. RCU is used to guard the
542 * update of a tasks cgroup pointer by cgroup_attach_task()
546 * cgroup_lock - lock out any changes to cgroup structures
549 void cgroup_lock(void)
551 mutex_lock(&cgroup_mutex
);
555 * cgroup_unlock - release lock on cgroup changes
557 * Undo the lock taken in a previous cgroup_lock() call.
559 void cgroup_unlock(void)
561 mutex_unlock(&cgroup_mutex
);
565 * A couple of forward declarations required, due to cyclic reference loop:
566 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
567 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
571 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
572 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
573 static int cgroup_populate_dir(struct cgroup
*cgrp
);
574 static struct inode_operations cgroup_dir_inode_operations
;
575 static struct file_operations proc_cgroupstats_operations
;
577 static struct backing_dev_info cgroup_backing_dev_info
= {
578 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
581 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
583 struct inode
*inode
= new_inode(sb
);
586 inode
->i_mode
= mode
;
587 inode
->i_uid
= current
->fsuid
;
588 inode
->i_gid
= current
->fsgid
;
590 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
591 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
597 * Call subsys's pre_destroy handler.
598 * This is called before css refcnt check.
600 static void cgroup_call_pre_destroy(struct cgroup
*cgrp
)
602 struct cgroup_subsys
*ss
;
603 for_each_subsys(cgrp
->root
, ss
)
604 if (ss
->pre_destroy
&& cgrp
->subsys
[ss
->subsys_id
])
605 ss
->pre_destroy(ss
, cgrp
);
609 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
611 /* is dentry a directory ? if so, kfree() associated cgroup */
612 if (S_ISDIR(inode
->i_mode
)) {
613 struct cgroup
*cgrp
= dentry
->d_fsdata
;
614 struct cgroup_subsys
*ss
;
615 BUG_ON(!(cgroup_is_removed(cgrp
)));
616 /* It's possible for external users to be holding css
617 * reference counts on a cgroup; css_put() needs to
618 * be able to access the cgroup after decrementing
619 * the reference count in order to know if it needs to
620 * queue the cgroup to be handled by the release
624 mutex_lock(&cgroup_mutex
);
626 * Release the subsystem state objects.
628 for_each_subsys(cgrp
->root
, ss
) {
629 if (cgrp
->subsys
[ss
->subsys_id
])
630 ss
->destroy(ss
, cgrp
);
633 cgrp
->root
->number_of_cgroups
--;
634 mutex_unlock(&cgroup_mutex
);
636 /* Drop the active superblock reference that we took when we
637 * created the cgroup */
638 deactivate_super(cgrp
->root
->sb
);
645 static void remove_dir(struct dentry
*d
)
647 struct dentry
*parent
= dget(d
->d_parent
);
650 simple_rmdir(parent
->d_inode
, d
);
654 static void cgroup_clear_directory(struct dentry
*dentry
)
656 struct list_head
*node
;
658 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
659 spin_lock(&dcache_lock
);
660 node
= dentry
->d_subdirs
.next
;
661 while (node
!= &dentry
->d_subdirs
) {
662 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
665 /* This should never be called on a cgroup
666 * directory with child cgroups */
667 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
669 spin_unlock(&dcache_lock
);
671 simple_unlink(dentry
->d_inode
, d
);
673 spin_lock(&dcache_lock
);
675 node
= dentry
->d_subdirs
.next
;
677 spin_unlock(&dcache_lock
);
681 * NOTE : the dentry must have been dget()'ed
683 static void cgroup_d_remove_dir(struct dentry
*dentry
)
685 cgroup_clear_directory(dentry
);
687 spin_lock(&dcache_lock
);
688 list_del_init(&dentry
->d_u
.d_child
);
689 spin_unlock(&dcache_lock
);
693 static int rebind_subsystems(struct cgroupfs_root
*root
,
694 unsigned long final_bits
)
696 unsigned long added_bits
, removed_bits
;
697 struct cgroup
*cgrp
= &root
->top_cgroup
;
700 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
701 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
702 /* Check that any added subsystems are currently free */
703 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
704 unsigned long bit
= 1UL << i
;
705 struct cgroup_subsys
*ss
= subsys
[i
];
706 if (!(bit
& added_bits
))
708 if (ss
->root
!= &rootnode
) {
709 /* Subsystem isn't free */
714 /* Currently we don't handle adding/removing subsystems when
715 * any child cgroups exist. This is theoretically supportable
716 * but involves complex error handling, so it's being left until
718 if (!list_empty(&cgrp
->children
))
721 /* Process each subsystem */
722 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
723 struct cgroup_subsys
*ss
= subsys
[i
];
724 unsigned long bit
= 1UL << i
;
725 if (bit
& added_bits
) {
726 /* We're binding this subsystem to this hierarchy */
727 BUG_ON(cgrp
->subsys
[i
]);
728 BUG_ON(!dummytop
->subsys
[i
]);
729 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
730 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
731 cgrp
->subsys
[i
]->cgroup
= cgrp
;
732 list_add(&ss
->sibling
, &root
->subsys_list
);
733 rcu_assign_pointer(ss
->root
, root
);
737 } else if (bit
& removed_bits
) {
738 /* We're removing this subsystem */
739 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
740 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
742 ss
->bind(ss
, dummytop
);
743 dummytop
->subsys
[i
]->cgroup
= dummytop
;
744 cgrp
->subsys
[i
] = NULL
;
745 rcu_assign_pointer(subsys
[i
]->root
, &rootnode
);
746 list_del(&ss
->sibling
);
747 } else if (bit
& final_bits
) {
748 /* Subsystem state should already exist */
749 BUG_ON(!cgrp
->subsys
[i
]);
751 /* Subsystem state shouldn't exist */
752 BUG_ON(cgrp
->subsys
[i
]);
755 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
761 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
763 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
764 struct cgroup_subsys
*ss
;
766 mutex_lock(&cgroup_mutex
);
767 for_each_subsys(root
, ss
)
768 seq_printf(seq
, ",%s", ss
->name
);
769 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
770 seq_puts(seq
, ",noprefix");
771 if (strlen(root
->release_agent_path
))
772 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
773 mutex_unlock(&cgroup_mutex
);
777 struct cgroup_sb_opts
{
778 unsigned long subsys_bits
;
783 /* Convert a hierarchy specifier into a bitmask of subsystems and
785 static int parse_cgroupfs_options(char *data
,
786 struct cgroup_sb_opts
*opts
)
788 char *token
, *o
= data
?: "all";
790 opts
->subsys_bits
= 0;
792 opts
->release_agent
= NULL
;
794 while ((token
= strsep(&o
, ",")) != NULL
) {
797 if (!strcmp(token
, "all")) {
798 /* Add all non-disabled subsystems */
800 opts
->subsys_bits
= 0;
801 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
802 struct cgroup_subsys
*ss
= subsys
[i
];
804 opts
->subsys_bits
|= 1ul << i
;
806 } else if (!strcmp(token
, "noprefix")) {
807 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
808 } else if (!strncmp(token
, "release_agent=", 14)) {
809 /* Specifying two release agents is forbidden */
810 if (opts
->release_agent
)
812 opts
->release_agent
= kzalloc(PATH_MAX
, GFP_KERNEL
);
813 if (!opts
->release_agent
)
815 strncpy(opts
->release_agent
, token
+ 14, PATH_MAX
- 1);
816 opts
->release_agent
[PATH_MAX
- 1] = 0;
818 struct cgroup_subsys
*ss
;
820 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
822 if (!strcmp(token
, ss
->name
)) {
824 set_bit(i
, &opts
->subsys_bits
);
828 if (i
