4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak
)) sched_clock(void)
75 return (unsigned long long)jiffies
* (1000000000 / HZ
);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
120 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
129 sg
->__cpu_power
+= val
;
130 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
134 static inline int rt_policy(int policy
)
136 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
141 static inline int task_has_rt_policy(struct task_struct
*p
)
143 return rt_policy(p
->policy
);
147 * This is the priority-queue data structure of the RT scheduling class:
149 struct rt_prio_array
{
150 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
151 struct list_head queue
[MAX_RT_PRIO
];
154 #ifdef CONFIG_FAIR_GROUP_SCHED
158 /* task group related information */
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity
**se
;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq
**cfs_rq
;
164 unsigned long shares
;
165 /* spinlock to serialize modification to shares */
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
174 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
175 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
180 struct task_group init_task_group
= {
181 .se
= init_sched_entity_p
,
182 .cfs_rq
= init_cfs_rq_p
,
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
191 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
193 /* return group to which a task belongs */
194 static inline struct task_group
*task_group(struct task_struct
*p
)
196 struct task_group
*tg
;
198 #ifdef CONFIG_FAIR_USER_SCHED
201 tg
= &init_task_group
;
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct
*p
)
210 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[task_cpu(p
)];
211 p
->se
.parent
= task_group(p
)->se
[task_cpu(p
)];
216 static inline void set_task_cfs_rq(struct task_struct
*p
) { }
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
220 /* CFS-related fields in a runqueue */
222 struct load_weight load
;
223 unsigned long nr_running
;
228 struct rb_root tasks_timeline
;
229 struct rb_node
*rb_leftmost
;
230 struct rb_node
*rb_load_balance_curr
;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
234 struct sched_entity
*curr
;
236 unsigned long nr_spread_over
;
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
248 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
249 struct task_group
*tg
; /* group that "owns" this runqueue */
254 /* Real-Time classes' related field in a runqueue: */
256 struct rt_prio_array active
;
257 int rt_load_balance_idx
;
258 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
262 * This is the main, per-CPU runqueue data structure.
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
269 spinlock_t lock
; /* runqueue lock */
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
275 unsigned long nr_running
;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
278 unsigned char idle_at_tick
;
280 unsigned char in_nohz_recently
;
282 struct load_weight load
; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates
;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
298 unsigned long nr_uninterruptible
;
300 struct task_struct
*curr
, *idle
;
301 unsigned long next_balance
;
302 struct mm_struct
*prev_mm
;
304 u64 clock
, prev_clock_raw
;
307 unsigned int clock_warps
, clock_overflows
;
309 unsigned int clock_deep_idle_events
;
315 struct sched_domain
*sd
;
317 /* For active balancing */
320 int cpu
; /* cpu of this runqueue */
322 struct task_struct
*migration_thread
;
323 struct list_head migration_queue
;
326 #ifdef CONFIG_SCHEDSTATS
328 struct sched_info rq_sched_info
;
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty
;
332 unsigned long yld_act_empty
;
333 unsigned long yld_both_empty
;
334 unsigned long yld_count
;
336 /* schedule() stats */
337 unsigned long sched_switch
;
338 unsigned long sched_count
;
339 unsigned long sched_goidle
;
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count
;
343 unsigned long ttwu_local
;
346 unsigned long bkl_count
;
348 struct lock_class_key rq_lock_key
;
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
352 static DEFINE_MUTEX(sched_hotcpu_mutex
);
354 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
356 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
359 static inline int cpu_of(struct rq
*rq
)
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
372 static void __update_rq_clock(struct rq
*rq
)
374 u64 prev_raw
= rq
->prev_clock_raw
;
375 u64 now
= sched_clock();
376 s64 delta
= now
- prev_raw
;
377 u64 clock
= rq
->clock
;
379 #ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
383 * Protect against sched_clock() occasionally going backwards:
385 if (unlikely(delta
< 0)) {
390 * Catch too large forward jumps too:
392 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
393 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
394 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
397 rq
->clock_overflows
++;
399 if (unlikely(delta
> rq
->clock_max_delta
))
400 rq
->clock_max_delta
= delta
;
405 rq
->prev_clock_raw
= now
;
409 static void update_rq_clock(struct rq
*rq
)
411 if (likely(smp_processor_id() == cpu_of(rq
)))
412 __update_rq_clock(rq
);
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417 * See detach_destroy_domains: synchronize_sched for details.
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
422 #define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
425 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426 #define this_rq() (&__get_cpu_var(runqueues))
427 #define task_rq(p) cpu_rq(task_cpu(p))
428 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
433 #ifdef CONFIG_SCHED_DEBUG
434 # define const_debug __read_mostly
436 # define const_debug static const
440 * Debugging: various feature bits
443 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
444 SCHED_FEAT_START_DEBIT
= 2,
445 SCHED_FEAT_TREE_AVG
= 4,
446 SCHED_FEAT_APPROX_AVG
= 8,
447 SCHED_FEAT_WAKEUP_PREEMPT
= 16,
450 const_debug
unsigned int sysctl_sched_features
=
451 SCHED_FEAT_NEW_FAIR_SLEEPERS
*1 |
452 SCHED_FEAT_START_DEBIT
*1 |
453 SCHED_FEAT_TREE_AVG
*0 |
454 SCHED_FEAT_APPROX_AVG
*0 |
455 SCHED_FEAT_WAKEUP_PREEMPT
*1;
457 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
461 * clock constructed from sched_clock():
463 unsigned long long cpu_clock(int cpu
)
465 unsigned long long now
;
469 local_irq_save(flags
);
473 local_irq_restore(flags
);
477 EXPORT_SYMBOL_GPL(cpu_clock
);
479 #ifndef prepare_arch_switch
480 # define prepare_arch_switch(next) do { } while (0)
482 #ifndef finish_arch_switch
483 # define finish_arch_switch(prev) do { } while (0)
486 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
487 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
489 return rq
->curr
== p
;
492 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
496 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
498 #ifdef CONFIG_DEBUG_SPINLOCK
499 /* this is a valid case when another task releases the spinlock */
500 rq
->lock
.owner
= current
;
503 * If we are tracking spinlock dependencies then we have to
504 * fix up the runqueue lock - which gets 'carried over' from
507 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
509 spin_unlock_irq(&rq
->lock
);
512 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
513 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
518 return rq
->curr
== p
;
522 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
526 * We can optimise this out completely for !SMP, because the
527 * SMP rebalancing from interrupt is the only thing that cares
532 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
533 spin_unlock_irq(&rq
->lock
);
535 spin_unlock(&rq
->lock
);
539 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
543 * After ->oncpu is cleared, the task can be moved to a different CPU.
544 * We must ensure this doesn't happen until the switch is completely
550 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
554 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
557 * __task_rq_lock - lock the runqueue a given task resides on.
558 * Must be called interrupts disabled.
560 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
567 spin_lock(&rq
->lock
);
568 if (unlikely(rq
!= task_rq(p
))) {
569 spin_unlock(&rq
->lock
);
570 goto repeat_lock_task
;
576 * task_rq_lock - lock the runqueue a given task resides on and disable
577 * interrupts. Note the ordering: we can safely lookup the task_rq without
578 * explicitly disabling preemption.
580 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
586 local_irq_save(*flags
);
588 spin_lock(&rq
->lock
);
589 if (unlikely(rq
!= task_rq(p
))) {
590 spin_unlock_irqrestore(&rq
->lock
, *flags
);
591 goto repeat_lock_task
;
596 static void __task_rq_unlock(struct rq
*rq
)
599 spin_unlock(&rq
->lock
);
602 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
605 spin_unlock_irqrestore(&rq
->lock
, *flags
);
609 * this_rq_lock - lock this runqueue and disable interrupts.
611 static struct rq
*this_rq_lock(void)
618 spin_lock(&rq
->lock
);
624 * We are going deep-idle (irqs are disabled):
626 void sched_clock_idle_sleep_event(void)
628 struct rq
*rq
= cpu_rq(smp_processor_id());
630 spin_lock(&rq
->lock
);
631 __update_rq_clock(rq
);
632 spin_unlock(&rq
->lock
);
633 rq
->clock_deep_idle_events
++;
635 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
638 * We just idled delta nanoseconds (called with irqs disabled):
640 void sched_clock_idle_wakeup_event(u64 delta_ns
)
642 struct rq
*rq
= cpu_rq(smp_processor_id());
643 u64 now
= sched_clock();
645 rq
->idle_clock
+= delta_ns
;
647 * Override the previous timestamp and ignore all
648 * sched_clock() deltas that occured while we idled,
649 * and use the PM-provided delta_ns to advance the
652 spin_lock(&rq
->lock
);
653 rq
->prev_clock_raw
= now
;
654 rq
->clock
+= delta_ns
;
655 spin_unlock(&rq
->lock
);
657 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
660 * resched_task - mark a task 'to be rescheduled now'.
662 * On UP this means the setting of the need_resched flag, on SMP it
663 * might also involve a cross-CPU call to trigger the scheduler on
668 #ifndef tsk_is_polling
669 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
672 static void resched_task(struct task_struct
*p
)
676 assert_spin_locked(&task_rq(p
)->lock
);
678 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
681 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
684 if (cpu
== smp_processor_id())
687 /* NEED_RESCHED must be visible before we test polling */
689 if (!tsk_is_polling(p
))
690 smp_send_reschedule(cpu
);
693 static void resched_cpu(int cpu
)
695 struct rq
*rq
= cpu_rq(cpu
);
698 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
700 resched_task(cpu_curr(cpu
));
701 spin_unlock_irqrestore(&rq
->lock
, flags
);
704 static inline void resched_task(struct task_struct
*p
)
706 assert_spin_locked(&task_rq(p
)->lock
);
707 set_tsk_need_resched(p
);
711 #if BITS_PER_LONG == 32
712 # define WMULT_CONST (~0UL)
714 # define WMULT_CONST (1UL << 32)
717 #define WMULT_SHIFT 32
720 * Shift right and round:
722 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
725 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
726 struct load_weight
*lw
)
730 if (unlikely(!lw
->inv_weight
))
731 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
733 tmp
= (u64
)delta_exec
* weight
;
735 * Check whether we'd overflow the 64-bit multiplication:
737 if (unlikely(tmp
> WMULT_CONST
))
738 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
741 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
743 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
746 static inline unsigned long
747 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
749 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
752 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
757 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
763 * To aid in avoiding the subversion of "niceness" due to uneven distribution
764 * of tasks with abnormal "nice" values across CPUs the contribution that
765 * each task makes to its run queue's load is weighted according to its
766 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
767 * scaled version of the new time slice allocation that they receive on time
771 #define WEIGHT_IDLEPRIO 2
772 #define WMULT_IDLEPRIO (1 << 31)
775 * Nice levels are multiplicative, with a gentle 10% change for every
776 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
777 * nice 1, it will get ~10% less CPU time than another CPU-bound task
778 * that remained on nice 0.
780 * The "10% effect" is relative and cumulative: from _any_ nice level,
781 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
782 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
783 * If a task goes up by ~10% and another task goes down by ~10% then
784 * the relative distance between them is ~25%.)
786 static const int prio_to_weight
[40] = {
787 /* -20 */ 88761, 71755, 56483, 46273, 36291,
788 /* -15 */ 29154, 23254, 18705, 14949, 11916,
789 /* -10 */ 9548, 7620, 6100, 4904, 3906,
790 /* -5 */ 3121, 2501, 1991, 1586, 1277,
791 /* 0 */ 1024, 820, 655, 526, 423,
792 /* 5 */ 335, 272, 215, 172, 137,
793 /* 10 */ 110, 87, 70, 56, 45,
794 /* 15 */ 36, 29, 23, 18, 15,
798 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
800 * In cases where the weight does not change often, we can use the
801 * precalculated inverse to speed up arithmetics by turning divisions
802 * into multiplications:
804 static const u32 prio_to_wmult
[40] = {
805 /* -20 */ 48388, 59856, 76040, 92818, 118348,
806 /* -15 */ 147320, 184698, 229616, 287308, 360437,
807 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
808 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
809 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
810 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
811 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
812 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
815 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
818 * runqueue iterator, to support SMP load-balancing between different
819 * scheduling classes, without having to expose their internal data
820 * structures to the load-balancing proper:
824 struct task_struct
*(*start
)(void *);
825 struct task_struct
*(*next
)(void *);
828 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
829 unsigned long max_nr_move
, unsigned long max_load_move
,
830 struct sched_domain
*sd
, enum cpu_idle_type idle
,
831 int *all_pinned
, unsigned long *load_moved
,
832 int *this_best_prio
, struct rq_iterator
*iterator
);
834 #include "sched_stats.h"
835 #include "sched_idletask.c"
836 #include "sched_fair.c"
837 #include "sched_rt.c"
838 #ifdef CONFIG_SCHED_DEBUG
839 # include "sched_debug.c"
842 #define sched_class_highest (&rt_sched_class)
845 * Update delta_exec, delta_fair fields for rq.
847 * delta_fair clock advances at a rate inversely proportional to
848 * total load (rq->load.weight) on the runqueue, while
849 * delta_exec advances at the same rate as wall-clock (provided
852 * delta_exec / delta_fair is a measure of the (smoothened) load on this
853 * runqueue over any given interval. This (smoothened) load is used
854 * during load balance.
856 * This function is called /before/ updating rq->load
857 * and when switching tasks.
859 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
861 update_load_add(&rq
->load
, p
->se
.load
.weight
);
864 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
866 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
869 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
875 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
881 static void set_load_weight(struct task_struct
*p
)
883 if (task_has_rt_policy(p
)) {
884 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
885 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
890 * SCHED_IDLE tasks get minimal weight:
892 if (p
->policy
== SCHED_IDLE
) {
893 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
894 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
898 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
899 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
902 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
904 sched_info_queued(p
);
905 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
909 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
911 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
916 * __normal_prio - return the priority that is based on the static prio
918 static inline int __normal_prio(struct task_struct
*p
)
920 return p
->static_prio
;
924 * Calculate the expected normal priority: i.e. priority
925 * without taking RT-inheritance into account. Might be
926 * boosted by interactivity modifiers. Changes upon fork,
927 * setprio syscalls, and whenever the interactivity
928 * estimator recalculates.
930 static inline int normal_prio(struct task_struct
*p
)
934 if (task_has_rt_policy(p
))
935 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
937 prio
= __normal_prio(p
);
942 * Calculate the current priority, i.e. the priority
943 * taken into account by the scheduler. This value might
944 * be boosted by RT tasks, or might be boosted by
945 * interactivity modifiers. Will be RT if the task got
946 * RT-boosted. If not then it returns p->normal_prio.
948 static int effective_prio(struct task_struct
*p
)
950 p
->normal_prio
= normal_prio(p
);
952 * If we are RT tasks or we were boosted to RT priority,
953 * keep the priority unchanged. Otherwise, update priority
954 * to the normal priority:
956 if (!rt_prio(p
->prio
))
957 return p
->normal_prio
;
962 * activate_task - move a task to the runqueue.
964 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
966 if (p
->state
== TASK_UNINTERRUPTIBLE
)
967 rq
->nr_uninterruptible
--;
969 enqueue_task(rq
, p
, wakeup
);
970 inc_nr_running(p
, rq
);
974 * deactivate_task - remove a task from the runqueue.
976 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
978 if (p
->state
== TASK_UNINTERRUPTIBLE
)
979 rq
->nr_uninterruptible
++;
981 dequeue_task(rq
, p
, sleep
);
982 dec_nr_running(p
, rq
);
986 * task_curr - is this task currently executing on a CPU?
987 * @p: the task in question.
989 inline int task_curr(const struct task_struct
*p
)
991 return cpu_curr(task_cpu(p
)) == p
;
994 /* Used instead of source_load when we know the type == 0 */
995 unsigned long weighted_cpuload(const int cpu
)
997 return cpu_rq(cpu
)->load
.weight
;
1000 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1003 task_thread_info(p
)->cpu
= cpu
;
1010 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1012 int old_cpu
= task_cpu(p
);
1013 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1014 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1015 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1018 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1020 #ifdef CONFIG_SCHEDSTATS
1021 if (p
->se
.wait_start
)
1022 p
->se
.wait_start
-= clock_offset
;
1023 if (p
->se
.sleep_start
)
1024 p
->se
.sleep_start
-= clock_offset
;
1025 if (p
->se
.block_start
)
1026 p
->se
.block_start
-= clock_offset
;
1028 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1029 new_cfsrq
->min_vruntime
;
1031 __set_task_cpu(p
, new_cpu
);
1034 struct migration_req
{
1035 struct list_head list
;
1037 struct task_struct
*task
;
1040 struct completion done
;
1044 * The task's runqueue lock must be held.
1045 * Returns true if you have to wait for migration thread.
1048 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1050 struct rq
*rq
= task_rq(p
);
1053 * If the task is not on a runqueue (and not running), then
1054 * it is sufficient to simply update the task's cpu field.
1056 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1057 set_task_cpu(p
, dest_cpu
);
1061 init_completion(&req
->done
);
1063 req
->dest_cpu
= dest_cpu
;
1064 list_add(&req
->list
, &rq
->migration_queue
);
1070 * wait_task_inactive - wait for a thread to unschedule.
1072 * The caller must ensure that the task *will* unschedule sometime soon,
1073 * else this function might spin for a *long* time. This function can't
1074 * be called with interrupts off, or it may introduce deadlock with
1075 * smp_call_function() if an IPI is sent by the same process we are
1076 * waiting to become inactive.
1078 void wait_task_inactive(struct task_struct
*p
)
1080 unsigned long flags
;
1086 * We do the initial early heuristics without holding
1087 * any task-queue locks at all. We'll only try to get
1088 * the runqueue lock when things look like they will
1094 * If the task is actively running on another CPU
1095 * still, just relax and busy-wait without holding
1098 * NOTE! Since we don't hold any locks, it's not
1099 * even sure that "rq" stays as the right runqueue!
1100 * But we don't care, since "task_running()" will
1101 * return false if the runqueue has changed and p
1102 * is actually now running somewhere else!
1104 while (task_running(rq
, p
))
1108 * Ok, time to look more closely! We need the rq
1109 * lock now, to be *sure*. If we're wrong, we'll
1110 * just go back and repeat.
1112 rq
= task_rq_lock(p
, &flags
);
1113 running
= task_running(rq
, p
);
1114 on_rq
= p
->se
.on_rq
;
1115 task_rq_unlock(rq
, &flags
);
1118 * Was it really running after all now that we
1119 * checked with the proper locks actually held?
1121 * Oops. Go back and try again..
