SUNRPC: Fix the return value of rpc_run_bc_task()
[linux-2.6/kvm.git] / kernel / cgroup.c
blobef909a32975006eafd43ce7693314eef5c5ffa4d
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/module.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hash.h>
55 #include <linux/namei.h>
56 #include <linux/smp_lock.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
63 #include <asm/atomic.h>
65 static DEFINE_MUTEX(cgroup_mutex);
68 * Generate an array of cgroup subsystem pointers. At boot time, this is
69 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
70 * registered after that. The mutable section of this array is protected by
71 * cgroup_mutex.
73 #define SUBSYS(_x) &_x ## _subsys,
74 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
75 #include <linux/cgroup_subsys.h>
78 #define MAX_CGROUP_ROOT_NAMELEN 64
81 * A cgroupfs_root represents the root of a cgroup hierarchy,
82 * and may be associated with a superblock to form an active
83 * hierarchy
85 struct cgroupfs_root {
86 struct super_block *sb;
89 * The bitmask of subsystems intended to be attached to this
90 * hierarchy
92 unsigned long subsys_bits;
94 /* Unique id for this hierarchy. */
95 int hierarchy_id;
97 /* The bitmask of subsystems currently attached to this hierarchy */
98 unsigned long actual_subsys_bits;
100 /* A list running through the attached subsystems */
101 struct list_head subsys_list;
103 /* The root cgroup for this hierarchy */
104 struct cgroup top_cgroup;
106 /* Tracks how many cgroups are currently defined in hierarchy.*/
107 int number_of_cgroups;
109 /* A list running through the active hierarchies */
110 struct list_head root_list;
112 /* Hierarchy-specific flags */
113 unsigned long flags;
115 /* The path to use for release notifications. */
116 char release_agent_path[PATH_MAX];
118 /* The name for this hierarchy - may be empty */
119 char name[MAX_CGROUP_ROOT_NAMELEN];
123 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
124 * subsystems that are otherwise unattached - it never has more than a
125 * single cgroup, and all tasks are part of that cgroup.
127 static struct cgroupfs_root rootnode;
130 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
131 * cgroup_subsys->use_id != 0.
133 #define CSS_ID_MAX (65535)
134 struct css_id {
136 * The css to which this ID points. This pointer is set to valid value
137 * after cgroup is populated. If cgroup is removed, this will be NULL.
138 * This pointer is expected to be RCU-safe because destroy()
139 * is called after synchronize_rcu(). But for safe use, css_is_removed()
140 * css_tryget() should be used for avoiding race.
142 struct cgroup_subsys_state *css;
144 * ID of this css.
146 unsigned short id;
148 * Depth in hierarchy which this ID belongs to.
150 unsigned short depth;
152 * ID is freed by RCU. (and lookup routine is RCU safe.)
154 struct rcu_head rcu_head;
156 * Hierarchy of CSS ID belongs to.
158 unsigned short stack[0]; /* Array of Length (depth+1) */
162 * cgroup_event represents events which userspace want to recieve.
164 struct cgroup_event {
166 * Cgroup which the event belongs to.
168 struct cgroup *cgrp;
170 * Control file which the event associated.
172 struct cftype *cft;
174 * eventfd to signal userspace about the event.
176 struct eventfd_ctx *eventfd;
178 * Each of these stored in a list by the cgroup.
180 struct list_head list;
182 * All fields below needed to unregister event when
183 * userspace closes eventfd.
185 poll_table pt;
186 wait_queue_head_t *wqh;
187 wait_queue_t wait;
188 struct work_struct remove;
191 /* The list of hierarchy roots */
193 static LIST_HEAD(roots);
194 static int root_count;
196 static DEFINE_IDA(hierarchy_ida);
197 static int next_hierarchy_id;
198 static DEFINE_SPINLOCK(hierarchy_id_lock);
200 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
201 #define dummytop (&rootnode.top_cgroup)
203 /* This flag indicates whether tasks in the fork and exit paths should
204 * check for fork/exit handlers to call. This avoids us having to do
205 * extra work in the fork/exit path if none of the subsystems need to
206 * be called.
