sched: disable forced preemption by default
[linux-2.6/lfs.git] / kernel / sched.c
blob0bd8f2c0fb40b42cef1ecb7039e171d80e9448f4
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
113 #ifdef CONFIG_SMP
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 #endif
134 static inline int rt_policy(int policy)
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
141 static inline int task_has_rt_policy(struct task_struct *p)
143 return rt_policy(p->policy);
147 * This is the priority-queue data structure of the RT scheduling class:
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
154 #ifdef CONFIG_FAIR_GROUP_SCHED
156 struct cfs_rq;
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
196 struct task_group *tg;
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
204 return tg;
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
214 #else
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
225 u64 exec_clock;
226 u64 min_vruntime;
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
234 struct sched_entity *curr;
236 unsigned long nr_spread_over;
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
262 * This is the main, per-CPU runqueue data structure.
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
268 struct rq {
269 spinlock_t lock; /* runqueue lock */
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
275 unsigned long nr_running;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278 unsigned char idle_at_tick;
279 #ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281 #endif
282 struct load_weight load; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates;
284 u64 nr_switches;
286 struct cfs_rq cfs;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
289 #endif
290 struct rt_rq rt;
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
298 unsigned long nr_uninterruptible;
300 struct task_struct *curr, *idle;
301 unsigned long next_balance;
302 struct mm_struct *prev_mm;
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
307 unsigned int clock_warps, clock_overflows;
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
310 u64 tick_timestamp;
312 atomic_t nr_iowait;
314 #ifdef CONFIG_SMP
315 struct sched_domain *sd;
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
320 int cpu; /* cpu of this runqueue */
322 struct task_struct *migration_thread;
323 struct list_head migration_queue;
324 #endif
326 #ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
334 unsigned long yld_count;
336 /* schedule() stats */
337 unsigned long sched_switch;
338 unsigned long sched_count;
339 unsigned long sched_goidle;
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count;
343 unsigned long ttwu_local;
345 /* BKL stats */
346 unsigned long bkl_count;
347 #endif
348 struct lock_class_key rq_lock_key;
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352 static DEFINE_MUTEX(sched_hotcpu_mutex);
354 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
356 rq->curr->sched_class->check_preempt_curr(rq, p);
359 static inline int cpu_of(struct rq *rq)
361 #ifdef CONFIG_SMP
362 return rq->cpu;
363 #else
364 return 0;
365 #endif
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
372 static void __update_rq_clock(struct rq *rq)
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
379 #ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381 #endif
383 * Protect against sched_clock() occasionally going backwards:
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
390 * Catch too large forward jumps too:
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
409 static void update_rq_clock(struct rq *rq)
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417 * See detach_destroy_domains: synchronize_sched for details.
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
422 #define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
425 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426 #define this_rq() (&__get_cpu_var(runqueues))
427 #define task_rq(p) cpu_rq(task_cpu(p))
428 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
433 #ifdef CONFIG_SCHED_DEBUG
434 # define const_debug __read_mostly
435 #else
436 # define const_debug static const
437 #endif
440 * Debugging: various feature bits
442 enum {
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
445 SCHED_FEAT_TREE_AVG = 4,
446 SCHED_FEAT_APPROX_AVG = 8,
447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
450 const_debug unsigned int sysctl_sched_features =
451 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
452 SCHED_FEAT_START_DEBIT *1 |
453 SCHED_FEAT_TREE_AVG *0 |
454 SCHED_FEAT_APPROX_AVG *0 |
455 SCHED_FEAT_WAKEUP_PREEMPT *1;
457 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
461 * clock constructed from sched_clock():
463 unsigned long long cpu_clock(int cpu)
465 unsigned long long now;
466 unsigned long flags;
467 struct rq *rq;
469 local_irq_save(flags);
470 rq = cpu_rq(cpu);
471 update_rq_clock(rq);
472 now = rq->clock;
473 local_irq_restore(flags);
475 return now;
477 EXPORT_SYMBOL_GPL(cpu_clock);
479 #ifndef prepare_arch_switch
480 # define prepare_arch_switch(next) do { } while (0)
481 #endif
482 #ifndef finish_arch_switch
483 # define finish_arch_switch(prev) do { } while (0)
484 #endif
486 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
487 static inline int task_running(struct rq *rq, struct task_struct *p)
489 return rq->curr == p;
492 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
496 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
498 #ifdef CONFIG_DEBUG_SPINLOCK
499 /* this is a valid case when another task releases the spinlock */
500 rq->lock.owner = current;
501 #endif
503 * If we are tracking spinlock dependencies then we have to
504 * fix up the runqueue lock - which gets 'carried over' from
505 * prev into current:
507 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
509 spin_unlock_irq(&rq->lock);
512 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
513 static inline int task_running(struct rq *rq, struct task_struct *p)
515 #ifdef CONFIG_SMP
516 return p->oncpu;
517 #else
518 return rq->curr == p;
519 #endif
522 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
524 #ifdef CONFIG_SMP
526 * We can optimise this out completely for !SMP, because the
527 * SMP rebalancing from interrupt is the only thing that cares
528 * here.
530 next->oncpu = 1;
531 #endif
532 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
533 spin_unlock_irq(&rq->lock);
534 #else
535 spin_unlock(&rq->lock);
536 #endif
539 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
541 #ifdef CONFIG_SMP
543 * After ->oncpu is cleared, the task can be moved to a different CPU.
544 * We must ensure this doesn't happen until the switch is completely
545 * finished.
547 smp_wmb();
548 prev->oncpu = 0;
549 #endif
550 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
551 local_irq_enable();
552 #endif
554 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
557 * __task_rq_lock - lock the runqueue a given task resides on.
558 * Must be called interrupts disabled.
560 static inline struct rq *__task_rq_lock(struct task_struct *p)
561 __acquires(rq->lock)
563 struct rq *rq;
565 repeat_lock_task:
566 rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (unlikely(rq != task_rq(p))) {
569 spin_unlock(&rq->lock);
570 goto repeat_lock_task;
572 return rq;
576 * task_rq_lock - lock the runqueue a given task resides on and disable
577 * interrupts. Note the ordering: we can safely lookup the task_rq without
578 * explicitly disabling preemption.
580 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
581 __acquires(rq->lock)
583 struct rq *rq;
585 repeat_lock_task:
586 local_irq_save(*flags);
587 rq = task_rq(p);
588 spin_lock(&rq->lock);
589 if (unlikely(rq != task_rq(p))) {
590 spin_unlock_irqrestore(&rq->lock, *flags);
591 goto repeat_lock_task;
593 return rq;
596 static void __task_rq_unlock(struct rq *rq)
597 __releases(rq->lock)
599 spin_unlock(&rq->lock);
602 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
603 __releases(rq->lock)
605 spin_unlock_irqrestore(&rq->lock, *flags);
609 * this_rq_lock - lock this runqueue and disable interrupts.
611 static struct rq *this_rq_lock(void)
612 __acquires(rq->lock)
614 struct rq *rq;
616 local_irq_disable();
617 rq = this_rq();
618 spin_lock(&rq->lock);
620 return rq;
624 * We are going deep-idle (irqs are disabled):
626 void sched_clock_idle_sleep_event(void)
628 struct rq *rq = cpu_rq(smp_processor_id());
630 spin_lock(&rq->lock);
631 __update_rq_clock(rq);
632 spin_unlock(&rq->lock);
633 rq->clock_deep_idle_events++;
635 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
638 * We just idled delta nanoseconds (called with irqs disabled):
640 void sched_clock_idle_wakeup_event(u64 delta_ns)
642 struct rq *rq = cpu_rq(smp_processor_id());
643 u64 now = sched_clock();
645 rq->idle_clock += delta_ns;
647 * Override the previous timestamp and ignore all
648 * sched_clock() deltas that occured while we idled,
649 * and use the PM-provided delta_ns to advance the
650 * rq clock:
652 spin_lock(&rq->lock);
653 rq->prev_clock_raw = now;
654 rq->clock += delta_ns;
655 spin_unlock(&rq->lock);
657 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
660 * resched_task - mark a task 'to be rescheduled now'.
662 * On UP this means the setting of the need_resched flag, on SMP it
663 * might also involve a cross-CPU call to trigger the scheduler on
664 * the target CPU.
666 #ifdef CONFIG_SMP
668 #ifndef tsk_is_polling
669 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
670 #endif
672 static void resched_task(struct task_struct *p)
674 int cpu;
676 assert_spin_locked(&task_rq(p)->lock);
678 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
679 return;
681 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
683 cpu = task_cpu(p);
684 if (cpu == smp_processor_id())
685 return;
687 /* NEED_RESCHED must be visible before we test polling */
688 smp_mb();
689 if (!tsk_is_polling(p))
690 smp_send_reschedule(cpu);
693 static void resched_cpu(int cpu)
695 struct rq *rq = cpu_rq(cpu);
696 unsigned long flags;
698 if (!spin_trylock_irqsave(&rq->lock, flags))
699 return;
700 resched_task(cpu_curr(cpu));
701 spin_unlock_irqrestore(&rq->lock, flags);
703 #else
704 static inline void resched_task(struct task_struct *p)
706 assert_spin_locked(&task_rq(p)->lock);
707 set_tsk_need_resched(p);
709 #endif
711 #if BITS_PER_LONG == 32
712 # define WMULT_CONST (~0UL)
713 #else
714 # define WMULT_CONST (1UL << 32)
715 #endif
717 #define WMULT_SHIFT 32
720 * Shift right and round:
722 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
724 static unsigned long
725 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
726 struct load_weight *lw)
728 u64 tmp;
730 if (unlikely(!lw->inv_weight))
731 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
733 tmp = (u64)delta_exec * weight;
735 * Check whether we'd overflow the 64-bit multiplication:
737 if (unlikely(tmp > WMULT_CONST))
738 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
739 WMULT_SHIFT/2);
740 else
741 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
743 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
746 static inline unsigned long
747 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
749 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
752 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
754 lw->weight += inc;
757 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
759 lw->weight -= dec;
763 * To aid in avoiding the subversion of "niceness" due to uneven distribution
764 * of tasks with abnormal "nice" values across CPUs the contribution that
765 * each task makes to its run queue's load is weighted according to its
766 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
767 * scaled version of the new time slice allocation that they receive on time
768 * slice expiry etc.
771 #define WEIGHT_IDLEPRIO 2
772 #define WMULT_IDLEPRIO (1 << 31)
775 * Nice levels are multiplicative, with a gentle 10% change for every
776 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
777 * nice 1, it will get ~10% less CPU time than another CPU-bound task
778 * that remained on nice 0.
780 * The "10% effect" is relative and cumulative: from _any_ nice level,
781 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
782 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
783 * If a task goes up by ~10% and another task goes down by ~10% then
784 * the relative distance between them is ~25%.)
786 static const int prio_to_weight[40] = {
787 /* -20 */ 88761, 71755, 56483, 46273, 36291,
788 /* -15 */ 29154, 23254, 18705, 14949, 11916,
789 /* -10 */ 9548, 7620, 6100, 4904, 3906,
790 /* -5 */ 3121, 2501, 1991, 1586, 1277,
791 /* 0 */ 1024, 820, 655, 526, 423,
792 /* 5 */ 335, 272, 215, 172, 137,
793 /* 10 */ 110, 87, 70, 56, 45,
794 /* 15 */ 36, 29, 23, 18, 15,
798 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
800 * In cases where the weight does not change often, we can use the
801 * precalculated inverse to speed up arithmetics by turning divisions
802 * into multiplications:
804 static const u32 prio_to_wmult[40] = {
805 /* -20 */ 48388, 59856, 76040, 92818, 118348,
806 /* -15 */ 147320, 184698, 229616, 287308, 360437,
807 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
808 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
809 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
810 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
811 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
812 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
815 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
818 * runqueue iterator, to support SMP load-balancing between different
819 * scheduling classes, without having to expose their internal data
820 * structures to the load-balancing proper:
822 struct rq_iterator {
823 void *arg;
824 struct task_struct *(*start)(void *);
825 struct task_struct *(*next)(void *);
828 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
829 unsigned long max_nr_move, unsigned long max_load_move,
830 struct sched_domain *sd, enum cpu_idle_type idle,
831 int *all_pinned, unsigned long *load_moved,
832 int *this_best_prio, struct rq_iterator *iterator);
834 #include "sched_stats.h"
835 #include "sched_idletask.c"
836 #include "sched_fair.c"
837 #include "sched_rt.c"
838 #ifdef CONFIG_SCHED_DEBUG
839 # include "sched_debug.c"
840 #endif
842 #define sched_class_highest (&rt_sched_class)
845 * Update delta_exec, delta_fair fields for rq.
847 * delta_fair clock advances at a rate inversely proportional to
848 * total load (rq->load.weight) on the runqueue, while
849 * delta_exec advances at the same rate as wall-clock (provided
850 * cpu is not idle).
852 * delta_exec / delta_fair is a measure of the (smoothened) load on this
853 * runqueue over any given interval. This (smoothened) load is used
854 * during load balance.
856 * This function is called /before/ updating rq->load
857 * and when switching tasks.
859 static inline void inc_load(struct rq *rq, const struct task_struct *p)
861 update_load_add(&rq->load, p->se.load.weight);
864 static inline void dec_load(struct rq *rq, const struct task_struct *p)
866 update_load_sub(&rq->load, p->se.load.weight);
869 static void inc_nr_running(struct task_struct *p, struct rq *rq)
871 rq->nr_running++;
872 inc_load(rq, p);
875 static void dec_nr_running(struct task_struct *p, struct rq *rq)
877 rq->nr_running--;
878 dec_load(rq, p);
881 static void set_load_weight(struct task_struct *p)
883 if (task_has_rt_policy(p)) {
884 p->se.load.weight = prio_to_weight[0] * 2;
885 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
886 return;
890 * SCHED_IDLE tasks get minimal weight:
892 if (p->policy == SCHED_IDLE) {
893 p->se.load.weight = WEIGHT_IDLEPRIO;
894 p->se.load.inv_weight = WMULT_IDLEPRIO;
895 return;
898 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
899 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
902 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
904 sched_info_queued(p);
905 p->sched_class->enqueue_task(rq, p, wakeup);
906 p->se.on_rq = 1;
909 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
911 p->sched_class->dequeue_task(rq, p, sleep);
912 p->se.on_rq = 0;
916 * __normal_prio - return the priority that is based on the static prio
918 static inline int __normal_prio(struct task_struct *p)
920 return p->static_prio;
924 * Calculate the expected normal priority: i.e. priority
925 * without taking RT-inheritance into account. Might be
926 * boosted by interactivity modifiers. Changes upon fork,
927 * setprio syscalls, and whenever the interactivity
928 * estimator recalculates.
930 static inline int normal_prio(struct task_struct *p)
932 int prio;
934 if (task_has_rt_policy(p))
935 prio = MAX_RT_PRIO-1 - p->rt_priority;
936 else
937 prio = __normal_prio(p);
938 return prio;
942 * Calculate the current priority, i.e. the priority
943 * taken into account by the scheduler. This value might
944 * be boosted by RT tasks, or might be boosted by
945 * interactivity modifiers. Will be RT if the task got
946 * RT-boosted. If not then it returns p->normal_prio.
948 static int effective_prio(struct task_struct *p)
950 p->normal_prio = normal_prio(p);
952 * If we are RT tasks or we were boosted to RT priority,
953 * keep the priority unchanged. Otherwise, update priority
954 * to the normal priority:
956 if (!rt_prio(p->prio))
957 return p->normal_prio;
958 return p->prio;
962 * activate_task - move a task to the runqueue.
964 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
966 if (p->state == TASK_UNINTERRUPTIBLE)
967 rq->nr_uninterruptible--;
969 enqueue_task(rq, p, wakeup);
970 inc_nr_running(p, rq);
974 * deactivate_task - remove a task from the runqueue.
976 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
978 if (p->state == TASK_UNINTERRUPTIBLE)
979 rq->nr_uninterruptible++;
981 dequeue_task(rq, p, sleep);
982 dec_nr_running(p, rq);
986 * task_curr - is this task currently executing on a CPU?
987 * @p: the task in question.
989 inline int task_curr(const struct task_struct *p)
991 return cpu_curr(task_cpu(p)) == p;
994 /* Used instead of source_load when we know the type == 0 */
995 unsigned long weighted_cpuload(const int cpu)
997 return cpu_rq(cpu)->load.weight;
1000 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1002 #ifdef CONFIG_SMP
1003 task_thread_info(p)->cpu = cpu;
1004 #endif
1005 set_task_cfs_rq(p);
1008 #ifdef CONFIG_SMP
1010 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1012 int old_cpu = task_cpu(p);
1013 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1014 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1015 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1016 u64 clock_offset;
1018 clock_offset = old_rq->clock - new_rq->clock;
1020 #ifdef CONFIG_SCHEDSTATS
1021 if (p->se.wait_start)
1022 p->se.wait_start -= clock_offset;
1023 if (p->se.sleep_start)
1024 p->se.sleep_start -= clock_offset;
1025 if (p->se.block_start)
1026 p->se.block_start -= clock_offset;
1027 #endif
1028 p->se.vruntime -= old_cfsrq->min_vruntime -
1029 new_cfsrq->min_vruntime;
1031 __set_task_cpu(p, new_cpu);
1034 struct migration_req {
1035 struct list_head list;
1037 struct task_struct *task;
1038 int dest_cpu;
1040 struct completion done;
1044 * The task's runqueue lock must be held.
1045 * Returns true if you have to wait for migration thread.
1047 static int
1048 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1050 struct rq *rq = task_rq(p);
1053 * If the task is not on a runqueue (and not running), then
1054 * it is sufficient to simply update the task's cpu field.
1056 if (!p->se.on_rq && !task_running(rq, p)) {
1057 set_task_cpu(p, dest_cpu);
1058 return 0;
1061 init_completion(&req->done);
1062 req->task = p;
1063 req->dest_cpu = dest_cpu;
1064 list_add(&req->list, &rq->migration_queue);
1066 return 1;
1070 * wait_task_inactive - wait for a thread to unschedule.
1072 * The caller must ensure that the task *will* unschedule sometime soon,
1073 * else this function might spin for a *long* time. This function can't
1074 * be called with interrupts off, or it may introduce deadlock with
1075 * smp_call_function() if an IPI is sent by the same process we are
1076 * waiting to become inactive.
1078 void wait_task_inactive(struct task_struct *p)
1080 unsigned long flags;
1081 int running, on_rq;
1082 struct rq *rq;
1084 repeat:
1086 * We do the initial early heuristics without holding
1087 * any task-queue locks at all. We'll only try to get
1088 * the runqueue lock when things look like they will
1089 * work out!
1091 rq = task_rq(p);
1094 * If the task is actively running on another CPU
1095 * still, just relax and busy-wait without holding
1096 * any locks.
1098 * NOTE! Since we don't hold any locks, it's not
1099 * even sure that "rq" stays as the right runqueue!
1100 * But we don't care, since "task_running()" will
1101 * return false if the runqueue has changed and p
1102 * is actually now running somewhere else!
1104 while (task_running(rq, p))
1105 cpu_relax();
1108 * Ok, time to look more closely! We need the rq
1109 * lock now, to be *sure*. If we're wrong, we'll
1110 * just go back and repeat.
1112 rq = task_rq_lock(p, &flags);
1113 running = task_running(rq, p);
1114 on_rq = p->se.on_rq;
1115 task_rq_unlock(rq, &flags);
1118 * Was it really running after all now that we
1119 * checked with the proper locks actually held?
1121 * Oops. Go back and try again..
1123 if (unlikely(running)) {
1124 cpu_relax();
1125 goto repeat;
1129 * It's not enough that it's not actively running,
1130 * it must be off the runqueue _entirely_, and not
1131 * preempted!
1133 * So if it wa still runnable (but just not actively
1134 * running right now), it's preempted, and we should
1135 * yield - it could be a while.
1137 if (unlikely(on_rq)) {
1138 schedule_timeout_uninterruptible(1);
1139 goto repeat;
1143 * Ahh, all good. It wasn't running, and it wasn't
1144 * runnable, which means that it will never become
1145 * running in the future either. We're all done!
1149 /***
1150 * kick_process - kick a running thread to enter/exit the kernel
1151 * @p: the to-be-kicked thread
1153 * Cause a process which is running on another CPU to enter
1154 * kernel-mode, without any delay. (to get signals handled.)
1156 * NOTE: this function doesnt have to take the runqueue lock,
1157 * because all it wants to ensure is that the remote task enters
1158 * the kernel. If the IPI races and the task has been migrated
1159 * to another CPU then no harm is done and the purpose has been
1160 * achieved as well.
1162 void kick_process(struct task_struct *p)
1164 int cpu;
1166 preempt_disable();
1167 cpu = task_cpu(p);
1168 if ((cpu != smp_processor_id()) && task_curr(p))
1169 smp_send_reschedule(cpu);
1170 preempt_enable();
1174 * Return a low guess at the load of a migration-source cpu weighted
1175 * according to the scheduling class and "nice" value.
1177 * We want to under-estimate the load of migration sources, to
1178 * balance conservatively.
1180 static unsigned long source_load(int cpu, int type)
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long total = weighted_cpuload(cpu);
1185 if (type == 0)
1186 return total;
1188 return min(rq->cpu_load[type-1], total);
1192 * Return a high guess at the load of a migration-target cpu weighted
1193 * according to the scheduling class and "nice" value.
1195 static unsigned long target_load(int cpu, int type)
1197 struct rq *rq = cpu_rq(cpu);
1198 unsigned long total = weighted_cpuload(cpu);
1200 if (type == 0)
1201 return total;
1203 return max(rq->cpu_load[type-1], total);
1207 * Return the average load per task on the cpu's run queue
1209 static inline unsigned long cpu_avg_load_per_task(int cpu)
1211 struct rq *rq = cpu_rq(cpu);
1212 unsigned long total = weighted_cpuload(cpu);
1213 unsigned long n = rq->nr_running;
1215 return n ? total / n : SCHED_LOAD_SCALE;
1219 * find_idlest_group finds and returns the least busy CPU group within the
1220 * domain.