1123 if (unlikely(running
)) {
1129 * It's not enough that it's not actively running,
1130 * it must be off the runqueue _entirely_, and not
1133 * So if it wa still runnable (but just not actively
1134 * running right now), it's preempted, and we should
1135 * yield - it could be a while.
1137 if (unlikely(on_rq
)) {
1138 schedule_timeout_uninterruptible(1);
1143 * Ahh, all good. It wasn't running, and it wasn't
1144 * runnable, which means that it will never become
1145 * running in the future either. We're all done!
1150 * kick_process - kick a running thread to enter/exit the kernel
1151 * @p: the to-be-kicked thread
1153 * Cause a process which is running on another CPU to enter
1154 * kernel-mode, without any delay. (to get signals handled.)
1156 * NOTE: this function doesnt have to take the runqueue lock,
1157 * because all it wants to ensure is that the remote task enters
1158 * the kernel. If the IPI races and the task has been migrated
1159 * to another CPU then no harm is done and the purpose has been
1162 void kick_process(struct task_struct
*p
)
1168 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1169 smp_send_reschedule(cpu
);
1174 * Return a low guess at the load of a migration-source cpu weighted
1175 * according to the scheduling class and "nice" value.
1177 * We want to under-estimate the load of migration sources, to
1178 * balance conservatively.
1180 static unsigned long source_load(int cpu
, int type
)
1182 struct rq
*rq
= cpu_rq(cpu
);
1183 unsigned long total
= weighted_cpuload(cpu
);
1188 return min(rq
->cpu_load
[type
-1], total
);
1192 * Return a high guess at the load of a migration-target cpu weighted
1193 * according to the scheduling class and "nice" value.
1195 static unsigned long target_load(int cpu
, int type
)
1197 struct rq
*rq
= cpu_rq(cpu
);
1198 unsigned long total
= weighted_cpuload(cpu
);
1203 return max(rq
->cpu_load
[type
-1], total
);
1207 * Return the average load per task on the cpu's run queue
1209 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1211 struct rq
*rq
= cpu_rq(cpu
);
1212 unsigned long total
= weighted_cpuload(cpu
);
1213 unsigned long n
= rq
->nr_running
;
1215 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1219 * find_idlest_group finds and returns the least busy CPU group within the
1222 static struct sched_group
*
1223 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1225 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1226 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1227 int load_idx
= sd
->forkexec_idx
;
1228 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1231 unsigned long load
, avg_load
;
1235 /* Skip over this group if it has no CPUs allowed */
1236 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1239 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1241 /* Tally up the load of all CPUs in the group */
1244 for_each_cpu_mask(i
, group
->cpumask
) {
1245 /* Bias balancing toward cpus of our domain */
1247 load
= source_load(i
, load_idx
);
1249 load
= target_load(i
, load_idx
);
1254 /* Adjust by relative CPU power of the group */
1255 avg_load
= sg_div_cpu_power(group
,
1256 avg_load
* SCHED_LOAD_SCALE
);
1259 this_load
= avg_load
;
1261 } else if (avg_load
< min_load
) {
1262 min_load
= avg_load
;
1266 group
= group
->next
;
1267 } while (group
!= sd
->groups
);
1269 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1275 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1278 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1281 unsigned long load
, min_load
= ULONG_MAX
;
1285 /* Traverse only the allowed CPUs */
1286 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1288 for_each_cpu_mask(i
, tmp
) {
1289 load
= weighted_cpuload(i
);
1291 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1301 * sched_balance_self: balance the current task (running on cpu) in domains
1302 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1305 * Balance, ie. select the least loaded group.
1307 * Returns the target CPU number, or the same CPU if no balancing is needed.
1309 * preempt must be disabled.
1311 static int sched_balance_self(int cpu
, int flag
)
1313 struct task_struct
*t
= current
;
1314 struct sched_domain
*tmp
, *sd
= NULL
;
1316 for_each_domain(cpu
, tmp
) {
1318 * If power savings logic is enabled for a domain, stop there.
1320 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1322 if (tmp
->flags
& flag
)
1328 struct sched_group
*group
;
1329 int new_cpu
, weight
;
1331 if (!(sd
->flags
& flag
)) {
1337 group
= find_idlest_group(sd
, t
, cpu
);
1343 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1344 if (new_cpu
== -1 || new_cpu
== cpu
) {
1345 /* Now try balancing at a lower domain level of cpu */
1350 /* Now try balancing at a lower domain level of new_cpu */
1353 weight
= cpus_weight(span
);
1354 for_each_domain(cpu
, tmp
) {
1355 if (weight
<= cpus_weight(tmp
->span
))
1357 if (tmp
->flags
& flag
)
1360 /* while loop will break here if sd == NULL */
1366 #endif /* CONFIG_SMP */
1369 * wake_idle() will wake a task on an idle cpu if task->cpu is
1370 * not idle and an idle cpu is available. The span of cpus to
1371 * search starts with cpus closest then further out as needed,
1372 * so we always favor a closer, idle cpu.
1374 * Returns the CPU we should wake onto.
1376 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1377 static int wake_idle(int cpu
, struct task_struct
*p
)
1380 struct sched_domain
*sd
;
1384 * If it is idle, then it is the best cpu to run this task.
1386 * This cpu is also the best, if it has more than one task already.
1387 * Siblings must be also busy(in most cases) as they didn't already
1388 * pickup the extra load from this cpu and hence we need not check
1389 * sibling runqueue info. This will avoid the checks and cache miss
1390 * penalities associated with that.
1392 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1395 for_each_domain(cpu
, sd
) {
1396 if (sd
->flags
& SD_WAKE_IDLE
) {
1397 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1398 for_each_cpu_mask(i
, tmp
) {
1409 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1416 * try_to_wake_up - wake up a thread
1417 * @p: the to-be-woken-up thread
1418 * @state: the mask of task states that can be woken
1419 * @sync: do a synchronous wakeup?
1421 * Put it on the run-queue if it's not already there. The "current"
1422 * thread is always on the run-queue (except when the actual
1423 * re-schedule is in progress), and as such you're allowed to do
1424 * the simpler "current->state = TASK_RUNNING" to mark yourself
1425 * runnable without the overhead of this.
1427 * returns failure only if the task is already active.
1429 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1431 int cpu
, this_cpu
, success
= 0;
1432 unsigned long flags
;
1436 struct sched_domain
*sd
, *this_sd
= NULL
;
1437 unsigned long load
, this_load
;
1441 rq
= task_rq_lock(p
, &flags
);
1442 old_state
= p
->state
;
1443 if (!(old_state
& state
))
1450 this_cpu
= smp_processor_id();
1453 if (unlikely(task_running(rq
, p
)))
1458 schedstat_inc(rq
, ttwu_count
);
1459 if (cpu
== this_cpu
) {
1460 schedstat_inc(rq
, ttwu_local
);
1464 for_each_domain(this_cpu
, sd
) {
1465 if (cpu_isset(cpu
, sd
->span
)) {
1466 schedstat_inc(sd
, ttwu_wake_remote
);
1472 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1476 * Check for affine wakeup and passive balancing possibilities.
1479 int idx
= this_sd
->wake_idx
;
1480 unsigned int imbalance
;
1482 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1484 load
= source_load(cpu
, idx
);
1485 this_load
= target_load(this_cpu
, idx
);
1487 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1489 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1490 unsigned long tl
= this_load
;
1491 unsigned long tl_per_task
;
1493 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1496 * If sync wakeup then subtract the (maximum possible)
1497 * effect of the currently running task from the load
1498 * of the current CPU:
1501 tl
-= current
->se
.load
.weight
;
1504 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1505 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1507 * This domain has SD_WAKE_AFFINE and
1508 * p is cache cold in this domain, and
1509 * there is no bad imbalance.
1511 schedstat_inc(this_sd
, ttwu_move_affine
);
1517 * Start passive balancing when half the imbalance_pct
1520 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1521 if (imbalance
*this_load
<= 100*load
) {
1522 schedstat_inc(this_sd
, ttwu_move_balance
);
1528 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1530 new_cpu
= wake_idle(new_cpu
, p
);
1531 if (new_cpu
!= cpu
) {
1532 set_task_cpu(p
, new_cpu
);
1533 task_rq_unlock(rq
, &flags
);
1534 /* might preempt at this point */
1535 rq
= task_rq_lock(p
, &flags
);
1536 old_state
= p
->state
;
1537 if (!(old_state
& state
))
1542 this_cpu
= smp_processor_id();
1547 #endif /* CONFIG_SMP */
1548 update_rq_clock(rq
);
1549 activate_task(rq
, p
, 1);
1551 * Sync wakeups (i.e. those types of wakeups where the waker
1552 * has indicated that it will leave the CPU in short order)
1553 * don't trigger a preemption, if the woken up task will run on
1554 * this cpu. (in this case the 'I will reschedule' promise of
1555 * the waker guarantees that the freshly woken up task is going
1556 * to be considered on this CPU.)
1558 if (!sync
|| cpu
!= this_cpu
)
1559 check_preempt_curr(rq
, p
);
1563 p
->state
= TASK_RUNNING
;
1565 task_rq_unlock(rq
, &flags
);
1570 int fastcall
wake_up_process(struct task_struct
*p
)
1572 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1573 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1575 EXPORT_SYMBOL(wake_up_process
);
1577 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1579 return try_to_wake_up(p
, state
, 0);
1583 * Perform scheduler related setup for a newly forked process p.
1584 * p is forked by current.
1586 * __sched_fork() is basic setup used by init_idle() too:
1588 static void __sched_fork(struct task_struct
*p
)
1590 p
->se
.exec_start
= 0;
1591 p
->se
.sum_exec_runtime
= 0;
1592 p
->se
.prev_sum_exec_runtime
= 0;
1594 #ifdef CONFIG_SCHEDSTATS
1595 p
->se
.wait_start
= 0;
1596 p
->se
.sum_sleep_runtime
= 0;
1597 p
->se
.sleep_start
= 0;
1598 p
->se
.block_start
= 0;
1599 p
->se
.sleep_max
= 0;
1600 p
->se
.block_max
= 0;
1602 p
->se
.slice_max
= 0;
1606 INIT_LIST_HEAD(&p
->run_list
);
1609 #ifdef CONFIG_PREEMPT_NOTIFIERS
1610 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1614 * We mark the process as running here, but have not actually
1615 * inserted it onto the runqueue yet. This guarantees that
1616 * nobody will actually run it, and a signal or other external
1617 * event cannot wake it up and insert it on the runqueue either.
1619 p
->state
= TASK_RUNNING
;
1623 * fork()/clone()-time setup:
1625 void sched_fork(struct task_struct
*p
, int clone_flags
)
1627 int cpu
= get_cpu();
1632 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1634 set_task_cpu(p
, cpu
);
1637 * Make sure we do not leak PI boosting priority to the child:
1639 p
->prio
= current
->normal_prio
;
1640 if (!rt_prio(p
->prio
))
1641 p
->sched_class
= &fair_sched_class
;
1643 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1644 if (likely(sched_info_on()))
1645 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1647 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1650 #ifdef CONFIG_PREEMPT
1651 /* Want to start with kernel preemption disabled. */
1652 task_thread_info(p
)->preempt_count
= 1;
1658 * wake_up_new_task - wake up a newly created task for the first time.
1660 * This function will do some initial scheduler statistics housekeeping
1661 * that must be done for every newly created context, then puts the task
1662 * on the runqueue and wakes it.
1664 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1666 unsigned long flags
;
1669 rq
= task_rq_lock(p
, &flags
);
1670 BUG_ON(p
->state
!= TASK_RUNNING
);
1671 update_rq_clock(rq
);
1673 p
->prio
= effective_prio(p
);
1675 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
|| !rq
->cfs
.curr
) {
1676 activate_task(rq
, p
, 0);
1679 * Let the scheduling class do new task startup
1680 * management (if any):
1682 p
->sched_class
->task_new(rq
, p
);
1683 inc_nr_running(p
, rq
);
1685 check_preempt_curr(rq
, p
);
1686 task_rq_unlock(rq
, &flags
);
1689 #ifdef CONFIG_PREEMPT_NOTIFIERS
1692 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1693 * @notifier: notifier struct to register
1695 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1697 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1699 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1702 * preempt_notifier_unregister - no longer interested in preemption notifications
1703 * @notifier: notifier struct to unregister
1705 * This is safe to call from within a preemption notifier.
1707 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1709 hlist_del(¬ifier
->link
);
1711 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1713 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1715 struct preempt_notifier
*notifier
;
1716 struct hlist_node
*node
;
1718 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1719 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1723 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1724 struct task_struct
*next
)
1726 struct preempt_notifier
*notifier
;
1727 struct hlist_node
*node
;
1729 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1730 notifier
->ops
->sched_out(notifier
, next
);
1735 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1740 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1741 struct task_struct
*next
)
1748 * prepare_task_switch - prepare to switch tasks
1749 * @rq: the runqueue preparing to switch
1750 * @prev: the current task that is being switched out
1751 * @next: the task we are going to switch to.
1753 * This is called with the rq lock held and interrupts off. It must
1754 * be paired with a subsequent finish_task_switch after the context
1757 * prepare_task_switch sets up locking and calls architecture specific
1761 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1762 struct task_struct
*next
)
1764 fire_sched_out_preempt_notifiers(prev
, next
);
1765 prepare_lock_switch(rq
, next
);
1766 prepare_arch_switch(next
);
1770 * finish_task_switch - clean up after a task-switch
1771 * @rq: runqueue associated with task-switch
1772 * @prev: the thread we just switched away from.
1774 * finish_task_switch must be called after the context switch, paired
1775 * with a prepare_task_switch call before the context switch.
1776 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1777 * and do any other architecture-specific cleanup actions.
1779 * Note that we may have delayed dropping an mm in context_switch(). If
1780 * so, we finish that here outside of the runqueue lock. (Doing it
1781 * with the lock held can cause deadlocks; see schedule() for
1784 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1785 __releases(rq
->lock
)
1787 struct mm_struct
*mm
= rq
->prev_mm
;
1793 * A task struct has one reference for the use as "current".
1794 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1795 * schedule one last time. The schedule call will never return, and
1796 * the scheduled task must drop that reference.
1797 * The test for TASK_DEAD must occur while the runqueue locks are
1798 * still held, otherwise prev could be scheduled on another cpu, die
1799 * there before we look at prev->state, and then the reference would
1801 * Manfred Spraul <manfred@colorfullife.com>
1803 prev_state
= prev
->state
;
1804 finish_arch_switch(prev
);
1805 finish_lock_switch(rq
, prev
);
1806 fire_sched_in_preempt_notifiers(current
);
1809 if (unlikely(prev_state
== TASK_DEAD
)) {
1811 * Remove function-return probe instances associated with this
1812 * task and put them back on the free list.
1814 kprobe_flush_task(prev
);
1815 put_task_struct(prev
);
1820 * schedule_tail - first thing a freshly forked thread must call.
1821 * @prev: the thread we just switched away from.
1823 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1824 __releases(rq
->lock
)
1826 struct rq
*rq
= this_rq();
1828 finish_task_switch(rq
, prev
);
1829 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1830 /* In this case, finish_task_switch does not reenable preemption */
1833 if (current
->set_child_tid
)
1834 put_user(current
->pid
, current
->set_child_tid
);
1838 * context_switch - switch to the new MM and the new
1839 * thread's register state.
1842 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1843 struct task_struct
*next
)
1845 struct mm_struct
*mm
, *oldmm
;
1847 prepare_task_switch(rq
, prev
, next
);
1849 oldmm
= prev
->active_mm
;
1851 * For paravirt, this is coupled with an exit in switch_to to
1852 * combine the page table reload and the switch backend into
1855 arch_enter_lazy_cpu_mode();
1857 if (unlikely(!mm
)) {
1858 next
->active_mm
= oldmm
;
1859 atomic_inc(&oldmm
->mm_count
);
1860 enter_lazy_tlb(oldmm
, next
);
1862 switch_mm(oldmm
, mm
, next
);
1864 if (unlikely(!prev
->mm
)) {
1865 prev
->active_mm
= NULL
;
1866 rq
->prev_mm
= oldmm
;
1869 * Since the runqueue lock will be released by the next
1870 * task (which is an invalid locking op but in the case
1871 * of the scheduler it's an obvious special-case), so we
1872 * do an early lockdep release here:
1874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1875 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1878 /* Here we just switch the register state and the stack. */
1879 switch_to(prev
, next
, prev
);
1883 * this_rq must be evaluated again because prev may have moved
1884 * CPUs since it called schedule(), thus the 'rq' on its stack
1885 * frame will be invalid.
1887 finish_task_switch(this_rq(), prev
);
1891 * nr_running, nr_uninterruptible and nr_context_switches:
1893 * externally visible scheduler statistics: current number of runnable
1894 * threads, current number of uninterruptible-sleeping threads, total
1895 * number of context switches performed since bootup.
1897 unsigned long nr_running(void)
1899 unsigned long i
, sum
= 0;
1901 for_each_online_cpu(i
)
1902 sum
+= cpu_rq(i
)->nr_running
;
1907 unsigned long nr_uninterruptible(void)
1909 unsigned long i
, sum
= 0;
1911 for_each_possible_cpu(i
)
1912 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1915 * Since we read the counters lockless, it might be slightly
1916 * inaccurate. Do not allow it to go below zero though:
1918 if (unlikely((long)sum
< 0))
1924 unsigned long long nr_context_switches(void)
1927 unsigned long long sum
= 0;
1929 for_each_possible_cpu(i
)
1930 sum
+= cpu_rq(i
)->nr_switches
;
1935 unsigned long nr_iowait(void)
1937 unsigned long i
, sum
= 0;
1939 for_each_possible_cpu(i
)
1940 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1945 unsigned long nr_active(void)
1947 unsigned long i
, running
= 0, uninterruptible
= 0;
1949 for_each_online_cpu(i
) {
1950 running
+= cpu_rq(i
)->nr_running
;
1951 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1954 if (unlikely((long)uninterruptible
< 0))
1955 uninterruptible
= 0;
1957 return running
+ uninterruptible
;
1961 * Update rq->cpu_load[] statistics. This function is usually called every
1962 * scheduler tick (TICK_NSEC).
1964 static void update_cpu_load(struct rq
*this_rq
)
1966 unsigned long this_load
= this_rq
->load
.weight
;
1969 this_rq
->nr_load_updates
++;
1971 /* Update our load: */
1972 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
1973 unsigned long old_load
, new_load
;
1975 /* scale is effectively 1 << i now, and >> i divides by scale */
1977 old_load
= this_rq
->cpu_load
[i
];
1978 new_load
= this_load
;
1980 * Round up the averaging division if load is increasing. This
1981 * prevents us from getting stuck on 9 if the load is 10, for
1984 if (new_load
> old_load
)
1985 new_load
+= scale
-1;
1986 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
1993 * double_rq_lock - safely lock two runqueues
1995 * Note this does not disable interrupts like task_rq_lock,
1996 * you need to do so manually before calling.
