Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[linux-2.6/lfs.git] / drivers / firewire / fw-sbp2.c
blobb2458bb8e9cade2fd79fea620b60eb9edd0aa7e0
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
56 * So far only bridges from Oxford Semiconductor are known to support
57 * concurrent logins. Depending on firmware, four or two concurrent logins
58 * are possible on OXFW911 and newer Oxsemi bridges.
60 * Concurrent logins are useful together with cluster filesystems.
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65 "(default = Y, use N for concurrent initiators)");
68 * Flags for firmware oddities
70 * - 128kB max transfer
71 * Limit transfer size. Necessary for some old bridges.
73 * - 36 byte inquiry
74 * When scsi_mod probes the device, let the inquiry command look like that
75 * from MS Windows.
77 * - skip mode page 8
78 * Suppress sending of mode_sense for mode page 8 if the device pretends to
79 * support the SCSI Primary Block commands instead of Reduced Block Commands.
81 * - fix capacity
82 * Tell sd_mod to correct the last sector number reported by read_capacity.
83 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
84 * Don't use this with devices which don't have this bug.
86 * - delay inquiry
87 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89 * - override internal blacklist
90 * Instead of adding to the built-in blacklist, use only the workarounds
91 * specified in the module load parameter.
92 * Useful if a blacklist entry interfered with a non-broken device.
94 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
95 #define SBP2_WORKAROUND_INQUIRY_36 0x2
96 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
97 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
98 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
99 #define SBP2_INQUIRY_DELAY 12
100 #define SBP2_WORKAROUND_OVERRIDE 0x100
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
107 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
111 ", or a combination)");
113 /* I don't know why the SCSI stack doesn't define something like this... */
114 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
116 static const char sbp2_driver_name[] = "sbp2";
119 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
120 * and one struct scsi_device per sbp2_logical_unit.
122 struct sbp2_logical_unit {
123 struct sbp2_target *tgt;
124 struct list_head link;
125 struct fw_address_handler address_handler;
126 struct list_head orb_list;
128 u64 command_block_agent_address;
129 u16 lun;
130 int login_id;
133 * The generation is updated once we've logged in or reconnected
134 * to the logical unit. Thus, I/O to the device will automatically
135 * fail and get retried if it happens in a window where the device
136 * is not ready, e.g. after a bus reset but before we reconnect.
138 int generation;
139 int retries;
140 struct delayed_work work;
141 bool has_sdev;
142 bool blocked;
146 * We create one struct sbp2_target per IEEE 1212 Unit Directory
147 * and one struct Scsi_Host per sbp2_target.
149 struct sbp2_target {
150 struct kref kref;
151 struct fw_unit *unit;
152 const char *bus_id;
153 struct list_head lu_list;
155 u64 management_agent_address;
156 u64 guid;
157 int directory_id;
158 int node_id;
159 int address_high;
160 unsigned int workarounds;
161 unsigned int mgt_orb_timeout;
163 int dont_block; /* counter for each logical unit */
164 int blocked; /* ditto */
168 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
169 * provided in the config rom. Most devices do provide a value, which
170 * we'll use for login management orbs, but with some sane limits.
172 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
173 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
174 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
175 #define SBP2_ORB_NULL 0x80000000
176 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
177 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
178 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
180 /* Unit directory keys */
181 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
182 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
183 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
184 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
186 /* Management orb opcodes */
187 #define SBP2_LOGIN_REQUEST 0x0
188 #define SBP2_QUERY_LOGINS_REQUEST 0x1
189 #define SBP2_RECONNECT_REQUEST 0x3
190 #define SBP2_SET_PASSWORD_REQUEST 0x4
191 #define SBP2_LOGOUT_REQUEST 0x7
192 #define SBP2_ABORT_TASK_REQUEST 0xb
193 #define SBP2_ABORT_TASK_SET 0xc
194 #define SBP2_LOGICAL_UNIT_RESET 0xe
195 #define SBP2_TARGET_RESET_REQUEST 0xf
197 /* Offsets for command block agent registers */
198 #define SBP2_AGENT_STATE 0x00
199 #define SBP2_AGENT_RESET 0x04
200 #define SBP2_ORB_POINTER 0x08
201 #define SBP2_DOORBELL 0x10
202 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
204 /* Status write response codes */
205 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
206 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
207 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
208 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
210 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
211 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
212 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
213 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
214 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
215 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
216 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
217 #define STATUS_GET_DATA(v) ((v).data)
219 struct sbp2_status {
220 u32 status;
221 u32 orb_low;
222 u8 data[24];
225 struct sbp2_pointer {
226 __be32 high;
227 __be32 low;
230 struct sbp2_orb {
231 struct fw_transaction t;
232 struct kref kref;
233 dma_addr_t request_bus;
234 int rcode;
235 struct sbp2_pointer pointer;
236 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
237 struct list_head link;
240 #define MANAGEMENT_ORB_LUN(v) ((v))
241 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
242 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
243 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
244 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
245 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
247 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
248 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
250 struct sbp2_management_orb {
251 struct sbp2_orb base;
252 struct {
253 struct sbp2_pointer password;
254 struct sbp2_pointer response;
255 __be32 misc;
256 __be32 length;
257 struct sbp2_pointer status_fifo;
258 } request;
259 __be32 response[4];
260 dma_addr_t response_bus;
261 struct completion done;
262 struct sbp2_status status;
265 struct sbp2_login_response {
266 __be32 misc;
267 struct sbp2_pointer command_block_agent;
268 __be32 reconnect_hold;
270 #define COMMAND_ORB_DATA_SIZE(v) ((v))
271 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
272 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
273 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
274 #define COMMAND_ORB_SPEED(v) ((v) << 24)
275 #define COMMAND_ORB_DIRECTION ((1) << 27)
276 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
277 #define COMMAND_ORB_NOTIFY ((1) << 31)
279 struct sbp2_command_orb {
280 struct sbp2_orb base;
281 struct {
282 struct sbp2_pointer next;
283 struct sbp2_pointer data_descriptor;
284 __be32 misc;
285 u8 command_block[12];
286 } request;
287 struct scsi_cmnd *cmd;
288 scsi_done_fn_t done;
289 struct sbp2_logical_unit *lu;
291 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
292 dma_addr_t page_table_bus;
296 * List of devices with known bugs.