== CGROUP_SUBSYS_COUNT
)
833 /* We can't have an empty hierarchy */
834 if (!opts
->subsys_bits
)
840 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
843 struct cgroupfs_root
*root
= sb
->s_fs_info
;
844 struct cgroup
*cgrp
= &root
->top_cgroup
;
845 struct cgroup_sb_opts opts
;
847 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
848 mutex_lock(&cgroup_mutex
);
850 /* See what subsystems are wanted */
851 ret
= parse_cgroupfs_options(data
, &opts
);
855 /* Don't allow flags to change at remount */
856 if (opts
.flags
!= root
->flags
) {
861 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
863 /* (re)populate subsystem files */
865 cgroup_populate_dir(cgrp
);
867 if (opts
.release_agent
)
868 strcpy(root
->release_agent_path
, opts
.release_agent
);
870 if (opts
.release_agent
)
871 kfree(opts
.release_agent
);
872 mutex_unlock(&cgroup_mutex
);
873 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
877 static struct super_operations cgroup_ops
= {
878 .statfs
= simple_statfs
,
879 .drop_inode
= generic_delete_inode
,
880 .show_options
= cgroup_show_options
,
881 .remount_fs
= cgroup_remount
,
884 static void init_cgroup_root(struct cgroupfs_root
*root
)
886 struct cgroup
*cgrp
= &root
->top_cgroup
;
887 INIT_LIST_HEAD(&root
->subsys_list
);
888 INIT_LIST_HEAD(&root
->root_list
);
889 root
->number_of_cgroups
= 1;
891 cgrp
->top_cgroup
= cgrp
;
892 INIT_LIST_HEAD(&cgrp
->sibling
);
893 INIT_LIST_HEAD(&cgrp
->children
);
894 INIT_LIST_HEAD(&cgrp
->css_sets
);
895 INIT_LIST_HEAD(&cgrp
->release_list
);
898 static int cgroup_test_super(struct super_block
*sb
, void *data
)
900 struct cgroupfs_root
*new = data
;
901 struct cgroupfs_root
*root
= sb
->s_fs_info
;
903 /* First check subsystems */
904 if (new->subsys_bits
!= root
->subsys_bits
)
907 /* Next check flags */
908 if (new->flags
!= root
->flags
)
914 static int cgroup_set_super(struct super_block
*sb
, void *data
)
917 struct cgroupfs_root
*root
= data
;
919 ret
= set_anon_super(sb
, NULL
);
923 sb
->s_fs_info
= root
;
926 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
927 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
928 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
929 sb
->s_op
= &cgroup_ops
;
934 static int cgroup_get_rootdir(struct super_block
*sb
)
936 struct inode
*inode
=
937 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
938 struct dentry
*dentry
;
943 inode
->i_fop
= &simple_dir_operations
;
944 inode
->i_op
= &cgroup_dir_inode_operations
;
945 /* directories start off with i_nlink == 2 (for "." entry) */
947 dentry
= d_alloc_root(inode
);
956 static int cgroup_get_sb(struct file_system_type
*fs_type
,
957 int flags
, const char *unused_dev_name
,
958 void *data
, struct vfsmount
*mnt
)
960 struct cgroup_sb_opts opts
;
962 struct super_block
*sb
;
963 struct cgroupfs_root
*root
;
964 struct list_head tmp_cg_links
;
965 INIT_LIST_HEAD(&tmp_cg_links
);
967 /* First find the desired set of subsystems */
968 ret
= parse_cgroupfs_options(data
, &opts
);
970 if (opts
.release_agent
)
971 kfree(opts
.release_agent
);
975 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
977 if (opts
.release_agent
)
978 kfree(opts
.release_agent
);
982 init_cgroup_root(root
);
983 root
->subsys_bits
= opts
.subsys_bits
;
984 root
->flags
= opts
.flags
;
985 if (opts
.release_agent
) {
986 strcpy(root
->release_agent_path
, opts
.release_agent
);
987 kfree(opts
.release_agent
);
990 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, root
);
997 if (sb
->s_fs_info
!= root
) {
998 /* Reusing an existing superblock */
999 BUG_ON(sb
->s_root
== NULL
);
1003 /* New superblock */
1004 struct cgroup
*cgrp
= &root
->top_cgroup
;
1005 struct inode
*inode
;
1008 BUG_ON(sb
->s_root
!= NULL
);
1010 ret
= cgroup_get_rootdir(sb
);
1012 goto drop_new_super
;
1013 inode
= sb
->s_root
->d_inode
;
1015 mutex_lock(&inode
->i_mutex
);
1016 mutex_lock(&cgroup_mutex
);
1019 * We're accessing css_set_count without locking
1020 * css_set_lock here, but that's OK - it can only be
1021 * increased by someone holding cgroup_lock, and
1022 * that's us. The worst that can happen is that we
1023 * have some link structures left over
1025 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1027 mutex_unlock(&cgroup_mutex
);
1028 mutex_unlock(&inode
->i_mutex
);
1029 goto drop_new_super
;
1032 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1033 if (ret
== -EBUSY
) {
1034 mutex_unlock(&cgroup_mutex
);
1035 mutex_unlock(&inode
->i_mutex
);
1036 goto drop_new_super
;
1039 /* EBUSY should be the only error here */
1042 list_add(&root
->root_list
, &roots
);
1045 sb
->s_root
->d_fsdata
= &root
->top_cgroup
;
1046 root
->top_cgroup
.dentry
= sb
->s_root
;
1048 /* Link the top cgroup in this hierarchy into all
1049 * the css_set objects */
1050 write_lock(&css_set_lock
);
1051 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1052 struct hlist_head
*hhead
= &css_set_table
[i
];
1053 struct hlist_node
*node
;
1056 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
1057 struct cg_cgroup_link
*link
;
1059 BUG_ON(list_empty(&tmp_cg_links
));
1060 link
= list_entry(tmp_cg_links
.next
,
1061 struct cg_cgroup_link
,
1063 list_del(&link
->cgrp_link_list
);
1065 list_add(&link
->cgrp_link_list
,
1066 &root
->top_cgroup
.css_sets
);
1067 list_add(&link
->cg_link_list
, &cg
->cg_links
);
1070 write_unlock(&css_set_lock
);
1072 free_cg_links(&tmp_cg_links
);
1074 BUG_ON(!list_empty(&cgrp
->sibling
));
1075 BUG_ON(!list_empty(&cgrp
->children
));
1076 BUG_ON(root
->number_of_cgroups
!= 1);
1078 cgroup_populate_dir(cgrp
);
1079 mutex_unlock(&inode
->i_mutex
);
1080 mutex_unlock(&cgroup_mutex
);
1083 return simple_set_mnt(mnt
, sb
);
1086 up_write(&sb
->s_umount
);
1087 deactivate_super(sb
);
1088 free_cg_links(&tmp_cg_links
);
1092 static void cgroup_kill_sb(struct super_block
*sb
) {
1093 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1094 struct cgroup
*cgrp
= &root
->top_cgroup
;
1099 BUG_ON(root
->number_of_cgroups
!= 1);
1100 BUG_ON(!list_empty(&cgrp
->children
));
1101 BUG_ON(!list_empty(&cgrp
->sibling
));
1103 mutex_lock(&cgroup_mutex
);
1105 /* Rebind all subsystems back to the default hierarchy */
1106 ret
= rebind_subsystems(root
, 0);
1107 /* Shouldn't be able to fail ... */
1111 * Release all the links from css_sets to this hierarchy's
1114 write_lock(&css_set_lock
);
1115 while (!list_empty(&cgrp
->css_sets
)) {
1116 struct cg_cgroup_link
*link
;
1117 link
= list_entry(cgrp
->css_sets
.next
,
1118 struct cg_cgroup_link
, cgrp_link_list
);
1119 list_del(&link
->cg_link_list
);
1120 list_del(&link
->cgrp_link_list
);
1123 write_unlock(&css_set_lock
);
1125 if (!list_empty(&root
->root_list
)) {
1126 list_del(&root
->root_list
);
1129 mutex_unlock(&cgroup_mutex
);
1132 kill_litter_super(sb
);
1135 static struct file_system_type cgroup_fs_type
= {
1137 .get_sb
= cgroup_get_sb
,
1138 .kill_sb
= cgroup_kill_sb
,
1141 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1143 return dentry
->d_fsdata
;
1146 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1148 return dentry
->d_fsdata
;
1152 * cgroup_path - generate the path of a cgroup
1153 * @cgrp: the cgroup in question
1154 * @buf: the buffer to write the path into
1155 * @buflen: the length of the buffer
1157 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1158 * Returns 0 on success, -errno on error.