1998 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1999 __acquires(rq1
->lock
)
2000 __acquires(rq2
->lock
)
2002 BUG_ON(!irqs_disabled());
2004 spin_lock(&rq1
->lock
);
2005 __acquire(rq2
->lock
); /* Fake it out ;) */
2008 spin_lock(&rq1
->lock
);
2009 spin_lock(&rq2
->lock
);
2011 spin_lock(&rq2
->lock
);
2012 spin_lock(&rq1
->lock
);
2015 update_rq_clock(rq1
);
2016 update_rq_clock(rq2
);
2020 * double_rq_unlock - safely unlock two runqueues
2022 * Note this does not restore interrupts like task_rq_unlock,
2023 * you need to do so manually after calling.
2025 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2026 __releases(rq1
->lock
)
2027 __releases(rq2
->lock
)
2029 spin_unlock(&rq1
->lock
);
2031 spin_unlock(&rq2
->lock
);
2033 __release(rq2
->lock
);
2037 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2039 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2040 __releases(this_rq
->lock
)
2041 __acquires(busiest
->lock
)
2042 __acquires(this_rq
->lock
)
2044 if (unlikely(!irqs_disabled())) {
2045 /* printk() doesn't work good under rq->lock */
2046 spin_unlock(&this_rq
->lock
);
2049 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2050 if (busiest
< this_rq
) {
2051 spin_unlock(&this_rq
->lock
);
2052 spin_lock(&busiest
->lock
);
2053 spin_lock(&this_rq
->lock
);
2055 spin_lock(&busiest
->lock
);
2060 * If dest_cpu is allowed for this process, migrate the task to it.
2061 * This is accomplished by forcing the cpu_allowed mask to only
2062 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2063 * the cpu_allowed mask is restored.
2065 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2067 struct migration_req req
;
2068 unsigned long flags
;
2071 rq
= task_rq_lock(p
, &flags
);
2072 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2073 || unlikely(cpu_is_offline(dest_cpu
)))
2076 /* force the process onto the specified CPU */
2077 if (migrate_task(p
, dest_cpu
, &req
)) {
2078 /* Need to wait for migration thread (might exit: take ref). */
2079 struct task_struct
*mt
= rq
->migration_thread
;
2081 get_task_struct(mt
);
2082 task_rq_unlock(rq
, &flags
);
2083 wake_up_process(mt
);
2084 put_task_struct(mt
);
2085 wait_for_completion(&req
.done
);
2090 task_rq_unlock(rq
, &flags
);
2094 * sched_exec - execve() is a valuable balancing opportunity, because at
2095 * this point the task has the smallest effective memory and cache footprint.
2097 void sched_exec(void)
2099 int new_cpu
, this_cpu
= get_cpu();
2100 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2102 if (new_cpu
!= this_cpu
)
2103 sched_migrate_task(current
, new_cpu
);
2107 * pull_task - move a task from a remote runqueue to the local runqueue.
2108 * Both runqueues must be locked.
2110 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2111 struct rq
*this_rq
, int this_cpu
)
2113 deactivate_task(src_rq
, p
, 0);
2114 set_task_cpu(p
, this_cpu
);
2115 activate_task(this_rq
, p
, 0);
2117 * Note that idle threads have a prio of MAX_PRIO, for this test
2118 * to be always true for them.
2120 check_preempt_curr(this_rq
, p
);
2124 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2127 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2128 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2132 * We do not migrate tasks that are:
2133 * 1) running (obviously), or
2134 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2135 * 3) are cache-hot on their current CPU.
2137 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2141 if (task_running(rq
, p
))
2147 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2148 unsigned long max_nr_move
, unsigned long max_load_move
,
2149 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2150 int *all_pinned
, unsigned long *load_moved
,
2151 int *this_best_prio
, struct rq_iterator
*iterator
)
2153 int pulled
= 0, pinned
= 0, skip_for_load
;
2154 struct task_struct
*p
;
2155 long rem_load_move
= max_load_move
;
2157 if (max_nr_move
== 0 || max_load_move
== 0)
2163 * Start the load-balancing iterator:
2165 p
= iterator
->start(iterator
->arg
);
2170 * To help distribute high priority tasks accross CPUs we don't
2171 * skip a task if it will be the highest priority task (i.e. smallest
2172 * prio value) on its new queue regardless of its load weight
2174 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2175 SCHED_LOAD_SCALE_FUZZ
;
2176 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2177 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2178 p
= iterator
->next(iterator
->arg
);
2182 pull_task(busiest
, p
, this_rq
, this_cpu
);
2184 rem_load_move
-= p
->se
.load
.weight
;
2187 * We only want to steal up to the prescribed number of tasks
2188 * and the prescribed amount of weighted load.
2190 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2191 if (p
->prio
< *this_best_prio
)
2192 *this_best_prio
= p
->prio
;
2193 p
= iterator
->next(iterator
->arg
);
2198 * Right now, this is the only place pull_task() is called,
2199 * so we can safely collect pull_task() stats here rather than
2200 * inside pull_task().
2202 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2205 *all_pinned
= pinned
;
2206 *load_moved
= max_load_move
- rem_load_move
;
2211 * move_tasks tries to move up to max_load_move weighted load from busiest to
2212 * this_rq, as part of a balancing operation within domain "sd".
2213 * Returns 1 if successful and 0 otherwise.
2215 * Called with both runqueues locked.
2217 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2218 unsigned long max_load_move
,
2219 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2222 const struct sched_class
*class = sched_class_highest
;
2223 unsigned long total_load_moved
= 0;
2224 int this_best_prio
= this_rq
->curr
->prio
;
2228 class->load_balance(this_rq
, this_cpu
, busiest
,
2229 ULONG_MAX
, max_load_move
- total_load_moved
,
2230 sd
, idle
, all_pinned
, &this_best_prio
);
2231 class = class->next
;
2232 } while (class && max_load_move
> total_load_moved
);
2234 return total_load_moved
> 0;
2238 * move_one_task tries to move exactly one task from busiest to this_rq, as
2239 * part of active balancing operations within "domain".
2240 * Returns 1 if successful and 0 otherwise.
2242 * Called with both runqueues locked.
2244 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2245 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2247 const struct sched_class
*class;
2248 int this_best_prio
= MAX_PRIO
;
2250 for (class = sched_class_highest
; class; class = class->next
)
2251 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2252 1, ULONG_MAX
, sd
, idle
, NULL
,
2260 * find_busiest_group finds and returns the busiest CPU group within the
2261 * domain. It calculates and returns the amount of weighted load which
2262 * should be moved to restore balance via the imbalance parameter.
2264 static struct sched_group
*
2265 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2266 unsigned long *imbalance
, enum cpu_idle_type idle
,
2267 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2269 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2270 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2271 unsigned long max_pull
;
2272 unsigned long busiest_load_per_task
, busiest_nr_running
;
2273 unsigned long this_load_per_task
, this_nr_running
;
2275 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2276 int power_savings_balance
= 1;
2277 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2278 unsigned long min_nr_running
= ULONG_MAX
;
2279 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2282 max_load
= this_load
= total_load
= total_pwr
= 0;
2283 busiest_load_per_task
= busiest_nr_running
= 0;
2284 this_load_per_task
= this_nr_running
= 0;
2285 if (idle
== CPU_NOT_IDLE
)
2286 load_idx
= sd
->busy_idx
;
2287 else if (idle
== CPU_NEWLY_IDLE
)
2288 load_idx
= sd
->newidle_idx
;
2290 load_idx
= sd
->idle_idx
;
2293 unsigned long load
, group_capacity
;
2296 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2297 unsigned long sum_nr_running
, sum_weighted_load
;
2299 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2302 balance_cpu
= first_cpu(group
->cpumask
);
2304 /* Tally up the load of all CPUs in the group */
2305 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2307 for_each_cpu_mask(i
, group
->cpumask
) {
2310 if (!cpu_isset(i
, *cpus
))
2315 if (*sd_idle
&& rq
->nr_running
)
2318 /* Bias balancing toward cpus of our domain */
2320 if (idle_cpu(i
) && !first_idle_cpu
) {
2325 load
= target_load(i
, load_idx
);
2327 load
= source_load(i
, load_idx
);
2330 sum_nr_running
+= rq
->nr_running
;
2331 sum_weighted_load
+= weighted_cpuload(i
);
2335 * First idle cpu or the first cpu(busiest) in this sched group
2336 * is eligible for doing load balancing at this and above
2337 * domains. In the newly idle case, we will allow all the cpu's
2338 * to do the newly idle load balance.
2340 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2341 balance_cpu
!= this_cpu
&& balance
) {
2346 total_load
+= avg_load
;
2347 total_pwr
+= group
->__cpu_power
;
2349 /* Adjust by relative CPU power of the group */
2350 avg_load
= sg_div_cpu_power(group
,
2351 avg_load
* SCHED_LOAD_SCALE
);
2353 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2356 this_load
= avg_load
;
2358 this_nr_running
= sum_nr_running
;
2359 this_load_per_task
= sum_weighted_load
;
2360 } else if (avg_load
> max_load
&&
2361 sum_nr_running
> group_capacity
) {
2362 max_load
= avg_load
;
2364 busiest_nr_running
= sum_nr_running
;
2365 busiest_load_per_task
= sum_weighted_load
;
2368 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2370 * Busy processors will not participate in power savings
2373 if (idle
== CPU_NOT_IDLE
||
2374 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2378 * If the local group is idle or completely loaded
2379 * no need to do power savings balance at this domain
2381 if (local_group
&& (this_nr_running
>= group_capacity
||
2383 power_savings_balance
= 0;
2386 * If a group is already running at full capacity or idle,
2387 * don't include that group in power savings calculations
2389 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2394 * Calculate the group which has the least non-idle load.
2395 * This is the group from where we need to pick up the load
2398 if ((sum_nr_running
< min_nr_running
) ||
2399 (sum_nr_running
== min_nr_running
&&
2400 first_cpu(group
->cpumask
) <
2401 first_cpu(group_min
->cpumask
))) {
2403 min_nr_running
= sum_nr_running
;
2404 min_load_per_task
= sum_weighted_load
/
2409 * Calculate the group which is almost near its
2410 * capacity but still has some space to pick up some load
2411 * from other group and save more power
2413 if (sum_nr_running
<= group_capacity
- 1) {
2414 if (sum_nr_running
> leader_nr_running
||
2415 (sum_nr_running
== leader_nr_running
&&
2416 first_cpu(group
->cpumask
) >
2417 first_cpu(group_leader
->cpumask
))) {
2418 group_leader
= group
;
2419 leader_nr_running
= sum_nr_running
;
2424 group
= group
->next
;
2425 } while (group
!= sd
->groups
);
2427 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2430 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2432 if (this_load
>= avg_load
||
2433 100*max_load
<= sd
->imbalance_pct
*this_load
)
2436 busiest_load_per_task
/= busiest_nr_running
;
2438 * We're trying to get all the cpus to the average_load, so we don't
2439 * want to push ourselves above the average load, nor do we wish to
2440 * reduce the max loaded cpu below the average load, as either of these
2441 * actions would just result in more rebalancing later, and ping-pong
2442 * tasks around. Thus we look for the minimum possible imbalance.
2443 * Negative imbalances (*we* are more loaded than anyone else) will
2444 * be counted as no imbalance for these purposes -- we can't fix that
2445 * by pulling tasks to us. Be careful of negative numbers as they'll
2446 * appear as very large values with unsigned longs.
2448 if (max_load
<= busiest_load_per_task
)
2452 * In the presence of smp nice balancing, certain scenarios can have
2453 * max load less than avg load(as we skip the groups at or below
2454 * its cpu_power, while calculating max_load..)
2456 if (max_load
< avg_load
) {
2458 goto small_imbalance
;
2461 /* Don't want to pull so many tasks that a group would go idle */
2462 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2464 /* How much load to actually move to equalise the imbalance */
2465 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2466 (avg_load
- this_load
) * this->__cpu_power
)
2470 * if *imbalance is less than the average load per runnable task
2471 * there is no gaurantee that any tasks will be moved so we'll have
2472 * a think about bumping its value to force at least one task to be
2475 if (*imbalance
< busiest_load_per_task
) {
2476 unsigned long tmp
, pwr_now
, pwr_move
;
2480 pwr_move
= pwr_now
= 0;
2482 if (this_nr_running
) {
2483 this_load_per_task
/= this_nr_running
;
2484 if (busiest_load_per_task
> this_load_per_task
)
2487 this_load_per_task
= SCHED_LOAD_SCALE
;
2489 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2490 busiest_load_per_task
* imbn
) {
2491 *imbalance
= busiest_load_per_task
;
2496 * OK, we don't have enough imbalance to justify moving tasks,
2497 * however we may be able to increase total CPU power used by
2501 pwr_now
+= busiest
->__cpu_power
*
2502 min(busiest_load_per_task
, max_load
);
2503 pwr_now
+= this->__cpu_power
*
2504 min(this_load_per_task
, this_load
);
2505 pwr_now
/= SCHED_LOAD_SCALE
;
2507 /* Amount of load we'd subtract */
2508 tmp
= sg_div_cpu_power(busiest
,
2509 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2511 pwr_move
+= busiest
->__cpu_power
*
2512 min(busiest_load_per_task
, max_load
- tmp
);
2514 /* Amount of load we'd add */
2515 if (max_load
* busiest
->__cpu_power
<
2516 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2517 tmp
= sg_div_cpu_power(this,
2518 max_load
* busiest
->__cpu_power
);
2520 tmp
= sg_div_cpu_power(this,
2521 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2522 pwr_move
+= this->__cpu_power
*
2523 min(this_load_per_task
, this_load
+ tmp
);
2524 pwr_move
/= SCHED_LOAD_SCALE
;
2526 /* Move if we gain throughput */
2527 if (pwr_move
> pwr_now
)
2528 *imbalance
= busiest_load_per_task
;
2534 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2535 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2538 if (this == group_leader
&& group_leader
!= group_min
) {
2539 *imbalance
= min_load_per_task
;
2549 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2552 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2553 unsigned long imbalance
, cpumask_t
*cpus
)
2555 struct rq
*busiest
= NULL
, *rq
;
2556 unsigned long max_load
= 0;
2559 for_each_cpu_mask(i
, group
->cpumask
) {
2562 if (!cpu_isset(i
, *cpus
))
2566 wl
= weighted_cpuload(i
);
2568 if (rq
->nr_running
== 1 && wl
> imbalance
)
2571 if (wl
> max_load
) {
2581 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2582 * so long as it is large enough.
2584 #define MAX_PINNED_INTERVAL 512
2587 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2588 * tasks if there is an imbalance.
2590 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2591 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2594 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2595 struct sched_group
*group
;
2596 unsigned long imbalance
;
2598 cpumask_t cpus
= CPU_MASK_ALL
;
2599 unsigned long flags
;
2602 * When power savings policy is enabled for the parent domain, idle
2603 * sibling can pick up load irrespective of busy siblings. In this case,
2604 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2605 * portraying it as CPU_NOT_IDLE.
2607 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2608 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2611 schedstat_inc(sd
, lb_count
[idle
]);
2614 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2621 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2625 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2627 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2631 BUG_ON(busiest
== this_rq
);
2633 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2636 if (busiest
->nr_running
> 1) {
2638 * Attempt to move tasks. If find_busiest_group has found
2639 * an imbalance but busiest->nr_running <= 1, the group is
2640 * still unbalanced. ld_moved simply stays zero, so it is
2641 * correctly treated as an imbalance.
2643 local_irq_save(flags
);
2644 double_rq_lock(this_rq
, busiest
);
2645 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2646 imbalance
, sd
, idle
, &all_pinned
);
2647 double_rq_unlock(this_rq
, busiest
);
2648 local_irq_restore(flags
);
2651 * some other cpu did the load balance for us.
2653 if (ld_moved
&& this_cpu
!= smp_processor_id())
2654 resched_cpu(this_cpu
);
2656 /* All tasks on this runqueue were pinned by CPU affinity */
2657 if (unlikely(all_pinned
)) {
2658 cpu_clear(cpu_of(busiest
), cpus
);
2659 if (!cpus_empty(cpus
))
2666 schedstat_inc(sd
, lb_failed
[idle
]);
2667 sd
->nr_balance_failed
++;
2669 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2671 spin_lock_irqsave(&busiest
->lock
, flags
);
2673 /* don't kick the migration_thread, if the curr
2674 * task on busiest cpu can't be moved to this_cpu
2676 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2677 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2679 goto out_one_pinned
;
2682 if (!busiest
->active_balance
) {
2683 busiest
->active_balance
= 1;
2684 busiest
->push_cpu
= this_cpu
;
2687 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2689 wake_up_process(busiest
->migration_thread
);
2692 * We've kicked active balancing, reset the failure
2695 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2698 sd
->nr_balance_failed
= 0;
2700 if (likely(!active_balance
)) {
2701 /* We were unbalanced, so reset the balancing interval */
2702 sd
->balance_interval
= sd
->min_interval
;
2705 * If we've begun active balancing, start to back off. This
2706 * case may not be covered by the all_pinned logic if there
2707 * is only 1 task on the busy runqueue (because we don't call
2710 if (sd
->balance_interval
< sd
->max_interval
)
2711 sd
->balance_interval
*= 2;
2714 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2715 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2720 schedstat_inc(sd
, lb_balanced
[idle
]);
2722 sd
->nr_balance_failed
= 0;
2725 /* tune up the balancing interval */
2726 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2727 (sd
->balance_interval
< sd
->max_interval
))
2728 sd
->balance_interval
*= 2;
2730 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2731 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738 * tasks if there is an imbalance.
2740 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2741 * this_rq is locked.
2744 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2746 struct sched_group
*group
;
2747 struct rq
*busiest
= NULL
;
2748 unsigned long imbalance
;
2752 cpumask_t cpus
= CPU_MASK_ALL
;
2755 * When power savings policy is enabled for the parent domain, idle
2756 * sibling can pick up load irrespective of busy siblings. In this case,
2757 * let the state of idle sibling percolate up as IDLE, instead of
2758 * portraying it as CPU_NOT_IDLE.