298 * The firmware_revision field, masked with 0xffff00, is the best
299 * indicator for the type of bridge chip of a device. It yields a few
300 * false positives but this did not break correctly behaving devices
301 * so far. We use ~0 as a wildcard, since the 24 bit values we get
302 * from the config rom can never match that.
304 static const struct {
305 u32 firmware_revision;
306 u32 model;
307 unsigned int workarounds;
308 } sbp2_workarounds_table[] = {
309 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
310 .firmware_revision = 0x002800,
311 .model = 0x001010,
312 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
313 SBP2_WORKAROUND_MODE_SENSE_8,
315 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
316 .firmware_revision = 0x002800,
317 .model = 0x000000,
318 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY,
320 /* Initio bridges, actually only needed for some older ones */ {
321 .firmware_revision = 0x000200,
322 .model = ~0,
323 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
325 /* Symbios bridge */ {
326 .firmware_revision = 0xa0b800,
327 .model = ~0,
328 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
330 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
331 .firmware_revision = 0x002600,
332 .model = ~0,
333 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
337 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
338 * these iPods do not feature the read_capacity bug according
339 * to one report. Read_capacity behaviour as well as model_id
340 * could change due to Apple-supplied firmware updates though.
343 /* iPod 4th generation. */ {
344 .firmware_revision = 0x0a2700,
345 .model = 0x000021,
346 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
348 /* iPod mini */ {
349 .firmware_revision = 0x0a2700,
350 .model = 0x000023,
351 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
353 /* iPod Photo */ {
354 .firmware_revision = 0x0a2700,
355 .model = 0x00007e,
356 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
360 static void
361 free_orb(struct kref *kref)
363 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
365 kfree(orb);
368 static void
369 sbp2_status_write(struct fw_card *card, struct fw_request *request,
370 int tcode, int destination, int source,
371 int generation, int speed,
372 unsigned long long offset,
373 void *payload, size_t length, void *callback_data)
375 struct sbp2_logical_unit *lu = callback_data;
376 struct sbp2_orb *orb;
377 struct sbp2_status status;
378 size_t header_size;
379 unsigned long flags;
381 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
382 length == 0 || length > sizeof(status)) {
383 fw_send_response(card, request, RCODE_TYPE_ERROR);
384 return;
387 header_size = min(length, 2 * sizeof(u32));
388 fw_memcpy_from_be32(&status, payload, header_size);
389 if (length > header_size)
390 memcpy(status.data, payload + 8, length - header_size);
391 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
392 fw_notify("non-orb related status write, not handled\n");
393 fw_send_response(card, request, RCODE_COMPLETE);
394 return;
397 /* Lookup the orb corresponding to this status write. */
398 spin_lock_irqsave(&card->lock, flags);
399 list_for_each_entry(orb, &lu->orb_list, link) {
400 if (STATUS_GET_ORB_HIGH(status) == 0 &&
401 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
402 orb->rcode = RCODE_COMPLETE;
403 list_del(&orb->link);
404 break;
407 spin_unlock_irqrestore(&card->lock, flags);
409 if (&orb->link != &lu->orb_list)
410 orb->callback(orb, &status);
411 else
412 fw_error("status write for unknown orb\n");
414 kref_put(&orb->kref, free_orb);
416 fw_send_response(card, request, RCODE_COMPLETE);
419 static void
420 complete_transaction(struct fw_card *card, int rcode,
421 void *payload, size_t length, void *data)
423 struct sbp2_orb *orb = data;
424 unsigned long flags;
427 * This is a little tricky. We can get the status write for
428 * the orb before we get this callback. The status write
429 * handler above will assume the orb pointer transaction was
430 * successful and set the rcode to RCODE_COMPLETE for the orb.
431 * So this callback only sets the rcode if it hasn't already
432 * been set and only does the cleanup if the transaction
433 * failed and we didn't already get a status write.