1222 static struct sched_group *
1223 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1225 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1226 unsigned long min_load = ULONG_MAX, this_load = 0;
1227 int load_idx = sd->forkexec_idx;
1228 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1230 do {
1231 unsigned long load, avg_load;
1232 int local_group;
1233 int i;
1235 /* Skip over this group if it has no CPUs allowed */
1236 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1237 goto nextgroup;
1239 local_group = cpu_isset(this_cpu, group->cpumask);
1241 /* Tally up the load of all CPUs in the group */
1242 avg_load = 0;
1244 for_each_cpu_mask(i, group->cpumask) {
1245 /* Bias balancing toward cpus of our domain */
1246 if (local_group)
1247 load = source_load(i, load_idx);
1248 else
1249 load = target_load(i, load_idx);
1251 avg_load += load;
1254 /* Adjust by relative CPU power of the group */
1255 avg_load = sg_div_cpu_power(group,
1256 avg_load * SCHED_LOAD_SCALE);
1258 if (local_group) {
1259 this_load = avg_load;
1260 this = group;
1261 } else if (avg_load < min_load) {
1262 min_load = avg_load;
1263 idlest = group;
1265 nextgroup:
1266 group = group->next;
1267 } while (group != sd->groups);
1269 if (!idlest || 100*this_load < imbalance*min_load)
1270 return NULL;
1271 return idlest;
1275 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1277 static int
1278 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1280 cpumask_t tmp;
1281 unsigned long load, min_load = ULONG_MAX;
1282 int idlest = -1;
1283 int i;
1285 /* Traverse only the allowed CPUs */
1286 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1288 for_each_cpu_mask(i, tmp) {
1289 load = weighted_cpuload(i);
1291 if (load < min_load || (load == min_load && i == this_cpu)) {
1292 min_load = load;
1293 idlest = i;
1297 return idlest;
1301 * sched_balance_self: balance the current task (running on cpu) in domains
1302 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1303 * SD_BALANCE_EXEC.
1305 * Balance, ie. select the least loaded group.
1307 * Returns the target CPU number, or the same CPU if no balancing is needed.
1309 * preempt must be disabled.
1311 static int sched_balance_self(int cpu, int flag)
1313 struct task_struct *t = current;
1314 struct sched_domain *tmp, *sd = NULL;
1316 for_each_domain(cpu, tmp) {
1318 * If power savings logic is enabled for a domain, stop there.
1320 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1321 break;
1322 if (tmp->flags & flag)
1323 sd = tmp;
1326 while (sd) {
1327 cpumask_t span;
1328 struct sched_group *group;
1329 int new_cpu, weight;
1331 if (!(sd->flags & flag)) {
1332 sd = sd->child;
1333 continue;
1336 span = sd->span;
1337 group = find_idlest_group(sd, t, cpu);
1338 if (!group) {
1339 sd = sd->child;
1340 continue;
1343 new_cpu = find_idlest_cpu(group, t, cpu);
1344 if (new_cpu == -1 || new_cpu == cpu) {
1345 /* Now try balancing at a lower domain level of cpu */
1346 sd = sd->child;
1347 continue;
1350 /* Now try balancing at a lower domain level of new_cpu */
1351 cpu = new_cpu;
1352 sd = NULL;
1353 weight = cpus_weight(span);
1354 for_each_domain(cpu, tmp) {
1355 if (weight <= cpus_weight(tmp->span))
1356 break;
1357 if (tmp->flags & flag)
1358 sd = tmp;
1360 /* while loop will break here if sd == NULL */
1363 return cpu;
1366 #endif /* CONFIG_SMP */
1369 * wake_idle() will wake a task on an idle cpu if task->cpu is
1370 * not idle and an idle cpu is available. The span of cpus to
1371 * search starts with cpus closest then further out as needed,
1372 * so we always favor a closer, idle cpu.
1374 * Returns the CPU we should wake onto.
1376 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1377 static int wake_idle(int cpu, struct task_struct *p)
1379 cpumask_t tmp;
1380 struct sched_domain *sd;
1381 int i;
1384 * If it is idle, then it is the best cpu to run this task.
1386 * This cpu is also the best, if it has more than one task already.
1387 * Siblings must be also busy(in most cases) as they didn't already
1388 * pickup the extra load from this cpu and hence we need not check
1389 * sibling runqueue info. This will avoid the checks and cache miss
1390 * penalities associated with that.
1392 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1393 return cpu;
1395 for_each_domain(cpu, sd) {
1396 if (sd->flags & SD_WAKE_IDLE) {
1397 cpus_and(tmp, sd->span, p->cpus_allowed);
1398 for_each_cpu_mask(i, tmp) {
1399 if (idle_cpu(i))
1400 return i;
1402 } else {
1403 break;
1406 return cpu;
1408 #else
1409 static inline int wake_idle(int cpu, struct task_struct *p)
1411 return cpu;
1413 #endif
1415 /***
1416 * try_to_wake_up - wake up a thread
1417 * @p: the to-be-woken-up thread
1418 * @state: the mask of task states that can be woken
1419 * @sync: do a synchronous wakeup?
1421 * Put it on the run-queue if it's not already there. The "current"
1422 * thread is always on the run-queue (except when the actual
1423 * re-schedule is in progress), and as such you're allowed to do
1424 * the simpler "current->state = TASK_RUNNING" to mark yourself
1425 * runnable without the overhead of this.
1427 * returns failure only if the task is already active.
1429 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1431 int cpu, this_cpu, success = 0;
1432 unsigned long flags;
1433 long old_state;
1434 struct rq *rq;
1435 #ifdef CONFIG_SMP
1436 struct sched_domain *sd, *this_sd = NULL;
1437 unsigned long load, this_load;
1438 int new_cpu;
1439 #endif
1441 rq = task_rq_lock(p, &flags);
1442 old_state = p->state;
1443 if (!(old_state & state))
1444 goto out;
1446 if (p->se.on_rq)
1447 goto out_running;
1449 cpu = task_cpu(p);
1450 this_cpu = smp_processor_id();
1452 #ifdef CONFIG_SMP
1453 if (unlikely(task_running(rq, p)))
1454 goto out_activate;
1456 new_cpu = cpu;
1458 schedstat_inc(rq, ttwu_count);
1459 if (cpu == this_cpu) {
1460 schedstat_inc(rq, ttwu_local);
1461 goto out_set_cpu;
1464 for_each_domain(this_cpu, sd) {
1465 if (cpu_isset(cpu, sd->span)) {
1466 schedstat_inc(sd, ttwu_wake_remote);
1467 this_sd = sd;
1468 break;
1472 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1473 goto out_set_cpu;
1476 * Check for affine wakeup and passive balancing possibilities.
1478 if (this_sd) {
1479 int idx = this_sd->wake_idx;
1480 unsigned int imbalance;
1482 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1484 load = source_load(cpu, idx);
1485 this_load = target_load(this_cpu, idx);
1487 new_cpu = this_cpu; /* Wake to this CPU if we can */
1489 if (this_sd->flags & SD_WAKE_AFFINE) {
1490 unsigned long tl = this_load;
1491 unsigned long tl_per_task;
1493 tl_per_task = cpu_avg_load_per_task(this_cpu);
1496 * If sync wakeup then subtract the (maximum possible)
1497 * effect of the currently running task from the load
1498 * of the current CPU:
1500 if (sync)
1501 tl -= current->se.load.weight;
1503 if ((tl <= load &&
1504 tl + target_load(cpu, idx) <= tl_per_task) ||
1505 100*(tl + p->se.load.weight) <= imbalance*load) {
1507 * This domain has SD_WAKE_AFFINE and
1508 * p is cache cold in this domain, and
1509 * there is no bad imbalance.
1511 schedstat_inc(this_sd, ttwu_move_affine);
1512 goto out_set_cpu;
1517 * Start passive balancing when half the imbalance_pct
1518 * limit is reached.
1520 if (this_sd->flags & SD_WAKE_BALANCE) {
1521 if (imbalance*this_load <= 100*load) {
1522 schedstat_inc(this_sd, ttwu_move_balance);
1523 goto out_set_cpu;
1528 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1529 out_set_cpu:
1530 new_cpu = wake_idle(new_cpu, p);
1531 if (new_cpu != cpu) {
1532 set_task_cpu(p, new_cpu);
1533 task_rq_unlock(rq, &flags);
1534 /* might preempt at this point */
1535 rq = task_rq_lock(p, &flags);
1536 old_state = p->state;
1537 if (!(old_state & state))
1538 goto out;
1539 if (p->se.on_rq)
1540 goto out_running;
1542 this_cpu = smp_processor_id();
1543 cpu = task_cpu(p);
1546 out_activate:
1547 #endif /* CONFIG_SMP */
1548 update_rq_clock(rq);
1549 activate_task(rq, p, 1);
1551 * Sync wakeups (i.e. those types of wakeups where the waker
1552 * has indicated that it will leave the CPU in short order)
1553 * don't trigger a preemption, if the woken up task will run on
1554 * this cpu. (in this case the 'I will reschedule' promise of
1555 * the waker guarantees that the freshly woken up task is going
1556 * to be considered on this CPU.)
1558 if (!sync || cpu != this_cpu)
1559 check_preempt_curr(rq, p);
1560 success = 1;
1562 out_running:
1563 p->state = TASK_RUNNING;
1564 out:
1565 task_rq_unlock(rq, &flags);
1567 return success;
1570 int fastcall wake_up_process(struct task_struct *p)
1572 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1573 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1575 EXPORT_SYMBOL(wake_up_process);
1577 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1579 return try_to_wake_up(p, state, 0);
1583 * Perform scheduler related setup for a newly forked process p.
1584 * p is forked by current.
1586 * __sched_fork() is basic setup used by init_idle() too:
1588 static void __sched_fork(struct task_struct *p)
1590 p->se.exec_start = 0;
1591 p->se.sum_exec_runtime = 0;
1592 p->se.prev_sum_exec_runtime = 0;
1594 #ifdef CONFIG_SCHEDSTATS
1595 p->se.wait_start = 0;
1596 p->se.sum_sleep_runtime = 0;
1597 p->se.sleep_start = 0;
1598 p->se.block_start = 0;
1599 p->se.sleep_max = 0;
1600 p->se.block_max = 0;
1601 p->se.exec_max = 0;
1602 p->se.slice_max = 0;
1603 p->se.wait_max = 0;
1604 #endif
1606 INIT_LIST_HEAD(&p->run_list);
1607 p->se.on_rq = 0;
1609 #ifdef CONFIG_PREEMPT_NOTIFIERS
1610 INIT_HLIST_HEAD(&p->preempt_notifiers);
1611 #endif
1614 * We mark the process as running here, but have not actually
1615 * inserted it onto the runqueue yet. This guarantees that
1616 * nobody will actually run it, and a signal or other external
1617 * event cannot wake it up and insert it on the runqueue either.
1619 p->state = TASK_RUNNING;
1623 * fork()/clone()-time setup:
1625 void sched_fork(struct task_struct *p, int clone_flags)
1627 int cpu = get_cpu();
1629 __sched_fork(p);
1631 #ifdef CONFIG_SMP
1632 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1633 #endif
1634 set_task_cpu(p, cpu);
1637 * Make sure we do not leak PI boosting priority to the child:
1639 p->prio = current->normal_prio;
1640 if (!rt_prio(p->prio))
1641 p->sched_class = &fair_sched_class;
1643 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1644 if (likely(sched_info_on()))
1645 memset(&p->sched_info, 0, sizeof(p->sched_info));
1646 #endif
1647 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1648 p->oncpu = 0;
1649 #endif
1650 #ifdef CONFIG_PREEMPT
1651 /* Want to start with kernel preemption disabled. */
1652 task_thread_info(p)->preempt_count = 1;
1653 #endif
1654 put_cpu();
1658 * wake_up_new_task - wake up a newly created task for the first time.
1660 * This function will do some initial scheduler statistics housekeeping
1661 * that must be done for every newly created context, then puts the task
1662 * on the runqueue and wakes it.
1664 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1666 unsigned long flags;
1667 struct rq *rq;
1669 rq = task_rq_lock(p, &flags);
1670 BUG_ON(p->state != TASK_RUNNING);
1671 update_rq_clock(rq);
1673 p->prio = effective_prio(p);
1675 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
1676 activate_task(rq, p, 0);
1677 } else {
1679 * Let the scheduling class do new task startup
1680 * management (if any):
1682 p->sched_class->task_new(rq, p);
1683 inc_nr_running(p, rq);
1685 check_preempt_curr(rq, p);
1686 task_rq_unlock(rq, &flags);
1689 #ifdef CONFIG_PREEMPT_NOTIFIERS
1692 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1693 * @notifier: notifier struct to register
1695 void preempt_notifier_register(struct preempt_notifier *notifier)
1697 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1699 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1702 * preempt_notifier_unregister - no longer interested in preemption notifications
1703 * @notifier: notifier struct to unregister
1705 * This is safe to call from within a preemption notifier.
1707 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1709 hlist_del(&notifier->link);
1711 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1713 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1715 struct preempt_notifier *notifier;
1716 struct hlist_node *node;
1718 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1719 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1722 static void
1723 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1724 struct task_struct *next)
1726 struct preempt_notifier *notifier;
1727 struct hlist_node *node;
1729 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1730 notifier->ops->sched_out(notifier, next);
1733 #else
1735 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1739 static void
1740 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1741 struct task_struct *next)
1745 #endif
1748 * prepare_task_switch - prepare to switch tasks
1749 * @rq: the runqueue preparing to switch
1750 * @prev: the current task that is being switched out
1751 * @next: the task we are going to switch to.
1753 * This is called with the rq lock held and interrupts off. It must
1754 * be paired with a subsequent finish_task_switch after the context
1755 * switch.
1757 * prepare_task_switch sets up locking and calls architecture specific
1758 * hooks.
1760 static inline void
1761 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1762 struct task_struct *next)
1764 fire_sched_out_preempt_notifiers(prev, next);
1765 prepare_lock_switch(rq, next);
1766 prepare_arch_switch(next);
1770 * finish_task_switch - clean up after a task-switch
1771 * @rq: runqueue associated with task-switch
1772 * @prev: the thread we just switched away from.
1774 * finish_task_switch must be called after the context switch, paired
1775 * with a prepare_task_switch call before the context switch.
1776 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1777 * and do any other architecture-specific cleanup actions.
1779 * Note that we may have delayed dropping an mm in context_switch(). If
1780 * so, we finish that here outside of the runqueue lock. (Doing it
1781 * with the lock held can cause deadlocks; see schedule() for
1782 * details.)
1784 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1785 __releases(rq->lock)
1787 struct mm_struct *mm = rq->prev_mm;
1788 long prev_state;
1790 rq->prev_mm = NULL;
1793 * A task struct has one reference for the use as "current".
1794 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1795 * schedule one last time. The schedule call will never return, and
1796 * the scheduled task must drop that reference.
1797 * The test for TASK_DEAD must occur while the runqueue locks are
1798 * still held, otherwise prev could be scheduled on another cpu, die
1799 * there before we look at prev->state, and then the reference would
1800 * be dropped twice.
1801 * Manfred Spraul <manfred@colorfullife.com>
1803 prev_state = prev->state;
1804 finish_arch_switch(prev);
1805 finish_lock_switch(rq, prev);
1806 fire_sched_in_preempt_notifiers(current);
1807 if (mm)
1808 mmdrop(mm);
1809 if (unlikely(prev_state == TASK_DEAD)) {
1811 * Remove function-return probe instances associated with this
1812 * task and put them back on the free list.
1814 kprobe_flush_task(prev);
1815 put_task_struct(prev);
1820 * schedule_tail - first thing a freshly forked thread must call.
1821 * @prev: the thread we just switched away from.
1823 asmlinkage void schedule_tail(struct task_struct *prev)
1824 __releases(rq->lock)
1826 struct rq *rq = this_rq();
1828 finish_task_switch(rq, prev);
1829 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1830 /* In this case, finish_task_switch does not reenable preemption */
1831 preempt_enable();
1832 #endif
1833 if (current->set_child_tid)
1834 put_user(current->pid, current->set_child_tid);
1838 * context_switch - switch to the new MM and the new
1839 * thread's register state.
1841 static inline void
1842 context_switch(struct rq *rq, struct task_struct *prev,
1843 struct task_struct *next)
1845 struct mm_struct *mm, *oldmm;
1847 prepare_task_switch(rq, prev, next);
1848 mm = next->mm;
1849 oldmm = prev->active_mm;
1851 * For paravirt, this is coupled with an exit in switch_to to
1852 * combine the page table reload and the switch backend into
1853 * one hypercall.
1855 arch_enter_lazy_cpu_mode();
1857 if (unlikely(!mm)) {
1858 next->active_mm = oldmm;
1859 atomic_inc(&oldmm->mm_count);
1860 enter_lazy_tlb(oldmm, next);
1861 } else
1862 switch_mm(oldmm, mm, next);
1864 if (unlikely(!prev->mm)) {
1865 prev->active_mm = NULL;
1866 rq->prev_mm = oldmm;
1869 * Since the runqueue lock will be released by the next
1870 * task (which is an invalid locking op but in the case
1871 * of the scheduler it's an obvious special-case), so we
1872 * do an early lockdep release here:
1874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1876 #endif
1878 /* Here we just switch the register state and the stack. */
1879 switch_to(prev, next, prev);
1881 barrier();
1883 * this_rq must be evaluated again because prev may have moved
1884 * CPUs since it called schedule(), thus the 'rq' on its stack
1885 * frame will be invalid.
1887 finish_task_switch(this_rq(), prev);
1891 * nr_running, nr_uninterruptible and nr_context_switches:
1893 * externally visible scheduler statistics: current number of runnable
1894 * threads, current number of uninterruptible-sleeping threads, total
1895 * number of context switches performed since bootup.
1897 unsigned long nr_running(void)
1899 unsigned long i, sum = 0;
1901 for_each_online_cpu(i)
1902 sum += cpu_rq(i)->nr_running;
1904 return sum;
1907 unsigned long nr_uninterruptible(void)
1909 unsigned long i, sum = 0;
1911 for_each_possible_cpu(i)
1912 sum += cpu_rq(i)->nr_uninterruptible;
1915 * Since we read the counters lockless, it might be slightly
1916 * inaccurate. Do not allow it to go below zero though:
1918 if (unlikely((long)sum < 0))
1919 sum = 0;
1921 return sum;
1924 unsigned long long nr_context_switches(void)
1926 int i;
1927 unsigned long long sum = 0;
1929 for_each_possible_cpu(i)
1930 sum += cpu_rq(i)->nr_switches;
1932 return sum;
1935 unsigned long nr_iowait(void)
1937 unsigned long i, sum = 0;
1939 for_each_possible_cpu(i)
1940 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1942 return sum;
1945 unsigned long nr_active(void)
1947 unsigned long i, running = 0, uninterruptible = 0;
1949 for_each_online_cpu(i) {
1950 running += cpu_rq(i)->nr_running;
1951 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1954 if (unlikely((long)uninterruptible < 0))
1955 uninterruptible = 0;
1957 return running + uninterruptible;
1961 * Update rq->cpu_load[] statistics. This function is usually called every
1962 * scheduler tick (TICK_NSEC).
1964 static void update_cpu_load(struct rq *this_rq)
1966 unsigned long this_load = this_rq->load.weight;
1967 int i, scale;
1969 this_rq->nr_load_updates++;
1971 /* Update our load: */
1972 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1973 unsigned long old_load, new_load;
1975 /* scale is effectively 1 << i now, and >> i divides by scale */
1977 old_load = this_rq->cpu_load[i];
1978 new_load = this_load;
1980 * Round up the averaging division if load is increasing. This
1981 * prevents us from getting stuck on 9 if the load is 10, for
1982 * example.
1984 if (new_load > old_load)
1985 new_load += scale-1;
1986 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1990 #ifdef CONFIG_SMP
1993 * double_rq_lock - safely lock two runqueues
1995 * Note this does not disable interrupts like task_rq_lock,
1996 * you need to do so manually before calling.
1998 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1999 __acquires(rq1->lock)
2000 __acquires(rq2->lock)
2002 BUG_ON(!irqs_disabled());
2003 if (rq1 == rq2) {
2004 spin_lock(&rq1->lock);
2005 __acquire(rq2->lock); /* Fake it out ;) */
2006 } else {
2007 if (rq1 < rq2) {
2008 spin_lock(&rq1->lock);
2009 spin_lock(&rq2->lock);
2010 } else {
2011 spin_lock(&rq2->lock);
2012 spin_lock(&rq1->lock);
2015 update_rq_clock(rq1);
2016 update_rq_clock(rq2);
2020 * double_rq_unlock - safely unlock two runqueues
2022 * Note this does not restore interrupts like task_rq_unlock,
2023 * you need to do so manually after calling.
2025 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2026 __releases(rq1->lock)
2027 __releases(rq2->lock)
2029 spin_unlock(&rq1->lock);
2030 if (rq1 != rq2)
2031 spin_unlock(&rq2->lock);
2032 else
2033 __release(rq2->lock);
2037 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2039 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2040 __releases(this_rq->lock)
2041 __acquires(busiest->lock)
2042 __acquires(this_rq->lock)
2044 if (unlikely(!irqs_disabled())) {
2045 /* printk() doesn't work good under rq->lock */
2046 spin_unlock(&this_rq->lock);
2047 BUG_ON(1);
2049 if (unlikely(!spin_trylock(&busiest->lock))) {
2050 if (busiest < this_rq) {
2051 spin_unlock(&this_rq->lock);
2052 spin_lock(&busiest->lock);
2053 spin_lock(&this_rq->lock);
2054 } else
2055 spin_lock(&busiest->lock);
2060 * If dest_cpu is allowed for this process, migrate the task to it.
2061 * This is accomplished by forcing the cpu_allowed mask to only
2062 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2063 * the cpu_allowed mask is restored.
2065 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2067 struct migration_req req;
2068 unsigned long flags;
2069 struct rq *rq;
2071 rq = task_rq_lock(p, &flags);
2072 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2073 || unlikely(cpu_is_offline(dest_cpu)))
2074 goto out;
2076 /* force the process onto the specified CPU */
2077 if (migrate_task(p, dest_cpu, &req)) {
2078 /* Need to wait for migration thread (might exit: take ref). */
2079 struct task_struct *mt = rq->migration_thread;
2081 get_task_struct(mt);
2082 task_rq_unlock(rq, &flags);
2083 wake_up_process(mt);
2084 put_task_struct(mt);
2085 wait_for_completion(&req.done);
2087 return;
2089 out:
2090 task_rq_unlock(rq, &flags);
2094 * sched_exec - execve() is a valuable balancing opportunity, because at
2095 * this point the task has the smallest effective memory and cache footprint.
