ext4: Convert truncate_mutex to read write semaphore.
[linux-2.6/lfs.git] / fs / ext4 / inode.c
bloba7eb8bb4bdd4afa7b864789e63dcca52df6cd0a8
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
65 int err;
67 might_sleep();
69 BUFFER_TRACE(bh, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
83 if (bh) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh);
87 return 0;
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
95 if (err)
96 ext4_abort(inode->i_sb, __FUNCTION__,
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode *inode)
108 ext4_lblk_t needed;
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t *start_transaction(struct inode *inode)
141 handle_t *result;
143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 if (!IS_ERR(result))
145 return result;
147 ext4_std_error(inode->i_sb, PTR_ERR(result));
148 return result;
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 return 0;
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 return 0;
163 return 1;
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode * inode)
182 handle_t *handle;
184 truncate_inode_pages(&inode->i_data, 0);
186 if (is_bad_inode(inode))
187 goto no_delete;
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
196 ext4_orphan_del(NULL, inode);
197 goto no_delete;
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
204 ext4_truncate(inode);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
229 return;
230 no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
234 typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238 } Indirect;
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
242 p->key = *(p->p = v);
243 p->bh = bh;
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
277 static int ext4_block_to_path(struct inode *inode,
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
289 if (i_block < 0) {
290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 offsets[n++] = EXT4_IND_BLOCK;
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
299 offsets[n++] = EXT4_DIND_BLOCK;
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 offsets[n++] = EXT4_TIND_BLOCK;
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
310 ext4_warning(inode->i_sb, "ext4_block_to_path",
311 "block %lu > max",
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
352 Indirect chain[4], int *err)
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
358 *err = 0;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
372 return NULL;
374 failure:
375 *err = -EIO;
376 no_block:
377 return p;
381 * ext4_find_near - find a place for allocation with sufficient locality
382 * @inode: owner
383 * @ind: descriptor of indirect block.
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
398 * Caller must make sure that @ind is valid and will stay that way.
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
402 struct ext4_inode_info *ei = EXT4_I(inode);
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
405 ext4_fsblk_t bg_start;
406 ext4_grpblk_t colour;
408 /* Try to find previous block */
409 for (p = ind->p - 1; p >= start; p--) {
410 if (*p)
411 return le32_to_cpu(*p);
414 /* No such thing, so let's try location of indirect block */
415 if (ind->bh)
416 return ind->bh->b_blocknr;
419 * It is going to be referred to from the inode itself? OK, just put it
420 * into the same cylinder group then.
422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423 colour = (current->pid % 16) *
424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425 return bg_start + colour;
429 * ext4_find_goal - find a prefered place for allocation.
430 * @inode: owner
431 * @block: block we want
432 * @chain: chain of indirect blocks
433 * @partial: pointer to the last triple within a chain
434 * @goal: place to store the result.
436 * Normally this function find the prefered place for block allocation,
437 * stores it in *@goal and returns zero.
440 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
441 Indirect chain[4], Indirect *partial)
443 struct ext4_block_alloc_info *block_i;
445 block_i = EXT4_I(inode)->i_block_alloc_info;
448 * try the heuristic for sequential allocation,
449 * failing that at least try to get decent locality.
451 if (block_i && (block == block_i->last_alloc_logical_block + 1)
452 && (block_i->last_alloc_physical_block != 0)) {
453 return block_i->last_alloc_physical_block + 1;
456 return ext4_find_near(inode, partial);
460 * ext4_blks_to_allocate: Look up the block map and count the number
461 * of direct blocks need to be allocated for the given branch.
463 * @branch: chain of indirect blocks
464 * @k: number of blocks need for indirect blocks
465 * @blks: number of data blocks to be mapped.
466 * @blocks_to_boundary: the offset in the indirect block
468 * return the total number of blocks to be allocate, including the
469 * direct and indirect blocks.
471 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
472 int blocks_to_boundary)
474 unsigned long count = 0;
477 * Simple case, [t,d]Indirect block(s) has not allocated yet
478 * then it's clear blocks on that path have not allocated
480 if (k > 0) {
481 /* right now we don't handle cross boundary allocation */
482 if (blks < blocks_to_boundary + 1)
483 count += blks;
484 else
485 count += blocks_to_boundary + 1;
486 return count;
489 count++;
490 while (count < blks && count <= blocks_to_boundary &&
491 le32_to_cpu(*(branch[0].p + count)) == 0) {
492 count++;
494 return count;
498 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
499 * @indirect_blks: the number of blocks need to allocate for indirect
500 * blocks
502 * @new_blocks: on return it will store the new block numbers for
503 * the indirect blocks(if needed) and the first direct block,
504 * @blks: on return it will store the total number of allocated
505 * direct blocks
507 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
508 ext4_fsblk_t goal, int indirect_blks, int blks,
509 ext4_fsblk_t new_blocks[4], int *err)
511 int target, i;
512 unsigned long count = 0;
513 int index = 0;
514 ext4_fsblk_t current_block = 0;
515 int ret = 0;
518 * Here we try to allocate the requested multiple blocks at once,
519 * on a best-effort basis.
520 * To build a branch, we should allocate blocks for
521 * the indirect blocks(if not allocated yet), and at least
522 * the first direct block of this branch. That's the
523 * minimum number of blocks need to allocate(required)
525 target = blks + indirect_blks;
527 while (1) {
528 count = target;
529 /* allocating blocks for indirect blocks and direct blocks */
530 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
531 if (*err)
532 goto failed_out;
534 target -= count;
535 /* allocate blocks for indirect blocks */
536 while (index < indirect_blks && count) {
537 new_blocks[index++] = current_block++;
538 count--;
541 if (count > 0)
542 break;
545 /* save the new block number for the first direct block */
546 new_blocks[index] = current_block;
548 /* total number of blocks allocated for direct blocks */
549 ret = count;
550 *err = 0;
551 return ret;
552 failed_out:
553 for (i = 0; i <index; i++)
554 ext4_free_blocks(handle, inode, new_blocks[i], 1);
555 return ret;
559 * ext4_alloc_branch - allocate and set up a chain of blocks.
560 * @inode: owner
561 * @indirect_blks: number of allocated indirect blocks
562 * @blks: number of allocated direct blocks
563 * @offsets: offsets (in the blocks) to store the pointers to next.
564 * @branch: place to store the chain in.
566 * This function allocates blocks, zeroes out all but the last one,
567 * links them into chain and (if we are synchronous) writes them to disk.
568 * In other words, it prepares a branch that can be spliced onto the
569 * inode. It stores the information about that chain in the branch[], in
570 * the same format as ext4_get_branch() would do. We are calling it after
571 * we had read the existing part of chain and partial points to the last
572 * triple of that (one with zero ->key). Upon the exit we have the same
573 * picture as after the successful ext4_get_block(), except that in one
574 * place chain is disconnected - *branch->p is still zero (we did not
575 * set the last link), but branch->key contains the number that should
576 * be placed into *branch->p to fill that gap.
578 * If allocation fails we free all blocks we've allocated (and forget
579 * their buffer_heads) and return the error value the from failed
580 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
581 * as described above and return 0.
583 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
584 int indirect_blks, int *blks, ext4_fsblk_t goal,
585 ext4_lblk_t *offsets, Indirect *branch)
587 int blocksize = inode->i_sb->s_blocksize;
588 int i, n = 0;
589 int err = 0;
590 struct buffer_head *bh;
591 int num;
592 ext4_fsblk_t new_blocks[4];
593 ext4_fsblk_t current_block;
595 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
596 *blks, new_blocks, &err);
597 if (err)
598 return err;
600 branch[0].key = cpu_to_le32(new_blocks[0]);
602 * metadata blocks and data blocks are allocated.
604 for (n = 1; n <= indirect_blks; n++) {
606 * Get buffer_head for parent block, zero it out
607 * and set the pointer to new one, then send
608 * parent to disk.
610 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
611 branch[n].bh = bh;
612 lock_buffer(bh);
613 BUFFER_TRACE(bh, "call get_create_access");
614 err = ext4_journal_get_create_access(handle, bh);
615 if (err) {
616 unlock_buffer(bh);
617 brelse(bh);
618 goto failed;
621 memset(bh->b_data, 0, blocksize);
622 branch[n].p = (__le32 *) bh->b_data + offsets[n];
623 branch[n].key = cpu_to_le32(new_blocks[n]);
624 *branch[n].p = branch[n].key;
625 if ( n == indirect_blks) {
626 current_block = new_blocks[n];
628 * End of chain, update the last new metablock of
629 * the chain to point to the new allocated
630 * data blocks numbers
632 for (i=1; i < num; i++)
633 *(branch[n].p + i) = cpu_to_le32(++current_block);
635 BUFFER_TRACE(bh, "marking uptodate");
636 set_buffer_uptodate(bh);
637 unlock_buffer(bh);
639 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
640 err = ext4_journal_dirty_metadata(handle, bh);
641 if (err)
642 goto failed;
644 *blks = num;
645 return err;
646 failed:
647 /* Allocation failed, free what we already allocated */
648 for (i = 1; i <= n ; i++) {
649 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
650 ext4_journal_forget(handle, branch[i].bh);
652 for (i = 0; i <indirect_blks; i++)
653 ext4_free_blocks(handle, inode, new_blocks[i], 1);
655 ext4_free_blocks(handle, inode, new_blocks[i], num);
657 return err;
661 * ext4_splice_branch - splice the allocated branch onto inode.
662 * @inode: owner
663 * @block: (logical) number of block we are adding
664 * @chain: chain of indirect blocks (with a missing link - see
665 * ext4_alloc_branch)
666 * @where: location of missing link
667 * @num: number of indirect blocks we are adding
668 * @blks: number of direct blocks we are adding
670 * This function fills the missing link and does all housekeeping needed in
671 * inode (->i_blocks, etc.). In case of success we end up with the full
672 * chain to new block and return 0.
674 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
675 ext4_lblk_t block, Indirect *where, int num, int blks)
677 int i;
678 int err = 0;
679 struct ext4_block_alloc_info *block_i;
680 ext4_fsblk_t current_block;
682 block_i = EXT4_I(inode)->i_block_alloc_info;
684 * If we're splicing into a [td]indirect block (as opposed to the
685 * inode) then we need to get write access to the [td]indirect block
686 * before the splice.
688 if (where->bh) {
689 BUFFER_TRACE(where->bh, "get_write_access");
690 err = ext4_journal_get_write_access(handle, where->bh);
691 if (err)
692 goto err_out;
694 /* That's it */
696 *where->p = where->key;
699 * Update the host buffer_head or inode to point to more just allocated
700 * direct blocks blocks
702 if (num == 0 && blks > 1) {
703 current_block = le32_to_cpu(where->key) + 1;
704 for (i = 1; i < blks; i++)
705 *(where->p + i ) = cpu_to_le32(current_block++);
709 * update the most recently allocated logical & physical block
710 * in i_block_alloc_info, to assist find the proper goal block for next
711 * allocation
713 if (block_i) {
714 block_i->last_alloc_logical_block = block + blks - 1;
715 block_i->last_alloc_physical_block =
716 le32_to_cpu(where[num].key) + blks - 1;
719 /* We are done with atomic stuff, now do the rest of housekeeping */
721 inode->i_ctime = ext4_current_time(inode);
722 ext4_mark_inode_dirty(handle, inode);
724 /* had we spliced it onto indirect block? */
725 if (where->bh) {
727 * If we spliced it onto an indirect block, we haven't
728 * altered the inode. Note however that if it is being spliced
729 * onto an indirect block at the very end of the file (the
730 * file is growing) then we *will* alter the inode to reflect
731 * the new i_size. But that is not done here - it is done in
732 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
734 jbd_debug(5, "splicing indirect only\n");
735 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
736 err = ext4_journal_dirty_metadata(handle, where->bh);
737 if (err)
738 goto err_out;
739 } else {
741 * OK, we spliced it into the inode itself on a direct block.