208 static int need_forkexit_callback __read_mostly;
210 #ifdef CONFIG_PROVE_LOCKING
211 int cgroup_lock_is_held(void)
213 return lockdep_is_held(&cgroup_mutex);
215 #else /* #ifdef CONFIG_PROVE_LOCKING */
216 int cgroup_lock_is_held(void)
218 return mutex_is_locked(&cgroup_mutex);
220 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
222 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
224 /* convenient tests for these bits */
225 inline int cgroup_is_removed(const struct cgroup *cgrp)
227 return test_bit(CGRP_REMOVED, &cgrp->flags);
230 /* bits in struct cgroupfs_root flags field */
231 enum {
232 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
235 static int cgroup_is_releasable(const struct cgroup *cgrp)
237 const int bits =
238 (1 << CGRP_RELEASABLE) |
239 (1 << CGRP_NOTIFY_ON_RELEASE);
240 return (cgrp->flags & bits) == bits;
243 static int notify_on_release(const struct cgroup *cgrp)
245 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
249 * for_each_subsys() allows you to iterate on each subsystem attached to
250 * an active hierarchy
252 #define for_each_subsys(_root, _ss) \
253 list_for_each_entry(_ss, &_root->subsys_list, sibling)
255 /* for_each_active_root() allows you to iterate across the active hierarchies */
256 #define for_each_active_root(_root) \
257 list_for_each_entry(_root, &roots, root_list)
259 /* the list of cgroups eligible for automatic release. Protected by
260 * release_list_lock */
261 static LIST_HEAD(release_list);
262 static DEFINE_SPINLOCK(release_list_lock);
263 static void cgroup_release_agent(struct work_struct *work);
264 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
265 static void check_for_release(struct cgroup *cgrp);
267 /* Link structure for associating css_set objects with cgroups */
268 struct cg_cgroup_link {
270 * List running through cg_cgroup_links associated with a
271 * cgroup, anchored on cgroup->css_sets
273 struct list_head cgrp_link_list;
274 struct cgroup *cgrp;
276 * List running through cg_cgroup_links pointing at a
277 * single css_set object, anchored on css_set->cg_links
279 struct list_head cg_link_list;
280 struct css_set *cg;
283 /* The default css_set - used by init and its children prior to any
284 * hierarchies being mounted. It contains a pointer to the root state
285 * for each subsystem. Also used to anchor the list of css_sets. Not
286 * reference-counted, to improve performance when child cgroups
287 * haven't been created.
290 static struct css_set init_css_set;
291 static struct cg_cgroup_link init_css_set_link;
293 static int cgroup_init_idr(struct cgroup_subsys *ss,
294 struct cgroup_subsys_state *css);
296 /* css_set_lock protects the list of css_set objects, and the
297 * chain of tasks off each css_set. Nests outside task->alloc_lock
298 * due to cgroup_iter_start() */
299 static DEFINE_RWLOCK(css_set_lock);
300 static int css_set_count;
303 * hash table for cgroup groups. This improves the performance to find
304 * an existing css_set. This hash doesn't (currently) take into
305 * account cgroups in empty hierarchies.
307 #define CSS_SET_HASH_BITS 7
308 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
309 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
311 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
313 int i;
314 int index;
315 unsigned long tmp = 0UL;
317 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
318 tmp += (unsigned long)css[i];
319 tmp = (tmp >> 16) ^ tmp;
321 index = hash_long(tmp, CSS_SET_HASH_BITS);
323 return &css_set_table[index];
326 static void free_css_set_rcu(struct rcu_head *obj)
328 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
329 kfree(cg);
332 /* We don't maintain the lists running through each css_set to its
333 * task until after the first call to cgroup_iter_start(). This
334 * reduces the fork()/exit() overhead for people who have cgroups
335 * compiled into their kernel but not actually in use */
336 static int use_task_css_set_links __read_mostly;
338 static void __put_css_set(struct css_set *cg, int taskexit)
340 struct cg_cgroup_link *link;
341 struct cg_cgroup_link *saved_link;
343 * Ensure that the refcount doesn't hit zero while any readers
344 * can see it. Similar to atomic_dec_and_lock(), but for an
345 * rwlock
347 if (atomic_add_unless(&cg->refcount, -1, 1))
348 return;
349 write_lock(&css_set_lock);
350 if (!atomic_dec_and_test(&cg->refcount)) {
351 write_unlock(&css_set_lock);
352 return;
355 /* This css_set is dead. unlink it and release cgroup refcounts */
356 hlist_del(&cg->hlist);
357 css_set_count--;
359 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
360 cg_link_list) {
361 struct cgroup *cgrp = link->cgrp;
362 list_del(&link->cg_link_list);
363 list_del(&link->cgrp_link_list);
364 if (atomic_dec_and_test(&cgrp->count) &&
365 notify_on_release(cgrp)) {
366 if (taskexit)
367 set_bit(CGRP_RELEASABLE, &cgrp->flags);
368 check_for_release(cgrp);
371 kfree(link);
374 write_unlock(&css_set_lock);
375 call_rcu(&cg->rcu_head, free_css_set_rcu);
379 * refcounted get/put for css_set objects
381 static inline void get_css_set(struct css_set *cg)
383 atomic_inc(&cg->refcount);
386 static inline void put_css_set(struct css_set *cg)
388 __put_css_set(cg, 0);
391 static inline void put_css_set_taskexit(struct css_set *cg)
393 __put_css_set(cg, 1);
397 * compare_css_sets - helper function for find_existing_css_set().