2097 void sched_exec(void)
2099 int new_cpu, this_cpu = get_cpu();
2100 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2101 put_cpu();
2102 if (new_cpu != this_cpu)
2103 sched_migrate_task(current, new_cpu);
2107 * pull_task - move a task from a remote runqueue to the local runqueue.
2108 * Both runqueues must be locked.
2110 static void pull_task(struct rq *src_rq, struct task_struct *p,
2111 struct rq *this_rq, int this_cpu)
2113 deactivate_task(src_rq, p, 0);
2114 set_task_cpu(p, this_cpu);
2115 activate_task(this_rq, p, 0);
2117 * Note that idle threads have a prio of MAX_PRIO, for this test
2118 * to be always true for them.
2120 check_preempt_curr(this_rq, p);
2124 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2126 static
2127 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2128 struct sched_domain *sd, enum cpu_idle_type idle,
2129 int *all_pinned)
2132 * We do not migrate tasks that are:
2133 * 1) running (obviously), or
2134 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2135 * 3) are cache-hot on their current CPU.
2137 if (!cpu_isset(this_cpu, p->cpus_allowed))
2138 return 0;
2139 *all_pinned = 0;
2141 if (task_running(rq, p))
2142 return 0;
2144 return 1;
2147 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2148 unsigned long max_nr_move, unsigned long max_load_move,
2149 struct sched_domain *sd, enum cpu_idle_type idle,
2150 int *all_pinned, unsigned long *load_moved,
2151 int *this_best_prio, struct rq_iterator *iterator)
2153 int pulled = 0, pinned = 0, skip_for_load;
2154 struct task_struct *p;
2155 long rem_load_move = max_load_move;
2157 if (max_nr_move == 0 || max_load_move == 0)
2158 goto out;
2160 pinned = 1;
2163 * Start the load-balancing iterator:
2165 p = iterator->start(iterator->arg);
2166 next:
2167 if (!p)
2168 goto out;
2170 * To help distribute high priority tasks accross CPUs we don't
2171 * skip a task if it will be the highest priority task (i.e. smallest
2172 * prio value) on its new queue regardless of its load weight
2174 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2175 SCHED_LOAD_SCALE_FUZZ;
2176 if ((skip_for_load && p->prio >= *this_best_prio) ||
2177 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2178 p = iterator->next(iterator->arg);
2179 goto next;
2182 pull_task(busiest, p, this_rq, this_cpu);
2183 pulled++;
2184 rem_load_move -= p->se.load.weight;
2187 * We only want to steal up to the prescribed number of tasks
2188 * and the prescribed amount of weighted load.
2190 if (pulled < max_nr_move && rem_load_move > 0) {
2191 if (p->prio < *this_best_prio)
2192 *this_best_prio = p->prio;
2193 p = iterator->next(iterator->arg);
2194 goto next;
2196 out:
2198 * Right now, this is the only place pull_task() is called,
2199 * so we can safely collect pull_task() stats here rather than
2200 * inside pull_task().
2202 schedstat_add(sd, lb_gained[idle], pulled);
2204 if (all_pinned)
2205 *all_pinned = pinned;
2206 *load_moved = max_load_move - rem_load_move;
2207 return pulled;
2211 * move_tasks tries to move up to max_load_move weighted load from busiest to
2212 * this_rq, as part of a balancing operation within domain "sd".
2213 * Returns 1 if successful and 0 otherwise.
2215 * Called with both runqueues locked.
2217 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2218 unsigned long max_load_move,
2219 struct sched_domain *sd, enum cpu_idle_type idle,
2220 int *all_pinned)
2222 const struct sched_class *class = sched_class_highest;
2223 unsigned long total_load_moved = 0;
2224 int this_best_prio = this_rq->curr->prio;
2226 do {
2227 total_load_moved +=
2228 class->load_balance(this_rq, this_cpu, busiest,
2229 ULONG_MAX, max_load_move - total_load_moved,
2230 sd, idle, all_pinned, &this_best_prio);
2231 class = class->next;
2232 } while (class && max_load_move > total_load_moved);
2234 return total_load_moved > 0;
2238 * move_one_task tries to move exactly one task from busiest to this_rq, as
2239 * part of active balancing operations within "domain".
2240 * Returns 1 if successful and 0 otherwise.
2242 * Called with both runqueues locked.
2244 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2245 struct sched_domain *sd, enum cpu_idle_type idle)
2247 const struct sched_class *class;
2248 int this_best_prio = MAX_PRIO;
2250 for (class = sched_class_highest; class; class = class->next)
2251 if (class->load_balance(this_rq, this_cpu, busiest,
2252 1, ULONG_MAX, sd, idle, NULL,
2253 &this_best_prio))
2254 return 1;
2256 return 0;
2260 * find_busiest_group finds and returns the busiest CPU group within the
2261 * domain. It calculates and returns the amount of weighted load which
2262 * should be moved to restore balance via the imbalance parameter.
2264 static struct sched_group *
2265 find_busiest_group(struct sched_domain *sd, int this_cpu,
2266 unsigned long *imbalance, enum cpu_idle_type idle,
2267 int *sd_idle, cpumask_t *cpus, int *balance)
2269 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2270 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2271 unsigned long max_pull;
2272 unsigned long busiest_load_per_task, busiest_nr_running;
2273 unsigned long this_load_per_task, this_nr_running;
2274 int load_idx;
2275 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2276 int power_savings_balance = 1;
2277 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2278 unsigned long min_nr_running = ULONG_MAX;
2279 struct sched_group *group_min = NULL, *group_leader = NULL;
2280 #endif
2282 max_load = this_load = total_load = total_pwr = 0;
2283 busiest_load_per_task = busiest_nr_running = 0;
2284 this_load_per_task = this_nr_running = 0;
2285 if (idle == CPU_NOT_IDLE)
2286 load_idx = sd->busy_idx;
2287 else if (idle == CPU_NEWLY_IDLE)
2288 load_idx = sd->newidle_idx;
2289 else
2290 load_idx = sd->idle_idx;
2292 do {
2293 unsigned long load, group_capacity;
2294 int local_group;
2295 int i;
2296 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2297 unsigned long sum_nr_running, sum_weighted_load;
2299 local_group = cpu_isset(this_cpu, group->cpumask);
2301 if (local_group)
2302 balance_cpu = first_cpu(group->cpumask);
2304 /* Tally up the load of all CPUs in the group */
2305 sum_weighted_load = sum_nr_running = avg_load = 0;
2307 for_each_cpu_mask(i, group->cpumask) {
2308 struct rq *rq;
2310 if (!cpu_isset(i, *cpus))
2311 continue;
2313 rq = cpu_rq(i);
2315 if (*sd_idle && rq->nr_running)
2316 *sd_idle = 0;
2318 /* Bias balancing toward cpus of our domain */
2319 if (local_group) {
2320 if (idle_cpu(i) && !first_idle_cpu) {
2321 first_idle_cpu = 1;
2322 balance_cpu = i;
2325 load = target_load(i, load_idx);
2326 } else
2327 load = source_load(i, load_idx);
2329 avg_load += load;
2330 sum_nr_running += rq->nr_running;
2331 sum_weighted_load += weighted_cpuload(i);
2335 * First idle cpu or the first cpu(busiest) in this sched group
2336 * is eligible for doing load balancing at this and above
2337 * domains. In the newly idle case, we will allow all the cpu's
2338 * to do the newly idle load balance.
2340 if (idle != CPU_NEWLY_IDLE && local_group &&
2341 balance_cpu != this_cpu && balance) {
2342 *balance = 0;
2343 goto ret;
2346 total_load += avg_load;
2347 total_pwr += group->__cpu_power;
2349 /* Adjust by relative CPU power of the group */
2350 avg_load = sg_div_cpu_power(group,
2351 avg_load * SCHED_LOAD_SCALE);
2353 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2355 if (local_group) {
2356 this_load = avg_load;
2357 this = group;
2358 this_nr_running = sum_nr_running;
2359 this_load_per_task = sum_weighted_load;
2360 } else if (avg_load > max_load &&
2361 sum_nr_running > group_capacity) {
2362 max_load = avg_load;
2363 busiest = group;
2364 busiest_nr_running = sum_nr_running;
2365 busiest_load_per_task = sum_weighted_load;
2368 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2370 * Busy processors will not participate in power savings
2371 * balance.
2373 if (idle == CPU_NOT_IDLE ||
2374 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2375 goto group_next;
2378 * If the local group is idle or completely loaded
2379 * no need to do power savings balance at this domain
2381 if (local_group && (this_nr_running >= group_capacity ||
2382 !this_nr_running))
2383 power_savings_balance = 0;
2386 * If a group is already running at full capacity or idle,
2387 * don't include that group in power savings calculations
2389 if (!power_savings_balance || sum_nr_running >= group_capacity
2390 || !sum_nr_running)
2391 goto group_next;
2394 * Calculate the group which has the least non-idle load.
2395 * This is the group from where we need to pick up the load
2396 * for saving power
2398 if ((sum_nr_running < min_nr_running) ||
2399 (sum_nr_running == min_nr_running &&
2400 first_cpu(group->cpumask) <
2401 first_cpu(group_min->cpumask))) {
2402 group_min = group;
2403 min_nr_running = sum_nr_running;
2404 min_load_per_task = sum_weighted_load /
2405 sum_nr_running;
2409 * Calculate the group which is almost near its
2410 * capacity but still has some space to pick up some load
2411 * from other group and save more power
2413 if (sum_nr_running <= group_capacity - 1) {
2414 if (sum_nr_running > leader_nr_running ||
2415 (sum_nr_running == leader_nr_running &&
2416 first_cpu(group->cpumask) >
2417 first_cpu(group_leader->cpumask))) {
2418 group_leader = group;
2419 leader_nr_running = sum_nr_running;
2422 group_next:
2423 #endif
2424 group = group->next;
2425 } while (group != sd->groups);
2427 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2428 goto out_balanced;
2430 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2432 if (this_load >= avg_load ||
2433 100*max_load <= sd->imbalance_pct*this_load)
2434 goto out_balanced;
2436 busiest_load_per_task /= busiest_nr_running;
2438 * We're trying to get all the cpus to the average_load, so we don't
2439 * want to push ourselves above the average load, nor do we wish to
2440 * reduce the max loaded cpu below the average load, as either of these
2441 * actions would just result in more rebalancing later, and ping-pong
2442 * tasks around. Thus we look for the minimum possible imbalance.
2443 * Negative imbalances (*we* are more loaded than anyone else) will
2444 * be counted as no imbalance for these purposes -- we can't fix that
2445 * by pulling tasks to us. Be careful of negative numbers as they'll
2446 * appear as very large values with unsigned longs.
2448 if (max_load <= busiest_load_per_task)
2449 goto out_balanced;
2452 * In the presence of smp nice balancing, certain scenarios can have
2453 * max load less than avg load(as we skip the groups at or below
2454 * its cpu_power, while calculating max_load..)
2456 if (max_load < avg_load) {
2457 *imbalance = 0;
2458 goto small_imbalance;
2461 /* Don't want to pull so many tasks that a group would go idle */
2462 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2464 /* How much load to actually move to equalise the imbalance */
2465 *imbalance = min(max_pull * busiest->__cpu_power,
2466 (avg_load - this_load) * this->__cpu_power)
2467 / SCHED_LOAD_SCALE;
2470 * if *imbalance is less than the average load per runnable task
2471 * there is no gaurantee that any tasks will be moved so we'll have
2472 * a think about bumping its value to force at least one task to be
2473 * moved
2475 if (*imbalance < busiest_load_per_task) {
2476 unsigned long tmp, pwr_now, pwr_move;
2477 unsigned int imbn;
2479 small_imbalance:
2480 pwr_move = pwr_now = 0;
2481 imbn = 2;
2482 if (this_nr_running) {
2483 this_load_per_task /= this_nr_running;
2484 if (busiest_load_per_task > this_load_per_task)
2485 imbn = 1;
2486 } else
2487 this_load_per_task = SCHED_LOAD_SCALE;
2489 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2490 busiest_load_per_task * imbn) {
2491 *imbalance = busiest_load_per_task;
2492 return busiest;
2496 * OK, we don't have enough imbalance to justify moving tasks,
2497 * however we may be able to increase total CPU power used by
2498 * moving them.
2501 pwr_now += busiest->__cpu_power *
2502 min(busiest_load_per_task, max_load);
2503 pwr_now += this->__cpu_power *
2504 min(this_load_per_task, this_load);
2505 pwr_now /= SCHED_LOAD_SCALE;
2507 /* Amount of load we'd subtract */
2508 tmp = sg_div_cpu_power(busiest,
2509 busiest_load_per_task * SCHED_LOAD_SCALE);
2510 if (max_load > tmp)
2511 pwr_move += busiest->__cpu_power *
2512 min(busiest_load_per_task, max_load - tmp);
2514 /* Amount of load we'd add */
2515 if (max_load * busiest->__cpu_power <
2516 busiest_load_per_task * SCHED_LOAD_SCALE)
2517 tmp = sg_div_cpu_power(this,
2518 max_load * busiest->__cpu_power);
2519 else
2520 tmp = sg_div_cpu_power(this,
2521 busiest_load_per_task * SCHED_LOAD_SCALE);
2522 pwr_move += this->__cpu_power *
2523 min(this_load_per_task, this_load + tmp);
2524 pwr_move /= SCHED_LOAD_SCALE;
2526 /* Move if we gain throughput */
2527 if (pwr_move > pwr_now)
2528 *imbalance = busiest_load_per_task;
2531 return busiest;
2533 out_balanced:
2534 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2535 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2536 goto ret;
2538 if (this == group_leader && group_leader != group_min) {
2539 *imbalance = min_load_per_task;
2540 return group_min;
2542 #endif
2543 ret:
2544 *imbalance = 0;
2545 return NULL;
2549 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2551 static struct rq *
2552 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2553 unsigned long imbalance, cpumask_t *cpus)
2555 struct rq *busiest = NULL, *rq;
2556 unsigned long max_load = 0;
2557 int i;
2559 for_each_cpu_mask(i, group->cpumask) {
2560 unsigned long wl;
2562 if (!cpu_isset(i, *cpus))
2563 continue;
2565 rq = cpu_rq(i);
2566 wl = weighted_cpuload(i);
2568 if (rq->nr_running == 1 && wl > imbalance)
2569 continue;
2571 if (wl > max_load) {
2572 max_load = wl;
2573 busiest = rq;
2577 return busiest;
2581 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2582 * so long as it is large enough.
2584 #define MAX_PINNED_INTERVAL 512
2587 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2588 * tasks if there is an imbalance.
2590 static int load_balance(int this_cpu, struct rq *this_rq,
2591 struct sched_domain *sd, enum cpu_idle_type idle,
2592 int *balance)
2594 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2595 struct sched_group *group;
2596 unsigned long imbalance;
2597 struct rq *busiest;
2598 cpumask_t cpus = CPU_MASK_ALL;
2599 unsigned long flags;
2602 * When power savings policy is enabled for the parent domain, idle
2603 * sibling can pick up load irrespective of busy siblings. In this case,
2604 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2605 * portraying it as CPU_NOT_IDLE.
2607 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2608 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2609 sd_idle = 1;
2611 schedstat_inc(sd, lb_count[idle]);
2613 redo:
2614 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2615 &cpus, balance);
2617 if (*balance == 0)
2618 goto out_balanced;
2620 if (!group) {
2621 schedstat_inc(sd, lb_nobusyg[idle]);
2622 goto out_balanced;
2625 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2626 if (!busiest) {
2627 schedstat_inc(sd, lb_nobusyq[idle]);
2628 goto out_balanced;
2631 BUG_ON(busiest == this_rq);
2633 schedstat_add(sd, lb_imbalance[idle], imbalance);
2635 ld_moved = 0;
2636 if (busiest->nr_running > 1) {
2638 * Attempt to move tasks. If find_busiest_group has found
2639 * an imbalance but busiest->nr_running <= 1, the group is
2640 * still unbalanced. ld_moved simply stays zero, so it is
2641 * correctly treated as an imbalance.
2643 local_irq_save(flags);
2644 double_rq_lock(this_rq, busiest);
2645 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2646 imbalance, sd, idle, &all_pinned);
2647 double_rq_unlock(this_rq, busiest);
2648 local_irq_restore(flags);
2651 * some other cpu did the load balance for us.
2653 if (ld_moved && this_cpu != smp_processor_id())
2654 resched_cpu(this_cpu);
2656 /* All tasks on this runqueue were pinned by CPU affinity */
2657 if (unlikely(all_pinned)) {
2658 cpu_clear(cpu_of(busiest), cpus);
2659 if (!cpus_empty(cpus))
2660 goto redo;
2661 goto out_balanced;
2665 if (!ld_moved) {
2666 schedstat_inc(sd, lb_failed[idle]);
2667 sd->nr_balance_failed++;
2669 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2671 spin_lock_irqsave(&busiest->lock, flags);
2673 /* don't kick the migration_thread, if the curr
2674 * task on busiest cpu can't be moved to this_cpu
2676 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2677 spin_unlock_irqrestore(&busiest->lock, flags);
2678 all_pinned = 1;
2679 goto out_one_pinned;
2682 if (!busiest->active_balance) {
2683 busiest->active_balance = 1;
2684 busiest->push_cpu = this_cpu;
2685 active_balance = 1;
2687 spin_unlock_irqrestore(&busiest->lock, flags);
2688 if (active_balance)
2689 wake_up_process(busiest->migration_thread);
2692 * We've kicked active balancing, reset the failure
2693 * counter.
2695 sd->nr_balance_failed = sd->cache_nice_tries+1;
2697 } else
2698 sd->nr_balance_failed = 0;
2700 if (likely(!active_balance)) {
2701 /* We were unbalanced, so reset the balancing interval */
2702 sd->balance_interval = sd->min_interval;
2703 } else {
2705 * If we've begun active balancing, start to back off. This
2706 * case may not be covered by the all_pinned logic if there
2707 * is only 1 task on the busy runqueue (because we don't call
2708 * move_tasks).
2710 if (sd->balance_interval < sd->max_interval)
2711 sd->balance_interval *= 2;
2714 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2715 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2716 return -1;
2717 return ld_moved;
2719 out_balanced:
2720 schedstat_inc(sd, lb_balanced[idle]);
2722 sd->nr_balance_failed = 0;
2724 out_one_pinned:
2725 /* tune up the balancing interval */
2726 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2727 (sd->balance_interval < sd->max_interval))
2728 sd->balance_interval *= 2;
2730 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2732 return -1;
2733 return 0;
2737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738 * tasks if there is an imbalance.
2740 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2741 * this_rq is locked.
2743 static int
2744 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2746 struct sched_group *group;
2747 struct rq *busiest = NULL;
2748 unsigned long imbalance;
2749 int ld_moved = 0;
2750 int sd_idle = 0;
2751 int all_pinned = 0;
2752 cpumask_t cpus = CPU_MASK_ALL;
2755 * When power savings policy is enabled for the parent domain, idle
2756 * sibling can pick up load irrespective of busy siblings. In this case,
2757 * let the state of idle sibling percolate up as IDLE, instead of
2758 * portraying it as CPU_NOT_IDLE.
2760 if (sd->flags & SD_SHARE_CPUPOWER &&
2761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2762 sd_idle = 1;
2764 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2765 redo:
2766 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2767 &sd_idle, &cpus, NULL);
2768 if (!group) {
2769 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2770 goto out_balanced;
2773 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2774 &cpus);
2775 if (!busiest) {
2776 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2777 goto out_balanced;
2780 BUG_ON(busiest == this_rq);
2782 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2784 ld_moved = 0;
2785 if (busiest->nr_running > 1) {
2786 /* Attempt to move tasks */
2787 double_lock_balance(this_rq, busiest);
2788 /* this_rq->clock is already updated */
2789 update_rq_clock(busiest);
2790 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2791 imbalance, sd, CPU_NEWLY_IDLE,
2792 &all_pinned);
2793 spin_unlock(&busiest->lock);
2795 if (unlikely(all_pinned)) {
2796 cpu_clear(cpu_of(busiest), cpus);
2797 if (!cpus_empty(cpus))
2798 goto redo;
2802 if (!ld_moved) {
2803 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2804 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2805 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2806 return -1;
2807 } else
2808 sd->nr_balance_failed = 0;
2810 return ld_moved;
2812 out_balanced:
2813 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2814 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2815 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2816 return -1;
2817 sd->nr_balance_failed = 0;
2819 return 0;
2823 * idle_balance is called by schedule() if this_cpu is about to become
2824 * idle. Attempts to pull tasks from other CPUs.
2826 static void idle_balance(int this_cpu, struct rq *this_rq)
2828 struct sched_domain *sd;
2829 int pulled_task = -1;
2830 unsigned long next_balance = jiffies + HZ;
2832 for_each_domain(this_cpu, sd) {
2833 unsigned long interval;
2835 if (!(sd->flags & SD_LOAD_BALANCE))
2836 continue;
2838 if (sd->flags & SD_BALANCE_NEWIDLE)
2839 /* If we've pulled tasks over stop searching: */
2840 pulled_task = load_balance_newidle(this_cpu,
2841 this_rq, sd);
2843 interval = msecs_to_jiffies(sd->balance_interval);
2844 if (time_after(next_balance, sd->last_balance + interval))
2845 next_balance = sd->last_balance + interval;
2846 if (pulled_task)
2847 break;
2849 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2851 * We are going idle. next_balance may be set based on
2852 * a busy processor. So reset next_balance.
2854 this_rq->next_balance = next_balance;
2859 * active_load_balance is run by migration threads. It pushes running tasks
2860 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2861 * running on each physical CPU where possible, and avoids physical /
2862 * logical imbalances.
2864 * Called with busiest_rq locked.
2866 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2868 int target_cpu = busiest_rq->push_cpu;
2869 struct sched_domain *sd;
2870 struct rq *target_rq;
2872 /* Is there any task to move? */
2873 if (busiest_rq->nr_running <= 1)
2874 return;
2876 target_rq = cpu_rq(target_cpu);
2879 * This condition is "impossible", if it occurs
2880 * we need to fix it. Originally reported by
2881 * Bjorn Helgaas on a 128-cpu setup.
