2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
47 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
48 (inode
->i_sb
->s_blocksize
>> 9) : 0;
50 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
63 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
69 BUFFER_TRACE(bh
, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
73 bh
, is_metadata
, inode
->i_mode
,
74 test_opt(inode
->i_sb
, DATA_FLAGS
));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
81 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
82 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
84 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle
, bh
);
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
94 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
96 ext4_abort(inode
->i_sb
, __FUNCTION__
,
97 "error %d when attempting revoke", err
);
98 BUFFER_TRACE(bh
, "exit");
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode
*inode
)
110 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
121 /* But we need to bound the transaction so we don't overflow the
123 if (needed
> EXT4_MAX_TRANS_DATA
)
124 needed
= EXT4_MAX_TRANS_DATA
;
126 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t
*start_transaction(struct inode
*inode
)
143 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
147 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
159 if (handle
->h_buffer_credits
> EXT4_RESERVE_TRANS_BLOCKS
)
161 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
171 static int ext4_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
173 jbd_debug(2, "restarting handle %p\n", handle
);
174 return ext4_journal_restart(handle
, blocks_for_truncate(inode
));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode
* inode
)
184 truncate_inode_pages(&inode
->i_data
, 0);
186 if (is_bad_inode(inode
))
189 handle
= start_transaction(inode
);
190 if (IS_ERR(handle
)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
196 ext4_orphan_del(NULL
, inode
);
204 ext4_truncate(inode
);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle
, inode
);
214 EXT4_I(inode
)->i_dtime
= get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
223 if (ext4_mark_inode_dirty(handle
, inode
))
224 /* If that failed, just do the required in-core inode clear. */
227 ext4_free_inode(handle
, inode
);
228 ext4_journal_stop(handle
);
231 clear_inode(inode
); /* We must guarantee clearing of inode... */
237 struct buffer_head
*bh
;
240 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
242 p
->key
= *(p
->p
= v
);
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
277 static int ext4_block_to_path(struct inode
*inode
,
279 ext4_lblk_t offsets
[4], int *boundary
)
281 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
282 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
283 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
284 indirect_blocks
= ptrs
,
285 double_blocks
= (1 << (ptrs_bits
* 2));
290 ext4_warning (inode
->i_sb
, "ext4_block_to_path", "block < 0");
291 } else if (i_block
< direct_blocks
) {
292 offsets
[n
++] = i_block
;
293 final
= direct_blocks
;
294 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
295 offsets
[n
++] = EXT4_IND_BLOCK
;
296 offsets
[n
++] = i_block
;
298 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
299 offsets
[n
++] = EXT4_DIND_BLOCK
;
300 offsets
[n
++] = i_block
>> ptrs_bits
;
301 offsets
[n
++] = i_block
& (ptrs
- 1);
303 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
304 offsets
[n
++] = EXT4_TIND_BLOCK
;
305 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
306 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
307 offsets
[n
++] = i_block
& (ptrs
- 1);
310 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
312 i_block
+ direct_blocks
+
313 indirect_blocks
+ double_blocks
);
316 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
350 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
351 ext4_lblk_t
*offsets
,
352 Indirect chain
[4], int *err
)
354 struct super_block
*sb
= inode
->i_sb
;
356 struct buffer_head
*bh
;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
364 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
367 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
381 * ext4_find_near - find a place for allocation with sufficient locality
383 * @ind: descriptor of indirect block.
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
398 * Caller must make sure that @ind is valid and will stay that way.
400 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
402 struct ext4_inode_info
*ei
= EXT4_I(inode
);
403 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
405 ext4_fsblk_t bg_start
;
406 ext4_grpblk_t colour
;
408 /* Try to find previous block */
409 for (p
= ind
->p
- 1; p
>= start
; p
--) {
411 return le32_to_cpu(*p
);
414 /* No such thing, so let's try location of indirect block */
416 return ind
->bh
->b_blocknr
;
419 * It is going to be referred to from the inode itself? OK, just put it
420 * into the same cylinder group then.
422 bg_start
= ext4_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
423 colour
= (current
->pid
% 16) *
424 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
425 return bg_start
+ colour
;
429 * ext4_find_goal - find a prefered place for allocation.
431 * @block: block we want
432 * @chain: chain of indirect blocks
433 * @partial: pointer to the last triple within a chain
434 * @goal: place to store the result.
436 * Normally this function find the prefered place for block allocation,
437 * stores it in *@goal and returns zero.
440 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
441 Indirect chain
[4], Indirect
*partial
)
443 struct ext4_block_alloc_info
*block_i
;
445 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
448 * try the heuristic for sequential allocation,
449 * failing that at least try to get decent locality.
451 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
452 && (block_i
->last_alloc_physical_block
!= 0)) {
453 return block_i
->last_alloc_physical_block
+ 1;
456 return ext4_find_near(inode
, partial
);
460 * ext4_blks_to_allocate: Look up the block map and count the number
461 * of direct blocks need to be allocated for the given branch.
463 * @branch: chain of indirect blocks
464 * @k: number of blocks need for indirect blocks
465 * @blks: number of data blocks to be mapped.
466 * @blocks_to_boundary: the offset in the indirect block
468 * return the total number of blocks to be allocate, including the
469 * direct and indirect blocks.
471 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
472 int blocks_to_boundary
)
474 unsigned long count
= 0;
477 * Simple case, [t,d]Indirect block(s) has not allocated yet
478 * then it's clear blocks on that path have not allocated
481 /* right now we don't handle cross boundary allocation */
482 if (blks
< blocks_to_boundary
+ 1)
485 count
+= blocks_to_boundary
+ 1;
490 while (count
< blks
&& count
<= blocks_to_boundary
&&
491 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
498 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
499 * @indirect_blks: the number of blocks need to allocate for indirect
502 * @new_blocks: on return it will store the new block numbers for
503 * the indirect blocks(if needed) and the first direct block,
504 * @blks: on return it will store the total number of allocated
507 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
508 ext4_fsblk_t goal
, int indirect_blks
, int blks
,
509 ext4_fsblk_t new_blocks
[4], int *err
)
512 unsigned long count
= 0;
514 ext4_fsblk_t current_block
= 0;
518 * Here we try to allocate the requested multiple blocks at once,
519 * on a best-effort basis.
520 * To build a branch, we should allocate blocks for
521 * the indirect blocks(if not allocated yet), and at least
522 * the first direct block of this branch. That's the
523 * minimum number of blocks need to allocate(required)
525 target
= blks
+ indirect_blks
;
529 /* allocating blocks for indirect blocks and direct blocks */
530 current_block
= ext4_new_blocks(handle
,inode
,goal
,&count
,err
);
535 /* allocate blocks for indirect blocks */
536 while (index
< indirect_blks
&& count
) {
537 new_blocks
[index
++] = current_block
++;
545 /* save the new block number for the first direct block */
546 new_blocks
[index
] = current_block
;
548 /* total number of blocks allocated for direct blocks */
553 for (i
= 0; i
<index
; i
++)
554 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1);
559 * ext4_alloc_branch - allocate and set up a chain of blocks.
561 * @indirect_blks: number of allocated indirect blocks
562 * @blks: number of allocated direct blocks
563 * @offsets: offsets (in the blocks) to store the pointers to next.
564 * @branch: place to store the chain in.
566 * This function allocates blocks, zeroes out all but the last one,
567 * links them into chain and (if we are synchronous) writes them to disk.
568 * In other words, it prepares a branch that can be spliced onto the
569 * inode. It stores the information about that chain in the branch[], in
570 * the same format as ext4_get_branch() would do. We are calling it after
571 * we had read the existing part of chain and partial points to the last
572 * triple of that (one with zero ->key). Upon the exit we have the same
573 * picture as after the successful ext4_get_block(), except that in one
574 * place chain is disconnected - *branch->p is still zero (we did not
575 * set the last link), but branch->key contains the number that should
576 * be placed into *branch->p to fill that gap.
578 * If allocation fails we free all blocks we've allocated (and forget
579 * their buffer_heads) and return the error value the from failed
580 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
581 * as described above and return 0.
583 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
584 int indirect_blks
, int *blks
, ext4_fsblk_t goal
,
585 ext4_lblk_t
*offsets
, Indirect
*branch
)
587 int blocksize
= inode
->i_sb
->s_blocksize
;
590 struct buffer_head
*bh
;
592 ext4_fsblk_t new_blocks
[4];
593 ext4_fsblk_t current_block
;
595 num
= ext4_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
596 *blks
, new_blocks
, &err
);
600 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
602 * metadata blocks and data blocks are allocated.
604 for (n
= 1; n
<= indirect_blks
; n
++) {
606 * Get buffer_head for parent block, zero it out
607 * and set the pointer to new one, then send
610 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
613 BUFFER_TRACE(bh
, "call get_create_access");
614 err
= ext4_journal_get_create_access(handle
, bh
);
621 memset(bh
->b_data
, 0, blocksize
);
622 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
623 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
624 *branch
[n
].p
= branch
[n
].key
;
625 if ( n
== indirect_blks
) {
626 current_block
= new_blocks
[n
];
628 * End of chain, update the last new metablock of
629 * the chain to point to the new allocated
630 * data blocks numbers
632 for (i
=1; i
< num
; i
++)
633 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
635 BUFFER_TRACE(bh
, "marking uptodate");
636 set_buffer_uptodate(bh
);
639 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
640 err
= ext4_journal_dirty_metadata(handle
, bh
);
647 /* Allocation failed, free what we already allocated */
648 for (i
= 1; i
<= n
; i
++) {
649 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
650 ext4_journal_forget(handle
, branch
[i
].bh
);
652 for (i
= 0; i
<indirect_blks
; i
++)
653 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1);
655 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
);
661 * ext4_splice_branch - splice the allocated branch onto inode.
663 * @block: (logical) number of block we are adding
664 * @chain: chain of indirect blocks (with a missing link - see
666 * @where: location of missing link
667 * @num: number of indirect blocks we are adding
668 * @blks: number of direct blocks we are adding
670 * This function fills the missing link and does all housekeeping needed in
671 * inode (->i_blocks, etc.). In case of success we end up with the full
672 * chain to new block and return 0.