742 * Inode was dirtied above.
744 jbd_debug(5, "splicing direct\n");
746 return err;
748 err_out:
749 for (i = 1; i <= num; i++) {
750 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
751 ext4_journal_forget(handle, where[i].bh);
752 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
754 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
756 return err;
760 * Allocation strategy is simple: if we have to allocate something, we will
761 * have to go the whole way to leaf. So let's do it before attaching anything
762 * to tree, set linkage between the newborn blocks, write them if sync is
763 * required, recheck the path, free and repeat if check fails, otherwise
764 * set the last missing link (that will protect us from any truncate-generated
765 * removals - all blocks on the path are immune now) and possibly force the
766 * write on the parent block.
767 * That has a nice additional property: no special recovery from the failed
768 * allocations is needed - we simply release blocks and do not touch anything
769 * reachable from inode.
771 * `handle' can be NULL if create == 0.
773 * The BKL may not be held on entry here. Be sure to take it early.
774 * return > 0, # of blocks mapped or allocated.
775 * return = 0, if plain lookup failed.
776 * return < 0, error case.
779 * Need to be called with
780 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
781 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
783 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
784 ext4_lblk_t iblock, unsigned long maxblocks,
785 struct buffer_head *bh_result,
786 int create, int extend_disksize)
788 int err = -EIO;
789 ext4_lblk_t offsets[4];
790 Indirect chain[4];
791 Indirect *partial;
792 ext4_fsblk_t goal;
793 int indirect_blks;
794 int blocks_to_boundary = 0;
795 int depth;
796 struct ext4_inode_info *ei = EXT4_I(inode);
797 int count = 0;
798 ext4_fsblk_t first_block = 0;
801 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
802 J_ASSERT(handle != NULL || create == 0);
803 depth = ext4_block_to_path(inode, iblock, offsets,
804 &blocks_to_boundary);
806 if (depth == 0)
807 goto out;
809 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
811 /* Simplest case - block found, no allocation needed */
812 if (!partial) {
813 first_block = le32_to_cpu(chain[depth - 1].key);
814 clear_buffer_new(bh_result);
815 count++;
816 /*map more blocks*/
817 while (count < maxblocks && count <= blocks_to_boundary) {
818 ext4_fsblk_t blk;
820 blk = le32_to_cpu(*(chain[depth-1].p + count));
822 if (blk == first_block + count)
823 count++;
824 else
825 break;
827 goto got_it;
830 /* Next simple case - plain lookup or failed read of indirect block */
831 if (!create || err == -EIO)
832 goto cleanup;
835 * Okay, we need to do block allocation. Lazily initialize the block
836 * allocation info here if necessary
838 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
839 ext4_init_block_alloc_info(inode);
841 goal = ext4_find_goal(inode, iblock, chain, partial);
843 /* the number of blocks need to allocate for [d,t]indirect blocks */
844 indirect_blks = (chain + depth) - partial - 1;
847 * Next look up the indirect map to count the totoal number of
848 * direct blocks to allocate for this branch.
850 count = ext4_blks_to_allocate(partial, indirect_blks,
851 maxblocks, blocks_to_boundary);
853 * Block out ext4_truncate while we alter the tree
855 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
856 offsets + (partial - chain), partial);
859 * The ext4_splice_branch call will free and forget any buffers
860 * on the new chain if there is a failure, but that risks using
861 * up transaction credits, especially for bitmaps where the
862 * credits cannot be returned. Can we handle this somehow? We
863 * may need to return -EAGAIN upwards in the worst case. --sct
865 if (!err)
866 err = ext4_splice_branch(handle, inode, iblock,
867 partial, indirect_blks, count);
869 * i_disksize growing is protected by i_data_sem. Don't forget to
870 * protect it if you're about to implement concurrent
871 * ext4_get_block() -bzzz
873 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
874 ei->i_disksize = inode->i_size;
875 if (err)
876 goto cleanup;
878 set_buffer_new(bh_result);
879 got_it:
880 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
881 if (count > blocks_to_boundary)
882 set_buffer_boundary(bh_result);
883 err = count;
884 /* Clean up and exit */
885 partial = chain + depth - 1; /* the whole chain */
886 cleanup:
887 while (partial > chain) {
888 BUFFER_TRACE(partial->bh, "call brelse");
889 brelse(partial->bh);
890 partial--;
892 BUFFER_TRACE(bh_result, "returned");
893 out:
894 return err;
897 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
899 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
900 unsigned long max_blocks, struct buffer_head *bh,
901 int create, int extend_disksize)
903 int retval;
904 if (create) {
905 down_write((&EXT4_I(inode)->i_data_sem));
906 } else {
907 down_read((&EXT4_I(inode)->i_data_sem));
909 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
910 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
911 bh, create, extend_disksize);
912 } else {
913 retval = ext4_get_blocks_handle(handle, inode, block,
914 max_blocks, bh, create, extend_disksize);
916 if (create) {
917 up_write((&EXT4_I(inode)->i_data_sem));
918 } else {
919 up_read((&EXT4_I(inode)->i_data_sem));
921 return retval;
924 static int ext4_get_block(struct inode *inode, sector_t iblock,
925 struct buffer_head *bh_result, int create)
927 handle_t *handle = ext4_journal_current_handle();
928 int ret = 0;
929 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
931 if (!create)
932 goto get_block; /* A read */
934 if (max_blocks == 1)
935 goto get_block; /* A single block get */
937 if (handle->h_transaction->t_state == T_LOCKED) {
939 * Huge direct-io writes can hold off commits for long
940 * periods of time. Let this commit run.
942 ext4_journal_stop(handle);
943 handle = ext4_journal_start(inode, DIO_CREDITS);
944 if (IS_ERR(handle))
945 ret = PTR_ERR(handle);
946 goto get_block;
949 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
951 * Getting low on buffer credits...
953 ret = ext4_journal_extend(handle, DIO_CREDITS);
954 if (ret > 0) {
956 * Couldn't extend the transaction. Start a new one.
958 ret = ext4_journal_restart(handle, DIO_CREDITS);
962 get_block:
963 if (ret == 0) {
964 ret = ext4_get_blocks_wrap(handle, inode, iblock,
965 max_blocks, bh_result, create, 0);
966 if (ret > 0) {
967 bh_result->b_size = (ret << inode->i_blkbits);
968 ret = 0;
971 return ret;
975 * `handle' can be NULL if create is zero
977 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
978 ext4_lblk_t block, int create, int *errp)
980 struct buffer_head dummy;
981 int fatal = 0, err;
983 J_ASSERT(handle != NULL || create == 0);
985 dummy.b_state = 0;
986 dummy.b_blocknr = -1000;
987 buffer_trace_init(&dummy.b_history);
988 err = ext4_get_blocks_wrap(handle, inode, block, 1,
989 &dummy, create, 1);
991 * ext4_get_blocks_handle() returns number of blocks
992 * mapped. 0 in case of a HOLE.
994 if (err > 0) {
995 if (err > 1)
996 WARN_ON(1);
997 err = 0;
999 *errp = err;
1000 if (!err && buffer_mapped(&dummy)) {
1001 struct buffer_head *bh;
1002 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1003 if (!bh) {
1004 *errp = -EIO;
1005 goto err;
1007 if (buffer_new(&dummy)) {
1008 J_ASSERT(create != 0);
1009 J_ASSERT(handle != NULL);
1012 * Now that we do not always journal data, we should
1013 * keep in mind whether this should always journal the
1014 * new buffer as metadata. For now, regular file
1015 * writes use ext4_get_block instead, so it's not a
1016 * problem.
1018 lock_buffer(bh);
1019 BUFFER_TRACE(bh, "call get_create_access");
1020 fatal = ext4_journal_get_create_access(handle, bh);
1021 if (!fatal && !buffer_uptodate(bh)) {
1022 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1023 set_buffer_uptodate(bh);
1025 unlock_buffer(bh);
1026 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1027 err = ext4_journal_dirty_metadata(handle, bh);
1028 if (!fatal)
1029 fatal = err;
1030 } else {
1031 BUFFER_TRACE(bh, "not a new buffer");
1033 if (fatal) {
1034 *errp = fatal;
1035 brelse(bh);
1036 bh = NULL;
1038 return bh;
1040 err:
1041 return NULL;
1044 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1045 ext4_lblk_t block, int create, int *err)
1047 struct buffer_head * bh;
1049 bh = ext4_getblk(handle, inode, block, create, err);
1050 if (!bh)
1051 return bh;
1052 if (buffer_uptodate(bh))
1053 return bh;
1054 ll_rw_block(READ_META, 1, &bh);
1055 wait_on_buffer(bh);
1056 if (buffer_uptodate(bh))
1057 return bh;
1058 put_bh(bh);
1059 *err = -EIO;
1060 return NULL;
1063 static int walk_page_buffers( handle_t *handle,
1064 struct buffer_head *head,
1065 unsigned from,
1066 unsigned to,
1067 int *partial,
1068 int (*fn)( handle_t *handle,
1069 struct buffer_head *bh))
1071 struct buffer_head *bh;
1072 unsigned block_start, block_end;
1073 unsigned blocksize = head->b_size;
1074 int err, ret = 0;
1075 struct buffer_head *next;
1077 for ( bh = head, block_start = 0;
1078 ret == 0 && (bh != head || !block_start);
1079 block_start = block_end, bh = next)
1081 next = bh->b_this_page;
1082 block_end = block_start + blocksize;
1083 if (block_end <= from || block_start >= to) {
1084 if (partial && !buffer_uptodate(bh))
1085 *partial = 1;
1086 continue;
1088 err = (*fn)(handle, bh);
1089 if (!ret)
1090 ret = err;
1092 return ret;
1096 * To preserve ordering, it is essential that the hole instantiation and
1097 * the data write be encapsulated in a single transaction. We cannot
1098 * close off a transaction and start a new one between the ext4_get_block()
1099 * and the commit_write(). So doing the jbd2_journal_start at the start of
1100 * prepare_write() is the right place.
1102 * Also, this function can nest inside ext4_writepage() ->
1103 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1104 * has generated enough buffer credits to do the whole page. So we won't
1105 * block on the journal in that case, which is good, because the caller may
1106 * be PF_MEMALLOC.
1108 * By accident, ext4 can be reentered when a transaction is open via
1109 * quota file writes. If we were to commit the transaction while thus
1110 * reentered, there can be a deadlock - we would be holding a quota
1111 * lock, and the commit would never complete if another thread had a
1112 * transaction open and was blocking on the quota lock - a ranking
1113 * violation.
1115 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1116 * will _not_ run commit under these circumstances because handle->h_ref
1117 * is elevated. We'll still have enough credits for the tiny quotafile
1118 * write.
