[MIPS] Separate performance counter interrupts
[linux-2.6/kvm.git] / arch / mips / kernel / time.c
blob7def1ff3da9492573508870c2f927af670aeaecc
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
30 #include <asm/cpu.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
34 #include <asm/time.h>
37 * The integer part of the number of usecs per jiffy is taken from tick,
38 * but the fractional part is not recorded, so we calculate it using the
39 * initial value of HZ. This aids systems where tick isn't really an
40 * integer (e.g. for HZ = 128).
42 #define USECS_PER_JIFFY TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
45 #define TICK_SIZE (tick_nsec / 1000)
48 * forward reference
50 DEFINE_SPINLOCK(rtc_lock);
53 * By default we provide the null RTC ops
55 static unsigned long null_rtc_get_time(void)
57 return mktime(2000, 1, 1, 0, 0, 0);
60 static int null_rtc_set_time(unsigned long sec)
62 return 0;
65 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
66 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
67 int (*rtc_mips_set_mmss)(unsigned long);
70 /* how many counter cycles in a jiffy */
71 static unsigned long cycles_per_jiffy __read_mostly;
73 /* expirelo is the count value for next CPU timer interrupt */
74 static unsigned int expirelo;
78 * Null timer ack for systems not needing one (e.g. i8254).
80 static void null_timer_ack(void) { /* nothing */ }
83 * Null high precision timer functions for systems lacking one.
85 static cycle_t null_hpt_read(void)
87 return 0;
91 * Timer ack for an R4k-compatible timer of a known frequency.
93 static void c0_timer_ack(void)
95 unsigned int count;
97 /* Ack this timer interrupt and set the next one. */
98 expirelo += cycles_per_jiffy;
99 write_c0_compare(expirelo);
101 /* Check to see if we have missed any timer interrupts. */
102 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
103 /* missed_timer_count++; */
104 expirelo = count + cycles_per_jiffy;
105 write_c0_compare(expirelo);
110 * High precision timer functions for a R4k-compatible timer.
112 static cycle_t c0_hpt_read(void)
114 return read_c0_count();
117 /* For use both as a high precision timer and an interrupt source. */
118 static void __init c0_hpt_timer_init(void)
120 expirelo = read_c0_count() + cycles_per_jiffy;
121 write_c0_compare(expirelo);
124 int (*mips_timer_state)(void);
125 void (*mips_timer_ack)(void);
127 /* last time when xtime and rtc are sync'ed up */
128 static long last_rtc_update;
131 * local_timer_interrupt() does profiling and process accounting
132 * on a per-CPU basis.
134 * In UP mode, it is invoked from the (global) timer_interrupt.
136 * In SMP mode, it might invoked by per-CPU timer interrupt, or
137 * a broadcasted inter-processor interrupt which itself is triggered
138 * by the global timer interrupt.
140 void local_timer_interrupt(int irq, void *dev_id)
142 profile_tick(CPU_PROFILING);
143 update_process_times(user_mode(get_irq_regs()));
147 * High-level timer interrupt service routines. This function
148 * is set as irqaction->handler and is invoked through do_IRQ.
150 irqreturn_t timer_interrupt(int irq, void *dev_id)
152 write_seqlock(&xtime_lock);
154 mips_timer_ack();
157 * call the generic timer interrupt handling
159 do_timer(1);
162 * If we have an externally synchronized Linux clock, then update
163 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
164 * called as close as possible to 500 ms before the new second starts.
166 if (ntp_synced() &&
167 xtime.tv_sec > last_rtc_update + 660 &&
168 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
169 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
170 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
171 last_rtc_update = xtime.tv_sec;
172 } else {
173 /* do it again in 60 s */
174 last_rtc_update = xtime.tv_sec - 600;
178 write_sequnlock(&xtime_lock);
181 * In UP mode, we call local_timer_interrupt() to do profiling
182 * and process accouting.
184 * In SMP mode, local_timer_interrupt() is invoked by appropriate
185 * low-level local timer interrupt handler.