674 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
675 ext4_lblk_t block
, Indirect
*where
, int num
, int blks
)
679 struct ext4_block_alloc_info
*block_i
;
680 ext4_fsblk_t current_block
;
682 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
684 * If we're splicing into a [td]indirect block (as opposed to the
685 * inode) then we need to get write access to the [td]indirect block
689 BUFFER_TRACE(where
->bh
, "get_write_access");
690 err
= ext4_journal_get_write_access(handle
, where
->bh
);
696 *where
->p
= where
->key
;
699 * Update the host buffer_head or inode to point to more just allocated
700 * direct blocks blocks
702 if (num
== 0 && blks
> 1) {
703 current_block
= le32_to_cpu(where
->key
) + 1;
704 for (i
= 1; i
< blks
; i
++)
705 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
709 * update the most recently allocated logical & physical block
710 * in i_block_alloc_info, to assist find the proper goal block for next
714 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
715 block_i
->last_alloc_physical_block
=
716 le32_to_cpu(where
[num
].key
) + blks
- 1;
719 /* We are done with atomic stuff, now do the rest of housekeeping */
721 inode
->i_ctime
= ext4_current_time(inode
);
722 ext4_mark_inode_dirty(handle
, inode
);
724 /* had we spliced it onto indirect block? */
727 * If we spliced it onto an indirect block, we haven't
728 * altered the inode. Note however that if it is being spliced
729 * onto an indirect block at the very end of the file (the
730 * file is growing) then we *will* alter the inode to reflect
731 * the new i_size. But that is not done here - it is done in
732 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
734 jbd_debug(5, "splicing indirect only\n");
735 BUFFER_TRACE(where
->bh
, "call ext4_journal_dirty_metadata");
736 err
= ext4_journal_dirty_metadata(handle
, where
->bh
);
741 * OK, we spliced it into the inode itself on a direct block.
742 * Inode was dirtied above.
744 jbd_debug(5, "splicing direct\n");
749 for (i
= 1; i
<= num
; i
++) {
750 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
751 ext4_journal_forget(handle
, where
[i
].bh
);
752 ext4_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
754 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
760 * Allocation strategy is simple: if we have to allocate something, we will
761 * have to go the whole way to leaf. So let's do it before attaching anything
762 * to tree, set linkage between the newborn blocks, write them if sync is
763 * required, recheck the path, free and repeat if check fails, otherwise
764 * set the last missing link (that will protect us from any truncate-generated
765 * removals - all blocks on the path are immune now) and possibly force the
766 * write on the parent block.
767 * That has a nice additional property: no special recovery from the failed
768 * allocations is needed - we simply release blocks and do not touch anything
769 * reachable from inode.
771 * `handle' can be NULL if create == 0.
773 * The BKL may not be held on entry here. Be sure to take it early.
774 * return > 0, # of blocks mapped or allocated.
775 * return = 0, if plain lookup failed.
776 * return < 0, error case.
779 * Need to be called with
780 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
781 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
783 int ext4_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
784 ext4_lblk_t iblock
, unsigned long maxblocks
,
785 struct buffer_head
*bh_result
,
786 int create
, int extend_disksize
)
789 ext4_lblk_t offsets
[4];
794 int blocks_to_boundary
= 0;
796 struct ext4_inode_info
*ei
= EXT4_I(inode
);
798 ext4_fsblk_t first_block
= 0;
801 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
802 J_ASSERT(handle
!= NULL
|| create
== 0);
803 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
804 &blocks_to_boundary
);
809 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
811 /* Simplest case - block found, no allocation needed */
813 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
814 clear_buffer_new(bh_result
);
817 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
820 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
822 if (blk
== first_block
+ count
)
830 /* Next simple case - plain lookup or failed read of indirect block */
831 if (!create
|| err
== -EIO
)
835 * Okay, we need to do block allocation. Lazily initialize the block
836 * allocation info here if necessary
838 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
839 ext4_init_block_alloc_info(inode
);
841 goal
= ext4_find_goal(inode
, iblock
, chain
, partial
);
843 /* the number of blocks need to allocate for [d,t]indirect blocks */
844 indirect_blks
= (chain
+ depth
) - partial
- 1;
847 * Next look up the indirect map to count the totoal number of
848 * direct blocks to allocate for this branch.
850 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
851 maxblocks
, blocks_to_boundary
);
853 * Block out ext4_truncate while we alter the tree
855 err
= ext4_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
856 offsets
+ (partial
- chain
), partial
);
859 * The ext4_splice_branch call will free and forget any buffers
860 * on the new chain if there is a failure, but that risks using
861 * up transaction credits, especially for bitmaps where the
862 * credits cannot be returned. Can we handle this somehow? We
863 * may need to return -EAGAIN upwards in the worst case. --sct
866 err
= ext4_splice_branch(handle
, inode
, iblock
,
867 partial
, indirect_blks
, count
);
869 * i_disksize growing is protected by i_data_sem. Don't forget to
870 * protect it if you're about to implement concurrent
871 * ext4_get_block() -bzzz
873 if (!err
&& extend_disksize
&& inode
->i_size
> ei
->i_disksize
)
874 ei
->i_disksize
= inode
->i_size
;
878 set_buffer_new(bh_result
);
880 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
881 if (count
> blocks_to_boundary
)
882 set_buffer_boundary(bh_result
);
884 /* Clean up and exit */
885 partial
= chain
+ depth
- 1; /* the whole chain */
887 while (partial
> chain
) {
888 BUFFER_TRACE(partial
->bh
, "call brelse");
892 BUFFER_TRACE(bh_result
, "returned");
897 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
899 int ext4_get_blocks_wrap(handle_t
*handle
, struct inode
*inode
, sector_t block
,
900 unsigned long max_blocks
, struct buffer_head
*bh
,
901 int create
, int extend_disksize
)
905 down_write((&EXT4_I(inode
)->i_data_sem
));
907 down_read((&EXT4_I(inode
)->i_data_sem
));
909 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
910 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
911 bh
, create
, extend_disksize
);
913 retval
= ext4_get_blocks_handle(handle
, inode
, block
,
914 max_blocks
, bh
, create
, extend_disksize
);
917 up_write((&EXT4_I(inode
)->i_data_sem
));
919 up_read((&EXT4_I(inode
)->i_data_sem
));
924 static int ext4_get_block(struct inode
*inode
, sector_t iblock
,
925 struct buffer_head
*bh_result
, int create
)
927 handle_t
*handle
= ext4_journal_current_handle();
929 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
932 goto get_block
; /* A read */
935 goto get_block
; /* A single block get */
937 if (handle
->h_transaction
->t_state
== T_LOCKED
) {
939 * Huge direct-io writes can hold off commits for long
940 * periods of time. Let this commit run.
942 ext4_journal_stop(handle
);
943 handle
= ext4_journal_start(inode
, DIO_CREDITS
);
945 ret
= PTR_ERR(handle
);
949 if (handle
->h_buffer_credits
<= EXT4_RESERVE_TRANS_BLOCKS
) {
951 * Getting low on buffer credits...
953 ret
= ext4_journal_extend(handle
, DIO_CREDITS
);
956 * Couldn't extend the transaction. Start a new one.
958 ret
= ext4_journal_restart(handle
, DIO_CREDITS
);
964 ret
= ext4_get_blocks_wrap(handle
, inode
, iblock
,
965 max_blocks
, bh_result
, create
, 0);
967 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
975 * `handle' can be NULL if create is zero
977 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
978 ext4_lblk_t block
, int create
, int *errp
)
980 struct buffer_head dummy
;
983 J_ASSERT(handle
!= NULL
|| create
== 0);
986 dummy
.b_blocknr
= -1000;
987 buffer_trace_init(&dummy
.b_history
);
988 err
= ext4_get_blocks_wrap(handle
, inode
, block
, 1,
991 * ext4_get_blocks_handle() returns number of blocks
992 * mapped. 0 in case of a HOLE.
1000 if (!err
&& buffer_mapped(&dummy
)) {
1001 struct buffer_head
*bh
;
1002 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1007 if (buffer_new(&dummy
)) {
1008 J_ASSERT(create
!= 0);
1009 J_ASSERT(handle
!= NULL
);
1012 * Now that we do not always journal data, we should
1013 * keep in mind whether this should always journal the
1014 * new buffer as metadata. For now, regular file
1015 * writes use ext4_get_block instead, so it's not a
1019 BUFFER_TRACE(bh
, "call get_create_access");
1020 fatal
= ext4_journal_get_create_access(handle
, bh
);
1021 if (!fatal
&& !buffer_uptodate(bh
)) {
1022 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1023 set_buffer_uptodate(bh
);
1026 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
1027 err
= ext4_journal_dirty_metadata(handle
, bh
);
1031 BUFFER_TRACE(bh
, "not a new buffer");
1044 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1045 ext4_lblk_t block
, int create
, int *err
)
1047 struct buffer_head
* bh
;
1049 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1052 if (buffer_uptodate(bh
))
1054 ll_rw_block(READ_META
, 1, &bh
);
1056 if (buffer_uptodate(bh
))
1063 static int walk_page_buffers( handle_t
*handle
,
1064 struct buffer_head
*head
,
1068 int (*fn
)( handle_t
*handle
,
1069 struct buffer_head
*bh
))
1071 struct buffer_head
*bh
;
1072 unsigned block_start
, block_end
;
1073 unsigned blocksize
= head
->b_size
;
1075 struct buffer_head
*next
;
1077 for ( bh
= head
, block_start
= 0;
1078 ret
== 0 && (bh
!= head
|| !block_start
);
1079 block_start
= block_end
, bh
= next
)
1081 next
= bh
->b_this_page
;
1082 block_end
= block_start
+ blocksize
;
1083 if (block_end
<= from
|| block_start
>= to
) {
1084 if (partial
&& !buffer_uptodate(bh
))
1088 err
= (*fn
)(handle
, bh
);
1096 * To preserve ordering, it is essential that the hole instantiation and
1097 * the data write be encapsulated in a single transaction. We cannot
1098 * close off a transaction and start a new one between the ext4_get_block()
1099 * and the commit_write(). So doing the jbd2_journal_start at the start of
1100 * prepare_write() is the right place.