435 spin_lock_irqsave(&card->lock, flags);
437 if (orb->rcode == -1)
438 orb->rcode = rcode;
439 if (orb->rcode != RCODE_COMPLETE) {
440 list_del(&orb->link);
441 spin_unlock_irqrestore(&card->lock, flags);
442 orb->callback(orb, NULL);
443 } else {
444 spin_unlock_irqrestore(&card->lock, flags);
447 kref_put(&orb->kref, free_orb);
450 static void
451 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
452 int node_id, int generation, u64 offset)
454 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
455 unsigned long flags;
457 orb->pointer.high = 0;
458 orb->pointer.low = cpu_to_be32(orb->request_bus);
460 spin_lock_irqsave(&device->card->lock, flags);
461 list_add_tail(&orb->link, &lu->orb_list);
462 spin_unlock_irqrestore(&device->card->lock, flags);
464 /* Take a ref for the orb list and for the transaction callback. */
465 kref_get(&orb->kref);
466 kref_get(&orb->kref);
468 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
469 node_id, generation, device->max_speed, offset,
470 &orb->pointer, sizeof(orb->pointer),
471 complete_transaction, orb);
474 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
476 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
477 struct sbp2_orb *orb, *next;
478 struct list_head list;
479 unsigned long flags;
480 int retval = -ENOENT;
482 INIT_LIST_HEAD(&list);
483 spin_lock_irqsave(&device->card->lock, flags);
484 list_splice_init(&lu->orb_list, &list);
485 spin_unlock_irqrestore(&device->card->lock, flags);
487 list_for_each_entry_safe(orb, next, &list, link) {
488 retval = 0;
489 if (fw_cancel_transaction(device->card, &orb->t) == 0)
490 continue;
492 orb->rcode = RCODE_CANCELLED;
493 orb->callback(orb, NULL);
496 return retval;
499 static void
500 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
502 struct sbp2_management_orb *orb =
503 container_of(base_orb, struct sbp2_management_orb, base);
505 if (status)
506 memcpy(&orb->status, status, sizeof(*status));
507 complete(&orb->done);
510 static int
511 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
512 int generation, int function, int lun_or_login_id,
513 void *response)
515 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
516 struct sbp2_management_orb *orb;
517 unsigned int timeout;
518 int retval = -ENOMEM;
520 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
521 return 0;
523 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
524 if (orb == NULL)
525 return -ENOMEM;
527 kref_init(&orb->base.kref);
528 orb->response_bus =
529 dma_map_single(device->card->device, &orb->response,
530 sizeof(orb->response), DMA_FROM_DEVICE);
531 if (dma_mapping_error(orb->response_bus))
532 goto fail_mapping_response;
534 orb->request.response.high = 0;
535 orb->request.response.low = cpu_to_be32(orb->response_bus);
537 orb->request.misc = cpu_to_be32(
538 MANAGEMENT_ORB_NOTIFY |
539 MANAGEMENT_ORB_FUNCTION(function) |
540 MANAGEMENT_ORB_LUN(lun_or_login_id));
541 orb->request.length = cpu_to_be32(
542 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
544 orb->request.status_fifo.high =
545 cpu_to_be32(lu->address_handler.offset >> 32);
546 orb->request.status_fifo.low =
547 cpu_to_be32(lu->address_handler.offset);
549 if (function == SBP2_LOGIN_REQUEST) {
550 /* Ask for 2^2 == 4 seconds reconnect grace period */
551 orb->request.misc |= cpu_to_be32(
552 MANAGEMENT_ORB_RECONNECT(2) |
553 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
554 timeout = lu->tgt->mgt_orb_timeout;
555 } else {
556 timeout = SBP2_ORB_TIMEOUT;
559 init_completion(&orb->done);
560 orb->base.callback = complete_management_orb;
562 orb->base.request_bus =
563 dma_map_single(device->card->device, &orb->request,
564 sizeof(orb->request), DMA_TO_DEVICE);
565 if (dma_mapping_error(orb->base.request_bus))
566 goto fail_mapping_request;
568 sbp2_send_orb(&orb->base, lu, node_id, generation,
569 lu->tgt->management_agent_address);
571 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
573 retval = -EIO;
574 if (sbp2_cancel_orbs(lu) == 0) {
575 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
576 lu->tgt->bus_id, orb->base.rcode);
577 goto out;
580 if (orb->base.rcode != RCODE_COMPLETE) {
581 fw_error("%s: management write failed, rcode 0x%02x\n",
582 lu->tgt->bus_id, orb->base.rcode);
583 goto out;
586 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
587 STATUS_GET_SBP_STATUS(orb->status) != 0) {
588 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
589 STATUS_GET_RESPONSE(orb->status),
590 STATUS_GET_SBP_STATUS(orb->status));
591 goto out;
594 retval = 0;
595 out:
596 dma_unmap_single(device->card->device, orb->base.request_bus,
597 sizeof(orb->request), DMA_TO_DEVICE);
598 fail_mapping_request:
599 dma_unmap_single(device->card->device, orb->response_bus,
600 sizeof(orb->response), DMA_FROM_DEVICE);
601 fail_mapping_response:
602 if (response)
603 memcpy(response, orb->response, sizeof(orb->response));
604 kref_put(&orb->base.kref, free_orb);
606 return retval;
609 static void
610 complete_agent_reset_write(struct fw_card *card, int rcode,
611 void *payload, size_t length, void *done)
613 complete(done);
616 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
618 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
619 DECLARE_COMPLETION_ONSTACK(done);
620 struct fw_transaction t;
621 static u32 z;
623 fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
624 lu->tgt->node_id, lu->generation, device->max_speed,
625 lu->command_block_agent_address + SBP2_AGENT_RESET,
626 &z, sizeof(z), complete_agent_reset_write, &done);
627 wait_for_completion(&done);
630 static void
631 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
632 void *payload, size_t length, void *data)
634 kfree(data);
637 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
639 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
640 struct fw_transaction *t;
641 static u32 z;
643 t = kmalloc(sizeof(*t), GFP_ATOMIC);
644 if (t == NULL)
645 return;
647 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
648 lu->tgt->node_id, lu->generation, device->max_speed,
649 lu->command_block_agent_address + SBP2_AGENT_RESET,
650 &z, sizeof(z), complete_agent_reset_write_no_wait, t);
653 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
655 struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
656 unsigned long flags;
658 /* serialize with comparisons of lu->generation and card->generation */
659 spin_lock_irqsave(&card->lock, flags);
660 lu->generation = generation;
661 spin_unlock_irqrestore(&card->lock, flags);
664 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
667 * We may access dont_block without taking card->lock here:
668 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
669 * are currently serialized against each other.