1120 static int do_journal_get_write_access(handle_t *handle,
1121 struct buffer_head *bh)
1123 if (!buffer_mapped(bh) || buffer_freed(bh))
1124 return 0;
1125 return ext4_journal_get_write_access(handle, bh);
1128 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1129 loff_t pos, unsigned len, unsigned flags,
1130 struct page **pagep, void **fsdata)
1132 struct inode *inode = mapping->host;
1133 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1134 handle_t *handle;
1135 int retries = 0;
1136 struct page *page;
1137 pgoff_t index;
1138 unsigned from, to;
1140 index = pos >> PAGE_CACHE_SHIFT;
1141 from = pos & (PAGE_CACHE_SIZE - 1);
1142 to = from + len;
1144 retry:
1145 page = __grab_cache_page(mapping, index);
1146 if (!page)
1147 return -ENOMEM;
1148 *pagep = page;
1150 handle = ext4_journal_start(inode, needed_blocks);
1151 if (IS_ERR(handle)) {
1152 unlock_page(page);
1153 page_cache_release(page);
1154 ret = PTR_ERR(handle);
1155 goto out;
1158 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1159 ext4_get_block);
1161 if (!ret && ext4_should_journal_data(inode)) {
1162 ret = walk_page_buffers(handle, page_buffers(page),
1163 from, to, NULL, do_journal_get_write_access);
1166 if (ret) {
1167 ext4_journal_stop(handle);
1168 unlock_page(page);
1169 page_cache_release(page);
1172 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1173 goto retry;
1174 out:
1175 return ret;
1178 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1180 int err = jbd2_journal_dirty_data(handle, bh);
1181 if (err)
1182 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1183 bh, handle, err);
1184 return err;
1187 /* For write_end() in data=journal mode */
1188 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1190 if (!buffer_mapped(bh) || buffer_freed(bh))
1191 return 0;
1192 set_buffer_uptodate(bh);
1193 return ext4_journal_dirty_metadata(handle, bh);
1197 * Generic write_end handler for ordered and writeback ext4 journal modes.
1198 * We can't use generic_write_end, because that unlocks the page and we need to
1199 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1200 * after block_write_end.
1202 static int ext4_generic_write_end(struct file *file,
1203 struct address_space *mapping,
1204 loff_t pos, unsigned len, unsigned copied,
1205 struct page *page, void *fsdata)
1207 struct inode *inode = file->f_mapping->host;
1209 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1211 if (pos+copied > inode->i_size) {
1212 i_size_write(inode, pos+copied);
1213 mark_inode_dirty(inode);
1216 return copied;
1220 * We need to pick up the new inode size which generic_commit_write gave us
1221 * `file' can be NULL - eg, when called from page_symlink().
1223 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1224 * buffers are managed internally.
1226 static int ext4_ordered_write_end(struct file *file,
1227 struct address_space *mapping,
1228 loff_t pos, unsigned len, unsigned copied,
1229 struct page *page, void *fsdata)
1231 handle_t *handle = ext4_journal_current_handle();
1232 struct inode *inode = file->f_mapping->host;
1233 unsigned from, to;
1234 int ret = 0, ret2;
1236 from = pos & (PAGE_CACHE_SIZE - 1);
1237 to = from + len;
1239 ret = walk_page_buffers(handle, page_buffers(page),
1240 from, to, NULL, ext4_journal_dirty_data);
1242 if (ret == 0) {
1244 * generic_write_end() will run mark_inode_dirty() if i_size
1245 * changes. So let's piggyback the i_disksize mark_inode_dirty
1246 * into that.
1248 loff_t new_i_size;
1250 new_i_size = pos + copied;
1251 if (new_i_size > EXT4_I(inode)->i_disksize)
1252 EXT4_I(inode)->i_disksize = new_i_size;
1253 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1254 page, fsdata);
1255 if (copied < 0)
1256 ret = copied;
1258 ret2 = ext4_journal_stop(handle);
1259 if (!ret)
1260 ret = ret2;
1261 unlock_page(page);
1262 page_cache_release(page);
1264 return ret ? ret : copied;
1267 static int ext4_writeback_write_end(struct file *file,
1268 struct address_space *mapping,
1269 loff_t pos, unsigned len, unsigned copied,
1270 struct page *page, void *fsdata)
1272 handle_t *handle = ext4_journal_current_handle();
1273 struct inode *inode = file->f_mapping->host;
1274 int ret = 0, ret2;
1275 loff_t new_i_size;
1277 new_i_size = pos + copied;
1278 if (new_i_size > EXT4_I(inode)->i_disksize)
1279 EXT4_I(inode)->i_disksize = new_i_size;
1281 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1282 page, fsdata);
1283 if (copied < 0)
1284 ret = copied;
1286 ret2 = ext4_journal_stop(handle);
1287 if (!ret)
1288 ret = ret2;
1289 unlock_page(page);
1290 page_cache_release(page);
1292 return ret ? ret : copied;
1295 static int ext4_journalled_write_end(struct file *file,
1296 struct address_space *mapping,
1297 loff_t pos, unsigned len, unsigned copied,
1298 struct page *page, void *fsdata)
1300 handle_t *handle = ext4_journal_current_handle();
1301 struct inode *inode = mapping->host;
1302 int ret = 0, ret2;
1303 int partial = 0;
1304 unsigned from, to;
1306 from = pos & (PAGE_CACHE_SIZE - 1);
1307 to = from + len;
1309 if (copied < len) {
1310 if (!PageUptodate(page))
1311 copied = 0;
1312 page_zero_new_buffers(page, from+copied, to);
1315 ret = walk_page_buffers(handle, page_buffers(page), from,
1316 to, &partial, write_end_fn);
1317 if (!partial)
1318 SetPageUptodate(page);
1319 if (pos+copied > inode->i_size)
1320 i_size_write(inode, pos+copied);
1321 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1322 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1323 EXT4_I(inode)->i_disksize = inode->i_size;
1324 ret2 = ext4_mark_inode_dirty(handle, inode);
1325 if (!ret)
1326 ret = ret2;
1329 ret2 = ext4_journal_stop(handle);
1330 if (!ret)
1331 ret = ret2;
1332 unlock_page(page);
1333 page_cache_release(page);
1335 return ret ? ret : copied;
1339 * bmap() is special. It gets used by applications such as lilo and by
1340 * the swapper to find the on-disk block of a specific piece of data.
1342 * Naturally, this is dangerous if the block concerned is still in the
1343 * journal. If somebody makes a swapfile on an ext4 data-journaling
1344 * filesystem and enables swap, then they may get a nasty shock when the
1345 * data getting swapped to that swapfile suddenly gets overwritten by
1346 * the original zero's written out previously to the journal and
1347 * awaiting writeback in the kernel's buffer cache.
1349 * So, if we see any bmap calls here on a modified, data-journaled file,
1350 * take extra steps to flush any blocks which might be in the cache.
1352 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1354 struct inode *inode = mapping->host;
1355 journal_t *journal;
1356 int err;
1358 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1360 * This is a REALLY heavyweight approach, but the use of
1361 * bmap on dirty files is expected to be extremely rare:
1362 * only if we run lilo or swapon on a freshly made file
1363 * do we expect this to happen.
1365 * (bmap requires CAP_SYS_RAWIO so this does not
1366 * represent an unprivileged user DOS attack --- we'd be
1367 * in trouble if mortal users could trigger this path at
1368 * will.)
1370 * NB. EXT4_STATE_JDATA is not set on files other than
1371 * regular files. If somebody wants to bmap a directory
1372 * or symlink and gets confused because the buffer
1373 * hasn't yet been flushed to disk, they deserve
1374 * everything they get.
1377 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1378 journal = EXT4_JOURNAL(inode);
1379 jbd2_journal_lock_updates(journal);
1380 err = jbd2_journal_flush(journal);
1381 jbd2_journal_unlock_updates(journal);
1383 if (err)
1384 return 0;
1387 return generic_block_bmap(mapping,block,ext4_get_block);
1390 static int bget_one(handle_t *handle, struct buffer_head *bh)
1392 get_bh(bh);
1393 return 0;
1396 static int bput_one(handle_t *handle, struct buffer_head *bh)
1398 put_bh(bh);
1399 return 0;
1402 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1404 if (buffer_mapped(bh))
1405 return ext4_journal_dirty_data(handle, bh);
1406 return 0;
1410 * Note that we always start a transaction even if we're not journalling
1411 * data. This is to preserve ordering: any hole instantiation within
1412 * __block_write_full_page -> ext4_get_block() should be journalled
1413 * along with the data so we don't crash and then get metadata which
1414 * refers to old data.
1416 * In all journalling modes block_write_full_page() will start the I/O.
1418 * Problem:
1420 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1421 * ext4_writepage()
1423 * Similar for:
1425 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1427 * Same applies to ext4_get_block(). We will deadlock on various things like
1428 * lock_journal and i_data_sem
1430 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1431 * allocations fail.
1433 * 16May01: If we're reentered then journal_current_handle() will be
1434 * non-zero. We simply *return*.
1436 * 1 July 2001: @@@ FIXME:
1437 * In journalled data mode, a data buffer may be metadata against the
1438 * current transaction. But the same file is part of a shared mapping
1439 * and someone does a writepage() on it.
1441 * We will move the buffer onto the async_data list, but *after* it has
1442 * been dirtied. So there's a small window where we have dirty data on
1443 * BJ_Metadata.
1445 * Note that this only applies to the last partial page in the file. The
1446 * bit which block_write_full_page() uses prepare/commit for. (That's
1447 * broken code anyway: it's wrong for msync()).
1449 * It's a rare case: affects the final partial page, for journalled data
1450 * where the file is subject to bith write() and writepage() in the same
1451 * transction. To fix it we'll need a custom block_write_full_page().
1452 * We'll probably need that anyway for journalling writepage() output.
1454 * We don't honour synchronous mounts for writepage(). That would be
1455 * disastrous. Any write() or metadata operation will sync the fs for
1456 * us.
1458 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1459 * we don't need to open a transaction here.
1461 static int ext4_ordered_writepage(struct page *page,
1462 struct writeback_control *wbc)
1464 struct inode *inode = page->mapping->host;
1465 struct buffer_head *page_bufs;
1466 handle_t *handle = NULL;
1467 int ret = 0;
1468 int err;
1470 J_ASSERT(PageLocked(page));
1473 * We give up here if we're reentered, because it might be for a
1474 * different filesystem.
1476 if (ext4_journal_current_handle())
1477 goto out_fail;
1479 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1481 if (IS_ERR(handle)) {
1482 ret = PTR_ERR(handle);
1483 goto out_fail;
1486 if (!page_has_buffers(page)) {
1487 create_empty_buffers(page, inode->i_sb->s_blocksize,
1488 (1 << BH_Dirty)|(1 << BH_Uptodate));
1490 page_bufs = page_buffers(page);
1491 walk_page_buffers(handle, page_bufs, 0,
1492 PAGE_CACHE_SIZE, NULL, bget_one);
1494 ret = block_write_full_page(page, ext4_get_block, wbc);
1497 * The page can become unlocked at any point now, and
1498 * truncate can then come in and change things. So we
1499 * can't touch *page from now on. But *page_bufs is
1500 * safe due to elevated refcount.
1504 * And attach them to the current transaction. But only if
1505 * block_write_full_page() succeeded. Otherwise they are unmapped,
1506 * and generally junk.