1102 * Also, this function can nest inside ext4_writepage() ->
1103 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1104 * has generated enough buffer credits to do the whole page. So we won't
1105 * block on the journal in that case, which is good, because the caller may
1108 * By accident, ext4 can be reentered when a transaction is open via
1109 * quota file writes. If we were to commit the transaction while thus
1110 * reentered, there can be a deadlock - we would be holding a quota
1111 * lock, and the commit would never complete if another thread had a
1112 * transaction open and was blocking on the quota lock - a ranking
1115 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1116 * will _not_ run commit under these circumstances because handle->h_ref
1117 * is elevated. We'll still have enough credits for the tiny quotafile
1120 static int do_journal_get_write_access(handle_t
*handle
,
1121 struct buffer_head
*bh
)
1123 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1125 return ext4_journal_get_write_access(handle
, bh
);
1128 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1129 loff_t pos
, unsigned len
, unsigned flags
,
1130 struct page
**pagep
, void **fsdata
)
1132 struct inode
*inode
= mapping
->host
;
1133 int ret
, needed_blocks
= ext4_writepage_trans_blocks(inode
);
1140 index
= pos
>> PAGE_CACHE_SHIFT
;
1141 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1145 page
= __grab_cache_page(mapping
, index
);
1150 handle
= ext4_journal_start(inode
, needed_blocks
);
1151 if (IS_ERR(handle
)) {
1153 page_cache_release(page
);
1154 ret
= PTR_ERR(handle
);
1158 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1161 if (!ret
&& ext4_should_journal_data(inode
)) {
1162 ret
= walk_page_buffers(handle
, page_buffers(page
),
1163 from
, to
, NULL
, do_journal_get_write_access
);
1167 ext4_journal_stop(handle
);
1169 page_cache_release(page
);
1172 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1178 int ext4_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1180 int err
= jbd2_journal_dirty_data(handle
, bh
);
1182 ext4_journal_abort_handle(__FUNCTION__
, __FUNCTION__
,
1187 /* For write_end() in data=journal mode */
1188 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1190 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1192 set_buffer_uptodate(bh
);
1193 return ext4_journal_dirty_metadata(handle
, bh
);
1197 * Generic write_end handler for ordered and writeback ext4 journal modes.
1198 * We can't use generic_write_end, because that unlocks the page and we need to
1199 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1200 * after block_write_end.
1202 static int ext4_generic_write_end(struct file
*file
,
1203 struct address_space
*mapping
,
1204 loff_t pos
, unsigned len
, unsigned copied
,
1205 struct page
*page
, void *fsdata
)
1207 struct inode
*inode
= file
->f_mapping
->host
;
1209 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1211 if (pos
+copied
> inode
->i_size
) {
1212 i_size_write(inode
, pos
+copied
);
1213 mark_inode_dirty(inode
);
1220 * We need to pick up the new inode size which generic_commit_write gave us
1221 * `file' can be NULL - eg, when called from page_symlink().
1223 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1224 * buffers are managed internally.
1226 static int ext4_ordered_write_end(struct file
*file
,
1227 struct address_space
*mapping
,
1228 loff_t pos
, unsigned len
, unsigned copied
,
1229 struct page
*page
, void *fsdata
)
1231 handle_t
*handle
= ext4_journal_current_handle();
1232 struct inode
*inode
= file
->f_mapping
->host
;
1236 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1239 ret
= walk_page_buffers(handle
, page_buffers(page
),
1240 from
, to
, NULL
, ext4_journal_dirty_data
);
1244 * generic_write_end() will run mark_inode_dirty() if i_size
1245 * changes. So let's piggyback the i_disksize mark_inode_dirty
1250 new_i_size
= pos
+ copied
;
1251 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
1252 EXT4_I(inode
)->i_disksize
= new_i_size
;
1253 copied
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1258 ret2
= ext4_journal_stop(handle
);
1262 page_cache_release(page
);
1264 return ret
? ret
: copied
;
1267 static int ext4_writeback_write_end(struct file
*file
,
1268 struct address_space
*mapping
,
1269 loff_t pos
, unsigned len
, unsigned copied
,
1270 struct page
*page
, void *fsdata
)
1272 handle_t
*handle
= ext4_journal_current_handle();
1273 struct inode
*inode
= file
->f_mapping
->host
;
1277 new_i_size
= pos
+ copied
;
1278 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
1279 EXT4_I(inode
)->i_disksize
= new_i_size
;
1281 copied
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1286 ret2
= ext4_journal_stop(handle
);
1290 page_cache_release(page
);
1292 return ret
? ret
: copied
;
1295 static int ext4_journalled_write_end(struct file
*file
,
1296 struct address_space
*mapping
,
1297 loff_t pos
, unsigned len
, unsigned copied
,
1298 struct page
*page
, void *fsdata
)
1300 handle_t
*handle
= ext4_journal_current_handle();
1301 struct inode
*inode
= mapping
->host
;
1306 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1310 if (!PageUptodate(page
))
1312 page_zero_new_buffers(page
, from
+copied
, to
);
1315 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1316 to
, &partial
, write_end_fn
);
1318 SetPageUptodate(page
);
1319 if (pos
+copied
> inode
->i_size
)
1320 i_size_write(inode
, pos
+copied
);
1321 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1322 if (inode
->i_size
> EXT4_I(inode
)->i_disksize
) {
1323 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
1324 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1329 ret2
= ext4_journal_stop(handle
);
1333 page_cache_release(page
);
1335 return ret
? ret
: copied
;
1339 * bmap() is special. It gets used by applications such as lilo and by
1340 * the swapper to find the on-disk block of a specific piece of data.
1342 * Naturally, this is dangerous if the block concerned is still in the
1343 * journal. If somebody makes a swapfile on an ext4 data-journaling
1344 * filesystem and enables swap, then they may get a nasty shock when the
1345 * data getting swapped to that swapfile suddenly gets overwritten by
1346 * the original zero's written out previously to the journal and
1347 * awaiting writeback in the kernel's buffer cache.
1349 * So, if we see any bmap calls here on a modified, data-journaled file,
1350 * take extra steps to flush any blocks which might be in the cache.
1352 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
1354 struct inode
*inode
= mapping
->host
;
1358 if (EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
1360 * This is a REALLY heavyweight approach, but the use of
1361 * bmap on dirty files is expected to be extremely rare:
1362 * only if we run lilo or swapon on a freshly made file
1363 * do we expect this to happen.
1365 * (bmap requires CAP_SYS_RAWIO so this does not
1366 * represent an unprivileged user DOS attack --- we'd be
1367 * in trouble if mortal users could trigger this path at
1370 * NB. EXT4_STATE_JDATA is not set on files other than
1371 * regular files. If somebody wants to bmap a directory
1372 * or symlink and gets confused because the buffer
1373 * hasn't yet been flushed to disk, they deserve
1374 * everything they get.
1377 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
1378 journal
= EXT4_JOURNAL(inode
);
1379 jbd2_journal_lock_updates(journal
);
1380 err
= jbd2_journal_flush(journal
);
1381 jbd2_journal_unlock_updates(journal
);
1387 return generic_block_bmap(mapping
,block
,ext4_get_block
);
1390 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1396 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1402 static int jbd2_journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1404 if (buffer_mapped(bh
))
1405 return ext4_journal_dirty_data(handle
, bh
);
1410 * Note that we always start a transaction even if we're not journalling
1411 * data. This is to preserve ordering: any hole instantiation within
1412 * __block_write_full_page -> ext4_get_block() should be journalled
1413 * along with the data so we don't crash and then get metadata which
1414 * refers to old data.
1416 * In all journalling modes block_write_full_page() will start the I/O.
1420 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1425 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1427 * Same applies to ext4_get_block(). We will deadlock on various things like
1428 * lock_journal and i_data_sem
1430 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1433 * 16May01: If we're reentered then journal_current_handle() will be
1434 * non-zero. We simply *return*.
1436 * 1 July 2001: @@@ FIXME:
1437 * In journalled data mode, a data buffer may be metadata against the
1438 * current transaction. But the same file is part of a shared mapping
1439 * and someone does a writepage() on it.
1441 * We will move the buffer onto the async_data list, but *after* it has
1442 * been dirtied. So there's a small window where we have dirty data on
1445 * Note that this only applies to the last partial page in the file. The
1446 * bit which block_write_full_page() uses prepare/commit for. (That's
1447 * broken code anyway: it's wrong for msync()).
1449 * It's a rare case: affects the final partial page, for journalled data
1450 * where the file is subject to bith write() and writepage() in the same
1451 * transction. To fix it we'll need a custom block_write_full_page().
1452 * We'll probably need that anyway for journalling writepage() output.
1454 * We don't honour synchronous mounts for writepage(). That would be
1455 * disastrous. Any write() or metadata operation will sync the fs for
1458 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1459 * we don't need to open a transaction here.
1461 static int ext4_ordered_writepage(struct page
*page
,
1462 struct writeback_control
*wbc
)
1464 struct inode
*inode
= page
->mapping
->host
;
1465 struct buffer_head
*page_bufs
;
1466 handle_t
*handle
= NULL
;
1470 J_ASSERT(PageLocked(page
));
1473 * We give up here if we're reentered, because it might be for a
1474 * different filesystem.
1476 if (ext4_journal_current_handle())
1479 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1481 if (IS_ERR(handle
)) {
1482 ret
= PTR_ERR(handle
);
1486 if (!page_has_buffers(page
)) {
1487 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1488 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1490 page_bufs
= page_buffers(page
);
1491 walk_page_buffers(handle
, page_bufs
, 0,
1492 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1494 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1497 * The page can become unlocked at any point now, and
1498 * truncate can then come in and change things. So we
1499 * can't touch *page from now on. But *page_bufs is
1500 * safe due to elevated refcount.
1504 * And attach them to the current transaction. But only if
1505 * block_write_full_page() succeeded. Otherwise they are unmapped,
1506 * and generally junk.