2883 BUG_ON(busiest_rq == target_rq);
2885 /* move a task from busiest_rq to target_rq */
2886 double_lock_balance(busiest_rq, target_rq);
2887 update_rq_clock(busiest_rq);
2888 update_rq_clock(target_rq);
2890 /* Search for an sd spanning us and the target CPU. */
2891 for_each_domain(target_cpu, sd) {
2892 if ((sd->flags & SD_LOAD_BALANCE) &&
2893 cpu_isset(busiest_cpu, sd->span))
2894 break;
2897 if (likely(sd)) {
2898 schedstat_inc(sd, alb_count);
2900 if (move_one_task(target_rq, target_cpu, busiest_rq,
2901 sd, CPU_IDLE))
2902 schedstat_inc(sd, alb_pushed);
2903 else
2904 schedstat_inc(sd, alb_failed);
2906 spin_unlock(&target_rq->lock);
2909 #ifdef CONFIG_NO_HZ
2910 static struct {
2911 atomic_t load_balancer;
2912 cpumask_t cpu_mask;
2913 } nohz ____cacheline_aligned = {
2914 .load_balancer = ATOMIC_INIT(-1),
2915 .cpu_mask = CPU_MASK_NONE,
2919 * This routine will try to nominate the ilb (idle load balancing)
2920 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2921 * load balancing on behalf of all those cpus. If all the cpus in the system
2922 * go into this tickless mode, then there will be no ilb owner (as there is
2923 * no need for one) and all the cpus will sleep till the next wakeup event
2924 * arrives...
2926 * For the ilb owner, tick is not stopped. And this tick will be used
2927 * for idle load balancing. ilb owner will still be part of
2928 * nohz.cpu_mask..
2930 * While stopping the tick, this cpu will become the ilb owner if there
2931 * is no other owner. And will be the owner till that cpu becomes busy
2932 * or if all cpus in the system stop their ticks at which point
2933 * there is no need for ilb owner.
2935 * When the ilb owner becomes busy, it nominates another owner, during the
2936 * next busy scheduler_tick()
2938 int select_nohz_load_balancer(int stop_tick)
2940 int cpu = smp_processor_id();
2942 if (stop_tick) {
2943 cpu_set(cpu, nohz.cpu_mask);
2944 cpu_rq(cpu)->in_nohz_recently = 1;
2947 * If we are going offline and still the leader, give up!
2949 if (cpu_is_offline(cpu) &&
2950 atomic_read(&nohz.load_balancer) == cpu) {
2951 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2952 BUG();
2953 return 0;
2956 /* time for ilb owner also to sleep */
2957 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2958 if (atomic_read(&nohz.load_balancer) == cpu)
2959 atomic_set(&nohz.load_balancer, -1);
2960 return 0;
2963 if (atomic_read(&nohz.load_balancer) == -1) {
2964 /* make me the ilb owner */
2965 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2966 return 1;
2967 } else if (atomic_read(&nohz.load_balancer) == cpu)
2968 return 1;
2969 } else {
2970 if (!cpu_isset(cpu, nohz.cpu_mask))
2971 return 0;
2973 cpu_clear(cpu, nohz.cpu_mask);
2975 if (atomic_read(&nohz.load_balancer) == cpu)
2976 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2977 BUG();
2979 return 0;
2981 #endif
2983 static DEFINE_SPINLOCK(balancing);
2986 * It checks each scheduling domain to see if it is due to be balanced,
2987 * and initiates a balancing operation if so.
2989 * Balancing parameters are set up in arch_init_sched_domains.
2991 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
2993 int balance = 1;
2994 struct rq *rq = cpu_rq(cpu);
2995 unsigned long interval;
2996 struct sched_domain *sd;
2997 /* Earliest time when we have to do rebalance again */
2998 unsigned long next_balance = jiffies + 60*HZ;
2999 int update_next_balance = 0;
3001 for_each_domain(cpu, sd) {
3002 if (!(sd->flags & SD_LOAD_BALANCE))
3003 continue;
3005 interval = sd->balance_interval;
3006 if (idle != CPU_IDLE)
3007 interval *= sd->busy_factor;
3009 /* scale ms to jiffies */
3010 interval = msecs_to_jiffies(interval);
3011 if (unlikely(!interval))
3012 interval = 1;
3013 if (interval > HZ*NR_CPUS/10)
3014 interval = HZ*NR_CPUS/10;
3017 if (sd->flags & SD_SERIALIZE) {
3018 if (!spin_trylock(&balancing))
3019 goto out;
3022 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3023 if (load_balance(cpu, rq, sd, idle, &balance)) {
3025 * We've pulled tasks over so either we're no
3026 * longer idle, or one of our SMT siblings is
3027 * not idle.
3029 idle = CPU_NOT_IDLE;
3031 sd->last_balance = jiffies;
3033 if (sd->flags & SD_SERIALIZE)
3034 spin_unlock(&balancing);
3035 out:
3036 if (time_after(next_balance, sd->last_balance + interval)) {
3037 next_balance = sd->last_balance + interval;
3038 update_next_balance = 1;
3042 * Stop the load balance at this level. There is another
3043 * CPU in our sched group which is doing load balancing more
3044 * actively.
3046 if (!balance)
3047 break;
3051 * next_balance will be updated only when there is a need.
3052 * When the cpu is attached to null domain for ex, it will not be
3053 * updated.
3055 if (likely(update_next_balance))
3056 rq->next_balance = next_balance;
3060 * run_rebalance_domains is triggered when needed from the scheduler tick.
3061 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3062 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3064 static void run_rebalance_domains(struct softirq_action *h)
3066 int this_cpu = smp_processor_id();
3067 struct rq *this_rq = cpu_rq(this_cpu);
3068 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3069 CPU_IDLE : CPU_NOT_IDLE;
3071 rebalance_domains(this_cpu, idle);
3073 #ifdef CONFIG_NO_HZ
3075 * If this cpu is the owner for idle load balancing, then do the
3076 * balancing on behalf of the other idle cpus whose ticks are
3077 * stopped.
3079 if (this_rq->idle_at_tick &&
3080 atomic_read(&nohz.load_balancer) == this_cpu) {
3081 cpumask_t cpus = nohz.cpu_mask;
3082 struct rq *rq;
3083 int balance_cpu;
3085 cpu_clear(this_cpu, cpus);
3086 for_each_cpu_mask(balance_cpu, cpus) {
3088 * If this cpu gets work to do, stop the load balancing
3089 * work being done for other cpus. Next load
3090 * balancing owner will pick it up.
3092 if (need_resched())
3093 break;
3095 rebalance_domains(balance_cpu, CPU_IDLE);
3097 rq = cpu_rq(balance_cpu);
3098 if (time_after(this_rq->next_balance, rq->next_balance))
3099 this_rq->next_balance = rq->next_balance;
3102 #endif
3106 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3108 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3109 * idle load balancing owner or decide to stop the periodic load balancing,
3110 * if the whole system is idle.
3112 static inline void trigger_load_balance(struct rq *rq, int cpu)
3114 #ifdef CONFIG_NO_HZ
3116 * If we were in the nohz mode recently and busy at the current
3117 * scheduler tick, then check if we need to nominate new idle
3118 * load balancer.
3120 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3121 rq->in_nohz_recently = 0;
3123 if (atomic_read(&nohz.load_balancer) == cpu) {
3124 cpu_clear(cpu, nohz.cpu_mask);
3125 atomic_set(&nohz.load_balancer, -1);
3128 if (atomic_read(&nohz.load_balancer) == -1) {
3130 * simple selection for now: Nominate the
3131 * first cpu in the nohz list to be the next
3132 * ilb owner.
3134 * TBD: Traverse the sched domains and nominate
3135 * the nearest cpu in the nohz.cpu_mask.
3137 int ilb = first_cpu(nohz.cpu_mask);
3139 if (ilb != NR_CPUS)
3140 resched_cpu(ilb);
3145 * If this cpu is idle and doing idle load balancing for all the
3146 * cpus with ticks stopped, is it time for that to stop?
3148 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3149 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3150 resched_cpu(cpu);
3151 return;
3155 * If this cpu is idle and the idle load balancing is done by
3156 * someone else, then no need raise the SCHED_SOFTIRQ
3158 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3159 cpu_isset(cpu, nohz.cpu_mask))
3160 return;
3161 #endif
3162 if (time_after_eq(jiffies, rq->next_balance))
3163 raise_softirq(SCHED_SOFTIRQ);
3166 #else /* CONFIG_SMP */
3169 * on UP we do not need to balance between CPUs:
3171 static inline void idle_balance(int cpu, struct rq *rq)
3175 /* Avoid "used but not defined" warning on UP */
3176 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3177 unsigned long max_nr_move, unsigned long max_load_move,
3178 struct sched_domain *sd, enum cpu_idle_type idle,
3179 int *all_pinned, unsigned long *load_moved,
3180 int *this_best_prio, struct rq_iterator *iterator)
3182 *load_moved = 0;
3184 return 0;
3187 #endif
3189 DEFINE_PER_CPU(struct kernel_stat, kstat);
3191 EXPORT_PER_CPU_SYMBOL(kstat);
3194 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3195 * that have not yet been banked in case the task is currently running.
3197 unsigned long long task_sched_runtime(struct task_struct *p)
3199 unsigned long flags;
3200 u64 ns, delta_exec;
3201 struct rq *rq;
3203 rq = task_rq_lock(p, &flags);
3204 ns = p->se.sum_exec_runtime;
3205 if (rq->curr == p) {
3206 update_rq_clock(rq);
3207 delta_exec = rq->clock - p->se.exec_start;
3208 if ((s64)delta_exec > 0)
3209 ns += delta_exec;
3211 task_rq_unlock(rq, &flags);
3213 return ns;
3217 * Account user cpu time to a process.
3218 * @p: the process that the cpu time gets accounted to
3219 * @hardirq_offset: the offset to subtract from hardirq_count()
3220 * @cputime: the cpu time spent in user space since the last update
3222 void account_user_time(struct task_struct *p, cputime_t cputime)
3224 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3225 cputime64_t tmp;
3227 p->utime = cputime_add(p->utime, cputime);
3229 /* Add user time to cpustat. */
3230 tmp = cputime_to_cputime64(cputime);
3231 if (TASK_NICE(p) > 0)
3232 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3233 else
3234 cpustat->user = cputime64_add(cpustat->user, tmp);
3238 * Account system cpu time to a process.
3239 * @p: the process that the cpu time gets accounted to
3240 * @hardirq_offset: the offset to subtract from hardirq_count()
3241 * @cputime: the cpu time spent in kernel space since the last update
3243 void account_system_time(struct task_struct *p, int hardirq_offset,
3244 cputime_t cputime)
3246 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3247 struct rq *rq = this_rq();
3248 cputime64_t tmp;
3250 p->stime = cputime_add(p->stime, cputime);
3252 /* Add system time to cpustat. */
3253 tmp = cputime_to_cputime64(cputime);
3254 if (hardirq_count() - hardirq_offset)
3255 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3256 else if (softirq_count())
3257 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3258 else if (p != rq->idle)
3259 cpustat->system = cputime64_add(cpustat->system, tmp);
3260 else if (atomic_read(&rq->nr_iowait) > 0)
3261 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3262 else
3263 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3264 /* Account for system time used */
3265 acct_update_integrals(p);
3269 * Account for involuntary wait time.
3270 * @p: the process from which the cpu time has been stolen
3271 * @steal: the cpu time spent in involuntary wait
3273 void account_steal_time(struct task_struct *p, cputime_t steal)
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3276 cputime64_t tmp = cputime_to_cputime64(steal);
3277 struct rq *rq = this_rq();
3279 if (p == rq->idle) {
3280 p->stime = cputime_add(p->stime, steal);
3281 if (atomic_read(&rq->nr_iowait) > 0)
3282 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3283 else
3284 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3285 } else
3286 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3290 * This function gets called by the timer code, with HZ frequency.
3291 * We call it with interrupts disabled.
3293 * It also gets called by the fork code, when changing the parent's
3294 * timeslices.
3296 void scheduler_tick(void)
3298 int cpu = smp_processor_id();
3299 struct rq *rq = cpu_rq(cpu);
3300 struct task_struct *curr = rq->curr;
3301 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3303 spin_lock(&rq->lock);
3304 __update_rq_clock(rq);
3306 * Let rq->clock advance by at least TICK_NSEC:
3308 if (unlikely(rq->clock < next_tick))
3309 rq->clock = next_tick;
3310 rq->tick_timestamp = rq->clock;
3311 update_cpu_load(rq);
3312 if (curr != rq->idle) /* FIXME: needed? */
3313 curr->sched_class->task_tick(rq, curr);
3314 spin_unlock(&rq->lock);
3316 #ifdef CONFIG_SMP
3317 rq->idle_at_tick = idle_cpu(cpu);
3318 trigger_load_balance(rq, cpu);
3319 #endif
3322 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3324 void fastcall add_preempt_count(int val)
3327 * Underflow?
3329 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3330 return;
3331 preempt_count() += val;
3333 * Spinlock count overflowing soon?
3335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3336 PREEMPT_MASK - 10);
3338 EXPORT_SYMBOL(add_preempt_count);
3340 void fastcall sub_preempt_count(int val)
3343 * Underflow?
3345 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3346 return;
3348 * Is the spinlock portion underflowing?
3350 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3351 !(preempt_count() & PREEMPT_MASK)))
3352 return;
3354 preempt_count() -= val;
3356 EXPORT_SYMBOL(sub_preempt_count);
3358 #endif
3361 * Print scheduling while atomic bug:
3363 static noinline void __schedule_bug(struct task_struct *prev)
3365 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3366 prev->comm, preempt_count(), prev->pid);
3367 debug_show_held_locks(prev);
3368 if (irqs_disabled())
3369 print_irqtrace_events(prev);
3370 dump_stack();
3374 * Various schedule()-time debugging checks and statistics:
3376 static inline void schedule_debug(struct task_struct *prev)
3379 * Test if we are atomic. Since do_exit() needs to call into
3380 * schedule() atomically, we ignore that path for now.
3381 * Otherwise, whine if we are scheduling when we should not be.
3383 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3384 __schedule_bug(prev);
3386 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3388 schedstat_inc(this_rq(), sched_count);
3389 #ifdef CONFIG_SCHEDSTATS
3390 if (unlikely(prev->lock_depth >= 0)) {
3391 schedstat_inc(this_rq(), bkl_count);
3392 schedstat_inc(prev, sched_info.bkl_count);
3394 #endif
3398 * Pick up the highest-prio task:
3400 static inline struct task_struct *
3401 pick_next_task(struct rq *rq, struct task_struct *prev)
3403 const struct sched_class *class;
3404 struct task_struct *p;
3407 * Optimization: we know that if all tasks are in
3408 * the fair class we can call that function directly:
3410 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3411 p = fair_sched_class.pick_next_task(rq);
3412 if (likely(p))
3413 return p;
3416 class = sched_class_highest;
3417 for ( ; ; ) {
3418 p = class->pick_next_task(rq);
3419 if (p)
3420 return p;
3422 * Will never be NULL as the idle class always
3423 * returns a non-NULL p:
3425 class = class->next;
3430 * schedule() is the main scheduler function.
3432 asmlinkage void __sched schedule(void)
3434 struct task_struct *prev, *next;
3435 long *switch_count;
3436 struct rq *rq;
3437 int cpu;
3439 need_resched:
3440 preempt_disable();
3441 cpu = smp_processor_id();
3442 rq = cpu_rq(cpu);
3443 rcu_qsctr_inc(cpu);
3444 prev = rq->curr;
3445 switch_count = &prev->nivcsw;
3447 release_kernel_lock(prev);
3448 need_resched_nonpreemptible:
3450 schedule_debug(prev);
3453 * Do the rq-clock update outside the rq lock:
3455 local_irq_disable();
3456 __update_rq_clock(rq);
3457 spin_lock(&rq->lock);
3458 clear_tsk_need_resched(prev);
3460 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3461 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3462 unlikely(signal_pending(prev)))) {
3463 prev->state = TASK_RUNNING;
3464 } else {
3465 deactivate_task(rq, prev, 1);
3467 switch_count = &prev->nvcsw;
3470 if (unlikely(!rq->nr_running))
3471 idle_balance(cpu, rq);
3473 prev->sched_class->put_prev_task(rq, prev);
3474 next = pick_next_task(rq, prev);
3476 sched_info_switch(prev, next);
3478 if (likely(prev != next)) {
3479 rq->nr_switches++;
3480 rq->curr = next;
3481 ++*switch_count;
3483 context_switch(rq, prev, next); /* unlocks the rq */
3484 } else
3485 spin_unlock_irq(&rq->lock);
3487 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3488 cpu = smp_processor_id();
3489 rq = cpu_rq(cpu);
3490 goto need_resched_nonpreemptible;
3492 preempt_enable_no_resched();
3493 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3494 goto need_resched;
3496 EXPORT_SYMBOL(schedule);
3498 #ifdef CONFIG_PREEMPT
3500 * this is the entry point to schedule() from in-kernel preemption
3501 * off of preempt_enable. Kernel preemptions off return from interrupt
3502 * occur there and call schedule directly.
3504 asmlinkage void __sched preempt_schedule(void)
3506 struct thread_info *ti = current_thread_info();
3507 #ifdef CONFIG_PREEMPT_BKL
3508 struct task_struct *task = current;
3509 int saved_lock_depth;
3510 #endif
3512 * If there is a non-zero preempt_count or interrupts are disabled,
3513 * we do not want to preempt the current task. Just return..
3515 if (likely(ti->preempt_count || irqs_disabled()))
3516 return;
3518 need_resched:
3519 add_preempt_count(PREEMPT_ACTIVE);
3521 * We keep the big kernel semaphore locked, but we
3522 * clear ->lock_depth so that schedule() doesnt
3523 * auto-release the semaphore:
3525 #ifdef CONFIG_PREEMPT_BKL
3526 saved_lock_depth = task->lock_depth;
3527 task->lock_depth = -1;
3528 #endif
3529 schedule();
3530 #ifdef CONFIG_PREEMPT_BKL
3531 task->lock_depth = saved_lock_depth;
3532 #endif
3533 sub_preempt_count(PREEMPT_ACTIVE);
3535 /* we could miss a preemption opportunity between schedule and now */
3536 barrier();
3537 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3538 goto need_resched;
3540 EXPORT_SYMBOL(preempt_schedule);
3543 * this is the entry point to schedule() from kernel preemption
3544 * off of irq context.
3545 * Note, that this is called and return with irqs disabled. This will
3546 * protect us against recursive calling from irq.
3548 asmlinkage void __sched preempt_schedule_irq(void)
3550 struct thread_info *ti = current_thread_info();
3551 #ifdef CONFIG_PREEMPT_BKL
3552 struct task_struct *task = current;
3553 int saved_lock_depth;
3554 #endif
3555 /* Catch callers which need to be fixed */
3556 BUG_ON(ti->preempt_count || !irqs_disabled());
3558 need_resched:
3559 add_preempt_count(PREEMPT_ACTIVE);
3561 * We keep the big kernel semaphore locked, but we
3562 * clear ->lock_depth so that schedule() doesnt
3563 * auto-release the semaphore:
3565 #ifdef CONFIG_PREEMPT_BKL
3566 saved_lock_depth = task->lock_depth;
3567 task->lock_depth = -1;
3568 #endif
3569 local_irq_enable();
3570 schedule();
3571 local_irq_disable();
3572 #ifdef CONFIG_PREEMPT_BKL
3573 task->lock_depth = saved_lock_depth;
3574 #endif
3575 sub_preempt_count(PREEMPT_ACTIVE);
3577 /* we could miss a preemption opportunity between schedule and now */
3578 barrier();
3579 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3580 goto need_resched;
3583 #endif /* CONFIG_PREEMPT */
3585 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3586 void *key)
3588 return try_to_wake_up(curr->private, mode, sync);
3590 EXPORT_SYMBOL(default_wake_function);
3593 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3594 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3595 * number) then we wake all the non-exclusive tasks and one exclusive task.
3597 * There are circumstances in which we can try to wake a task which has already
3598 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3599 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3601 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3602 int nr_exclusive, int sync, void *key)
3604 wait_queue_t *curr, *next;
3606 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3607 unsigned flags = curr->flags;
3609 if (curr->func(curr, mode, sync, key) &&
3610 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3611 break;
3616 * __wake_up - wake up threads blocked on a waitqueue.
3617 * @q: the waitqueue
3618 * @mode: which threads
3619 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3620 * @key: is directly passed to the wakeup function
3622 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3623 int nr_exclusive, void *key)
3625 unsigned long flags;
3627 spin_lock_irqsave(&q->lock, flags);
3628 __wake_up_common(q, mode, nr_exclusive, 0, key);
3629 spin_unlock_irqrestore(&q->lock, flags);
3631 EXPORT_SYMBOL(__wake_up);
3634 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3636 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3638 __wake_up_common(q, mode, 1, 0, NULL);
3642 * __wake_up_sync - wake up threads blocked on a waitqueue.
3643 * @q: the waitqueue
3644 * @mode: which threads
3645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3647 * The sync wakeup differs that the waker knows that it will schedule
3648 * away soon, so while the target thread will be woken up, it will not
3649 * be migrated to another CPU - ie. the two threads are 'synchronized'
3650 * with each other. This can prevent needless bouncing between CPUs.
3652 * On UP it can prevent extra preemption.