398 * @cg: candidate css_set being tested
399 * @old_cg: existing css_set for a task
400 * @new_cgrp: cgroup that's being entered by the task
401 * @template: desired set of css pointers in css_set (pre-calculated)
403 * Returns true if "cg" matches "old_cg" except for the hierarchy
404 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
406 static bool compare_css_sets(struct css_set *cg,
407 struct css_set *old_cg,
408 struct cgroup *new_cgrp,
409 struct cgroup_subsys_state *template[])
411 struct list_head *l1, *l2;
413 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
414 /* Not all subsystems matched */
415 return false;
419 * Compare cgroup pointers in order to distinguish between
420 * different cgroups in heirarchies with no subsystems. We
421 * could get by with just this check alone (and skip the
422 * memcmp above) but on most setups the memcmp check will
423 * avoid the need for this more expensive check on almost all
424 * candidates.
427 l1 = &cg->cg_links;
428 l2 = &old_cg->cg_links;
429 while (1) {
430 struct cg_cgroup_link *cgl1, *cgl2;
431 struct cgroup *cg1, *cg2;
433 l1 = l1->next;
434 l2 = l2->next;
435 /* See if we reached the end - both lists are equal length. */
436 if (l1 == &cg->cg_links) {
437 BUG_ON(l2 != &old_cg->cg_links);
438 break;
439 } else {
440 BUG_ON(l2 == &old_cg->cg_links);
442 /* Locate the cgroups associated with these links. */
443 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
444 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
445 cg1 = cgl1->cgrp;
446 cg2 = cgl2->cgrp;
447 /* Hierarchies should be linked in the same order. */
448 BUG_ON(cg1->root != cg2->root);
451 * If this hierarchy is the hierarchy of the cgroup
452 * that's changing, then we need to check that this
453 * css_set points to the new cgroup; if it's any other
454 * hierarchy, then this css_set should point to the
455 * same cgroup as the old css_set.
457 if (cg1->root == new_cgrp->root) {
458 if (cg1 != new_cgrp)
459 return false;
460 } else {
461 if (cg1 != cg2)
462 return false;
465 return true;
469 * find_existing_css_set() is a helper for
470 * find_css_set(), and checks to see whether an existing
471 * css_set is suitable.
473 * oldcg: the cgroup group that we're using before the cgroup
474 * transition
476 * cgrp: the cgroup that we're moving into
478 * template: location in which to build the desired set of subsystem
479 * state objects for the new cgroup group
481 static struct css_set *find_existing_css_set(
482 struct css_set *oldcg,
483 struct cgroup *cgrp,
484 struct cgroup_subsys_state *template[])
486 int i;
487 struct cgroupfs_root *root = cgrp->root;
488 struct hlist_head *hhead;
489 struct hlist_node *node;
490 struct css_set *cg;
493 * Build the set of subsystem state objects that we want to see in the
494 * new css_set. while subsystems can change globally, the entries here
495 * won't change, so no need for locking.