1509 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1510 NULL
, jbd2_journal_dirty_data_fn
);
1514 walk_page_buffers(handle
, page_bufs
, 0,
1515 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1516 err
= ext4_journal_stop(handle
);
1522 redirty_page_for_writepage(wbc
, page
);
1527 static int ext4_writeback_writepage(struct page
*page
,
1528 struct writeback_control
*wbc
)
1530 struct inode
*inode
= page
->mapping
->host
;
1531 handle_t
*handle
= NULL
;
1535 if (ext4_journal_current_handle())
1538 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1539 if (IS_ERR(handle
)) {
1540 ret
= PTR_ERR(handle
);
1544 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
1545 ret
= nobh_writepage(page
, ext4_get_block
, wbc
);
1547 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1549 err
= ext4_journal_stop(handle
);
1555 redirty_page_for_writepage(wbc
, page
);
1560 static int ext4_journalled_writepage(struct page
*page
,
1561 struct writeback_control
*wbc
)
1563 struct inode
*inode
= page
->mapping
->host
;
1564 handle_t
*handle
= NULL
;
1568 if (ext4_journal_current_handle())
1571 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1572 if (IS_ERR(handle
)) {
1573 ret
= PTR_ERR(handle
);
1577 if (!page_has_buffers(page
) || PageChecked(page
)) {
1579 * It's mmapped pagecache. Add buffers and journal it. There
1580 * doesn't seem much point in redirtying the page here.
1582 ClearPageChecked(page
);
1583 ret
= block_prepare_write(page
, 0, PAGE_CACHE_SIZE
,
1586 ext4_journal_stop(handle
);
1589 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1590 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1592 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1593 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1596 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1600 * It may be a page full of checkpoint-mode buffers. We don't
1601 * really know unless we go poke around in the buffer_heads.
1602 * But block_write_full_page will do the right thing.
1604 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1606 err
= ext4_journal_stop(handle
);
1613 redirty_page_for_writepage(wbc
, page
);
1619 static int ext4_readpage(struct file
*file
, struct page
*page
)
1621 return mpage_readpage(page
, ext4_get_block
);
1625 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
1626 struct list_head
*pages
, unsigned nr_pages
)
1628 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
1631 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
1633 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
1636 * If it's a full truncate we just forget about the pending dirtying
1639 ClearPageChecked(page
);
1641 jbd2_journal_invalidatepage(journal
, page
, offset
);
1644 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
1646 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
1648 WARN_ON(PageChecked(page
));
1649 if (!page_has_buffers(page
))
1651 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
1655 * If the O_DIRECT write will extend the file then add this inode to the
1656 * orphan list. So recovery will truncate it back to the original size
1657 * if the machine crashes during the write.
1659 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1660 * crashes then stale disk data _may_ be exposed inside the file.
1662 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
1663 const struct iovec
*iov
, loff_t offset
,
1664 unsigned long nr_segs
)
1666 struct file
*file
= iocb
->ki_filp
;
1667 struct inode
*inode
= file
->f_mapping
->host
;
1668 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1669 handle_t
*handle
= NULL
;
1672 size_t count
= iov_length(iov
, nr_segs
);
1675 loff_t final_size
= offset
+ count
;
1677 handle
= ext4_journal_start(inode
, DIO_CREDITS
);
1678 if (IS_ERR(handle
)) {
1679 ret
= PTR_ERR(handle
);
1682 if (final_size
> inode
->i_size
) {
1683 ret
= ext4_orphan_add(handle
, inode
);
1687 ei
->i_disksize
= inode
->i_size
;
1691 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
1693 ext4_get_block
, NULL
);
1696 * Reacquire the handle: ext4_get_block() can restart the transaction
1698 handle
= ext4_journal_current_handle();
1704 if (orphan
&& inode
->i_nlink
)
1705 ext4_orphan_del(handle
, inode
);
1706 if (orphan
&& ret
> 0) {
1707 loff_t end
= offset
+ ret
;
1708 if (end
> inode
->i_size
) {
1709 ei
->i_disksize
= end
;
1710 i_size_write(inode
, end
);
1712 * We're going to return a positive `ret'
1713 * here due to non-zero-length I/O, so there's
1714 * no way of reporting error returns from
1715 * ext4_mark_inode_dirty() to userspace. So
1718 ext4_mark_inode_dirty(handle
, inode
);
1721 err
= ext4_journal_stop(handle
);
1730 * Pages can be marked dirty completely asynchronously from ext4's journalling
1731 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1732 * much here because ->set_page_dirty is called under VFS locks. The page is
1733 * not necessarily locked.
1735 * We cannot just dirty the page and leave attached buffers clean, because the
1736 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1737 * or jbddirty because all the journalling code will explode.
1739 * So what we do is to mark the page "pending dirty" and next time writepage
1740 * is called, propagate that into the buffers appropriately.
1742 static int ext4_journalled_set_page_dirty(struct page
*page
)
1744 SetPageChecked(page
);
1745 return __set_page_dirty_nobuffers(page
);
1748 static const struct address_space_operations ext4_ordered_aops
= {
1749 .readpage
= ext4_readpage
,
1750 .readpages
= ext4_readpages
,
1751 .writepage
= ext4_ordered_writepage
,
1752 .sync_page
= block_sync_page
,
1753 .write_begin
= ext4_write_begin
,
1754 .write_end
= ext4_ordered_write_end
,
1756 .invalidatepage
= ext4_invalidatepage
,
1757 .releasepage
= ext4_releasepage
,
1758 .direct_IO
= ext4_direct_IO
,
1759 .migratepage
= buffer_migrate_page
,
1762 static const struct address_space_operations ext4_writeback_aops
= {
1763 .readpage
= ext4_readpage
,
1764 .readpages
= ext4_readpages
,
1765 .writepage
= ext4_writeback_writepage
,
1766 .sync_page
= block_sync_page
,
1767 .write_begin
= ext4_write_begin
,
1768 .write_end
= ext4_writeback_write_end
,
1770 .invalidatepage
= ext4_invalidatepage
,
1771 .releasepage
= ext4_releasepage
,
1772 .direct_IO
= ext4_direct_IO
,
1773 .migratepage
= buffer_migrate_page
,
1776 static const struct address_space_operations ext4_journalled_aops
= {
1777 .readpage
= ext4_readpage
,
1778 .readpages
= ext4_readpages
,
1779 .writepage
= ext4_journalled_writepage
,
1780 .sync_page
= block_sync_page
,
1781 .write_begin
= ext4_write_begin
,
1782 .write_end
= ext4_journalled_write_end
,
1783 .set_page_dirty
= ext4_journalled_set_page_dirty
,
1785 .invalidatepage
= ext4_invalidatepage
,
1786 .releasepage
= ext4_releasepage
,
1789 void ext4_set_aops(struct inode
*inode
)
1791 if (ext4_should_order_data(inode
))
1792 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
1793 else if (ext4_should_writeback_data(inode
))
1794 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
1796 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
1800 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1801 * up to the end of the block which corresponds to `from'.
1802 * This required during truncate. We need to physically zero the tail end
1803 * of that block so it doesn't yield old data if the file is later grown.
1805 int ext4_block_truncate_page(handle_t
*handle
, struct page
*page
,
1806 struct address_space
*mapping
, loff_t from
)
1808 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
1809 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1810 unsigned blocksize
, length
, pos
;
1812 struct inode
*inode
= mapping
->host
;
1813 struct buffer_head
*bh
;
1816 blocksize
= inode
->i_sb
->s_blocksize
;
1817 length
= blocksize
- (offset
& (blocksize
- 1));
1818 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1821 * For "nobh" option, we can only work if we don't need to
1822 * read-in the page - otherwise we create buffers to do the IO.
1824 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
1825 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
1826 zero_user_page(page
, offset
, length
, KM_USER0
);
1827 set_page_dirty(page
);
1831 if (!page_has_buffers(page
))
1832 create_empty_buffers(page
, blocksize
, 0);
1834 /* Find the buffer that contains "offset" */
1835 bh
= page_buffers(page
);
1837 while (offset
>= pos
) {
1838 bh
= bh
->b_this_page
;
1844 if (buffer_freed(bh
)) {
1845 BUFFER_TRACE(bh
, "freed: skip");
1849 if (!buffer_mapped(bh
)) {
1850 BUFFER_TRACE(bh
, "unmapped");
1851 ext4_get_block(inode
, iblock
, bh
, 0);
1852 /* unmapped? It's a hole - nothing to do */
1853 if (!buffer_mapped(bh
)) {
1854 BUFFER_TRACE(bh
, "still unmapped");
1859 /* Ok, it's mapped. Make sure it's up-to-date */
1860 if (PageUptodate(page
))
1861 set_buffer_uptodate(bh
);
1863 if (!buffer_uptodate(bh
)) {
1865 ll_rw_block(READ
, 1, &bh
);
1867 /* Uhhuh. Read error. Complain and punt. */
1868 if (!buffer_uptodate(bh
))
1872 if (ext4_should_journal_data(inode
)) {
1873 BUFFER_TRACE(bh
, "get write access");
1874 err
= ext4_journal_get_write_access(handle
, bh
);
1879 zero_user_page(page
, offset
, length
, KM_USER0
);
1881 BUFFER_TRACE(bh
, "zeroed end of block");
1884 if (ext4_should_journal_data(inode
)) {
1885 err
= ext4_journal_dirty_metadata(handle
, bh
);
1887 if (ext4_should_order_data(inode
))
1888 err
= ext4_journal_dirty_data(handle
, bh
);
1889 mark_buffer_dirty(bh
);
1894 page_cache_release(page
);
1899 * Probably it should be a library function... search for first non-zero word
1900 * or memcmp with zero_page, whatever is better for particular architecture.
1903 static inline int all_zeroes(__le32
*p
, __le32
*q
)
1912 * ext4_find_shared - find the indirect blocks for partial truncation.
1913 * @inode: inode in question
1914 * @depth: depth of the affected branch
1915 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1916 * @chain: place to store the pointers to partial indirect blocks
1917 * @top: place to the (detached) top of branch
1919 * This is a helper function used by ext4_truncate().