3654 void fastcall
3655 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3657 unsigned long flags;
3658 int sync = 1;
3660 if (unlikely(!q))
3661 return;
3663 if (unlikely(!nr_exclusive))
3664 sync = 0;
3666 spin_lock_irqsave(&q->lock, flags);
3667 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3668 spin_unlock_irqrestore(&q->lock, flags);
3670 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3672 void fastcall complete(struct completion *x)
3674 unsigned long flags;
3676 spin_lock_irqsave(&x->wait.lock, flags);
3677 x->done++;
3678 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3679 1, 0, NULL);
3680 spin_unlock_irqrestore(&x->wait.lock, flags);
3682 EXPORT_SYMBOL(complete);
3684 void fastcall complete_all(struct completion *x)
3686 unsigned long flags;
3688 spin_lock_irqsave(&x->wait.lock, flags);
3689 x->done += UINT_MAX/2;
3690 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3691 0, 0, NULL);
3692 spin_unlock_irqrestore(&x->wait.lock, flags);
3694 EXPORT_SYMBOL(complete_all);
3696 void fastcall __sched wait_for_completion(struct completion *x)
3698 might_sleep();
3700 spin_lock_irq(&x->wait.lock);
3701 if (!x->done) {
3702 DECLARE_WAITQUEUE(wait, current);
3704 wait.flags |= WQ_FLAG_EXCLUSIVE;
3705 __add_wait_queue_tail(&x->wait, &wait);
3706 do {
3707 __set_current_state(TASK_UNINTERRUPTIBLE);
3708 spin_unlock_irq(&x->wait.lock);
3709 schedule();
3710 spin_lock_irq(&x->wait.lock);
3711 } while (!x->done);
3712 __remove_wait_queue(&x->wait, &wait);
3714 x->done--;
3715 spin_unlock_irq(&x->wait.lock);
3717 EXPORT_SYMBOL(wait_for_completion);
3719 unsigned long fastcall __sched
3720 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3722 might_sleep();
3724 spin_lock_irq(&x->wait.lock);
3725 if (!x->done) {
3726 DECLARE_WAITQUEUE(wait, current);
3728 wait.flags |= WQ_FLAG_EXCLUSIVE;
3729 __add_wait_queue_tail(&x->wait, &wait);
3730 do {
3731 __set_current_state(TASK_UNINTERRUPTIBLE);
3732 spin_unlock_irq(&x->wait.lock);
3733 timeout = schedule_timeout(timeout);
3734 spin_lock_irq(&x->wait.lock);
3735 if (!timeout) {
3736 __remove_wait_queue(&x->wait, &wait);
3737 goto out;
3739 } while (!x->done);
3740 __remove_wait_queue(&x->wait, &wait);
3742 x->done--;
3743 out:
3744 spin_unlock_irq(&x->wait.lock);
3745 return timeout;
3747 EXPORT_SYMBOL(wait_for_completion_timeout);
3749 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3751 int ret = 0;
3753 might_sleep();
3755 spin_lock_irq(&x->wait.lock);
3756 if (!x->done) {
3757 DECLARE_WAITQUEUE(wait, current);
3759 wait.flags |= WQ_FLAG_EXCLUSIVE;
3760 __add_wait_queue_tail(&x->wait, &wait);
3761 do {
3762 if (signal_pending(current)) {
3763 ret = -ERESTARTSYS;
3764 __remove_wait_queue(&x->wait, &wait);
3765 goto out;
3767 __set_current_state(TASK_INTERRUPTIBLE);
3768 spin_unlock_irq(&x->wait.lock);
3769 schedule();
3770 spin_lock_irq(&x->wait.lock);
3771 } while (!x->done);
3772 __remove_wait_queue(&x->wait, &wait);
3774 x->done--;
3775 out:
3776 spin_unlock_irq(&x->wait.lock);
3778 return ret;
3780 EXPORT_SYMBOL(wait_for_completion_interruptible);
3782 unsigned long fastcall __sched
3783 wait_for_completion_interruptible_timeout(struct completion *x,
3784 unsigned long timeout)
3786 might_sleep();
3788 spin_lock_irq(&x->wait.lock);
3789 if (!x->done) {
3790 DECLARE_WAITQUEUE(wait, current);
3792 wait.flags |= WQ_FLAG_EXCLUSIVE;
3793 __add_wait_queue_tail(&x->wait, &wait);
3794 do {
3795 if (signal_pending(current)) {
3796 timeout = -ERESTARTSYS;
3797 __remove_wait_queue(&x->wait, &wait);
3798 goto out;
3800 __set_current_state(TASK_INTERRUPTIBLE);
3801 spin_unlock_irq(&x->wait.lock);
3802 timeout = schedule_timeout(timeout);
3803 spin_lock_irq(&x->wait.lock);
3804 if (!timeout) {
3805 __remove_wait_queue(&x->wait, &wait);
3806 goto out;
3808 } while (!x->done);
3809 __remove_wait_queue(&x->wait, &wait);
3811 x->done--;
3812 out:
3813 spin_unlock_irq(&x->wait.lock);
3814 return timeout;
3816 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3818 static inline void
3819 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3821 spin_lock_irqsave(&q->lock, *flags);
3822 __add_wait_queue(q, wait);
3823 spin_unlock(&q->lock);
3826 static inline void
3827 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3829 spin_lock_irq(&q->lock);
3830 __remove_wait_queue(q, wait);
3831 spin_unlock_irqrestore(&q->lock, *flags);
3834 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3836 unsigned long flags;
3837 wait_queue_t wait;
3839 init_waitqueue_entry(&wait, current);
3841 current->state = TASK_INTERRUPTIBLE;
3843 sleep_on_head(q, &wait, &flags);
3844 schedule();
3845 sleep_on_tail(q, &wait, &flags);
3847 EXPORT_SYMBOL(interruptible_sleep_on);
3849 long __sched
3850 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3852 unsigned long flags;
3853 wait_queue_t wait;
3855 init_waitqueue_entry(&wait, current);
3857 current->state = TASK_INTERRUPTIBLE;
3859 sleep_on_head(q, &wait, &flags);
3860 timeout = schedule_timeout(timeout);
3861 sleep_on_tail(q, &wait, &flags);
3863 return timeout;
3865 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3867 void __sched sleep_on(wait_queue_head_t *q)
3869 unsigned long flags;
3870 wait_queue_t wait;
3872 init_waitqueue_entry(&wait, current);
3874 current->state = TASK_UNINTERRUPTIBLE;
3876 sleep_on_head(q, &wait, &flags);
3877 schedule();
3878 sleep_on_tail(q, &wait, &flags);
3880 EXPORT_SYMBOL(sleep_on);
3882 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3884 unsigned long flags;
3885 wait_queue_t wait;
3887 init_waitqueue_entry(&wait, current);
3889 current->state = TASK_UNINTERRUPTIBLE;
3891 sleep_on_head(q, &wait, &flags);
3892 timeout = schedule_timeout(timeout);
3893 sleep_on_tail(q, &wait, &flags);
3895 return timeout;
3897 EXPORT_SYMBOL(sleep_on_timeout);
3899 #ifdef CONFIG_RT_MUTEXES
3902 * rt_mutex_setprio - set the current priority of a task
3903 * @p: task
3904 * @prio: prio value (kernel-internal form)
3906 * This function changes the 'effective' priority of a task. It does
3907 * not touch ->normal_prio like __setscheduler().
3909 * Used by the rt_mutex code to implement priority inheritance logic.
3911 void rt_mutex_setprio(struct task_struct *p, int prio)
3913 unsigned long flags;
3914 int oldprio, on_rq, running;
3915 struct rq *rq;
3917 BUG_ON(prio < 0 || prio > MAX_PRIO);
3919 rq = task_rq_lock(p, &flags);
3920 update_rq_clock(rq);
3922 oldprio = p->prio;
3923 on_rq = p->se.on_rq;
3924 running = task_running(rq, p);
3925 if (on_rq) {
3926 dequeue_task(rq, p, 0);
3927 if (running)
3928 p->sched_class->put_prev_task(rq, p);
3931 if (rt_prio(prio))
3932 p->sched_class = &rt_sched_class;
3933 else
3934 p->sched_class = &fair_sched_class;
3936 p->prio = prio;
3938 if (on_rq) {
3939 if (running)
3940 p->sched_class->set_curr_task(rq);
3941 enqueue_task(rq, p, 0);
3943 * Reschedule if we are currently running on this runqueue and
3944 * our priority decreased, or if we are not currently running on
3945 * this runqueue and our priority is higher than the current's
3947 if (running) {
3948 if (p->prio > oldprio)
3949 resched_task(rq->curr);
3950 } else {
3951 check_preempt_curr(rq, p);
3954 task_rq_unlock(rq, &flags);
3957 #endif
3959 void set_user_nice(struct task_struct *p, long nice)
3961 int old_prio, delta, on_rq;
3962 unsigned long flags;
3963 struct rq *rq;
3965 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3966 return;
3968 * We have to be careful, if called from sys_setpriority(),
3969 * the task might be in the middle of scheduling on another CPU.
3971 rq = task_rq_lock(p, &flags);
3972 update_rq_clock(rq);
3974 * The RT priorities are set via sched_setscheduler(), but we still
3975 * allow the 'normal' nice value to be set - but as expected
3976 * it wont have any effect on scheduling until the task is
3977 * SCHED_FIFO/SCHED_RR:
3979 if (task_has_rt_policy(p)) {
3980 p->static_prio = NICE_TO_PRIO(nice);
3981 goto out_unlock;
3983 on_rq = p->se.on_rq;
3984 if (on_rq) {
3985 dequeue_task(rq, p, 0);
3986 dec_load(rq, p);
3989 p->static_prio = NICE_TO_PRIO(nice);
3990 set_load_weight(p);
3991 old_prio = p->prio;
3992 p->prio = effective_prio(p);
3993 delta = p->prio - old_prio;
3995 if (on_rq) {
3996 enqueue_task(rq, p, 0);
3997 inc_load(rq, p);
3999 * If the task increased its priority or is running and
4000 * lowered its priority, then reschedule its CPU:
4002 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4003 resched_task(rq->curr);
4005 out_unlock:
4006 task_rq_unlock(rq, &flags);
4008 EXPORT_SYMBOL(set_user_nice);
4011 * can_nice - check if a task can reduce its nice value
4012 * @p: task
4013 * @nice: nice value
4015 int can_nice(const struct task_struct *p, const int nice)
4017 /* convert nice value [19,-20] to rlimit style value [1,40] */
4018 int nice_rlim = 20 - nice;
4020 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4021 capable(CAP_SYS_NICE));
4024 #ifdef __ARCH_WANT_SYS_NICE
4027 * sys_nice - change the priority of the current process.
4028 * @increment: priority increment
4030 * sys_setpriority is a more generic, but much slower function that
4031 * does similar things.
4033 asmlinkage long sys_nice(int increment)
4035 long nice, retval;
4038 * Setpriority might change our priority at the same moment.
4039 * We don't have to worry. Conceptually one call occurs first
4040 * and we have a single winner.
4042 if (increment < -40)
4043 increment = -40;
4044 if (increment > 40)
4045 increment = 40;
4047 nice = PRIO_TO_NICE(current->static_prio) + increment;
4048 if (nice < -20)
4049 nice = -20;
4050 if (nice > 19)
4051 nice = 19;
4053 if (increment < 0 && !can_nice(current, nice))
4054 return -EPERM;
4056 retval = security_task_setnice(current, nice);
4057 if (retval)
4058 return retval;
4060 set_user_nice(current, nice);
4061 return 0;
4064 #endif
4067 * task_prio - return the priority value of a given task.
4068 * @p: the task in question.
4070 * This is the priority value as seen by users in /proc.
4071 * RT tasks are offset by -200. Normal tasks are centered
4072 * around 0, value goes from -16 to +15.
4074 int task_prio(const struct task_struct *p)
4076 return p->prio - MAX_RT_PRIO;
4080 * task_nice - return the nice value of a given task.
4081 * @p: the task in question.
4083 int task_nice(const struct task_struct *p)
4085 return TASK_NICE(p);
4087 EXPORT_SYMBOL_GPL(task_nice);
4090 * idle_cpu - is a given cpu idle currently?
4091 * @cpu: the processor in question.
4093 int idle_cpu(int cpu)
4095 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4099 * idle_task - return the idle task for a given cpu.
4100 * @cpu: the processor in question.
4102 struct task_struct *idle_task(int cpu)
4104 return cpu_rq(cpu)->idle;
4108 * find_process_by_pid - find a process with a matching PID value.
4109 * @pid: the pid in question.
4111 static struct task_struct *find_process_by_pid(pid_t pid)
4113 return pid ? find_task_by_pid(pid) : current;
4116 /* Actually do priority change: must hold rq lock. */
4117 static void
4118 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4120 BUG_ON(p->se.on_rq);
4122 p->policy = policy;
4123 switch (p->policy) {
4124 case SCHED_NORMAL:
4125 case SCHED_BATCH:
4126 case SCHED_IDLE:
4127 p->sched_class = &fair_sched_class;
4128 break;
4129 case SCHED_FIFO:
4130 case SCHED_RR:
4131 p->sched_class = &rt_sched_class;
4132 break;
4135 p->rt_priority = prio;
4136 p->normal_prio = normal_prio(p);
4137 /* we are holding p->pi_lock already */
4138 p->prio = rt_mutex_getprio(p);
4139 set_load_weight(p);
4143 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4144 * @p: the task in question.
4145 * @policy: new policy.
4146 * @param: structure containing the new RT priority.
4148 * NOTE that the task may be already dead.
4150 int sched_setscheduler(struct task_struct *p, int policy,
4151 struct sched_param *param)
4153 int retval, oldprio, oldpolicy = -1, on_rq, running;
4154 unsigned long flags;
4155 struct rq *rq;
4157 /* may grab non-irq protected spin_locks */
4158 BUG_ON(in_interrupt());
4159 recheck:
4160 /* double check policy once rq lock held */
4161 if (policy < 0)
4162 policy = oldpolicy = p->policy;
4163 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4164 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4165 policy != SCHED_IDLE)
4166 return -EINVAL;
4168 * Valid priorities for SCHED_FIFO and SCHED_RR are
4169 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4170 * SCHED_BATCH and SCHED_IDLE is 0.
4172 if (param->sched_priority < 0 ||
4173 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4174 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4175 return -EINVAL;
4176 if (rt_policy(policy) != (param->sched_priority != 0))
4177 return -EINVAL;
4180 * Allow unprivileged RT tasks to decrease priority:
4182 if (!capable(CAP_SYS_NICE)) {
4183 if (rt_policy(policy)) {
4184 unsigned long rlim_rtprio;
4186 if (!lock_task_sighand(p, &flags))
4187 return -ESRCH;
4188 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4189 unlock_task_sighand(p, &flags);
4191 /* can't set/change the rt policy */
4192 if (policy != p->policy && !rlim_rtprio)
4193 return -EPERM;
4195 /* can't increase priority */
4196 if (param->sched_priority > p->rt_priority &&
4197 param->sched_priority > rlim_rtprio)
4198 return -EPERM;
4201 * Like positive nice levels, dont allow tasks to
4202 * move out of SCHED_IDLE either:
4204 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4205 return -EPERM;
4207 /* can't change other user's priorities */
4208 if ((current->euid != p->euid) &&
4209 (current->euid != p->uid))
4210 return -EPERM;
4213 retval = security_task_setscheduler(p, policy, param);
4214 if (retval)
4215 return retval;
4217 * make sure no PI-waiters arrive (or leave) while we are
4218 * changing the priority of the task:
4220 spin_lock_irqsave(&p->pi_lock, flags);
4222 * To be able to change p->policy safely, the apropriate
4223 * runqueue lock must be held.
4225 rq = __task_rq_lock(p);
4226 /* recheck policy now with rq lock held */
4227 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4228 policy = oldpolicy = -1;
4229 __task_rq_unlock(rq);
4230 spin_unlock_irqrestore(&p->pi_lock, flags);
4231 goto recheck;
4233 update_rq_clock(rq);
4234 on_rq = p->se.on_rq;
4235 running = task_running(rq, p);
4236 if (on_rq) {
4237 deactivate_task(rq, p, 0);
4238 if (running)
4239 p->sched_class->put_prev_task(rq, p);
4242 oldprio = p->prio;
4243 __setscheduler(rq, p, policy, param->sched_priority);
4245 if (on_rq) {
4246 if (running)
4247 p->sched_class->set_curr_task(rq);
4248 activate_task(rq, p, 0);
4250 * Reschedule if we are currently running on this runqueue and
4251 * our priority decreased, or if we are not currently running on
4252 * this runqueue and our priority is higher than the current's
4254 if (running) {
4255 if (p->prio > oldprio)
4256 resched_task(rq->curr);
4257 } else {
4258 check_preempt_curr(rq, p);
4261 __task_rq_unlock(rq);
4262 spin_unlock_irqrestore(&p->pi_lock, flags);
4264 rt_mutex_adjust_pi(p);
4266 return 0;
4268 EXPORT_SYMBOL_GPL(sched_setscheduler);
4270 static int
4271 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4273 struct sched_param lparam;
4274 struct task_struct *p;
4275 int retval;
4277 if (!param || pid < 0)
4278 return -EINVAL;
4279 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4280 return -EFAULT;
4282 rcu_read_lock();
4283 retval = -ESRCH;
4284 p = find_process_by_pid(pid);
4285 if (p != NULL)
4286 retval = sched_setscheduler(p, policy, &lparam);
4287 rcu_read_unlock();
4289 return retval;
4293 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4294 * @pid: the pid in question.
4295 * @policy: new policy.
4296 * @param: structure containing the new RT priority.
4298 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4299 struct sched_param __user *param)
4301 /* negative values for policy are not valid */
4302 if (policy < 0)
4303 return -EINVAL;
4305 return do_sched_setscheduler(pid, policy, param);
4309 * sys_sched_setparam - set/change the RT priority of a thread
4310 * @pid: the pid in question.
4311 * @param: structure containing the new RT priority.
4313 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4315 return do_sched_setscheduler(pid, -1, param);
4319 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4320 * @pid: the pid in question.
4322 asmlinkage long sys_sched_getscheduler(pid_t pid)
4324 struct task_struct *p;
4325 int retval = -EINVAL;
4327 if (pid < 0)
4328 goto out_nounlock;
4330 retval = -ESRCH;
4331 read_lock(&tasklist_lock);
4332 p = find_process_by_pid(pid);
4333 if (p) {
4334 retval = security_task_getscheduler(p);
4335 if (!retval)
4336 retval = p->policy;
4338 read_unlock(&tasklist_lock);
4340 out_nounlock:
4341 return retval;
4345 * sys_sched_getscheduler - get the RT priority of a thread
4346 * @pid: the pid in question.
4347 * @param: structure containing the RT priority.
4349 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4351 struct sched_param lp;
4352 struct task_struct *p;
4353 int retval = -EINVAL;
4355 if (!param || pid < 0)
4356 goto out_nounlock;
4358 read_lock(&tasklist_lock);
4359 p = find_process_by_pid(pid);
4360 retval = -ESRCH;
4361 if (!p)
4362 goto out_unlock;
4364 retval = security_task_getscheduler(p);
4365 if (retval)
4366 goto out_unlock;
4368 lp.sched_priority = p->rt_priority;
4369 read_unlock(&tasklist_lock);
4372 * This one might sleep, we cannot do it with a spinlock held ...
4374 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4376 out_nounlock:
4377 return retval;
4379 out_unlock:
4380 read_unlock(&tasklist_lock);
4381 return retval;
4384 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4386 cpumask_t cpus_allowed;
4387 struct task_struct *p;
4388 int retval;
4390 mutex_lock(&sched_hotcpu_mutex);
4391 read_lock(&tasklist_lock);
4393 p = find_process_by_pid(pid);
4394 if (!p) {
4395 read_unlock(&tasklist_lock);
4396 mutex_unlock(&sched_hotcpu_mutex);
4397 return -ESRCH;
4401 * It is not safe to call set_cpus_allowed with the
4402 * tasklist_lock held. We will bump the task_struct's
4403 * usage count and then drop tasklist_lock.
4405 get_task_struct(p);
4406 read_unlock(&tasklist_lock);
4408 retval = -EPERM;
4409 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4410 !capable(CAP_SYS_NICE))
4411 goto out_unlock;
4413 retval = security_task_setscheduler(p, 0, NULL);
4414 if (retval)
4415 goto out_unlock;
4417 cpus_allowed = cpuset_cpus_allowed(p);
4418 cpus_and(new_mask, new_mask, cpus_allowed);
4419 retval = set_cpus_allowed(p, new_mask);
4421 out_unlock:
4422 put_task_struct(p);
4423 mutex_unlock(&sched_hotcpu_mutex);
4424 return retval;
4427 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4428 cpumask_t *new_mask)
4430 if (len < sizeof(cpumask_t)) {
4431 memset(new_mask, 0, sizeof(cpumask_t));
4432 } else if (len > sizeof(cpumask_t)) {
4433 len = sizeof(cpumask_t);
4435 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4439 * sys_sched_setaffinity - set the cpu affinity of a process
4440 * @pid: pid of the process
4441 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4442 * @user_mask_ptr: user-space pointer to the new cpu mask
4444 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4445 unsigned long __user *user_mask_ptr)
4447 cpumask_t new_mask;
4448 int retval;
4450 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4451 if (retval)
4452 return retval;
4454 return sched_setaffinity(pid, new_mask);
4458 * Represents all cpu's present in the system
4459 * In systems capable of hotplug, this map could dynamically grow
4460 * as new cpu's are detected in the system via any platform specific
4461 * method, such as ACPI for e.g.
4464 cpumask_t cpu_present_map __read_mostly;
4465 EXPORT_SYMBOL(cpu_present_map);
4467 #ifndef CONFIG_SMP
4468 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4469 EXPORT_SYMBOL(cpu_online_map);
4471 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4472 EXPORT_SYMBOL(cpu_possible_map);
4473 #endif
4475 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4477 struct task_struct *p;
4478 int retval;
4480 mutex_lock(&sched_hotcpu_mutex);
4481 read_lock(&tasklist_lock);
4483 retval = -ESRCH;
4484 p = find_process_by_pid(pid);
4485 if (!p)
4486 goto out_unlock;
4488 retval = security_task_getscheduler(p);
4489 if (retval)
4490 goto out_unlock;
4492 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4494 out_unlock:
4495 read_unlock(&tasklist_lock);
4496 mutex_unlock(&sched_hotcpu_mutex);
4498 return retval;
4502 * sys_sched_getaffinity - get the cpu affinity of a process
4503 * @pid: pid of the process
4504 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4505 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4507 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4508 unsigned long __user *user_mask_ptr)
4510 int ret;
4511 cpumask_t mask;
4513 if (len < sizeof(cpumask_t))
4514 return -EINVAL;
4516 ret = sched_getaffinity(pid, &mask);
4517 if (ret < 0)
4518 return ret;
4520 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4521 return -EFAULT;
4523 return sizeof(cpumask_t);
4527 * sys_sched_yield - yield the current processor to other threads.
4529 * This function yields the current CPU to other tasks. If there are no
4530 * other threads running on this CPU then this function will return.