670 * And a wrong result in sbp2_conditionally_block()'s access of
671 * dont_block is rather harmless, it simply misses its first chance.
673 --lu->tgt->dont_block;
677 * Blocks lu->tgt if all of the following conditions are met:
678 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
679 * logical units have been finished (indicated by dont_block == 0).
680 * - lu->generation is stale.
682 * Note, scsi_block_requests() must be called while holding card->lock,
683 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
684 * unblock the target.
686 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
688 struct sbp2_target *tgt = lu->tgt;
689 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
690 struct Scsi_Host *shost =
691 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
692 unsigned long flags;
694 spin_lock_irqsave(&card->lock, flags);
695 if (!tgt->dont_block && !lu->blocked &&
696 lu->generation != card->generation) {
697 lu->blocked = true;
698 if (++tgt->blocked == 1)
699 scsi_block_requests(shost);
701 spin_unlock_irqrestore(&card->lock, flags);
705 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
706 * Note, it is harmless to run scsi_unblock_requests() outside the
707 * card->lock protected section. On the other hand, running it inside
708 * the section might clash with shost->host_lock.
710 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
712 struct sbp2_target *tgt = lu->tgt;
713 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
714 struct Scsi_Host *shost =
715 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
716 unsigned long flags;
717 bool unblock = false;
719 spin_lock_irqsave(&card->lock, flags);
720 if (lu->blocked && lu->generation == card->generation) {
721 lu->blocked = false;
722 unblock = --tgt->blocked == 0;
724 spin_unlock_irqrestore(&card->lock, flags);
726 if (unblock)
727 scsi_unblock_requests(shost);
731 * Prevents future blocking of tgt and unblocks it.
732 * Note, it is harmless to run scsi_unblock_requests() outside the
733 * card->lock protected section. On the other hand, running it inside
734 * the section might clash with shost->host_lock.
736 static void sbp2_unblock(struct sbp2_target *tgt)
738 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
739 struct Scsi_Host *shost =
740 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
741 unsigned long flags;
743 spin_lock_irqsave(&card->lock, flags);
744 ++tgt->dont_block;
745 spin_unlock_irqrestore(&card->lock, flags);
747 scsi_unblock_requests(shost);
750 static int sbp2_lun2int(u16 lun)
752 struct scsi_lun eight_bytes_lun;
754 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
755 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
756 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
758 return scsilun_to_int(&eight_bytes_lun);
761 static void sbp2_release_target(struct kref *kref)
763 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
764 struct sbp2_logical_unit *lu, *next;
765 struct Scsi_Host *shost =
766 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
767 struct scsi_device *sdev;
768 struct fw_device *device = fw_device(tgt->unit->device.parent);
770 /* prevent deadlocks */
771 sbp2_unblock(tgt);
773 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
774 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
775 if (sdev) {
776 scsi_remove_device(sdev);
777 scsi_device_put(sdev);
779 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
780 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
782 fw_core_remove_address_handler(&lu->address_handler);
783 list_del(&lu->link);
784 kfree(lu);
786 scsi_remove_host(shost);
787 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
789 fw_unit_put(tgt->unit);
790 scsi_host_put(shost);
791 fw_device_put(device);
794 static struct workqueue_struct *sbp2_wq;
797 * Always get the target's kref when scheduling work on one its units.
798 * Each workqueue job is responsible to call sbp2_target_put() upon return.
800 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
802 if (queue_delayed_work(sbp2_wq, &lu->work, delay))
803 kref_get(&lu->tgt->kref);
806 static void sbp2_target_put(struct sbp2_target *tgt)
808 kref_put(&tgt->kref, sbp2_release_target);
811 static void
812 complete_set_busy_timeout(struct fw_card *card, int rcode,
813 void *payload, size_t length, void *done)
815 complete(done);
819 * Write retransmit retry values into the BUSY_TIMEOUT register.
820 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
821 * default retry_limit value is 0 (i.e. never retry transmission). We write a
822 * saner value after logging into the device.
823 * - The dual-phase retry protocol is optional to implement, and if not
824 * supported, writes to the dual-phase portion of the register will be
825 * ignored. We try to write the original 1394-1995 default here.
826 * - In the case of devices that are also SBP-3-compliant, all writes are
827 * ignored, as the register is read-only, but contains single-phase retry of
828 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
829 * write attempt is safe and yields more consistent behavior for all devices.
831 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
832 * and section 6.4 of the SBP-3 spec for further details.