1921 * When we do truncate() we may have to clean the ends of several
1922 * indirect blocks but leave the blocks themselves alive. Block is
1923 * partially truncated if some data below the new i_size is refered
1924 * from it (and it is on the path to the first completely truncated
1925 * data block, indeed). We have to free the top of that path along
1926 * with everything to the right of the path. Since no allocation
1927 * past the truncation point is possible until ext4_truncate()
1928 * finishes, we may safely do the latter, but top of branch may
1929 * require special attention - pageout below the truncation point
1930 * might try to populate it.
1932 * We atomically detach the top of branch from the tree, store the
1933 * block number of its root in *@top, pointers to buffer_heads of
1934 * partially truncated blocks - in @chain[].bh and pointers to
1935 * their last elements that should not be removed - in
1936 * @chain[].p. Return value is the pointer to last filled element
1939 * The work left to caller to do the actual freeing of subtrees:
1940 * a) free the subtree starting from *@top
1941 * b) free the subtrees whose roots are stored in
1942 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1943 * c) free the subtrees growing from the inode past the @chain[0].
1944 * (no partially truncated stuff there). */
1946 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
1947 ext4_lblk_t offsets
[4], Indirect chain
[4], __le32
*top
)
1949 Indirect
*partial
, *p
;
1953 /* Make k index the deepest non-null offest + 1 */
1954 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
1956 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
1957 /* Writer: pointers */
1959 partial
= chain
+ k
-1;
1961 * If the branch acquired continuation since we've looked at it -
1962 * fine, it should all survive and (new) top doesn't belong to us.
1964 if (!partial
->key
&& *partial
->p
)
1967 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
1970 * OK, we've found the last block that must survive. The rest of our
1971 * branch should be detached before unlocking. However, if that rest
1972 * of branch is all ours and does not grow immediately from the inode
1973 * it's easier to cheat and just decrement partial->p.
1975 if (p
== chain
+ k
- 1 && p
> chain
) {
1979 /* Nope, don't do this in ext4. Must leave the tree intact */
1986 while(partial
> p
) {
1987 brelse(partial
->bh
);
1995 * Zero a number of block pointers in either an inode or an indirect block.
1996 * If we restart the transaction we must again get write access to the
1997 * indirect block for further modification.
1999 * We release `count' blocks on disk, but (last - first) may be greater
2000 * than `count' because there can be holes in there.
2002 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2003 struct buffer_head
*bh
, ext4_fsblk_t block_to_free
,
2004 unsigned long count
, __le32
*first
, __le32
*last
)
2007 if (try_to_extend_transaction(handle
, inode
)) {
2009 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
2010 ext4_journal_dirty_metadata(handle
, bh
);
2012 ext4_mark_inode_dirty(handle
, inode
);
2013 ext4_journal_test_restart(handle
, inode
);
2015 BUFFER_TRACE(bh
, "retaking write access");
2016 ext4_journal_get_write_access(handle
, bh
);
2021 * Any buffers which are on the journal will be in memory. We find
2022 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2023 * on them. We've already detached each block from the file, so
2024 * bforget() in jbd2_journal_forget() should be safe.
2026 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2028 for (p
= first
; p
< last
; p
++) {
2029 u32 nr
= le32_to_cpu(*p
);
2031 struct buffer_head
*tbh
;
2034 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
2035 ext4_forget(handle
, 0, inode
, tbh
, nr
);
2039 ext4_free_blocks(handle
, inode
, block_to_free
, count
);
2043 * ext4_free_data - free a list of data blocks
2044 * @handle: handle for this transaction
2045 * @inode: inode we are dealing with
2046 * @this_bh: indirect buffer_head which contains *@first and *@last
2047 * @first: array of block numbers
2048 * @last: points immediately past the end of array
2050 * We are freeing all blocks refered from that array (numbers are stored as
2051 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2053 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2054 * blocks are contiguous then releasing them at one time will only affect one
2055 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2056 * actually use a lot of journal space.
2058 * @this_bh will be %NULL if @first and @last point into the inode's direct
2061 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
2062 struct buffer_head
*this_bh
,
2063 __le32
*first
, __le32
*last
)
2065 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2066 unsigned long count
= 0; /* Number of blocks in the run */
2067 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2070 ext4_fsblk_t nr
; /* Current block # */
2071 __le32
*p
; /* Pointer into inode/ind
2072 for current block */
2075 if (this_bh
) { /* For indirect block */
2076 BUFFER_TRACE(this_bh
, "get_write_access");
2077 err
= ext4_journal_get_write_access(handle
, this_bh
);
2078 /* Important: if we can't update the indirect pointers
2079 * to the blocks, we can't free them. */
2084 for (p
= first
; p
< last
; p
++) {
2085 nr
= le32_to_cpu(*p
);
2087 /* accumulate blocks to free if they're contiguous */
2090 block_to_free_p
= p
;
2092 } else if (nr
== block_to_free
+ count
) {
2095 ext4_clear_blocks(handle
, inode
, this_bh
,
2097 count
, block_to_free_p
, p
);
2099 block_to_free_p
= p
;
2106 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2107 count
, block_to_free_p
, p
);
2110 BUFFER_TRACE(this_bh
, "call ext4_journal_dirty_metadata");
2111 ext4_journal_dirty_metadata(handle
, this_bh
);
2116 * ext4_free_branches - free an array of branches
2117 * @handle: JBD handle for this transaction
2118 * @inode: inode we are dealing with
2119 * @parent_bh: the buffer_head which contains *@first and *@last
2120 * @first: array of block numbers
2121 * @last: pointer immediately past the end of array
2122 * @depth: depth of the branches to free
2124 * We are freeing all blocks refered from these branches (numbers are
2125 * stored as little-endian 32-bit) and updating @inode->i_blocks
2128 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
2129 struct buffer_head
*parent_bh
,
2130 __le32
*first
, __le32
*last
, int depth
)
2135 if (is_handle_aborted(handle
))
2139 struct buffer_head
*bh
;
2140 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
2142 while (--p
>= first
) {
2143 nr
= le32_to_cpu(*p
);
2145 continue; /* A hole */
2147 /* Go read the buffer for the next level down */
2148 bh
= sb_bread(inode
->i_sb
, nr
);
2151 * A read failure? Report error and clear slot
2155 ext4_error(inode
->i_sb
, "ext4_free_branches",
2156 "Read failure, inode=%lu, block=%llu",
2161 /* This zaps the entire block. Bottom up. */
2162 BUFFER_TRACE(bh
, "free child branches");
2163 ext4_free_branches(handle
, inode
, bh
,
2164 (__le32
*)bh
->b_data
,
2165 (__le32
*)bh
->b_data
+ addr_per_block
,
2169 * We've probably journalled the indirect block several
2170 * times during the truncate. But it's no longer
2171 * needed and we now drop it from the transaction via
2172 * jbd2_journal_revoke().
2174 * That's easy if it's exclusively part of this
2175 * transaction. But if it's part of the committing
2176 * transaction then jbd2_journal_forget() will simply
2177 * brelse() it. That means that if the underlying
2178 * block is reallocated in ext4_get_block(),
2179 * unmap_underlying_metadata() will find this block
2180 * and will try to get rid of it. damn, damn.
2182 * If this block has already been committed to the
2183 * journal, a revoke record will be written. And
2184 * revoke records must be emitted *before* clearing
2185 * this block's bit in the bitmaps.
2187 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2190 * Everything below this this pointer has been
2191 * released. Now let this top-of-subtree go.
2193 * We want the freeing of this indirect block to be
2194 * atomic in the journal with the updating of the
2195 * bitmap block which owns it. So make some room in
2198 * We zero the parent pointer *after* freeing its
2199 * pointee in the bitmaps, so if extend_transaction()
2200 * for some reason fails to put the bitmap changes and
2201 * the release into the same transaction, recovery
2202 * will merely complain about releasing a free block,
2203 * rather than leaking blocks.
2205 if (is_handle_aborted(handle
))
2207 if (try_to_extend_transaction(handle
, inode
)) {
2208 ext4_mark_inode_dirty(handle
, inode
);
2209 ext4_journal_test_restart(handle
, inode
);
2212 ext4_free_blocks(handle
, inode
, nr
, 1);
2216 * The block which we have just freed is
2217 * pointed to by an indirect block: journal it
2219 BUFFER_TRACE(parent_bh
, "get_write_access");
2220 if (!ext4_journal_get_write_access(handle
,
2223 BUFFER_TRACE(parent_bh
,
2224 "call ext4_journal_dirty_metadata");
2225 ext4_journal_dirty_metadata(handle
,
2231 /* We have reached the bottom of the tree. */
2232 BUFFER_TRACE(parent_bh
, "free data blocks");
2233 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
2240 * We block out ext4_get_block() block instantiations across the entire
2241 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2242 * simultaneously on behalf of the same inode.
2244 * As we work through the truncate and commmit bits of it to the journal there
2245 * is one core, guiding principle: the file's tree must always be consistent on
2246 * disk. We must be able to restart the truncate after a crash.
2248 * The file's tree may be transiently inconsistent in memory (although it
2249 * probably isn't), but whenever we close off and commit a journal transaction,
2250 * the contents of (the filesystem + the journal) must be consistent and
2251 * restartable. It's pretty simple, really: bottom up, right to left (although
2252 * left-to-right works OK too).
2254 * Note that at recovery time, journal replay occurs *before* the restart of
2255 * truncate against the orphan inode list.
2257 * The committed inode has the new, desired i_size (which is the same as
2258 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2259 * that this inode's truncate did not complete and it will again call
2260 * ext4_truncate() to have another go. So there will be instantiated blocks
2261 * to the right of the truncation point in a crashed ext4 filesystem. But
2262 * that's fine - as long as they are linked from the inode, the post-crash
2263 * ext4_truncate() run will find them and release them.