4532 asmlinkage long sys_sched_yield(void)
4534 struct rq *rq = this_rq_lock();
4536 schedstat_inc(rq, yld_count);
4537 current->sched_class->yield_task(rq);
4540 * Since we are going to call schedule() anyway, there's
4541 * no need to preempt or enable interrupts:
4543 __release(rq->lock);
4544 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4545 _raw_spin_unlock(&rq->lock);
4546 preempt_enable_no_resched();
4548 schedule();
4550 return 0;
4553 static void __cond_resched(void)
4555 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4556 __might_sleep(__FILE__, __LINE__);
4557 #endif
4559 * The BKS might be reacquired before we have dropped
4560 * PREEMPT_ACTIVE, which could trigger a second
4561 * cond_resched() call.
4563 do {
4564 add_preempt_count(PREEMPT_ACTIVE);
4565 schedule();
4566 sub_preempt_count(PREEMPT_ACTIVE);
4567 } while (need_resched());
4570 int __sched cond_resched(void)
4572 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4573 system_state == SYSTEM_RUNNING) {
4574 __cond_resched();
4575 return 1;
4577 return 0;
4579 EXPORT_SYMBOL(cond_resched);
4582 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4583 * call schedule, and on return reacquire the lock.
4585 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4586 * operations here to prevent schedule() from being called twice (once via
4587 * spin_unlock(), once by hand).
4589 int cond_resched_lock(spinlock_t *lock)
4591 int ret = 0;
4593 if (need_lockbreak(lock)) {
4594 spin_unlock(lock);
4595 cpu_relax();
4596 ret = 1;
4597 spin_lock(lock);
4599 if (need_resched() && system_state == SYSTEM_RUNNING) {
4600 spin_release(&lock->dep_map, 1, _THIS_IP_);
4601 _raw_spin_unlock(lock);
4602 preempt_enable_no_resched();
4603 __cond_resched();
4604 ret = 1;
4605 spin_lock(lock);
4607 return ret;
4609 EXPORT_SYMBOL(cond_resched_lock);
4611 int __sched cond_resched_softirq(void)
4613 BUG_ON(!in_softirq());
4615 if (need_resched() && system_state == SYSTEM_RUNNING) {
4616 local_bh_enable();
4617 __cond_resched();
4618 local_bh_disable();
4619 return 1;
4621 return 0;
4623 EXPORT_SYMBOL(cond_resched_softirq);
4626 * yield - yield the current processor to other threads.
4628 * This is a shortcut for kernel-space yielding - it marks the
4629 * thread runnable and calls sys_sched_yield().
4631 void __sched yield(void)
4633 set_current_state(TASK_RUNNING);
4634 sys_sched_yield();
4636 EXPORT_SYMBOL(yield);
4639 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4640 * that process accounting knows that this is a task in IO wait state.
4642 * But don't do that if it is a deliberate, throttling IO wait (this task
4643 * has set its backing_dev_info: the queue against which it should throttle)
4645 void __sched io_schedule(void)
4647 struct rq *rq = &__raw_get_cpu_var(runqueues);
4649 delayacct_blkio_start();
4650 atomic_inc(&rq->nr_iowait);
4651 schedule();
4652 atomic_dec(&rq->nr_iowait);
4653 delayacct_blkio_end();
4655 EXPORT_SYMBOL(io_schedule);
4657 long __sched io_schedule_timeout(long timeout)
4659 struct rq *rq = &__raw_get_cpu_var(runqueues);
4660 long ret;
4662 delayacct_blkio_start();
4663 atomic_inc(&rq->nr_iowait);
4664 ret = schedule_timeout(timeout);
4665 atomic_dec(&rq->nr_iowait);
4666 delayacct_blkio_end();
4667 return ret;
4671 * sys_sched_get_priority_max - return maximum RT priority.
4672 * @policy: scheduling class.
4674 * this syscall returns the maximum rt_priority that can be used
4675 * by a given scheduling class.
4677 asmlinkage long sys_sched_get_priority_max(int policy)
4679 int ret = -EINVAL;
4681 switch (policy) {
4682 case SCHED_FIFO:
4683 case SCHED_RR:
4684 ret = MAX_USER_RT_PRIO-1;
4685 break;
4686 case SCHED_NORMAL:
4687 case SCHED_BATCH:
4688 case SCHED_IDLE:
4689 ret = 0;
4690 break;
4692 return ret;
4696 * sys_sched_get_priority_min - return minimum RT priority.
4697 * @policy: scheduling class.
4699 * this syscall returns the minimum rt_priority that can be used
4700 * by a given scheduling class.
4702 asmlinkage long sys_sched_get_priority_min(int policy)
4704 int ret = -EINVAL;
4706 switch (policy) {
4707 case SCHED_FIFO:
4708 case SCHED_RR:
4709 ret = 1;
4710 break;
4711 case SCHED_NORMAL:
4712 case SCHED_BATCH:
4713 case SCHED_IDLE:
4714 ret = 0;
4716 return ret;
4720 * sys_sched_rr_get_interval - return the default timeslice of a process.
4721 * @pid: pid of the process.
4722 * @interval: userspace pointer to the timeslice value.
4724 * this syscall writes the default timeslice value of a given process
4725 * into the user-space timespec buffer. A value of '0' means infinity.
4727 asmlinkage
4728 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4730 struct task_struct *p;
4731 unsigned int time_slice;
4732 int retval = -EINVAL;
4733 struct timespec t;
4735 if (pid < 0)
4736 goto out_nounlock;
4738 retval = -ESRCH;
4739 read_lock(&tasklist_lock);
4740 p = find_process_by_pid(pid);
4741 if (!p)
4742 goto out_unlock;
4744 retval = security_task_getscheduler(p);
4745 if (retval)
4746 goto out_unlock;
4748 if (p->policy == SCHED_FIFO)
4749 time_slice = 0;
4750 else if (p->policy == SCHED_RR)
4751 time_slice = DEF_TIMESLICE;
4752 else {
4753 struct sched_entity *se = &p->se;
4754 unsigned long flags;
4755 struct rq *rq;
4757 rq = task_rq_lock(p, &flags);
4758 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4759 task_rq_unlock(rq, &flags);
4761 read_unlock(&tasklist_lock);
4762 jiffies_to_timespec(time_slice, &t);
4763 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4764 out_nounlock:
4765 return retval;
4766 out_unlock:
4767 read_unlock(&tasklist_lock);
4768 return retval;
4771 static const char stat_nam[] = "RSDTtZX";
4773 static void show_task(struct task_struct *p)
4775 unsigned long free = 0;
4776 unsigned state;
4778 state = p->state ? __ffs(p->state) + 1 : 0;
4779 printk("%-13.13s %c", p->comm,
4780 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4781 #if BITS_PER_LONG == 32
4782 if (state == TASK_RUNNING)
4783 printk(" running ");
4784 else
4785 printk(" %08lx ", thread_saved_pc(p));
4786 #else
4787 if (state == TASK_RUNNING)
4788 printk(" running task ");
4789 else
4790 printk(" %016lx ", thread_saved_pc(p));
4791 #endif
4792 #ifdef CONFIG_DEBUG_STACK_USAGE
4794 unsigned long *n = end_of_stack(p);
4795 while (!*n)
4796 n++;
4797 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4799 #endif
4800 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4802 if (state != TASK_RUNNING)
4803 show_stack(p, NULL);
4806 void show_state_filter(unsigned long state_filter)
4808 struct task_struct *g, *p;
4810 #if BITS_PER_LONG == 32
4811 printk(KERN_INFO
4812 " task PC stack pid father\n");
4813 #else
4814 printk(KERN_INFO
4815 " task PC stack pid father\n");
4816 #endif
4817 read_lock(&tasklist_lock);
4818 do_each_thread(g, p) {
4820 * reset the NMI-timeout, listing all files on a slow
4821 * console might take alot of time:
4823 touch_nmi_watchdog();
4824 if (!state_filter || (p->state & state_filter))
4825 show_task(p);
4826 } while_each_thread(g, p);
4828 touch_all_softlockup_watchdogs();
4830 #ifdef CONFIG_SCHED_DEBUG
4831 sysrq_sched_debug_show();
4832 #endif
4833 read_unlock(&tasklist_lock);
4835 * Only show locks if all tasks are dumped:
4837 if (state_filter == -1)
4838 debug_show_all_locks();
4841 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4843 idle->sched_class = &idle_sched_class;
4847 * init_idle - set up an idle thread for a given CPU
4848 * @idle: task in question
4849 * @cpu: cpu the idle task belongs to
4851 * NOTE: this function does not set the idle thread's NEED_RESCHED
4852 * flag, to make booting more robust.
4854 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4856 struct rq *rq = cpu_rq(cpu);
4857 unsigned long flags;
4859 __sched_fork(idle);
4860 idle->se.exec_start = sched_clock();
4862 idle->prio = idle->normal_prio = MAX_PRIO;
4863 idle->cpus_allowed = cpumask_of_cpu(cpu);
4864 __set_task_cpu(idle, cpu);
4866 spin_lock_irqsave(&rq->lock, flags);
4867 rq->curr = rq->idle = idle;
4868 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4869 idle->oncpu = 1;
4870 #endif
4871 spin_unlock_irqrestore(&rq->lock, flags);
4873 /* Set the preempt count _outside_ the spinlocks! */
4874 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4875 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4876 #else
4877 task_thread_info(idle)->preempt_count = 0;
4878 #endif
4880 * The idle tasks have their own, simple scheduling class:
4882 idle->sched_class = &idle_sched_class;
4886 * In a system that switches off the HZ timer nohz_cpu_mask
4887 * indicates which cpus entered this state. This is used
4888 * in the rcu update to wait only for active cpus. For system
4889 * which do not switch off the HZ timer nohz_cpu_mask should
4890 * always be CPU_MASK_NONE.
4892 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4894 #ifdef CONFIG_SMP
4896 * This is how migration works:
4898 * 1) we queue a struct migration_req structure in the source CPU's
4899 * runqueue and wake up that CPU's migration thread.
4900 * 2) we down() the locked semaphore => thread blocks.
4901 * 3) migration thread wakes up (implicitly it forces the migrated
4902 * thread off the CPU)
4903 * 4) it gets the migration request and checks whether the migrated
4904 * task is still in the wrong runqueue.
4905 * 5) if it's in the wrong runqueue then the migration thread removes
4906 * it and puts it into the right queue.
4907 * 6) migration thread up()s the semaphore.
4908 * 7) we wake up and the migration is done.
4912 * Change a given task's CPU affinity. Migrate the thread to a
4913 * proper CPU and schedule it away if the CPU it's executing on
4914 * is removed from the allowed bitmask.
4916 * NOTE: the caller must have a valid reference to the task, the
4917 * task must not exit() & deallocate itself prematurely. The
4918 * call is not atomic; no spinlocks may be held.
4920 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4922 struct migration_req req;
4923 unsigned long flags;
4924 struct rq *rq;
4925 int ret = 0;
4927 rq = task_rq_lock(p, &flags);
4928 if (!cpus_intersects(new_mask, cpu_online_map)) {
4929 ret = -EINVAL;
4930 goto out;
4933 p->cpus_allowed = new_mask;
4934 /* Can the task run on the task's current CPU? If so, we're done */
4935 if (cpu_isset(task_cpu(p), new_mask))
4936 goto out;
4938 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4939 /* Need help from migration thread: drop lock and wait. */
4940 task_rq_unlock(rq, &flags);
4941 wake_up_process(rq->migration_thread);
4942 wait_for_completion(&req.done);
4943 tlb_migrate_finish(p->mm);
4944 return 0;
4946 out:
4947 task_rq_unlock(rq, &flags);
4949 return ret;
4951 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4954 * Move (not current) task off this cpu, onto dest cpu. We're doing
4955 * this because either it can't run here any more (set_cpus_allowed()
4956 * away from this CPU, or CPU going down), or because we're
4957 * attempting to rebalance this task on exec (sched_exec).
4959 * So we race with normal scheduler movements, but that's OK, as long
4960 * as the task is no longer on this CPU.
4962 * Returns non-zero if task was successfully migrated.
4964 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4966 struct rq *rq_dest, *rq_src;
4967 int ret = 0, on_rq;
4969 if (unlikely(cpu_is_offline(dest_cpu)))
4970 return ret;
4972 rq_src = cpu_rq(src_cpu);
4973 rq_dest = cpu_rq(dest_cpu);
4975 double_rq_lock(rq_src, rq_dest);
4976 /* Already moved. */
4977 if (task_cpu(p) != src_cpu)
4978 goto out;
4979 /* Affinity changed (again). */
4980 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4981 goto out;
4983 on_rq = p->se.on_rq;
4984 if (on_rq)
4985 deactivate_task(rq_src, p, 0);
4987 set_task_cpu(p, dest_cpu);
4988 if (on_rq) {
4989 activate_task(rq_dest, p, 0);
4990 check_preempt_curr(rq_dest, p);
4992 ret = 1;
4993 out:
4994 double_rq_unlock(rq_src, rq_dest);
4995 return ret;
4999 * migration_thread - this is a highprio system thread that performs
5000 * thread migration by bumping thread off CPU then 'pushing' onto
5001 * another runqueue.
5003 static int migration_thread(void *data)
5005 int cpu = (long)data;
5006 struct rq *rq;
5008 rq = cpu_rq(cpu);
5009 BUG_ON(rq->migration_thread != current);
5011 set_current_state(TASK_INTERRUPTIBLE);
5012 while (!kthread_should_stop()) {
5013 struct migration_req *req;
5014 struct list_head *head;
5016 spin_lock_irq(&rq->lock);
5018 if (cpu_is_offline(cpu)) {
5019 spin_unlock_irq(&rq->lock);
5020 goto wait_to_die;
5023 if (rq->active_balance) {
5024 active_load_balance(rq, cpu);
5025 rq->active_balance = 0;
5028 head = &rq->migration_queue;
5030 if (list_empty(head)) {
5031 spin_unlock_irq(&rq->lock);
5032 schedule();
5033 set_current_state(TASK_INTERRUPTIBLE);
5034 continue;
5036 req = list_entry(head->next, struct migration_req, list);
5037 list_del_init(head->next);
5039 spin_unlock(&rq->lock);
5040 __migrate_task(req->task, cpu, req->dest_cpu);
5041 local_irq_enable();
5043 complete(&req->done);
5045 __set_current_state(TASK_RUNNING);
5046 return 0;
5048 wait_to_die:
5049 /* Wait for kthread_stop */
5050 set_current_state(TASK_INTERRUPTIBLE);
5051 while (!kthread_should_stop()) {
5052 schedule();
5053 set_current_state(TASK_INTERRUPTIBLE);
5055 __set_current_state(TASK_RUNNING);
5056 return 0;
5059 #ifdef CONFIG_HOTPLUG_CPU
5061 * Figure out where task on dead CPU should go, use force if neccessary.
5062 * NOTE: interrupts should be disabled by the caller
5064 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5066 unsigned long flags;
5067 cpumask_t mask;
5068 struct rq *rq;
5069 int dest_cpu;
5071 restart:
5072 /* On same node? */
5073 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5074 cpus_and(mask, mask, p->cpus_allowed);
5075 dest_cpu = any_online_cpu(mask);
5077 /* On any allowed CPU? */
5078 if (dest_cpu == NR_CPUS)
5079 dest_cpu = any_online_cpu(p->cpus_allowed);
5081 /* No more Mr. Nice Guy. */
5082 if (dest_cpu == NR_CPUS) {
5083 rq = task_rq_lock(p, &flags);
5084 cpus_setall(p->cpus_allowed);
5085 dest_cpu = any_online_cpu(p->cpus_allowed);
5086 task_rq_unlock(rq, &flags);
5089 * Don't tell them about moving exiting tasks or
5090 * kernel threads (both mm NULL), since they never
5091 * leave kernel.
5093 if (p->mm && printk_ratelimit())
5094 printk(KERN_INFO "process %d (%s) no "
5095 "longer affine to cpu%d\n",
5096 p->pid, p->comm, dead_cpu);
5098 if (!__migrate_task(p, dead_cpu, dest_cpu))
5099 goto restart;
5103 * While a dead CPU has no uninterruptible tasks queued at this point,
5104 * it might still have a nonzero ->nr_uninterruptible counter, because
5105 * for performance reasons the counter is not stricly tracking tasks to
5106 * their home CPUs. So we just add the counter to another CPU's counter,
5107 * to keep the global sum constant after CPU-down:
5109 static void migrate_nr_uninterruptible(struct rq *rq_src)
5111 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5112 unsigned long flags;
5114 local_irq_save(flags);
5115 double_rq_lock(rq_src, rq_dest);
5116 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5117 rq_src->nr_uninterruptible = 0;
5118 double_rq_unlock(rq_src, rq_dest);
5119 local_irq_restore(flags);
5122 /* Run through task list and migrate tasks from the dead cpu. */
5123 static void migrate_live_tasks(int src_cpu)
5125 struct task_struct *p, *t;
5127 write_lock_irq(&tasklist_lock);
5129 do_each_thread(t, p) {
5130 if (p == current)
5131 continue;
5133 if (task_cpu(p) == src_cpu)
5134 move_task_off_dead_cpu(src_cpu, p);
5135 } while_each_thread(t, p);
5137 write_unlock_irq(&tasklist_lock);
5141 * activate_idle_task - move idle task to the _front_ of runqueue.
5143 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5145 update_rq_clock(rq);
5147 if (p->state == TASK_UNINTERRUPTIBLE)
5148 rq->nr_uninterruptible--;
5150 enqueue_task(rq, p, 0);
5151 inc_nr_running(p, rq);
5155 * Schedules idle task to be the next runnable task on current CPU.
5156 * It does so by boosting its priority to highest possible and adding it to
5157 * the _front_ of the runqueue. Used by CPU offline code.
5159 void sched_idle_next(void)
5161 int this_cpu = smp_processor_id();
5162 struct rq *rq = cpu_rq(this_cpu);
5163 struct task_struct *p = rq->idle;
5164 unsigned long flags;
5166 /* cpu has to be offline */
5167 BUG_ON(cpu_online(this_cpu));
5170 * Strictly not necessary since rest of the CPUs are stopped by now
5171 * and interrupts disabled on the current cpu.
5173 spin_lock_irqsave(&rq->lock, flags);
5175 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5177 /* Add idle task to the _front_ of its priority queue: */
5178 activate_idle_task(p, rq);
5180 spin_unlock_irqrestore(&rq->lock, flags);
5184 * Ensures that the idle task is using init_mm right before its cpu goes
5185 * offline.
5187 void idle_task_exit(void)
5189 struct mm_struct *mm = current->active_mm;
5191 BUG_ON(cpu_online(smp_processor_id()));
5193 if (mm != &init_mm)
5194 switch_mm(mm, &init_mm, current);
5195 mmdrop(mm);
5198 /* called under rq->lock with disabled interrupts */
5199 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5201 struct rq *rq = cpu_rq(dead_cpu);
5203 /* Must be exiting, otherwise would be on tasklist. */
5204 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5206 /* Cannot have done final schedule yet: would have vanished. */
5207 BUG_ON(p->state == TASK_DEAD);
5209 get_task_struct(p);
5212 * Drop lock around migration; if someone else moves it,
5213 * that's OK. No task can be added to this CPU, so iteration is
5214 * fine.
5215 * NOTE: interrupts should be left disabled --dev@
5217 spin_unlock(&rq->lock);
5218 move_task_off_dead_cpu(dead_cpu, p);
5219 spin_lock(&rq->lock);
5221 put_task_struct(p);
5224 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5225 static void migrate_dead_tasks(unsigned int dead_cpu)
5227 struct rq *rq = cpu_rq(dead_cpu);
5228 struct task_struct *next;
5230 for ( ; ; ) {
5231 if (!rq->nr_running)
5232 break;
5233 update_rq_clock(rq);
5234 next = pick_next_task(rq, rq->curr);
5235 if (!next)
5236 break;
5237 migrate_dead(dead_cpu, next);
5241 #endif /* CONFIG_HOTPLUG_CPU */
5243 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5245 static struct ctl_table sd_ctl_dir[] = {
5247 .procname = "sched_domain",
5248 .mode = 0555,
5250 {0,},
5253 static struct ctl_table sd_ctl_root[] = {
5255 .ctl_name = CTL_KERN,
5256 .procname = "kernel",
5257 .mode = 0555,
5258 .child = sd_ctl_dir,
5260 {0,},
5263 static struct ctl_table *sd_alloc_ctl_entry(int n)
5265 struct ctl_table *entry =
5266 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5268 BUG_ON(!entry);
5269 memset(entry, 0, n * sizeof(struct ctl_table));
5271 return entry;
5274 static void
5275 set_table_entry(struct ctl_table *entry,
5276 const char *procname, void *data, int maxlen,
5277 mode_t mode, proc_handler *proc_handler)
5279 entry->procname = procname;
5280 entry->data = data;
5281 entry->maxlen = maxlen;
5282 entry->mode = mode;
5283 entry->proc_handler = proc_handler;
5286 static struct ctl_table *
5287 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5289 struct ctl_table *table = sd_alloc_ctl_entry(12);
5291 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5292 sizeof(long), 0644, proc_doulongvec_minmax);
5293 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5294 sizeof(long), 0644, proc_doulongvec_minmax);
5295 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5296 sizeof(int), 0644, proc_dointvec_minmax);
5297 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5299 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5300 sizeof(int), 0644, proc_dointvec_minmax);
5301 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5302 sizeof(int), 0644, proc_dointvec_minmax);
5303 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5304 sizeof(int), 0644, proc_dointvec_minmax);
5305 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5306 sizeof(int), 0644, proc_dointvec_minmax);
5307 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5308 sizeof(int), 0644, proc_dointvec_minmax);
5309 set_table_entry(&table[9], "cache_nice_tries",
5310 &sd->cache_nice_tries,
5311 sizeof(int), 0644, proc_dointvec_minmax);
5312 set_table_entry(&table[10], "flags", &sd->flags,
5313 sizeof(int), 0644, proc_dointvec_minmax);
5315 return table;
5318 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5320 struct ctl_table *entry, *table;
5321 struct sched_domain *sd;
5322 int domain_num = 0, i;
5323 char buf[32];
5325 for_each_domain(cpu, sd)
5326 domain_num++;
5327 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5329 i = 0;
5330 for_each_domain(cpu, sd) {
5331 snprintf(buf, 32, "domain%d", i);
5332 entry->procname = kstrdup(buf, GFP_KERNEL);
5333 entry->mode = 0555;
5334 entry->child = sd_alloc_ctl_domain_table(sd);
5335 entry++;
5336 i++;
5338 return table;
5341 static struct ctl_table_header *sd_sysctl_header;
5342 static void init_sched_domain_sysctl(void)
5344 int i, cpu_num = num_online_cpus();
5345 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5346 char buf[32];
5348 sd_ctl_dir[0].child = entry;
5350 for (i = 0; i < cpu_num; i++, entry++) {
5351 snprintf(buf, 32, "cpu%d", i);
5352 entry->procname = kstrdup(buf, GFP_KERNEL);
5353 entry->mode = 0555;
5354 entry->child = sd_alloc_ctl_cpu_table(i);
5356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5358 #else
5359 static void init_sched_domain_sysctl(void)
5362 #endif
5365 * migration_call - callback that gets triggered when a CPU is added.
