atl1: add PHY power save mode
[linux-2.6/kvm.git] / drivers / net / atlx / atl1.c
blob3beb44e80ba0ec8ea396c02b38457130a58bca67
1 /*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 Jay Cliburn <jcliburn@gmail.com>
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
26 * Contact Information:
27 * Xiong Huang <xiong_huang@attansic.com>
28 * Attansic Technology Corp. 3F 147, Xianzheng 9th Road, Zhubei,
29 * Xinzhu 302, TAIWAN, REPUBLIC OF CHINA
31 * Chris Snook <csnook@redhat.com>
32 * Jay Cliburn <jcliburn@gmail.com>
34 * This version is adapted from the Attansic reference driver for
35 * inclusion in the Linux kernel. It is currently under heavy development.
36 * A very incomplete list of things that need to be dealt with:
38 * TODO:
39 * Wake on LAN.
40 * Add more ethtool functions.
41 * Fix abstruse irq enable/disable condition described here:
42 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
44 * NEEDS TESTING:
45 * VLAN
46 * multicast
47 * promiscuous mode
48 * interrupt coalescing
49 * SMP torture testing
52 #include <asm/atomic.h>
53 #include <asm/byteorder.h>
55 #include <linux/compiler.h>
56 #include <linux/crc32.h>
57 #include <linux/delay.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/etherdevice.h>
60 #include <linux/hardirq.h>
61 #include <linux/if_ether.h>
62 #include <linux/if_vlan.h>
63 #include <linux/in.h>
64 #include <linux/interrupt.h>
65 #include <linux/ip.h>
66 #include <linux/irqflags.h>
67 #include <linux/irqreturn.h>
68 #include <linux/jiffies.h>
69 #include <linux/mii.h>
70 #include <linux/module.h>
71 #include <linux/moduleparam.h>
72 #include <linux/net.h>
73 #include <linux/netdevice.h>
74 #include <linux/pci.h>
75 #include <linux/pci_ids.h>
76 #include <linux/pm.h>
77 #include <linux/skbuff.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/string.h>
81 #include <linux/tcp.h>
82 #include <linux/timer.h>
83 #include <linux/types.h>
84 #include <linux/workqueue.h>
86 #include <net/checksum.h>
88 #include "atl1.h"
90 /* Temporary hack for merging atl1 and atl2 */
91 #include "atlx.c"
94 * This is the only thing that needs to be changed to adjust the
95 * maximum number of ports that the driver can manage.
97 #define ATL1_MAX_NIC 4
99 #define OPTION_UNSET -1
100 #define OPTION_DISABLED 0
101 #define OPTION_ENABLED 1
103 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
106 * Interrupt Moderate Timer in units of 2 us
108 * Valid Range: 10-65535
110 * Default Value: 100 (200us)
112 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
113 static int num_int_mod_timer;
114 module_param_array_named(int_mod_timer, int_mod_timer, int,
115 &num_int_mod_timer, 0);
116 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
118 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
119 #define MAX_INT_MOD_CNT 65000
120 #define MIN_INT_MOD_CNT 50
122 struct atl1_option {
123 enum { enable_option, range_option, list_option } type;
124 char *name;
125 char *err;
126 int def;
127 union {
128 struct { /* range_option info */
129 int min;
130 int max;
131 } r;
132 struct { /* list_option info */
133 int nr;
134 struct atl1_opt_list {
135 int i;
136 char *str;
137 } *p;
138 } l;
139 } arg;
142 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
143 struct pci_dev *pdev)
145 if (*value == OPTION_UNSET) {
146 *value = opt->def;
147 return 0;
150 switch (opt->type) {
151 case enable_option:
152 switch (*value) {
153 case OPTION_ENABLED:
154 dev_info(&pdev->dev, "%s enabled\n", opt->name);
155 return 0;
156 case OPTION_DISABLED:
157 dev_info(&pdev->dev, "%s disabled\n", opt->name);
158 return 0;
160 break;
161 case range_option:
162 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
163 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
164 *value);
165 return 0;
167 break;
168 case list_option:{
169 int i;
170 struct atl1_opt_list *ent;
172 for (i = 0; i < opt->arg.l.nr; i++) {
173 ent = &opt->arg.l.p[i];
174 if (*value == ent->i) {
175 if (ent->str[0] != '\0')
176 dev_info(&pdev->dev, "%s\n",
177 ent->str);
178 return 0;
182 break;
184 default:
185 break;
188 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
189 opt->name, *value, opt->err);
190 *value = opt->def;
191 return -1;
195 * atl1_check_options - Range Checking for Command Line Parameters
196 * @adapter: board private structure
198 * This routine checks all command line parameters for valid user
199 * input. If an invalid value is given, or if no user specified
200 * value exists, a default value is used. The final value is stored
201 * in a variable in the adapter structure.
203 void __devinit atl1_check_options(struct atl1_adapter *adapter)
205 struct pci_dev *pdev = adapter->pdev;
206 int bd = adapter->bd_number;
207 if (bd >= ATL1_MAX_NIC) {
208 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
209 dev_notice(&pdev->dev, "using defaults for all values\n");
211 { /* Interrupt Moderate Timer */
212 struct atl1_option opt = {
213 .type = range_option,
214 .name = "Interrupt Moderator Timer",
215 .err = "using default of "
216 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
217 .def = DEFAULT_INT_MOD_CNT,
218 .arg = {.r = {.min = MIN_INT_MOD_CNT,
219 .max = MAX_INT_MOD_CNT} }
221 int val;
222 if (num_int_mod_timer > bd) {
223 val = int_mod_timer[bd];
224 atl1_validate_option(&val, &opt, pdev);
225 adapter->imt = (u16) val;
226 } else
227 adapter->imt = (u16) (opt.def);
232 * atl1_pci_tbl - PCI Device ID Table
234 static const struct pci_device_id atl1_pci_tbl[] = {
235 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
236 /* required last entry */
237 {0,}
239 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
241 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
242 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
244 static int debug = -1;
245 module_param(debug, int, 0);
246 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
249 * Reset the transmit and receive units; mask and clear all interrupts.
250 * hw - Struct containing variables accessed by shared code
251 * return : 0 or idle status (if error)
253 static s32 atl1_reset_hw(struct atl1_hw *hw)
255 struct pci_dev *pdev = hw->back->pdev;
256 struct atl1_adapter *adapter = hw->back;
257 u32 icr;
258 int i;
261 * Clear Interrupt mask to stop board from generating
262 * interrupts & Clear any pending interrupt events
265 * iowrite32(0, hw->hw_addr + REG_IMR);
266 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
270 * Issue Soft Reset to the MAC. This will reset the chip's
271 * transmit, receive, DMA. It will not effect
272 * the current PCI configuration. The global reset bit is self-
273 * clearing, and should clear within a microsecond.
275 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
276 ioread32(hw->hw_addr + REG_MASTER_CTRL);
278 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
279 ioread16(hw->hw_addr + REG_PHY_ENABLE);
281 /* delay about 1ms */
282 msleep(1);
284 /* Wait at least 10ms for All module to be Idle */
285 for (i = 0; i < 10; i++) {
286 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
287 if (!icr)
288 break;
289 /* delay 1 ms */
290 msleep(1);
291 /* FIXME: still the right way to do this? */
292 cpu_relax();
295 if (icr) {
296 if (netif_msg_hw(adapter))
297 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
298 return icr;
301 return 0;
304 /* function about EEPROM
306 * check_eeprom_exist
307 * return 0 if eeprom exist
309 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
311 u32 value;
312 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
313 if (value & SPI_FLASH_CTRL_EN_VPD) {
314 value &= ~SPI_FLASH_CTRL_EN_VPD;
315 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
318 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
319 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
322 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
324 int i;
325 u32 control;
327 if (offset & 3)
328 /* address do not align */
329 return false;
331 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
332 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
333 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
334 ioread32(hw->hw_addr + REG_VPD_CAP);
336 for (i = 0; i < 10; i++) {
337 msleep(2);
338 control = ioread32(hw->hw_addr + REG_VPD_CAP);
339 if (control & VPD_CAP_VPD_FLAG)
340 break;
342 if (control & VPD_CAP_VPD_FLAG) {
343 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
344 return true;
346 /* timeout */
347 return false;
351 * Reads the value from a PHY register
352 * hw - Struct containing variables accessed by shared code
353 * reg_addr - address of the PHY register to read
355 s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
357 u32 val;
358 int i;
360 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
361 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
362 MDIO_CLK_SEL_SHIFT;
363 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
364 ioread32(hw->hw_addr + REG_MDIO_CTRL);
366 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
367 udelay(2);
368 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
369 if (!(val & (MDIO_START | MDIO_BUSY)))
370 break;
372 if (!(val & (MDIO_START | MDIO_BUSY))) {
373 *phy_data = (u16) val;
374 return 0;
376 return ATLX_ERR_PHY;
379 #define CUSTOM_SPI_CS_SETUP 2
380 #define CUSTOM_SPI_CLK_HI 2
381 #define CUSTOM_SPI_CLK_LO 2
382 #define CUSTOM_SPI_CS_HOLD 2
383 #define CUSTOM_SPI_CS_HI 3
385 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
387 int i;
388 u32 value;
390 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
391 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
393 value = SPI_FLASH_CTRL_WAIT_READY |
394 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
395 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
396 SPI_FLASH_CTRL_CLK_HI_MASK) <<
397 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
398 SPI_FLASH_CTRL_CLK_LO_MASK) <<
399 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
400 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
401 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
402 SPI_FLASH_CTRL_CS_HI_MASK) <<
403 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
404 SPI_FLASH_CTRL_INS_SHIFT;
406 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
408 value |= SPI_FLASH_CTRL_START;
409 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
410 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
412 for (i = 0; i < 10; i++) {
413 msleep(1);
414 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415 if (!(value & SPI_FLASH_CTRL_START))
416 break;
419 if (value & SPI_FLASH_CTRL_START)
420 return false;
422 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
424 return true;
428 * get_permanent_address
429 * return 0 if get valid mac address,
431 static int atl1_get_permanent_address(struct atl1_hw *hw)
433 u32 addr[2];
434 u32 i, control;
435 u16 reg;
436 u8 eth_addr[ETH_ALEN];
437 bool key_valid;
439 if (is_valid_ether_addr(hw->perm_mac_addr))
440 return 0;
442 /* init */
443 addr[0] = addr[1] = 0;
445 if (!atl1_check_eeprom_exist(hw)) {
446 reg = 0;
447 key_valid = false;
448 /* Read out all EEPROM content */
449 i = 0;
450 while (1) {
451 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
452 if (key_valid) {
453 if (reg == REG_MAC_STA_ADDR)
454 addr[0] = control;
455 else if (reg == (REG_MAC_STA_ADDR + 4))
456 addr[1] = control;
457 key_valid = false;
458 } else if ((control & 0xff) == 0x5A) {
459 key_valid = true;
460 reg = (u16) (control >> 16);
461 } else
462 break;
463 } else
464 /* read error */
465 break;
466 i += 4;
469 *(u32 *) &eth_addr[2] = swab32(addr[0]);
470 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
471 if (is_valid_ether_addr(eth_addr)) {
472 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
473 return 0;
475 return 1;
478 /* see if SPI FLAGS exist ? */
479 addr[0] = addr[1] = 0;
480 reg = 0;
481 key_valid = false;
482 i = 0;
483 while (1) {
484 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
485 if (key_valid) {
486 if (reg == REG_MAC_STA_ADDR)
487 addr[0] = control;
488 else if (reg == (REG_MAC_STA_ADDR + 4))
489 addr[1] = control;
490 key_valid = false;
491 } else if ((control & 0xff) == 0x5A) {
492 key_valid = true;
493 reg = (u16) (control >> 16);
494 } else
495 /* data end */
496 break;
497 } else
498 /* read error */
499 break;
500 i += 4;
503 *(u32 *) &eth_addr[2] = swab32(addr[0]);
504 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
505 if (is_valid_ether_addr(eth_addr)) {
506 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
507 return 0;
511 * On some motherboards, the MAC address is written by the
512 * BIOS directly to the MAC register during POST, and is
513 * not stored in eeprom. If all else thus far has failed
514 * to fetch the permanent MAC address, try reading it directly.
516 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
517 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
518 *(u32 *) &eth_addr[2] = swab32(addr[0]);
519 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
520 if (is_valid_ether_addr(eth_addr)) {
521 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
522 return 0;
525 return 1;
529 * Reads the adapter's MAC address from the EEPROM
530 * hw - Struct containing variables accessed by shared code
532 s32 atl1_read_mac_addr(struct atl1_hw *hw)
534 u16 i;
536 if (atl1_get_permanent_address(hw))
537 random_ether_addr(hw->perm_mac_addr);
539 for (i = 0; i < ETH_ALEN; i++)
540 hw->mac_addr[i] = hw->perm_mac_addr[i];
541 return 0;
545 * Hashes an address to determine its location in the multicast table
546 * hw - Struct containing variables accessed by shared code
547 * mc_addr - the multicast address to hash
549 * atl1_hash_mc_addr
550 * purpose
551 * set hash value for a multicast address
552 * hash calcu processing :
553 * 1. calcu 32bit CRC for multicast address
554 * 2. reverse crc with MSB to LSB
556 u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
558 u32 crc32, value = 0;
559 int i;
561 crc32 = ether_crc_le(6, mc_addr);
562 for (i = 0; i < 32; i++)
563 value |= (((crc32 >> i) & 1) << (31 - i));
565 return value;
569 * Sets the bit in the multicast table corresponding to the hash value.