2265 void ext4_truncate(struct inode
*inode
)
2268 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2269 __le32
*i_data
= ei
->i_data
;
2270 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
2271 struct address_space
*mapping
= inode
->i_mapping
;
2272 ext4_lblk_t offsets
[4];
2277 ext4_lblk_t last_block
;
2278 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2281 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
2282 S_ISLNK(inode
->i_mode
)))
2284 if (ext4_inode_is_fast_symlink(inode
))
2286 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
2290 * We have to lock the EOF page here, because lock_page() nests
2291 * outside jbd2_journal_start().
2293 if ((inode
->i_size
& (blocksize
- 1)) == 0) {
2294 /* Block boundary? Nothing to do */
2297 page
= grab_cache_page(mapping
,
2298 inode
->i_size
>> PAGE_CACHE_SHIFT
);
2303 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
2304 ext4_ext_truncate(inode
, page
);
2308 handle
= start_transaction(inode
);
2309 if (IS_ERR(handle
)) {
2311 clear_highpage(page
);
2312 flush_dcache_page(page
);
2314 page_cache_release(page
);
2316 return; /* AKPM: return what? */
2319 last_block
= (inode
->i_size
+ blocksize
-1)
2320 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
2323 ext4_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2325 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
2327 goto out_stop
; /* error */
2330 * OK. This truncate is going to happen. We add the inode to the
2331 * orphan list, so that if this truncate spans multiple transactions,
2332 * and we crash, we will resume the truncate when the filesystem
2333 * recovers. It also marks the inode dirty, to catch the new size.
2335 * Implication: the file must always be in a sane, consistent
2336 * truncatable state while each transaction commits.
2338 if (ext4_orphan_add(handle
, inode
))
2342 * The orphan list entry will now protect us from any crash which
2343 * occurs before the truncate completes, so it is now safe to propagate
2344 * the new, shorter inode size (held for now in i_size) into the
2345 * on-disk inode. We do this via i_disksize, which is the value which
2346 * ext4 *really* writes onto the disk inode.
2348 ei
->i_disksize
= inode
->i_size
;
2351 * From here we block out all ext4_get_block() callers who want to
2352 * modify the block allocation tree.
2354 down_write(&ei
->i_data_sem
);
2356 if (n
== 1) { /* direct blocks */
2357 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2358 i_data
+ EXT4_NDIR_BLOCKS
);
2362 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
2363 /* Kill the top of shared branch (not detached) */
2365 if (partial
== chain
) {
2366 /* Shared branch grows from the inode */
2367 ext4_free_branches(handle
, inode
, NULL
,
2368 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2371 * We mark the inode dirty prior to restart,
2372 * and prior to stop. No need for it here.
2375 /* Shared branch grows from an indirect block */
2376 BUFFER_TRACE(partial
->bh
, "get_write_access");
2377 ext4_free_branches(handle
, inode
, partial
->bh
,
2379 partial
->p
+1, (chain
+n
-1) - partial
);
2382 /* Clear the ends of indirect blocks on the shared branch */
2383 while (partial
> chain
) {
2384 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2385 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2386 (chain
+n
-1) - partial
);
2387 BUFFER_TRACE(partial
->bh
, "call brelse");
2388 brelse (partial
->bh
);
2392 /* Kill the remaining (whole) subtrees */
2393 switch (offsets
[0]) {
2395 nr
= i_data
[EXT4_IND_BLOCK
];
2397 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2398 i_data
[EXT4_IND_BLOCK
] = 0;
2400 case EXT4_IND_BLOCK
:
2401 nr
= i_data
[EXT4_DIND_BLOCK
];
2403 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2404 i_data
[EXT4_DIND_BLOCK
] = 0;
2406 case EXT4_DIND_BLOCK
:
2407 nr
= i_data
[EXT4_TIND_BLOCK
];
2409 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2410 i_data
[EXT4_TIND_BLOCK
] = 0;
2412 case EXT4_TIND_BLOCK
:
2416 ext4_discard_reservation(inode
);
2418 up_write(&ei
->i_data_sem
);
2419 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
2420 ext4_mark_inode_dirty(handle
, inode
);
2423 * In a multi-transaction truncate, we only make the final transaction
2430 * If this was a simple ftruncate(), and the file will remain alive
2431 * then we need to clear up the orphan record which we created above.
2432 * However, if this was a real unlink then we were called by
2433 * ext4_delete_inode(), and we allow that function to clean up the
2434 * orphan info for us.
2437 ext4_orphan_del(handle
, inode
);
2439 ext4_journal_stop(handle
);
2442 static ext4_fsblk_t
ext4_get_inode_block(struct super_block
*sb
,
2443 unsigned long ino
, struct ext4_iloc
*iloc
)
2445 unsigned long desc
, group_desc
;
2446 ext4_group_t block_group
;
2447 unsigned long offset
;
2449 struct buffer_head
*bh
;
2450 struct ext4_group_desc
* gdp
;
2452 if (!ext4_valid_inum(sb
, ino
)) {
2454 * This error is already checked for in namei.c unless we are
2455 * looking at an NFS filehandle, in which case no error
2461 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
2462 if (block_group
>= EXT4_SB(sb
)->s_groups_count
) {
2463 ext4_error(sb
,"ext4_get_inode_block","group >= groups count");
2467 group_desc
= block_group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
2468 desc
= block_group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2469 bh
= EXT4_SB(sb
)->s_group_desc
[group_desc
];
2471 ext4_error (sb
, "ext4_get_inode_block",
2472 "Descriptor not loaded");
2476 gdp
= (struct ext4_group_desc
*)((__u8
*)bh
->b_data
+
2477 desc
* EXT4_DESC_SIZE(sb
));
2479 * Figure out the offset within the block group inode table
2481 offset
= ((ino
- 1) % EXT4_INODES_PER_GROUP(sb
)) *
2482 EXT4_INODE_SIZE(sb
);
2483 block
= ext4_inode_table(sb
, gdp
) +
2484 (offset
>> EXT4_BLOCK_SIZE_BITS(sb
));
2486 iloc
->block_group
= block_group
;
2487 iloc
->offset
= offset
& (EXT4_BLOCK_SIZE(sb
) - 1);
2492 * ext4_get_inode_loc returns with an extra refcount against the inode's
2493 * underlying buffer_head on success. If 'in_mem' is true, we have all
2494 * data in memory that is needed to recreate the on-disk version of this
2497 static int __ext4_get_inode_loc(struct inode
*inode
,
2498 struct ext4_iloc
*iloc
, int in_mem
)
2501 struct buffer_head
*bh
;
2503 block
= ext4_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2507 bh
= sb_getblk(inode
->i_sb
, block
);
2509 ext4_error (inode
->i_sb
, "ext4_get_inode_loc",
2510 "unable to read inode block - "
2511 "inode=%lu, block=%llu",
2512 inode
->i_ino
, block
);
2515 if (!buffer_uptodate(bh
)) {
2517 if (buffer_uptodate(bh
)) {
2518 /* someone brought it uptodate while we waited */
2524 * If we have all information of the inode in memory and this
2525 * is the only valid inode in the block, we need not read the
2529 struct buffer_head
*bitmap_bh
;
2530 struct ext4_group_desc
*desc
;
2531 int inodes_per_buffer
;
2532 int inode_offset
, i
;
2533 ext4_group_t block_group
;
2536 block_group
= (inode
->i_ino
- 1) /
2537 EXT4_INODES_PER_GROUP(inode
->i_sb
);
2538 inodes_per_buffer
= bh
->b_size
/
2539 EXT4_INODE_SIZE(inode
->i_sb
);
2540 inode_offset
= ((inode
->i_ino
- 1) %
2541 EXT4_INODES_PER_GROUP(inode
->i_sb
));
2542 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2544 /* Is the inode bitmap in cache? */
2545 desc
= ext4_get_group_desc(inode
->i_sb
,
2550 bitmap_bh
= sb_getblk(inode
->i_sb
,
2551 ext4_inode_bitmap(inode
->i_sb
, desc
));
2556 * If the inode bitmap isn't in cache then the
2557 * optimisation may end up performing two reads instead
2558 * of one, so skip it.
2560 if (!buffer_uptodate(bitmap_bh
)) {
2564 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2565 if (i
== inode_offset
)
2567 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
2571 if (i
== start
+ inodes_per_buffer
) {
2572 /* all other inodes are free, so skip I/O */
2573 memset(bh
->b_data
, 0, bh
->b_size
);
2574 set_buffer_uptodate(bh
);
2582 * There are other valid inodes in the buffer, this inode
2583 * has in-inode xattrs, or we don't have this inode in memory.
2584 * Read the block from disk.
2587 bh
->b_end_io
= end_buffer_read_sync
;
2588 submit_bh(READ_META
, bh
);
2590 if (!buffer_uptodate(bh
)) {
2591 ext4_error(inode
->i_sb
, "ext4_get_inode_loc",
2592 "unable to read inode block - "
2593 "inode=%lu, block=%llu",
2594 inode
->i_ino
, block
);
2604 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
2606 /* We have all inode data except xattrs in memory here. */
2607 return __ext4_get_inode_loc(inode
, iloc
,
2608 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
2611 void ext4_set_inode_flags(struct inode
*inode
)
2613 unsigned int flags
= EXT4_I(inode
)->i_flags
;
2615 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2616 if (flags
& EXT4_SYNC_FL
)
2617 inode
->i_flags
|= S_SYNC
;
2618 if (flags
& EXT4_APPEND_FL
)
2619 inode
->i_flags
|= S_APPEND
;
2620 if (flags
& EXT4_IMMUTABLE_FL
)
2621 inode
->i_flags
|= S_IMMUTABLE
;
2622 if (flags
& EXT4_NOATIME_FL
)
2623 inode
->i_flags
|= S_NOATIME
;
2624 if (flags
& EXT4_DIRSYNC_FL
)
2625 inode
->i_flags
|= S_DIRSYNC
;
2628 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2629 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
2631 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2633 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
2634 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
2636 ei
->i_flags
|= EXT4_SYNC_FL
;
2637 if (flags
& S_APPEND
)
2638 ei
->i_flags
|= EXT4_APPEND_FL
;
2639 if (flags
& S_IMMUTABLE
)
2640 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
2641 if (flags
& S_NOATIME
)
2642 ei
->i_flags
|= EXT4_NOATIME_FL
;
2643 if (flags
& S_DIRSYNC
)
2644 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
2646 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
2647 struct ext4_inode_info
*ei
)
2650 struct inode
*inode
= &(ei
->vfs_inode
);
2651 struct super_block
*sb
= inode
->i_sb
;
2653 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
2654 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
2655 /* we are using combined 48 bit field */
2656 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
2657 le32_to_cpu(raw_inode
->i_blocks_lo
);
2658 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
2659 /* i_blocks represent file system block size */
2660 return i_blocks
<< (inode
->i_blkbits
- 9);
2665 return le32_to_cpu(raw_inode
->i_blocks_lo
);
2669 void ext4_read_inode(struct inode
* inode
)
2671 struct ext4_iloc iloc
;
2672 struct ext4_inode
*raw_inode
;
2673 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2674 struct buffer_head
*bh
;
2677 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2678 ei
->i_acl
= EXT4_ACL_NOT_CACHED
;
2679 ei
->i_default_acl
= EXT4_ACL_NOT_CACHED
;
2681 ei
->i_block_alloc_info
= NULL
;
2683 if (__ext4_get_inode_loc(inode
, &iloc
, 0))
2686 raw_inode
= ext4_raw_inode(&iloc
);
2687 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2688 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2689 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2690 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2691 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2692 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2694 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2697 ei
->i_dir_start_lookup
= 0;
2698 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2699 /* We now have enough fields to check if the inode was active or not.