2760 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2761 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2764 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2766 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2767 &sd_idle
, &cpus
, NULL
);
2769 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2773 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2776 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2780 BUG_ON(busiest
== this_rq
);
2782 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2785 if (busiest
->nr_running
> 1) {
2786 /* Attempt to move tasks */
2787 double_lock_balance(this_rq
, busiest
);
2788 /* this_rq->clock is already updated */
2789 update_rq_clock(busiest
);
2790 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2791 imbalance
, sd
, CPU_NEWLY_IDLE
,
2793 spin_unlock(&busiest
->lock
);
2795 if (unlikely(all_pinned
)) {
2796 cpu_clear(cpu_of(busiest
), cpus
);
2797 if (!cpus_empty(cpus
))
2803 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2804 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2805 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2808 sd
->nr_balance_failed
= 0;
2813 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2814 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2815 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2817 sd
->nr_balance_failed
= 0;
2823 * idle_balance is called by schedule() if this_cpu is about to become
2824 * idle. Attempts to pull tasks from other CPUs.
2826 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2828 struct sched_domain
*sd
;
2829 int pulled_task
= -1;
2830 unsigned long next_balance
= jiffies
+ HZ
;
2832 for_each_domain(this_cpu
, sd
) {
2833 unsigned long interval
;
2835 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2838 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2839 /* If we've pulled tasks over stop searching: */
2840 pulled_task
= load_balance_newidle(this_cpu
,
2843 interval
= msecs_to_jiffies(sd
->balance_interval
);
2844 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2845 next_balance
= sd
->last_balance
+ interval
;
2849 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2851 * We are going idle. next_balance may be set based on
2852 * a busy processor. So reset next_balance.
2854 this_rq
->next_balance
= next_balance
;
2859 * active_load_balance is run by migration threads. It pushes running tasks
2860 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2861 * running on each physical CPU where possible, and avoids physical /
2862 * logical imbalances.
2864 * Called with busiest_rq locked.
2866 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2868 int target_cpu
= busiest_rq
->push_cpu
;
2869 struct sched_domain
*sd
;
2870 struct rq
*target_rq
;
2872 /* Is there any task to move? */
2873 if (busiest_rq
->nr_running
<= 1)
2876 target_rq
= cpu_rq(target_cpu
);
2879 * This condition is "impossible", if it occurs
2880 * we need to fix it. Originally reported by
2881 * Bjorn Helgaas on a 128-cpu setup.
2883 BUG_ON(busiest_rq
== target_rq
);
2885 /* move a task from busiest_rq to target_rq */
2886 double_lock_balance(busiest_rq
, target_rq
);
2887 update_rq_clock(busiest_rq
);
2888 update_rq_clock(target_rq
);
2890 /* Search for an sd spanning us and the target CPU. */
2891 for_each_domain(target_cpu
, sd
) {
2892 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2893 cpu_isset(busiest_cpu
, sd
->span
))
2898 schedstat_inc(sd
, alb_count
);
2900 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2902 schedstat_inc(sd
, alb_pushed
);
2904 schedstat_inc(sd
, alb_failed
);
2906 spin_unlock(&target_rq
->lock
);
2911 atomic_t load_balancer
;
2913 } nohz ____cacheline_aligned
= {
2914 .load_balancer
= ATOMIC_INIT(-1),
2915 .cpu_mask
= CPU_MASK_NONE
,
2919 * This routine will try to nominate the ilb (idle load balancing)
2920 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2921 * load balancing on behalf of all those cpus. If all the cpus in the system
2922 * go into this tickless mode, then there will be no ilb owner (as there is
2923 * no need for one) and all the cpus will sleep till the next wakeup event
2926 * For the ilb owner, tick is not stopped. And this tick will be used
2927 * for idle load balancing. ilb owner will still be part of
2930 * While stopping the tick, this cpu will become the ilb owner if there
2931 * is no other owner. And will be the owner till that cpu becomes busy
2932 * or if all cpus in the system stop their ticks at which point
2933 * there is no need for ilb owner.
2935 * When the ilb owner becomes busy, it nominates another owner, during the
2936 * next busy scheduler_tick()
2938 int select_nohz_load_balancer(int stop_tick
)
2940 int cpu
= smp_processor_id();
2943 cpu_set(cpu
, nohz
.cpu_mask
);
2944 cpu_rq(cpu
)->in_nohz_recently
= 1;
2947 * If we are going offline and still the leader, give up!
2949 if (cpu_is_offline(cpu
) &&
2950 atomic_read(&nohz
.load_balancer
) == cpu
) {
2951 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2956 /* time for ilb owner also to sleep */
2957 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2958 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2959 atomic_set(&nohz
.load_balancer
, -1);
2963 if (atomic_read(&nohz
.load_balancer
) == -1) {
2964 /* make me the ilb owner */
2965 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2967 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
2970 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
2973 cpu_clear(cpu
, nohz
.cpu_mask
);
2975 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2976 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2983 static DEFINE_SPINLOCK(balancing
);
2986 * It checks each scheduling domain to see if it is due to be balanced,
2987 * and initiates a balancing operation if so.
2989 * Balancing parameters are set up in arch_init_sched_domains.
2991 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
2994 struct rq
*rq
= cpu_rq(cpu
);
2995 unsigned long interval
;
2996 struct sched_domain
*sd
;
2997 /* Earliest time when we have to do rebalance again */
2998 unsigned long next_balance
= jiffies
+ 60*HZ
;
2999 int update_next_balance
= 0;
3001 for_each_domain(cpu
, sd
) {
3002 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3005 interval
= sd
->balance_interval
;
3006 if (idle
!= CPU_IDLE
)
3007 interval
*= sd
->busy_factor
;
3009 /* scale ms to jiffies */
3010 interval
= msecs_to_jiffies(interval
);
3011 if (unlikely(!interval
))
3013 if (interval
> HZ
*NR_CPUS
/10)
3014 interval
= HZ
*NR_CPUS
/10;
3017 if (sd
->flags
& SD_SERIALIZE
) {
3018 if (!spin_trylock(&balancing
))
3022 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3023 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3025 * We've pulled tasks over so either we're no
3026 * longer idle, or one of our SMT siblings is
3029 idle
= CPU_NOT_IDLE
;
3031 sd
->last_balance
= jiffies
;
3033 if (sd
->flags
& SD_SERIALIZE
)
3034 spin_unlock(&balancing
);
3036 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3037 next_balance
= sd
->last_balance
+ interval
;
3038 update_next_balance
= 1;
3042 * Stop the load balance at this level. There is another
3043 * CPU in our sched group which is doing load balancing more
3051 * next_balance will be updated only when there is a need.
3052 * When the cpu is attached to null domain for ex, it will not be
3055 if (likely(update_next_balance
))
3056 rq
->next_balance
= next_balance
;
3060 * run_rebalance_domains is triggered when needed from the scheduler tick.
3061 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3062 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3064 static void run_rebalance_domains(struct softirq_action
*h
)
3066 int this_cpu
= smp_processor_id();
3067 struct rq
*this_rq
= cpu_rq(this_cpu
);
3068 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3069 CPU_IDLE
: CPU_NOT_IDLE
;
3071 rebalance_domains(this_cpu
, idle
);
3075 * If this cpu is the owner for idle load balancing, then do the
3076 * balancing on behalf of the other idle cpus whose ticks are
3079 if (this_rq
->idle_at_tick
&&
3080 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3081 cpumask_t cpus
= nohz
.cpu_mask
;
3085 cpu_clear(this_cpu
, cpus
);
3086 for_each_cpu_mask(balance_cpu
, cpus
) {
3088 * If this cpu gets work to do, stop the load balancing
3089 * work being done for other cpus. Next load
3090 * balancing owner will pick it up.
3095 rebalance_domains(balance_cpu
, CPU_IDLE
);
3097 rq
= cpu_rq(balance_cpu
);
3098 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3099 this_rq
->next_balance
= rq
->next_balance
;
3106 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3108 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3109 * idle load balancing owner or decide to stop the periodic load balancing,
3110 * if the whole system is idle.
3112 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3116 * If we were in the nohz mode recently and busy at the current
3117 * scheduler tick, then check if we need to nominate new idle
3120 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3121 rq
->in_nohz_recently
= 0;
3123 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3124 cpu_clear(cpu
, nohz
.cpu_mask
);
3125 atomic_set(&nohz
.load_balancer
, -1);
3128 if (atomic_read(&nohz
.load_balancer
) == -1) {
3130 * simple selection for now: Nominate the
3131 * first cpu in the nohz list to be the next
3134 * TBD: Traverse the sched domains and nominate
3135 * the nearest cpu in the nohz.cpu_mask.
3137 int ilb
= first_cpu(nohz
.cpu_mask
);
3145 * If this cpu is idle and doing idle load balancing for all the
3146 * cpus with ticks stopped, is it time for that to stop?
3148 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3149 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3155 * If this cpu is idle and the idle load balancing is done by
3156 * someone else, then no need raise the SCHED_SOFTIRQ
3158 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3159 cpu_isset(cpu
, nohz
.cpu_mask
))
3162 if (time_after_eq(jiffies
, rq
->next_balance
))
3163 raise_softirq(SCHED_SOFTIRQ
);
3166 #else /* CONFIG_SMP */
3169 * on UP we do not need to balance between CPUs:
3171 static inline void idle_balance(int cpu
, struct rq
*rq
)
3175 /* Avoid "used but not defined" warning on UP */
3176 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3177 unsigned long max_nr_move
, unsigned long max_load_move
,
3178 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3179 int *all_pinned
, unsigned long *load_moved
,
3180 int *this_best_prio
, struct rq_iterator
*iterator
)
3189 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3191 EXPORT_PER_CPU_SYMBOL(kstat
);
3194 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3195 * that have not yet been banked in case the task is currently running.
3197 unsigned long long task_sched_runtime(struct task_struct
*p
)
3199 unsigned long flags
;
3203 rq
= task_rq_lock(p
, &flags
);
3204 ns
= p
->se
.sum_exec_runtime
;
3205 if (rq
->curr
== p
) {
3206 update_rq_clock(rq
);
3207 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3208 if ((s64
)delta_exec
> 0)
3211 task_rq_unlock(rq
, &flags
);
3217 * Account user cpu time to a process.
3218 * @p: the process that the cpu time gets accounted to
3219 * @hardirq_offset: the offset to subtract from hardirq_count()
3220 * @cputime: the cpu time spent in user space since the last update
3222 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3224 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3227 p
->utime
= cputime_add(p
->utime
, cputime
);
3229 /* Add user time to cpustat. */
3230 tmp
= cputime_to_cputime64(cputime
);
3231 if (TASK_NICE(p
) > 0)
3232 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3234 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3238 * Account system cpu time to a process.
3239 * @p: the process that the cpu time gets accounted to
3240 * @hardirq_offset: the offset to subtract from hardirq_count()
3241 * @cputime: the cpu time spent in kernel space since the last update
3243 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3246 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3247 struct rq
*rq
= this_rq();
3250 p
->stime
= cputime_add(p
->stime
, cputime
);
3252 /* Add system time to cpustat. */
3253 tmp
= cputime_to_cputime64(cputime
);
3254 if (hardirq_count() - hardirq_offset
)
3255 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3256 else if (softirq_count())
3257 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3258 else if (p
!= rq
->idle
)
3259 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3260 else if (atomic_read(&rq
->nr_iowait
) > 0)
3261 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3263 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3264 /* Account for system time used */
3265 acct_update_integrals(p
);
3269 * Account for involuntary wait time.
3270 * @p: the process from which the cpu time has been stolen
3271 * @steal: the cpu time spent in involuntary wait
3273 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3275 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3276 cputime64_t tmp
= cputime_to_cputime64(steal
);
3277 struct rq
*rq
= this_rq();
3279 if (p
== rq
->idle
) {
3280 p
->stime
= cputime_add(p
->stime
, steal
);
3281 if (atomic_read(&rq
->nr_iowait
) > 0)
3282 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3284 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3286 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3290 * This function gets called by the timer code, with HZ frequency.
3291 * We call it with interrupts disabled.
3293 * It also gets called by the fork code, when changing the parent's
3296 void scheduler_tick(void)
3298 int cpu
= smp_processor_id();
3299 struct rq
*rq
= cpu_rq(cpu
);
3300 struct task_struct
*curr
= rq
->curr
;
3301 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3303 spin_lock(&rq
->lock
);
3304 __update_rq_clock(rq
);
3306 * Let rq->clock advance by at least TICK_NSEC:
3308 if (unlikely(rq
->clock
< next_tick
))
3309 rq
->clock
= next_tick
;
3310 rq
->tick_timestamp
= rq
->clock
;
3311 update_cpu_load(rq
);
3312 if (curr
!= rq
->idle
) /* FIXME: needed? */
3313 curr
->sched_class
->task_tick(rq
, curr
);
3314 spin_unlock(&rq
->lock
);
3317 rq
->idle_at_tick
= idle_cpu(cpu
);
3318 trigger_load_balance(rq
, cpu
);
3322 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3324 void fastcall
add_preempt_count(int val
)
3329 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3331 preempt_count() += val
;
3333 * Spinlock count overflowing soon?
3335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3338 EXPORT_SYMBOL(add_preempt_count
);
3340 void fastcall
sub_preempt_count(int val
)
3345 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3348 * Is the spinlock portion underflowing?
3350 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3351 !(preempt_count() & PREEMPT_MASK
)))
3354 preempt_count() -= val
;
3356 EXPORT_SYMBOL(sub_preempt_count
);
3361 * Print scheduling while atomic bug:
3363 static noinline
void __schedule_bug(struct task_struct
*prev
)
3365 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3366 prev
->comm
, preempt_count(), prev
->pid
);
3367 debug_show_held_locks(prev
);
3368 if (irqs_disabled())
3369 print_irqtrace_events(prev
);
3374 * Various schedule()-time debugging checks and statistics:
3376 static inline void schedule_debug(struct task_struct
*prev
)
3379 * Test if we are atomic. Since do_exit() needs to call into
3380 * schedule() atomically, we ignore that path for now.
3381 * Otherwise, whine if we are scheduling when we should not be.
3383 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3384 __schedule_bug(prev
);
3386 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3388 schedstat_inc(this_rq(), sched_count
);
3389 #ifdef CONFIG_SCHEDSTATS
3390 if (unlikely(prev
->lock_depth
>= 0)) {
3391 schedstat_inc(this_rq(), bkl_count
);
3392 schedstat_inc(prev
, sched_info
.bkl_count
);
3398 * Pick up the highest-prio task:
3400 static inline struct task_struct
*
3401 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3403 const struct sched_class
*class;
3404 struct task_struct
*p
;
3407 * Optimization: we know that if all tasks are in
3408 * the fair class we can call that function directly:
3410 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3411 p
= fair_sched_class
.pick_next_task(rq
);
3416 class = sched_class_highest
;
3418 p
= class->pick_next_task(rq
);
3422 * Will never be NULL as the idle class always
3423 * returns a non-NULL p:
3425 class = class->next
;
3430 * schedule() is the main scheduler function.
3432 asmlinkage
void __sched
schedule(void)
3434 struct task_struct
*prev
, *next
;
3441 cpu
= smp_processor_id();
3445 switch_count
= &prev
->nivcsw
;
3447 release_kernel_lock(prev
);
3448 need_resched_nonpreemptible
:
3450 schedule_debug(prev
);
3453 * Do the rq-clock update outside the rq lock:
3455 local_irq_disable();
3456 __update_rq_clock(rq
);
3457 spin_lock(&rq
->lock
);
3458 clear_tsk_need_resched(prev
);
3460 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3461 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3462 unlikely(signal_pending(prev
)))) {
3463 prev
->state
= TASK_RUNNING
;
3465 deactivate_task(rq
, prev
, 1);
3467 switch_count
= &prev
->nvcsw
;
3470 if (unlikely(!rq
->nr_running
))
3471 idle_balance(cpu
, rq
);
3473 prev
->sched_class
->put_prev_task(rq
, prev
);
3474 next
= pick_next_task(rq
, prev
);
3476 sched_info_switch(prev
, next
);
3478 if (likely(prev
!= next
)) {
3483 context_switch(rq
, prev
, next
); /* unlocks the rq */
3485 spin_unlock_irq(&rq
->lock
);
3487 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3488 cpu
= smp_processor_id();
3490 goto need_resched_nonpreemptible
;
3492 preempt_enable_no_resched();
3493 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3496 EXPORT_SYMBOL(schedule
);
3498 #ifdef CONFIG_PREEMPT
3500 * this is the entry point to schedule() from in-kernel preemption
3501 * off of preempt_enable. Kernel preemptions off return from interrupt
3502 * occur there and call schedule directly.
3504 asmlinkage
void __sched
preempt_schedule(void)
3506 struct thread_info
*ti
= current_thread_info();
3507 #ifdef CONFIG_PREEMPT_BKL
3508 struct task_struct
*task
= current
;
3509 int saved_lock_depth
;
3512 * If there is a non-zero preempt_count or interrupts are disabled,
3513 * we do not want to preempt the current task. Just return..
3515 if (likely(ti
->preempt_count
|| irqs_disabled()))
3519 add_preempt_count(PREEMPT_ACTIVE
);
3521 * We keep the big kernel semaphore locked, but we
3522 * clear ->lock_depth so that schedule() doesnt
3523 * auto-release the semaphore:
3525 #ifdef CONFIG_PREEMPT_BKL
3526 saved_lock_depth
= task
->lock_depth
;
3527 task
->lock_depth
= -1;
3530 #ifdef CONFIG_PREEMPT_BKL
3531 task
->lock_depth
= saved_lock_depth
;
3533 sub_preempt_count(PREEMPT_ACTIVE
);
3535 /* we could miss a preemption opportunity between schedule and now */
3537 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3540 EXPORT_SYMBOL(preempt_schedule
);
3543 * this is the entry point to schedule() from kernel preemption
3544 * off of irq context.
3545 * Note, that this is called and return with irqs disabled. This will
3546 * protect us against recursive calling from irq.
3548 asmlinkage
void __sched
preempt_schedule_irq(void)
3550 struct thread_info
*ti
= current_thread_info();
3551 #ifdef CONFIG_PREEMPT_BKL
3552 struct task_struct
*task
= current
;
3553 int saved_lock_depth
;
3555 /* Catch callers which need to be fixed */
3556 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3559 add_preempt_count(PREEMPT_ACTIVE
);
3561 * We keep the big kernel semaphore locked, but we
3562 * clear ->lock_depth so that schedule() doesnt
3563 * auto-release the semaphore:
3565 #ifdef CONFIG_PREEMPT_BKL
3566 saved_lock_depth
= task
->lock_depth
;
3567 task
->lock_depth
= -1;
3571 local_irq_disable();
3572 #ifdef CONFIG_PREEMPT_BKL
3573 task
->lock_depth
= saved_lock_depth
;
3575 sub_preempt_count(PREEMPT_ACTIVE
);
3577 /* we could miss a preemption opportunity between schedule and now */
3579 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3583 #endif /* CONFIG_PREEMPT */
3585 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3588 return try_to_wake_up(curr
->private, mode
, sync
);
3590 EXPORT_SYMBOL(default_wake_function
);
3593 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3594 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3595 * number) then we wake all the non-exclusive tasks and one exclusive task.