1160 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1164 if (cgrp
== dummytop
) {
1166 * Inactive subsystems have no dentry for their root
1173 start
= buf
+ buflen
;
1177 int len
= cgrp
->dentry
->d_name
.len
;
1178 if ((start
-= len
) < buf
)
1179 return -ENAMETOOLONG
;
1180 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1181 cgrp
= cgrp
->parent
;
1187 return -ENAMETOOLONG
;
1190 memmove(buf
, start
, buf
+ buflen
- start
);
1195 * Return the first subsystem attached to a cgroup's hierarchy, and
1199 static void get_first_subsys(const struct cgroup
*cgrp
,
1200 struct cgroup_subsys_state
**css
, int *subsys_id
)
1202 const struct cgroupfs_root
*root
= cgrp
->root
;
1203 const struct cgroup_subsys
*test_ss
;
1204 BUG_ON(list_empty(&root
->subsys_list
));
1205 test_ss
= list_entry(root
->subsys_list
.next
,
1206 struct cgroup_subsys
, sibling
);
1208 *css
= cgrp
->subsys
[test_ss
->subsys_id
];
1212 *subsys_id
= test_ss
->subsys_id
;
1216 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1217 * @cgrp: the cgroup the task is attaching to
1218 * @tsk: the task to be attached
1220 * Call holding cgroup_mutex. May take task_lock of
1221 * the task 'tsk' during call.
1223 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1226 struct cgroup_subsys
*ss
;
1227 struct cgroup
*oldcgrp
;
1228 struct css_set
*cg
= tsk
->cgroups
;
1229 struct css_set
*newcg
;
1230 struct cgroupfs_root
*root
= cgrp
->root
;
1233 get_first_subsys(cgrp
, NULL
, &subsys_id
);
1235 /* Nothing to do if the task is already in that cgroup */
1236 oldcgrp
= task_cgroup(tsk
, subsys_id
);
1237 if (cgrp
== oldcgrp
)
1240 for_each_subsys(root
, ss
) {
1241 if (ss
->can_attach
) {
1242 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1249 * Locate or allocate a new css_set for this task,
1250 * based on its final set of cgroups
1252 newcg
= find_css_set(cg
, cgrp
);
1257 if (tsk
->flags
& PF_EXITING
) {
1262 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1265 /* Update the css_set linked lists if we're using them */
1266 write_lock(&css_set_lock
);
1267 if (!list_empty(&tsk
->cg_list
)) {
1268 list_del(&tsk
->cg_list
);
1269 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1271 write_unlock(&css_set_lock
);
1273 for_each_subsys(root
, ss
) {
1275 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1277 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1284 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1285 * cgroup_mutex, may take task_lock of task
1287 static int attach_task_by_pid(struct cgroup
*cgrp
, char *pidbuf
)
1290 struct task_struct
*tsk
;
1293 if (sscanf(pidbuf
, "%d", &pid
) != 1)
1298 tsk
= find_task_by_vpid(pid
);
1299 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1303 get_task_struct(tsk
);
1306 if ((current
->euid
) && (current
->euid
!= tsk
->uid
)
1307 && (current
->euid
!= tsk
->suid
)) {
1308 put_task_struct(tsk
);
1313 get_task_struct(tsk
);
1316 ret
= cgroup_attach_task(cgrp
, tsk
);
1317 put_task_struct(tsk
);
1321 /* The various types of files and directories in a cgroup file system */
1322 enum cgroup_filetype
{
1326 FILE_NOTIFY_ON_RELEASE
,
1330 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1332 const char __user
*userbuf
,
1333 size_t nbytes
, loff_t
*unused_ppos
)
1341 if (nbytes
>= sizeof(buffer
))
1343 if (copy_from_user(buffer
, userbuf
, nbytes
))
1346 buffer
[nbytes
] = 0; /* nul-terminate */
1348 if (cft
->write_u64
) {
1349 u64 val
= simple_strtoull(buffer
, &end
, 0);
1352 retval
= cft
->write_u64(cgrp
, cft
, val
);
1354 s64 val
= simple_strtoll(buffer
, &end
, 0);
1357 retval
= cft
->write_s64(cgrp
, cft
, val
);
1364 static ssize_t
cgroup_common_file_write(struct cgroup
*cgrp
,
1367 const char __user
*userbuf
,
1368 size_t nbytes
, loff_t
*unused_ppos
)
1370 enum cgroup_filetype type
= cft
->private;
1374 if (nbytes
>= PATH_MAX
)
1377 /* +1 for nul-terminator */
1378 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1382 if (copy_from_user(buffer
, userbuf
, nbytes
)) {
1386 buffer
[nbytes
] = 0; /* nul-terminate */
1387 strstrip(buffer
); /* strip -just- trailing whitespace */
1389 mutex_lock(&cgroup_mutex
);
1392 * This was already checked for in cgroup_file_write(), but
1393 * check again now we're holding cgroup_mutex.
1395 if (cgroup_is_removed(cgrp
)) {
1402 retval
= attach_task_by_pid(cgrp
, buffer
);
1404 case FILE_NOTIFY_ON_RELEASE
:
1405 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
1406 if (simple_strtoul(buffer
, NULL
, 10) != 0)
1407 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
1409 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
1411 case FILE_RELEASE_AGENT
:
1412 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1413 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1423 mutex_unlock(&cgroup_mutex
);
1429 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1430 size_t nbytes
, loff_t
*ppos
)
1432 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1433 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1435 if (!cft
|| cgroup_is_removed(cgrp
))
1438 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1439 if (cft
->write_u64
|| cft
->write_s64
)
1440 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1442 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1443 return ret
? ret
: nbytes
;
1448 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1450 char __user
*buf
, size_t nbytes
,
1454 u64 val
= cft
->read_u64(cgrp
, cft
);
1455 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1457 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1460 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1462 char __user
*buf
, size_t nbytes
,
1466 s64 val
= cft
->read_s64(cgrp
, cft
);
1467 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1469 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1472 static ssize_t
cgroup_common_file_read(struct cgroup
*cgrp
,
1476 size_t nbytes
, loff_t
*ppos
)
1478 enum cgroup_filetype type
= cft
->private;
1483 if (!(page
= (char *)__get_free_page(GFP_KERNEL
)))
1489 case FILE_RELEASE_AGENT
:
1491 struct cgroupfs_root
*root
;
1493 mutex_lock(&cgroup_mutex
);
1495 n
= strnlen(root
->release_agent_path
,
1496 sizeof(root
->release_agent_path
));
1497 n
= min(n
, (size_t) PAGE_SIZE
);
1498 strncpy(s
, root
->release_agent_path
, n
);
1499 mutex_unlock(&cgroup_mutex
);
1509 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1511 free_page((unsigned long)page
);
1515 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1516 size_t nbytes
, loff_t
*ppos
)
1518 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1519 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1521 if (!cft
|| cgroup_is_removed(cgrp
))
1525 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1527 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1529 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1534 * seqfile ops/methods for returning structured data. Currently just
1535 * supports string->u64 maps, but can be extended in future.
1538 struct cgroup_seqfile_state
{
1540 struct cgroup
*cgroup
;
1543 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
1545 struct seq_file
*sf
= cb
->state
;
1546 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
1549 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
1551 struct cgroup_seqfile_state
*state
= m
->private;
1552 struct cftype
*cft
= state
->cft
;
1553 if (cft
->read_map
) {
1554 struct cgroup_map_cb cb
= {
1555 .fill
= cgroup_map_add
,
1558 return cft
->read_map(state
->cgroup
, cft
, &cb
);
1560 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
1563 int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
1565 struct seq_file
*seq
= file
->private_data
;
1566 kfree(seq
->private);
1567 return single_release(inode
, file
);
1570 static struct file_operations cgroup_seqfile_operations
= {
1572 .llseek
= seq_lseek
,
1573 .release
= cgroup_seqfile_release
,
1576 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
1581 err
= generic_file_open(inode
, file
);
1585 cft
= __d_cft(file
->f_dentry
);
1588 if (cft
->read_map
|| cft
->read_seq_string
) {
1589 struct cgroup_seqfile_state
*state
=
1590 kzalloc(sizeof(*state
), GFP_USER
);
1594 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
1595 file
->f_op
= &cgroup_seqfile_operations
;
1596 err
= single_open(file
, cgroup_seqfile_show
, state
);
1599 } else if (cft
->open
)
1600 err
= cft
->open(inode
, file
);
1607 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
1609 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1611 return cft
->release(inode
, file
);
1616 * cgroup_rename - Only allow simple rename of directories in place.