2700 * This is needed because nfsd might try to access dead inodes
2701 * the test is that same one that e2fsck uses
2702 * NeilBrown 1999oct15
2704 if (inode
->i_nlink
== 0) {
2705 if (inode
->i_mode
== 0 ||
2706 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
2707 /* this inode is deleted */
2711 /* The only unlinked inodes we let through here have
2712 * valid i_mode and are being read by the orphan
2713 * recovery code: that's fine, we're about to complete
2714 * the process of deleting those. */
2716 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2717 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
2718 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
2719 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
2720 cpu_to_le32(EXT4_OS_HURD
)) {
2722 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
2724 inode
->i_size
= ext4_isize(raw_inode
);
2725 ei
->i_disksize
= inode
->i_size
;
2726 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2727 ei
->i_block_group
= iloc
.block_group
;
2729 * NOTE! The in-memory inode i_data array is in little-endian order
2730 * even on big-endian machines: we do NOT byteswap the block numbers!
2732 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
2733 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2734 INIT_LIST_HEAD(&ei
->i_orphan
);
2736 if (inode
->i_ino
>= EXT4_FIRST_INO(inode
->i_sb
) + 1 &&
2737 EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
2739 * When mke2fs creates big inodes it does not zero out
2740 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2741 * so ignore those first few inodes.
2743 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2744 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2745 EXT4_INODE_SIZE(inode
->i_sb
)) {
2749 if (ei
->i_extra_isize
== 0) {
2750 /* The extra space is currently unused. Use it. */
2751 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
2752 EXT4_GOOD_OLD_INODE_SIZE
;
2754 __le32
*magic
= (void *)raw_inode
+
2755 EXT4_GOOD_OLD_INODE_SIZE
+
2757 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
2758 ei
->i_state
|= EXT4_STATE_XATTR
;
2761 ei
->i_extra_isize
= 0;
2763 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
2764 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
2765 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
2766 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
2768 if (S_ISREG(inode
->i_mode
)) {
2769 inode
->i_op
= &ext4_file_inode_operations
;
2770 inode
->i_fop
= &ext4_file_operations
;
2771 ext4_set_aops(inode
);
2772 } else if (S_ISDIR(inode
->i_mode
)) {
2773 inode
->i_op
= &ext4_dir_inode_operations
;
2774 inode
->i_fop
= &ext4_dir_operations
;
2775 } else if (S_ISLNK(inode
->i_mode
)) {
2776 if (ext4_inode_is_fast_symlink(inode
))
2777 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
2779 inode
->i_op
= &ext4_symlink_inode_operations
;
2780 ext4_set_aops(inode
);
2783 inode
->i_op
= &ext4_special_inode_operations
;
2784 if (raw_inode
->i_block
[0])
2785 init_special_inode(inode
, inode
->i_mode
,
2786 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
2788 init_special_inode(inode
, inode
->i_mode
,
2789 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
2792 ext4_set_inode_flags(inode
);
2796 make_bad_inode(inode
);
2800 static int ext4_inode_blocks_set(handle_t
*handle
,
2801 struct ext4_inode
*raw_inode
,
2802 struct ext4_inode_info
*ei
)
2804 struct inode
*inode
= &(ei
->vfs_inode
);
2805 u64 i_blocks
= inode
->i_blocks
;
2806 struct super_block
*sb
= inode
->i_sb
;
2809 if (i_blocks
<= ~0U) {
2811 * i_blocks can be represnted in a 32 bit variable
2812 * as multiple of 512 bytes
2814 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
2815 raw_inode
->i_blocks_high
= 0;
2816 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
2817 } else if (i_blocks
<= 0xffffffffffffULL
) {
2819 * i_blocks can be represented in a 48 bit variable
2820 * as multiple of 512 bytes
2822 err
= ext4_update_rocompat_feature(handle
, sb
,
2823 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
);
2826 /* i_block is stored in the split 48 bit fields */
2827 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
2828 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
2829 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
2832 * i_blocks should be represented in a 48 bit variable
2833 * as multiple of file system block size
2835 err
= ext4_update_rocompat_feature(handle
, sb
,
2836 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
);
2839 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
2840 /* i_block is stored in file system block size */
2841 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
2842 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
2843 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
2850 * Post the struct inode info into an on-disk inode location in the
2851 * buffer-cache. This gobbles the caller's reference to the
2852 * buffer_head in the inode location struct.
2854 * The caller must have write access to iloc->bh.
2856 static int ext4_do_update_inode(handle_t
*handle
,
2857 struct inode
*inode
,
2858 struct ext4_iloc
*iloc
)
2860 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
2861 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2862 struct buffer_head
*bh
= iloc
->bh
;
2863 int err
= 0, rc
, block
;
2865 /* For fields not not tracking in the in-memory inode,
2866 * initialise them to zero for new inodes. */
2867 if (ei
->i_state
& EXT4_STATE_NEW
)
2868 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
2870 ext4_get_inode_flags(ei
);
2871 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
2872 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
2873 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
2874 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
2876 * Fix up interoperability with old kernels. Otherwise, old inodes get
2877 * re-used with the upper 16 bits of the uid/gid intact
2880 raw_inode
->i_uid_high
=
2881 cpu_to_le16(high_16_bits(inode
->i_uid
));
2882 raw_inode
->i_gid_high
=
2883 cpu_to_le16(high_16_bits(inode
->i_gid
));
2885 raw_inode
->i_uid_high
= 0;
2886 raw_inode
->i_gid_high
= 0;
2889 raw_inode
->i_uid_low
=
2890 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
2891 raw_inode
->i_gid_low
=
2892 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
2893 raw_inode
->i_uid_high
= 0;
2894 raw_inode
->i_gid_high
= 0;
2896 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
2898 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
2899 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
2900 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
2901 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
2903 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
2905 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
2906 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
2907 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
2908 cpu_to_le32(EXT4_OS_HURD
))
2909 raw_inode
->i_file_acl_high
=
2910 cpu_to_le16(ei
->i_file_acl
>> 32);
2911 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
2912 ext4_isize_set(raw_inode
, ei
->i_disksize
);
2913 if (ei
->i_disksize
> 0x7fffffffULL
) {
2914 struct super_block
*sb
= inode
->i_sb
;
2915 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
2916 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
2917 EXT4_SB(sb
)->s_es
->s_rev_level
==
2918 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
2919 /* If this is the first large file
2920 * created, add a flag to the superblock.
2922 err
= ext4_journal_get_write_access(handle
,
2923 EXT4_SB(sb
)->s_sbh
);
2926 ext4_update_dynamic_rev(sb
);
2927 EXT4_SET_RO_COMPAT_FEATURE(sb
,
2928 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
2931 err
= ext4_journal_dirty_metadata(handle
,
2932 EXT4_SB(sb
)->s_sbh
);
2935 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
2936 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
2937 if (old_valid_dev(inode
->i_rdev
)) {
2938 raw_inode
->i_block
[0] =
2939 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
2940 raw_inode
->i_block
[1] = 0;
2942 raw_inode
->i_block
[0] = 0;
2943 raw_inode
->i_block
[1] =
2944 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
2945 raw_inode
->i_block
[2] = 0;
2947 } else for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
2948 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
2950 if (ei
->i_extra_isize
)
2951 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
2953 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
2954 rc
= ext4_journal_dirty_metadata(handle
, bh
);
2957 ei
->i_state
&= ~EXT4_STATE_NEW
;
2961 ext4_std_error(inode
->i_sb
, err
);
2966 * ext4_write_inode()
2968 * We are called from a few places:
2970 * - Within generic_file_write() for O_SYNC files.
2971 * Here, there will be no transaction running. We wait for any running
2972 * trasnaction to commit.
2974 * - Within sys_sync(), kupdate and such.
2975 * We wait on commit, if tol to.
2977 * - Within prune_icache() (PF_MEMALLOC == true)
2978 * Here we simply return. We can't afford to block kswapd on the
2981 * In all cases it is actually safe for us to return without doing anything,
2982 * because the inode has been copied into a raw inode buffer in
2983 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2986 * Note that we are absolutely dependent upon all inode dirtiers doing the
2987 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2988 * which we are interested.
2990 * It would be a bug for them to not do this. The code:
2992 * mark_inode_dirty(inode)
2994 * inode->i_size = expr;
2996 * is in error because a kswapd-driven write_inode() could occur while
2997 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2998 * will no longer be on the superblock's dirty inode list.
3000 int ext4_write_inode(struct inode
*inode
, int wait
)
3002 if (current
->flags
& PF_MEMALLOC
)
3005 if (ext4_journal_current_handle()) {
3006 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3014 return ext4_force_commit(inode
->i_sb
);
3020 * Called from notify_change.