570 * hw - Struct containing variables accessed by shared code
571 * hash_value - Multicast address hash value
573 void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
575 u32 hash_bit, hash_reg;
576 u32 mta;
579 * The HASH Table is a register array of 2 32-bit registers.
580 * It is treated like an array of 64 bits. We want to set
581 * bit BitArray[hash_value]. So we figure out what register
582 * the bit is in, read it, OR in the new bit, then write
583 * back the new value. The register is determined by the
584 * upper 7 bits of the hash value and the bit within that
585 * register are determined by the lower 5 bits of the value.
587 hash_reg = (hash_value >> 31) & 0x1;
588 hash_bit = (hash_value >> 26) & 0x1F;
589 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
590 mta |= (1 << hash_bit);
591 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
595 * Writes a value to a PHY register
596 * hw - Struct containing variables accessed by shared code
597 * reg_addr - address of the PHY register to write
598 * data - data to write to the PHY
600 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
602 int i;
603 u32 val;
605 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
606 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
607 MDIO_SUP_PREAMBLE |
608 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
609 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
610 ioread32(hw->hw_addr + REG_MDIO_CTRL);
612 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
613 udelay(2);
614 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
615 if (!(val & (MDIO_START | MDIO_BUSY)))
616 break;
619 if (!(val & (MDIO_START | MDIO_BUSY)))
620 return 0;
622 return ATLX_ERR_PHY;
626 * Make L001's PHY out of Power Saving State (bug)
627 * hw - Struct containing variables accessed by shared code
628 * when power on, L001's PHY always on Power saving State
629 * (Gigabit Link forbidden)
631 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
633 s32 ret;
634 ret = atl1_write_phy_reg(hw, 29, 0x0029);
635 if (ret)
636 return ret;
637 return atl1_write_phy_reg(hw, 30, 0);
641 * Force the PHY into power saving mode using vendor magic.
643 #ifdef CONFIG_PM
644 static void atl1_phy_enter_power_saving(struct atl1_hw *hw)
646 atl1_write_phy_reg(hw, MII_DBG_ADDR, 0);
647 atl1_write_phy_reg(hw, MII_DBG_DATA, 0x124E);
648 atl1_write_phy_reg(hw, MII_DBG_ADDR, 2);
649 atl1_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
650 atl1_write_phy_reg(hw, MII_DBG_ADDR, 3);
651 atl1_write_phy_reg(hw, MII_DBG_DATA, 0);
654 #endif
657 * Resets the PHY and make all config validate
658 * hw - Struct containing variables accessed by shared code
660 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
662 static s32 atl1_phy_reset(struct atl1_hw *hw)
664 struct pci_dev *pdev = hw->back->pdev;
665 struct atl1_adapter *adapter = hw->back;
666 s32 ret_val;
667 u16 phy_data;
669 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
670 hw->media_type == MEDIA_TYPE_1000M_FULL)
671 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
672 else {
673 switch (hw->media_type) {
674 case MEDIA_TYPE_100M_FULL:
675 phy_data =
676 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
677 MII_CR_RESET;
678 break;
679 case MEDIA_TYPE_100M_HALF:
680 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
681 break;
682 case MEDIA_TYPE_10M_FULL:
683 phy_data =
684 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
685 break;
686 default:
687 /* MEDIA_TYPE_10M_HALF: */
688 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
689 break;
693 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
694 if (ret_val) {
695 u32 val;
696 int i;
697 /* pcie serdes link may be down! */
698 if (netif_msg_hw(adapter))
699 dev_dbg(&pdev->dev, "pcie phy link down\n");
701 for (i = 0; i < 25; i++) {
702 msleep(1);
703 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
704 if (!(val & (MDIO_START | MDIO_BUSY)))
705 break;
708 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
709 if (netif_msg_hw(adapter))
710 dev_warn(&pdev->dev,
711 "pcie link down at least 25ms\n");
712 return ret_val;
715 return 0;
719 * Configures PHY autoneg and flow control advertisement settings
720 * hw - Struct containing variables accessed by shared code
722 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
724 s32 ret_val;
725 s16 mii_autoneg_adv_reg;
726 s16 mii_1000t_ctrl_reg;
728 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
729 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
731 /* Read the MII 1000Base-T Control Register (Address 9). */
732 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
735 * First we clear all the 10/100 mb speed bits in the Auto-Neg
736 * Advertisement Register (Address 4) and the 1000 mb speed bits in
737 * the 1000Base-T Control Register (Address 9).
739 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
740 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
743 * Need to parse media_type and set up
744 * the appropriate PHY registers.
746 switch (hw->media_type) {
747 case MEDIA_TYPE_AUTO_SENSOR:
748 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
749 MII_AR_10T_FD_CAPS |
750 MII_AR_100TX_HD_CAPS |
751 MII_AR_100TX_FD_CAPS);
752 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
753 break;
755 case MEDIA_TYPE_1000M_FULL:
756 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
757 break;
759 case MEDIA_TYPE_100M_FULL:
760 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
761 break;
763 case MEDIA_TYPE_100M_HALF:
764 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
765 break;
767 case MEDIA_TYPE_10M_FULL:
768 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
769 break;
771 default:
772 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
773 break;
776 /* flow control fixed to enable all */
777 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
779 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
780 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
782 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
783 if (ret_val)
784 return ret_val;
786 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
787 if (ret_val)
788 return ret_val;
790 return 0;
794 * Configures link settings.
795 * hw - Struct containing variables accessed by shared code
796 * Assumes the hardware has previously been reset and the
797 * transmitter and receiver are not enabled.
799 static s32 atl1_setup_link(struct atl1_hw *hw)
801 struct pci_dev *pdev = hw->back->pdev;
802 struct atl1_adapter *adapter = hw->back;
803 s32 ret_val;
806 * Options:
807 * PHY will advertise value(s) parsed from
808 * autoneg_advertised and fc
809 * no matter what autoneg is , We will not wait link result.
811 ret_val = atl1_phy_setup_autoneg_adv(hw);
812 if (ret_val) {
813 if (netif_msg_link(adapter))
814 dev_dbg(&pdev->dev,
815 "error setting up autonegotiation\n");
816 return ret_val;
818 /* SW.Reset , En-Auto-Neg if needed */
819 ret_val = atl1_phy_reset(hw);
820 if (ret_val) {
821 if (netif_msg_link(adapter))
822 dev_dbg(&pdev->dev, "error resetting phy\n");
823 return ret_val;
825 hw->phy_configured = true;
826 return ret_val;
829 static void atl1_init_flash_opcode(struct atl1_hw *hw)
831 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
832 /* Atmel */
833 hw->flash_vendor = 0;
835 /* Init OP table */
836 iowrite8(flash_table[hw->flash_vendor].cmd_program,
837 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
838 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
839 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
840 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
841 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
842 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
843 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
844 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
845 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
846 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
847 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
848 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
849 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
850 iowrite8(flash_table[hw->flash_vendor].cmd_read,
851 hw->hw_addr + REG_SPI_FLASH_OP_READ);
855 * Performs basic configuration of the adapter.
856 * hw - Struct containing variables accessed by shared code
857 * Assumes that the controller has previously been reset and is in a
858 * post-reset uninitialized state. Initializes multicast table,
859 * and Calls routines to setup link
860 * Leaves the transmit and receive units disabled and uninitialized.
862 static s32 atl1_init_hw(struct atl1_hw *hw)
864 u32 ret_val = 0;
866 /* Zero out the Multicast HASH table */
867 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
868 /* clear the old settings from the multicast hash table */
869 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
871 atl1_init_flash_opcode(hw);
873 if (!hw->phy_configured) {
874 /* enable GPHY LinkChange Interrrupt */
875 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
876 if (ret_val)
877 return ret_val;
878 /* make PHY out of power-saving state */
879 ret_val = atl1_phy_leave_power_saving(hw);
880 if (ret_val)
881 return ret_val;
882 /* Call a subroutine to configure the link */
883 ret_val = atl1_setup_link(hw);
885 return ret_val;
889 * Detects the current speed and duplex settings of the hardware.
890 * hw - Struct containing variables accessed by shared code
891 * speed - Speed of the connection
892 * duplex - Duplex setting of the connection
894 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
896 struct pci_dev *pdev = hw->back->pdev;
897 struct atl1_adapter *adapter = hw->back;
898 s32 ret_val;
899 u16 phy_data;
901 /* ; --- Read PHY Specific Status Register (17) */
902 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
903 if (ret_val)
904 return ret_val;
906 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
907 return ATLX_ERR_PHY_RES;
909 switch (phy_data & MII_ATLX_PSSR_SPEED) {
910 case MII_ATLX_PSSR_1000MBS:
911 *speed = SPEED_1000;
912 break;
913 case MII_ATLX_PSSR_100MBS:
914 *speed = SPEED_100;
915 break;
916 case MII_ATLX_PSSR_10MBS:
917 *speed = SPEED_10;
918 break;
919 default:
920 if (netif_msg_hw(adapter))
921 dev_dbg(&pdev->dev, "error getting speed\n");
922 return ATLX_ERR_PHY_SPEED;
923 break;
925 if (phy_data & MII_ATLX_PSSR_DPLX)
926 *duplex = FULL_DUPLEX;
927 else
928 *duplex = HALF_DUPLEX;
930 return 0;
933 void atl1_set_mac_addr(struct atl1_hw *hw)
935 u32 value;
937 * 00-0B-6A-F6-00-DC
938 * 0: 6AF600DC 1: 000B
939 * low dword
941 value = (((u32) hw->mac_addr[2]) << 24) |
942 (((u32) hw->mac_addr[3]) << 16) |
943 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
944 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
945 /* high dword */
946 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
947 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
951 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
952 * @adapter: board private structure to initialize
954 * atl1_sw_init initializes the Adapter private data structure.
955 * Fields are initialized based on PCI device information and
956 * OS network device settings (MTU size).
958 static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
960 struct atl1_hw *hw = &adapter->hw;
961 struct net_device *netdev = adapter->netdev;
963 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
964 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
966 adapter->wol = 0;
967 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
968 adapter->ict = 50000; /* 100ms */
969 adapter->link_speed = SPEED_0; /* hardware init */
970 adapter->link_duplex = FULL_DUPLEX;
972 hw->phy_configured = false;
973 hw->preamble_len = 7;
974 hw->ipgt = 0x60;
975 hw->min_ifg = 0x50;
976 hw->ipgr1 = 0x40;
977 hw->ipgr2 = 0x60;
978 hw->max_retry = 0xf;
979 hw->lcol = 0x37;
980 hw->jam_ipg = 7;
981 hw->rfd_burst = 8;
982 hw->rrd_burst = 8;
983 hw->rfd_fetch_gap = 1;
984 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
985 hw->rx_jumbo_lkah = 1;
986 hw->rrd_ret_timer = 16;
987 hw->tpd_burst = 4;
988 hw->tpd_fetch_th = 16;
989 hw->txf_burst = 0x100;
990 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
991 hw->tpd_fetch_gap = 1;
992 hw->rcb_value = atl1_rcb_64;
993 hw->dma_ord = atl1_dma_ord_enh;
994 hw->dmar_block = atl1_dma_req_256;
995 hw->dmaw_block = atl1_dma_req_256;
996 hw->cmb_rrd = 4;
997 hw->cmb_tpd = 4;
998 hw->cmb_rx_timer = 1; /* about 2us */
999 hw->cmb_tx_timer = 1; /* about 2us */
1000 hw->smb_timer = 100000; /* about 200ms */
1002 spin_lock_init(&adapter->lock);
1003 spin_lock_init(&adapter->mb_lock);
1005 return 0;
1008 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
1010 struct atl1_adapter *adapter = netdev_priv(netdev);
1011 u16 result;
1013 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1015 return result;
1018 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1019 int val)
1021 struct atl1_adapter *adapter = netdev_priv(netdev);
1023 atl1_write_phy_reg(&adapter->hw, reg_num, val);
1027 * atl1_mii_ioctl -
1028 * @netdev:
1029 * @ifreq:
1030 * @cmd:
1032 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1034 struct atl1_adapter *adapter = netdev_priv(netdev);
1035 unsigned long flags;
1036 int retval;
1038 if (!netif_running(netdev))
1039 return -EINVAL;
1041 spin_lock_irqsave(&adapter->lock, flags);
1042 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1043 spin_unlock_irqrestore(&adapter->lock, flags);
1045 return retval;
1049 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1050 * @adapter: board private structure
1052 * Return 0 on success, negative on failure
1054 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1056 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1057 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1058 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1059 struct atl1_ring_header *ring_header = &adapter->ring_header;
1060 struct pci_dev *pdev = adapter->pdev;
1061 int size;
1062 u8 offset = 0;
1064 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1065 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1066 if (unlikely(!tpd_ring->buffer_info)) {
1067 if (netif_msg_drv(adapter))
1068 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1069 size);
1070 goto err_nomem;
1072 rfd_ring->buffer_info =
1073 (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1076 * real ring DMA buffer
1077 * each ring/block may need up to 8 bytes for alignment, hence the
1078 * additional 40 bytes tacked onto the end.