3597 * There are circumstances in which we can try to wake a task which has already
3598 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3599 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3601 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3602 int nr_exclusive
, int sync
, void *key
)
3604 wait_queue_t
*curr
, *next
;
3606 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3607 unsigned flags
= curr
->flags
;
3609 if (curr
->func(curr
, mode
, sync
, key
) &&
3610 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3616 * __wake_up - wake up threads blocked on a waitqueue.
3618 * @mode: which threads
3619 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3620 * @key: is directly passed to the wakeup function
3622 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3623 int nr_exclusive
, void *key
)
3625 unsigned long flags
;
3627 spin_lock_irqsave(&q
->lock
, flags
);
3628 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3629 spin_unlock_irqrestore(&q
->lock
, flags
);
3631 EXPORT_SYMBOL(__wake_up
);
3634 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3636 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3638 __wake_up_common(q
, mode
, 1, 0, NULL
);
3642 * __wake_up_sync - wake up threads blocked on a waitqueue.
3644 * @mode: which threads
3645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3647 * The sync wakeup differs that the waker knows that it will schedule
3648 * away soon, so while the target thread will be woken up, it will not
3649 * be migrated to another CPU - ie. the two threads are 'synchronized'
3650 * with each other. This can prevent needless bouncing between CPUs.
3652 * On UP it can prevent extra preemption.
3655 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3657 unsigned long flags
;
3663 if (unlikely(!nr_exclusive
))
3666 spin_lock_irqsave(&q
->lock
, flags
);
3667 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3668 spin_unlock_irqrestore(&q
->lock
, flags
);
3670 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3672 void fastcall
complete(struct completion
*x
)
3674 unsigned long flags
;
3676 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3678 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3680 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3682 EXPORT_SYMBOL(complete
);
3684 void fastcall
complete_all(struct completion
*x
)
3686 unsigned long flags
;
3688 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3689 x
->done
+= UINT_MAX
/2;
3690 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3692 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3694 EXPORT_SYMBOL(complete_all
);
3696 void fastcall __sched
wait_for_completion(struct completion
*x
)
3700 spin_lock_irq(&x
->wait
.lock
);
3702 DECLARE_WAITQUEUE(wait
, current
);
3704 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3705 __add_wait_queue_tail(&x
->wait
, &wait
);
3707 __set_current_state(TASK_UNINTERRUPTIBLE
);
3708 spin_unlock_irq(&x
->wait
.lock
);
3710 spin_lock_irq(&x
->wait
.lock
);
3712 __remove_wait_queue(&x
->wait
, &wait
);
3715 spin_unlock_irq(&x
->wait
.lock
);
3717 EXPORT_SYMBOL(wait_for_completion
);
3719 unsigned long fastcall __sched
3720 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3724 spin_lock_irq(&x
->wait
.lock
);
3726 DECLARE_WAITQUEUE(wait
, current
);
3728 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3729 __add_wait_queue_tail(&x
->wait
, &wait
);
3731 __set_current_state(TASK_UNINTERRUPTIBLE
);
3732 spin_unlock_irq(&x
->wait
.lock
);
3733 timeout
= schedule_timeout(timeout
);
3734 spin_lock_irq(&x
->wait
.lock
);
3736 __remove_wait_queue(&x
->wait
, &wait
);
3740 __remove_wait_queue(&x
->wait
, &wait
);
3744 spin_unlock_irq(&x
->wait
.lock
);
3747 EXPORT_SYMBOL(wait_for_completion_timeout
);
3749 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3755 spin_lock_irq(&x
->wait
.lock
);
3757 DECLARE_WAITQUEUE(wait
, current
);
3759 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3760 __add_wait_queue_tail(&x
->wait
, &wait
);
3762 if (signal_pending(current
)) {
3764 __remove_wait_queue(&x
->wait
, &wait
);
3767 __set_current_state(TASK_INTERRUPTIBLE
);
3768 spin_unlock_irq(&x
->wait
.lock
);
3770 spin_lock_irq(&x
->wait
.lock
);
3772 __remove_wait_queue(&x
->wait
, &wait
);
3776 spin_unlock_irq(&x
->wait
.lock
);
3780 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3782 unsigned long fastcall __sched
3783 wait_for_completion_interruptible_timeout(struct completion
*x
,
3784 unsigned long timeout
)
3788 spin_lock_irq(&x
->wait
.lock
);
3790 DECLARE_WAITQUEUE(wait
, current
);
3792 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3793 __add_wait_queue_tail(&x
->wait
, &wait
);
3795 if (signal_pending(current
)) {
3796 timeout
= -ERESTARTSYS
;
3797 __remove_wait_queue(&x
->wait
, &wait
);
3800 __set_current_state(TASK_INTERRUPTIBLE
);
3801 spin_unlock_irq(&x
->wait
.lock
);
3802 timeout
= schedule_timeout(timeout
);
3803 spin_lock_irq(&x
->wait
.lock
);
3805 __remove_wait_queue(&x
->wait
, &wait
);
3809 __remove_wait_queue(&x
->wait
, &wait
);
3813 spin_unlock_irq(&x
->wait
.lock
);
3816 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3819 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3821 spin_lock_irqsave(&q
->lock
, *flags
);
3822 __add_wait_queue(q
, wait
);
3823 spin_unlock(&q
->lock
);
3827 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3829 spin_lock_irq(&q
->lock
);
3830 __remove_wait_queue(q
, wait
);
3831 spin_unlock_irqrestore(&q
->lock
, *flags
);
3834 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3836 unsigned long flags
;
3839 init_waitqueue_entry(&wait
, current
);
3841 current
->state
= TASK_INTERRUPTIBLE
;
3843 sleep_on_head(q
, &wait
, &flags
);
3845 sleep_on_tail(q
, &wait
, &flags
);
3847 EXPORT_SYMBOL(interruptible_sleep_on
);
3850 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3852 unsigned long flags
;
3855 init_waitqueue_entry(&wait
, current
);
3857 current
->state
= TASK_INTERRUPTIBLE
;
3859 sleep_on_head(q
, &wait
, &flags
);
3860 timeout
= schedule_timeout(timeout
);
3861 sleep_on_tail(q
, &wait
, &flags
);
3865 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3867 void __sched
sleep_on(wait_queue_head_t
*q
)
3869 unsigned long flags
;
3872 init_waitqueue_entry(&wait
, current
);
3874 current
->state
= TASK_UNINTERRUPTIBLE
;
3876 sleep_on_head(q
, &wait
, &flags
);
3878 sleep_on_tail(q
, &wait
, &flags
);
3880 EXPORT_SYMBOL(sleep_on
);
3882 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3884 unsigned long flags
;
3887 init_waitqueue_entry(&wait
, current
);
3889 current
->state
= TASK_UNINTERRUPTIBLE
;
3891 sleep_on_head(q
, &wait
, &flags
);
3892 timeout
= schedule_timeout(timeout
);
3893 sleep_on_tail(q
, &wait
, &flags
);
3897 EXPORT_SYMBOL(sleep_on_timeout
);
3899 #ifdef CONFIG_RT_MUTEXES
3902 * rt_mutex_setprio - set the current priority of a task
3904 * @prio: prio value (kernel-internal form)
3906 * This function changes the 'effective' priority of a task. It does
3907 * not touch ->normal_prio like __setscheduler().
3909 * Used by the rt_mutex code to implement priority inheritance logic.
3911 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3913 unsigned long flags
;
3914 int oldprio
, on_rq
, running
;
3917 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3919 rq
= task_rq_lock(p
, &flags
);
3920 update_rq_clock(rq
);
3923 on_rq
= p
->se
.on_rq
;
3924 running
= task_running(rq
, p
);
3926 dequeue_task(rq
, p
, 0);
3928 p
->sched_class
->put_prev_task(rq
, p
);
3932 p
->sched_class
= &rt_sched_class
;
3934 p
->sched_class
= &fair_sched_class
;
3940 p
->sched_class
->set_curr_task(rq
);
3941 enqueue_task(rq
, p
, 0);
3943 * Reschedule if we are currently running on this runqueue and
3944 * our priority decreased, or if we are not currently running on
3945 * this runqueue and our priority is higher than the current's
3948 if (p
->prio
> oldprio
)
3949 resched_task(rq
->curr
);
3951 check_preempt_curr(rq
, p
);
3954 task_rq_unlock(rq
, &flags
);
3959 void set_user_nice(struct task_struct
*p
, long nice
)
3961 int old_prio
, delta
, on_rq
;
3962 unsigned long flags
;
3965 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3968 * We have to be careful, if called from sys_setpriority(),
3969 * the task might be in the middle of scheduling on another CPU.
3971 rq
= task_rq_lock(p
, &flags
);
3972 update_rq_clock(rq
);
3974 * The RT priorities are set via sched_setscheduler(), but we still
3975 * allow the 'normal' nice value to be set - but as expected
3976 * it wont have any effect on scheduling until the task is
3977 * SCHED_FIFO/SCHED_RR:
3979 if (task_has_rt_policy(p
)) {
3980 p
->static_prio
= NICE_TO_PRIO(nice
);
3983 on_rq
= p
->se
.on_rq
;
3985 dequeue_task(rq
, p
, 0);
3989 p
->static_prio
= NICE_TO_PRIO(nice
);
3992 p
->prio
= effective_prio(p
);
3993 delta
= p
->prio
- old_prio
;
3996 enqueue_task(rq
, p
, 0);
3999 * If the task increased its priority or is running and
4000 * lowered its priority, then reschedule its CPU:
4002 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4003 resched_task(rq
->curr
);
4006 task_rq_unlock(rq
, &flags
);
4008 EXPORT_SYMBOL(set_user_nice
);
4011 * can_nice - check if a task can reduce its nice value
4015 int can_nice(const struct task_struct
*p
, const int nice
)
4017 /* convert nice value [19,-20] to rlimit style value [1,40] */
4018 int nice_rlim
= 20 - nice
;
4020 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4021 capable(CAP_SYS_NICE
));
4024 #ifdef __ARCH_WANT_SYS_NICE
4027 * sys_nice - change the priority of the current process.
4028 * @increment: priority increment
4030 * sys_setpriority is a more generic, but much slower function that
4031 * does similar things.
4033 asmlinkage
long sys_nice(int increment
)
4038 * Setpriority might change our priority at the same moment.
4039 * We don't have to worry. Conceptually one call occurs first
4040 * and we have a single winner.
4042 if (increment
< -40)
4047 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4053 if (increment
< 0 && !can_nice(current
, nice
))
4056 retval
= security_task_setnice(current
, nice
);
4060 set_user_nice(current
, nice
);
4067 * task_prio - return the priority value of a given task.
4068 * @p: the task in question.
4070 * This is the priority value as seen by users in /proc.
4071 * RT tasks are offset by -200. Normal tasks are centered
4072 * around 0, value goes from -16 to +15.
4074 int task_prio(const struct task_struct
*p
)
4076 return p
->prio
- MAX_RT_PRIO
;
4080 * task_nice - return the nice value of a given task.
4081 * @p: the task in question.
4083 int task_nice(const struct task_struct
*p
)
4085 return TASK_NICE(p
);
4087 EXPORT_SYMBOL_GPL(task_nice
);
4090 * idle_cpu - is a given cpu idle currently?
4091 * @cpu: the processor in question.
4093 int idle_cpu(int cpu
)
4095 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4099 * idle_task - return the idle task for a given cpu.
4100 * @cpu: the processor in question.
4102 struct task_struct
*idle_task(int cpu
)
4104 return cpu_rq(cpu
)->idle
;
4108 * find_process_by_pid - find a process with a matching PID value.
4109 * @pid: the pid in question.
4111 static struct task_struct
*find_process_by_pid(pid_t pid
)
4113 return pid
? find_task_by_pid(pid
) : current
;
4116 /* Actually do priority change: must hold rq lock. */
4118 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4120 BUG_ON(p
->se
.on_rq
);
4123 switch (p
->policy
) {
4127 p
->sched_class
= &fair_sched_class
;
4131 p
->sched_class
= &rt_sched_class
;
4135 p
->rt_priority
= prio
;
4136 p
->normal_prio
= normal_prio(p
);
4137 /* we are holding p->pi_lock already */
4138 p
->prio
= rt_mutex_getprio(p
);
4143 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4144 * @p: the task in question.
4145 * @policy: new policy.
4146 * @param: structure containing the new RT priority.
4148 * NOTE that the task may be already dead.
4150 int sched_setscheduler(struct task_struct
*p
, int policy
,
4151 struct sched_param
*param
)
4153 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4154 unsigned long flags
;
4157 /* may grab non-irq protected spin_locks */
4158 BUG_ON(in_interrupt());
4160 /* double check policy once rq lock held */
4162 policy
= oldpolicy
= p
->policy
;
4163 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4164 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4165 policy
!= SCHED_IDLE
)
4168 * Valid priorities for SCHED_FIFO and SCHED_RR are
4169 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4170 * SCHED_BATCH and SCHED_IDLE is 0.
4172 if (param
->sched_priority
< 0 ||
4173 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4174 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4176 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4180 * Allow unprivileged RT tasks to decrease priority:
4182 if (!capable(CAP_SYS_NICE
)) {
4183 if (rt_policy(policy
)) {
4184 unsigned long rlim_rtprio
;
4186 if (!lock_task_sighand(p
, &flags
))
4188 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4189 unlock_task_sighand(p
, &flags
);
4191 /* can't set/change the rt policy */
4192 if (policy
!= p
->policy
&& !rlim_rtprio
)
4195 /* can't increase priority */
4196 if (param
->sched_priority
> p
->rt_priority
&&
4197 param
->sched_priority
> rlim_rtprio
)
4201 * Like positive nice levels, dont allow tasks to
4202 * move out of SCHED_IDLE either:
4204 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4207 /* can't change other user's priorities */
4208 if ((current
->euid
!= p
->euid
) &&
4209 (current
->euid
!= p
->uid
))
4213 retval
= security_task_setscheduler(p
, policy
, param
);
4217 * make sure no PI-waiters arrive (or leave) while we are
4218 * changing the priority of the task:
4220 spin_lock_irqsave(&p
->pi_lock
, flags
);
4222 * To be able to change p->policy safely, the apropriate
4223 * runqueue lock must be held.
4225 rq
= __task_rq_lock(p
);
4226 /* recheck policy now with rq lock held */
4227 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4228 policy
= oldpolicy
= -1;
4229 __task_rq_unlock(rq
);
4230 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4233 update_rq_clock(rq
);
4234 on_rq
= p
->se
.on_rq
;
4235 running
= task_running(rq
, p
);
4237 deactivate_task(rq
, p
, 0);
4239 p
->sched_class
->put_prev_task(rq
, p
);
4243 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4247 p
->sched_class
->set_curr_task(rq
);
4248 activate_task(rq
, p
, 0);
4250 * Reschedule if we are currently running on this runqueue and
4251 * our priority decreased, or if we are not currently running on
4252 * this runqueue and our priority is higher than the current's
4255 if (p
->prio
> oldprio
)
4256 resched_task(rq
->curr
);
4258 check_preempt_curr(rq
, p
);
4261 __task_rq_unlock(rq
);
4262 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4264 rt_mutex_adjust_pi(p
);
4268 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4271 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4273 struct sched_param lparam
;
4274 struct task_struct
*p
;
4277 if (!param
|| pid
< 0)
4279 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4284 p
= find_process_by_pid(pid
);
4286 retval
= sched_setscheduler(p
, policy
, &lparam
);
4293 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4294 * @pid: the pid in question.
4295 * @policy: new policy.
4296 * @param: structure containing the new RT priority.
4298 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4299 struct sched_param __user
*param
)
4301 /* negative values for policy are not valid */
4305 return do_sched_setscheduler(pid
, policy
, param
);
4309 * sys_sched_setparam - set/change the RT priority of a thread
4310 * @pid: the pid in question.
4311 * @param: structure containing the new RT priority.
4313 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4315 return do_sched_setscheduler(pid
, -1, param
);
4319 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4320 * @pid: the pid in question.
4322 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4324 struct task_struct
*p
;
4325 int retval
= -EINVAL
;
4331 read_lock(&tasklist_lock
);
4332 p
= find_process_by_pid(pid
);
4334 retval
= security_task_getscheduler(p
);
4338 read_unlock(&tasklist_lock
);
4345 * sys_sched_getscheduler - get the RT priority of a thread
4346 * @pid: the pid in question.
4347 * @param: structure containing the RT priority.
4349 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4351 struct sched_param lp
;
4352 struct task_struct
*p
;
4353 int retval
= -EINVAL
;
4355 if (!param
|| pid
< 0)
4358 read_lock(&tasklist_lock
);
4359 p
= find_process_by_pid(pid
);
4364 retval
= security_task_getscheduler(p
);
4368 lp
.sched_priority
= p
->rt_priority
;
4369 read_unlock(&tasklist_lock
);
4372 * This one might sleep, we cannot do it with a spinlock held ...
4374 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4380 read_unlock(&tasklist_lock
);
4384 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4386 cpumask_t cpus_allowed
;
4387 struct task_struct
*p
;
4390 mutex_lock(&sched_hotcpu_mutex
);
4391 read_lock(&tasklist_lock
);
4393 p
= find_process_by_pid(pid
);
4395 read_unlock(&tasklist_lock
);
4396 mutex_unlock(&sched_hotcpu_mutex
);
4401 * It is not safe to call set_cpus_allowed with the
4402 * tasklist_lock held. We will bump the task_struct's
4403 * usage count and then drop tasklist_lock.
4406 read_unlock(&tasklist_lock
);
4409 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4410 !capable(CAP_SYS_NICE
))
4413 retval
= security_task_setscheduler(p
, 0, NULL
);
4417 cpus_allowed
= cpuset_cpus_allowed(p
);
4418 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4419 retval
= set_cpus_allowed(p
, new_mask
);
4423 mutex_unlock(&sched_hotcpu_mutex
);
4427 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4428 cpumask_t
*new_mask
)
4430 if (len
< sizeof(cpumask_t
)) {
4431 memset(new_mask
, 0, sizeof(cpumask_t
));
4432 } else if (len
> sizeof(cpumask_t
)) {
4433 len
= sizeof(cpumask_t
);
4435 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4439 * sys_sched_setaffinity - set the cpu affinity of a process
4440 * @pid: pid of the process
4441 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4442 * @user_mask_ptr: user-space pointer to the new cpu mask
4444 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4445 unsigned long __user
*user_mask_ptr
)
4450 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4454 return sched_setaffinity(pid
, new_mask
);
4458 * Represents all cpu's present in the system
4459 * In systems capable of hotplug, this map could dynamically grow
4460 * as new cpu's are detected in the system via any platform specific
4461 * method, such as ACPI for e.g.