5366 * Here we can start up the necessary migration thread for the new CPU.
5368 static int __cpuinit
5369 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5371 struct task_struct *p;
5372 int cpu = (long)hcpu;
5373 unsigned long flags;
5374 struct rq *rq;
5376 switch (action) {
5377 case CPU_LOCK_ACQUIRE:
5378 mutex_lock(&sched_hotcpu_mutex);
5379 break;
5381 case CPU_UP_PREPARE:
5382 case CPU_UP_PREPARE_FROZEN:
5383 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5384 if (IS_ERR(p))
5385 return NOTIFY_BAD;
5386 kthread_bind(p, cpu);
5387 /* Must be high prio: stop_machine expects to yield to it. */
5388 rq = task_rq_lock(p, &flags);
5389 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5390 task_rq_unlock(rq, &flags);
5391 cpu_rq(cpu)->migration_thread = p;
5392 break;
5394 case CPU_ONLINE:
5395 case CPU_ONLINE_FROZEN:
5396 /* Strictly unneccessary, as first user will wake it. */
5397 wake_up_process(cpu_rq(cpu)->migration_thread);
5398 break;
5400 #ifdef CONFIG_HOTPLUG_CPU
5401 case CPU_UP_CANCELED:
5402 case CPU_UP_CANCELED_FROZEN:
5403 if (!cpu_rq(cpu)->migration_thread)
5404 break;
5405 /* Unbind it from offline cpu so it can run. Fall thru. */
5406 kthread_bind(cpu_rq(cpu)->migration_thread,
5407 any_online_cpu(cpu_online_map));
5408 kthread_stop(cpu_rq(cpu)->migration_thread);
5409 cpu_rq(cpu)->migration_thread = NULL;
5410 break;
5412 case CPU_DEAD:
5413 case CPU_DEAD_FROZEN:
5414 migrate_live_tasks(cpu);
5415 rq = cpu_rq(cpu);
5416 kthread_stop(rq->migration_thread);
5417 rq->migration_thread = NULL;
5418 /* Idle task back to normal (off runqueue, low prio) */
5419 rq = task_rq_lock(rq->idle, &flags);
5420 update_rq_clock(rq);
5421 deactivate_task(rq, rq->idle, 0);
5422 rq->idle->static_prio = MAX_PRIO;
5423 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5424 rq->idle->sched_class = &idle_sched_class;
5425 migrate_dead_tasks(cpu);
5426 task_rq_unlock(rq, &flags);
5427 migrate_nr_uninterruptible(rq);
5428 BUG_ON(rq->nr_running != 0);
5430 /* No need to migrate the tasks: it was best-effort if
5431 * they didn't take sched_hotcpu_mutex. Just wake up
5432 * the requestors. */
5433 spin_lock_irq(&rq->lock);
5434 while (!list_empty(&rq->migration_queue)) {
5435 struct migration_req *req;
5437 req = list_entry(rq->migration_queue.next,
5438 struct migration_req, list);
5439 list_del_init(&req->list);
5440 complete(&req->done);
5442 spin_unlock_irq(&rq->lock);
5443 break;
5444 #endif
5445 case CPU_LOCK_RELEASE:
5446 mutex_unlock(&sched_hotcpu_mutex);
5447 break;
5449 return NOTIFY_OK;
5452 /* Register at highest priority so that task migration (migrate_all_tasks)
5453 * happens before everything else.
5455 static struct notifier_block __cpuinitdata migration_notifier = {
5456 .notifier_call = migration_call,
5457 .priority = 10
5460 int __init migration_init(void)
5462 void *cpu = (void *)(long)smp_processor_id();
5463 int err;
5465 /* Start one for the boot CPU: */
5466 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5467 BUG_ON(err == NOTIFY_BAD);
5468 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5469 register_cpu_notifier(&migration_notifier);
5471 return 0;
5473 #endif
5475 #ifdef CONFIG_SMP
5477 /* Number of possible processor ids */
5478 int nr_cpu_ids __read_mostly = NR_CPUS;
5479 EXPORT_SYMBOL(nr_cpu_ids);
5481 #ifdef CONFIG_SCHED_DEBUG
5482 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5484 int level = 0;
5486 if (!sd) {
5487 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5488 return;
5491 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5493 do {
5494 int i;
5495 char str[NR_CPUS];
5496 struct sched_group *group = sd->groups;
5497 cpumask_t groupmask;
5499 cpumask_scnprintf(str, NR_CPUS, sd->span);
5500 cpus_clear(groupmask);
5502 printk(KERN_DEBUG);
5503 for (i = 0; i < level + 1; i++)
5504 printk(" ");
5505 printk("domain %d: ", level);
5507 if (!(sd->flags & SD_LOAD_BALANCE)) {
5508 printk("does not load-balance\n");
5509 if (sd->parent)
5510 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5511 " has parent");
5512 break;
5515 printk("span %s\n", str);
5517 if (!cpu_isset(cpu, sd->span))
5518 printk(KERN_ERR "ERROR: domain->span does not contain "
5519 "CPU%d\n", cpu);
5520 if (!cpu_isset(cpu, group->cpumask))
5521 printk(KERN_ERR "ERROR: domain->groups does not contain"
5522 " CPU%d\n", cpu);
5524 printk(KERN_DEBUG);
5525 for (i = 0; i < level + 2; i++)
5526 printk(" ");
5527 printk("groups:");
5528 do {
5529 if (!group) {
5530 printk("\n");
5531 printk(KERN_ERR "ERROR: group is NULL\n");
5532 break;
5535 if (!group->__cpu_power) {
5536 printk("\n");
5537 printk(KERN_ERR "ERROR: domain->cpu_power not "
5538 "set\n");
5539 break;
5542 if (!cpus_weight(group->cpumask)) {
5543 printk("\n");
5544 printk(KERN_ERR "ERROR: empty group\n");
5545 break;
5548 if (cpus_intersects(groupmask, group->cpumask)) {
5549 printk("\n");
5550 printk(KERN_ERR "ERROR: repeated CPUs\n");
5551 break;
5554 cpus_or(groupmask, groupmask, group->cpumask);
5556 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5557 printk(" %s", str);
5559 group = group->next;
5560 } while (group != sd->groups);
5561 printk("\n");
5563 if (!cpus_equal(sd->span, groupmask))
5564 printk(KERN_ERR "ERROR: groups don't span "
5565 "domain->span\n");
5567 level++;
5568 sd = sd->parent;
5569 if (!sd)
5570 continue;
5572 if (!cpus_subset(groupmask, sd->span))
5573 printk(KERN_ERR "ERROR: parent span is not a superset "
5574 "of domain->span\n");
5576 } while (sd);
5578 #else
5579 # define sched_domain_debug(sd, cpu) do { } while (0)
5580 #endif
5582 static int sd_degenerate(struct sched_domain *sd)
5584 if (cpus_weight(sd->span) == 1)
5585 return 1;
5587 /* Following flags need at least 2 groups */
5588 if (sd->flags & (SD_LOAD_BALANCE |
5589 SD_BALANCE_NEWIDLE |
5590 SD_BALANCE_FORK |
5591 SD_BALANCE_EXEC |
5592 SD_SHARE_CPUPOWER |
5593 SD_SHARE_PKG_RESOURCES)) {
5594 if (sd->groups != sd->groups->next)
5595 return 0;
5598 /* Following flags don't use groups */
5599 if (sd->flags & (SD_WAKE_IDLE |
5600 SD_WAKE_AFFINE |
5601 SD_WAKE_BALANCE))
5602 return 0;
5604 return 1;
5607 static int
5608 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5610 unsigned long cflags = sd->flags, pflags = parent->flags;
5612 if (sd_degenerate(parent))
5613 return 1;
5615 if (!cpus_equal(sd->span, parent->span))
5616 return 0;
5618 /* Does parent contain flags not in child? */
5619 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5620 if (cflags & SD_WAKE_AFFINE)
5621 pflags &= ~SD_WAKE_BALANCE;
5622 /* Flags needing groups don't count if only 1 group in parent */
5623 if (parent->groups == parent->groups->next) {
5624 pflags &= ~(SD_LOAD_BALANCE |
5625 SD_BALANCE_NEWIDLE |
5626 SD_BALANCE_FORK |
5627 SD_BALANCE_EXEC |
5628 SD_SHARE_CPUPOWER |
5629 SD_SHARE_PKG_RESOURCES);
5631 if (~cflags & pflags)
5632 return 0;
5634 return 1;
5638 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5639 * hold the hotplug lock.
5641 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5643 struct rq *rq = cpu_rq(cpu);
5644 struct sched_domain *tmp;
5646 /* Remove the sched domains which do not contribute to scheduling. */
5647 for (tmp = sd; tmp; tmp = tmp->parent) {
5648 struct sched_domain *parent = tmp->parent;
5649 if (!parent)
5650 break;
5651 if (sd_parent_degenerate(tmp, parent)) {
5652 tmp->parent = parent->parent;
5653 if (parent->parent)
5654 parent->parent->child = tmp;
5658 if (sd && sd_degenerate(sd)) {
5659 sd = sd->parent;
5660 if (sd)
5661 sd->child = NULL;
5664 sched_domain_debug(sd, cpu);
5666 rcu_assign_pointer(rq->sd, sd);
5669 /* cpus with isolated domains */
5670 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5672 /* Setup the mask of cpus configured for isolated domains */
5673 static int __init isolated_cpu_setup(char *str)
5675 int ints[NR_CPUS], i;
5677 str = get_options(str, ARRAY_SIZE(ints), ints);
5678 cpus_clear(cpu_isolated_map);
5679 for (i = 1; i <= ints[0]; i++)
5680 if (ints[i] < NR_CPUS)
5681 cpu_set(ints[i], cpu_isolated_map);
5682 return 1;
5685 __setup("isolcpus=", isolated_cpu_setup);
5688 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5689 * to a function which identifies what group(along with sched group) a CPU
5690 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5691 * (due to the fact that we keep track of groups covered with a cpumask_t).
5693 * init_sched_build_groups will build a circular linked list of the groups
5694 * covered by the given span, and will set each group's ->cpumask correctly,
5695 * and ->cpu_power to 0.
5697 static void
5698 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5699 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5700 struct sched_group **sg))
5702 struct sched_group *first = NULL, *last = NULL;
5703 cpumask_t covered = CPU_MASK_NONE;
5704 int i;
5706 for_each_cpu_mask(i, span) {
5707 struct sched_group *sg;
5708 int group = group_fn(i, cpu_map, &sg);
5709 int j;
5711 if (cpu_isset(i, covered))
5712 continue;
5714 sg->cpumask = CPU_MASK_NONE;
5715 sg->__cpu_power = 0;
5717 for_each_cpu_mask(j, span) {
5718 if (group_fn(j, cpu_map, NULL) != group)
5719 continue;
5721 cpu_set(j, covered);
5722 cpu_set(j, sg->cpumask);
5724 if (!first)
5725 first = sg;
5726 if (last)
5727 last->next = sg;
5728 last = sg;
5730 last->next = first;
5733 #define SD_NODES_PER_DOMAIN 16
5735 #ifdef CONFIG_NUMA
5738 * find_next_best_node - find the next node to include in a sched_domain
5739 * @node: node whose sched_domain we're building
5740 * @used_nodes: nodes already in the sched_domain
5742 * Find the next node to include in a given scheduling domain. Simply
5743 * finds the closest node not already in the @used_nodes map.
5745 * Should use nodemask_t.
5747 static int find_next_best_node(int node, unsigned long *used_nodes)
5749 int i, n, val, min_val, best_node = 0;
5751 min_val = INT_MAX;
5753 for (i = 0; i < MAX_NUMNODES; i++) {
5754 /* Start at @node */
5755 n = (node + i) % MAX_NUMNODES;
5757 if (!nr_cpus_node(n))
5758 continue;
5760 /* Skip already used nodes */
5761 if (test_bit(n, used_nodes))
5762 continue;
5764 /* Simple min distance search */
5765 val = node_distance(node, n);
5767 if (val < min_val) {
5768 min_val = val;
5769 best_node = n;
5773 set_bit(best_node, used_nodes);
5774 return best_node;
5778 * sched_domain_node_span - get a cpumask for a node's sched_domain
5779 * @node: node whose cpumask we're constructing
5780 * @size: number of nodes to include in this span
5782 * Given a node, construct a good cpumask for its sched_domain to span. It
5783 * should be one that prevents unnecessary balancing, but also spreads tasks
5784 * out optimally.
5786 static cpumask_t sched_domain_node_span(int node)
5788 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5789 cpumask_t span, nodemask;
5790 int i;
5792 cpus_clear(span);
5793 bitmap_zero(used_nodes, MAX_NUMNODES);
5795 nodemask = node_to_cpumask(node);
5796 cpus_or(span, span, nodemask);
5797 set_bit(node, used_nodes);
5799 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5800 int next_node = find_next_best_node(node, used_nodes);
5802 nodemask = node_to_cpumask(next_node);
5803 cpus_or(span, span, nodemask);
5806 return span;
5808 #endif
5810 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5813 * SMT sched-domains:
5815 #ifdef CONFIG_SCHED_SMT
5816 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5817 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5819 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5820 struct sched_group **sg)
5822 if (sg)
5823 *sg = &per_cpu(sched_group_cpus, cpu);
5824 return cpu;
5826 #endif
5829 * multi-core sched-domains:
5831 #ifdef CONFIG_SCHED_MC
5832 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5833 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5834 #endif
5836 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5837 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5838 struct sched_group **sg)
5840 int group;
5841 cpumask_t mask = cpu_sibling_map[cpu];
5842 cpus_and(mask, mask, *cpu_map);
5843 group = first_cpu(mask);
5844 if (sg)
5845 *sg = &per_cpu(sched_group_core, group);
5846 return group;
5848 #elif defined(CONFIG_SCHED_MC)
5849 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5850 struct sched_group **sg)
5852 if (sg)
5853 *sg = &per_cpu(sched_group_core, cpu);
5854 return cpu;
5856 #endif
5858 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5859 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5861 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5862 struct sched_group **sg)
5864 int group;
5865 #ifdef CONFIG_SCHED_MC
5866 cpumask_t mask = cpu_coregroup_map(cpu);
5867 cpus_and(mask, mask, *cpu_map);
5868 group = first_cpu(mask);
5869 #elif defined(CONFIG_SCHED_SMT)
5870 cpumask_t mask = cpu_sibling_map[cpu];
5871 cpus_and(mask, mask, *cpu_map);
5872 group = first_cpu(mask);
5873 #else
5874 group = cpu;
5875 #endif
5876 if (sg)
5877 *sg = &per_cpu(sched_group_phys, group);
5878 return group;
5881 #ifdef CONFIG_NUMA
5883 * The init_sched_build_groups can't handle what we want to do with node
5884 * groups, so roll our own. Now each node has its own list of groups which
5885 * gets dynamically allocated.
5887 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5888 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5890 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5891 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5893 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5894 struct sched_group **sg)
5896 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5897 int group;
5899 cpus_and(nodemask, nodemask, *cpu_map);
5900 group = first_cpu(nodemask);
5902 if (sg)
5903 *sg = &per_cpu(sched_group_allnodes, group);
5904 return group;
5907 static void init_numa_sched_groups_power(struct sched_group *group_head)
5909 struct sched_group *sg = group_head;
5910 int j;
5912 if (!sg)
5913 return;
5914 next_sg:
5915 for_each_cpu_mask(j, sg->cpumask) {
5916 struct sched_domain *sd;
5918 sd = &per_cpu(phys_domains, j);
5919 if (j != first_cpu(sd->groups->cpumask)) {
5921 * Only add "power" once for each
5922 * physical package.
5924 continue;
5927 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5929 sg = sg->next;
5930 if (sg != group_head)
5931 goto next_sg;
5933 #endif
5935 #ifdef CONFIG_NUMA
5936 /* Free memory allocated for various sched_group structures */
5937 static void free_sched_groups(const cpumask_t *cpu_map)
5939 int cpu, i;
5941 for_each_cpu_mask(cpu, *cpu_map) {
5942 struct sched_group **sched_group_nodes
5943 = sched_group_nodes_bycpu[cpu];
5945 if (!sched_group_nodes)
5946 continue;
5948 for (i = 0; i < MAX_NUMNODES; i++) {
5949 cpumask_t nodemask = node_to_cpumask(i);
5950 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5952 cpus_and(nodemask, nodemask, *cpu_map);
5953 if (cpus_empty(nodemask))
5954 continue;
5956 if (sg == NULL)
5957 continue;
5958 sg = sg->next;
5959 next_sg:
5960 oldsg = sg;
5961 sg = sg->next;
5962 kfree(oldsg);
5963 if (oldsg != sched_group_nodes[i])
5964 goto next_sg;
5966 kfree(sched_group_nodes);
5967 sched_group_nodes_bycpu[cpu] = NULL;
5970 #else
5971 static void free_sched_groups(const cpumask_t *cpu_map)
5974 #endif
5977 * Initialize sched groups cpu_power.
5979 * cpu_power indicates the capacity of sched group, which is used while
5980 * distributing the load between different sched groups in a sched domain.
5981 * Typically cpu_power for all the groups in a sched domain will be same unless
5982 * there are asymmetries in the topology. If there are asymmetries, group
5983 * having more cpu_power will pickup more load compared to the group having
5984 * less cpu_power.
5986 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5987 * the maximum number of tasks a group can handle in the presence of other idle
5988 * or lightly loaded groups in the same sched domain.
5990 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5992 struct sched_domain *child;
5993 struct sched_group *group;
5995 WARN_ON(!sd || !sd->groups);
5997 if (cpu != first_cpu(sd->groups->cpumask))
5998 return;
6000 child = sd->child;
6002 sd->groups->__cpu_power = 0;
6005 * For perf policy, if the groups in child domain share resources
6006 * (for example cores sharing some portions of the cache hierarchy
6007 * or SMT), then set this domain groups cpu_power such that each group
6008 * can handle only one task, when there are other idle groups in the
6009 * same sched domain.
6011 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6012 (child->flags &
6013 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6014 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6015 return;
6019 * add cpu_power of each child group to this groups cpu_power
6021 group = child->groups;
6022 do {
6023 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6024 group = group->next;
6025 } while (group != child->groups);
6029 * Build sched domains for a given set of cpus and attach the sched domains
6030 * to the individual cpus
6032 static int build_sched_domains(const cpumask_t *cpu_map)
6034 int i;
6035 #ifdef CONFIG_NUMA
6036 struct sched_group **sched_group_nodes = NULL;
6037 int sd_allnodes = 0;
6040 * Allocate the per-node list of sched groups
6042 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6043 GFP_KERNEL);
6044 if (!sched_group_nodes) {
6045 printk(KERN_WARNING "Can not alloc sched group node list\n");
6046 return -ENOMEM;
6048 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6049 #endif
6052 * Set up domains for cpus specified by the cpu_map.