1080 ring_header->size = size =
1081 sizeof(struct tx_packet_desc) * tpd_ring->count
1082 + sizeof(struct rx_free_desc) * rfd_ring->count
1083 + sizeof(struct rx_return_desc) * rrd_ring->count
1084 + sizeof(struct coals_msg_block)
1085 + sizeof(struct stats_msg_block)
1086 + 40;
1088 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1089 &ring_header->dma);
1090 if (unlikely(!ring_header->desc)) {
1091 if (netif_msg_drv(adapter))
1092 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1093 goto err_nomem;
1096 memset(ring_header->desc, 0, ring_header->size);
1098 /* init TPD ring */
1099 tpd_ring->dma = ring_header->dma;
1100 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1101 tpd_ring->dma += offset;
1102 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1103 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1105 /* init RFD ring */
1106 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1107 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1108 rfd_ring->dma += offset;
1109 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1110 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1113 /* init RRD ring */
1114 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1115 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1116 rrd_ring->dma += offset;
1117 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1118 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1121 /* init CMB */
1122 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1123 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1124 adapter->cmb.dma += offset;
1125 adapter->cmb.cmb = (struct coals_msg_block *)
1126 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1128 /* init SMB */
1129 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1130 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1131 adapter->smb.dma += offset;
1132 adapter->smb.smb = (struct stats_msg_block *)
1133 ((u8 *) adapter->cmb.cmb +
1134 (sizeof(struct coals_msg_block) + offset));
1136 return 0;
1138 err_nomem:
1139 kfree(tpd_ring->buffer_info);
1140 return -ENOMEM;
1143 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1145 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1146 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1147 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1149 atomic_set(&tpd_ring->next_to_use, 0);
1150 atomic_set(&tpd_ring->next_to_clean, 0);
1152 rfd_ring->next_to_clean = 0;
1153 atomic_set(&rfd_ring->next_to_use, 0);
1155 rrd_ring->next_to_use = 0;
1156 atomic_set(&rrd_ring->next_to_clean, 0);
1160 * atl1_clean_rx_ring - Free RFD Buffers
1161 * @adapter: board private structure
1163 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1165 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1166 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1167 struct atl1_buffer *buffer_info;
1168 struct pci_dev *pdev = adapter->pdev;
1169 unsigned long size;
1170 unsigned int i;
1172 /* Free all the Rx ring sk_buffs */
1173 for (i = 0; i < rfd_ring->count; i++) {
1174 buffer_info = &rfd_ring->buffer_info[i];
1175 if (buffer_info->dma) {
1176 pci_unmap_page(pdev, buffer_info->dma,
1177 buffer_info->length, PCI_DMA_FROMDEVICE);
1178 buffer_info->dma = 0;
1180 if (buffer_info->skb) {
1181 dev_kfree_skb(buffer_info->skb);
1182 buffer_info->skb = NULL;
1186 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1187 memset(rfd_ring->buffer_info, 0, size);
1189 /* Zero out the descriptor ring */
1190 memset(rfd_ring->desc, 0, rfd_ring->size);
1192 rfd_ring->next_to_clean = 0;
1193 atomic_set(&rfd_ring->next_to_use, 0);
1195 rrd_ring->next_to_use = 0;
1196 atomic_set(&rrd_ring->next_to_clean, 0);
1200 * atl1_clean_tx_ring - Free Tx Buffers
1201 * @adapter: board private structure
1203 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1205 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1206 struct atl1_buffer *buffer_info;
1207 struct pci_dev *pdev = adapter->pdev;
1208 unsigned long size;
1209 unsigned int i;
1211 /* Free all the Tx ring sk_buffs */
1212 for (i = 0; i < tpd_ring->count; i++) {
1213 buffer_info = &tpd_ring->buffer_info[i];
1214 if (buffer_info->dma) {
1215 pci_unmap_page(pdev, buffer_info->dma,
1216 buffer_info->length, PCI_DMA_TODEVICE);
1217 buffer_info->dma = 0;
1221 for (i = 0; i < tpd_ring->count; i++) {
1222 buffer_info = &tpd_ring->buffer_info[i];
1223 if (buffer_info->skb) {
1224 dev_kfree_skb_any(buffer_info->skb);
1225 buffer_info->skb = NULL;
1229 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1230 memset(tpd_ring->buffer_info, 0, size);
1232 /* Zero out the descriptor ring */
1233 memset(tpd_ring->desc, 0, tpd_ring->size);
1235 atomic_set(&tpd_ring->next_to_use, 0);
1236 atomic_set(&tpd_ring->next_to_clean, 0);
1240 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1241 * @adapter: board private structure
1243 * Free all transmit software resources
1245 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1247 struct pci_dev *pdev = adapter->pdev;
1248 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1249 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1250 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1251 struct atl1_ring_header *ring_header = &adapter->ring_header;
1253 atl1_clean_tx_ring(adapter);
1254 atl1_clean_rx_ring(adapter);
1256 kfree(tpd_ring->buffer_info);
1257 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1258 ring_header->dma);
1260 tpd_ring->buffer_info = NULL;
1261 tpd_ring->desc = NULL;
1262 tpd_ring->dma = 0;
1264 rfd_ring->buffer_info = NULL;
1265 rfd_ring->desc = NULL;
1266 rfd_ring->dma = 0;
1268 rrd_ring->desc = NULL;
1269 rrd_ring->dma = 0;
1272 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1274 u32 value;
1275 struct atl1_hw *hw = &adapter->hw;
1276 struct net_device *netdev = adapter->netdev;
1277 /* Config MAC CTRL Register */
1278 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1279 /* duplex */
1280 if (FULL_DUPLEX == adapter->link_duplex)
1281 value |= MAC_CTRL_DUPLX;
1282 /* speed */
1283 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1284 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1285 MAC_CTRL_SPEED_SHIFT);
1286 /* flow control */
1287 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1288 /* PAD & CRC */
1289 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1290 /* preamble length */
1291 value |= (((u32) adapter->hw.preamble_len
1292 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1293 /* vlan */
1294 if (adapter->vlgrp)
1295 value |= MAC_CTRL_RMV_VLAN;
1296 /* rx checksum
1297 if (adapter->rx_csum)
1298 value |= MAC_CTRL_RX_CHKSUM_EN;
1300 /* filter mode */
1301 value |= MAC_CTRL_BC_EN;
1302 if (netdev->flags & IFF_PROMISC)
1303 value |= MAC_CTRL_PROMIS_EN;
1304 else if (netdev->flags & IFF_ALLMULTI)
1305 value |= MAC_CTRL_MC_ALL_EN;
1306 /* value |= MAC_CTRL_LOOPBACK; */
1307 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1310 static u32 atl1_check_link(struct atl1_adapter *adapter)
1312 struct atl1_hw *hw = &adapter->hw;
1313 struct net_device *netdev = adapter->netdev;
1314 u32 ret_val;
1315 u16 speed, duplex, phy_data;
1316 int reconfig = 0;
1318 /* MII_BMSR must read twice */
1319 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1320 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1321 if (!(phy_data & BMSR_LSTATUS)) {
1322 /* link down */
1323 if (netif_carrier_ok(netdev)) {
1324 /* old link state: Up */
1325 if (netif_msg_link(adapter))
1326 dev_info(&adapter->pdev->dev, "link is down\n");
1327 adapter->link_speed = SPEED_0;
1328 netif_carrier_off(netdev);
1329 netif_stop_queue(netdev);
1331 return 0;
1334 /* Link Up */
1335 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1336 if (ret_val)
1337 return ret_val;
1339 switch (hw->media_type) {
1340 case MEDIA_TYPE_1000M_FULL:
1341 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1342 reconfig = 1;
1343 break;
1344 case MEDIA_TYPE_100M_FULL:
1345 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1346 reconfig = 1;
1347 break;
1348 case MEDIA_TYPE_100M_HALF:
1349 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1350 reconfig = 1;
1351 break;
1352 case MEDIA_TYPE_10M_FULL:
1353 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1354 reconfig = 1;
1355 break;
1356 case MEDIA_TYPE_10M_HALF:
1357 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1358 reconfig = 1;
1359 break;
1362 /* link result is our setting */
1363 if (!reconfig) {
1364 if (adapter->link_speed != speed
1365 || adapter->link_duplex != duplex) {
1366 adapter->link_speed = speed;
1367 adapter->link_duplex = duplex;
1368 atl1_setup_mac_ctrl(adapter);
1369 if (netif_msg_link(adapter))
1370 dev_info(&adapter->pdev->dev,
1371 "%s link is up %d Mbps %s\n",
1372 netdev->name, adapter->link_speed,
1373 adapter->link_duplex == FULL_DUPLEX ?
1374 "full duplex" : "half duplex");
1376 if (!netif_carrier_ok(netdev)) {
1377 /* Link down -> Up */
1378 netif_carrier_on(netdev);
1379 netif_wake_queue(netdev);
1381 return 0;
1384 /* change original link status */
1385 if (netif_carrier_ok(netdev)) {
1386 adapter->link_speed = SPEED_0;
1387 netif_carrier_off(netdev);
1388 netif_stop_queue(netdev);
1391 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1392 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1393 switch (hw->media_type) {
1394 case MEDIA_TYPE_100M_FULL:
1395 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1396 MII_CR_RESET;
1397 break;
1398 case MEDIA_TYPE_100M_HALF:
1399 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1400 break;
1401 case MEDIA_TYPE_10M_FULL:
1402 phy_data =
1403 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1404 break;
1405 default:
1406 /* MEDIA_TYPE_10M_HALF: */
1407 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1408 break;
1410 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1411 return 0;
1414 /* auto-neg, insert timer to re-config phy */
1415 if (!adapter->phy_timer_pending) {
1416 adapter->phy_timer_pending = true;
1417 mod_timer(&adapter->phy_config_timer, jiffies + 3 * HZ);
1420 return 0;
1423 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1425 u32 hi, lo, value;
1427 /* RFD Flow Control */
1428 value = adapter->rfd_ring.count;
1429 hi = value / 16;
1430 if (hi < 2)
1431 hi = 2;
1432 lo = value * 7 / 8;
1434 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1435 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1436 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1438 /* RRD Flow Control */
1439 value = adapter->rrd_ring.count;
1440 lo = value / 16;
1441 hi = value * 7 / 8;
1442 if (lo < 2)
1443 lo = 2;
1444 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1445 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1446 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1449 static void set_flow_ctrl_new(struct atl1_hw *hw)
1451 u32 hi, lo, value;
1453 /* RXF Flow Control */
1454 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1455 lo = value / 16;
1456 if (lo < 192)
1457 lo = 192;
1458 hi = value * 7 / 8;
1459 if (hi < lo)
1460 hi = lo + 16;
1461 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1462 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1463 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1465 /* RRD Flow Control */
1466 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1467 lo = value / 8;
1468 hi = value * 7 / 8;
1469 if (lo < 2)
1470 lo = 2;
1471 if (hi < lo)
1472 hi = lo + 3;
1473 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1474 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1475 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1479 * atl1_configure - Configure Transmit&Receive Unit after Reset
1480 * @adapter: board private structure
1482 * Configure the Tx /Rx unit of the MAC after a reset.