1618 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1619 struct inode
*new_dir
, struct dentry
*new_dentry
)
1621 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1623 if (new_dentry
->d_inode
)
1625 if (old_dir
!= new_dir
)
1627 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1630 static struct file_operations cgroup_file_operations
= {
1631 .read
= cgroup_file_read
,
1632 .write
= cgroup_file_write
,
1633 .llseek
= generic_file_llseek
,
1634 .open
= cgroup_file_open
,
1635 .release
= cgroup_file_release
,
1638 static struct inode_operations cgroup_dir_inode_operations
= {
1639 .lookup
= simple_lookup
,
1640 .mkdir
= cgroup_mkdir
,
1641 .rmdir
= cgroup_rmdir
,
1642 .rename
= cgroup_rename
,
1645 static int cgroup_create_file(struct dentry
*dentry
, int mode
,
1646 struct super_block
*sb
)
1648 static struct dentry_operations cgroup_dops
= {
1649 .d_iput
= cgroup_diput
,
1652 struct inode
*inode
;
1656 if (dentry
->d_inode
)
1659 inode
= cgroup_new_inode(mode
, sb
);
1663 if (S_ISDIR(mode
)) {
1664 inode
->i_op
= &cgroup_dir_inode_operations
;
1665 inode
->i_fop
= &simple_dir_operations
;
1667 /* start off with i_nlink == 2 (for "." entry) */
1670 /* start with the directory inode held, so that we can
1671 * populate it without racing with another mkdir */
1672 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1673 } else if (S_ISREG(mode
)) {
1675 inode
->i_fop
= &cgroup_file_operations
;
1677 dentry
->d_op
= &cgroup_dops
;
1678 d_instantiate(dentry
, inode
);
1679 dget(dentry
); /* Extra count - pin the dentry in core */
1684 * cgroup_create_dir - create a directory for an object.
1685 * @cgrp: the cgroup we create the directory for. It must have a valid
1686 * ->parent field. And we are going to fill its ->dentry field.
1687 * @dentry: dentry of the new cgroup
1688 * @mode: mode to set on new directory.
1690 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
1693 struct dentry
*parent
;
1696 parent
= cgrp
->parent
->dentry
;
1697 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
1699 dentry
->d_fsdata
= cgrp
;
1700 inc_nlink(parent
->d_inode
);
1701 cgrp
->dentry
= dentry
;
1709 int cgroup_add_file(struct cgroup
*cgrp
,
1710 struct cgroup_subsys
*subsys
,
1711 const struct cftype
*cft
)
1713 struct dentry
*dir
= cgrp
->dentry
;
1714 struct dentry
*dentry
;
1717 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
1718 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
1719 strcpy(name
, subsys
->name
);
1722 strcat(name
, cft
->name
);
1723 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
1724 dentry
= lookup_one_len(name
, dir
, strlen(name
));
1725 if (!IS_ERR(dentry
)) {
1726 error
= cgroup_create_file(dentry
, 0644 | S_IFREG
,
1729 dentry
->d_fsdata
= (void *)cft
;
1732 error
= PTR_ERR(dentry
);
1736 int cgroup_add_files(struct cgroup
*cgrp
,
1737 struct cgroup_subsys
*subsys
,
1738 const struct cftype cft
[],
1742 for (i
= 0; i
< count
; i
++) {
1743 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
1751 * cgroup_task_count - count the number of tasks in a cgroup.
1752 * @cgrp: the cgroup in question
1754 * Return the number of tasks in the cgroup.
1756 int cgroup_task_count(const struct cgroup
*cgrp
)
1759 struct list_head
*l
;
1761 read_lock(&css_set_lock
);
1762 l
= cgrp
->css_sets
.next
;
1763 while (l
!= &cgrp
->css_sets
) {
1764 struct cg_cgroup_link
*link
=
1765 list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1766 count
+= atomic_read(&link
->cg
->ref
.refcount
);
1769 read_unlock(&css_set_lock
);
1774 * Advance a list_head iterator. The iterator should be positioned at
1775 * the start of a css_set
1777 static void cgroup_advance_iter(struct cgroup
*cgrp
,
1778 struct cgroup_iter
*it
)
1780 struct list_head
*l
= it
->cg_link
;
1781 struct cg_cgroup_link
*link
;
1784 /* Advance to the next non-empty css_set */
1787 if (l
== &cgrp
->css_sets
) {
1791 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1793 } while (list_empty(&cg
->tasks
));
1795 it
->task
= cg
->tasks
.next
;
1799 * To reduce the fork() overhead for systems that are not actually
1800 * using their cgroups capability, we don't maintain the lists running
1801 * through each css_set to its tasks until we see the list actually
1802 * used - in other words after the first call to cgroup_iter_start().
1804 * The tasklist_lock is not held here, as do_each_thread() and
1805 * while_each_thread() are protected by RCU.
1807 static void cgroup_enable_task_cg_lists(void)
1809 struct task_struct
*p
, *g
;
1810 write_lock(&css_set_lock
);
1811 use_task_css_set_links
= 1;
1812 do_each_thread(g
, p
) {
1815 * We should check if the process is exiting, otherwise
1816 * it will race with cgroup_exit() in that the list
1817 * entry won't be deleted though the process has exited.
1819 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
1820 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
1822 } while_each_thread(g
, p
);
1823 write_unlock(&css_set_lock
);
1826 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1829 * The first time anyone tries to iterate across a cgroup,
1830 * we need to enable the list linking each css_set to its
1831 * tasks, and fix up all existing tasks.
1833 if (!use_task_css_set_links
)
1834 cgroup_enable_task_cg_lists();
1836 read_lock(&css_set_lock
);
1837 it
->cg_link
= &cgrp
->css_sets
;
1838 cgroup_advance_iter(cgrp
, it
);
1841 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
1842 struct cgroup_iter
*it
)
1844 struct task_struct
*res
;
1845 struct list_head
*l
= it
->task
;
1847 /* If the iterator cg is NULL, we have no tasks */
1850 res
= list_entry(l
, struct task_struct
, cg_list
);
1851 /* Advance iterator to find next entry */
1853 if (l
== &res
->cgroups
->tasks
) {
1854 /* We reached the end of this task list - move on to
1855 * the next cg_cgroup_link */
1856 cgroup_advance_iter(cgrp
, it
);
1863 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1865 read_unlock(&css_set_lock
);
1868 static inline int started_after_time(struct task_struct
*t1
,
1869 struct timespec
*time
,
1870 struct task_struct
*t2
)
1872 int start_diff
= timespec_compare(&t1
->start_time
, time
);
1873 if (start_diff
> 0) {
1875 } else if (start_diff
< 0) {
1879 * Arbitrarily, if two processes started at the same
1880 * time, we'll say that the lower pointer value
1881 * started first. Note that t2 may have exited by now
1882 * so this may not be a valid pointer any longer, but
1883 * that's fine - it still serves to distinguish
1884 * between two tasks started (effectively) simultaneously.
1891 * This function is a callback from heap_insert() and is used to order
1893 * In this case we order the heap in descending task start time.
1895 static inline int started_after(void *p1
, void *p2
)
1897 struct task_struct
*t1
= p1
;
1898 struct task_struct
*t2
= p2
;
1899 return started_after_time(t1
, &t2
->start_time
, t2
);
1903 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1904 * @scan: struct cgroup_scanner containing arguments for the scan
1906 * Arguments include pointers to callback functions test_task() and
1908 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1909 * and if it returns true, call process_task() for it also.
1910 * The test_task pointer may be NULL, meaning always true (select all tasks).
1911 * Effectively duplicates cgroup_iter_{start,next,end}()
1912 * but does not lock css_set_lock for the call to process_task().
