[MIPS] vmlinux.lds.S: Handle note sections
[linux-2.6/lfs.git] / kernel / time / tick-broadcast.c
blob0962e0577660722b11d69171a8d4ce5a57017ad6
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
36 #else
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
38 #endif
41 * Debugging: see timer_list.c
43 struct tick_device *tick_get_broadcast_device(void)
45 return &tick_broadcast_device;
48 cpumask_t *tick_get_broadcast_mask(void)
50 return &tick_broadcast_mask;
54 * Start the device in periodic mode
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
58 if (bc)
59 tick_setup_periodic(bc, 1);
63 * Check, if the device can be utilized as broadcast device:
65 int tick_check_broadcast_device(struct clock_event_device *dev)
67 if (tick_broadcast_device.evtdev ||
68 (dev->features & CLOCK_EVT_FEAT_C3STOP))
69 return 0;
71 clockevents_exchange_device(NULL, dev);
72 tick_broadcast_device.evtdev = dev;
73 if (!cpus_empty(tick_broadcast_mask))
74 tick_broadcast_start_periodic(dev);
75 return 1;
79 * Check, if the device is the broadcast device
81 int tick_is_broadcast_device(struct clock_event_device *dev)
83 return (dev && tick_broadcast_device.evtdev == dev);
87 * Check, if the device is disfunctional and a place holder, which
88 * needs to be handled by the broadcast device.
90 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
92 unsigned long flags;
93 int ret = 0;
95 spin_lock_irqsave(&tick_broadcast_lock, flags);
98 * Devices might be registered with both periodic and oneshot
99 * mode disabled. This signals, that the device needs to be
100 * operated from the broadcast device and is a placeholder for
101 * the cpu local device.
103 if (!tick_device_is_functional(dev)) {
104 dev->event_handler = tick_handle_periodic;
105 cpu_set(cpu, tick_broadcast_mask);
106 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
107 ret = 1;
108 } else {
110 * When the new device is not affected by the stop
111 * feature and the cpu is marked in the broadcast mask
112 * then clear the broadcast bit.
114 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
115 int cpu = smp_processor_id();
117 cpu_clear(cpu, tick_broadcast_mask);
118 tick_broadcast_clear_oneshot(cpu);
121 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
122 return ret;
126 * Broadcast the event to the cpus, which are set in the mask
128 int tick_do_broadcast(cpumask_t mask)
130 int ret = 0, cpu = smp_processor_id();
131 struct tick_device *td;
134 * Check, if the current cpu is in the mask
136 if (cpu_isset(cpu, mask)) {
137 cpu_clear(cpu, mask);
138 td = &per_cpu(tick_cpu_device, cpu);
139 td->evtdev->event_handler(td->evtdev);
140 ret = 1;
143 if (!cpus_empty(mask)) {
145 * It might be necessary to actually check whether the devices
146 * have different broadcast functions. For now, just use the
147 * one of the first device. This works as long as we have this
148 * misfeature only on x86 (lapic)
150 cpu = first_cpu(mask);
151 td = &per_cpu(tick_cpu_device, cpu);
152 td->evtdev->broadcast(mask);
153 ret = 1;
155 return ret;
159 * Periodic broadcast:
160 * - invoke the broadcast handlers
162 static void tick_do_periodic_broadcast(void)
164 cpumask_t mask;
166 spin_lock(&tick_broadcast_lock);
168 cpus_and(mask, cpu_online_map, tick_broadcast_mask);
169 tick_do_broadcast(mask);
171 spin_unlock(&tick_broadcast_lock);
175 * Event handler for periodic broadcast ticks
177 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
179 dev->next_event.tv64 = KTIME_MAX;
181 tick_do_periodic_broadcast();
184 * The device is in periodic mode. No reprogramming necessary:
186 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
187 return;
190 * Setup the next period for devices, which do not have
191 * periodic mode:
193 for (;;) {
194 ktime_t next = ktime_add(dev->next_event, tick_period);
196 if (!clockevents_program_event(dev, next, ktime_get()))
197 return;
198 tick_do_periodic_broadcast();
203 * Powerstate information: The system enters/leaves a state, where
204 * affected devices might stop
206 static void tick_do_broadcast_on_off(void *why)
208 struct clock_event_device *bc, *dev;
209 struct tick_device *td;
210 unsigned long flags, *reason = why;
211 int cpu;
213 spin_lock_irqsave(&tick_broadcast_lock, flags);
215 cpu = smp_processor_id();
216 td = &per_cpu(tick_cpu_device, cpu);
217 dev = td->evtdev;
218 bc = tick_broadcast_device.evtdev;
221 * Is the device in broadcast mode forever or is it not
222 * affected by the powerstate ?