1484 static u32 atl1_configure(struct atl1_adapter *adapter)
1486 struct atl1_hw *hw = &adapter->hw;
1487 u32 value;
1489 /* clear interrupt status */
1490 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1492 /* set MAC Address */
1493 value = (((u32) hw->mac_addr[2]) << 24) |
1494 (((u32) hw->mac_addr[3]) << 16) |
1495 (((u32) hw->mac_addr[4]) << 8) |
1496 (((u32) hw->mac_addr[5]));
1497 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1498 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1499 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1501 /* tx / rx ring */
1503 /* HI base address */
1504 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1505 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1506 /* LO base address */
1507 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1508 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1509 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1510 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1511 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1512 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1513 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1514 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1515 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1516 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1518 /* element count */
1519 value = adapter->rrd_ring.count;
1520 value <<= 16;
1521 value += adapter->rfd_ring.count;
1522 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1523 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1524 REG_DESC_TPD_RING_SIZE);
1526 /* Load Ptr */
1527 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1529 /* config Mailbox */
1530 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1531 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1532 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1533 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1534 ((atomic_read(&adapter->rfd_ring.next_to_use)
1535 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1536 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1538 /* config IPG/IFG */
1539 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1540 << MAC_IPG_IFG_IPGT_SHIFT) |
1541 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1542 << MAC_IPG_IFG_MIFG_SHIFT) |
1543 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1544 << MAC_IPG_IFG_IPGR1_SHIFT) |
1545 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1546 << MAC_IPG_IFG_IPGR2_SHIFT);
1547 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1549 /* config Half-Duplex Control */
1550 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1551 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1552 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1553 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1554 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1555 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1556 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1557 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1559 /* set Interrupt Moderator Timer */
1560 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1561 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1563 /* set Interrupt Clear Timer */
1564 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1566 /* set max frame size hw will accept */
1567 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1569 /* jumbo size & rrd retirement timer */
1570 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1571 << RXQ_JMBOSZ_TH_SHIFT) |
1572 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1573 << RXQ_JMBO_LKAH_SHIFT) |
1574 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1575 << RXQ_RRD_TIMER_SHIFT);
1576 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1578 /* Flow Control */
1579 switch (hw->dev_rev) {
1580 case 0x8001:
1581 case 0x9001:
1582 case 0x9002:
1583 case 0x9003:
1584 set_flow_ctrl_old(adapter);
1585 break;
1586 default:
1587 set_flow_ctrl_new(hw);
1588 break;
1591 /* config TXQ */
1592 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1593 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1594 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1595 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1596 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1597 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1598 TXQ_CTRL_EN;
1599 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1601 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1602 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1603 << TX_JUMBO_TASK_TH_SHIFT) |
1604 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1605 << TX_TPD_MIN_IPG_SHIFT);
1606 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1608 /* config RXQ */
1609 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1610 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1611 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1612 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1613 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1614 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1615 RXQ_CTRL_EN;
1616 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1618 /* config DMA Engine */
1619 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1620 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1621 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1622 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1623 DMA_CTRL_DMAW_EN;
1624 value |= (u32) hw->dma_ord;
1625 if (atl1_rcb_128 == hw->rcb_value)
1626 value |= DMA_CTRL_RCB_VALUE;
1627 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1629 /* config CMB / SMB */
1630 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1631 hw->cmb_tpd : adapter->tpd_ring.count;
1632 value <<= 16;
1633 value |= hw->cmb_rrd;
1634 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1635 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1636 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1637 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1639 /* --- enable CMB / SMB */
1640 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1641 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1643 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1644 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1645 value = 1; /* config failed */
1646 else
1647 value = 0;
1649 /* clear all interrupt status */
1650 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1651 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1652 return value;
1656 * atl1_pcie_patch - Patch for PCIE module
1658 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1660 u32 value;
1662 /* much vendor magic here */
1663 value = 0x6500;
1664 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1665 /* pcie flow control mode change */
1666 value = ioread32(adapter->hw.hw_addr + 0x1008);
1667 value |= 0x8000;
1668 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1672 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1673 * on PCI Command register is disable.
1674 * The function enable this bit.
1675 * Brackett, 2006/03/15
1677 static void atl1_via_workaround(struct atl1_adapter *adapter)
1679 unsigned long value;
1681 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1682 if (value & PCI_COMMAND_INTX_DISABLE)
1683 value &= ~PCI_COMMAND_INTX_DISABLE;
1684 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1687 static void atl1_inc_smb(struct atl1_adapter *adapter)
1689 struct stats_msg_block *smb = adapter->smb.smb;
1691 /* Fill out the OS statistics structure */
1692 adapter->soft_stats.rx_packets += smb->rx_ok;
1693 adapter->soft_stats.tx_packets += smb->tx_ok;
1694 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1695 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1696 adapter->soft_stats.multicast += smb->rx_mcast;
1697 adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1698 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1700 /* Rx Errors */
1701 adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1702 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1703 smb->rx_rrd_ov + smb->rx_align_err);
1704 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1705 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1706 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1707 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1708 adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1709 smb->rx_rxf_ov);
1711 adapter->soft_stats.rx_pause += smb->rx_pause;
1712 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1713 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1715 /* Tx Errors */
1716 adapter->soft_stats.tx_errors += (smb->tx_late_col +
1717 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1718 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1719 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1720 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1722 adapter->soft_stats.excecol += smb->tx_abort_col;
1723 adapter->soft_stats.deffer += smb->tx_defer;
1724 adapter->soft_stats.scc += smb->tx_1_col;
1725 adapter->soft_stats.mcc += smb->tx_2_col;
1726 adapter->soft_stats.latecol += smb->tx_late_col;
1727 adapter->soft_stats.tx_underun += smb->tx_underrun;
1728 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1729 adapter->soft_stats.tx_pause += smb->tx_pause;
1731 adapter->net_stats.rx_packets = adapter->soft_stats.rx_packets;
1732 adapter->net_stats.tx_packets = adapter->soft_stats.tx_packets;
1733 adapter->net_stats.rx_bytes = adapter->soft_stats.rx_bytes;
1734 adapter->net_stats.tx_bytes = adapter->soft_stats.tx_bytes;
1735 adapter->net_stats.multicast = adapter->soft_stats.multicast;
1736 adapter->net_stats.collisions = adapter->soft_stats.collisions;
1737 adapter->net_stats.rx_errors = adapter->soft_stats.rx_errors;
1738 adapter->net_stats.rx_over_errors =
1739 adapter->soft_stats.rx_missed_errors;
1740 adapter->net_stats.rx_length_errors =
1741 adapter->soft_stats.rx_length_errors;
1742 adapter->net_stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1743 adapter->net_stats.rx_frame_errors =
1744 adapter->soft_stats.rx_frame_errors;
1745 adapter->net_stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1746 adapter->net_stats.rx_missed_errors =
1747 adapter->soft_stats.rx_missed_errors;
1748 adapter->net_stats.tx_errors = adapter->soft_stats.tx_errors;
1749 adapter->net_stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1750 adapter->net_stats.tx_aborted_errors =
1751 adapter->soft_stats.tx_aborted_errors;
1752 adapter->net_stats.tx_window_errors =
1753 adapter->soft_stats.tx_window_errors;
1754 adapter->net_stats.tx_carrier_errors =
1755 adapter->soft_stats.tx_carrier_errors;
1758 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1760 unsigned long flags;
1761 u32 tpd_next_to_use;
1762 u32 rfd_next_to_use;
1763 u32 rrd_next_to_clean;
1764 u32 value;
1766 spin_lock_irqsave(&adapter->mb_lock, flags);
1768 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1769 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1770 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1772 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1773 MB_RFD_PROD_INDX_SHIFT) |
1774 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1775 MB_RRD_CONS_INDX_SHIFT) |
1776 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1777 MB_TPD_PROD_INDX_SHIFT);
1778 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1780 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1783 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1784 struct rx_return_desc *rrd, u16 offset)
1786 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1788 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1789 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1790 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1791 rfd_ring->next_to_clean = 0;
1796 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1797 struct rx_return_desc *rrd)
1799 u16 num_buf;
1801 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1802 adapter->rx_buffer_len;
1803 if (rrd->num_buf == num_buf)
1804 /* clean alloc flag for bad rrd */
1805 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1808 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1809 struct rx_return_desc *rrd, struct sk_buff *skb)
1811 struct pci_dev *pdev = adapter->pdev;
1813 skb->ip_summed = CHECKSUM_NONE;
1815 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1816 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1817 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1818 adapter->hw_csum_err++;
1819 if (netif_msg_rx_err(adapter))
1820 dev_printk(KERN_DEBUG, &pdev->dev,
1821 "rx checksum error\n");
1822 return;
1826 /* not IPv4 */
1827 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1828 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1829 return;
1831 /* IPv4 packet */
1832 if (likely(!(rrd->err_flg &
1833 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1834 skb->ip_summed = CHECKSUM_UNNECESSARY;
1835 adapter->hw_csum_good++;
1836 return;
1839 /* IPv4, but hardware thinks its checksum is wrong */
1840 if (netif_msg_rx_err(adapter))
1841 dev_printk(KERN_DEBUG, &pdev->dev,
1842 "hw csum wrong, pkt_flag:%x, err_flag:%x\n",
1843 rrd->pkt_flg, rrd->err_flg);
1844 skb->ip_summed = CHECKSUM_COMPLETE;
1845 skb->csum = htons(rrd->xsz.xsum_sz.rx_chksum);
1846 adapter->hw_csum_err++;
1847 return;
1851 * atl1_alloc_rx_buffers - Replace used receive buffers
1852 * @adapter: address of board private structure
1854 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1856 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1857 struct pci_dev *pdev = adapter->pdev;
1858 struct page *page;
1859 unsigned long offset;
1860 struct atl1_buffer *buffer_info, *next_info;
1861 struct sk_buff *skb;
1862 u16 num_alloc = 0;
1863 u16 rfd_next_to_use, next_next;
1864 struct rx_free_desc *rfd_desc;
1866 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1867 if (++next_next == rfd_ring->count)
1868 next_next = 0;
1869 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1870 next_info = &rfd_ring->buffer_info[next_next];
1872 while (!buffer_info->alloced && !next_info->alloced) {
1873 if (buffer_info->skb) {
1874 buffer_info->alloced = 1;
1875 goto next;
1878 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1880 skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN);
1881 if (unlikely(!skb)) {
1882 /* Better luck next round */
1883 adapter->net_stats.rx_dropped++;
1884 break;
1888 * Make buffer alignment 2 beyond a 16 byte boundary
1889 * this will result in a 16 byte aligned IP header after
1890 * the 14 byte MAC header is removed
1892 skb_reserve(skb, NET_IP_ALIGN);
1894 buffer_info->alloced = 1;
1895 buffer_info->skb = skb;
1896 buffer_info->length = (u16) adapter->rx_buffer_len;
1897 page = virt_to_page(skb->data);
1898 offset = (unsigned long)skb->data & ~PAGE_MASK;
1899 buffer_info->dma = pci_map_page(pdev, page, offset,
1900 adapter->rx_buffer_len,
1901 PCI_DMA_FROMDEVICE);
1902 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1903 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1904 rfd_desc->coalese = 0;
1906 next:
1907 rfd_next_to_use = next_next;
1908 if (unlikely(++next_next == rfd_ring->count))
1909 next_next = 0;
1911 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1912 next_info = &rfd_ring->buffer_info[next_next];
1913 num_alloc++;
1916 if (num_alloc) {
1918 * Force memory writes to complete before letting h/w
1919 * know there are new descriptors to fetch. (Only
1920 * applicable for weak-ordered memory model archs,
1921 * such as IA-64).