1913 * The struct cgroup_scanner may be embedded in any structure of the caller's
1915 * It is guaranteed that process_task() will act on every task that
1916 * is a member of the cgroup for the duration of this call. This
1917 * function may or may not call process_task() for tasks that exit
1918 * or move to a different cgroup during the call, or are forked or
1919 * move into the cgroup during the call.
1921 * Note that test_task() may be called with locks held, and may in some
1922 * situations be called multiple times for the same task, so it should
1924 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1925 * pre-allocated and will be used for heap operations (and its "gt" member will
1926 * be overwritten), else a temporary heap will be used (allocation of which
1927 * may cause this function to fail).
1929 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
1932 struct cgroup_iter it
;
1933 struct task_struct
*p
, *dropped
;
1934 /* Never dereference latest_task, since it's not refcounted */
1935 struct task_struct
*latest_task
= NULL
;
1936 struct ptr_heap tmp_heap
;
1937 struct ptr_heap
*heap
;
1938 struct timespec latest_time
= { 0, 0 };
1941 /* The caller supplied our heap and pre-allocated its memory */
1943 heap
->gt
= &started_after
;
1945 /* We need to allocate our own heap memory */
1947 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
1949 /* cannot allocate the heap */
1955 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1956 * to determine which are of interest, and using the scanner's
1957 * "process_task" callback to process any of them that need an update.
1958 * Since we don't want to hold any locks during the task updates,
1959 * gather tasks to be processed in a heap structure.
1960 * The heap is sorted by descending task start time.
1961 * If the statically-sized heap fills up, we overflow tasks that
1962 * started later, and in future iterations only consider tasks that
1963 * started after the latest task in the previous pass. This
1964 * guarantees forward progress and that we don't miss any tasks.
1967 cgroup_iter_start(scan
->cg
, &it
);
1968 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
1970 * Only affect tasks that qualify per the caller's callback,
1971 * if he provided one
1973 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
1976 * Only process tasks that started after the last task
1979 if (!started_after_time(p
, &latest_time
, latest_task
))
1981 dropped
= heap_insert(heap
, p
);
1982 if (dropped
== NULL
) {
1984 * The new task was inserted; the heap wasn't
1988 } else if (dropped
!= p
) {
1990 * The new task was inserted, and pushed out a
1994 put_task_struct(dropped
);
1997 * Else the new task was newer than anything already in
1998 * the heap and wasn't inserted
2001 cgroup_iter_end(scan
->cg
, &it
);
2004 for (i
= 0; i
< heap
->size
; i
++) {
2005 struct task_struct
*q
= heap
->ptrs
[i
];
2007 latest_time
= q
->start_time
;
2010 /* Process the task per the caller's callback */
2011 scan
->process_task(q
, scan
);
2015 * If we had to process any tasks at all, scan again
2016 * in case some of them were in the middle of forking
2017 * children that didn't get processed.
2018 * Not the most efficient way to do it, but it avoids
2019 * having to take callback_mutex in the fork path
2023 if (heap
== &tmp_heap
)
2024 heap_free(&tmp_heap
);
2029 * Stuff for reading the 'tasks' file.
2031 * Reading this file can return large amounts of data if a cgroup has
2032 * *lots* of attached tasks. So it may need several calls to read(),
2033 * but we cannot guarantee that the information we produce is correct
2034 * unless we produce it entirely atomically.
2036 * Upon tasks file open(), a struct ctr_struct is allocated, that
2037 * will have a pointer to an array (also allocated here). The struct
2038 * ctr_struct * is stored in file->private_data. Its resources will
2039 * be freed by release() when the file is closed. The array is used
2040 * to sprintf the PIDs and then used by read().
2048 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2049 * 'cgrp'. Return actual number of pids loaded. No need to
2050 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2051 * read section, so the css_set can't go away, and is
2052 * immutable after creation.
2054 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cgroup
*cgrp
)
2057 struct cgroup_iter it
;
2058 struct task_struct
*tsk
;
2059 cgroup_iter_start(cgrp
, &it
);
2060 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2061 if (unlikely(n
== npids
))
2063 pidarray
[n
++] = task_pid_vnr(tsk
);
2065 cgroup_iter_end(cgrp
, &it
);
2070 * cgroupstats_build - build and fill cgroupstats
2071 * @stats: cgroupstats to fill information into
2072 * @dentry: A dentry entry belonging to the cgroup for which stats have
2075 * Build and fill cgroupstats so that taskstats can export it to user
2078 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2081 struct cgroup
*cgrp
;
2082 struct cgroup_iter it
;
2083 struct task_struct
*tsk
;
2085 * Validate dentry by checking the superblock operations
2087 if (dentry
->d_sb
->s_op
!= &cgroup_ops
)
2091 cgrp
= dentry
->d_fsdata
;
2094 cgroup_iter_start(cgrp
, &it
);
2095 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2096 switch (tsk
->state
) {
2098 stats
->nr_running
++;
2100 case TASK_INTERRUPTIBLE
:
2101 stats
->nr_sleeping
++;
2103 case TASK_UNINTERRUPTIBLE
:
2104 stats
->nr_uninterruptible
++;
2107 stats
->nr_stopped
++;
2110 if (delayacct_is_task_waiting_on_io(tsk
))
2111 stats
->nr_io_wait
++;
2115 cgroup_iter_end(cgrp
, &it
);
2122 static int cmppid(const void *a
, const void *b
)
2124 return *(pid_t
*)a
- *(pid_t
*)b
;
2128 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2129 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2130 * count 'cnt' of how many chars would be written if buf were large enough.
2132 static int pid_array_to_buf(char *buf
, int sz
, pid_t
*a
, int npids
)
2137 for (i
= 0; i
< npids
; i
++)
2138 cnt
+= snprintf(buf
+ cnt
, max(sz
- cnt
, 0), "%d\n", a
[i
]);
2143 * Handle an open on 'tasks' file. Prepare a buffer listing the
2144 * process id's of tasks currently attached to the cgroup being opened.
2146 * Does not require any specific cgroup mutexes, and does not take any.
2148 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2150 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2151 struct ctr_struct
*ctr
;
2156 if (!(file
->f_mode
& FMODE_READ
))
2159 ctr
= kmalloc(sizeof(*ctr
), GFP_KERNEL
);
2164 * If cgroup gets more users after we read count, we won't have
2165 * enough space - tough. This race is indistinguishable to the
2166 * caller from the case that the additional cgroup users didn't
2167 * show up until sometime later on.