1508 if (ret == 0) {
1509 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1510 NULL, jbd2_journal_dirty_data_fn);
1511 if (!ret)
1512 ret = err;
1514 walk_page_buffers(handle, page_bufs, 0,
1515 PAGE_CACHE_SIZE, NULL, bput_one);
1516 err = ext4_journal_stop(handle);
1517 if (!ret)
1518 ret = err;
1519 return ret;
1521 out_fail:
1522 redirty_page_for_writepage(wbc, page);
1523 unlock_page(page);
1524 return ret;
1527 static int ext4_writeback_writepage(struct page *page,
1528 struct writeback_control *wbc)
1530 struct inode *inode = page->mapping->host;
1531 handle_t *handle = NULL;
1532 int ret = 0;
1533 int err;
1535 if (ext4_journal_current_handle())
1536 goto out_fail;
1538 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1539 if (IS_ERR(handle)) {
1540 ret = PTR_ERR(handle);
1541 goto out_fail;
1544 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1545 ret = nobh_writepage(page, ext4_get_block, wbc);
1546 else
1547 ret = block_write_full_page(page, ext4_get_block, wbc);
1549 err = ext4_journal_stop(handle);
1550 if (!ret)
1551 ret = err;
1552 return ret;
1554 out_fail:
1555 redirty_page_for_writepage(wbc, page);
1556 unlock_page(page);
1557 return ret;
1560 static int ext4_journalled_writepage(struct page *page,
1561 struct writeback_control *wbc)
1563 struct inode *inode = page->mapping->host;
1564 handle_t *handle = NULL;
1565 int ret = 0;
1566 int err;
1568 if (ext4_journal_current_handle())
1569 goto no_write;
1571 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1572 if (IS_ERR(handle)) {
1573 ret = PTR_ERR(handle);
1574 goto no_write;
1577 if (!page_has_buffers(page) || PageChecked(page)) {
1579 * It's mmapped pagecache. Add buffers and journal it. There
1580 * doesn't seem much point in redirtying the page here.
1582 ClearPageChecked(page);
1583 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1584 ext4_get_block);
1585 if (ret != 0) {
1586 ext4_journal_stop(handle);
1587 goto out_unlock;
1589 ret = walk_page_buffers(handle, page_buffers(page), 0,
1590 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1592 err = walk_page_buffers(handle, page_buffers(page), 0,
1593 PAGE_CACHE_SIZE, NULL, write_end_fn);
1594 if (ret == 0)
1595 ret = err;
1596 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1597 unlock_page(page);
1598 } else {
1600 * It may be a page full of checkpoint-mode buffers. We don't
1601 * really know unless we go poke around in the buffer_heads.
1602 * But block_write_full_page will do the right thing.
1604 ret = block_write_full_page(page, ext4_get_block, wbc);
1606 err = ext4_journal_stop(handle);
1607 if (!ret)
1608 ret = err;
1609 out:
1610 return ret;
1612 no_write:
1613 redirty_page_for_writepage(wbc, page);
1614 out_unlock:
1615 unlock_page(page);
1616 goto out;
1619 static int ext4_readpage(struct file *file, struct page *page)
1621 return mpage_readpage(page, ext4_get_block);
1624 static int
1625 ext4_readpages(struct file *file, struct address_space *mapping,
1626 struct list_head *pages, unsigned nr_pages)
1628 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1631 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1633 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1636 * If it's a full truncate we just forget about the pending dirtying
1638 if (offset == 0)
1639 ClearPageChecked(page);
1641 jbd2_journal_invalidatepage(journal, page, offset);
1644 static int ext4_releasepage(struct page *page, gfp_t wait)
1646 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1648 WARN_ON(PageChecked(page));
1649 if (!page_has_buffers(page))
1650 return 0;
1651 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1655 * If the O_DIRECT write will extend the file then add this inode to the
1656 * orphan list. So recovery will truncate it back to the original size
1657 * if the machine crashes during the write.
1659 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1660 * crashes then stale disk data _may_ be exposed inside the file.
1662 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1663 const struct iovec *iov, loff_t offset,
1664 unsigned long nr_segs)
1666 struct file *file = iocb->ki_filp;
1667 struct inode *inode = file->f_mapping->host;
1668 struct ext4_inode_info *ei = EXT4_I(inode);
1669 handle_t *handle = NULL;
1670 ssize_t ret;
1671 int orphan = 0;
1672 size_t count = iov_length(iov, nr_segs);
1674 if (rw == WRITE) {
1675 loff_t final_size = offset + count;
1677 handle = ext4_journal_start(inode, DIO_CREDITS);
1678 if (IS_ERR(handle)) {
1679 ret = PTR_ERR(handle);
1680 goto out;
1682 if (final_size > inode->i_size) {
1683 ret = ext4_orphan_add(handle, inode);
1684 if (ret)
1685 goto out_stop;
1686 orphan = 1;
1687 ei->i_disksize = inode->i_size;
1691 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1692 offset, nr_segs,
1693 ext4_get_block, NULL);
1696 * Reacquire the handle: ext4_get_block() can restart the transaction
1698 handle = ext4_journal_current_handle();
1700 out_stop:
1701 if (handle) {
1702 int err;
1704 if (orphan && inode->i_nlink)
1705 ext4_orphan_del(handle, inode);
1706 if (orphan && ret > 0) {
1707 loff_t end = offset + ret;
1708 if (end > inode->i_size) {
1709 ei->i_disksize = end;
1710 i_size_write(inode, end);
1712 * We're going to return a positive `ret'
1713 * here due to non-zero-length I/O, so there's
1714 * no way of reporting error returns from
1715 * ext4_mark_inode_dirty() to userspace. So
1716 * ignore it.
1718 ext4_mark_inode_dirty(handle, inode);
1721 err = ext4_journal_stop(handle);
1722 if (ret == 0)
1723 ret = err;
1725 out:
1726 return ret;
1730 * Pages can be marked dirty completely asynchronously from ext4's journalling
1731 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1732 * much here because ->set_page_dirty is called under VFS locks. The page is
1733 * not necessarily locked.
1735 * We cannot just dirty the page and leave attached buffers clean, because the
1736 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1737 * or jbddirty because all the journalling code will explode.
1739 * So what we do is to mark the page "pending dirty" and next time writepage
1740 * is called, propagate that into the buffers appropriately.
1742 static int ext4_journalled_set_page_dirty(struct page *page)
1744 SetPageChecked(page);
1745 return __set_page_dirty_nobuffers(page);
1748 static const struct address_space_operations ext4_ordered_aops = {
1749 .readpage = ext4_readpage,
1750 .readpages = ext4_readpages,
1751 .writepage = ext4_ordered_writepage,
1752 .sync_page = block_sync_page,
1753 .write_begin = ext4_write_begin,
1754 .write_end = ext4_ordered_write_end,
1755 .bmap = ext4_bmap,
1756 .invalidatepage = ext4_invalidatepage,
1757 .releasepage = ext4_releasepage,
1758 .direct_IO = ext4_direct_IO,
1759 .migratepage = buffer_migrate_page,
1762 static const struct address_space_operations ext4_writeback_aops = {
1763 .readpage = ext4_readpage,
1764 .readpages = ext4_readpages,
1765 .writepage = ext4_writeback_writepage,
1766 .sync_page = block_sync_page,
1767 .write_begin = ext4_write_begin,
1768 .write_end = ext4_writeback_write_end,
1769 .bmap = ext4_bmap,
1770 .invalidatepage = ext4_invalidatepage,
1771 .releasepage = ext4_releasepage,
1772 .direct_IO = ext4_direct_IO,
1773 .migratepage = buffer_migrate_page,
1776 static const struct address_space_operations ext4_journalled_aops = {
1777 .readpage = ext4_readpage,
1778 .readpages = ext4_readpages,
1779 .writepage = ext4_journalled_writepage,
1780 .sync_page = block_sync_page,
1781 .write_begin = ext4_write_begin,
1782 .write_end = ext4_journalled_write_end,
1783 .set_page_dirty = ext4_journalled_set_page_dirty,
1784 .bmap = ext4_bmap,
1785 .invalidatepage = ext4_invalidatepage,
1786 .releasepage = ext4_releasepage,
1789 void ext4_set_aops(struct inode *inode)
1791 if (ext4_should_order_data(inode))
1792 inode->i_mapping->a_ops = &ext4_ordered_aops;
1793 else if (ext4_should_writeback_data(inode))
1794 inode->i_mapping->a_ops = &ext4_writeback_aops;
1795 else
1796 inode->i_mapping->a_ops = &ext4_journalled_aops;
1800 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1801 * up to the end of the block which corresponds to `from'.
1802 * This required during truncate. We need to physically zero the tail end
1803 * of that block so it doesn't yield old data if the file is later grown.
1805 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1806 struct address_space *mapping, loff_t from)
1808 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1809 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1810 unsigned blocksize, length, pos;
1811 ext4_lblk_t iblock;
1812 struct inode *inode = mapping->host;
1813 struct buffer_head *bh;
1814 int err = 0;
1816 blocksize = inode->i_sb->s_blocksize;
1817 length = blocksize - (offset & (blocksize - 1));
1818 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1821 * For "nobh" option, we can only work if we don't need to
1822 * read-in the page - otherwise we create buffers to do the IO.
1824 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1825 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1826 zero_user_page(page, offset, length, KM_USER0);
1827 set_page_dirty(page);
1828 goto unlock;
1831 if (!page_has_buffers(page))
1832 create_empty_buffers(page, blocksize, 0);
1834 /* Find the buffer that contains "offset" */
1835 bh = page_buffers(page);
1836 pos = blocksize;
1837 while (offset >= pos) {
1838 bh = bh->b_this_page;
1839 iblock++;
1840 pos += blocksize;
1843 err = 0;
1844 if (buffer_freed(bh)) {
1845 BUFFER_TRACE(bh, "freed: skip");
1846 goto unlock;
1849 if (!buffer_mapped(bh)) {
1850 BUFFER_TRACE(bh, "unmapped");
1851 ext4_get_block(inode, iblock, bh, 0);
1852 /* unmapped? It's a hole - nothing to do */
1853 if (!buffer_mapped(bh)) {
1854 BUFFER_TRACE(bh, "still unmapped");
1855 goto unlock;
1859 /* Ok, it's mapped. Make sure it's up-to-date */
1860 if (PageUptodate(page))
1861 set_buffer_uptodate(bh);
1863 if (!buffer_uptodate(bh)) {
1864 err = -EIO;
1865 ll_rw_block(READ, 1, &bh);
1866 wait_on_buffer(bh);
1867 /* Uhhuh. Read error. Complain and punt. */
1868 if (!buffer_uptodate(bh))
1869 goto unlock;
1872 if (ext4_should_journal_data(inode)) {
1873 BUFFER_TRACE(bh, "get write access");
1874 err = ext4_journal_get_write_access(handle, bh);
1875 if (err)
1876 goto unlock;
1879 zero_user_page(page, offset, length, KM_USER0);
1881 BUFFER_TRACE(bh, "zeroed end of block");
1883 err = 0;
1884 if (ext4_should_journal_data(inode)) {
1885 err = ext4_journal_dirty_metadata(handle, bh);
1886 } else {
1887 if (ext4_should_order_data(inode))
1888 err = ext4_journal_dirty_data(handle, bh);
1889 mark_buffer_dirty(bh);
1892 unlock:
1893 unlock_page(page);
1894 page_cache_release(page);
1895 return err;
1899 * Probably it should be a library function... search for first non-zero word
1900 * or memcmp with zero_page, whatever is better for particular architecture.
1901 * Linus?
1903 static inline int all_zeroes(__le32 *p, __le32 *q)
1905 while (p < q)
1906 if (*p++)
1907 return 0;
1908 return 1;
1912 * ext4_find_shared - find the indirect blocks for partial truncation.