4464 cpumask_t cpu_present_map __read_mostly
;
4465 EXPORT_SYMBOL(cpu_present_map
);
4468 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4469 EXPORT_SYMBOL(cpu_online_map
);
4471 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4472 EXPORT_SYMBOL(cpu_possible_map
);
4475 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4477 struct task_struct
*p
;
4480 mutex_lock(&sched_hotcpu_mutex
);
4481 read_lock(&tasklist_lock
);
4484 p
= find_process_by_pid(pid
);
4488 retval
= security_task_getscheduler(p
);
4492 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4495 read_unlock(&tasklist_lock
);
4496 mutex_unlock(&sched_hotcpu_mutex
);
4502 * sys_sched_getaffinity - get the cpu affinity of a process
4503 * @pid: pid of the process
4504 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4505 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4507 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4508 unsigned long __user
*user_mask_ptr
)
4513 if (len
< sizeof(cpumask_t
))
4516 ret
= sched_getaffinity(pid
, &mask
);
4520 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4523 return sizeof(cpumask_t
);
4527 * sys_sched_yield - yield the current processor to other threads.
4529 * This function yields the current CPU to other tasks. If there are no
4530 * other threads running on this CPU then this function will return.
4532 asmlinkage
long sys_sched_yield(void)
4534 struct rq
*rq
= this_rq_lock();
4536 schedstat_inc(rq
, yld_count
);
4537 current
->sched_class
->yield_task(rq
);
4540 * Since we are going to call schedule() anyway, there's
4541 * no need to preempt or enable interrupts:
4543 __release(rq
->lock
);
4544 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4545 _raw_spin_unlock(&rq
->lock
);
4546 preempt_enable_no_resched();
4553 static void __cond_resched(void)
4555 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4556 __might_sleep(__FILE__
, __LINE__
);
4559 * The BKS might be reacquired before we have dropped
4560 * PREEMPT_ACTIVE, which could trigger a second
4561 * cond_resched() call.
4564 add_preempt_count(PREEMPT_ACTIVE
);
4566 sub_preempt_count(PREEMPT_ACTIVE
);
4567 } while (need_resched());
4570 int __sched
cond_resched(void)
4572 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4573 system_state
== SYSTEM_RUNNING
) {
4579 EXPORT_SYMBOL(cond_resched
);
4582 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4583 * call schedule, and on return reacquire the lock.
4585 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4586 * operations here to prevent schedule() from being called twice (once via
4587 * spin_unlock(), once by hand).
4589 int cond_resched_lock(spinlock_t
*lock
)
4593 if (need_lockbreak(lock
)) {
4599 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4600 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4601 _raw_spin_unlock(lock
);
4602 preempt_enable_no_resched();
4609 EXPORT_SYMBOL(cond_resched_lock
);
4611 int __sched
cond_resched_softirq(void)
4613 BUG_ON(!in_softirq());
4615 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4623 EXPORT_SYMBOL(cond_resched_softirq
);
4626 * yield - yield the current processor to other threads.
4628 * This is a shortcut for kernel-space yielding - it marks the
4629 * thread runnable and calls sys_sched_yield().
4631 void __sched
yield(void)
4633 set_current_state(TASK_RUNNING
);
4636 EXPORT_SYMBOL(yield
);
4639 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4640 * that process accounting knows that this is a task in IO wait state.
4642 * But don't do that if it is a deliberate, throttling IO wait (this task
4643 * has set its backing_dev_info: the queue against which it should throttle)
4645 void __sched
io_schedule(void)
4647 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4649 delayacct_blkio_start();
4650 atomic_inc(&rq
->nr_iowait
);
4652 atomic_dec(&rq
->nr_iowait
);
4653 delayacct_blkio_end();
4655 EXPORT_SYMBOL(io_schedule
);
4657 long __sched
io_schedule_timeout(long timeout
)
4659 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4662 delayacct_blkio_start();
4663 atomic_inc(&rq
->nr_iowait
);
4664 ret
= schedule_timeout(timeout
);
4665 atomic_dec(&rq
->nr_iowait
);
4666 delayacct_blkio_end();
4671 * sys_sched_get_priority_max - return maximum RT priority.
4672 * @policy: scheduling class.
4674 * this syscall returns the maximum rt_priority that can be used
4675 * by a given scheduling class.
4677 asmlinkage
long sys_sched_get_priority_max(int policy
)
4684 ret
= MAX_USER_RT_PRIO
-1;
4696 * sys_sched_get_priority_min - return minimum RT priority.
4697 * @policy: scheduling class.
4699 * this syscall returns the minimum rt_priority that can be used
4700 * by a given scheduling class.
4702 asmlinkage
long sys_sched_get_priority_min(int policy
)
4720 * sys_sched_rr_get_interval - return the default timeslice of a process.
4721 * @pid: pid of the process.
4722 * @interval: userspace pointer to the timeslice value.
4724 * this syscall writes the default timeslice value of a given process
4725 * into the user-space timespec buffer. A value of '0' means infinity.
4728 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4730 struct task_struct
*p
;
4731 unsigned int time_slice
;
4732 int retval
= -EINVAL
;
4739 read_lock(&tasklist_lock
);
4740 p
= find_process_by_pid(pid
);
4744 retval
= security_task_getscheduler(p
);
4748 if (p
->policy
== SCHED_FIFO
)
4750 else if (p
->policy
== SCHED_RR
)
4751 time_slice
= DEF_TIMESLICE
;
4753 struct sched_entity
*se
= &p
->se
;
4754 unsigned long flags
;
4757 rq
= task_rq_lock(p
, &flags
);
4758 time_slice
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
4759 task_rq_unlock(rq
, &flags
);
4761 read_unlock(&tasklist_lock
);
4762 jiffies_to_timespec(time_slice
, &t
);
4763 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4767 read_unlock(&tasklist_lock
);
4771 static const char stat_nam
[] = "RSDTtZX";
4773 static void show_task(struct task_struct
*p
)
4775 unsigned long free
= 0;
4778 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4779 printk("%-13.13s %c", p
->comm
,
4780 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4781 #if BITS_PER_LONG == 32
4782 if (state
== TASK_RUNNING
)
4783 printk(" running ");
4785 printk(" %08lx ", thread_saved_pc(p
));
4787 if (state
== TASK_RUNNING
)
4788 printk(" running task ");
4790 printk(" %016lx ", thread_saved_pc(p
));
4792 #ifdef CONFIG_DEBUG_STACK_USAGE
4794 unsigned long *n
= end_of_stack(p
);
4797 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4800 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4802 if (state
!= TASK_RUNNING
)
4803 show_stack(p
, NULL
);
4806 void show_state_filter(unsigned long state_filter
)
4808 struct task_struct
*g
, *p
;
4810 #if BITS_PER_LONG == 32
4812 " task PC stack pid father\n");
4815 " task PC stack pid father\n");
4817 read_lock(&tasklist_lock
);
4818 do_each_thread(g
, p
) {
4820 * reset the NMI-timeout, listing all files on a slow
4821 * console might take alot of time:
4823 touch_nmi_watchdog();
4824 if (!state_filter
|| (p
->state
& state_filter
))
4826 } while_each_thread(g
, p
);
4828 touch_all_softlockup_watchdogs();
4830 #ifdef CONFIG_SCHED_DEBUG
4831 sysrq_sched_debug_show();
4833 read_unlock(&tasklist_lock
);
4835 * Only show locks if all tasks are dumped:
4837 if (state_filter
== -1)
4838 debug_show_all_locks();
4841 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4843 idle
->sched_class
= &idle_sched_class
;
4847 * init_idle - set up an idle thread for a given CPU
4848 * @idle: task in question
4849 * @cpu: cpu the idle task belongs to
4851 * NOTE: this function does not set the idle thread's NEED_RESCHED
4852 * flag, to make booting more robust.
4854 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4856 struct rq
*rq
= cpu_rq(cpu
);
4857 unsigned long flags
;
4860 idle
->se
.exec_start
= sched_clock();
4862 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4863 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4864 __set_task_cpu(idle
, cpu
);
4866 spin_lock_irqsave(&rq
->lock
, flags
);
4867 rq
->curr
= rq
->idle
= idle
;
4868 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4871 spin_unlock_irqrestore(&rq
->lock
, flags
);
4873 /* Set the preempt count _outside_ the spinlocks! */
4874 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4875 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4877 task_thread_info(idle
)->preempt_count
= 0;
4880 * The idle tasks have their own, simple scheduling class:
4882 idle
->sched_class
= &idle_sched_class
;
4886 * In a system that switches off the HZ timer nohz_cpu_mask
4887 * indicates which cpus entered this state. This is used
4888 * in the rcu update to wait only for active cpus. For system
4889 * which do not switch off the HZ timer nohz_cpu_mask should
4890 * always be CPU_MASK_NONE.
4892 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4896 * This is how migration works:
4898 * 1) we queue a struct migration_req structure in the source CPU's
4899 * runqueue and wake up that CPU's migration thread.
4900 * 2) we down() the locked semaphore => thread blocks.
4901 * 3) migration thread wakes up (implicitly it forces the migrated
4902 * thread off the CPU)
4903 * 4) it gets the migration request and checks whether the migrated
4904 * task is still in the wrong runqueue.
4905 * 5) if it's in the wrong runqueue then the migration thread removes
4906 * it and puts it into the right queue.
4907 * 6) migration thread up()s the semaphore.
4908 * 7) we wake up and the migration is done.
4912 * Change a given task's CPU affinity. Migrate the thread to a
4913 * proper CPU and schedule it away if the CPU it's executing on
4914 * is removed from the allowed bitmask.
4916 * NOTE: the caller must have a valid reference to the task, the
4917 * task must not exit() & deallocate itself prematurely. The
4918 * call is not atomic; no spinlocks may be held.
4920 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4922 struct migration_req req
;
4923 unsigned long flags
;
4927 rq
= task_rq_lock(p
, &flags
);
4928 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4933 p
->cpus_allowed
= new_mask
;
4934 /* Can the task run on the task's current CPU? If so, we're done */
4935 if (cpu_isset(task_cpu(p
), new_mask
))
4938 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4939 /* Need help from migration thread: drop lock and wait. */
4940 task_rq_unlock(rq
, &flags
);
4941 wake_up_process(rq
->migration_thread
);
4942 wait_for_completion(&req
.done
);
4943 tlb_migrate_finish(p
->mm
);
4947 task_rq_unlock(rq
, &flags
);
4951 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4954 * Move (not current) task off this cpu, onto dest cpu. We're doing
4955 * this because either it can't run here any more (set_cpus_allowed()
4956 * away from this CPU, or CPU going down), or because we're
4957 * attempting to rebalance this task on exec (sched_exec).
4959 * So we race with normal scheduler movements, but that's OK, as long
4960 * as the task is no longer on this CPU.
4962 * Returns non-zero if task was successfully migrated.
4964 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4966 struct rq
*rq_dest
, *rq_src
;
4969 if (unlikely(cpu_is_offline(dest_cpu
)))
4972 rq_src
= cpu_rq(src_cpu
);
4973 rq_dest
= cpu_rq(dest_cpu
);
4975 double_rq_lock(rq_src
, rq_dest
);
4976 /* Already moved. */
4977 if (task_cpu(p
) != src_cpu
)
4979 /* Affinity changed (again). */
4980 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4983 on_rq
= p
->se
.on_rq
;
4985 deactivate_task(rq_src
, p
, 0);
4987 set_task_cpu(p
, dest_cpu
);
4989 activate_task(rq_dest
, p
, 0);
4990 check_preempt_curr(rq_dest
, p
);
4994 double_rq_unlock(rq_src
, rq_dest
);
4999 * migration_thread - this is a highprio system thread that performs
5000 * thread migration by bumping thread off CPU then 'pushing' onto
5003 static int migration_thread(void *data
)
5005 int cpu
= (long)data
;
5009 BUG_ON(rq
->migration_thread
!= current
);
5011 set_current_state(TASK_INTERRUPTIBLE
);
5012 while (!kthread_should_stop()) {
5013 struct migration_req
*req
;
5014 struct list_head
*head
;
5016 spin_lock_irq(&rq
->lock
);
5018 if (cpu_is_offline(cpu
)) {
5019 spin_unlock_irq(&rq
->lock
);
5023 if (rq
->active_balance
) {
5024 active_load_balance(rq
, cpu
);
5025 rq
->active_balance
= 0;
5028 head
= &rq
->migration_queue
;
5030 if (list_empty(head
)) {
5031 spin_unlock_irq(&rq
->lock
);
5033 set_current_state(TASK_INTERRUPTIBLE
);
5036 req
= list_entry(head
->next
, struct migration_req
, list
);
5037 list_del_init(head
->next
);
5039 spin_unlock(&rq
->lock
);
5040 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5043 complete(&req
->done
);
5045 __set_current_state(TASK_RUNNING
);
5049 /* Wait for kthread_stop */
5050 set_current_state(TASK_INTERRUPTIBLE
);
5051 while (!kthread_should_stop()) {
5053 set_current_state(TASK_INTERRUPTIBLE
);
5055 __set_current_state(TASK_RUNNING
);
5059 #ifdef CONFIG_HOTPLUG_CPU
5061 * Figure out where task on dead CPU should go, use force if neccessary.
5062 * NOTE: interrupts should be disabled by the caller
5064 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5066 unsigned long flags
;
5073 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5074 cpus_and(mask
, mask
, p
->cpus_allowed
);
5075 dest_cpu
= any_online_cpu(mask
);
5077 /* On any allowed CPU? */
5078 if (dest_cpu
== NR_CPUS
)
5079 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5081 /* No more Mr. Nice Guy. */
5082 if (dest_cpu
== NR_CPUS
) {
5083 rq
= task_rq_lock(p
, &flags
);
5084 cpus_setall(p
->cpus_allowed
);
5085 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5086 task_rq_unlock(rq
, &flags
);
5089 * Don't tell them about moving exiting tasks or
5090 * kernel threads (both mm NULL), since they never
5093 if (p
->mm
&& printk_ratelimit())
5094 printk(KERN_INFO
"process %d (%s) no "
5095 "longer affine to cpu%d\n",
5096 p
->pid
, p
->comm
, dead_cpu
);
5098 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5103 * While a dead CPU has no uninterruptible tasks queued at this point,
5104 * it might still have a nonzero ->nr_uninterruptible counter, because
5105 * for performance reasons the counter is not stricly tracking tasks to
5106 * their home CPUs. So we just add the counter to another CPU's counter,
5107 * to keep the global sum constant after CPU-down:
5109 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5111 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5112 unsigned long flags
;
5114 local_irq_save(flags
);
5115 double_rq_lock(rq_src
, rq_dest
);
5116 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5117 rq_src
->nr_uninterruptible
= 0;
5118 double_rq_unlock(rq_src
, rq_dest
);
5119 local_irq_restore(flags
);
5122 /* Run through task list and migrate tasks from the dead cpu. */
5123 static void migrate_live_tasks(int src_cpu
)
5125 struct task_struct
*p
, *t
;
5127 write_lock_irq(&tasklist_lock
);
5129 do_each_thread(t
, p
) {
5133 if (task_cpu(p
) == src_cpu
)
5134 move_task_off_dead_cpu(src_cpu
, p
);
5135 } while_each_thread(t
, p
);
5137 write_unlock_irq(&tasklist_lock
);
5141 * activate_idle_task - move idle task to the _front_ of runqueue.
5143 static void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
5145 update_rq_clock(rq
);
5147 if (p
->state
== TASK_UNINTERRUPTIBLE
)
5148 rq
->nr_uninterruptible
--;
5150 enqueue_task(rq
, p
, 0);
5151 inc_nr_running(p
, rq
);
5155 * Schedules idle task to be the next runnable task on current CPU.
5156 * It does so by boosting its priority to highest possible and adding it to
5157 * the _front_ of the runqueue. Used by CPU offline code.
5159 void sched_idle_next(void)
5161 int this_cpu
= smp_processor_id();
5162 struct rq
*rq
= cpu_rq(this_cpu
);
5163 struct task_struct
*p
= rq
->idle
;
5164 unsigned long flags
;
5166 /* cpu has to be offline */
5167 BUG_ON(cpu_online(this_cpu
));
5170 * Strictly not necessary since rest of the CPUs are stopped by now
5171 * and interrupts disabled on the current cpu.