1923 wmb();
1924 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1926 return num_alloc;
1929 static void atl1_intr_rx(struct atl1_adapter *adapter)
1931 int i, count;
1932 u16 length;
1933 u16 rrd_next_to_clean;
1934 u32 value;
1935 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1936 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1937 struct atl1_buffer *buffer_info;
1938 struct rx_return_desc *rrd;
1939 struct sk_buff *skb;
1941 count = 0;
1943 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1945 while (1) {
1946 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1947 i = 1;
1948 if (likely(rrd->xsz.valid)) { /* packet valid */
1949 chk_rrd:
1950 /* check rrd status */
1951 if (likely(rrd->num_buf == 1))
1952 goto rrd_ok;
1953 else if (netif_msg_rx_err(adapter)) {
1954 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1955 "unexpected RRD buffer count\n");
1956 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957 "rx_buf_len = %d\n",
1958 adapter->rx_buffer_len);
1959 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960 "RRD num_buf = %d\n",
1961 rrd->num_buf);
1962 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963 "RRD pkt_len = %d\n",
1964 rrd->xsz.xsum_sz.pkt_size);
1965 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1966 "RRD pkt_flg = 0x%08X\n",
1967 rrd->pkt_flg);
1968 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1969 "RRD err_flg = 0x%08X\n",
1970 rrd->err_flg);
1971 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1972 "RRD vlan_tag = 0x%08X\n",
1973 rrd->vlan_tag);
1976 /* rrd seems to be bad */
1977 if (unlikely(i-- > 0)) {
1978 /* rrd may not be DMAed completely */
1979 udelay(1);
1980 goto chk_rrd;
1982 /* bad rrd */
1983 if (netif_msg_rx_err(adapter))
1984 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1985 "bad RRD\n");
1986 /* see if update RFD index */
1987 if (rrd->num_buf > 1)
1988 atl1_update_rfd_index(adapter, rrd);
1990 /* update rrd */
1991 rrd->xsz.valid = 0;
1992 if (++rrd_next_to_clean == rrd_ring->count)
1993 rrd_next_to_clean = 0;
1994 count++;
1995 continue;
1996 } else { /* current rrd still not be updated */
1998 break;
2000 rrd_ok:
2001 /* clean alloc flag for bad rrd */
2002 atl1_clean_alloc_flag(adapter, rrd, 0);
2004 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
2005 if (++rfd_ring->next_to_clean == rfd_ring->count)
2006 rfd_ring->next_to_clean = 0;
2008 /* update rrd next to clean */
2009 if (++rrd_next_to_clean == rrd_ring->count)
2010 rrd_next_to_clean = 0;
2011 count++;
2013 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2014 if (!(rrd->err_flg &
2015 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2016 | ERR_FLAG_LEN))) {
2017 /* packet error, don't need upstream */
2018 buffer_info->alloced = 0;
2019 rrd->xsz.valid = 0;
2020 continue;
2024 /* Good Receive */
2025 pci_unmap_page(adapter->pdev, buffer_info->dma,
2026 buffer_info->length, PCI_DMA_FROMDEVICE);
2027 skb = buffer_info->skb;
2028 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2030 skb_put(skb, length - ETH_FCS_LEN);
2032 /* Receive Checksum Offload */
2033 atl1_rx_checksum(adapter, rrd, skb);
2034 skb->protocol = eth_type_trans(skb, adapter->netdev);
2036 if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
2037 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2038 ((rrd->vlan_tag & 7) << 13) |
2039 ((rrd->vlan_tag & 8) << 9);
2040 vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
2041 } else
2042 netif_rx(skb);
2044 /* let protocol layer free skb */
2045 buffer_info->skb = NULL;
2046 buffer_info->alloced = 0;
2047 rrd->xsz.valid = 0;
2049 adapter->netdev->last_rx = jiffies;
2052 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2054 atl1_alloc_rx_buffers(adapter);
2056 /* update mailbox ? */
2057 if (count) {
2058 u32 tpd_next_to_use;
2059 u32 rfd_next_to_use;
2061 spin_lock(&adapter->mb_lock);
2063 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2064 rfd_next_to_use =
2065 atomic_read(&adapter->rfd_ring.next_to_use);
2066 rrd_next_to_clean =
2067 atomic_read(&adapter->rrd_ring.next_to_clean);
2068 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2069 MB_RFD_PROD_INDX_SHIFT) |
2070 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2071 MB_RRD_CONS_INDX_SHIFT) |
2072 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2073 MB_TPD_PROD_INDX_SHIFT);
2074 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2075 spin_unlock(&adapter->mb_lock);
2079 static void atl1_intr_tx(struct atl1_adapter *adapter)
2081 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2082 struct atl1_buffer *buffer_info;
2083 u16 sw_tpd_next_to_clean;
2084 u16 cmb_tpd_next_to_clean;
2086 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2087 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2089 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2090 struct tx_packet_desc *tpd;
2092 tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
2093 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2094 if (buffer_info->dma) {
2095 pci_unmap_page(adapter->pdev, buffer_info->dma,
2096 buffer_info->length, PCI_DMA_TODEVICE);
2097 buffer_info->dma = 0;
2100 if (buffer_info->skb) {
2101 dev_kfree_skb_irq(buffer_info->skb);
2102 buffer_info->skb = NULL;
2105 if (++sw_tpd_next_to_clean == tpd_ring->count)
2106 sw_tpd_next_to_clean = 0;
2108 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2110 if (netif_queue_stopped(adapter->netdev)
2111 && netif_carrier_ok(adapter->netdev))
2112 netif_wake_queue(adapter->netdev);
2115 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2117 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2118 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2119 return ((next_to_clean > next_to_use) ?
2120 next_to_clean - next_to_use - 1 :
2121 tpd_ring->count + next_to_clean - next_to_use - 1);
2124 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2125 struct tx_packet_desc *ptpd)
2127 /* spinlock held */
2128 u8 hdr_len, ip_off;
2129 u32 real_len;
2130 int err;
2132 if (skb_shinfo(skb)->gso_size) {
2133 if (skb_header_cloned(skb)) {
2134 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2135 if (unlikely(err))
2136 return -1;
2139 if (skb->protocol == ntohs(ETH_P_IP)) {
2140 struct iphdr *iph = ip_hdr(skb);
2142 real_len = (((unsigned char *)iph - skb->data) +
2143 ntohs(iph->tot_len));
2144 if (real_len < skb->len)
2145 pskb_trim(skb, real_len);
2146 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2147 if (skb->len == hdr_len) {
2148 iph->check = 0;
2149 tcp_hdr(skb)->check =
2150 ~csum_tcpudp_magic(iph->saddr,
2151 iph->daddr, tcp_hdrlen(skb),
2152 IPPROTO_TCP, 0);
2153 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2154 TPD_IPHL_SHIFT;
2155 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2156 TPD_TCPHDRLEN_MASK) <<
2157 TPD_TCPHDRLEN_SHIFT;
2158 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2159 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2160 return 1;
2163 iph->check = 0;
2164 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2165 iph->daddr, 0, IPPROTO_TCP, 0);
2166 ip_off = (unsigned char *)iph -
2167 (unsigned char *) skb_network_header(skb);
2168 if (ip_off == 8) /* 802.3-SNAP frame */
2169 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2170 else if (ip_off != 0)
2171 return -2;
2173 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2174 TPD_IPHL_SHIFT;
2175 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2176 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2177 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2178 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2179 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2180 return 3;
2183 return false;
2186 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2187 struct tx_packet_desc *ptpd)
2189 u8 css, cso;
2191 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2192 css = (u8) (skb->csum_start - skb_headroom(skb));
2193 cso = css + (u8) skb->csum_offset;
2194 if (unlikely(css & 0x1)) {
2195 /* L1 hardware requires an even number here */
2196 if (netif_msg_tx_err(adapter))
2197 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2198 "payload offset not an even number\n");
2199 return -1;
2201 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2202 TPD_PLOADOFFSET_SHIFT;
2203 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2204 TPD_CCSUMOFFSET_SHIFT;
2205 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2206 return true;
2208 return 0;
2211 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2212 struct tx_packet_desc *ptpd)
2214 /* spinlock held */
2215 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2216 struct atl1_buffer *buffer_info;
2217 u16 buf_len = skb->len;
2218 struct page *page;
2219 unsigned long offset;
2220 unsigned int nr_frags;
2221 unsigned int f;
2222 int retval;
2223 u16 next_to_use;
2224 u16 data_len;
2225 u8 hdr_len;
2227 buf_len -= skb->data_len;
2228 nr_frags = skb_shinfo(skb)->nr_frags;
2229 next_to_use = atomic_read(&tpd_ring->next_to_use);
2230 buffer_info = &tpd_ring->buffer_info[next_to_use];
2231 if (unlikely(buffer_info->skb))
2232 BUG();
2233 /* put skb in last TPD */
2234 buffer_info->skb = NULL;
2236 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2237 if (retval) {
2238 /* TSO */
2239 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2240 buffer_info->length = hdr_len;
2241 page = virt_to_page(skb->data);
2242 offset = (unsigned long)skb->data & ~PAGE_MASK;
2243 buffer_info->dma = pci_map_page(adapter->pdev, page,
2244 offset, hdr_len,
2245 PCI_DMA_TODEVICE);
2247 if (++next_to_use == tpd_ring->count)
2248 next_to_use = 0;
2250 if (buf_len > hdr_len) {
2251 int i, nseg;
2253 data_len = buf_len - hdr_len;
2254 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2255 ATL1_MAX_TX_BUF_LEN;
2256 for (i = 0; i < nseg; i++) {
2257 buffer_info =
2258 &tpd_ring->buffer_info[next_to_use];
2259 buffer_info->skb = NULL;
2260 buffer_info->length =
2261 (ATL1_MAX_TX_BUF_LEN >=
2262 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2263 data_len -= buffer_info->length;
2264 page = virt_to_page(skb->data +
2265 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2266 offset = (unsigned long)(skb->data +
2267 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2268 ~PAGE_MASK;
2269 buffer_info->dma = pci_map_page(adapter->pdev,
2270 page, offset, buffer_info->length,
2271 PCI_DMA_TODEVICE);
2272 if (++next_to_use == tpd_ring->count)
2273 next_to_use = 0;
2276 } else {
2277 /* not TSO */
2278 buffer_info->length = buf_len;
2279 page = virt_to_page(skb->data);
2280 offset = (unsigned long)skb->data & ~PAGE_MASK;
2281 buffer_info->dma = pci_map_page(adapter->pdev, page,
2282 offset, buf_len, PCI_DMA_TODEVICE);
2283 if (++next_to_use == tpd_ring->count)
2284 next_to_use = 0;
2287 for (f = 0; f < nr_frags; f++) {
2288 struct skb_frag_struct *frag;
2289 u16 i, nseg;
2291 frag = &skb_shinfo(skb)->frags[f];
2292 buf_len = frag->size;
2294 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2295 ATL1_MAX_TX_BUF_LEN;
2296 for (i = 0; i < nseg; i++) {
2297 buffer_info = &tpd_ring->buffer_info[next_to_use];
2298 if (unlikely(buffer_info->skb))
2299 BUG();
2300 buffer_info->skb = NULL;
2301 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2302 ATL1_MAX_TX_BUF_LEN : buf_len;
2303 buf_len -= buffer_info->length;
2304 buffer_info->dma = pci_map_page(adapter->pdev,
2305 frag->page,
2306 frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
2307 buffer_info->length, PCI_DMA_TODEVICE);
2309 if (++next_to_use == tpd_ring->count)
2310 next_to_use = 0;
2314 /* last tpd's buffer-info */
2315 buffer_info->skb = skb;
2318 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2319 struct tx_packet_desc *ptpd)
2321 /* spinlock held */
2322 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2323 struct atl1_buffer *buffer_info;
2324 struct tx_packet_desc *tpd;
2325 u16 j;
2326 u32 val;
2327 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2329 for (j = 0; j < count; j++) {
2330 buffer_info = &tpd_ring->buffer_info[next_to_use];
2331 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2332 if (tpd != ptpd)
2333 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2334 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2335 tpd->word2 = (cpu_to_le16(buffer_info->length) &
2336 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2339 * if this is the first packet in a TSO chain, set
2340 * TPD_HDRFLAG, otherwise, clear it.
2342 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2343 TPD_SEGMENT_EN_MASK;
2344 if (val) {
2345 if (!j)
2346 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2347 else
2348 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2351 if (j == (count - 1))
2352 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2354 if (++next_to_use == tpd_ring->count)
2355 next_to_use = 0;
2358 * Force memory writes to complete before letting h/w
2359 * know there are new descriptors to fetch. (Only
2360 * applicable for weak-ordered memory model archs,
2361 * such as IA-64).