1913 * @inode: inode in question
1914 * @depth: depth of the affected branch
1915 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1916 * @chain: place to store the pointers to partial indirect blocks
1917 * @top: place to the (detached) top of branch
1919 * This is a helper function used by ext4_truncate().
1921 * When we do truncate() we may have to clean the ends of several
1922 * indirect blocks but leave the blocks themselves alive. Block is
1923 * partially truncated if some data below the new i_size is refered
1924 * from it (and it is on the path to the first completely truncated
1925 * data block, indeed). We have to free the top of that path along
1926 * with everything to the right of the path. Since no allocation
1927 * past the truncation point is possible until ext4_truncate()
1928 * finishes, we may safely do the latter, but top of branch may
1929 * require special attention - pageout below the truncation point
1930 * might try to populate it.
1932 * We atomically detach the top of branch from the tree, store the
1933 * block number of its root in *@top, pointers to buffer_heads of
1934 * partially truncated blocks - in @chain[].bh and pointers to
1935 * their last elements that should not be removed - in
1936 * @chain[].p. Return value is the pointer to last filled element
1937 * of @chain.
1939 * The work left to caller to do the actual freeing of subtrees:
1940 * a) free the subtree starting from *@top
1941 * b) free the subtrees whose roots are stored in
1942 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1943 * c) free the subtrees growing from the inode past the @chain[0].
1944 * (no partially truncated stuff there). */
1946 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1947 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1949 Indirect *partial, *p;
1950 int k, err;
1952 *top = 0;
1953 /* Make k index the deepest non-null offest + 1 */
1954 for (k = depth; k > 1 && !offsets[k-1]; k--)
1956 partial = ext4_get_branch(inode, k, offsets, chain, &err);
1957 /* Writer: pointers */
1958 if (!partial)
1959 partial = chain + k-1;
1961 * If the branch acquired continuation since we've looked at it -
1962 * fine, it should all survive and (new) top doesn't belong to us.
1964 if (!partial->key && *partial->p)
1965 /* Writer: end */
1966 goto no_top;
1967 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1970 * OK, we've found the last block that must survive. The rest of our
1971 * branch should be detached before unlocking. However, if that rest
1972 * of branch is all ours and does not grow immediately from the inode
1973 * it's easier to cheat and just decrement partial->p.
1975 if (p == chain + k - 1 && p > chain) {
1976 p->p--;
1977 } else {
1978 *top = *p->p;
1979 /* Nope, don't do this in ext4. Must leave the tree intact */
1980 #if 0
1981 *p->p = 0;
1982 #endif
1984 /* Writer: end */
1986 while(partial > p) {
1987 brelse(partial->bh);
1988 partial--;
1990 no_top:
1991 return partial;
1995 * Zero a number of block pointers in either an inode or an indirect block.
1996 * If we restart the transaction we must again get write access to the
1997 * indirect block for further modification.
1999 * We release `count' blocks on disk, but (last - first) may be greater
2000 * than `count' because there can be holes in there.
2002 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2003 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2004 unsigned long count, __le32 *first, __le32 *last)
2006 __le32 *p;
2007 if (try_to_extend_transaction(handle, inode)) {
2008 if (bh) {
2009 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2010 ext4_journal_dirty_metadata(handle, bh);
2012 ext4_mark_inode_dirty(handle, inode);
2013 ext4_journal_test_restart(handle, inode);
2014 if (bh) {
2015 BUFFER_TRACE(bh, "retaking write access");
2016 ext4_journal_get_write_access(handle, bh);
2021 * Any buffers which are on the journal will be in memory. We find
2022 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2023 * on them. We've already detached each block from the file, so
2024 * bforget() in jbd2_journal_forget() should be safe.
2026 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2028 for (p = first; p < last; p++) {
2029 u32 nr = le32_to_cpu(*p);
2030 if (nr) {
2031 struct buffer_head *tbh;
2033 *p = 0;
2034 tbh = sb_find_get_block(inode->i_sb, nr);
2035 ext4_forget(handle, 0, inode, tbh, nr);
2039 ext4_free_blocks(handle, inode, block_to_free, count);
2043 * ext4_free_data - free a list of data blocks
2044 * @handle: handle for this transaction
2045 * @inode: inode we are dealing with
2046 * @this_bh: indirect buffer_head which contains *@first and *@last
2047 * @first: array of block numbers
2048 * @last: points immediately past the end of array
2050 * We are freeing all blocks refered from that array (numbers are stored as
2051 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2053 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2054 * blocks are contiguous then releasing them at one time will only affect one
2055 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2056 * actually use a lot of journal space.
2058 * @this_bh will be %NULL if @first and @last point into the inode's direct
2059 * block pointers.
2061 static void ext4_free_data(handle_t *handle, struct inode *inode,
2062 struct buffer_head *this_bh,
2063 __le32 *first, __le32 *last)
2065 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2066 unsigned long count = 0; /* Number of blocks in the run */
2067 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2068 corresponding to
2069 block_to_free */
2070 ext4_fsblk_t nr; /* Current block # */
2071 __le32 *p; /* Pointer into inode/ind
2072 for current block */
2073 int err;
2075 if (this_bh) { /* For indirect block */
2076 BUFFER_TRACE(this_bh, "get_write_access");
2077 err = ext4_journal_get_write_access(handle, this_bh);
2078 /* Important: if we can't update the indirect pointers
2079 * to the blocks, we can't free them. */
2080 if (err)
2081 return;
2084 for (p = first; p < last; p++) {
2085 nr = le32_to_cpu(*p);
2086 if (nr) {
2087 /* accumulate blocks to free if they're contiguous */
2088 if (count == 0) {
2089 block_to_free = nr;
2090 block_to_free_p = p;
2091 count = 1;
2092 } else if (nr == block_to_free + count) {
2093 count++;
2094 } else {
2095 ext4_clear_blocks(handle, inode, this_bh,
2096 block_to_free,
2097 count, block_to_free_p, p);
2098 block_to_free = nr;
2099 block_to_free_p = p;
2100 count = 1;
2105 if (count > 0)
2106 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2107 count, block_to_free_p, p);
2109 if (this_bh) {
2110 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2111 ext4_journal_dirty_metadata(handle, this_bh);
2116 * ext4_free_branches - free an array of branches
2117 * @handle: JBD handle for this transaction
2118 * @inode: inode we are dealing with
2119 * @parent_bh: the buffer_head which contains *@first and *@last
2120 * @first: array of block numbers
2121 * @last: pointer immediately past the end of array
2122 * @depth: depth of the branches to free
2124 * We are freeing all blocks refered from these branches (numbers are
2125 * stored as little-endian 32-bit) and updating @inode->i_blocks
2126 * appropriately.
2128 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2129 struct buffer_head *parent_bh,
2130 __le32 *first, __le32 *last, int depth)
2132 ext4_fsblk_t nr;
2133 __le32 *p;
2135 if (is_handle_aborted(handle))
2136 return;
2138 if (depth--) {
2139 struct buffer_head *bh;
2140 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2141 p = last;
2142 while (--p >= first) {
2143 nr = le32_to_cpu(*p);
2144 if (!nr)
2145 continue; /* A hole */
2147 /* Go read the buffer for the next level down */
2148 bh = sb_bread(inode->i_sb, nr);
2151 * A read failure? Report error and clear slot
2152 * (should be rare).
2154 if (!bh) {
2155 ext4_error(inode->i_sb, "ext4_free_branches",
2156 "Read failure, inode=%lu, block=%llu",
2157 inode->i_ino, nr);
2158 continue;
2161 /* This zaps the entire block. Bottom up. */
2162 BUFFER_TRACE(bh, "free child branches");
2163 ext4_free_branches(handle, inode, bh,
2164 (__le32*)bh->b_data,
2165 (__le32*)bh->b_data + addr_per_block,
2166 depth);
2169 * We've probably journalled the indirect block several
2170 * times during the truncate. But it's no longer
2171 * needed and we now drop it from the transaction via
2172 * jbd2_journal_revoke().
2174 * That's easy if it's exclusively part of this
2175 * transaction. But if it's part of the committing
2176 * transaction then jbd2_journal_forget() will simply
2177 * brelse() it. That means that if the underlying
2178 * block is reallocated in ext4_get_block(),
2179 * unmap_underlying_metadata() will find this block
2180 * and will try to get rid of it. damn, damn.
2182 * If this block has already been committed to the
2183 * journal, a revoke record will be written. And
2184 * revoke records must be emitted *before* clearing
2185 * this block's bit in the bitmaps.
2187 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2190 * Everything below this this pointer has been
2191 * released. Now let this top-of-subtree go.
2193 * We want the freeing of this indirect block to be
2194 * atomic in the journal with the updating of the
2195 * bitmap block which owns it. So make some room in
2196 * the journal.
2198 * We zero the parent pointer *after* freeing its
2199 * pointee in the bitmaps, so if extend_transaction()
2200 * for some reason fails to put the bitmap changes and
2201 * the release into the same transaction, recovery
2202 * will merely complain about releasing a free block,
2203 * rather than leaking blocks.
2205 if (is_handle_aborted(handle))
2206 return;
2207 if (try_to_extend_transaction(handle, inode)) {
2208 ext4_mark_inode_dirty(handle, inode);
2209 ext4_journal_test_restart(handle, inode);
2212 ext4_free_blocks(handle, inode, nr, 1);
2214 if (parent_bh) {
2216 * The block which we have just freed is
2217 * pointed to by an indirect block: journal it
2219 BUFFER_TRACE(parent_bh, "get_write_access");
2220 if (!ext4_journal_get_write_access(handle,
2221 parent_bh)){
2222 *p = 0;
2223 BUFFER_TRACE(parent_bh,
2224 "call ext4_journal_dirty_metadata");
2225 ext4_journal_dirty_metadata(handle,
2226 parent_bh);
2230 } else {
2231 /* We have reached the bottom of the tree. */
2232 BUFFER_TRACE(parent_bh, "free data blocks");
2233 ext4_free_data(handle, inode, parent_bh, first, last);
2238 * ext4_truncate()
2240 * We block out ext4_get_block() block instantiations across the entire
2241 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2242 * simultaneously on behalf of the same inode.
2244 * As we work through the truncate and commmit bits of it to the journal there
2245 * is one core, guiding principle: the file's tree must always be consistent on
2246 * disk. We must be able to restart the truncate after a crash.
2248 * The file's tree may be transiently inconsistent in memory (although it
2249 * probably isn't), but whenever we close off and commit a journal transaction,
2250 * the contents of (the filesystem + the journal) must be consistent and
2251 * restartable. It's pretty simple, really: bottom up, right to left (although
2252 * left-to-right works OK too).
2254 * Note that at recovery time, journal replay occurs *before* the restart of
2255 * truncate against the orphan inode list.
2257 * The committed inode has the new, desired i_size (which is the same as
2258 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2259 * that this inode's truncate did not complete and it will again call
2260 * ext4_truncate() to have another go. So there will be instantiated blocks
2261 * to the right of the truncation point in a crashed ext4 filesystem. But
2262 * that's fine - as long as they are linked from the inode, the post-crash
2263 * ext4_truncate() run will find them and release them.