5173 spin_lock_irqsave(&rq
->lock
, flags
);
5175 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5177 /* Add idle task to the _front_ of its priority queue: */
5178 activate_idle_task(p
, rq
);
5180 spin_unlock_irqrestore(&rq
->lock
, flags
);
5184 * Ensures that the idle task is using init_mm right before its cpu goes
5187 void idle_task_exit(void)
5189 struct mm_struct
*mm
= current
->active_mm
;
5191 BUG_ON(cpu_online(smp_processor_id()));
5194 switch_mm(mm
, &init_mm
, current
);
5198 /* called under rq->lock with disabled interrupts */
5199 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5201 struct rq
*rq
= cpu_rq(dead_cpu
);
5203 /* Must be exiting, otherwise would be on tasklist. */
5204 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5206 /* Cannot have done final schedule yet: would have vanished. */
5207 BUG_ON(p
->state
== TASK_DEAD
);
5212 * Drop lock around migration; if someone else moves it,
5213 * that's OK. No task can be added to this CPU, so iteration is
5215 * NOTE: interrupts should be left disabled --dev@
5217 spin_unlock(&rq
->lock
);
5218 move_task_off_dead_cpu(dead_cpu
, p
);
5219 spin_lock(&rq
->lock
);
5224 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5225 static void migrate_dead_tasks(unsigned int dead_cpu
)
5227 struct rq
*rq
= cpu_rq(dead_cpu
);
5228 struct task_struct
*next
;
5231 if (!rq
->nr_running
)
5233 update_rq_clock(rq
);
5234 next
= pick_next_task(rq
, rq
->curr
);
5237 migrate_dead(dead_cpu
, next
);
5241 #endif /* CONFIG_HOTPLUG_CPU */
5243 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5245 static struct ctl_table sd_ctl_dir
[] = {
5247 .procname
= "sched_domain",
5253 static struct ctl_table sd_ctl_root
[] = {
5255 .ctl_name
= CTL_KERN
,
5256 .procname
= "kernel",
5258 .child
= sd_ctl_dir
,
5263 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5265 struct ctl_table
*entry
=
5266 kmalloc(n
* sizeof(struct ctl_table
), GFP_KERNEL
);
5269 memset(entry
, 0, n
* sizeof(struct ctl_table
));
5275 set_table_entry(struct ctl_table
*entry
,
5276 const char *procname
, void *data
, int maxlen
,
5277 mode_t mode
, proc_handler
*proc_handler
)
5279 entry
->procname
= procname
;
5281 entry
->maxlen
= maxlen
;
5283 entry
->proc_handler
= proc_handler
;
5286 static struct ctl_table
*
5287 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5289 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5291 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5292 sizeof(long), 0644, proc_doulongvec_minmax
);
5293 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5294 sizeof(long), 0644, proc_doulongvec_minmax
);
5295 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5296 sizeof(int), 0644, proc_dointvec_minmax
);
5297 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5298 sizeof(int), 0644, proc_dointvec_minmax
);
5299 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5300 sizeof(int), 0644, proc_dointvec_minmax
);
5301 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5302 sizeof(int), 0644, proc_dointvec_minmax
);
5303 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5304 sizeof(int), 0644, proc_dointvec_minmax
);
5305 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5306 sizeof(int), 0644, proc_dointvec_minmax
);
5307 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5308 sizeof(int), 0644, proc_dointvec_minmax
);
5309 set_table_entry(&table
[9], "cache_nice_tries",
5310 &sd
->cache_nice_tries
,
5311 sizeof(int), 0644, proc_dointvec_minmax
);
5312 set_table_entry(&table
[10], "flags", &sd
->flags
,
5313 sizeof(int), 0644, proc_dointvec_minmax
);
5318 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5320 struct ctl_table
*entry
, *table
;
5321 struct sched_domain
*sd
;
5322 int domain_num
= 0, i
;
5325 for_each_domain(cpu
, sd
)
5327 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5330 for_each_domain(cpu
, sd
) {
5331 snprintf(buf
, 32, "domain%d", i
);
5332 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5334 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5341 static struct ctl_table_header
*sd_sysctl_header
;
5342 static void init_sched_domain_sysctl(void)
5344 int i
, cpu_num
= num_online_cpus();
5345 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5348 sd_ctl_dir
[0].child
= entry
;
5350 for (i
= 0; i
< cpu_num
; i
++, entry
++) {
5351 snprintf(buf
, 32, "cpu%d", i
);
5352 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5354 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5356 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5359 static void init_sched_domain_sysctl(void)
5365 * migration_call - callback that gets triggered when a CPU is added.
5366 * Here we can start up the necessary migration thread for the new CPU.
5368 static int __cpuinit
5369 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5371 struct task_struct
*p
;
5372 int cpu
= (long)hcpu
;
5373 unsigned long flags
;
5377 case CPU_LOCK_ACQUIRE
:
5378 mutex_lock(&sched_hotcpu_mutex
);
5381 case CPU_UP_PREPARE
:
5382 case CPU_UP_PREPARE_FROZEN
:
5383 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5386 kthread_bind(p
, cpu
);
5387 /* Must be high prio: stop_machine expects to yield to it. */
5388 rq
= task_rq_lock(p
, &flags
);
5389 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5390 task_rq_unlock(rq
, &flags
);
5391 cpu_rq(cpu
)->migration_thread
= p
;
5395 case CPU_ONLINE_FROZEN
:
5396 /* Strictly unneccessary, as first user will wake it. */
5397 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5400 #ifdef CONFIG_HOTPLUG_CPU
5401 case CPU_UP_CANCELED
:
5402 case CPU_UP_CANCELED_FROZEN
:
5403 if (!cpu_rq(cpu
)->migration_thread
)
5405 /* Unbind it from offline cpu so it can run. Fall thru. */
5406 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5407 any_online_cpu(cpu_online_map
));
5408 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5409 cpu_rq(cpu
)->migration_thread
= NULL
;
5413 case CPU_DEAD_FROZEN
:
5414 migrate_live_tasks(cpu
);
5416 kthread_stop(rq
->migration_thread
);
5417 rq
->migration_thread
= NULL
;
5418 /* Idle task back to normal (off runqueue, low prio) */
5419 rq
= task_rq_lock(rq
->idle
, &flags
);
5420 update_rq_clock(rq
);
5421 deactivate_task(rq
, rq
->idle
, 0);
5422 rq
->idle
->static_prio
= MAX_PRIO
;
5423 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5424 rq
->idle
->sched_class
= &idle_sched_class
;
5425 migrate_dead_tasks(cpu
);
5426 task_rq_unlock(rq
, &flags
);
5427 migrate_nr_uninterruptible(rq
);
5428 BUG_ON(rq
->nr_running
!= 0);
5430 /* No need to migrate the tasks: it was best-effort if
5431 * they didn't take sched_hotcpu_mutex. Just wake up
5432 * the requestors. */
5433 spin_lock_irq(&rq
->lock
);
5434 while (!list_empty(&rq
->migration_queue
)) {
5435 struct migration_req
*req
;
5437 req
= list_entry(rq
->migration_queue
.next
,
5438 struct migration_req
, list
);
5439 list_del_init(&req
->list
);
5440 complete(&req
->done
);
5442 spin_unlock_irq(&rq
->lock
);
5445 case CPU_LOCK_RELEASE
:
5446 mutex_unlock(&sched_hotcpu_mutex
);
5452 /* Register at highest priority so that task migration (migrate_all_tasks)
5453 * happens before everything else.
5455 static struct notifier_block __cpuinitdata migration_notifier
= {
5456 .notifier_call
= migration_call
,
5460 int __init
migration_init(void)
5462 void *cpu
= (void *)(long)smp_processor_id();
5465 /* Start one for the boot CPU: */
5466 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5467 BUG_ON(err
== NOTIFY_BAD
);
5468 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5469 register_cpu_notifier(&migration_notifier
);
5477 /* Number of possible processor ids */
5478 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5479 EXPORT_SYMBOL(nr_cpu_ids
);
5481 #ifdef CONFIG_SCHED_DEBUG
5482 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5487 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5491 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5496 struct sched_group
*group
= sd
->groups
;
5497 cpumask_t groupmask
;
5499 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5500 cpus_clear(groupmask
);
5503 for (i
= 0; i
< level
+ 1; i
++)
5505 printk("domain %d: ", level
);
5507 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5508 printk("does not load-balance\n");
5510 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5515 printk("span %s\n", str
);
5517 if (!cpu_isset(cpu
, sd
->span
))
5518 printk(KERN_ERR
"ERROR: domain->span does not contain "
5520 if (!cpu_isset(cpu
, group
->cpumask
))
5521 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5525 for (i
= 0; i
< level
+ 2; i
++)
5531 printk(KERN_ERR
"ERROR: group is NULL\n");
5535 if (!group
->__cpu_power
) {
5537 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5542 if (!cpus_weight(group
->cpumask
)) {
5544 printk(KERN_ERR
"ERROR: empty group\n");
5548 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5550 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5554 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5556 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5559 group
= group
->next
;
5560 } while (group
!= sd
->groups
);
5563 if (!cpus_equal(sd
->span
, groupmask
))
5564 printk(KERN_ERR
"ERROR: groups don't span "
5572 if (!cpus_subset(groupmask
, sd
->span
))
5573 printk(KERN_ERR
"ERROR: parent span is not a superset "
5574 "of domain->span\n");
5579 # define sched_domain_debug(sd, cpu) do { } while (0)
5582 static int sd_degenerate(struct sched_domain
*sd
)
5584 if (cpus_weight(sd
->span
) == 1)
5587 /* Following flags need at least 2 groups */
5588 if (sd
->flags
& (SD_LOAD_BALANCE
|
5589 SD_BALANCE_NEWIDLE
|
5593 SD_SHARE_PKG_RESOURCES
)) {
5594 if (sd
->groups
!= sd
->groups
->next
)
5598 /* Following flags don't use groups */
5599 if (sd
->flags
& (SD_WAKE_IDLE
|
5608 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5610 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5612 if (sd_degenerate(parent
))
5615 if (!cpus_equal(sd
->span
, parent
->span
))
5618 /* Does parent contain flags not in child? */
5619 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5620 if (cflags
& SD_WAKE_AFFINE
)
5621 pflags
&= ~SD_WAKE_BALANCE
;
5622 /* Flags needing groups don't count if only 1 group in parent */
5623 if (parent
->groups
== parent
->groups
->next
) {
5624 pflags
&= ~(SD_LOAD_BALANCE
|
5625 SD_BALANCE_NEWIDLE
|
5629 SD_SHARE_PKG_RESOURCES
);
5631 if (~cflags
& pflags
)
5638 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5639 * hold the hotplug lock.
5641 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5643 struct rq
*rq
= cpu_rq(cpu
);
5644 struct sched_domain
*tmp
;
5646 /* Remove the sched domains which do not contribute to scheduling. */
5647 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5648 struct sched_domain
*parent
= tmp
->parent
;
5651 if (sd_parent_degenerate(tmp
, parent
)) {
5652 tmp
->parent
= parent
->parent
;
5654 parent
->parent
->child
= tmp
;
5658 if (sd
&& sd_degenerate(sd
)) {
5664 sched_domain_debug(sd
, cpu
);
5666 rcu_assign_pointer(rq
->sd
, sd
);
5669 /* cpus with isolated domains */
5670 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5672 /* Setup the mask of cpus configured for isolated domains */
5673 static int __init
isolated_cpu_setup(char *str
)
5675 int ints
[NR_CPUS
], i
;
5677 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5678 cpus_clear(cpu_isolated_map
);
5679 for (i
= 1; i
<= ints
[0]; i
++)
5680 if (ints
[i
] < NR_CPUS
)
5681 cpu_set(ints
[i
], cpu_isolated_map
);
5685 __setup("isolcpus=", isolated_cpu_setup
);
5688 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5689 * to a function which identifies what group(along with sched group) a CPU
5690 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5691 * (due to the fact that we keep track of groups covered with a cpumask_t).
5693 * init_sched_build_groups will build a circular linked list of the groups
5694 * covered by the given span, and will set each group's ->cpumask correctly,
5695 * and ->cpu_power to 0.
5698 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5699 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5700 struct sched_group
**sg
))
5702 struct sched_group
*first
= NULL
, *last
= NULL
;
5703 cpumask_t covered
= CPU_MASK_NONE
;
5706 for_each_cpu_mask(i
, span
) {
5707 struct sched_group
*sg
;
5708 int group
= group_fn(i
, cpu_map
, &sg
);
5711 if (cpu_isset(i
, covered
))
5714 sg
->cpumask
= CPU_MASK_NONE
;
5715 sg
->__cpu_power
= 0;
5717 for_each_cpu_mask(j
, span
) {
5718 if (group_fn(j
, cpu_map
, NULL
) != group
)
5721 cpu_set(j
, covered
);
5722 cpu_set(j
, sg
->cpumask
);
5733 #define SD_NODES_PER_DOMAIN 16
5738 * find_next_best_node - find the next node to include in a sched_domain
5739 * @node: node whose sched_domain we're building
5740 * @used_nodes: nodes already in the sched_domain
5742 * Find the next node to include in a given scheduling domain. Simply
5743 * finds the closest node not already in the @used_nodes map.
5745 * Should use nodemask_t.
5747 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5749 int i
, n
, val
, min_val
, best_node
= 0;
5753 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5754 /* Start at @node */
5755 n
= (node
+ i
) % MAX_NUMNODES
;
5757 if (!nr_cpus_node(n
))
5760 /* Skip already used nodes */
5761 if (test_bit(n
, used_nodes
))
5764 /* Simple min distance search */
5765 val
= node_distance(node
, n
);
5767 if (val
< min_val
) {
5773 set_bit(best_node
, used_nodes
);
5778 * sched_domain_node_span - get a cpumask for a node's sched_domain
5779 * @node: node whose cpumask we're constructing
5780 * @size: number of nodes to include in this span
5782 * Given a node, construct a good cpumask for its sched_domain to span. It
5783 * should be one that prevents unnecessary balancing, but also spreads tasks
5786 static cpumask_t
sched_domain_node_span(int node
)
5788 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5789 cpumask_t span
, nodemask
;
5793 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5795 nodemask
= node_to_cpumask(node
);
5796 cpus_or(span
, span
, nodemask
);
5797 set_bit(node
, used_nodes
);
5799 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5800 int next_node
= find_next_best_node(node
, used_nodes
);
5802 nodemask
= node_to_cpumask(next_node
);
5803 cpus_or(span
, span
, nodemask
);
5810 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5813 * SMT sched-domains:
5815 #ifdef CONFIG_SCHED_SMT
5816 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5817 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5819 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5820 struct sched_group
**sg
)
5823 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5829 * multi-core sched-domains:
5831 #ifdef CONFIG_SCHED_MC
5832 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5833 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5836 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5837 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5838 struct sched_group
**sg
)
5841 cpumask_t mask
= cpu_sibling_map
[cpu
];
5842 cpus_and(mask
, mask
, *cpu_map
);
5843 group
= first_cpu(mask
);
5845 *sg
= &per_cpu(sched_group_core
, group
);
5848 #elif defined(CONFIG_SCHED_MC)
5849 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5850 struct sched_group
**sg
)
5853 *sg
= &per_cpu(sched_group_core
, cpu
);
5858 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5859 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5861 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5862 struct sched_group
**sg
)
5865 #ifdef CONFIG_SCHED_MC
5866 cpumask_t mask
= cpu_coregroup_map(cpu
);
5867 cpus_and(mask
, mask
, *cpu_map
);
5868 group
= first_cpu(mask
);
5869 #elif defined(CONFIG_SCHED_SMT)
5870 cpumask_t mask
= cpu_sibling_map
[cpu
];
5871 cpus_and(mask
, mask
, *cpu_map
);
5872 group
= first_cpu(mask
);
5877 *sg
= &per_cpu(sched_group_phys
, group
);
5883 * The init_sched_build_groups can't handle what we want to do with node
5884 * groups, so roll our own. Now each node has its own list of groups which
5885 * gets dynamically allocated.
5887 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5888 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5890 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5891 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5893 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5894 struct sched_group
**sg
)
5896 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5899 cpus_and(nodemask
, nodemask
, *cpu_map
);
5900 group
= first_cpu(nodemask
);
5903 *sg
= &per_cpu(sched_group_allnodes
, group
);
5907 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5909 struct sched_group
*sg
= group_head
;
5915 for_each_cpu_mask(j
, sg
->cpumask
) {
5916 struct sched_domain
*sd
;
5918 sd
= &per_cpu(phys_domains
, j
);
5919 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5921 * Only add "power" once for each
5927 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5930 if (sg
!= group_head
)
5936 /* Free memory allocated for various sched_group structures */
5937 static void free_sched_groups(const cpumask_t
*cpu_map
)
5941 for_each_cpu_mask(cpu
, *cpu_map
) {
5942 struct sched_group
**sched_group_nodes
5943 = sched_group_nodes_bycpu
[cpu
];
5945 if (!sched_group_nodes
)
5948 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5949 cpumask_t nodemask
= node_to_cpumask(i
);
5950 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5952 cpus_and(nodemask
, nodemask
, *cpu_map
);
5953 if (cpus_empty(nodemask
))
5963 if (oldsg
!= sched_group_nodes
[i
])
5966 kfree(sched_group_nodes
);
5967 sched_group_nodes_bycpu
[cpu
] = NULL
;
5971 static void free_sched_groups(const cpumask_t
*cpu_map
)
5977 * Initialize sched groups cpu_power.
5979 * cpu_power indicates the capacity of sched group, which is used while
5980 * distributing the load between different sched groups in a sched domain.
5981 * Typically cpu_power for all the groups in a sched domain will be same unless
5982 * there are asymmetries in the topology. If there are asymmetries, group
5983 * having more cpu_power will pickup more load compared to the group having
5986 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5987 * the maximum number of tasks a group can handle in the presence of other idle
5988 * or lightly loaded groups in the same sched domain.
5990 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5992 struct sched_domain
*child
;
5993 struct sched_group
*group
;
5995 WARN_ON(!sd
|| !sd
->groups
);
5997 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6002 sd
->groups
->__cpu_power
= 0;
6005 * For perf policy, if the groups in child domain share resources
6006 * (for example cores sharing some portions of the cache hierarchy
6007 * or SMT), then set this domain groups cpu_power such that each group
6008 * can handle only one task, when there are other idle groups in the
6009 * same sched domain.
6011 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6013 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6014 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6019 * add cpu_power of each child group to this groups cpu_power
6021 group
= child
->groups
;
6023 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6024 group
= group
->next
;
6025 } while (group
!= child
->groups
);
6029 * Build sched domains for a given set of cpus and attach the sched domains
6030 * to the individual cpus
6032 static int build_sched_domains(const cpumask_t
*cpu_map
)
6036 struct sched_group
**sched_group_nodes
= NULL
;
6037 int sd_allnodes
= 0;
6040 * Allocate the per-node list of sched groups
6042 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6044 if (!sched_group_nodes
) {
6045 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6048 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6052 * Set up domains for cpus specified by the cpu_map.