2363 wmb();
2365 atomic_set(&tpd_ring->next_to_use, next_to_use);
2368 static int atl1_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2370 struct atl1_adapter *adapter = netdev_priv(netdev);
2371 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2372 int len = skb->len;
2373 int tso;
2374 int count = 1;
2375 int ret_val;
2376 struct tx_packet_desc *ptpd;
2377 u16 frag_size;
2378 u16 vlan_tag;
2379 unsigned long flags;
2380 unsigned int nr_frags = 0;
2381 unsigned int mss = 0;
2382 unsigned int f;
2383 unsigned int proto_hdr_len;
2385 len -= skb->data_len;
2387 if (unlikely(skb->len <= 0)) {
2388 dev_kfree_skb_any(skb);
2389 return NETDEV_TX_OK;
2392 nr_frags = skb_shinfo(skb)->nr_frags;
2393 for (f = 0; f < nr_frags; f++) {
2394 frag_size = skb_shinfo(skb)->frags[f].size;
2395 if (frag_size)
2396 count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
2397 ATL1_MAX_TX_BUF_LEN;
2400 mss = skb_shinfo(skb)->gso_size;
2401 if (mss) {
2402 if (skb->protocol == ntohs(ETH_P_IP)) {
2403 proto_hdr_len = (skb_transport_offset(skb) +
2404 tcp_hdrlen(skb));
2405 if (unlikely(proto_hdr_len > len)) {
2406 dev_kfree_skb_any(skb);
2407 return NETDEV_TX_OK;
2409 /* need additional TPD ? */
2410 if (proto_hdr_len != len)
2411 count += (len - proto_hdr_len +
2412 ATL1_MAX_TX_BUF_LEN - 1) /
2413 ATL1_MAX_TX_BUF_LEN;
2417 if (!spin_trylock_irqsave(&adapter->lock, flags)) {
2418 /* Can't get lock - tell upper layer to requeue */
2419 if (netif_msg_tx_queued(adapter))
2420 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2421 "tx locked\n");
2422 return NETDEV_TX_LOCKED;
2425 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2426 /* not enough descriptors */
2427 netif_stop_queue(netdev);
2428 spin_unlock_irqrestore(&adapter->lock, flags);
2429 if (netif_msg_tx_queued(adapter))
2430 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2431 "tx busy\n");
2432 return NETDEV_TX_BUSY;
2435 ptpd = ATL1_TPD_DESC(tpd_ring,
2436 (u16) atomic_read(&tpd_ring->next_to_use));
2437 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2439 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2440 vlan_tag = vlan_tx_tag_get(skb);
2441 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2442 ((vlan_tag >> 9) & 0x8);
2443 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2444 ptpd->word3 |= (vlan_tag & TPD_VL_TAGGED_MASK) <<
2445 TPD_VL_TAGGED_SHIFT;
2448 tso = atl1_tso(adapter, skb, ptpd);
2449 if (tso < 0) {
2450 spin_unlock_irqrestore(&adapter->lock, flags);
2451 dev_kfree_skb_any(skb);
2452 return NETDEV_TX_OK;
2455 if (!tso) {
2456 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2457 if (ret_val < 0) {
2458 spin_unlock_irqrestore(&adapter->lock, flags);
2459 dev_kfree_skb_any(skb);
2460 return NETDEV_TX_OK;
2464 atl1_tx_map(adapter, skb, ptpd);
2465 atl1_tx_queue(adapter, count, ptpd);
2466 atl1_update_mailbox(adapter);
2467 spin_unlock_irqrestore(&adapter->lock, flags);
2468 netdev->trans_start = jiffies;
2469 return NETDEV_TX_OK;
2473 * atl1_intr - Interrupt Handler
2474 * @irq: interrupt number
2475 * @data: pointer to a network interface device structure
2476 * @pt_regs: CPU registers structure
2478 static irqreturn_t atl1_intr(int irq, void *data)
2480 struct atl1_adapter *adapter = netdev_priv(data);
2481 u32 status;
2482 int max_ints = 10;
2484 status = adapter->cmb.cmb->int_stats;
2485 if (!status)
2486 return IRQ_NONE;
2488 do {
2489 /* clear CMB interrupt status at once */
2490 adapter->cmb.cmb->int_stats = 0;
2492 if (status & ISR_GPHY) /* clear phy status */
2493 atlx_clear_phy_int(adapter);
2495 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2496 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2498 /* check if SMB intr */
2499 if (status & ISR_SMB)
2500 atl1_inc_smb(adapter);
2502 /* check if PCIE PHY Link down */
2503 if (status & ISR_PHY_LINKDOWN) {
2504 if (netif_msg_intr(adapter))
2505 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2506 "pcie phy link down %x\n", status);
2507 if (netif_running(adapter->netdev)) { /* reset MAC */
2508 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2509 schedule_work(&adapter->pcie_dma_to_rst_task);
2510 return IRQ_HANDLED;
2514 /* check if DMA read/write error ? */
2515 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2516 if (netif_msg_intr(adapter))
2517 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2518 "pcie DMA r/w error (status = 0x%x)\n",
2519 status);
2520 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2521 schedule_work(&adapter->pcie_dma_to_rst_task);
2522 return IRQ_HANDLED;
2525 /* link event */
2526 if (status & ISR_GPHY) {
2527 adapter->soft_stats.tx_carrier_errors++;
2528 atl1_check_for_link(adapter);
2531 /* transmit event */
2532 if (status & ISR_CMB_TX)
2533 atl1_intr_tx(adapter);
2535 /* rx exception */
2536 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2537 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2538 ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2539 if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2540 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2541 ISR_HOST_RRD_OV))
2542 if (netif_msg_intr(adapter))
2543 dev_printk(KERN_DEBUG,
2544 &adapter->pdev->dev,
2545 "rx exception, ISR = 0x%x\n",
2546 status);
2547 atl1_intr_rx(adapter);
2550 if (--max_ints < 0)
2551 break;
2553 } while ((status = adapter->cmb.cmb->int_stats));
2555 /* re-enable Interrupt */
2556 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2557 return IRQ_HANDLED;
2561 * atl1_watchdog - Timer Call-back
2562 * @data: pointer to netdev cast into an unsigned long
2564 static void atl1_watchdog(unsigned long data)
2566 struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2568 /* Reset the timer */
2569 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2573 * atl1_phy_config - Timer Call-back
2574 * @data: pointer to netdev cast into an unsigned long
2576 static void atl1_phy_config(unsigned long data)
2578 struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2579 struct atl1_hw *hw = &adapter->hw;
2580 unsigned long flags;
2582 spin_lock_irqsave(&adapter->lock, flags);
2583 adapter->phy_timer_pending = false;
2584 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2585 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2586 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2587 spin_unlock_irqrestore(&adapter->lock, flags);
2591 * Orphaned vendor comment left intact here:
2592 * <vendor comment>
2593 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2594 * will assert. We do soft reset <0x1400=1> according
2595 * with the SPEC. BUT, it seemes that PCIE or DMA
2596 * state-machine will not be reset. DMAR_TO_INT will
2597 * assert again and again.
2598 * </vendor comment>
2601 static int atl1_reset(struct atl1_adapter *adapter)
2603 int ret;
2604 ret = atl1_reset_hw(&adapter->hw);
2605 if (ret)
2606 return ret;
2607 return atl1_init_hw(&adapter->hw);
2610 static s32 atl1_up(struct atl1_adapter *adapter)
2612 struct net_device *netdev = adapter->netdev;
2613 int err;
2614 int irq_flags = IRQF_SAMPLE_RANDOM;
2616 /* hardware has been reset, we need to reload some things */
2617 atlx_set_multi(netdev);
2618 atl1_init_ring_ptrs(adapter);
2619 atlx_restore_vlan(adapter);
2620 err = atl1_alloc_rx_buffers(adapter);
2621 if (unlikely(!err))
2622 /* no RX BUFFER allocated */
2623 return -ENOMEM;
2625 if (unlikely(atl1_configure(adapter))) {
2626 err = -EIO;
2627 goto err_up;
2630 err = pci_enable_msi(adapter->pdev);
2631 if (err) {
2632 if (netif_msg_ifup(adapter))
2633 dev_info(&adapter->pdev->dev,
2634 "Unable to enable MSI: %d\n", err);
2635 irq_flags |= IRQF_SHARED;
2638 err = request_irq(adapter->pdev->irq, &atl1_intr, irq_flags,
2639 netdev->name, netdev);
2640 if (unlikely(err))
2641 goto err_up;
2643 mod_timer(&adapter->watchdog_timer, jiffies);
2644 atlx_irq_enable(adapter);
2645 atl1_check_link(adapter);
2646 return 0;
2648 err_up:
2649 pci_disable_msi(adapter->pdev);
2650 /* free rx_buffers */
2651 atl1_clean_rx_ring(adapter);
2652 return err;
2655 static void atl1_down(struct atl1_adapter *adapter)
2657 struct net_device *netdev = adapter->netdev;
2659 del_timer_sync(&adapter->watchdog_timer);
2660 del_timer_sync(&adapter->phy_config_timer);
2661 adapter->phy_timer_pending = false;
2663 atlx_irq_disable(adapter);
2664 free_irq(adapter->pdev->irq, netdev);
2665 pci_disable_msi(adapter->pdev);
2666 atl1_reset_hw(&adapter->hw);
2667 adapter->cmb.cmb->int_stats = 0;
2669 adapter->link_speed = SPEED_0;
2670 adapter->link_duplex = -1;
2671 netif_carrier_off(netdev);
2672 netif_stop_queue(netdev);
2674 atl1_clean_tx_ring(adapter);
2675 atl1_clean_rx_ring(adapter);
2678 static void atl1_tx_timeout_task(struct work_struct *work)
2680 struct atl1_adapter *adapter =
2681 container_of(work, struct atl1_adapter, tx_timeout_task);
2682 struct net_device *netdev = adapter->netdev;
2684 netif_device_detach(netdev);
2685 atl1_down(adapter);
2686 atl1_up(adapter);
2687 netif_device_attach(netdev);
2691 * atl1_change_mtu - Change the Maximum Transfer Unit
2692 * @netdev: network interface device structure
2693 * @new_mtu: new value for maximum frame size
2695 * Returns 0 on success, negative on failure
2697 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2699 struct atl1_adapter *adapter = netdev_priv(netdev);
2700 int old_mtu = netdev->mtu;
2701 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2703 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2704 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2705 if (netif_msg_link(adapter))
2706 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2707 return -EINVAL;
2710 adapter->hw.max_frame_size = max_frame;
2711 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2712 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2713 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2715 netdev->mtu = new_mtu;
2716 if ((old_mtu != new_mtu) && netif_running(netdev)) {
2717 atl1_down(adapter);
2718 atl1_up(adapter);
2721 return 0;
2725 * atl1_open - Called when a network interface is made active
2726 * @netdev: network interface device structure
2728 * Returns 0 on success, negative value on failure
2730 * The open entry point is called when a network interface is made
2731 * active by the system (IFF_UP). At this point all resources needed
2732 * for transmit and receive operations are allocated, the interrupt
2733 * handler is registered with the OS, the watchdog timer is started,
2734 * and the stack is notified that the interface is ready.
2736 static int atl1_open(struct net_device *netdev)
2738 struct atl1_adapter *adapter = netdev_priv(netdev);
2739 int err;
2741 /* allocate transmit descriptors */
2742 err = atl1_setup_ring_resources(adapter);
2743 if (err)
2744 return err;
2746 err = atl1_up(adapter);
2747 if (err)
2748 goto err_up;
2750 return 0;
2752 err_up:
2753 atl1_reset(adapter);
2754 return err;
2758 * atl1_close - Disables a network interface
2759 * @netdev: network interface device structure
2761 * Returns 0, this is not allowed to fail
2763 * The close entry point is called when an interface is de-activated
2764 * by the OS. The hardware is still under the drivers control, but
2765 * needs to be disabled. A global MAC reset is issued to stop the
2766 * hardware, and all transmit and receive resources are freed.
2768 static int atl1_close(struct net_device *netdev)
2770 struct atl1_adapter *adapter = netdev_priv(netdev);
2771 atl1_down(adapter);
2772 atl1_free_ring_resources(adapter);
2773 return 0;
2776 #ifdef CONFIG_PM
2777 static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
2779 struct net_device *netdev = pci_get_drvdata(pdev);
2780 struct atl1_adapter *adapter = netdev_priv(netdev);
2781 struct atl1_hw *hw = &adapter->hw;
2782 u32 ctrl = 0;
2783 u32 wufc = adapter->wol;
2785 netif_device_detach(netdev);
2786 if (netif_running(netdev))
2787 atl1_down(adapter);
2789 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2790 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2791 if (ctrl & BMSR_LSTATUS)
2792 wufc &= ~ATLX_WUFC_LNKC;
2794 /* reduce speed to 10/100M */
2795 if (wufc) {
2796 atl1_phy_enter_power_saving(hw);
2797 /* if resume, let driver to re- setup link */
2798 hw->phy_configured = false;
2799 atl1_set_mac_addr(hw);
2800 atlx_set_multi(netdev);
2802 ctrl = 0;
2803 /* turn on magic packet wol */
2804 if (wufc & ATLX_WUFC_MAG)
2805 ctrl = WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
2807 /* turn on Link change WOL */
2808 if (wufc & ATLX_WUFC_LNKC)
2809 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2810 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2812 /* turn on all-multi mode if wake on multicast is enabled */
2813 ctrl = ioread32(hw->hw_addr + REG_MAC_CTRL);
2814 ctrl &= ~MAC_CTRL_DBG;
2815 ctrl &= ~MAC_CTRL_PROMIS_EN;
2816 if (wufc & ATLX_WUFC_MC)
2817 ctrl |= MAC_CTRL_MC_ALL_EN;
2818 else
2819 ctrl &= ~MAC_CTRL_MC_ALL_EN;
2821 /* turn on broadcast mode if wake on-BC is enabled */
2822 if (wufc & ATLX_WUFC_BC)
2823 ctrl |= MAC_CTRL_BC_EN;
2824 else
2825 ctrl &= ~MAC_CTRL_BC_EN;
2827 /* enable RX */
2828 ctrl |= MAC_CTRL_RX_EN;
2829 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2830 pci_enable_wake(pdev, PCI_D3hot, 1);
2831 pci_enable_wake(pdev, PCI_D3cold, 1);
2832 } else {
2833 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2834 pci_enable_wake(pdev, PCI_D3hot, 0);
2835 pci_enable_wake(pdev, PCI_D3cold, 0);
2838 pci_save_state(pdev);
2839 pci_disable_device(pdev);
2841 pci_set_power_state(pdev, PCI_D3hot);
2843 return 0;
2846 static int atl1_resume(struct pci_dev *pdev)
2848 struct net_device *netdev = pci_get_drvdata(pdev);
2849 struct atl1_adapter *adapter = netdev_priv(netdev);
2850 u32 err;
2852 pci_set_power_state(pdev, PCI_D0);
2853 pci_restore_state(pdev);
2855 /* FIXME: check and handle */
2856 err = pci_enable_device(pdev);
2857 pci_enable_wake(pdev, PCI_D3hot, 0);
2858 pci_enable_wake(pdev, PCI_D3cold, 0);
2860 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2861 atl1_reset(adapter);
2863 if (netif_running(netdev))
2864 atl1_up(adapter);
2865 netif_device_attach(netdev);
2867 atl1_via_workaround(adapter);
2869 return 0;
2871 #else
2872 #define atl1_suspend NULL
2873 #define atl1_resume NULL
2874 #endif
2876 #ifdef CONFIG_NET_POLL_CONTROLLER
2877 static void atl1_poll_controller(struct net_device *netdev)
2879 disable_irq(netdev->irq);
2880 atl1_intr(netdev->irq, netdev);
2881 enable_irq(netdev->irq);
2883 #endif
2886 * atl1_probe - Device Initialization Routine
2887 * @pdev: PCI device information struct
2888 * @ent: entry in atl1_pci_tbl
2890 * Returns 0 on success, negative on failure
2892 * atl1_probe initializes an adapter identified by a pci_dev structure.