2265 void ext4_truncate(struct inode *inode)
2267 handle_t *handle;
2268 struct ext4_inode_info *ei = EXT4_I(inode);
2269 __le32 *i_data = ei->i_data;
2270 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2271 struct address_space *mapping = inode->i_mapping;
2272 ext4_lblk_t offsets[4];
2273 Indirect chain[4];
2274 Indirect *partial;
2275 __le32 nr = 0;
2276 int n;
2277 ext4_lblk_t last_block;
2278 unsigned blocksize = inode->i_sb->s_blocksize;
2279 struct page *page;
2281 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2282 S_ISLNK(inode->i_mode)))
2283 return;
2284 if (ext4_inode_is_fast_symlink(inode))
2285 return;
2286 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2287 return;
2290 * We have to lock the EOF page here, because lock_page() nests
2291 * outside jbd2_journal_start().
2293 if ((inode->i_size & (blocksize - 1)) == 0) {
2294 /* Block boundary? Nothing to do */
2295 page = NULL;
2296 } else {
2297 page = grab_cache_page(mapping,
2298 inode->i_size >> PAGE_CACHE_SHIFT);
2299 if (!page)
2300 return;
2303 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2304 ext4_ext_truncate(inode, page);
2305 return;
2308 handle = start_transaction(inode);
2309 if (IS_ERR(handle)) {
2310 if (page) {
2311 clear_highpage(page);
2312 flush_dcache_page(page);
2313 unlock_page(page);
2314 page_cache_release(page);
2316 return; /* AKPM: return what? */
2319 last_block = (inode->i_size + blocksize-1)
2320 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2322 if (page)
2323 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2325 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2326 if (n == 0)
2327 goto out_stop; /* error */
2330 * OK. This truncate is going to happen. We add the inode to the
2331 * orphan list, so that if this truncate spans multiple transactions,
2332 * and we crash, we will resume the truncate when the filesystem
2333 * recovers. It also marks the inode dirty, to catch the new size.
2335 * Implication: the file must always be in a sane, consistent
2336 * truncatable state while each transaction commits.
2338 if (ext4_orphan_add(handle, inode))
2339 goto out_stop;
2342 * The orphan list entry will now protect us from any crash which
2343 * occurs before the truncate completes, so it is now safe to propagate
2344 * the new, shorter inode size (held for now in i_size) into the
2345 * on-disk inode. We do this via i_disksize, which is the value which
2346 * ext4 *really* writes onto the disk inode.
2348 ei->i_disksize = inode->i_size;
2351 * From here we block out all ext4_get_block() callers who want to
2352 * modify the block allocation tree.
2354 down_write(&ei->i_data_sem);
2356 if (n == 1) { /* direct blocks */
2357 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2358 i_data + EXT4_NDIR_BLOCKS);
2359 goto do_indirects;
2362 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2363 /* Kill the top of shared branch (not detached) */
2364 if (nr) {
2365 if (partial == chain) {
2366 /* Shared branch grows from the inode */
2367 ext4_free_branches(handle, inode, NULL,
2368 &nr, &nr+1, (chain+n-1) - partial);
2369 *partial->p = 0;
2371 * We mark the inode dirty prior to restart,
2372 * and prior to stop. No need for it here.
2374 } else {
2375 /* Shared branch grows from an indirect block */
2376 BUFFER_TRACE(partial->bh, "get_write_access");
2377 ext4_free_branches(handle, inode, partial->bh,
2378 partial->p,
2379 partial->p+1, (chain+n-1) - partial);
2382 /* Clear the ends of indirect blocks on the shared branch */
2383 while (partial > chain) {
2384 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2385 (__le32*)partial->bh->b_data+addr_per_block,
2386 (chain+n-1) - partial);
2387 BUFFER_TRACE(partial->bh, "call brelse");
2388 brelse (partial->bh);
2389 partial--;
2391 do_indirects:
2392 /* Kill the remaining (whole) subtrees */
2393 switch (offsets[0]) {
2394 default:
2395 nr = i_data[EXT4_IND_BLOCK];
2396 if (nr) {
2397 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2398 i_data[EXT4_IND_BLOCK] = 0;
2400 case EXT4_IND_BLOCK:
2401 nr = i_data[EXT4_DIND_BLOCK];
2402 if (nr) {
2403 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2404 i_data[EXT4_DIND_BLOCK] = 0;
2406 case EXT4_DIND_BLOCK:
2407 nr = i_data[EXT4_TIND_BLOCK];
2408 if (nr) {
2409 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2410 i_data[EXT4_TIND_BLOCK] = 0;
2412 case EXT4_TIND_BLOCK:
2416 ext4_discard_reservation(inode);
2418 up_write(&ei->i_data_sem);
2419 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2420 ext4_mark_inode_dirty(handle, inode);
2423 * In a multi-transaction truncate, we only make the final transaction
2424 * synchronous
2426 if (IS_SYNC(inode))
2427 handle->h_sync = 1;
2428 out_stop:
2430 * If this was a simple ftruncate(), and the file will remain alive
2431 * then we need to clear up the orphan record which we created above.
2432 * However, if this was a real unlink then we were called by
2433 * ext4_delete_inode(), and we allow that function to clean up the
2434 * orphan info for us.
2436 if (inode->i_nlink)
2437 ext4_orphan_del(handle, inode);
2439 ext4_journal_stop(handle);
2442 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2443 unsigned long ino, struct ext4_iloc *iloc)
2445 unsigned long desc, group_desc;
2446 ext4_group_t block_group;
2447 unsigned long offset;
2448 ext4_fsblk_t block;
2449 struct buffer_head *bh;
2450 struct ext4_group_desc * gdp;
2452 if (!ext4_valid_inum(sb, ino)) {
2454 * This error is already checked for in namei.c unless we are
2455 * looking at an NFS filehandle, in which case no error
2456 * report is needed
2458 return 0;
2461 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2462 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2463 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2464 return 0;
2466 smp_rmb();
2467 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2468 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2469 bh = EXT4_SB(sb)->s_group_desc[group_desc];
2470 if (!bh) {
2471 ext4_error (sb, "ext4_get_inode_block",
2472 "Descriptor not loaded");
2473 return 0;
2476 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2477 desc * EXT4_DESC_SIZE(sb));
2479 * Figure out the offset within the block group inode table
2481 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2482 EXT4_INODE_SIZE(sb);
2483 block = ext4_inode_table(sb, gdp) +
2484 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2486 iloc->block_group = block_group;
2487 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2488 return block;
2492 * ext4_get_inode_loc returns with an extra refcount against the inode's
2493 * underlying buffer_head on success. If 'in_mem' is true, we have all
2494 * data in memory that is needed to recreate the on-disk version of this
2495 * inode.
2497 static int __ext4_get_inode_loc(struct inode *inode,
2498 struct ext4_iloc *iloc, int in_mem)
2500 ext4_fsblk_t block;
2501 struct buffer_head *bh;
2503 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2504 if (!block)
2505 return -EIO;
2507 bh = sb_getblk(inode->i_sb, block);
2508 if (!bh) {
2509 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2510 "unable to read inode block - "
2511 "inode=%lu, block=%llu",
2512 inode->i_ino, block);
2513 return -EIO;
2515 if (!buffer_uptodate(bh)) {
2516 lock_buffer(bh);
2517 if (buffer_uptodate(bh)) {
2518 /* someone brought it uptodate while we waited */
2519 unlock_buffer(bh);
2520 goto has_buffer;
2524 * If we have all information of the inode in memory and this
2525 * is the only valid inode in the block, we need not read the
2526 * block.
2528 if (in_mem) {
2529 struct buffer_head *bitmap_bh;
2530 struct ext4_group_desc *desc;
2531 int inodes_per_buffer;
2532 int inode_offset, i;
2533 ext4_group_t block_group;
2534 int start;
2536 block_group = (inode->i_ino - 1) /
2537 EXT4_INODES_PER_GROUP(inode->i_sb);
2538 inodes_per_buffer = bh->b_size /
2539 EXT4_INODE_SIZE(inode->i_sb);
2540 inode_offset = ((inode->i_ino - 1) %
2541 EXT4_INODES_PER_GROUP(inode->i_sb));
2542 start = inode_offset & ~(inodes_per_buffer - 1);
2544 /* Is the inode bitmap in cache? */
2545 desc = ext4_get_group_desc(inode->i_sb,
2546 block_group, NULL);
2547 if (!desc)
2548 goto make_io;
2550 bitmap_bh = sb_getblk(inode->i_sb,
2551 ext4_inode_bitmap(inode->i_sb, desc));
2552 if (!bitmap_bh)
2553 goto make_io;
2556 * If the inode bitmap isn't in cache then the
2557 * optimisation may end up performing two reads instead
2558 * of one, so skip it.
2560 if (!buffer_uptodate(bitmap_bh)) {
2561 brelse(bitmap_bh);
2562 goto make_io;
2564 for (i = start; i < start + inodes_per_buffer; i++) {
2565 if (i == inode_offset)
2566 continue;
2567 if (ext4_test_bit(i, bitmap_bh->b_data))
2568 break;
2570 brelse(bitmap_bh);
2571 if (i == start + inodes_per_buffer) {
2572 /* all other inodes are free, so skip I/O */
2573 memset(bh->b_data, 0, bh->b_size);
2574 set_buffer_uptodate(bh);
2575 unlock_buffer(bh);
2576 goto has_buffer;
2580 make_io:
2582 * There are other valid inodes in the buffer, this inode
2583 * has in-inode xattrs, or we don't have this inode in memory.
2584 * Read the block from disk.
2586 get_bh(bh);
2587 bh->b_end_io = end_buffer_read_sync;
2588 submit_bh(READ_META, bh);
2589 wait_on_buffer(bh);
2590 if (!buffer_uptodate(bh)) {
2591 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2592 "unable to read inode block - "
2593 "inode=%lu, block=%llu",
2594 inode->i_ino, block);
2595 brelse(bh);
2596 return -EIO;
2599 has_buffer:
2600 iloc->bh = bh;
2601 return 0;
2604 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2606 /* We have all inode data except xattrs in memory here. */
2607 return __ext4_get_inode_loc(inode, iloc,
2608 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2611 void ext4_set_inode_flags(struct inode *inode)
2613 unsigned int flags = EXT4_I(inode)->i_flags;
2615 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2616 if (flags & EXT4_SYNC_FL)
2617 inode->i_flags |= S_SYNC;
2618 if (flags & EXT4_APPEND_FL)
2619 inode->i_flags |= S_APPEND;
2620 if (flags & EXT4_IMMUTABLE_FL)
2621 inode->i_flags |= S_IMMUTABLE;
2622 if (flags & EXT4_NOATIME_FL)
2623 inode->i_flags |= S_NOATIME;
2624 if (flags & EXT4_DIRSYNC_FL)
2625 inode->i_flags |= S_DIRSYNC;
2628 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2629 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2631 unsigned int flags = ei->vfs_inode.i_flags;
2633 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2634 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2635 if (flags & S_SYNC)
2636 ei->i_flags |= EXT4_SYNC_FL;
2637 if (flags & S_APPEND)
2638 ei->i_flags |= EXT4_APPEND_FL;
2639 if (flags & S_IMMUTABLE)
2640 ei->i_flags |= EXT4_IMMUTABLE_FL;
2641 if (flags & S_NOATIME)
2642 ei->i_flags |= EXT4_NOATIME_FL;
2643 if (flags & S_DIRSYNC)
2644 ei->i_flags |= EXT4_DIRSYNC_FL;
2646 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2647 struct ext4_inode_info *ei)
2649 blkcnt_t i_blocks ;
2650 struct inode *inode = &(ei->vfs_inode);
2651 struct super_block *sb = inode->i_sb;
2653 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2654 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2655 /* we are using combined 48 bit field */
2656 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2657 le32_to_cpu(raw_inode->i_blocks_lo);
2658 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2659 /* i_blocks represent file system block size */
2660 return i_blocks << (inode->i_blkbits - 9);
2661 } else {
2662 return i_blocks;
2664 } else {
2665 return le32_to_cpu(raw_inode->i_blocks_lo);
2669 void ext4_read_inode(struct inode * inode)
2671 struct ext4_iloc iloc;
2672 struct ext4_inode *raw_inode;
2673 struct ext4_inode_info *ei = EXT4_I(inode);
2674 struct buffer_head *bh;
2675 int block;
2677 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2678 ei->i_acl = EXT4_ACL_NOT_CACHED;
2679 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2680 #endif
2681 ei->i_block_alloc_info = NULL;
2683 if (__ext4_get_inode_loc(inode, &iloc, 0))
2684 goto bad_inode;
2685 bh = iloc.bh;
2686 raw_inode = ext4_raw_inode(&iloc);
2687 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2688 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2689 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2690 if(!(test_opt (inode->i_sb, NO_UID32))) {
2691 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2692 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2694 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2696 ei->i_state = 0;
2697 ei->i_dir_start_lookup = 0;
2698 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2699 /* We now have enough fields to check if the inode was active or not.