834 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
836 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
837 DECLARE_COMPLETION_ONSTACK(done);
838 struct fw_transaction t;
839 static __be32 busy_timeout;
841 busy_timeout = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
843 fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
844 lu->tgt->node_id, lu->generation, device->max_speed,
845 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout,
846 sizeof(busy_timeout), complete_set_busy_timeout, &done);
847 wait_for_completion(&done);
850 static void sbp2_reconnect(struct work_struct *work);
852 static void sbp2_login(struct work_struct *work)
854 struct sbp2_logical_unit *lu =
855 container_of(work, struct sbp2_logical_unit, work.work);
856 struct sbp2_target *tgt = lu->tgt;
857 struct fw_device *device = fw_device(tgt->unit->device.parent);
858 struct Scsi_Host *shost;
859 struct scsi_device *sdev;
860 struct sbp2_login_response response;
861 int generation, node_id, local_node_id;
863 if (fw_device_is_shutdown(device))
864 goto out;
866 generation = device->generation;
867 smp_rmb(); /* node_id must not be older than generation */
868 node_id = device->node_id;
869 local_node_id = device->card->node_id;
871 /* If this is a re-login attempt, log out, or we might be rejected. */
872 if (lu->has_sdev)
873 sbp2_send_management_orb(lu, device->node_id, generation,
874 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
876 if (sbp2_send_management_orb(lu, node_id, generation,
877 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
878 if (lu->retries++ < 5) {
879 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
880 } else {
881 fw_error("%s: failed to login to LUN %04x\n",
882 tgt->bus_id, lu->lun);
883 /* Let any waiting I/O fail from now on. */
884 sbp2_unblock(lu->tgt);
886 goto out;
889 tgt->node_id = node_id;
890 tgt->address_high = local_node_id << 16;
891 sbp2_set_generation(lu, generation);
893 lu->command_block_agent_address =
894 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
895 << 32) | be32_to_cpu(response.command_block_agent.low);
896 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
898 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
899 tgt->bus_id, lu->lun, lu->retries);
901 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
902 sbp2_set_busy_timeout(lu);
904 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
905 sbp2_agent_reset(lu);
907 /* This was a re-login. */
908 if (lu->has_sdev) {
909 sbp2_cancel_orbs(lu);
910 sbp2_conditionally_unblock(lu);
911 goto out;
914 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
915 ssleep(SBP2_INQUIRY_DELAY);
917 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
918 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
920 * FIXME: We are unable to perform reconnects while in sbp2_login().
921 * Therefore __scsi_add_device() will get into trouble if a bus reset
922 * happens in parallel. It will either fail or leave us with an
923 * unusable sdev. As a workaround we check for this and retry the
924 * whole login and SCSI probing.
927 /* Reported error during __scsi_add_device() */
928 if (IS_ERR(sdev))
929 goto out_logout_login;
931 /* Unreported error during __scsi_add_device() */
932 smp_rmb(); /* get current card generation */
933 if (generation != device->card->generation) {
934 scsi_remove_device(sdev);
935 scsi_device_put(sdev);
936 goto out_logout_login;
939 /* No error during __scsi_add_device() */
940 lu->has_sdev = true;
941 scsi_device_put(sdev);
942 sbp2_allow_block(lu);
943 goto out;
945 out_logout_login:
946 smp_rmb(); /* generation may have changed */
947 generation = device->generation;
948 smp_rmb(); /* node_id must not be older than generation */
950 sbp2_send_management_orb(lu, device->node_id, generation,
951 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
953 * If a bus reset happened, sbp2_update will have requeued
954 * lu->work already. Reset the work from reconnect to login.
956 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
957 out:
958 sbp2_target_put(tgt);
961 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
963 struct sbp2_logical_unit *lu;
965 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
966 if (!lu)
967 return -ENOMEM;
969 lu->address_handler.length = 0x100;
970 lu->address_handler.address_callback = sbp2_status_write;
971 lu->address_handler.callback_data = lu;
973 if (fw_core_add_address_handler(&lu->address_handler,
974 &fw_high_memory_region) < 0) {
975 kfree(lu);
976 return -ENOMEM;
979 lu->tgt = tgt;
980 lu->lun = lun_entry & 0xffff;
981 lu->retries = 0;
982 lu->has_sdev = false;
983 lu->blocked = false;
984 ++tgt->dont_block;
985 INIT_LIST_HEAD(&lu->orb_list);
986 INIT_DELAYED_WORK(&lu->work, sbp2_login);
988 list_add_tail(&lu->link, &tgt->lu_list);
989 return 0;
992 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
994 struct fw_csr_iterator ci;
995 int key, value;
997 fw_csr_iterator_init(&ci, directory);
998 while (fw_csr_iterator_next(&ci, &key, &value))
999 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1000 sbp2_add_logical_unit(tgt, value) < 0)
1001 return -ENOMEM;
1002 return 0;
1005 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1006 u32 *model, u32 *firmware_revision)
1008 struct fw_csr_iterator ci;
1009 int key, value;
1010 unsigned int timeout;
1012 fw_csr_iterator_init(&ci, directory);
1013 while (fw_csr_iterator_next(&ci, &key, &value)) {
1014 switch (key) {
1016 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1017 tgt->management_agent_address =
1018 CSR_REGISTER_BASE + 4 * value;
1019 break;
1021 case CSR_DIRECTORY_ID:
1022 tgt->directory_id = value;
1023 break;
1025 case CSR_MODEL:
1026 *model = value;
1027 break;
1029 case SBP2_CSR_FIRMWARE_REVISION:
1030 *firmware_revision = value;
1031 break;
1033 case SBP2_CSR_UNIT_CHARACTERISTICS:
1034 /* the timeout value is stored in 500ms units */
1035 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1036 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1037 tgt->mgt_orb_timeout =
1038 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1040 if (timeout > tgt->mgt_orb_timeout)
1041 fw_notify("%s: config rom contains %ds "
1042 "management ORB timeout, limiting "
1043 "to %ds\n", tgt->bus_id,
1044 timeout / 1000,
1045 tgt->mgt_orb_timeout / 1000);
1046 break;
1048 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1049 if (sbp2_add_logical_unit(tgt, value) < 0)
1050 return -ENOMEM;
1051 break;
1053 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1054 if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
1055 return -ENOMEM;
1056 break;
1059 return 0;
1062 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1063 u32 firmware_revision)
1065 int i;
1066 unsigned int w = sbp2_param_workarounds;
1068 if (w)
1069 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1070 "if you need the workarounds parameter for %s\n",
1071 tgt->bus_id);
1073 if (w & SBP2_WORKAROUND_OVERRIDE)
1074 goto out;
1076 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1078 if (sbp2_workarounds_table[i].firmware_revision !=
1079 (firmware_revision & 0xffffff00))
1080 continue;
1082 if (sbp2_workarounds_table[i].model != model &&
1083 sbp2_workarounds_table[i].model != ~0)
1084 continue;
1086 w |= sbp2_workarounds_table[i].workarounds;
1087 break;
1089 out:
1090 if (w)
1091 fw_notify("Workarounds for %s: 0x%x "
1092 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1093 tgt->bus_id, w, firmware_revision, model);
1094 tgt->workarounds = w;
1097 static struct scsi_host_template scsi_driver_template;
1099 static int sbp2_probe(struct device *dev)
1101 struct fw_unit *unit = fw_unit(dev);
1102 struct fw_device *device = fw_device(unit->device.parent);
1103 struct sbp2_target *tgt;
1104 struct sbp2_logical_unit *lu;
1105 struct Scsi_Host *shost;
1106 u32 model, firmware_revision;
1108 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1109 if (shost == NULL)
1110 return -ENOMEM;
1112 tgt = (struct sbp2_target *)shost->hostdata;
1113 unit->device.driver_data = tgt;
1114 tgt->unit = unit;
1115 kref_init(&tgt->kref);
1116 INIT_LIST_HEAD(&tgt->lu_list);
1117 tgt->bus_id = unit->device.bus_id;
1118 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1120 if (fw_device_enable_phys_dma(device) < 0)
1121 goto fail_shost_put;
1123 if (scsi_add_host(shost, &unit->device) < 0)
1124 goto fail_shost_put;
1126 fw_device_get(device);
1127 fw_unit_get(unit);
1129 /* Initialize to values that won't match anything in our table. */
1130 firmware_revision = 0xff000000;
1131 model = 0xff000000;
1133 /* implicit directory ID */
1134 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1135 + CSR_CONFIG_ROM) & 0xffffff;
1137 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1138 &firmware_revision) < 0)
1139 goto fail_tgt_put;
1141 sbp2_init_workarounds(tgt, model, firmware_revision);
1143 /* Do the login in a workqueue so we can easily reschedule retries. */
1144 list_for_each_entry(lu, &tgt->lu_list, link)
1145 sbp2_queue_work(lu, 0);
1146 return 0;
1148 fail_tgt_put:
1149 sbp2_target_put(tgt);
1150 return -ENOMEM;
1152 fail_shost_put:
1153 scsi_host_put(shost);
1154 return -ENOMEM;
1157 static int sbp2_remove(struct device *dev)
1159 struct fw_unit *unit = fw_unit(dev);
1160 struct sbp2_target *tgt = unit->device.driver_data;
1162 sbp2_target_put(tgt);
1163 return 0;
1166 static void sbp2_reconnect(struct work_struct *work)
1168 struct sbp2_logical_unit *lu =
1169 container_of(work, struct sbp2_logical_unit, work.work);
1170 struct sbp2_target *tgt = lu->tgt;
1171 struct fw_device *device = fw_device(tgt->unit->device.parent);
1172 int generation, node_id, local_node_id;
1174 if (fw_device_is_shutdown(device))
1175 goto out;
1177 generation = device->generation;
1178 smp_rmb(); /* node_id must not be older than generation */
1179 node_id = device->node_id;
1180 local_node_id = device->card->node_id;
1182 if (sbp2_send_management_orb(lu, node_id, generation,
1183 SBP2_RECONNECT_REQUEST,
1184 lu->login_id, NULL) < 0) {
1186 * If reconnect was impossible even though we are in the
1187 * current generation, fall back and try to log in again.
1189 * We could check for "Function rejected" status, but
1190 * looking at the bus generation as simpler and more general.
1192 smp_rmb(); /* get current card generation */
1193 if (generation == device->card->generation ||
1194 lu->retries++ >= 5) {
1195 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1196 lu->retries = 0;
1197 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1199 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1200 goto out;
1203 tgt->node_id = node_id;
1204 tgt->address_high = local_node_id << 16;
1205 sbp2_set_generation(lu, generation);
1207 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1208 tgt->bus_id, lu->lun, lu->retries);
1210 sbp2_agent_reset(lu);
1211 sbp2_cancel_orbs(lu);
1212 sbp2_conditionally_unblock(lu);
1213 out:
1214 sbp2_target_put(tgt);
1217 static void sbp2_update(struct fw_unit *unit)
1219 struct sbp2_target *tgt = unit->device.driver_data;
1220 struct sbp2_logical_unit *lu;
1222 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1225 * Fw-core serializes sbp2_update() against sbp2_remove().
1226 * Iteration over tgt->lu_list is therefore safe here.