6054 for_each_cpu_mask(i
, *cpu_map
) {
6055 struct sched_domain
*sd
= NULL
, *p
;
6056 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6058 cpus_and(nodemask
, nodemask
, *cpu_map
);
6061 if (cpus_weight(*cpu_map
) >
6062 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6063 sd
= &per_cpu(allnodes_domains
, i
);
6064 *sd
= SD_ALLNODES_INIT
;
6065 sd
->span
= *cpu_map
;
6066 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6072 sd
= &per_cpu(node_domains
, i
);
6074 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6078 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6082 sd
= &per_cpu(phys_domains
, i
);
6084 sd
->span
= nodemask
;
6088 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6090 #ifdef CONFIG_SCHED_MC
6092 sd
= &per_cpu(core_domains
, i
);
6094 sd
->span
= cpu_coregroup_map(i
);
6095 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6098 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6101 #ifdef CONFIG_SCHED_SMT
6103 sd
= &per_cpu(cpu_domains
, i
);
6104 *sd
= SD_SIBLING_INIT
;
6105 sd
->span
= cpu_sibling_map
[i
];
6106 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6109 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6113 #ifdef CONFIG_SCHED_SMT
6114 /* Set up CPU (sibling) groups */
6115 for_each_cpu_mask(i
, *cpu_map
) {
6116 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6117 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6118 if (i
!= first_cpu(this_sibling_map
))
6121 init_sched_build_groups(this_sibling_map
, cpu_map
,
6126 #ifdef CONFIG_SCHED_MC
6127 /* Set up multi-core groups */
6128 for_each_cpu_mask(i
, *cpu_map
) {
6129 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6130 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6131 if (i
!= first_cpu(this_core_map
))
6133 init_sched_build_groups(this_core_map
, cpu_map
,
6134 &cpu_to_core_group
);
6138 /* Set up physical groups */
6139 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6140 cpumask_t nodemask
= node_to_cpumask(i
);
6142 cpus_and(nodemask
, nodemask
, *cpu_map
);
6143 if (cpus_empty(nodemask
))
6146 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6150 /* Set up node groups */
6152 init_sched_build_groups(*cpu_map
, cpu_map
,
6153 &cpu_to_allnodes_group
);
6155 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6156 /* Set up node groups */
6157 struct sched_group
*sg
, *prev
;
6158 cpumask_t nodemask
= node_to_cpumask(i
);
6159 cpumask_t domainspan
;
6160 cpumask_t covered
= CPU_MASK_NONE
;
6163 cpus_and(nodemask
, nodemask
, *cpu_map
);
6164 if (cpus_empty(nodemask
)) {
6165 sched_group_nodes
[i
] = NULL
;
6169 domainspan
= sched_domain_node_span(i
);
6170 cpus_and(domainspan
, domainspan
, *cpu_map
);
6172 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6174 printk(KERN_WARNING
"Can not alloc domain group for "
6178 sched_group_nodes
[i
] = sg
;
6179 for_each_cpu_mask(j
, nodemask
) {
6180 struct sched_domain
*sd
;
6182 sd
= &per_cpu(node_domains
, j
);
6185 sg
->__cpu_power
= 0;
6186 sg
->cpumask
= nodemask
;
6188 cpus_or(covered
, covered
, nodemask
);
6191 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6192 cpumask_t tmp
, notcovered
;
6193 int n
= (i
+ j
) % MAX_NUMNODES
;
6195 cpus_complement(notcovered
, covered
);
6196 cpus_and(tmp
, notcovered
, *cpu_map
);
6197 cpus_and(tmp
, tmp
, domainspan
);
6198 if (cpus_empty(tmp
))
6201 nodemask
= node_to_cpumask(n
);
6202 cpus_and(tmp
, tmp
, nodemask
);
6203 if (cpus_empty(tmp
))
6206 sg
= kmalloc_node(sizeof(struct sched_group
),
6210 "Can not alloc domain group for node %d\n", j
);
6213 sg
->__cpu_power
= 0;
6215 sg
->next
= prev
->next
;
6216 cpus_or(covered
, covered
, tmp
);
6223 /* Calculate CPU power for physical packages and nodes */
6224 #ifdef CONFIG_SCHED_SMT
6225 for_each_cpu_mask(i
, *cpu_map
) {
6226 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6228 init_sched_groups_power(i
, sd
);
6231 #ifdef CONFIG_SCHED_MC
6232 for_each_cpu_mask(i
, *cpu_map
) {
6233 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6235 init_sched_groups_power(i
, sd
);
6239 for_each_cpu_mask(i
, *cpu_map
) {
6240 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6242 init_sched_groups_power(i
, sd
);
6246 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6247 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6250 struct sched_group
*sg
;
6252 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6253 init_numa_sched_groups_power(sg
);
6257 /* Attach the domains */
6258 for_each_cpu_mask(i
, *cpu_map
) {
6259 struct sched_domain
*sd
;
6260 #ifdef CONFIG_SCHED_SMT
6261 sd
= &per_cpu(cpu_domains
, i
);
6262 #elif defined(CONFIG_SCHED_MC)
6263 sd
= &per_cpu(core_domains
, i
);
6265 sd
= &per_cpu(phys_domains
, i
);
6267 cpu_attach_domain(sd
, i
);
6274 free_sched_groups(cpu_map
);
6279 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6281 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6283 cpumask_t cpu_default_map
;
6287 * Setup mask for cpus without special case scheduling requirements.
6288 * For now this just excludes isolated cpus, but could be used to
6289 * exclude other special cases in the future.
6291 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6293 err
= build_sched_domains(&cpu_default_map
);
6298 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6300 free_sched_groups(cpu_map
);
6304 * Detach sched domains from a group of cpus specified in cpu_map
6305 * These cpus will now be attached to the NULL domain
6307 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6311 for_each_cpu_mask(i
, *cpu_map
)
6312 cpu_attach_domain(NULL
, i
);
6313 synchronize_sched();
6314 arch_destroy_sched_domains(cpu_map
);
6318 * Partition sched domains as specified by the cpumasks below.
6319 * This attaches all cpus from the cpumasks to the NULL domain,
6320 * waits for a RCU quiescent period, recalculates sched
6321 * domain information and then attaches them back to the
6322 * correct sched domains
6323 * Call with hotplug lock held
6325 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6327 cpumask_t change_map
;
6330 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6331 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6332 cpus_or(change_map
, *partition1
, *partition2
);
6334 /* Detach sched domains from all of the affected cpus */
6335 detach_destroy_domains(&change_map
);
6336 if (!cpus_empty(*partition1
))
6337 err
= build_sched_domains(partition1
);
6338 if (!err
&& !cpus_empty(*partition2
))
6339 err
= build_sched_domains(partition2
);
6344 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6345 static int arch_reinit_sched_domains(void)
6349 mutex_lock(&sched_hotcpu_mutex
);
6350 detach_destroy_domains(&cpu_online_map
);
6351 err
= arch_init_sched_domains(&cpu_online_map
);
6352 mutex_unlock(&sched_hotcpu_mutex
);
6357 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6361 if (buf
[0] != '0' && buf
[0] != '1')
6365 sched_smt_power_savings
= (buf
[0] == '1');
6367 sched_mc_power_savings
= (buf
[0] == '1');
6369 ret
= arch_reinit_sched_domains();
6371 return ret
? ret
: count
;
6374 #ifdef CONFIG_SCHED_MC
6375 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6377 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6379 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6380 const char *buf
, size_t count
)
6382 return sched_power_savings_store(buf
, count
, 0);
6384 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6385 sched_mc_power_savings_store
);
6388 #ifdef CONFIG_SCHED_SMT
6389 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6391 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6393 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6394 const char *buf
, size_t count
)
6396 return sched_power_savings_store(buf
, count
, 1);
6398 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6399 sched_smt_power_savings_store
);
6402 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6406 #ifdef CONFIG_SCHED_SMT
6408 err
= sysfs_create_file(&cls
->kset
.kobj
,
6409 &attr_sched_smt_power_savings
.attr
);
6411 #ifdef CONFIG_SCHED_MC
6412 if (!err
&& mc_capable())
6413 err
= sysfs_create_file(&cls
->kset
.kobj
,
6414 &attr_sched_mc_power_savings
.attr
);
6421 * Force a reinitialization of the sched domains hierarchy. The domains
6422 * and groups cannot be updated in place without racing with the balancing
6423 * code, so we temporarily attach all running cpus to the NULL domain
6424 * which will prevent rebalancing while the sched domains are recalculated.
6426 static int update_sched_domains(struct notifier_block
*nfb
,
6427 unsigned long action
, void *hcpu
)
6430 case CPU_UP_PREPARE
:
6431 case CPU_UP_PREPARE_FROZEN
:
6432 case CPU_DOWN_PREPARE
:
6433 case CPU_DOWN_PREPARE_FROZEN
:
6434 detach_destroy_domains(&cpu_online_map
);
6437 case CPU_UP_CANCELED
:
6438 case CPU_UP_CANCELED_FROZEN
:
6439 case CPU_DOWN_FAILED
:
6440 case CPU_DOWN_FAILED_FROZEN
:
6442 case CPU_ONLINE_FROZEN
:
6444 case CPU_DEAD_FROZEN
:
6446 * Fall through and re-initialise the domains.
6453 /* The hotplug lock is already held by cpu_up/cpu_down */
6454 arch_init_sched_domains(&cpu_online_map
);
6459 void __init
sched_init_smp(void)
6461 cpumask_t non_isolated_cpus
;
6463 mutex_lock(&sched_hotcpu_mutex
);
6464 arch_init_sched_domains(&cpu_online_map
);
6465 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6466 if (cpus_empty(non_isolated_cpus
))
6467 cpu_set(smp_processor_id(), non_isolated_cpus
);
6468 mutex_unlock(&sched_hotcpu_mutex
);
6469 /* XXX: Theoretical race here - CPU may be hotplugged now */
6470 hotcpu_notifier(update_sched_domains
, 0);
6472 init_sched_domain_sysctl();
6474 /* Move init over to a non-isolated CPU */
6475 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6479 void __init
sched_init_smp(void)
6482 #endif /* CONFIG_SMP */
6484 int in_sched_functions(unsigned long addr
)
6486 /* Linker adds these: start and end of __sched functions */
6487 extern char __sched_text_start
[], __sched_text_end
[];
6489 return in_lock_functions(addr
) ||
6490 (addr
>= (unsigned long)__sched_text_start
6491 && addr
< (unsigned long)__sched_text_end
);
6494 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6496 cfs_rq
->tasks_timeline
= RB_ROOT
;
6497 #ifdef CONFIG_FAIR_GROUP_SCHED
6500 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6503 void __init
sched_init(void)
6505 int highest_cpu
= 0;
6508 for_each_possible_cpu(i
) {
6509 struct rt_prio_array
*array
;
6513 spin_lock_init(&rq
->lock
);
6514 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6517 init_cfs_rq(&rq
->cfs
, rq
);
6518 #ifdef CONFIG_FAIR_GROUP_SCHED
6519 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6521 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6522 struct sched_entity
*se
=
6523 &per_cpu(init_sched_entity
, i
);
6525 init_cfs_rq_p
[i
] = cfs_rq
;
6526 init_cfs_rq(cfs_rq
, rq
);
6527 cfs_rq
->tg
= &init_task_group
;
6528 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6529 &rq
->leaf_cfs_rq_list
);
6531 init_sched_entity_p
[i
] = se
;
6532 se
->cfs_rq
= &rq
->cfs
;
6534 se
->load
.weight
= init_task_group_load
;
6535 se
->load
.inv_weight
=
6536 div64_64(1ULL<<32, init_task_group_load
);
6539 init_task_group
.shares
= init_task_group_load
;
6540 spin_lock_init(&init_task_group
.lock
);
6543 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6544 rq
->cpu_load
[j
] = 0;
6547 rq
->active_balance
= 0;
6548 rq
->next_balance
= jiffies
;
6551 rq
->migration_thread
= NULL
;
6552 INIT_LIST_HEAD(&rq
->migration_queue
);
6554 atomic_set(&rq
->nr_iowait
, 0);
6556 array
= &rq
->rt
.active
;
6557 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6558 INIT_LIST_HEAD(array
->queue
+ j
);
6559 __clear_bit(j
, array
->bitmap
);
6562 /* delimiter for bitsearch: */
6563 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6566 set_load_weight(&init_task
);
6568 #ifdef CONFIG_PREEMPT_NOTIFIERS
6569 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6573 nr_cpu_ids
= highest_cpu
+ 1;
6574 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6577 #ifdef CONFIG_RT_MUTEXES
6578 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6582 * The boot idle thread does lazy MMU switching as well:
6584 atomic_inc(&init_mm
.mm_count
);
6585 enter_lazy_tlb(&init_mm
, current
);
6588 * Make us the idle thread. Technically, schedule() should not be
6589 * called from this thread, however somewhere below it might be,
6590 * but because we are the idle thread, we just pick up running again
6591 * when this runqueue becomes "idle".
6593 init_idle(current
, smp_processor_id());
6595 * During early bootup we pretend to be a normal task:
6597 current
->sched_class
= &fair_sched_class
;
6600 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6601 void __might_sleep(char *file
, int line
)
6604 static unsigned long prev_jiffy
; /* ratelimiting */
6606 if ((in_atomic() || irqs_disabled()) &&
6607 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6608 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6610 prev_jiffy
= jiffies
;
6611 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6612 " context at %s:%d\n", file
, line
);
6613 printk("in_atomic():%d, irqs_disabled():%d\n",
6614 in_atomic(), irqs_disabled());
6615 debug_show_held_locks(current
);
6616 if (irqs_disabled())
6617 print_irqtrace_events(current
);
6622 EXPORT_SYMBOL(__might_sleep
);
6625 #ifdef CONFIG_MAGIC_SYSRQ
6626 void normalize_rt_tasks(void)
6628 struct task_struct
*g
, *p
;
6629 unsigned long flags
;
6633 read_lock_irq(&tasklist_lock
);
6634 do_each_thread(g
, p
) {
6635 p
->se
.exec_start
= 0;
6636 #ifdef CONFIG_SCHEDSTATS
6637 p
->se
.wait_start
= 0;
6638 p
->se
.sleep_start
= 0;
6639 p
->se
.block_start
= 0;
6641 task_rq(p
)->clock
= 0;
6645 * Renice negative nice level userspace
6648 if (TASK_NICE(p
) < 0 && p
->mm
)
6649 set_user_nice(p
, 0);
6653 spin_lock_irqsave(&p
->pi_lock
, flags
);
6654 rq
= __task_rq_lock(p
);
6657 * Do not touch the migration thread:
6659 if (p
== rq
->migration_thread
)
6663 update_rq_clock(rq
);
6664 on_rq
= p
->se
.on_rq
;
6666 deactivate_task(rq
, p
, 0);
6667 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6669 activate_task(rq
, p
, 0);
6670 resched_task(rq
->curr
);
6675 __task_rq_unlock(rq
);
6676 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6677 } while_each_thread(g
, p
);
6679 read_unlock_irq(&tasklist_lock
);
6682 #endif /* CONFIG_MAGIC_SYSRQ */
6686 * These functions are only useful for the IA64 MCA handling.
6688 * They can only be called when the whole system has been
6689 * stopped - every CPU needs to be quiescent, and no scheduling
6690 * activity can take place. Using them for anything else would
6691 * be a serious bug, and as a result, they aren't even visible
6692 * under any other configuration.
6696 * curr_task - return the current task for a given cpu.
6697 * @cpu: the processor in question.
6699 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6701 struct task_struct
*curr_task(int cpu
)
6703 return cpu_curr(cpu
);
6707 * set_curr_task - set the current task for a given cpu.
6708 * @cpu: the processor in question.
6709 * @p: the task pointer to set.
6711 * Description: This function must only be used when non-maskable interrupts
6712 * are serviced on a separate stack. It allows the architecture to switch the
6713 * notion of the current task on a cpu in a non-blocking manner. This function
6714 * must be called with all CPU's synchronized, and interrupts disabled, the
6715 * and caller must save the original value of the current task (see
6716 * curr_task() above) and restore that value before reenabling interrupts and
6717 * re-starting the system.
6719 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6721 void set_curr_task(int cpu
, struct task_struct
*p
)
6728 #ifdef CONFIG_FAIR_GROUP_SCHED
6730 /* allocate runqueue etc for a new task group */
6731 struct task_group
*sched_create_group(void)
6733 struct task_group
*tg
;
6734 struct cfs_rq
*cfs_rq
;
6735 struct sched_entity
*se
;
6739 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6741 return ERR_PTR(-ENOMEM
);
6743 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6746 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6750 for_each_possible_cpu(i
) {
6753 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6758 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6763 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6764 memset(se
, 0, sizeof(struct sched_entity
));
6766 tg
->cfs_rq
[i
] = cfs_rq
;
6767 init_cfs_rq(cfs_rq
, rq
);
6771 se
->cfs_rq
= &rq
->cfs
;
6773 se
->load
.weight
= NICE_0_LOAD
;
6774 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
6778 for_each_possible_cpu(i
) {
6780 cfs_rq
= tg
->cfs_rq
[i
];
6781 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6784 tg
->shares
= NICE_0_LOAD
;
6785 spin_lock_init(&tg
->lock
);
6790 for_each_possible_cpu(i
) {
6792 kfree(tg
->cfs_rq
[i
]);
6800 return ERR_PTR(-ENOMEM
);
6803 /* rcu callback to free various structures associated with a task group */
6804 static void free_sched_group(struct rcu_head
*rhp
)
6806 struct cfs_rq
*cfs_rq
= container_of(rhp
, struct cfs_rq
, rcu
);
6807 struct task_group
*tg
= cfs_rq
->tg
;
6808 struct sched_entity
*se
;
6811 /* now it should be safe to free those cfs_rqs */
6812 for_each_possible_cpu(i
) {
6813 cfs_rq
= tg
->cfs_rq
[i
];
6825 /* Destroy runqueue etc associated with a task group */
6826 void sched_destroy_group(struct task_group
*tg
)
6828 struct cfs_rq
*cfs_rq
;
6831 for_each_possible_cpu(i
) {
6832 cfs_rq
= tg
->cfs_rq
[i
];
6833 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
6836 cfs_rq
= tg
->cfs_rq
[0];
6838 /* wait for possible concurrent references to cfs_rqs complete */
6839 call_rcu(&cfs_rq
->rcu
, free_sched_group
);
6842 /* change task's runqueue when it moves between groups.
6843 * The caller of this function should have put the task in its new group
6844 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6845 * reflect its new group.
6847 void sched_move_task(struct task_struct
*tsk
)
6850 unsigned long flags
;
6853 rq
= task_rq_lock(tsk
, &flags
);
6855 if (tsk
->sched_class
!= &fair_sched_class
)
6858 update_rq_clock(rq
);
6860 running
= task_running(rq
, tsk
);
6861 on_rq
= tsk
->se
.on_rq
;
6864 dequeue_task(rq
, tsk
, 0);
6865 if (unlikely(running
))
6866 tsk
->sched_class
->put_prev_task(rq
, tsk
);
6869 set_task_cfs_rq(tsk
);
6872 if (unlikely(running
))
6873 tsk
->sched_class
->set_curr_task(rq
);
6874 enqueue_task(rq
, tsk
, 0);
6878 task_rq_unlock(rq
, &flags
);
6881 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
6883 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
6884 struct rq
*rq
= cfs_rq
->rq
;
6887 spin_lock_irq(&rq
->lock
);
6891 dequeue_entity(cfs_rq
, se
, 0);
6893 se
->load
.weight
= shares
;
6894 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
6897 enqueue_entity(cfs_rq
, se
, 0);
6899 spin_unlock_irq(&rq
->lock
);
6902 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
6906 spin_lock(&tg
->lock
);
6907 if (tg
->shares
== shares
)
6910 /* return -EINVAL if the new value is not sane */
6912 tg
->shares
= shares
;
6913 for_each_possible_cpu(i
)
6914 set_se_shares(tg
->se
[i
], shares
);
6917 spin_unlock(&tg
->lock
);
6921 unsigned long sched_group_shares(struct task_group
*tg
)
6926 #endif /* CONFIG_FAIR_GROUP_SCHED */