187 local_timer_interrupt(irq, dev_id);
189 return IRQ_HANDLED;
192 int null_perf_irq(void)
194 return 0;
197 int (*perf_irq)(void) = null_perf_irq;
199 EXPORT_SYMBOL(null_perf_irq);
200 EXPORT_SYMBOL(perf_irq);
203 * Performance counter IRQ or -1 if shared with timer
205 int mipsxx_perfcount_irq;
206 EXPORT_SYMBOL(mipsxx_perfcount_irq);
209 * Possibly handle a performance counter interrupt.
210 * Return true if the timer interrupt should not be checked
212 static inline int handle_perf_irq (int r2)
215 * The performance counter overflow interrupt may be shared with the
216 * timer interrupt (mipsxx_perfcount_irq < 0). If it is and a
217 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
218 * and we can't reliably determine if a counter interrupt has also
219 * happened (!r2) then don't check for a timer interrupt.
221 return (mipsxx_perfcount_irq < 0) &&
222 perf_irq() == IRQ_HANDLED &&
223 !r2;
226 asmlinkage void ll_timer_interrupt(int irq)
228 int r2 = cpu_has_mips_r2;
230 irq_enter();
231 kstat_this_cpu.irqs[irq]++;
233 if (handle_perf_irq(r2))
234 goto out;
236 if (r2 && ((read_c0_cause() & (1 << 30)) == 0))
237 goto out;
239 timer_interrupt(irq, NULL);
241 out:
242 irq_exit();
245 asmlinkage void ll_local_timer_interrupt(int irq)
247 irq_enter();
248 if (smp_processor_id() != 0)
249 kstat_this_cpu.irqs[irq]++;
251 /* we keep interrupt disabled all the time */
252 local_timer_interrupt(irq, NULL);
254 irq_exit();
258 * time_init() - it does the following things.
260 * 1) board_time_init() -
261 * a) (optional) set up RTC routines,
262 * b) (optional) calibrate and set the mips_hpt_frequency
263 * (only needed if you intended to use cpu counter as timer interrupt
264 * source)
265 * 2) setup xtime based on rtc_mips_get_time().
266 * 3) calculate a couple of cached variables for later usage
267 * 4) plat_timer_setup() -
268 * a) (optional) over-write any choices made above by time_init().
269 * b) machine specific code should setup the timer irqaction.
270 * c) enable the timer interrupt
273 void (*board_time_init)(void);
275 unsigned int mips_hpt_frequency;
277 static struct irqaction timer_irqaction = {
278 .handler = timer_interrupt,
279 .flags = IRQF_DISABLED | IRQF_PERCPU,
280 .name = "timer",
283 static unsigned int __init calibrate_hpt(void)
285 cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
287 const int loops = HZ / 10;
288 int log_2_loops = 0;
289 int i;
292 * We want to calibrate for 0.1s, but to avoid a 64-bit
293 * division we round the number of loops up to the nearest
294 * power of 2.
296 while (loops > 1 << log_2_loops)
297 log_2_loops++;
298 i = 1 << log_2_loops;
301 * Wait for a rising edge of the timer interrupt.
303 while (mips_timer_state());
304 while (!mips_timer_state());
307 * Now see how many high precision timer ticks happen
308 * during the calculated number of periods between timer
309 * interrupts.