497 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
498 if (root->subsys_bits & (1UL << i)) {
499 /* Subsystem is in this hierarchy. So we want
500 * the subsystem state from the new
501 * cgroup */
502 template[i] = cgrp->subsys[i];
503 } else {
504 /* Subsystem is not in this hierarchy, so we
505 * don't want to change the subsystem state */
506 template[i] = oldcg->subsys[i];
510 hhead = css_set_hash(template);
511 hlist_for_each_entry(cg, node, hhead, hlist) {
512 if (!compare_css_sets(cg, oldcg, cgrp, template))
513 continue;
515 /* This css_set matches what we need */
516 return cg;
519 /* No existing cgroup group matched */
520 return NULL;
523 static void free_cg_links(struct list_head *tmp)
525 struct cg_cgroup_link *link;
526 struct cg_cgroup_link *saved_link;
528 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
529 list_del(&link->cgrp_link_list);
530 kfree(link);
535 * allocate_cg_links() allocates "count" cg_cgroup_link structures
536 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
537 * success or a negative error
539 static int allocate_cg_links(int count, struct list_head *tmp)
541 struct cg_cgroup_link *link;
542 int i;
543 INIT_LIST_HEAD(tmp);
544 for (i = 0; i < count; i++) {
545 link = kmalloc(sizeof(*link), GFP_KERNEL);
546 if (!link) {
547 free_cg_links(tmp);
548 return -ENOMEM;
550 list_add(&link->cgrp_link_list, tmp);
552 return 0;
556 * link_css_set - a helper function to link a css_set to a cgroup
557 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
558 * @cg: the css_set to be linked
559 * @cgrp: the destination cgroup
561 static void link_css_set(struct list_head *tmp_cg_links,
562 struct css_set *cg, struct cgroup *cgrp)
564 struct cg_cgroup_link *link;
566 BUG_ON(list_empty(tmp_cg_links));
567 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
568 cgrp_link_list);
569 link->cg = cg;
570 link->cgrp = cgrp;
571 atomic_inc(&cgrp->count);
572 list_move(&link->cgrp_link_list, &cgrp->css_sets);
574 * Always add links to the tail of the list so that the list
575 * is sorted by order of hierarchy creation
577 list_add_tail(&link->cg_link_list, &cg->cg_links);
581 * find_css_set() takes an existing cgroup group and a
582 * cgroup object, and returns a css_set object that's
583 * equivalent to the old group, but with the given cgroup
584 * substituted into the appropriate hierarchy. Must be called with
585 * cgroup_mutex held
587 static struct css_set *find_css_set(
588 struct css_set *oldcg, struct cgroup *cgrp)
590 struct css_set *res;
591 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
593 struct list_head tmp_cg_links;
595 struct hlist_head *hhead;
596 struct cg_cgroup_link *link;
598 /* First see if we already have a cgroup group that matches
599 * the desired set */
600 read_lock(&css_set_lock);
601 res = find_existing_css_set(oldcg, cgrp, template);
602 if (res)
603 get_css_set(res);
604 read_unlock(&css_set_lock);
606 if (res)
607 return res;
609 res = kmalloc(sizeof(*res), GFP_KERNEL);
610 if (!res)
611 return NULL;
613 /* Allocate all the cg_cgroup_link objects that we'll need */
614 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
615 kfree(res);
616 return NULL;
619 atomic_set(&res->refcount, 1);
620 INIT_LIST_HEAD(&res->cg_links);
621 INIT_LIST_HEAD(&res->tasks);
622 INIT_HLIST_NODE(&res->hlist);
624 /* Copy the set of subsystem state objects generated in
625 * find_existing_css_set() */
626 memcpy(res->subsys, template, sizeof(res->subsys));
628 write_lock(&css_set_lock);
629 /* Add reference counts and links from the new css_set. */
630 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
631 struct cgroup *c = link->cgrp;
632 if (c->root == cgrp->root)
633 c = cgrp;
634 link_css_set(&tmp_cg_links, res, c);
637 BUG_ON(!list_empty(&tmp_cg_links));
639 css_set_count++;
641 /* Add this cgroup group to the hash table */
642 hhead = css_set_hash(res->subsys);
643 hlist_add_head(&res->hlist, hhead);
645 write_unlock(&css_set_lock);
647 return res;
651 * Return the cgroup for "task" from the given hierarchy. Must be
652 * called with cgroup_mutex held.