2893 * The OS initialization, configuring of the adapter private structure,
2894 * and a hardware reset occur.
2896 static int __devinit atl1_probe(struct pci_dev *pdev,
2897 const struct pci_device_id *ent)
2899 struct net_device *netdev;
2900 struct atl1_adapter *adapter;
2901 static int cards_found = 0;
2902 int err;
2904 err = pci_enable_device(pdev);
2905 if (err)
2906 return err;
2909 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2910 * shared register for the high 32 bits, so only a single, aligned,
2911 * 4 GB physical address range can be used at a time.
2913 * Supporting 64-bit DMA on this hardware is more trouble than it's
2914 * worth. It is far easier to limit to 32-bit DMA than update
2915 * various kernel subsystems to support the mechanics required by a
2916 * fixed-high-32-bit system.
2918 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2919 if (err) {
2920 dev_err(&pdev->dev, "no usable DMA configuration\n");
2921 goto err_dma;
2924 * Mark all PCI regions associated with PCI device
2925 * pdev as being reserved by owner atl1_driver_name
2927 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2928 if (err)
2929 goto err_request_regions;
2932 * Enables bus-mastering on the device and calls
2933 * pcibios_set_master to do the needed arch specific settings
2935 pci_set_master(pdev);
2937 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2938 if (!netdev) {
2939 err = -ENOMEM;
2940 goto err_alloc_etherdev;
2942 SET_NETDEV_DEV(netdev, &pdev->dev);
2944 pci_set_drvdata(pdev, netdev);
2945 adapter = netdev_priv(netdev);
2946 adapter->netdev = netdev;
2947 adapter->pdev = pdev;
2948 adapter->hw.back = adapter;
2949 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2951 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2952 if (!adapter->hw.hw_addr) {
2953 err = -EIO;
2954 goto err_pci_iomap;
2956 /* get device revision number */
2957 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2958 (REG_MASTER_CTRL + 2));
2959 if (netif_msg_probe(adapter))
2960 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2962 /* set default ring resource counts */
2963 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2964 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2966 adapter->mii.dev = netdev;
2967 adapter->mii.mdio_read = mdio_read;
2968 adapter->mii.mdio_write = mdio_write;
2969 adapter->mii.phy_id_mask = 0x1f;
2970 adapter->mii.reg_num_mask = 0x1f;
2972 netdev->open = &atl1_open;
2973 netdev->stop = &atl1_close;
2974 netdev->hard_start_xmit = &atl1_xmit_frame;
2975 netdev->get_stats = &atlx_get_stats;
2976 netdev->set_multicast_list = &atlx_set_multi;
2977 netdev->set_mac_address = &atl1_set_mac;
2978 netdev->change_mtu = &atl1_change_mtu;
2979 netdev->do_ioctl = &atlx_ioctl;
2980 netdev->tx_timeout = &atlx_tx_timeout;
2981 netdev->watchdog_timeo = 5 * HZ;
2982 #ifdef CONFIG_NET_POLL_CONTROLLER
2983 netdev->poll_controller = atl1_poll_controller;
2984 #endif
2985 netdev->vlan_rx_register = atlx_vlan_rx_register;
2987 netdev->ethtool_ops = &atl1_ethtool_ops;
2988 adapter->bd_number = cards_found;
2990 /* setup the private structure */
2991 err = atl1_sw_init(adapter);
2992 if (err)
2993 goto err_common;
2995 netdev->features = NETIF_F_HW_CSUM;
2996 netdev->features |= NETIF_F_SG;
2997 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
2998 netdev->features |= NETIF_F_TSO;
2999 netdev->features |= NETIF_F_LLTX;
3002 * patch for some L1 of old version,
3003 * the final version of L1 may not need these
3004 * patches
3006 /* atl1_pcie_patch(adapter); */
3008 /* really reset GPHY core */
3009 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3012 * reset the controller to
3013 * put the device in a known good starting state
3015 if (atl1_reset_hw(&adapter->hw)) {
3016 err = -EIO;
3017 goto err_common;
3020 /* copy the MAC address out of the EEPROM */
3021 atl1_read_mac_addr(&adapter->hw);
3022 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3024 if (!is_valid_ether_addr(netdev->dev_addr)) {
3025 err = -EIO;
3026 goto err_common;
3029 atl1_check_options(adapter);
3031 /* pre-init the MAC, and setup link */
3032 err = atl1_init_hw(&adapter->hw);
3033 if (err) {
3034 err = -EIO;
3035 goto err_common;
3038 atl1_pcie_patch(adapter);
3039 /* assume we have no link for now */
3040 netif_carrier_off(netdev);
3041 netif_stop_queue(netdev);
3043 init_timer(&adapter->watchdog_timer);
3044 adapter->watchdog_timer.function = &atl1_watchdog;
3045 adapter->watchdog_timer.data = (unsigned long)adapter;
3047 init_timer(&adapter->phy_config_timer);
3048 adapter->phy_config_timer.function = &atl1_phy_config;
3049 adapter->phy_config_timer.data = (unsigned long)adapter;
3050 adapter->phy_timer_pending = false;
3052 INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3054 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3056 INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3058 err = register_netdev(netdev);
3059 if (err)
3060 goto err_common;
3062 cards_found++;
3063 atl1_via_workaround(adapter);
3064 return 0;
3066 err_common:
3067 pci_iounmap(pdev, adapter->hw.hw_addr);
3068 err_pci_iomap:
3069 free_netdev(netdev);
3070 err_alloc_etherdev:
3071 pci_release_regions(pdev);
3072 err_dma:
3073 err_request_regions:
3074 pci_disable_device(pdev);
3075 return err;
3079 * atl1_remove - Device Removal Routine
3080 * @pdev: PCI device information struct
3082 * atl1_remove is called by the PCI subsystem to alert the driver
3083 * that it should release a PCI device. The could be caused by a
3084 * Hot-Plug event, or because the driver is going to be removed from
3085 * memory.
3087 static void __devexit atl1_remove(struct pci_dev *pdev)
3089 struct net_device *netdev = pci_get_drvdata(pdev);
3090 struct atl1_adapter *adapter;
3091 /* Device not available. Return. */
3092 if (!netdev)
3093 return;
3095 adapter = netdev_priv(netdev);
3098 * Some atl1 boards lack persistent storage for their MAC, and get it
3099 * from the BIOS during POST. If we've been messing with the MAC
3100 * address, we need to save the permanent one.
3102 if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3103 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3104 ETH_ALEN);
3105 atl1_set_mac_addr(&adapter->hw);
3108 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3109 unregister_netdev(netdev);
3110 pci_iounmap(pdev, adapter->hw.hw_addr);
3111 pci_release_regions(pdev);
3112 free_netdev(netdev);
3113 pci_disable_device(pdev);
3116 static struct pci_driver atl1_driver = {
3117 .name = ATLX_DRIVER_NAME,
3118 .id_table = atl1_pci_tbl,
3119 .probe = atl1_probe,
3120 .remove = __devexit_p(atl1_remove),
3121 .suspend = atl1_suspend,
3122 .resume = atl1_resume
3126 * atl1_exit_module - Driver Exit Cleanup Routine
3128 * atl1_exit_module is called just before the driver is removed
3129 * from memory.
3131 static void __exit atl1_exit_module(void)
3133 pci_unregister_driver(&atl1_driver);
3137 * atl1_init_module - Driver Registration Routine
3139 * atl1_init_module is the first routine called when the driver is
3140 * loaded. All it does is register with the PCI subsystem.
3142 static int __init atl1_init_module(void)
3144 return pci_register_driver(&atl1_driver);
3147 module_init(atl1_init_module);
3148 module_exit(atl1_exit_module);
3150 struct atl1_stats {
3151 char stat_string[ETH_GSTRING_LEN];
3152 int sizeof_stat;
3153 int stat_offset;
3156 #define ATL1_STAT(m) \
3157 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3159 static struct atl1_stats atl1_gstrings_stats[] = {
3160 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3161 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3162 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3163 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3164 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3165 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3166 {"rx_dropped", ATL1_STAT(net_stats.rx_dropped)},
3167 {"tx_dropped", ATL1_STAT(net_stats.tx_dropped)},
3168 {"multicast", ATL1_STAT(soft_stats.multicast)},
3169 {"collisions", ATL1_STAT(soft_stats.collisions)},
3170 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3171 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3172 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3173 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3174 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3175 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3176 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3177 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3178 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3179 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3180 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3181 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3182 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3183 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3184 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3185 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3186 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3187 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3188 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3189 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3190 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3193 static void atl1_get_ethtool_stats(struct net_device *netdev,
3194 struct ethtool_stats *stats, u64 *data)
3196 struct atl1_adapter *adapter = netdev_priv(netdev);
3197 int i;
3198 char *p;
3200 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3201 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3202 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3203 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3208 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3210 switch (sset) {
3211 case ETH_SS_STATS:
3212 return ARRAY_SIZE(atl1_gstrings_stats);
3213 default:
3214 return -EOPNOTSUPP;
3218 static int atl1_get_settings(struct net_device *netdev,
3219 struct ethtool_cmd *ecmd)
3221 struct atl1_adapter *adapter = netdev_priv(netdev);
3222 struct atl1_hw *hw = &adapter->hw;
3224 ecmd->supported = (SUPPORTED_10baseT_Half |
3225 SUPPORTED_10baseT_Full |
3226 SUPPORTED_100baseT_Half |
3227 SUPPORTED_100baseT_Full |
3228 SUPPORTED_1000baseT_Full |
3229 SUPPORTED_Autoneg | SUPPORTED_TP);
3230 ecmd->advertising = ADVERTISED_TP;
3231 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3232 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3233 ecmd->advertising |= ADVERTISED_Autoneg;
3234 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3235 ecmd->advertising |= ADVERTISED_Autoneg;
3236 ecmd->advertising |=
3237 (ADVERTISED_10baseT_Half |
3238 ADVERTISED_10baseT_Full |
3239 ADVERTISED_100baseT_Half |
3240 ADVERTISED_100baseT_Full |
3241 ADVERTISED_1000baseT_Full);
3242 } else
3243 ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3245 ecmd->port = PORT_TP;
3246 ecmd->phy_address = 0;
3247 ecmd->transceiver = XCVR_INTERNAL;
3249 if (netif_carrier_ok(adapter->netdev)) {
3250 u16 link_speed, link_duplex;
3251 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3252 ecmd->speed = link_speed;
3253 if (link_duplex == FULL_DUPLEX)
3254 ecmd->duplex = DUPLEX_FULL;
3255 else
3256 ecmd->duplex = DUPLEX_HALF;
3257 } else {
3258 ecmd->speed = -1;
3259 ecmd->duplex = -1;
3261 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3262 hw->media_type == MEDIA_TYPE_1000M_FULL)
3263 ecmd->autoneg = AUTONEG_ENABLE;
3264 else
3265 ecmd->autoneg = AUTONEG_DISABLE;
3267 return 0;
3270 static int atl1_set_settings(struct net_device *netdev,
3271 struct ethtool_cmd *ecmd)
3273 struct atl1_adapter *adapter = netdev_priv(netdev);
3274 struct atl1_hw *hw = &adapter->hw;
3275 u16 phy_data;
3276 int ret_val = 0;
3277 u16 old_media_type = hw->media_type;