1228 list_for_each_entry(lu, &tgt->lu_list, link) {
1229 sbp2_conditionally_block(lu);
1230 lu->retries = 0;
1231 sbp2_queue_work(lu, 0);
1235 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1236 #define SBP2_SW_VERSION_ENTRY 0x00010483
1238 static const struct fw_device_id sbp2_id_table[] = {
1240 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1241 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1242 .version = SBP2_SW_VERSION_ENTRY,
1247 static struct fw_driver sbp2_driver = {
1248 .driver = {
1249 .owner = THIS_MODULE,
1250 .name = sbp2_driver_name,
1251 .bus = &fw_bus_type,
1252 .probe = sbp2_probe,
1253 .remove = sbp2_remove,
1255 .update = sbp2_update,
1256 .id_table = sbp2_id_table,
1259 static unsigned int
1260 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1262 int sam_status;
1264 sense_data[0] = 0x70;
1265 sense_data[1] = 0x0;
1266 sense_data[2] = sbp2_status[1];
1267 sense_data[3] = sbp2_status[4];
1268 sense_data[4] = sbp2_status[5];
1269 sense_data[5] = sbp2_status[6];
1270 sense_data[6] = sbp2_status[7];
1271 sense_data[7] = 10;
1272 sense_data[8] = sbp2_status[8];
1273 sense_data[9] = sbp2_status[9];
1274 sense_data[10] = sbp2_status[10];
1275 sense_data[11] = sbp2_status[11];
1276 sense_data[12] = sbp2_status[2];
1277 sense_data[13] = sbp2_status[3];
1278 sense_data[14] = sbp2_status[12];
1279 sense_data[15] = sbp2_status[13];
1281 sam_status = sbp2_status[0] & 0x3f;
1283 switch (sam_status) {
1284 case SAM_STAT_GOOD:
1285 case SAM_STAT_CHECK_CONDITION:
1286 case SAM_STAT_CONDITION_MET:
1287 case SAM_STAT_BUSY:
1288 case SAM_STAT_RESERVATION_CONFLICT:
1289 case SAM_STAT_COMMAND_TERMINATED:
1290 return DID_OK << 16 | sam_status;
1292 default:
1293 return DID_ERROR << 16;
1297 static void
1298 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1300 struct sbp2_command_orb *orb =
1301 container_of(base_orb, struct sbp2_command_orb, base);
1302 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1303 int result;
1305 if (status != NULL) {
1306 if (STATUS_GET_DEAD(*status))
1307 sbp2_agent_reset_no_wait(orb->lu);
1309 switch (STATUS_GET_RESPONSE(*status)) {
1310 case SBP2_STATUS_REQUEST_COMPLETE:
1311 result = DID_OK << 16;
1312 break;
1313 case SBP2_STATUS_TRANSPORT_FAILURE:
1314 result = DID_BUS_BUSY << 16;
1315 break;
1316 case SBP2_STATUS_ILLEGAL_REQUEST:
1317 case SBP2_STATUS_VENDOR_DEPENDENT:
1318 default:
1319 result = DID_ERROR << 16;
1320 break;
1323 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1324 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1325 orb->cmd->sense_buffer);
1326 } else {
1328 * If the orb completes with status == NULL, something
1329 * went wrong, typically a bus reset happened mid-orb
1330 * or when sending the write (less likely).
1332 result = DID_BUS_BUSY << 16;
1333 sbp2_conditionally_block(orb->lu);
1336 dma_unmap_single(device->card->device, orb->base.request_bus,
1337 sizeof(orb->request), DMA_TO_DEVICE);
1339 if (scsi_sg_count(orb->cmd) > 0)
1340 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1341 scsi_sg_count(orb->cmd),
1342 orb->cmd->sc_data_direction);
1344 if (orb->page_table_bus != 0)
1345 dma_unmap_single(device->card->device, orb->page_table_bus,
1346 sizeof(orb->page_table), DMA_TO_DEVICE);
1348 orb->cmd->result = result;
1349 orb->done(orb->cmd);
1352 static int
1353 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1354 struct sbp2_logical_unit *lu)
1356 struct scatterlist *sg;
1357 int sg_len, l, i, j, count;
1358 dma_addr_t sg_addr;
1360 sg = scsi_sglist(orb->cmd);
1361 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1362 orb->cmd->sc_data_direction);
1363 if (count == 0)
1364 goto fail;
1367 * Handle the special case where there is only one element in
1368 * the scatter list by converting it to an immediate block
1369 * request. This is also a workaround for broken devices such
1370 * as the second generation iPod which doesn't support page
1371 * tables.
1373 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1374 orb->request.data_descriptor.high =
1375 cpu_to_be32(lu->tgt->address_high);
1376 orb->request.data_descriptor.low =
1377 cpu_to_be32(sg_dma_address(sg));
1378 orb->request.misc |=
1379 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1380 return 0;
1384 * Convert the scatterlist to an sbp2 page table. If any
1385 * scatterlist entries are too big for sbp2, we split them as we
1386 * go. Even if we ask the block I/O layer to not give us sg
1387 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1388 * during DMA mapping, and Linux currently doesn't prevent this.
1390 for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1391 sg_len = sg_dma_len(sg);
1392 sg_addr = sg_dma_address(sg);
1393 while (sg_len) {
1394 /* FIXME: This won't get us out of the pinch. */
1395 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1396 fw_error("page table overflow\n");
1397 goto fail_page_table;
1399 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1400 orb->page_table[j].low = cpu_to_be32(sg_addr);
1401 orb->page_table[j].high = cpu_to_be32(l << 16);
1402 sg_addr += l;
1403 sg_len -= l;
1404 j++;
1408 orb->page_table_bus =
1409 dma_map_single(device->card->device, orb->page_table,
1410 sizeof(orb->page_table), DMA_TO_DEVICE);
1411 if (dma_mapping_error(orb->page_table_bus))
1412 goto fail_page_table;
1415 * The data_descriptor pointer is the one case where we need
1416 * to fill in the node ID part of the address. All other
1417 * pointers assume that the data referenced reside on the
1418 * initiator (i.e. us), but data_descriptor can refer to data
1419 * on other nodes so we need to put our ID in descriptor.high.