2700 * This is needed because nfsd might try to access dead inodes
2701 * the test is that same one that e2fsck uses
2702 * NeilBrown 1999oct15
2704 if (inode->i_nlink == 0) {
2705 if (inode->i_mode == 0 ||
2706 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2707 /* this inode is deleted */
2708 brelse (bh);
2709 goto bad_inode;
2711 /* The only unlinked inodes we let through here have
2712 * valid i_mode and are being read by the orphan
2713 * recovery code: that's fine, we're about to complete
2714 * the process of deleting those. */
2716 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2717 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2718 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2719 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2720 cpu_to_le32(EXT4_OS_HURD)) {
2721 ei->i_file_acl |=
2722 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2724 inode->i_size = ext4_isize(raw_inode);
2725 ei->i_disksize = inode->i_size;
2726 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2727 ei->i_block_group = iloc.block_group;
2729 * NOTE! The in-memory inode i_data array is in little-endian order
2730 * even on big-endian machines: we do NOT byteswap the block numbers!
2732 for (block = 0; block < EXT4_N_BLOCKS; block++)
2733 ei->i_data[block] = raw_inode->i_block[block];
2734 INIT_LIST_HEAD(&ei->i_orphan);
2736 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2737 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2739 * When mke2fs creates big inodes it does not zero out
2740 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2741 * so ignore those first few inodes.
2743 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2744 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2745 EXT4_INODE_SIZE(inode->i_sb)) {
2746 brelse (bh);
2747 goto bad_inode;
2749 if (ei->i_extra_isize == 0) {
2750 /* The extra space is currently unused. Use it. */
2751 ei->i_extra_isize = sizeof(struct ext4_inode) -
2752 EXT4_GOOD_OLD_INODE_SIZE;
2753 } else {
2754 __le32 *magic = (void *)raw_inode +
2755 EXT4_GOOD_OLD_INODE_SIZE +
2756 ei->i_extra_isize;
2757 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2758 ei->i_state |= EXT4_STATE_XATTR;
2760 } else
2761 ei->i_extra_isize = 0;
2763 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2764 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2765 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2766 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2768 if (S_ISREG(inode->i_mode)) {
2769 inode->i_op = &ext4_file_inode_operations;
2770 inode->i_fop = &ext4_file_operations;
2771 ext4_set_aops(inode);
2772 } else if (S_ISDIR(inode->i_mode)) {
2773 inode->i_op = &ext4_dir_inode_operations;
2774 inode->i_fop = &ext4_dir_operations;
2775 } else if (S_ISLNK(inode->i_mode)) {
2776 if (ext4_inode_is_fast_symlink(inode))
2777 inode->i_op = &ext4_fast_symlink_inode_operations;
2778 else {
2779 inode->i_op = &ext4_symlink_inode_operations;
2780 ext4_set_aops(inode);
2782 } else {
2783 inode->i_op = &ext4_special_inode_operations;
2784 if (raw_inode->i_block[0])
2785 init_special_inode(inode, inode->i_mode,
2786 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2787 else
2788 init_special_inode(inode, inode->i_mode,
2789 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2791 brelse (iloc.bh);
2792 ext4_set_inode_flags(inode);
2793 return;
2795 bad_inode:
2796 make_bad_inode(inode);
2797 return;
2800 static int ext4_inode_blocks_set(handle_t *handle,
2801 struct ext4_inode *raw_inode,
2802 struct ext4_inode_info *ei)
2804 struct inode *inode = &(ei->vfs_inode);
2805 u64 i_blocks = inode->i_blocks;
2806 struct super_block *sb = inode->i_sb;
2807 int err = 0;
2809 if (i_blocks <= ~0U) {
2811 * i_blocks can be represnted in a 32 bit variable
2812 * as multiple of 512 bytes
2814 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2815 raw_inode->i_blocks_high = 0;
2816 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2817 } else if (i_blocks <= 0xffffffffffffULL) {
2819 * i_blocks can be represented in a 48 bit variable
2820 * as multiple of 512 bytes
2822 err = ext4_update_rocompat_feature(handle, sb,
2823 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2824 if (err)
2825 goto err_out;
2826 /* i_block is stored in the split 48 bit fields */
2827 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2828 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2829 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2830 } else {
2832 * i_blocks should be represented in a 48 bit variable
2833 * as multiple of file system block size
2835 err = ext4_update_rocompat_feature(handle, sb,
2836 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2837 if (err)
2838 goto err_out;
2839 ei->i_flags |= EXT4_HUGE_FILE_FL;
2840 /* i_block is stored in file system block size */
2841 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2842 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2843 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2845 err_out:
2846 return err;
2850 * Post the struct inode info into an on-disk inode location in the
2851 * buffer-cache. This gobbles the caller's reference to the
2852 * buffer_head in the inode location struct.
2854 * The caller must have write access to iloc->bh.
2856 static int ext4_do_update_inode(handle_t *handle,
2857 struct inode *inode,
2858 struct ext4_iloc *iloc)
2860 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2861 struct ext4_inode_info *ei = EXT4_I(inode);
2862 struct buffer_head *bh = iloc->bh;
2863 int err = 0, rc, block;
2865 /* For fields not not tracking in the in-memory inode,
2866 * initialise them to zero for new inodes. */
2867 if (ei->i_state & EXT4_STATE_NEW)
2868 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2870 ext4_get_inode_flags(ei);
2871 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2872 if(!(test_opt(inode->i_sb, NO_UID32))) {
2873 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2874 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2876 * Fix up interoperability with old kernels. Otherwise, old inodes get
2877 * re-used with the upper 16 bits of the uid/gid intact
2879 if(!ei->i_dtime) {
2880 raw_inode->i_uid_high =
2881 cpu_to_le16(high_16_bits(inode->i_uid));
2882 raw_inode->i_gid_high =
2883 cpu_to_le16(high_16_bits(inode->i_gid));
2884 } else {
2885 raw_inode->i_uid_high = 0;
2886 raw_inode->i_gid_high = 0;
2888 } else {
2889 raw_inode->i_uid_low =
2890 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2891 raw_inode->i_gid_low =
2892 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2893 raw_inode->i_uid_high = 0;
2894 raw_inode->i_gid_high = 0;
2896 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2898 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2899 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2900 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2901 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2903 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2904 goto out_brelse;
2905 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2906 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2907 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2908 cpu_to_le32(EXT4_OS_HURD))
2909 raw_inode->i_file_acl_high =
2910 cpu_to_le16(ei->i_file_acl >> 32);
2911 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2912 ext4_isize_set(raw_inode, ei->i_disksize);
2913 if (ei->i_disksize > 0x7fffffffULL) {
2914 struct super_block *sb = inode->i_sb;
2915 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2916 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2917 EXT4_SB(sb)->s_es->s_rev_level ==
2918 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2919 /* If this is the first large file
2920 * created, add a flag to the superblock.
2922 err = ext4_journal_get_write_access(handle,
2923 EXT4_SB(sb)->s_sbh);
2924 if (err)
2925 goto out_brelse;
2926 ext4_update_dynamic_rev(sb);
2927 EXT4_SET_RO_COMPAT_FEATURE(sb,
2928 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2929 sb->s_dirt = 1;
2930 handle->h_sync = 1;
2931 err = ext4_journal_dirty_metadata(handle,
2932 EXT4_SB(sb)->s_sbh);
2935 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2936 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2937 if (old_valid_dev(inode->i_rdev)) {
2938 raw_inode->i_block[0] =
2939 cpu_to_le32(old_encode_dev(inode->i_rdev));
2940 raw_inode->i_block[1] = 0;
2941 } else {
2942 raw_inode->i_block[0] = 0;
2943 raw_inode->i_block[1] =
2944 cpu_to_le32(new_encode_dev(inode->i_rdev));
2945 raw_inode->i_block[2] = 0;
2947 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2948 raw_inode->i_block[block] = ei->i_data[block];
2950 if (ei->i_extra_isize)
2951 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2953 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2954 rc = ext4_journal_dirty_metadata(handle, bh);
2955 if (!err)
2956 err = rc;
2957 ei->i_state &= ~EXT4_STATE_NEW;
2959 out_brelse:
2960 brelse (bh);
2961 ext4_std_error(inode->i_sb, err);
2962 return err;
2966 * ext4_write_inode()
2968 * We are called from a few places:
2970 * - Within generic_file_write() for O_SYNC files.
2971 * Here, there will be no transaction running. We wait for any running
2972 * trasnaction to commit.
2974 * - Within sys_sync(), kupdate and such.
2975 * We wait on commit, if tol to.
2977 * - Within prune_icache() (PF_MEMALLOC == true)
2978 * Here we simply return. We can't afford to block kswapd on the
2979 * journal commit.
2981 * In all cases it is actually safe for us to return without doing anything,
2982 * because the inode has been copied into a raw inode buffer in
2983 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2984 * knfsd.
2986 * Note that we are absolutely dependent upon all inode dirtiers doing the
2987 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2988 * which we are interested.
2990 * It would be a bug for them to not do this. The code:
2992 * mark_inode_dirty(inode)
2993 * stuff();
2994 * inode->i_size = expr;
2996 * is in error because a kswapd-driven write_inode() could occur while
2997 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2998 * will no longer be on the superblock's dirty inode list.
3000 int ext4_write_inode(struct inode *inode, int wait)
3002 if (current->flags & PF_MEMALLOC)
3003 return 0;
3005 if (ext4_journal_current_handle()) {
3006 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3007 dump_stack();
3008 return -EIO;
3011 if (!wait)
3012 return 0;
3014 return ext4_force_commit(inode->i_sb);
3018 * ext4_setattr()
3020 * Called from notify_change.
3022 * We want to trap VFS attempts to truncate the file as soon as
3023 * possible. In particular, we want to make sure that when the VFS
3024 * shrinks i_size, we put the inode on the orphan list and modify
3025 * i_disksize immediately, so that during the subsequent flushing of
3026 * dirty pages and freeing of disk blocks, we can guarantee that any
3027 * commit will leave the blocks being flushed in an unused state on
3028 * disk. (On recovery, the inode will get truncated and the blocks will
3029 * be freed, so we have a strong guarantee that no future commit will
3030 * leave these blocks visible to the user.)