6054 for_each_cpu_mask(i, *cpu_map) {
6055 struct sched_domain *sd = NULL, *p;
6056 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6058 cpus_and(nodemask, nodemask, *cpu_map);
6060 #ifdef CONFIG_NUMA
6061 if (cpus_weight(*cpu_map) >
6062 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6063 sd = &per_cpu(allnodes_domains, i);
6064 *sd = SD_ALLNODES_INIT;
6065 sd->span = *cpu_map;
6066 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6067 p = sd;
6068 sd_allnodes = 1;
6069 } else
6070 p = NULL;
6072 sd = &per_cpu(node_domains, i);
6073 *sd = SD_NODE_INIT;
6074 sd->span = sched_domain_node_span(cpu_to_node(i));
6075 sd->parent = p;
6076 if (p)
6077 p->child = sd;
6078 cpus_and(sd->span, sd->span, *cpu_map);
6079 #endif
6081 p = sd;
6082 sd = &per_cpu(phys_domains, i);
6083 *sd = SD_CPU_INIT;
6084 sd->span = nodemask;
6085 sd->parent = p;
6086 if (p)
6087 p->child = sd;
6088 cpu_to_phys_group(i, cpu_map, &sd->groups);
6090 #ifdef CONFIG_SCHED_MC
6091 p = sd;
6092 sd = &per_cpu(core_domains, i);
6093 *sd = SD_MC_INIT;
6094 sd->span = cpu_coregroup_map(i);
6095 cpus_and(sd->span, sd->span, *cpu_map);
6096 sd->parent = p;
6097 p->child = sd;
6098 cpu_to_core_group(i, cpu_map, &sd->groups);
6099 #endif
6101 #ifdef CONFIG_SCHED_SMT
6102 p = sd;
6103 sd = &per_cpu(cpu_domains, i);
6104 *sd = SD_SIBLING_INIT;
6105 sd->span = cpu_sibling_map[i];
6106 cpus_and(sd->span, sd->span, *cpu_map);
6107 sd->parent = p;
6108 p->child = sd;
6109 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6110 #endif
6113 #ifdef CONFIG_SCHED_SMT
6114 /* Set up CPU (sibling) groups */
6115 for_each_cpu_mask(i, *cpu_map) {
6116 cpumask_t this_sibling_map = cpu_sibling_map[i];
6117 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6118 if (i != first_cpu(this_sibling_map))
6119 continue;
6121 init_sched_build_groups(this_sibling_map, cpu_map,
6122 &cpu_to_cpu_group);
6124 #endif
6126 #ifdef CONFIG_SCHED_MC
6127 /* Set up multi-core groups */
6128 for_each_cpu_mask(i, *cpu_map) {
6129 cpumask_t this_core_map = cpu_coregroup_map(i);
6130 cpus_and(this_core_map, this_core_map, *cpu_map);
6131 if (i != first_cpu(this_core_map))
6132 continue;
6133 init_sched_build_groups(this_core_map, cpu_map,
6134 &cpu_to_core_group);
6136 #endif
6138 /* Set up physical groups */
6139 for (i = 0; i < MAX_NUMNODES; i++) {
6140 cpumask_t nodemask = node_to_cpumask(i);
6142 cpus_and(nodemask, nodemask, *cpu_map);
6143 if (cpus_empty(nodemask))
6144 continue;
6146 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6149 #ifdef CONFIG_NUMA
6150 /* Set up node groups */
6151 if (sd_allnodes)
6152 init_sched_build_groups(*cpu_map, cpu_map,
6153 &cpu_to_allnodes_group);
6155 for (i = 0; i < MAX_NUMNODES; i++) {
6156 /* Set up node groups */
6157 struct sched_group *sg, *prev;
6158 cpumask_t nodemask = node_to_cpumask(i);
6159 cpumask_t domainspan;
6160 cpumask_t covered = CPU_MASK_NONE;
6161 int j;
6163 cpus_and(nodemask, nodemask, *cpu_map);
6164 if (cpus_empty(nodemask)) {
6165 sched_group_nodes[i] = NULL;
6166 continue;
6169 domainspan = sched_domain_node_span(i);
6170 cpus_and(domainspan, domainspan, *cpu_map);
6172 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6173 if (!sg) {
6174 printk(KERN_WARNING "Can not alloc domain group for "
6175 "node %d\n", i);
6176 goto error;
6178 sched_group_nodes[i] = sg;
6179 for_each_cpu_mask(j, nodemask) {
6180 struct sched_domain *sd;
6182 sd = &per_cpu(node_domains, j);
6183 sd->groups = sg;
6185 sg->__cpu_power = 0;
6186 sg->cpumask = nodemask;
6187 sg->next = sg;
6188 cpus_or(covered, covered, nodemask);
6189 prev = sg;
6191 for (j = 0; j < MAX_NUMNODES; j++) {
6192 cpumask_t tmp, notcovered;
6193 int n = (i + j) % MAX_NUMNODES;
6195 cpus_complement(notcovered, covered);
6196 cpus_and(tmp, notcovered, *cpu_map);
6197 cpus_and(tmp, tmp, domainspan);
6198 if (cpus_empty(tmp))
6199 break;
6201 nodemask = node_to_cpumask(n);
6202 cpus_and(tmp, tmp, nodemask);
6203 if (cpus_empty(tmp))
6204 continue;
6206 sg = kmalloc_node(sizeof(struct sched_group),
6207 GFP_KERNEL, i);
6208 if (!sg) {
6209 printk(KERN_WARNING
6210 "Can not alloc domain group for node %d\n", j);
6211 goto error;
6213 sg->__cpu_power = 0;
6214 sg->cpumask = tmp;
6215 sg->next = prev->next;
6216 cpus_or(covered, covered, tmp);
6217 prev->next = sg;
6218 prev = sg;
6221 #endif
6223 /* Calculate CPU power for physical packages and nodes */
6224 #ifdef CONFIG_SCHED_SMT
6225 for_each_cpu_mask(i, *cpu_map) {
6226 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6228 init_sched_groups_power(i, sd);
6230 #endif
6231 #ifdef CONFIG_SCHED_MC
6232 for_each_cpu_mask(i, *cpu_map) {
6233 struct sched_domain *sd = &per_cpu(core_domains, i);
6235 init_sched_groups_power(i, sd);
6237 #endif
6239 for_each_cpu_mask(i, *cpu_map) {
6240 struct sched_domain *sd = &per_cpu(phys_domains, i);
6242 init_sched_groups_power(i, sd);
6245 #ifdef CONFIG_NUMA
6246 for (i = 0; i < MAX_NUMNODES; i++)
6247 init_numa_sched_groups_power(sched_group_nodes[i]);
6249 if (sd_allnodes) {
6250 struct sched_group *sg;
6252 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6253 init_numa_sched_groups_power(sg);
6255 #endif
6257 /* Attach the domains */
6258 for_each_cpu_mask(i, *cpu_map) {
6259 struct sched_domain *sd;
6260 #ifdef CONFIG_SCHED_SMT
6261 sd = &per_cpu(cpu_domains, i);
6262 #elif defined(CONFIG_SCHED_MC)
6263 sd = &per_cpu(core_domains, i);
6264 #else
6265 sd = &per_cpu(phys_domains, i);
6266 #endif
6267 cpu_attach_domain(sd, i);
6270 return 0;
6272 #ifdef CONFIG_NUMA
6273 error:
6274 free_sched_groups(cpu_map);
6275 return -ENOMEM;
6276 #endif
6279 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6281 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6283 cpumask_t cpu_default_map;
6284 int err;
6287 * Setup mask for cpus without special case scheduling requirements.
6288 * For now this just excludes isolated cpus, but could be used to
6289 * exclude other special cases in the future.
6291 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6293 err = build_sched_domains(&cpu_default_map);
6295 return err;
6298 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6300 free_sched_groups(cpu_map);
6304 * Detach sched domains from a group of cpus specified in cpu_map
6305 * These cpus will now be attached to the NULL domain
6307 static void detach_destroy_domains(const cpumask_t *cpu_map)
6309 int i;
6311 for_each_cpu_mask(i, *cpu_map)
6312 cpu_attach_domain(NULL, i);
6313 synchronize_sched();
6314 arch_destroy_sched_domains(cpu_map);
6318 * Partition sched domains as specified by the cpumasks below.
6319 * This attaches all cpus from the cpumasks to the NULL domain,
6320 * waits for a RCU quiescent period, recalculates sched
6321 * domain information and then attaches them back to the
6322 * correct sched domains
6323 * Call with hotplug lock held
6325 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6327 cpumask_t change_map;
6328 int err = 0;
6330 cpus_and(*partition1, *partition1, cpu_online_map);
6331 cpus_and(*partition2, *partition2, cpu_online_map);
6332 cpus_or(change_map, *partition1, *partition2);
6334 /* Detach sched domains from all of the affected cpus */
6335 detach_destroy_domains(&change_map);
6336 if (!cpus_empty(*partition1))
6337 err = build_sched_domains(partition1);
6338 if (!err && !cpus_empty(*partition2))
6339 err = build_sched_domains(partition2);
6341 return err;
6344 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6345 static int arch_reinit_sched_domains(void)
6347 int err;
6349 mutex_lock(&sched_hotcpu_mutex);
6350 detach_destroy_domains(&cpu_online_map);
6351 err = arch_init_sched_domains(&cpu_online_map);
6352 mutex_unlock(&sched_hotcpu_mutex);
6354 return err;
6357 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6359 int ret;
6361 if (buf[0] != '0' && buf[0] != '1')
6362 return -EINVAL;
6364 if (smt)
6365 sched_smt_power_savings = (buf[0] == '1');
6366 else
6367 sched_mc_power_savings = (buf[0] == '1');
6369 ret = arch_reinit_sched_domains();
6371 return ret ? ret : count;
6374 #ifdef CONFIG_SCHED_MC
6375 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6377 return sprintf(page, "%u\n", sched_mc_power_savings);
6379 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6380 const char *buf, size_t count)
6382 return sched_power_savings_store(buf, count, 0);
6384 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6385 sched_mc_power_savings_store);
6386 #endif
6388 #ifdef CONFIG_SCHED_SMT
6389 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6391 return sprintf(page, "%u\n", sched_smt_power_savings);
6393 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6394 const char *buf, size_t count)
6396 return sched_power_savings_store(buf, count, 1);
6398 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6399 sched_smt_power_savings_store);
6400 #endif
6402 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6404 int err = 0;
6406 #ifdef CONFIG_SCHED_SMT
6407 if (smt_capable())
6408 err = sysfs_create_file(&cls->kset.kobj,
6409 &attr_sched_smt_power_savings.attr);
6410 #endif
6411 #ifdef CONFIG_SCHED_MC
6412 if (!err && mc_capable())
6413 err = sysfs_create_file(&cls->kset.kobj,
6414 &attr_sched_mc_power_savings.attr);
6415 #endif
6416 return err;
6418 #endif
6421 * Force a reinitialization of the sched domains hierarchy. The domains
6422 * and groups cannot be updated in place without racing with the balancing
6423 * code, so we temporarily attach all running cpus to the NULL domain
6424 * which will prevent rebalancing while the sched domains are recalculated.
6426 static int update_sched_domains(struct notifier_block *nfb,
6427 unsigned long action, void *hcpu)
6429 switch (action) {
6430 case CPU_UP_PREPARE:
6431 case CPU_UP_PREPARE_FROZEN:
6432 case CPU_DOWN_PREPARE:
6433 case CPU_DOWN_PREPARE_FROZEN:
6434 detach_destroy_domains(&cpu_online_map);
6435 return NOTIFY_OK;
6437 case CPU_UP_CANCELED:
6438 case CPU_UP_CANCELED_FROZEN:
6439 case CPU_DOWN_FAILED:
6440 case CPU_DOWN_FAILED_FROZEN:
6441 case CPU_ONLINE:
6442 case CPU_ONLINE_FROZEN:
6443 case CPU_DEAD:
6444 case CPU_DEAD_FROZEN:
6446 * Fall through and re-initialise the domains.
6448 break;
6449 default:
6450 return NOTIFY_DONE;
6453 /* The hotplug lock is already held by cpu_up/cpu_down */
6454 arch_init_sched_domains(&cpu_online_map);
6456 return NOTIFY_OK;
6459 void __init sched_init_smp(void)
6461 cpumask_t non_isolated_cpus;
6463 mutex_lock(&sched_hotcpu_mutex);
6464 arch_init_sched_domains(&cpu_online_map);
6465 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6466 if (cpus_empty(non_isolated_cpus))
6467 cpu_set(smp_processor_id(), non_isolated_cpus);
6468 mutex_unlock(&sched_hotcpu_mutex);
6469 /* XXX: Theoretical race here - CPU may be hotplugged now */
6470 hotcpu_notifier(update_sched_domains, 0);
6472 init_sched_domain_sysctl();
6474 /* Move init over to a non-isolated CPU */
6475 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6476 BUG();
6478 #else
6479 void __init sched_init_smp(void)
6482 #endif /* CONFIG_SMP */
6484 int in_sched_functions(unsigned long addr)
6486 /* Linker adds these: start and end of __sched functions */
6487 extern char __sched_text_start[], __sched_text_end[];
6489 return in_lock_functions(addr) ||
6490 (addr >= (unsigned long)__sched_text_start
6491 && addr < (unsigned long)__sched_text_end);
6494 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6496 cfs_rq->tasks_timeline = RB_ROOT;
6497 #ifdef CONFIG_FAIR_GROUP_SCHED
6498 cfs_rq->rq = rq;
6499 #endif
6500 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6503 void __init sched_init(void)
6505 int highest_cpu = 0;
6506 int i, j;
6508 for_each_possible_cpu(i) {
6509 struct rt_prio_array *array;
6510 struct rq *rq;
6512 rq = cpu_rq(i);
6513 spin_lock_init(&rq->lock);
6514 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6515 rq->nr_running = 0;
6516 rq->clock = 1;
6517 init_cfs_rq(&rq->cfs, rq);
6518 #ifdef CONFIG_FAIR_GROUP_SCHED
6519 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6521 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6522 struct sched_entity *se =
6523 &per_cpu(init_sched_entity, i);
6525 init_cfs_rq_p[i] = cfs_rq;
6526 init_cfs_rq(cfs_rq, rq);
6527 cfs_rq->tg = &init_task_group;
6528 list_add(&cfs_rq->leaf_cfs_rq_list,
6529 &rq->leaf_cfs_rq_list);
6531 init_sched_entity_p[i] = se;
6532 se->cfs_rq = &rq->cfs;
6533 se->my_q = cfs_rq;
6534 se->load.weight = init_task_group_load;
6535 se->load.inv_weight =
6536 div64_64(1ULL<<32, init_task_group_load);
6537 se->parent = NULL;
6539 init_task_group.shares = init_task_group_load;
6540 spin_lock_init(&init_task_group.lock);
6541 #endif
6543 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6544 rq->cpu_load[j] = 0;
6545 #ifdef CONFIG_SMP
6546 rq->sd = NULL;
6547 rq->active_balance = 0;
6548 rq->next_balance = jiffies;
6549 rq->push_cpu = 0;
6550 rq->cpu = i;
6551 rq->migration_thread = NULL;
6552 INIT_LIST_HEAD(&rq->migration_queue);
6553 #endif
6554 atomic_set(&rq->nr_iowait, 0);
6556 array = &rq->rt.active;
6557 for (j = 0; j < MAX_RT_PRIO; j++) {
6558 INIT_LIST_HEAD(array->queue + j);
6559 __clear_bit(j, array->bitmap);
6561 highest_cpu = i;
6562 /* delimiter for bitsearch: */
6563 __set_bit(MAX_RT_PRIO, array->bitmap);
6566 set_load_weight(&init_task);
6568 #ifdef CONFIG_PREEMPT_NOTIFIERS
6569 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6570 #endif
6572 #ifdef CONFIG_SMP
6573 nr_cpu_ids = highest_cpu + 1;
6574 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6575 #endif
6577 #ifdef CONFIG_RT_MUTEXES
6578 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6579 #endif
6582 * The boot idle thread does lazy MMU switching as well:
6584 atomic_inc(&init_mm.mm_count);
6585 enter_lazy_tlb(&init_mm, current);
6588 * Make us the idle thread. Technically, schedule() should not be
6589 * called from this thread, however somewhere below it might be,
6590 * but because we are the idle thread, we just pick up running again
6591 * when this runqueue becomes "idle".
6593 init_idle(current, smp_processor_id());
6595 * During early bootup we pretend to be a normal task:
6597 current->sched_class = &fair_sched_class;
6600 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6601 void __might_sleep(char *file, int line)
6603 #ifdef in_atomic
6604 static unsigned long prev_jiffy; /* ratelimiting */
6606 if ((in_atomic() || irqs_disabled()) &&
6607 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6608 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6609 return;
6610 prev_jiffy = jiffies;
6611 printk(KERN_ERR "BUG: sleeping function called from invalid"
6612 " context at %s:%d\n", file, line);
6613 printk("in_atomic():%d, irqs_disabled():%d\n",
6614 in_atomic(), irqs_disabled());
6615 debug_show_held_locks(current);
6616 if (irqs_disabled())
6617 print_irqtrace_events(current);
6618 dump_stack();
6620 #endif
6622 EXPORT_SYMBOL(__might_sleep);
6623 #endif
6625 #ifdef CONFIG_MAGIC_SYSRQ
6626 void normalize_rt_tasks(void)
6628 struct task_struct *g, *p;
6629 unsigned long flags;
6630 struct rq *rq;
6631 int on_rq;
6633 read_lock_irq(&tasklist_lock);
6634 do_each_thread(g, p) {
6635 p->se.exec_start = 0;
6636 #ifdef CONFIG_SCHEDSTATS
6637 p->se.wait_start = 0;
6638 p->se.sleep_start = 0;
6639 p->se.block_start = 0;
6640 #endif
6641 task_rq(p)->clock = 0;
6643 if (!rt_task(p)) {
6645 * Renice negative nice level userspace
6646 * tasks back to 0:
6648 if (TASK_NICE(p) < 0 && p->mm)
6649 set_user_nice(p, 0);
6650 continue;
6653 spin_lock_irqsave(&p->pi_lock, flags);
6654 rq = __task_rq_lock(p);
6655 #ifdef CONFIG_SMP
6657 * Do not touch the migration thread:
6659 if (p == rq->migration_thread)
6660 goto out_unlock;
6661 #endif
6663 update_rq_clock(rq);
6664 on_rq = p->se.on_rq;
6665 if (on_rq)
6666 deactivate_task(rq, p, 0);
6667 __setscheduler(rq, p, SCHED_NORMAL, 0);
6668 if (on_rq) {
6669 activate_task(rq, p, 0);
6670 resched_task(rq->curr);
6672 #ifdef CONFIG_SMP
6673 out_unlock:
6674 #endif
6675 __task_rq_unlock(rq);
6676 spin_unlock_irqrestore(&p->pi_lock, flags);
6677 } while_each_thread(g, p);
6679 read_unlock_irq(&tasklist_lock);
6682 #endif /* CONFIG_MAGIC_SYSRQ */
6684 #ifdef CONFIG_IA64
6686 * These functions are only useful for the IA64 MCA handling.
6688 * They can only be called when the whole system has been
6689 * stopped - every CPU needs to be quiescent, and no scheduling
6690 * activity can take place. Using them for anything else would
6691 * be a serious bug, and as a result, they aren't even visible
6692 * under any other configuration.
6696 * curr_task - return the current task for a given cpu.
6697 * @cpu: the processor in question.
6699 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6701 struct task_struct *curr_task(int cpu)
6703 return cpu_curr(cpu);
6707 * set_curr_task - set the current task for a given cpu.
6708 * @cpu: the processor in question.
6709 * @p: the task pointer to set.
6711 * Description: This function must only be used when non-maskable interrupts
6712 * are serviced on a separate stack. It allows the architecture to switch the
6713 * notion of the current task on a cpu in a non-blocking manner. This function
6714 * must be called with all CPU's synchronized, and interrupts disabled, the
6715 * and caller must save the original value of the current task (see
6716 * curr_task() above) and restore that value before reenabling interrupts and
6717 * re-starting the system.
6719 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6721 void set_curr_task(int cpu, struct task_struct *p)
6723 cpu_curr(cpu) = p;
6726 #endif
6728 #ifdef CONFIG_FAIR_GROUP_SCHED
6730 /* allocate runqueue etc for a new task group */
6731 struct task_group *sched_create_group(void)
6733 struct task_group *tg;
6734 struct cfs_rq *cfs_rq;
6735 struct sched_entity *se;
6736 struct rq *rq;
6737 int i;
6739 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6740 if (!tg)
6741 return ERR_PTR(-ENOMEM);
6743 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6744 if (!tg->cfs_rq)
6745 goto err;
6746 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6747 if (!tg->se)
6748 goto err;
6750 for_each_possible_cpu(i) {
6751 rq = cpu_rq(i);
6753 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6754 cpu_to_node(i));
6755 if (!cfs_rq)
6756 goto err;
6758 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6759 cpu_to_node(i));
6760 if (!se)
6761 goto err;
6763 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6764 memset(se, 0, sizeof(struct sched_entity));
6766 tg->cfs_rq[i] = cfs_rq;
6767 init_cfs_rq(cfs_rq, rq);
6768 cfs_rq->tg = tg;
6770 tg->se[i] = se;
6771 se->cfs_rq = &rq->cfs;
6772 se->my_q = cfs_rq;
6773 se->load.weight = NICE_0_LOAD;
6774 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6775 se->parent = NULL;
6778 for_each_possible_cpu(i) {
6779 rq = cpu_rq(i);
6780 cfs_rq = tg->cfs_rq[i];
6781 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6784 tg->shares = NICE_0_LOAD;
6785 spin_lock_init(&tg->lock);
6787 return tg;
6789 err:
6790 for_each_possible_cpu(i) {
6791 if (tg->cfs_rq)
6792 kfree(tg->cfs_rq[i]);
6793 if (tg->se)
6794 kfree(tg->se[i]);
6796 kfree(tg->cfs_rq);
6797 kfree(tg->se);
6798 kfree(tg);
6800 return ERR_PTR(-ENOMEM);
6803 /* rcu callback to free various structures associated with a task group */
6804 static void free_sched_group(struct rcu_head *rhp)
6806 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6807 struct task_group *tg = cfs_rq->tg;
6808 struct sched_entity *se;
6809 int i;
6811 /* now it should be safe to free those cfs_rqs */
6812 for_each_possible_cpu(i) {
6813 cfs_rq = tg->cfs_rq[i];
6814 kfree(cfs_rq);
6816 se = tg->se[i];
6817 kfree(se);
6820 kfree(tg->cfs_rq);
6821 kfree(tg->se);
6822 kfree(tg);
6825 /* Destroy runqueue etc associated with a task group */
6826 void sched_destroy_group(struct task_group *tg)
6828 struct cfs_rq *cfs_rq;
6829 int i;
6831 for_each_possible_cpu(i) {
6832 cfs_rq = tg->cfs_rq[i];
6833 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6836 cfs_rq = tg->cfs_rq[0];
6838 /* wait for possible concurrent references to cfs_rqs complete */
6839 call_rcu(&cfs_rq->rcu, free_sched_group);
6842 /* change task's runqueue when it moves between groups.
6843 * The caller of this function should have put the task in its new group
6844 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6845 * reflect its new group.
6847 void sched_move_task(struct task_struct *tsk)
6849 int on_rq, running;
6850 unsigned long flags;
6851 struct rq *rq;
6853 rq = task_rq_lock(tsk, &flags);
6855 if (tsk->sched_class != &fair_sched_class)
6856 goto done;
6858 update_rq_clock(rq);
6860 running = task_running(rq, tsk);
6861 on_rq = tsk->se.on_rq;
6863 if (on_rq) {
6864 dequeue_task(rq, tsk, 0);
6865 if (unlikely(running))
6866 tsk->sched_class->put_prev_task(rq, tsk);
6869 set_task_cfs_rq(tsk);
6871 if (on_rq) {
6872 if (unlikely(running))
6873 tsk->sched_class->set_curr_task(rq);
6874 enqueue_task(rq, tsk, 0);
6877 done:
6878 task_rq_unlock(rq, &flags);
6881 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6883 struct cfs_rq *cfs_rq = se->cfs_rq;
6884 struct rq *rq = cfs_rq->rq;
6885 int on_rq;
6887 spin_lock_irq(&rq->lock);
6889 on_rq = se->on_rq;
6890 if (on_rq)
6891 dequeue_entity(cfs_rq, se, 0);
6893 se->load.weight = shares;
6894 se->load.inv_weight = div64_64((1ULL<<32), shares);
6896 if (on_rq)
6897 enqueue_entity(cfs_rq, se, 0);
6899 spin_unlock_irq(&rq->lock);
6902 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6904 int i;
6906 spin_lock(&tg->lock);
6907 if (tg->shares == shares)
6908 goto done;
6910 /* return -EINVAL if the new value is not sane */
6912 tg->shares = shares;
6913 for_each_possible_cpu(i)
6914 set_se_shares(tg->se[i], shares);
6916 done:
6917 spin_unlock(&tg->lock);
6918 return 0;
6921 unsigned long sched_group_shares(struct task_group *tg)
6923 return tg->shares;
6926 #endif /* CONFIG_FAIR_GROUP_SCHED */