224 if (!dev || !tick_device_is_functional(dev) ||
225 !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 goto out;
228 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) {
229 if (!cpu_isset(cpu, tick_broadcast_mask)) {
230 cpu_set(cpu, tick_broadcast_mask);
231 if (td->mode == TICKDEV_MODE_PERIODIC)
232 clockevents_set_mode(dev,
233 CLOCK_EVT_MODE_SHUTDOWN);
235 } else {
236 if (cpu_isset(cpu, tick_broadcast_mask)) {
237 cpu_clear(cpu, tick_broadcast_mask);
238 if (td->mode == TICKDEV_MODE_PERIODIC)
239 tick_setup_periodic(dev, 0);
243 if (cpus_empty(tick_broadcast_mask))
244 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
245 else {
246 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
247 tick_broadcast_start_periodic(bc);
248 else
249 tick_broadcast_setup_oneshot(bc);
251 out:
252 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
256 * Powerstate information: The system enters/leaves a state, where
257 * affected devices might stop.
259 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
261 int cpu = get_cpu();
263 if (!cpu_isset(*oncpu, cpu_online_map)) {
264 printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
265 "offline CPU #%d\n", *oncpu);
266 } else {
268 if (cpu == *oncpu)
269 tick_do_broadcast_on_off(&reason);
270 else
271 smp_call_function_single(*oncpu,
272 tick_do_broadcast_on_off,
273 &reason, 1, 1);
275 put_cpu();
279 * Set the periodic handler depending on broadcast on/off
281 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
283 if (!broadcast)
284 dev->event_handler = tick_handle_periodic;
285 else
286 dev->event_handler = tick_handle_periodic_broadcast;
290 * Remove a CPU from broadcasting
292 void tick_shutdown_broadcast(unsigned int *cpup)
294 struct clock_event_device *bc;
295 unsigned long flags;
296 unsigned int cpu = *cpup;
298 spin_lock_irqsave(&tick_broadcast_lock, flags);
300 bc = tick_broadcast_device.evtdev;
301 cpu_clear(cpu, tick_broadcast_mask);
303 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
304 if (bc && cpus_empty(tick_broadcast_mask))
305 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
308 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
311 void tick_suspend_broadcast(void)
313 struct clock_event_device *bc;
314 unsigned long flags;
316 spin_lock_irqsave(&tick_broadcast_lock, flags);
318 bc = tick_broadcast_device.evtdev;
319 if (bc)
320 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
322 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
325 int tick_resume_broadcast(void)
327 struct clock_event_device *bc;
328 unsigned long flags;
329 int broadcast = 0;
331 spin_lock_irqsave(&tick_broadcast_lock, flags);
333 bc = tick_broadcast_device.evtdev;
335 if (bc) {
336 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
338 switch (tick_broadcast_device.mode) {
339 case TICKDEV_MODE_PERIODIC:
340 if(!cpus_empty(tick_broadcast_mask))
341 tick_broadcast_start_periodic(bc);
342 broadcast = cpu_isset(smp_processor_id(),
343 tick_broadcast_mask);
344 break;
345 case TICKDEV_MODE_ONESHOT:
346 broadcast = tick_resume_broadcast_oneshot(bc);
347 break;
350 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
352 return broadcast;
356 #ifdef CONFIG_TICK_ONESHOT
358 static cpumask_t tick_broadcast_oneshot_mask;
361 * Debugging: see timer_list.c
363 cpumask_t *tick_get_broadcast_oneshot_mask(void)
365 return &tick_broadcast_oneshot_mask;
368 static int tick_broadcast_set_event(ktime_t expires, int force)
370 struct clock_event_device *bc = tick_broadcast_device.evtdev;
371 ktime_t now = ktime_get();
372 int res;
374 for(;;) {
375 res = clockevents_program_event(bc, expires, now);
376 if (!res || !force)
377 return res;
378 now = ktime_get();
379 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
383 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
385 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
386 return 0;
390 * Reprogram the broadcast device:
392 * Called with tick_broadcast_lock held and interrupts disabled.