1421 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1422 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1423 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1424 COMMAND_ORB_DATA_SIZE(j));
1426 return 0;
1428 fail_page_table:
1429 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1430 orb->cmd->sc_data_direction);
1431 fail:
1432 return -ENOMEM;
1435 /* SCSI stack integration */
1437 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1439 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1440 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1441 struct sbp2_command_orb *orb;
1442 unsigned int max_payload;
1443 int retval = SCSI_MLQUEUE_HOST_BUSY;
1446 * Bidirectional commands are not yet implemented, and unknown
1447 * transfer direction not handled.
1449 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1450 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1451 cmd->result = DID_ERROR << 16;
1452 done(cmd);
1453 return 0;
1456 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1457 if (orb == NULL) {
1458 fw_notify("failed to alloc orb\n");
1459 return SCSI_MLQUEUE_HOST_BUSY;
1462 /* Initialize rcode to something not RCODE_COMPLETE. */
1463 orb->base.rcode = -1;
1464 kref_init(&orb->base.kref);
1466 orb->lu = lu;
1467 orb->done = done;
1468 orb->cmd = cmd;
1470 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1472 * At speed 100 we can do 512 bytes per packet, at speed 200,
1473 * 1024 bytes per packet etc. The SBP-2 max_payload field
1474 * specifies the max payload size as 2 ^ (max_payload + 2), so
1475 * if we set this to max_speed + 7, we get the right value.
1477 max_payload = min(device->max_speed + 7,
1478 device->card->max_receive - 1);
1479 orb->request.misc = cpu_to_be32(
1480 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1481 COMMAND_ORB_SPEED(device->max_speed) |
1482 COMMAND_ORB_NOTIFY);
1484 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1485 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1487 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1488 goto out;
1490 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1492 orb->base.callback = complete_command_orb;
1493 orb->base.request_bus =
1494 dma_map_single(device->card->device, &orb->request,
1495 sizeof(orb->request), DMA_TO_DEVICE);
1496 if (dma_mapping_error(orb->base.request_bus))
1497 goto out;
1499 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1500 lu->command_block_agent_address + SBP2_ORB_POINTER);
1501 retval = 0;
1502 out:
1503 kref_put(&orb->base.kref, free_orb);
1504 return retval;
1507 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1509 struct sbp2_logical_unit *lu = sdev->hostdata;
1511 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1512 if (!lu)
1513 return -ENOSYS;
1515 sdev->allow_restart = 1;
1517 /* SBP-2 requires quadlet alignment of the data buffers. */
1518 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1520 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1521 sdev->inquiry_len = 36;
1523 return 0;
1526 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1528 struct sbp2_logical_unit *lu = sdev->hostdata;
1530 sdev->use_10_for_rw = 1;
1532 if (sdev->type == TYPE_ROM)
1533 sdev->use_10_for_ms = 1;
1535 if (sdev->type == TYPE_DISK &&
1536 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1537 sdev->skip_ms_page_8 = 1;
1539 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1540 sdev->fix_capacity = 1;
1542 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1543 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1545 return 0;
1549 * Called by scsi stack when something has really gone wrong. Usually
1550 * called when a command has timed-out for some reason.
1552 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1554 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1556 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1557 sbp2_agent_reset(lu);
1558 sbp2_cancel_orbs(lu);
1560 return SUCCESS;
1564 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1565 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1567 * This is the concatenation of target port identifier and logical unit
1568 * identifier as per SAM-2...SAM-4 annex A.
1570 static ssize_t
1571 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1572 char *buf)
1574 struct scsi_device *sdev = to_scsi_device(dev);
1575 struct sbp2_logical_unit *lu;
1577 if (!sdev)
1578 return 0;
1580 lu = sdev->hostdata;
1582 return sprintf(buf, "%016llx:%06x:%04x\n",
1583 (unsigned long long)lu->tgt->guid,
1584 lu->tgt->directory_id, lu->lun);
1587 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1589 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1590 &dev_attr_ieee1394_id,
1591 NULL
1594 static struct scsi_host_template scsi_driver_template = {
1595 .module = THIS_MODULE,
1596 .name = "SBP-2 IEEE-1394",
1597 .proc_name = sbp2_driver_name,
1598 .queuecommand = sbp2_scsi_queuecommand,
1599 .slave_alloc = sbp2_scsi_slave_alloc,
1600 .slave_configure = sbp2_scsi_slave_configure,
1601 .eh_abort_handler = sbp2_scsi_abort,
1602 .this_id = -1,
1603 .sg_tablesize = SG_ALL,
1604 .use_clustering = ENABLE_CLUSTERING,
1605 .cmd_per_lun = 1,
1606 .can_queue = 1,
1607 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1610 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1611 MODULE_DESCRIPTION("SCSI over IEEE1394");
1612 MODULE_LICENSE("GPL");
1613 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1615 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1616 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1617 MODULE_ALIAS("sbp2");
1618 #endif
1620 static int __init sbp2_init(void)
1622 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1623 if (!sbp2_wq)
1624 return -ENOMEM;
1626 return driver_register(&sbp2_driver.driver);
1629 static void __exit sbp2_cleanup(void)
1631 driver_unregister(&sbp2_driver.driver);
1632 destroy_workqueue(sbp2_wq);
1635 module_init(sbp2_init);
1636 module_exit(sbp2_cleanup);