3032 * Called with inode->sem down.
3034 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3036 struct inode *inode = dentry->d_inode;
3037 int error, rc = 0;
3038 const unsigned int ia_valid = attr->ia_valid;
3040 error = inode_change_ok(inode, attr);
3041 if (error)
3042 return error;
3044 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3045 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3046 handle_t *handle;
3048 /* (user+group)*(old+new) structure, inode write (sb,
3049 * inode block, ? - but truncate inode update has it) */
3050 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3051 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3052 if (IS_ERR(handle)) {
3053 error = PTR_ERR(handle);
3054 goto err_out;
3056 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3057 if (error) {
3058 ext4_journal_stop(handle);
3059 return error;
3061 /* Update corresponding info in inode so that everything is in
3062 * one transaction */
3063 if (attr->ia_valid & ATTR_UID)
3064 inode->i_uid = attr->ia_uid;
3065 if (attr->ia_valid & ATTR_GID)
3066 inode->i_gid = attr->ia_gid;
3067 error = ext4_mark_inode_dirty(handle, inode);
3068 ext4_journal_stop(handle);
3071 if (attr->ia_valid & ATTR_SIZE) {
3072 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3073 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3075 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3076 error = -EFBIG;
3077 goto err_out;
3082 if (S_ISREG(inode->i_mode) &&
3083 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3084 handle_t *handle;
3086 handle = ext4_journal_start(inode, 3);
3087 if (IS_ERR(handle)) {
3088 error = PTR_ERR(handle);
3089 goto err_out;
3092 error = ext4_orphan_add(handle, inode);
3093 EXT4_I(inode)->i_disksize = attr->ia_size;
3094 rc = ext4_mark_inode_dirty(handle, inode);
3095 if (!error)
3096 error = rc;
3097 ext4_journal_stop(handle);
3100 rc = inode_setattr(inode, attr);
3102 /* If inode_setattr's call to ext4_truncate failed to get a
3103 * transaction handle at all, we need to clean up the in-core
3104 * orphan list manually. */
3105 if (inode->i_nlink)
3106 ext4_orphan_del(NULL, inode);
3108 if (!rc && (ia_valid & ATTR_MODE))
3109 rc = ext4_acl_chmod(inode);
3111 err_out:
3112 ext4_std_error(inode->i_sb, error);
3113 if (!error)
3114 error = rc;
3115 return error;
3120 * How many blocks doth make a writepage()?
3122 * With N blocks per page, it may be:
3123 * N data blocks
3124 * 2 indirect block
3125 * 2 dindirect
3126 * 1 tindirect
3127 * N+5 bitmap blocks (from the above)
3128 * N+5 group descriptor summary blocks
3129 * 1 inode block
3130 * 1 superblock.
3131 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3133 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3135 * With ordered or writeback data it's the same, less the N data blocks.
3137 * If the inode's direct blocks can hold an integral number of pages then a
3138 * page cannot straddle two indirect blocks, and we can only touch one indirect
3139 * and dindirect block, and the "5" above becomes "3".
3141 * This still overestimates under most circumstances. If we were to pass the
3142 * start and end offsets in here as well we could do block_to_path() on each
3143 * block and work out the exact number of indirects which are touched. Pah.
3146 int ext4_writepage_trans_blocks(struct inode *inode)
3148 int bpp = ext4_journal_blocks_per_page(inode);
3149 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3150 int ret;
3152 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3153 return ext4_ext_writepage_trans_blocks(inode, bpp);
3155 if (ext4_should_journal_data(inode))
3156 ret = 3 * (bpp + indirects) + 2;
3157 else
3158 ret = 2 * (bpp + indirects) + 2;
3160 #ifdef CONFIG_QUOTA
3161 /* We know that structure was already allocated during DQUOT_INIT so
3162 * we will be updating only the data blocks + inodes */
3163 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3164 #endif
3166 return ret;
3170 * The caller must have previously called ext4_reserve_inode_write().
3171 * Give this, we know that the caller already has write access to iloc->bh.
3173 int ext4_mark_iloc_dirty(handle_t *handle,
3174 struct inode *inode, struct ext4_iloc *iloc)
3176 int err = 0;
3178 /* the do_update_inode consumes one bh->b_count */
3179 get_bh(iloc->bh);
3181 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3182 err = ext4_do_update_inode(handle, inode, iloc);
3183 put_bh(iloc->bh);
3184 return err;
3188 * On success, We end up with an outstanding reference count against
3189 * iloc->bh. This _must_ be cleaned up later.
3193 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3194 struct ext4_iloc *iloc)
3196 int err = 0;
3197 if (handle) {
3198 err = ext4_get_inode_loc(inode, iloc);
3199 if (!err) {
3200 BUFFER_TRACE(iloc->bh, "get_write_access");
3201 err = ext4_journal_get_write_access(handle, iloc->bh);
3202 if (err) {
3203 brelse(iloc->bh);
3204 iloc->bh = NULL;
3208 ext4_std_error(inode->i_sb, err);
3209 return err;
3213 * Expand an inode by new_extra_isize bytes.
3214 * Returns 0 on success or negative error number on failure.
3216 static int ext4_expand_extra_isize(struct inode *inode,
3217 unsigned int new_extra_isize,
3218 struct ext4_iloc iloc,
3219 handle_t *handle)
3221 struct ext4_inode *raw_inode;
3222 struct ext4_xattr_ibody_header *header;
3223 struct ext4_xattr_entry *entry;
3225 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3226 return 0;
3228 raw_inode = ext4_raw_inode(&iloc);
3230 header = IHDR(inode, raw_inode);
3231 entry = IFIRST(header);
3233 /* No extended attributes present */
3234 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3235 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3236 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3237 new_extra_isize);
3238 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3239 return 0;
3242 /* try to expand with EAs present */
3243 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3244 raw_inode, handle);
3248 * What we do here is to mark the in-core inode as clean with respect to inode
3249 * dirtiness (it may still be data-dirty).
3250 * This means that the in-core inode may be reaped by prune_icache
3251 * without having to perform any I/O. This is a very good thing,
3252 * because *any* task may call prune_icache - even ones which
3253 * have a transaction open against a different journal.
3255 * Is this cheating? Not really. Sure, we haven't written the
3256 * inode out, but prune_icache isn't a user-visible syncing function.
3257 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3258 * we start and wait on commits.
3260 * Is this efficient/effective? Well, we're being nice to the system
3261 * by cleaning up our inodes proactively so they can be reaped
3262 * without I/O. But we are potentially leaving up to five seconds'
3263 * worth of inodes floating about which prune_icache wants us to
3264 * write out. One way to fix that would be to get prune_icache()
3265 * to do a write_super() to free up some memory. It has the desired
3266 * effect.
3268 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3270 struct ext4_iloc iloc;
3271 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3272 static unsigned int mnt_count;
3273 int err, ret;
3275 might_sleep();
3276 err = ext4_reserve_inode_write(handle, inode, &iloc);
3277 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3278 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3280 * We need extra buffer credits since we may write into EA block
3281 * with this same handle. If journal_extend fails, then it will
3282 * only result in a minor loss of functionality for that inode.
3283 * If this is felt to be critical, then e2fsck should be run to
3284 * force a large enough s_min_extra_isize.
3286 if ((jbd2_journal_extend(handle,
3287 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3288 ret = ext4_expand_extra_isize(inode,
3289 sbi->s_want_extra_isize,
3290 iloc, handle);
3291 if (ret) {
3292 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3293 if (mnt_count !=
3294 le16_to_cpu(sbi->s_es->s_mnt_count)) {
3295 ext4_warning(inode->i_sb, __FUNCTION__,
3296 "Unable to expand inode %lu. Delete"
3297 " some EAs or run e2fsck.",
3298 inode->i_ino);
3299 mnt_count =
3300 le16_to_cpu(sbi->s_es->s_mnt_count);
3305 if (!err)
3306 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3307 return err;
3311 * ext4_dirty_inode() is called from __mark_inode_dirty()
3313 * We're really interested in the case where a file is being extended.
3314 * i_size has been changed by generic_commit_write() and we thus need
3315 * to include the updated inode in the current transaction.
3317 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3318 * are allocated to the file.
3320 * If the inode is marked synchronous, we don't honour that here - doing
3321 * so would cause a commit on atime updates, which we don't bother doing.
3322 * We handle synchronous inodes at the highest possible level.
3324 void ext4_dirty_inode(struct inode *inode)
3326 handle_t *current_handle = ext4_journal_current_handle();
3327 handle_t *handle;
3329 handle = ext4_journal_start(inode, 2);
3330 if (IS_ERR(handle))
3331 goto out;
3332 if (current_handle &&
3333 current_handle->h_transaction != handle->h_transaction) {
3334 /* This task has a transaction open against a different fs */
3335 printk(KERN_EMERG "%s: transactions do not match!\n",
3336 __FUNCTION__);
3337 } else {
3338 jbd_debug(5, "marking dirty. outer handle=%p\n",
3339 current_handle);
3340 ext4_mark_inode_dirty(handle, inode);
3342 ext4_journal_stop(handle);
3343 out:
3344 return;
3347 #if 0
3349 * Bind an inode's backing buffer_head into this transaction, to prevent
3350 * it from being flushed to disk early. Unlike
3351 * ext4_reserve_inode_write, this leaves behind no bh reference and
3352 * returns no iloc structure, so the caller needs to repeat the iloc
3353 * lookup to mark the inode dirty later.
3355 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3357 struct ext4_iloc iloc;
3359 int err = 0;
3360 if (handle) {
3361 err = ext4_get_inode_loc(inode, &iloc);
3362 if (!err) {
3363 BUFFER_TRACE(iloc.bh, "get_write_access");
3364 err = jbd2_journal_get_write_access(handle, iloc.bh);
3365 if (!err)
3366 err = ext4_journal_dirty_metadata(handle,
3367 iloc.bh);
3368 brelse(iloc.bh);
3371 ext4_std_error(inode->i_sb, err);
3372 return err;
3374 #endif
3376 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3378 journal_t *journal;
3379 handle_t *handle;
3380 int err;
3383 * We have to be very careful here: changing a data block's
3384 * journaling status dynamically is dangerous. If we write a
3385 * data block to the journal, change the status and then delete
3386 * that block, we risk forgetting to revoke the old log record
3387 * from the journal and so a subsequent replay can corrupt data.
3388 * So, first we make sure that the journal is empty and that
3389 * nobody is changing anything.
3392 journal = EXT4_JOURNAL(inode);
3393 if (is_journal_aborted(journal))
3394 return -EROFS;
3396 jbd2_journal_lock_updates(journal);
3397 jbd2_journal_flush(journal);
3400 * OK, there are no updates running now, and all cached data is
3401 * synced to disk. We are now in a completely consistent state
3402 * which doesn't have anything in the journal, and we know that
3403 * no filesystem updates are running, so it is safe to modify
3404 * the inode's in-core data-journaling state flag now.
3407 if (val)
3408 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3409 else
3410 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3411 ext4_set_aops(inode);
3413 jbd2_journal_unlock_updates(journal);
3415 /* Finally we can mark the inode as dirty. */
3417 handle = ext4_journal_start(inode, 1);
3418 if (IS_ERR(handle))
3419 return PTR_ERR(handle);
3421 err = ext4_mark_inode_dirty(handle, inode);
3422 handle->h_sync = 1;
3423 ext4_journal_stop(handle);
3424 ext4_std_error(inode->i_sb, err);
3426 return err;