3022 * We want to trap VFS attempts to truncate the file as soon as
3023 * possible. In particular, we want to make sure that when the VFS
3024 * shrinks i_size, we put the inode on the orphan list and modify
3025 * i_disksize immediately, so that during the subsequent flushing of
3026 * dirty pages and freeing of disk blocks, we can guarantee that any
3027 * commit will leave the blocks being flushed in an unused state on
3028 * disk. (On recovery, the inode will get truncated and the blocks will
3029 * be freed, so we have a strong guarantee that no future commit will
3030 * leave these blocks visible to the user.)
3032 * Called with inode->sem down.
3034 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3036 struct inode
*inode
= dentry
->d_inode
;
3038 const unsigned int ia_valid
= attr
->ia_valid
;
3040 error
= inode_change_ok(inode
, attr
);
3044 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3045 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3048 /* (user+group)*(old+new) structure, inode write (sb,
3049 * inode block, ? - but truncate inode update has it) */
3050 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
3051 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
3052 if (IS_ERR(handle
)) {
3053 error
= PTR_ERR(handle
);
3056 error
= DQUOT_TRANSFER(inode
, attr
) ? -EDQUOT
: 0;
3058 ext4_journal_stop(handle
);
3061 /* Update corresponding info in inode so that everything is in
3062 * one transaction */
3063 if (attr
->ia_valid
& ATTR_UID
)
3064 inode
->i_uid
= attr
->ia_uid
;
3065 if (attr
->ia_valid
& ATTR_GID
)
3066 inode
->i_gid
= attr
->ia_gid
;
3067 error
= ext4_mark_inode_dirty(handle
, inode
);
3068 ext4_journal_stop(handle
);
3071 if (attr
->ia_valid
& ATTR_SIZE
) {
3072 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
3073 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3075 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
3082 if (S_ISREG(inode
->i_mode
) &&
3083 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3086 handle
= ext4_journal_start(inode
, 3);
3087 if (IS_ERR(handle
)) {
3088 error
= PTR_ERR(handle
);
3092 error
= ext4_orphan_add(handle
, inode
);
3093 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
3094 rc
= ext4_mark_inode_dirty(handle
, inode
);
3097 ext4_journal_stop(handle
);
3100 rc
= inode_setattr(inode
, attr
);
3102 /* If inode_setattr's call to ext4_truncate failed to get a
3103 * transaction handle at all, we need to clean up the in-core
3104 * orphan list manually. */
3106 ext4_orphan_del(NULL
, inode
);
3108 if (!rc
&& (ia_valid
& ATTR_MODE
))
3109 rc
= ext4_acl_chmod(inode
);
3112 ext4_std_error(inode
->i_sb
, error
);
3120 * How many blocks doth make a writepage()?
3122 * With N blocks per page, it may be:
3127 * N+5 bitmap blocks (from the above)
3128 * N+5 group descriptor summary blocks
3131 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3133 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3135 * With ordered or writeback data it's the same, less the N data blocks.
3137 * If the inode's direct blocks can hold an integral number of pages then a
3138 * page cannot straddle two indirect blocks, and we can only touch one indirect
3139 * and dindirect block, and the "5" above becomes "3".
3141 * This still overestimates under most circumstances. If we were to pass the
3142 * start and end offsets in here as well we could do block_to_path() on each
3143 * block and work out the exact number of indirects which are touched. Pah.
3146 int ext4_writepage_trans_blocks(struct inode
*inode
)
3148 int bpp
= ext4_journal_blocks_per_page(inode
);
3149 int indirects
= (EXT4_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3152 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3153 return ext4_ext_writepage_trans_blocks(inode
, bpp
);
3155 if (ext4_should_journal_data(inode
))
3156 ret
= 3 * (bpp
+ indirects
) + 2;
3158 ret
= 2 * (bpp
+ indirects
) + 2;
3161 /* We know that structure was already allocated during DQUOT_INIT so
3162 * we will be updating only the data blocks + inodes */
3163 ret
+= 2*EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
3170 * The caller must have previously called ext4_reserve_inode_write().
3171 * Give this, we know that the caller already has write access to iloc->bh.
3173 int ext4_mark_iloc_dirty(handle_t
*handle
,
3174 struct inode
*inode
, struct ext4_iloc
*iloc
)
3178 /* the do_update_inode consumes one bh->b_count */
3181 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3182 err
= ext4_do_update_inode(handle
, inode
, iloc
);
3188 * On success, We end up with an outstanding reference count against
3189 * iloc->bh. This _must_ be cleaned up later.
3193 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3194 struct ext4_iloc
*iloc
)
3198 err
= ext4_get_inode_loc(inode
, iloc
);
3200 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3201 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
3208 ext4_std_error(inode
->i_sb
, err
);
3213 * Expand an inode by new_extra_isize bytes.
3214 * Returns 0 on success or negative error number on failure.
3216 static int ext4_expand_extra_isize(struct inode
*inode
,
3217 unsigned int new_extra_isize
,
3218 struct ext4_iloc iloc
,
3221 struct ext4_inode
*raw_inode
;
3222 struct ext4_xattr_ibody_header
*header
;
3223 struct ext4_xattr_entry
*entry
;
3225 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
3228 raw_inode
= ext4_raw_inode(&iloc
);
3230 header
= IHDR(inode
, raw_inode
);
3231 entry
= IFIRST(header
);
3233 /* No extended attributes present */
3234 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
3235 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
3236 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
3238 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
3242 /* try to expand with EAs present */
3243 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
3248 * What we do here is to mark the in-core inode as clean with respect to inode
3249 * dirtiness (it may still be data-dirty).
3250 * This means that the in-core inode may be reaped by prune_icache
3251 * without having to perform any I/O. This is a very good thing,
3252 * because *any* task may call prune_icache - even ones which
3253 * have a transaction open against a different journal.
3255 * Is this cheating? Not really. Sure, we haven't written the
3256 * inode out, but prune_icache isn't a user-visible syncing function.
3257 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3258 * we start and wait on commits.
3260 * Is this efficient/effective? Well, we're being nice to the system
3261 * by cleaning up our inodes proactively so they can be reaped
3262 * without I/O. But we are potentially leaving up to five seconds'
3263 * worth of inodes floating about which prune_icache wants us to
3264 * write out. One way to fix that would be to get prune_icache()
3265 * to do a write_super() to free up some memory. It has the desired
3268 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3270 struct ext4_iloc iloc
;
3271 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3272 static unsigned int mnt_count
;
3276 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
3277 if (EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
3278 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
3280 * We need extra buffer credits since we may write into EA block
3281 * with this same handle. If journal_extend fails, then it will
3282 * only result in a minor loss of functionality for that inode.
3283 * If this is felt to be critical, then e2fsck should be run to
3284 * force a large enough s_min_extra_isize.
3286 if ((jbd2_journal_extend(handle
,
3287 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
3288 ret
= ext4_expand_extra_isize(inode
,
3289 sbi
->s_want_extra_isize
,
3292 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
3294 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
3295 ext4_warning(inode
->i_sb
, __FUNCTION__
,
3296 "Unable to expand inode %lu. Delete"
3297 " some EAs or run e2fsck.",
3300 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
3306 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
3311 * ext4_dirty_inode() is called from __mark_inode_dirty()
3313 * We're really interested in the case where a file is being extended.
3314 * i_size has been changed by generic_commit_write() and we thus need
3315 * to include the updated inode in the current transaction.
3317 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3318 * are allocated to the file.
3320 * If the inode is marked synchronous, we don't honour that here - doing
3321 * so would cause a commit on atime updates, which we don't bother doing.
3322 * We handle synchronous inodes at the highest possible level.
3324 void ext4_dirty_inode(struct inode
*inode
)
3326 handle_t
*current_handle
= ext4_journal_current_handle();
3329 handle
= ext4_journal_start(inode
, 2);
3332 if (current_handle
&&
3333 current_handle
->h_transaction
!= handle
->h_transaction
) {
3334 /* This task has a transaction open against a different fs */
3335 printk(KERN_EMERG
"%s: transactions do not match!\n",
3338 jbd_debug(5, "marking dirty. outer handle=%p\n",
3340 ext4_mark_inode_dirty(handle
, inode
);
3342 ext4_journal_stop(handle
);
3349 * Bind an inode's backing buffer_head into this transaction, to prevent
3350 * it from being flushed to disk early. Unlike
3351 * ext4_reserve_inode_write, this leaves behind no bh reference and
3352 * returns no iloc structure, so the caller needs to repeat the iloc
3353 * lookup to mark the inode dirty later.
3355 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
3357 struct ext4_iloc iloc
;
3361 err
= ext4_get_inode_loc(inode
, &iloc
);
3363 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3364 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
3366 err
= ext4_journal_dirty_metadata(handle
,
3371 ext4_std_error(inode
->i_sb
, err
);
3376 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
3383 * We have to be very careful here: changing a data block's
3384 * journaling status dynamically is dangerous. If we write a
3385 * data block to the journal, change the status and then delete
3386 * that block, we risk forgetting to revoke the old log record
3387 * from the journal and so a subsequent replay can corrupt data.
3388 * So, first we make sure that the journal is empty and that
3389 * nobody is changing anything.
3392 journal
= EXT4_JOURNAL(inode
);
3393 if (is_journal_aborted(journal
))
3396 jbd2_journal_lock_updates(journal
);
3397 jbd2_journal_flush(journal
);
3400 * OK, there are no updates running now, and all cached data is
3401 * synced to disk. We are now in a completely consistent state
3402 * which doesn't have anything in the journal, and we know that
3403 * no filesystem updates are running, so it is safe to modify
3404 * the inode's in-core data-journaling state flag now.
3408 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
3410 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
3411 ext4_set_aops(inode
);
3413 jbd2_journal_unlock_updates(journal
);
3415 /* Finally we can mark the inode as dirty. */
3417 handle
= ext4_journal_start(inode
, 1);
3419 return PTR_ERR(handle
);
3421 err
= ext4_mark_inode_dirty(handle
, inode
);
3423 ext4_journal_stop(handle
);
3424 ext4_std_error(inode
->i_sb
, err
);