311 hpt_start = clocksource_mips.read();
312 do {
313 while (mips_timer_state());
314 while (!mips_timer_state());
315 } while (--i);
316 hpt_end = clocksource_mips.read();
318 hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
319 hz = HZ;
320 frequency = hpt_count * hz;
322 return frequency >> log_2_loops;
325 struct clocksource clocksource_mips = {
326 .name = "MIPS",
327 .mask = CLOCKSOURCE_MASK(32),
328 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
331 static void __init init_mips_clocksource(void)
333 u64 temp;
334 u32 shift;
336 if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
337 return;
339 /* Calclate a somewhat reasonable rating value */
340 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
341 /* Find a shift value */
342 for (shift = 32; shift > 0; shift--) {
343 temp = (u64) NSEC_PER_SEC << shift;
344 do_div(temp, mips_hpt_frequency);
345 if ((temp >> 32) == 0)
346 break;
348 clocksource_mips.shift = shift;
349 clocksource_mips.mult = (u32)temp;
351 clocksource_register(&clocksource_mips);
354 void __init time_init(void)
356 if (board_time_init)
357 board_time_init();
359 if (!rtc_mips_set_mmss)
360 rtc_mips_set_mmss = rtc_mips_set_time;
362 xtime.tv_sec = rtc_mips_get_time();
363 xtime.tv_nsec = 0;
365 set_normalized_timespec(&wall_to_monotonic,
366 -xtime.tv_sec, -xtime.tv_nsec);
368 /* Choose appropriate high precision timer routines. */
369 if (!cpu_has_counter && !clocksource_mips.read)
370 /* No high precision timer -- sorry. */
371 clocksource_mips.read = null_hpt_read;
372 else if (!mips_hpt_frequency && !mips_timer_state) {
373 /* A high precision timer of unknown frequency. */
374 if (!clocksource_mips.read)
375 /* No external high precision timer -- use R4k. */
376 clocksource_mips.read = c0_hpt_read;
377 } else {
378 /* We know counter frequency. Or we can get it. */
379 if (!clocksource_mips.read) {
380 /* No external high precision timer -- use R4k. */
381 clocksource_mips.read = c0_hpt_read;
383 if (!mips_timer_state) {
384 /* No external timer interrupt -- use R4k. */
385 mips_timer_ack = c0_timer_ack;
386 /* Calculate cache parameters. */
387 cycles_per_jiffy =
388 (mips_hpt_frequency + HZ / 2) / HZ;
390 * This sets up the high precision
391 * timer for the first interrupt.
393 c0_hpt_timer_init();
396 if (!mips_hpt_frequency)
397 mips_hpt_frequency = calibrate_hpt();
399 /* Report the high precision timer rate for a reference. */
400 printk("Using %u.%03u MHz high precision timer.\n",
401 ((mips_hpt_frequency + 500) / 1000) / 1000,
402 ((mips_hpt_frequency + 500) / 1000) % 1000);
405 if (!mips_timer_ack)
406 /* No timer interrupt ack (e.g. i8254). */
407 mips_timer_ack = null_timer_ack;
410 * Call board specific timer interrupt setup.
412 * this pointer must be setup in machine setup routine.
414 * Even if a machine chooses to use a low-level timer interrupt,
415 * it still needs to setup the timer_irqaction.
416 * In that case, it might be better to set timer_irqaction.handler
417 * to be NULL function so that we are sure the high-level code
418 * is not invoked accidentally.
420 plat_timer_setup(&timer_irqaction);
422 init_mips_clocksource();
425 #define FEBRUARY 2
426 #define STARTOFTIME 1970
427 #define SECDAY 86400L
428 #define SECYR (SECDAY * 365)
429 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
430 #define days_in_year(y) (leapyear(y) ? 366 : 365)
431 #define days_in_month(m) (month_days[(m) - 1])
433 static int month_days[12] = {
434 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
437 void to_tm(unsigned long tim, struct rtc_time *tm)
439 long hms, day, gday;
440 int i;
442 gday = day = tim / SECDAY;
443 hms = tim % SECDAY;
445 /* Hours, minutes, seconds are easy */
446 tm->tm_hour = hms / 3600;
447 tm->tm_min = (hms % 3600) / 60;
448 tm->tm_sec = (hms % 3600) % 60;
450 /* Number of years in days */
451 for (i = STARTOFTIME; day >= days_in_year(i); i++)
452 day -= days_in_year(i);
453 tm->tm_year = i;
455 /* Number of months in days left */
456 if (leapyear(tm->tm_year))
457 days_in_month(FEBRUARY) = 29;
458 for (i = 1; day >= days_in_month(i); i++)
459 day -= days_in_month(i);
460 days_in_month(FEBRUARY) = 28;
461 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
463 /* Days are what is left over (+1) from all that. */
464 tm->tm_mday = day + 1;
467 * Determine the day of week
469 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
472 EXPORT_SYMBOL(rtc_lock);
473 EXPORT_SYMBOL(to_tm);
474 EXPORT_SYMBOL(rtc_mips_set_time);
475 EXPORT_SYMBOL(rtc_mips_get_time);