3279 if (netif_running(adapter->netdev)) {
3280 if (netif_msg_link(adapter))
3281 dev_dbg(&adapter->pdev->dev,
3282 "ethtool shutting down adapter\n");
3283 atl1_down(adapter);
3286 if (ecmd->autoneg == AUTONEG_ENABLE)
3287 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3288 else {
3289 if (ecmd->speed == SPEED_1000) {
3290 if (ecmd->duplex != DUPLEX_FULL) {
3291 if (netif_msg_link(adapter))
3292 dev_warn(&adapter->pdev->dev,
3293 "1000M half is invalid\n");
3294 ret_val = -EINVAL;
3295 goto exit_sset;
3297 hw->media_type = MEDIA_TYPE_1000M_FULL;
3298 } else if (ecmd->speed == SPEED_100) {
3299 if (ecmd->duplex == DUPLEX_FULL)
3300 hw->media_type = MEDIA_TYPE_100M_FULL;
3301 else
3302 hw->media_type = MEDIA_TYPE_100M_HALF;
3303 } else {
3304 if (ecmd->duplex == DUPLEX_FULL)
3305 hw->media_type = MEDIA_TYPE_10M_FULL;
3306 else
3307 hw->media_type = MEDIA_TYPE_10M_HALF;
3310 switch (hw->media_type) {
3311 case MEDIA_TYPE_AUTO_SENSOR:
3312 ecmd->advertising =
3313 ADVERTISED_10baseT_Half |
3314 ADVERTISED_10baseT_Full |
3315 ADVERTISED_100baseT_Half |
3316 ADVERTISED_100baseT_Full |
3317 ADVERTISED_1000baseT_Full |
3318 ADVERTISED_Autoneg | ADVERTISED_TP;
3319 break;
3320 case MEDIA_TYPE_1000M_FULL:
3321 ecmd->advertising =
3322 ADVERTISED_1000baseT_Full |
3323 ADVERTISED_Autoneg | ADVERTISED_TP;
3324 break;
3325 default:
3326 ecmd->advertising = 0;
3327 break;
3329 if (atl1_phy_setup_autoneg_adv(hw)) {
3330 ret_val = -EINVAL;
3331 if (netif_msg_link(adapter))
3332 dev_warn(&adapter->pdev->dev,
3333 "invalid ethtool speed/duplex setting\n");
3334 goto exit_sset;
3336 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3337 hw->media_type == MEDIA_TYPE_1000M_FULL)
3338 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3339 else {
3340 switch (hw->media_type) {
3341 case MEDIA_TYPE_100M_FULL:
3342 phy_data =
3343 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3344 MII_CR_RESET;
3345 break;
3346 case MEDIA_TYPE_100M_HALF:
3347 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3348 break;
3349 case MEDIA_TYPE_10M_FULL:
3350 phy_data =
3351 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3352 break;
3353 default:
3354 /* MEDIA_TYPE_10M_HALF: */
3355 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3356 break;
3359 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3360 exit_sset:
3361 if (ret_val)
3362 hw->media_type = old_media_type;
3364 if (netif_running(adapter->netdev)) {
3365 if (netif_msg_link(adapter))
3366 dev_dbg(&adapter->pdev->dev,
3367 "ethtool starting adapter\n");
3368 atl1_up(adapter);
3369 } else if (!ret_val) {
3370 if (netif_msg_link(adapter))
3371 dev_dbg(&adapter->pdev->dev,
3372 "ethtool resetting adapter\n");
3373 atl1_reset(adapter);
3375 return ret_val;
3378 static void atl1_get_drvinfo(struct net_device *netdev,
3379 struct ethtool_drvinfo *drvinfo)
3381 struct atl1_adapter *adapter = netdev_priv(netdev);
3383 strncpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3384 strncpy(drvinfo->version, ATLX_DRIVER_VERSION,
3385 sizeof(drvinfo->version));
3386 strncpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
3387 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
3388 sizeof(drvinfo->bus_info));
3389 drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3392 static void atl1_get_wol(struct net_device *netdev,
3393 struct ethtool_wolinfo *wol)
3395 struct atl1_adapter *adapter = netdev_priv(netdev);
3397 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
3398 wol->wolopts = 0;
3399 if (adapter->wol & ATLX_WUFC_EX)
3400 wol->wolopts |= WAKE_UCAST;
3401 if (adapter->wol & ATLX_WUFC_MC)
3402 wol->wolopts |= WAKE_MCAST;
3403 if (adapter->wol & ATLX_WUFC_BC)
3404 wol->wolopts |= WAKE_BCAST;
3405 if (adapter->wol & ATLX_WUFC_MAG)
3406 wol->wolopts |= WAKE_MAGIC;
3407 return;
3410 static int atl1_set_wol(struct net_device *netdev,
3411 struct ethtool_wolinfo *wol)
3413 struct atl1_adapter *adapter = netdev_priv(netdev);
3415 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
3416 return -EOPNOTSUPP;
3417 adapter->wol = 0;
3418 if (wol->wolopts & WAKE_UCAST)
3419 adapter->wol |= ATLX_WUFC_EX;
3420 if (wol->wolopts & WAKE_MCAST)
3421 adapter->wol |= ATLX_WUFC_MC;
3422 if (wol->wolopts & WAKE_BCAST)
3423 adapter->wol |= ATLX_WUFC_BC;
3424 if (wol->wolopts & WAKE_MAGIC)
3425 adapter->wol |= ATLX_WUFC_MAG;
3426 return 0;
3429 static u32 atl1_get_msglevel(struct net_device *netdev)
3431 struct atl1_adapter *adapter = netdev_priv(netdev);
3432 return adapter->msg_enable;
3435 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3437 struct atl1_adapter *adapter = netdev_priv(netdev);
3438 adapter->msg_enable = value;
3441 static int atl1_get_regs_len(struct net_device *netdev)
3443 return ATL1_REG_COUNT * sizeof(u32);
3446 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3447 void *p)
3449 struct atl1_adapter *adapter = netdev_priv(netdev);
3450 struct atl1_hw *hw = &adapter->hw;
3451 unsigned int i;
3452 u32 *regbuf = p;
3454 for (i = 0; i < ATL1_REG_COUNT; i++) {
3456 * This switch statement avoids reserved regions
3457 * of register space.
3459 switch (i) {
3460 case 6 ... 9:
3461 case 14:
3462 case 29 ... 31:
3463 case 34 ... 63:
3464 case 75 ... 127:
3465 case 136 ... 1023:
3466 case 1027 ... 1087:
3467 case 1091 ... 1151:
3468 case 1194 ... 1195:
3469 case 1200 ... 1201:
3470 case 1206 ... 1213:
3471 case 1216 ... 1279:
3472 case 1290 ... 1311:
3473 case 1323 ... 1343:
3474 case 1358 ... 1359:
3475 case 1368 ... 1375:
3476 case 1378 ... 1383:
3477 case 1388 ... 1391:
3478 case 1393 ... 1395:
3479 case 1402 ... 1403:
3480 case 1410 ... 1471:
3481 case 1522 ... 1535:
3482 /* reserved region; don't read it */
3483 regbuf[i] = 0;
3484 break;
3485 default:
3486 /* unreserved region */
3487 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3492 static void atl1_get_ringparam(struct net_device *netdev,
3493 struct ethtool_ringparam *ring)
3495 struct atl1_adapter *adapter = netdev_priv(netdev);
3496 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3497 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3499 ring->rx_max_pending = ATL1_MAX_RFD;
3500 ring->tx_max_pending = ATL1_MAX_TPD;
3501 ring->rx_mini_max_pending = 0;
3502 ring->rx_jumbo_max_pending = 0;
3503 ring->rx_pending = rxdr->count;
3504 ring->tx_pending = txdr->count;
3505 ring->rx_mini_pending = 0;
3506 ring->rx_jumbo_pending = 0;
3509 static int atl1_set_ringparam(struct net_device *netdev,
3510 struct ethtool_ringparam *ring)
3512 struct atl1_adapter *adapter = netdev_priv(netdev);
3513 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3514 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3515 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3517 struct atl1_tpd_ring tpd_old, tpd_new;
3518 struct atl1_rfd_ring rfd_old, rfd_new;
3519 struct atl1_rrd_ring rrd_old, rrd_new;
3520 struct atl1_ring_header rhdr_old, rhdr_new;
3521 int err;
3523 tpd_old = adapter->tpd_ring;
3524 rfd_old = adapter->rfd_ring;
3525 rrd_old = adapter->rrd_ring;
3526 rhdr_old = adapter->ring_header;
3528 if (netif_running(adapter->netdev))
3529 atl1_down(adapter);
3531 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3532 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3533 rfdr->count;
3534 rfdr->count = (rfdr->count + 3) & ~3;
3535 rrdr->count = rfdr->count;
3537 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3538 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3539 tpdr->count;
3540 tpdr->count = (tpdr->count + 3) & ~3;
3542 if (netif_running(adapter->netdev)) {
3543 /* try to get new resources before deleting old */
3544 err = atl1_setup_ring_resources(adapter);
3545 if (err)
3546 goto err_setup_ring;
3549 * save the new, restore the old in order to free it,
3550 * then restore the new back again
3553 rfd_new = adapter->rfd_ring;
3554 rrd_new = adapter->rrd_ring;
3555 tpd_new = adapter->tpd_ring;
3556 rhdr_new = adapter->ring_header;
3557 adapter->rfd_ring = rfd_old;
3558 adapter->rrd_ring = rrd_old;
3559 adapter->tpd_ring = tpd_old;
3560 adapter->ring_header = rhdr_old;
3561 atl1_free_ring_resources(adapter);
3562 adapter->rfd_ring = rfd_new;
3563 adapter->rrd_ring = rrd_new;
3564 adapter->tpd_ring = tpd_new;
3565 adapter->ring_header = rhdr_new;
3567 err = atl1_up(adapter);
3568 if (err)
3569 return err;
3571 return 0;
3573 err_setup_ring:
3574 adapter->rfd_ring = rfd_old;
3575 adapter->rrd_ring = rrd_old;
3576 adapter->tpd_ring = tpd_old;
3577 adapter->ring_header = rhdr_old;
3578 atl1_up(adapter);
3579 return err;
3582 static void atl1_get_pauseparam(struct net_device *netdev,
3583 struct ethtool_pauseparam *epause)
3585 struct atl1_adapter *adapter = netdev_priv(netdev);
3586 struct atl1_hw *hw = &adapter->hw;
3588 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3589 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3590 epause->autoneg = AUTONEG_ENABLE;
3591 } else {
3592 epause->autoneg = AUTONEG_DISABLE;
3594 epause->rx_pause = 1;
3595 epause->tx_pause = 1;
3598 static int atl1_set_pauseparam(struct net_device *netdev,
3599 struct ethtool_pauseparam *epause)
3601 struct atl1_adapter *adapter = netdev_priv(netdev);
3602 struct atl1_hw *hw = &adapter->hw;
3604 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3605 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3606 epause->autoneg = AUTONEG_ENABLE;
3607 } else {
3608 epause->autoneg = AUTONEG_DISABLE;
3611 epause->rx_pause = 1;
3612 epause->tx_pause = 1;
3614 return 0;
3617 /* FIXME: is this right? -- CHS */
3618 static u32 atl1_get_rx_csum(struct net_device *netdev)
3620 return 1;
3623 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3624 u8 *data)
3626 u8 *p = data;
3627 int i;
3629 switch (stringset) {
3630 case ETH_SS_STATS:
3631 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3632 memcpy(p, atl1_gstrings_stats[i].stat_string,
3633 ETH_GSTRING_LEN);
3634 p += ETH_GSTRING_LEN;
3636 break;
3640 static int atl1_nway_reset(struct net_device *netdev)
3642 struct atl1_adapter *adapter = netdev_priv(netdev);
3643 struct atl1_hw *hw = &adapter->hw;
3645 if (netif_running(netdev)) {
3646 u16 phy_data;
3647 atl1_down(adapter);
3649 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3650 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3651 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3652 } else {
3653 switch (hw->media_type) {
3654 case MEDIA_TYPE_100M_FULL:
3655 phy_data = MII_CR_FULL_DUPLEX |
3656 MII_CR_SPEED_100 | MII_CR_RESET;
3657 break;
3658 case MEDIA_TYPE_100M_HALF:
3659 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3660 break;
3661 case MEDIA_TYPE_10M_FULL:
3662 phy_data = MII_CR_FULL_DUPLEX |
3663 MII_CR_SPEED_10 | MII_CR_RESET;
3664 break;
3665 default:
3666 /* MEDIA_TYPE_10M_HALF */
3667 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3670 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3671 atl1_up(adapter);
3673 return 0;
3676 const struct ethtool_ops atl1_ethtool_ops = {
3677 .get_settings = atl1_get_settings,
3678 .set_settings = atl1_set_settings,
3679 .get_drvinfo = atl1_get_drvinfo,
3680 .get_wol = atl1_get_wol,
3681 .set_wol = atl1_set_wol,
3682 .get_msglevel = atl1_get_msglevel,
3683 .set_msglevel = atl1_set_msglevel,
3684 .get_regs_len = atl1_get_regs_len,
3685 .get_regs = atl1_get_regs,
3686 .get_ringparam = atl1_get_ringparam,
3687 .set_ringparam = atl1_set_ringparam,
3688 .get_pauseparam = atl1_get_pauseparam,
3689 .set_pauseparam = atl1_set_pauseparam,
3690 .get_rx_csum = atl1_get_rx_csum,
3691 .set_tx_csum = ethtool_op_set_tx_hw_csum,
3692 .get_link = ethtool_op_get_link,
3693 .set_sg = ethtool_op_set_sg,
3694 .get_strings = atl1_get_strings,
3695 .nway_reset = atl1_nway_reset,
3696 .get_ethtool_stats = atl1_get_ethtool_stats,
3697 .get_sset_count = atl1_get_sset_count,
3698 .set_tso = ethtool_op_set_tso,