654 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
655 struct cgroupfs_root *root)
657 struct css_set *css;
658 struct cgroup *res = NULL;
660 BUG_ON(!mutex_is_locked(&cgroup_mutex));
661 read_lock(&css_set_lock);
663 * No need to lock the task - since we hold cgroup_mutex the
664 * task can't change groups, so the only thing that can happen
665 * is that it exits and its css is set back to init_css_set.
667 css = task->cgroups;
668 if (css == &init_css_set) {
669 res = &root->top_cgroup;
670 } else {
671 struct cg_cgroup_link *link;
672 list_for_each_entry(link, &css->cg_links, cg_link_list) {
673 struct cgroup *c = link->cgrp;
674 if (c->root == root) {
675 res = c;
676 break;
680 read_unlock(&css_set_lock);
681 BUG_ON(!res);
682 return res;
686 * There is one global cgroup mutex. We also require taking
687 * task_lock() when dereferencing a task's cgroup subsys pointers.
688 * See "The task_lock() exception", at the end of this comment.
690 * A task must hold cgroup_mutex to modify cgroups.
692 * Any task can increment and decrement the count field without lock.
693 * So in general, code holding cgroup_mutex can't rely on the count
694 * field not changing. However, if the count goes to zero, then only
695 * cgroup_attach_task() can increment it again. Because a count of zero
696 * means that no tasks are currently attached, therefore there is no
697 * way a task attached to that cgroup can fork (the other way to
698 * increment the count). So code holding cgroup_mutex can safely
699 * assume that if the count is zero, it will stay zero. Similarly, if
700 * a task holds cgroup_mutex on a cgroup with zero count, it
701 * knows that the cgroup won't be removed, as cgroup_rmdir()
702 * needs that mutex.
704 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
705 * (usually) take cgroup_mutex. These are the two most performance
706 * critical pieces of code here. The exception occurs on cgroup_exit(),
707 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
708 * is taken, and if the cgroup count is zero, a usermode call made
709 * to the release agent with the name of the cgroup (path relative to
710 * the root of cgroup file system) as the argument.
712 * A cgroup can only be deleted if both its 'count' of using tasks
713 * is zero, and its list of 'children' cgroups is empty. Since all
714 * tasks in the system use _some_ cgroup, and since there is always at
715 * least one task in the system (init, pid == 1), therefore, top_cgroup
716 * always has either children cgroups and/or using tasks. So we don't
717 * need a special hack to ensure that top_cgroup cannot be deleted.
719 * The task_lock() exception
721 * The need for this exception arises from the action of
722 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
723 * another. It does so using cgroup_mutex, however there are
724 * several performance critical places that need to reference
725 * task->cgroup without the expense of grabbing a system global
726 * mutex. Therefore except as noted below, when dereferencing or, as
727 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
728 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
729 * the task_struct routinely used for such matters.
731 * P.S. One more locking exception. RCU is used to guard the
732 * update of a tasks cgroup pointer by cgroup_attach_task()
736 * cgroup_lock - lock out any changes to cgroup structures
739 void cgroup_lock(void)
741 mutex_lock(&cgroup_mutex);
743 EXPORT_SYMBOL_GPL(cgroup_lock);
746 * cgroup_unlock - release lock on cgroup changes
748 * Undo the lock taken in a previous cgroup_lock() call.
750 void cgroup_unlock(void)
752 mutex_unlock(&cgroup_mutex);
754 EXPORT_SYMBOL_GPL(cgroup_unlock);
757 * A couple of forward declarations required, due to cyclic reference loop:
758 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
759 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
760 * -> cgroup_mkdir.
763 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
764 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
765 static int cgroup_populate_dir(struct cgroup *cgrp);
766 static const struct inode_operations cgroup_dir_inode_operations;
767 static const struct file_operations proc_cgroupstats_operations;
769 static struct backing_dev_info cgroup_backing_dev_info = {
770 .name = "cgroup",
771 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
774 static int alloc_css_id(struct cgroup_subsys *ss,
775 struct cgroup *parent, struct cgroup *child);
777 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
779 struct inode *inode = new_inode(sb);
781 if (inode) {
782 inode->i_mode = mode;
783 inode->i_uid = current_fsuid();
784 inode->i_gid = current_fsgid();
785 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
786 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
788 return inode;
792 * Call subsys's pre_destroy handler.
793 * This is called before css refcnt check.