2169 npids
= cgroup_task_count(cgrp
);
2171 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
2175 npids
= pid_array_load(pidarray
, npids
, cgrp
);
2176 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
2178 /* Call pid_array_to_buf() twice, first just to get bufsz */
2179 ctr
->bufsz
= pid_array_to_buf(&c
, sizeof(c
), pidarray
, npids
) + 1;
2180 ctr
->buf
= kmalloc(ctr
->bufsz
, GFP_KERNEL
);
2183 ctr
->bufsz
= pid_array_to_buf(ctr
->buf
, ctr
->bufsz
, pidarray
, npids
);
2190 file
->private_data
= ctr
;
2201 static ssize_t
cgroup_tasks_read(struct cgroup
*cgrp
,
2203 struct file
*file
, char __user
*buf
,
2204 size_t nbytes
, loff_t
*ppos
)
2206 struct ctr_struct
*ctr
= file
->private_data
;
2208 return simple_read_from_buffer(buf
, nbytes
, ppos
, ctr
->buf
, ctr
->bufsz
);
2211 static int cgroup_tasks_release(struct inode
*unused_inode
,
2214 struct ctr_struct
*ctr
;
2216 if (file
->f_mode
& FMODE_READ
) {
2217 ctr
= file
->private_data
;
2224 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2227 return notify_on_release(cgrp
);
2231 * for the common functions, 'private' gives the type of file
2233 static struct cftype files
[] = {
2236 .open
= cgroup_tasks_open
,
2237 .read
= cgroup_tasks_read
,
2238 .write
= cgroup_common_file_write
,
2239 .release
= cgroup_tasks_release
,
2240 .private = FILE_TASKLIST
,
2244 .name
= "notify_on_release",
2245 .read_u64
= cgroup_read_notify_on_release
,
2246 .write
= cgroup_common_file_write
,
2247 .private = FILE_NOTIFY_ON_RELEASE
,
2251 static struct cftype cft_release_agent
= {
2252 .name
= "release_agent",
2253 .read
= cgroup_common_file_read
,
2254 .write
= cgroup_common_file_write
,
2255 .private = FILE_RELEASE_AGENT
,
2258 static int cgroup_populate_dir(struct cgroup
*cgrp
)
2261 struct cgroup_subsys
*ss
;
2263 /* First clear out any existing files */
2264 cgroup_clear_directory(cgrp
->dentry
);
2266 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
2270 if (cgrp
== cgrp
->top_cgroup
) {
2271 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
2275 for_each_subsys(cgrp
->root
, ss
) {
2276 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
2283 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
2284 struct cgroup_subsys
*ss
,
2285 struct cgroup
*cgrp
)
2288 atomic_set(&css
->refcnt
, 0);
2290 if (cgrp
== dummytop
)
2291 set_bit(CSS_ROOT
, &css
->flags
);
2292 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
2293 cgrp
->subsys
[ss
->subsys_id
] = css
;
2297 * cgroup_create - create a cgroup
2298 * @parent: cgroup that will be parent of the new cgroup
2299 * @dentry: dentry of the new cgroup
2300 * @mode: mode to set on new inode
2302 * Must be called with the mutex on the parent inode held
2304 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
2307 struct cgroup
*cgrp
;
2308 struct cgroupfs_root
*root
= parent
->root
;
2310 struct cgroup_subsys
*ss
;
2311 struct super_block
*sb
= root
->sb
;
2313 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
2317 /* Grab a reference on the superblock so the hierarchy doesn't
2318 * get deleted on unmount if there are child cgroups. This
2319 * can be done outside cgroup_mutex, since the sb can't
2320 * disappear while someone has an open control file on the
2322 atomic_inc(&sb
->s_active
);
2324 mutex_lock(&cgroup_mutex
);
2326 INIT_LIST_HEAD(&cgrp
->sibling
);
2327 INIT_LIST_HEAD(&cgrp
->children
);
2328 INIT_LIST_HEAD(&cgrp
->css_sets
);
2329 INIT_LIST_HEAD(&cgrp
->release_list
);
2331 cgrp
->parent
= parent
;
2332 cgrp
->root
= parent
->root
;
2333 cgrp
->top_cgroup
= parent
->top_cgroup
;
2335 if (notify_on_release(parent
))
2336 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2338 for_each_subsys(root
, ss
) {
2339 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
2344 init_cgroup_css(css
, ss
, cgrp
);
2347 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
2348 root
->number_of_cgroups
++;
2350 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
2354 /* The cgroup directory was pre-locked for us */
2355 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
2357 err
= cgroup_populate_dir(cgrp
);
2358 /* If err < 0, we have a half-filled directory - oh well ;) */
2360 mutex_unlock(&cgroup_mutex
);
2361 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
2367 list_del(&cgrp
->sibling
);
2368 root
->number_of_cgroups
--;
2372 for_each_subsys(root
, ss
) {
2373 if (cgrp
->subsys
[ss
->subsys_id
])
2374 ss
->destroy(ss
, cgrp
);
2377 mutex_unlock(&cgroup_mutex
);
2379 /* Release the reference count that we took on the superblock */
2380 deactivate_super(sb
);
2386 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
2388 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
2390 /* the vfs holds inode->i_mutex already */
2391 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
2394 static inline int cgroup_has_css_refs(struct cgroup
*cgrp
)
2396 /* Check the reference count on each subsystem. Since we
2397 * already established that there are no tasks in the
2398 * cgroup, if the css refcount is also 0, then there should
2399 * be no outstanding references, so the subsystem is safe to
2400 * destroy. We scan across all subsystems rather than using
2401 * the per-hierarchy linked list of mounted subsystems since
2402 * we can be called via check_for_release() with no
2403 * synchronization other than RCU, and the subsystem linked
2404 * list isn't RCU-safe */
2406 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2407 struct cgroup_subsys
*ss
= subsys
[i
];
2408 struct cgroup_subsys_state
*css
;
2409 /* Skip subsystems not in this hierarchy */
2410 if (ss
->root
!= cgrp
->root
)
2412 css
= cgrp
->subsys
[ss
->subsys_id
];
2413 /* When called from check_for_release() it's possible
2414 * that by this point the cgroup has been removed
2415 * and the css deleted. But a false-positive doesn't
2416 * matter, since it can only happen if the cgroup
2417 * has been deleted and hence no longer needs the
2418 * release agent to be called anyway. */
2419 if (css
&& atomic_read(&css
->refcnt
))
2425 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
2427 struct cgroup
*cgrp
= dentry
->d_fsdata
;
2429 struct cgroup
*parent
;
2430 struct super_block
*sb
;
2431 struct cgroupfs_root
*root
;
2433 /* the vfs holds both inode->i_mutex already */
2435 mutex_lock(&cgroup_mutex
);
2436 if (atomic_read(&cgrp
->count
) != 0) {
2437 mutex_unlock(&cgroup_mutex
);
2440 if (!list_empty(&cgrp
->children
)) {
2441 mutex_unlock(&cgroup_mutex
);
2445 parent
= cgrp
->parent
;
2450 * Call pre_destroy handlers of subsys. Notify subsystems
2451 * that rmdir() request comes.
2453 cgroup_call_pre_destroy(cgrp
);
2455 if (cgroup_has_css_refs(cgrp
)) {
2456 mutex_unlock(&cgroup_mutex
);
2460 spin_lock(&release_list_lock
);
2461 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
2462 if (!list_empty(&cgrp
->release_list
))
2463 list_del(&cgrp
->release_list
);
2464 spin_unlock(&release_list_lock
);
2465 /* delete my sibling from parent->children */
2466 list_del(&cgrp
->sibling
);
2467 spin_lock(&cgrp
->dentry
->d_lock
);
2468 d
= dget(cgrp
->dentry
);
2469 cgrp
->dentry
= NULL
;
2470 spin_unlock(&d
->d_lock
);
2472 cgroup_d_remove_dir(d
);
2475 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
2476 check_for_release(parent
);
2478 mutex_unlock(&cgroup_mutex
);
2482 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
2484 struct cgroup_subsys_state
*css
;
2486 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
2488 /* Create the top cgroup state for this subsystem */
2489 ss
->root
= &rootnode
;
2490 css
= ss
->create(ss
, dummytop
);
2491 /* We don't handle early failures gracefully */
2492 BUG_ON(IS_ERR(css
));
2493 init_cgroup_css(css
, ss
, dummytop
);
2495 /* Update the init_css_set to contain a subsys
2496 * pointer to this state - since the subsystem is
2497 * newly registered, all tasks and hence the
2498 * init_css_set is in the subsystem's top cgroup. */
2499 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
2501 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
2502 need_mm_owner_callback
|= !!ss
->mm_owner_changed
;
2504 /* At system boot, before all subsystems have been
2505 * registered, no tasks have been forked, so we don't
2506 * need to invoke fork callbacks here. */
2507 BUG_ON(!list_empty(&init_task
.tasks
));
2513 * cgroup_init_early - cgroup initialization at system boot
2515 * Initialize cgroups at system boot, and initialize any
2516 * subsystems that request early init.
2518 int __init
cgroup_init_early(void)
2521 kref_init(&init_css_set
.ref
);
2522 kref_get(&init_css_set
.ref
);
2523 INIT_LIST_HEAD(&init_css_set
.cg_links
);
2524 INIT_LIST_HEAD(&init_css_set
.tasks
);
2525 INIT_HLIST_NODE(&init_css_set
.hlist
);
2527 init_cgroup_root(&rootnode
);
2528 list_add(&rootnode
.root_list
, &roots
);
2530 init_task
.cgroups
= &init_css_set
;
2532 init_css_set_link
.cg
= &init_css_set
;
2533 list_add(&init_css_set_link
.cgrp_link_list
,
2534 &rootnode
.top_cgroup
.css_sets
);
2535 list_add(&init_css_set_link
.cg_link_list
,
2536 &init_css_set
.cg_links
);
2538 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
2539 INIT_HLIST_HEAD(&css_set_table
[i
]);
2541 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2542 struct cgroup_subsys
*ss
= subsys
[i
];
2545 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
2546 BUG_ON(!ss
->create
);
2547 BUG_ON(!ss
->destroy
);
2548 if (ss
->subsys_id
!= i
) {
2549 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
2550 ss
->name
, ss
->subsys_id
);
2555 cgroup_init_subsys(ss
);
2561 * cgroup_init - cgroup initialization
2563 * Register cgroup filesystem and /proc file, and initialize
2564 * any subsystems that didn't request early init.