394 static int tick_broadcast_reprogram(void)
396 ktime_t expires = { .tv64 = KTIME_MAX };
397 struct tick_device *td;
398 int cpu;
401 * Find the event which expires next:
403 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
404 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
405 td = &per_cpu(tick_cpu_device, cpu);
406 if (td->evtdev->next_event.tv64 < expires.tv64)
407 expires = td->evtdev->next_event;
410 if (expires.tv64 == KTIME_MAX)
411 return 0;
413 return tick_broadcast_set_event(expires, 0);
417 * Handle oneshot mode broadcasting
419 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
421 struct tick_device *td;
422 cpumask_t mask;
423 ktime_t now;
424 int cpu;
426 spin_lock(&tick_broadcast_lock);
427 again:
428 dev->next_event.tv64 = KTIME_MAX;
429 mask = CPU_MASK_NONE;
430 now = ktime_get();
431 /* Find all expired events */
432 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
433 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
434 td = &per_cpu(tick_cpu_device, cpu);
435 if (td->evtdev->next_event.tv64 <= now.tv64)
436 cpu_set(cpu, mask);
440 * Wakeup the cpus which have an expired event. The broadcast
441 * device is reprogrammed in the return from idle code.
443 if (!tick_do_broadcast(mask)) {
445 * The global event did not expire any CPU local
446 * events. This happens in dyntick mode, as the
447 * maximum PIT delta is quite small.
449 if (tick_broadcast_reprogram())
450 goto again;
452 spin_unlock(&tick_broadcast_lock);
456 * Powerstate information: The system enters/leaves a state, where
457 * affected devices might stop
459 void tick_broadcast_oneshot_control(unsigned long reason)
461 struct clock_event_device *bc, *dev;
462 struct tick_device *td;
463 unsigned long flags;
464 int cpu;
466 spin_lock_irqsave(&tick_broadcast_lock, flags);
469 * Periodic mode does not care about the enter/exit of power
470 * states
472 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
473 goto out;
475 bc = tick_broadcast_device.evtdev;
476 cpu = smp_processor_id();
477 td = &per_cpu(tick_cpu_device, cpu);
478 dev = td->evtdev;
480 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
481 goto out;
483 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
484 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
485 cpu_set(cpu, tick_broadcast_oneshot_mask);
486 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
487 if (dev->next_event.tv64 < bc->next_event.tv64)
488 tick_broadcast_set_event(dev->next_event, 1);
490 } else {
491 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
492 cpu_clear(cpu, tick_broadcast_oneshot_mask);
493 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
494 if (dev->next_event.tv64 != KTIME_MAX)
495 tick_program_event(dev->next_event, 1);
499 out:
500 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
504 * Reset the one shot broadcast for a cpu
506 * Called with tick_broadcast_lock held
508 static void tick_broadcast_clear_oneshot(int cpu)
510 cpu_clear(cpu, tick_broadcast_oneshot_mask);
514 * tick_broadcast_setup_highres - setup the broadcast device for highres
516 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
518 if (bc->mode != CLOCK_EVT_MODE_ONESHOT) {
519 bc->event_handler = tick_handle_oneshot_broadcast;
520 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
521 bc->next_event.tv64 = KTIME_MAX;
526 * Select oneshot operating mode for the broadcast device
528 void tick_broadcast_switch_to_oneshot(void)
530 struct clock_event_device *bc;
531 unsigned long flags;
533 spin_lock_irqsave(&tick_broadcast_lock, flags);
535 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
536 bc = tick_broadcast_device.evtdev;
537 if (bc)
538 tick_broadcast_setup_oneshot(bc);
539 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
544 * Remove a dead CPU from broadcasting
546 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
548 unsigned long flags;
549 unsigned int cpu = *cpup;
551 spin_lock_irqsave(&tick_broadcast_lock, flags);
554 * Clear the broadcast mask flag for the dead cpu, but do not
555 * stop the broadcast device!
557 cpu_clear(cpu, tick_broadcast_oneshot_mask);
559 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
562 #endif