795 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
797 struct cgroup_subsys *ss;
798 int ret = 0;
800 for_each_subsys(cgrp->root, ss)
801 if (ss->pre_destroy) {
802 ret = ss->pre_destroy(ss, cgrp);
803 if (ret)
804 break;
807 return ret;
810 static void free_cgroup_rcu(struct rcu_head *obj)
812 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
814 kfree(cgrp);
817 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
819 /* is dentry a directory ? if so, kfree() associated cgroup */
820 if (S_ISDIR(inode->i_mode)) {
821 struct cgroup *cgrp = dentry->d_fsdata;
822 struct cgroup_subsys *ss;
823 BUG_ON(!(cgroup_is_removed(cgrp)));
824 /* It's possible for external users to be holding css
825 * reference counts on a cgroup; css_put() needs to
826 * be able to access the cgroup after decrementing
827 * the reference count in order to know if it needs to
828 * queue the cgroup to be handled by the release
829 * agent */
830 synchronize_rcu();
832 mutex_lock(&cgroup_mutex);
834 * Release the subsystem state objects.
836 for_each_subsys(cgrp->root, ss)
837 ss->destroy(ss, cgrp);
839 cgrp->root->number_of_cgroups--;
840 mutex_unlock(&cgroup_mutex);
843 * Drop the active superblock reference that we took when we
844 * created the cgroup
846 deactivate_super(cgrp->root->sb);
849 * if we're getting rid of the cgroup, refcount should ensure
850 * that there are no pidlists left.
852 BUG_ON(!list_empty(&cgrp->pidlists));
854 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
856 iput(inode);
859 static void remove_dir(struct dentry *d)
861 struct dentry *parent = dget(d->d_parent);
863 d_delete(d);
864 simple_rmdir(parent->d_inode, d);
865 dput(parent);
868 static void cgroup_clear_directory(struct dentry *dentry)
870 struct list_head *node;
872 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
873 spin_lock(&dcache_lock);
874 node = dentry->d_subdirs.next;
875 while (node != &dentry->d_subdirs) {
876 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
877 list_del_init(node);
878 if (d->d_inode) {
879 /* This should never be called on a cgroup
880 * directory with child cgroups */
881 BUG_ON(d->d_inode->i_mode & S_IFDIR);
882 d = dget_locked(d);
883 spin_unlock(&dcache_lock);
884 d_delete(d);
885 simple_unlink(dentry->d_inode, d);
886 dput(d);
887 spin_lock(&dcache_lock);
889 node = dentry->d_subdirs.next;
891 spin_unlock(&dcache_lock);
895 * NOTE : the dentry must have been dget()'ed
897 static void cgroup_d_remove_dir(struct dentry *dentry)
899 cgroup_clear_directory(dentry);
901 spin_lock(&dcache_lock);
902 list_del_init(&dentry->d_u.d_child);
903 spin_unlock(&dcache_lock);
904 remove_dir(dentry);
908 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
909 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
910 * reference to css->refcnt. In general, this refcnt is expected to goes down
911 * to zero, soon.
913 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
915 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
917 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
919 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
920 wake_up_all(&cgroup_rmdir_waitq);
923 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
925 css_get(css);
928 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
930 cgroup_wakeup_rmdir_waiter(css->cgroup);
931 css_put(css);
935 * Call with cgroup_mutex held. Drops reference counts on modules, including
936 * any duplicate ones that parse_cgroupfs_options took. If this function
937 * returns an error, no reference counts are touched.
939 static int rebind_subsystems(struct cgroupfs_root *root,
940 unsigned long final_bits)
942 unsigned long added_bits, removed_bits;
943 struct cgroup *cgrp = &root->top_cgroup;
944 int i;
946 BUG_ON(!mutex_is_locked(&cgroup_mutex));
948 removed_bits = root->actual_subsys_bits & ~final_bits;
949 added_bits = final_bits & ~root->actual_subsys_bits;
950 /* Check that any added subsystems are currently free */
951 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
952 unsigned long bit = 1UL << i;
953 struct cgroup_subsys *ss = subsys[i];
954 if (!(bit & added_bits))
955 continue;
957 * Nobody should tell us to do a subsys that doesn't exist:
958 * parse_cgroupfs_options should catch that case and refcounts
959 * ensure that subsystems won't disappear once selected.