2566 int __init
cgroup_init(void)
2570 struct hlist_head
*hhead
;
2572 err
= bdi_init(&cgroup_backing_dev_info
);
2576 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2577 struct cgroup_subsys
*ss
= subsys
[i
];
2578 if (!ss
->early_init
)
2579 cgroup_init_subsys(ss
);
2582 /* Add init_css_set to the hash table */
2583 hhead
= css_set_hash(init_css_set
.subsys
);
2584 hlist_add_head(&init_css_set
.hlist
, hhead
);
2586 err
= register_filesystem(&cgroup_fs_type
);
2590 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
2594 bdi_destroy(&cgroup_backing_dev_info
);
2600 * proc_cgroup_show()
2601 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2602 * - Used for /proc/<pid>/cgroup.
2603 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2604 * doesn't really matter if tsk->cgroup changes after we read it,
2605 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2606 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2607 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2608 * cgroup to top_cgroup.
2611 /* TODO: Use a proper seq_file iterator */
2612 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
2615 struct task_struct
*tsk
;
2618 struct cgroupfs_root
*root
;
2621 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2627 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2633 mutex_lock(&cgroup_mutex
);
2635 for_each_root(root
) {
2636 struct cgroup_subsys
*ss
;
2637 struct cgroup
*cgrp
;
2641 /* Skip this hierarchy if it has no active subsystems */
2642 if (!root
->actual_subsys_bits
)
2644 seq_printf(m
, "%lu:", root
->subsys_bits
);
2645 for_each_subsys(root
, ss
)
2646 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
2648 get_first_subsys(&root
->top_cgroup
, NULL
, &subsys_id
);
2649 cgrp
= task_cgroup(tsk
, subsys_id
);
2650 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
2658 mutex_unlock(&cgroup_mutex
);
2659 put_task_struct(tsk
);
2666 static int cgroup_open(struct inode
*inode
, struct file
*file
)
2668 struct pid
*pid
= PROC_I(inode
)->pid
;
2669 return single_open(file
, proc_cgroup_show
, pid
);
2672 struct file_operations proc_cgroup_operations
= {
2673 .open
= cgroup_open
,
2675 .llseek
= seq_lseek
,
2676 .release
= single_release
,
2679 /* Display information about each subsystem and each hierarchy */
2680 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
2684 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2685 mutex_lock(&cgroup_mutex
);
2686 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2687 struct cgroup_subsys
*ss
= subsys
[i
];
2688 seq_printf(m
, "%s\t%lu\t%d\t%d\n",
2689 ss
->name
, ss
->root
->subsys_bits
,
2690 ss
->root
->number_of_cgroups
, !ss
->disabled
);
2692 mutex_unlock(&cgroup_mutex
);
2696 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
2698 return single_open(file
, proc_cgroupstats_show
, NULL
);
2701 static struct file_operations proc_cgroupstats_operations
= {
2702 .open
= cgroupstats_open
,
2704 .llseek
= seq_lseek
,
2705 .release
= single_release
,
2709 * cgroup_fork - attach newly forked task to its parents cgroup.
2710 * @child: pointer to task_struct of forking parent process.
2712 * Description: A task inherits its parent's cgroup at fork().
2714 * A pointer to the shared css_set was automatically copied in
2715 * fork.c by dup_task_struct(). However, we ignore that copy, since
2716 * it was not made under the protection of RCU or cgroup_mutex, so
2717 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2718 * have already changed current->cgroups, allowing the previously
2719 * referenced cgroup group to be removed and freed.
2721 * At the point that cgroup_fork() is called, 'current' is the parent
2722 * task, and the passed argument 'child' points to the child task.
2724 void cgroup_fork(struct task_struct
*child
)
2727 child
->cgroups
= current
->cgroups
;
2728 get_css_set(child
->cgroups
);
2729 task_unlock(current
);
2730 INIT_LIST_HEAD(&child
->cg_list
);
2734 * cgroup_fork_callbacks - run fork callbacks
2735 * @child: the new task
2737 * Called on a new task very soon before adding it to the
2738 * tasklist. No need to take any locks since no-one can
2739 * be operating on this task.
2741 void cgroup_fork_callbacks(struct task_struct
*child
)
2743 if (need_forkexit_callback
) {
2745 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2746 struct cgroup_subsys
*ss
= subsys
[i
];
2748 ss
->fork(ss
, child
);
2753 #ifdef CONFIG_MM_OWNER
2755 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2758 * Called on every change to mm->owner. mm_init_owner() does not
2759 * invoke this routine, since it assigns the mm->owner the first time
2760 * and does not change it.
2762 void cgroup_mm_owner_callbacks(struct task_struct
*old
, struct task_struct
*new)
2764 struct cgroup
*oldcgrp
, *newcgrp
;
2766 if (need_mm_owner_callback
) {
2768 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2769 struct cgroup_subsys
*ss
= subsys
[i
];
2770 oldcgrp
= task_cgroup(old
, ss
->subsys_id
);
2771 newcgrp
= task_cgroup(new, ss
->subsys_id
);
2772 if (oldcgrp
== newcgrp
)
2774 if (ss
->mm_owner_changed
)
2775 ss
->mm_owner_changed(ss
, oldcgrp
, newcgrp
);
2779 #endif /* CONFIG_MM_OWNER */
2782 * cgroup_post_fork - called on a new task after adding it to the task list
2783 * @child: the task in question
2785 * Adds the task to the list running through its css_set if necessary.
2786 * Has to be after the task is visible on the task list in case we race
2787 * with the first call to cgroup_iter_start() - to guarantee that the
2788 * new task ends up on its list.
2790 void cgroup_post_fork(struct task_struct
*child
)
2792 if (use_task_css_set_links
) {
2793 write_lock(&css_set_lock
);
2794 if (list_empty(&child
->cg_list
))
2795 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
2796 write_unlock(&css_set_lock
);
2800 * cgroup_exit - detach cgroup from exiting task
2801 * @tsk: pointer to task_struct of exiting process
2802 * @run_callback: run exit callbacks?
2804 * Description: Detach cgroup from @tsk and release it.
2806 * Note that cgroups marked notify_on_release force every task in
2807 * them to take the global cgroup_mutex mutex when exiting.
2808 * This could impact scaling on very large systems. Be reluctant to
2809 * use notify_on_release cgroups where very high task exit scaling
2810 * is required on large systems.
2812 * the_top_cgroup_hack:
2814 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2816 * We call cgroup_exit() while the task is still competent to
2817 * handle notify_on_release(), then leave the task attached to the
2818 * root cgroup in each hierarchy for the remainder of its exit.
2820 * To do this properly, we would increment the reference count on
2821 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2822 * code we would add a second cgroup function call, to drop that
2823 * reference. This would just create an unnecessary hot spot on
2824 * the top_cgroup reference count, to no avail.
2826 * Normally, holding a reference to a cgroup without bumping its
2827 * count is unsafe. The cgroup could go away, or someone could
2828 * attach us to a different cgroup, decrementing the count on
2829 * the first cgroup that we never incremented. But in this case,
2830 * top_cgroup isn't going away, and either task has PF_EXITING set,
2831 * which wards off any cgroup_attach_task() attempts, or task is a failed
2832 * fork, never visible to cgroup_attach_task.
2834 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
2839 if (run_callbacks
&& need_forkexit_callback
) {
2840 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2841 struct cgroup_subsys
*ss
= subsys
[i
];
2848 * Unlink from the css_set task list if necessary.
2849 * Optimistically check cg_list before taking
2852 if (!list_empty(&tsk
->cg_list
)) {
2853 write_lock(&css_set_lock
);
2854 if (!list_empty(&tsk
->cg_list
))
2855 list_del(&tsk
->cg_list
);
2856 write_unlock(&css_set_lock
);
2859 /* Reassign the task to the init_css_set. */
2862 tsk
->cgroups
= &init_css_set
;
2865 put_css_set_taskexit(cg
);
2869 * cgroup_clone - clone the cgroup the given subsystem is attached to
2870 * @tsk: the task to be moved
2871 * @subsys: the given subsystem
2873 * Duplicate the current cgroup in the hierarchy that the given
2874 * subsystem is attached to, and move this task into the new
2877 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
)
2879 struct dentry
*dentry
;
2881 char nodename
[MAX_CGROUP_TYPE_NAMELEN
];
2882 struct cgroup
*parent
, *child
;
2883 struct inode
*inode
;
2885 struct cgroupfs_root
*root
;
2886 struct cgroup_subsys
*ss
;
2888 /* We shouldn't be called by an unregistered subsystem */
2889 BUG_ON(!subsys
->active
);
2891 /* First figure out what hierarchy and cgroup we're dealing
2892 * with, and pin them so we can drop cgroup_mutex */
2893 mutex_lock(&cgroup_mutex
);
2895 root
= subsys
->root
;
2896 if (root
== &rootnode
) {
2898 "Not cloning cgroup for unused subsystem %s\n",
2900 mutex_unlock(&cgroup_mutex
);
2904 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
2906 snprintf(nodename
, MAX_CGROUP_TYPE_NAMELEN
, "node_%d", tsk
->pid
);
2908 /* Pin the hierarchy */
2909 atomic_inc(&parent
->root
->sb
->s_active
);
2911 /* Keep the cgroup alive */
2913 mutex_unlock(&cgroup_mutex
);
2915 /* Now do the VFS work to create a cgroup */
2916 inode
= parent
->dentry
->d_inode
;
2918 /* Hold the parent directory mutex across this operation to
2919 * stop anyone else deleting the new cgroup */
2920 mutex_lock(&inode
->i_mutex
);
2921 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
2922 if (IS_ERR(dentry
)) {
2924 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
2926 ret
= PTR_ERR(dentry
);
2930 /* Create the cgroup directory, which also creates the cgroup */
2931 ret
= vfs_mkdir(inode
, dentry
, S_IFDIR
| 0755);
2932 child
= __d_cgrp(dentry
);
2936 "Failed to create cgroup %s: %d\n", nodename
,
2943 "Couldn't find new cgroup %s\n", nodename
);
2948 /* The cgroup now exists. Retake cgroup_mutex and check
2949 * that we're still in the same state that we thought we
2951 mutex_lock(&cgroup_mutex
);
2952 if ((root
!= subsys
->root
) ||
2953 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
2954 /* Aargh, we raced ... */
2955 mutex_unlock(&inode
->i_mutex
);
2958 deactivate_super(parent
->root
->sb
);
2959 /* The cgroup is still accessible in the VFS, but
2960 * we're not going to try to rmdir() it at this
2963 "Race in cgroup_clone() - leaking cgroup %s\n",
2968 /* do any required auto-setup */
2969 for_each_subsys(root
, ss
) {
2971 ss
->post_clone(ss
, child
);
2974 /* All seems fine. Finish by moving the task into the new cgroup */
2975 ret
= cgroup_attach_task(child
, tsk
);
2976 mutex_unlock(&cgroup_mutex
);
2979 mutex_unlock(&inode
->i_mutex
);
2981 mutex_lock(&cgroup_mutex
);
2983 mutex_unlock(&cgroup_mutex
);
2984 deactivate_super(parent
->root
->sb
);
2989 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2990 * @cgrp: the cgroup in question
2992 * See if @cgrp is a descendant of the current task's cgroup in
2993 * the appropriate hierarchy.
2995 * If we are sending in dummytop, then presumably we are creating
2996 * the top cgroup in the subsystem.
2998 * Called only by the ns (nsproxy) cgroup.
3000 int cgroup_is_descendant(const struct cgroup
*cgrp
)
3003 struct cgroup
*target
;
3006 if (cgrp
== dummytop
)
3009 get_first_subsys(cgrp
, NULL
, &subsys_id
);
3010 target
= task_cgroup(current
, subsys_id
);
3011 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
3012 cgrp
= cgrp
->parent
;
3013 ret
= (cgrp
== target
);
3017 static void check_for_release(struct cgroup
*cgrp
)
3019 /* All of these checks rely on RCU to keep the cgroup
3020 * structure alive */
3021 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
3022 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
3023 /* Control Group is currently removeable. If it's not
3024 * already queued for a userspace notification, queue
3026 int need_schedule_work
= 0;
3027 spin_lock(&release_list_lock
);
3028 if (!cgroup_is_removed(cgrp
) &&
3029 list_empty(&cgrp
->release_list
)) {
3030 list_add(&cgrp
->release_list
, &release_list
);
3031 need_schedule_work
= 1;
3033 spin_unlock(&release_list_lock
);
3034 if (need_schedule_work
)
3035 schedule_work(&release_agent_work
);
3039 void __css_put(struct cgroup_subsys_state
*css
)
3041 struct cgroup
*cgrp
= css
->cgroup
;
3043 if (atomic_dec_and_test(&css
->refcnt
) && notify_on_release(cgrp
)) {
3044 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3045 check_for_release(cgrp
);
3051 * Notify userspace when a cgroup is released, by running the
3052 * configured release agent with the name of the cgroup (path
3053 * relative to the root of cgroup file system) as the argument.
3055 * Most likely, this user command will try to rmdir this cgroup.
3057 * This races with the possibility that some other task will be
3058 * attached to this cgroup before it is removed, or that some other
3059 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3060 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3061 * unused, and this cgroup will be reprieved from its death sentence,
3062 * to continue to serve a useful existence. Next time it's released,
3063 * we will get notified again, if it still has 'notify_on_release' set.
3065 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3066 * means only wait until the task is successfully execve()'d. The
3067 * separate release agent task is forked by call_usermodehelper(),
3068 * then control in this thread returns here, without waiting for the
3069 * release agent task. We don't bother to wait because the caller of
3070 * this routine has no use for the exit status of the release agent
3071 * task, so no sense holding our caller up for that.
3073 static void cgroup_release_agent(struct work_struct
*work
)
3075 BUG_ON(work
!= &release_agent_work
);
3076 mutex_lock(&cgroup_mutex
);
3077 spin_lock(&release_list_lock
);
3078 while (!list_empty(&release_list
)) {
3079 char *argv
[3], *envp
[3];
3082 struct cgroup
*cgrp
= list_entry(release_list
.next
,
3085 list_del_init(&cgrp
->release_list
);
3086 spin_unlock(&release_list_lock
);
3087 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3089 spin_lock(&release_list_lock
);
3093 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0) {
3095 spin_lock(&release_list_lock
);
3100 argv
[i
++] = cgrp
->root
->release_agent_path
;
3101 argv
[i
++] = (char *)pathbuf
;
3105 /* minimal command environment */
3106 envp
[i
++] = "HOME=/";
3107 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3110 /* Drop the lock while we invoke the usermode helper,
3111 * since the exec could involve hitting disk and hence
3112 * be a slow process */
3113 mutex_unlock(&cgroup_mutex
);
3114 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
3116 mutex_lock(&cgroup_mutex
);
3117 spin_lock(&release_list_lock
);
3119 spin_unlock(&release_list_lock
);
3120 mutex_unlock(&cgroup_mutex
);
3123 static int __init
cgroup_disable(char *str
)
3128 while ((token
= strsep(&str
, ",")) != NULL
) {
3132 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3133 struct cgroup_subsys
*ss
= subsys
[i
];
3135 if (!strcmp(token
, ss
->name
)) {
3137 printk(KERN_INFO
"Disabling %s control group"
3138 " subsystem\n", ss
->name
);
3145 __setup("cgroup_disable=", cgroup_disable
);