961 BUG_ON(ss == NULL);
962 if (ss->root != &rootnode) {
963 /* Subsystem isn't free */
964 return -EBUSY;
968 /* Currently we don't handle adding/removing subsystems when
969 * any child cgroups exist. This is theoretically supportable
970 * but involves complex error handling, so it's being left until
971 * later */
972 if (root->number_of_cgroups > 1)
973 return -EBUSY;
975 /* Process each subsystem */
976 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
977 struct cgroup_subsys *ss = subsys[i];
978 unsigned long bit = 1UL << i;
979 if (bit & added_bits) {
980 /* We're binding this subsystem to this hierarchy */
981 BUG_ON(ss == NULL);
982 BUG_ON(cgrp->subsys[i]);
983 BUG_ON(!dummytop->subsys[i]);
984 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
985 mutex_lock(&ss->hierarchy_mutex);
986 cgrp->subsys[i] = dummytop->subsys[i];
987 cgrp->subsys[i]->cgroup = cgrp;
988 list_move(&ss->sibling, &root->subsys_list);
989 ss->root = root;
990 if (ss->bind)
991 ss->bind(ss, cgrp);
992 mutex_unlock(&ss->hierarchy_mutex);
993 /* refcount was already taken, and we're keeping it */
994 } else if (bit & removed_bits) {
995 /* We're removing this subsystem */
996 BUG_ON(ss == NULL);
997 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
998 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999 mutex_lock(&ss->hierarchy_mutex);
1000 if (ss->bind)
1001 ss->bind(ss, dummytop);
1002 dummytop->subsys[i]->cgroup = dummytop;
1003 cgrp->subsys[i] = NULL;
1004 subsys[i]->root = &rootnode;
1005 list_move(&ss->sibling, &rootnode.subsys_list);
1006 mutex_unlock(&ss->hierarchy_mutex);
1007 /* subsystem is now free - drop reference on module */
1008 module_put(ss->module);
1009 } else if (bit & final_bits) {
1010 /* Subsystem state should already exist */
1011 BUG_ON(ss == NULL);
1012 BUG_ON(!cgrp->subsys[i]);
1014 * a refcount was taken, but we already had one, so
1015 * drop the extra reference.
1017 module_put(ss->module);
1018 #ifdef CONFIG_MODULE_UNLOAD
1019 BUG_ON(ss->module && !module_refcount(ss->module));
1020 #endif
1021 } else {
1022 /* Subsystem state shouldn't exist */
1023 BUG_ON(cgrp->subsys[i]);
1026 root->subsys_bits = root->actual_subsys_bits = final_bits;
1027 synchronize_rcu();
1029 return 0;
1032 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1034 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1035 struct cgroup_subsys *ss;
1037 mutex_lock(&cgroup_mutex);
1038 for_each_subsys(root, ss)
1039 seq_printf(seq, ",%s", ss->name);
1040 if (test_bit(ROOT_NOPREFIX, &root->flags))
1041 seq_puts(seq, ",noprefix");
1042 if (strlen(root->release_agent_path))
1043 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1044 if (strlen(root->name))
1045 seq_printf(seq, ",name=%s", root->name);
1046 mutex_unlock(&cgroup_mutex);
1047 return 0;
1050 struct cgroup_sb_opts {
1051 unsigned long subsys_bits;
1052 unsigned long flags;
1053 char *release_agent;
1054 char *name;
1055 /* User explicitly requested empty subsystem */
1056 bool none;
1058 struct cgroupfs_root *new_root;
1063 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1064 * with cgroup_mutex held to protect the subsys[] array. This function takes
1065 * refcounts on subsystems to be used, unless it returns error, in which case
1066 * no refcounts are taken.
1068 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1070 char *token, *o = data ?: "all";
1071 unsigned long mask = (unsigned long)-1;
1072 int i;
1073 bool module_pin_failed = false;
1075 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1077 #ifdef CONFIG_CPUSETS
1078 mask = ~(1UL << cpuset_subsys_id);
1079 #endif
1081 memset(opts, 0, sizeof(*opts));
1083 while ((token = strsep(&o, ",")) != NULL) {
1084 if (!*token)
1085 return -EINVAL;
1086 if (!strcmp(token, "all")) {
1087 /* Add all non-disabled subsystems */
1088 opts->subsys_bits = 0;
1089 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1090 struct cgroup_subsys *ss = subsys[i];
1091 if (ss == NULL)
1092 continue;
1093 if (!ss->disabled)
1094 opts->subsys_bits |= 1ul << i;
1096 } else if (!strcmp(token, "none")) {
1097 /* Explicitly have no subsystems */
1098 opts->none = true;
1099 } else if (!strcmp(token, "noprefix")) {
1100 set_bit(ROOT_NOPREFIX, &opts->flags);
1101 } else if (!strncmp(token, "release_agent=", 14)) {
1102 /* Specifying two release agents is forbidden */
1103 if (opts->release_agent)
1104 return -EINVAL;
1105 opts->release_agent =
1106 kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
1107 if (!opts->release_agent)
1108 return -ENOMEM;
1109 } else if (!strncmp(token, "name=", 5)) {
1110 const char *name = token + 5;
1111 /* Can't specify an empty name */
1112 if (!strlen(name))
1113 return -EINVAL;
1114 /* Must match [\w.-]+ */
1115 for (i = 0; i < strlen(name); i++) {
1116 char c = name[i];
1117 if (isalnum(c))
1118 continue;
1119 if ((c == '.') || (c == '-') || (c == '_'))
1120 continue;
1121 return -EINVAL;
1123 /* Specifying two names is forbidden */
1124 if (opts->name)
1125 return -EINVAL;
1126 opts->name = kstrndup(name,
1127 MAX_CGROUP_ROOT_NAMELEN,
1128 GFP_KERNEL);
1129 if (!opts->name)
1130 return -ENOMEM;
1131 } else {
1132 struct cgroup_subsys *ss;
1133 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1134 ss = subsys[i];
1135 if (ss == NULL)
1136 continue;
1137 if (!strcmp(token, ss->name)) {
1138 if (!ss->disabled)
1139 set_bit(i, &opts->subsys_bits);
1140 break;
1143 if (i == CGROUP_SUBSYS_COUNT)
1144 return -ENOENT;
1148 /* Consistency checks */
1151 * Option noprefix was introduced just for backward compatibility
1152 * with the old cpuset, so we allow noprefix only if mounting just
1153 * the cpuset subsystem.
1155 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1156 (opts->subsys_bits & mask))
1157 return -EINVAL;
1160 /* Can't specify "none" and some subsystems */
1161 if (opts->subsys_bits && opts->none)
1162 return -EINVAL;
1165 * We either have to specify by name or by subsystems. (So all
1166 * empty hierarchies must have a name).
1168 if (!opts->subsys_bits && !opts->name)
1169 return -EINVAL;
1172 * Grab references on all the modules we'll need, so the subsystems
1173 * don't dance around before rebind_subsystems attaches them. This may
1174 * take duplicate reference counts on a subsystem that's already used,
1175 * but rebind_subsystems handles this case.
1177 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1178 unsigned long bit = 1UL << i;
1180 if (!(bit & opts->subsys_bits))
1181 continue;
1182 if (!try_module_get(subsys[i]->module)) {
1183 module_pin_failed = true;
1184 break;
1187 if (module_pin_failed) {
1189 * oops, one of the modules was going away. this means that we
1190 * raced with a module_delete call, and to the user this is
1191 * essentially a "subsystem doesn't exist" case.
1193 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1194 /* drop refcounts only on the ones we took */
1195 unsigned long bit = 1UL << i;
1197 if (!(bit & opts->subsys_bits))
1198 continue;
1199 module_put(subsys[i]->module);
1201 return -ENOENT;
1204 return 0;
1207 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1209 int i;
1210 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1211 unsigned long bit = 1UL << i;
1213 if (!(bit & subsys_bits))
1214 continue;
1215 module_put(subsys[i]->module);
1219 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1221 int ret = 0;
1222 struct cgroupfs_root *root = sb->s_fs_info;
1223 struct cgroup *cgrp = &root->top_cgroup;
1224 struct cgroup_sb_opts opts;
1226 lock_kernel();
1227 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1228 mutex_lock(&cgroup_mutex);
1230 /* See what subsystems are wanted */
1231 ret = parse_cgroupfs_options(data, &opts);
1232 if (ret)
1233 goto out_unlock;
1235 /* Don't allow flags or name to change at remount */
1236 if (opts.flags != root->flags ||
1237 (opts.name && strcmp(opts.name, root->name))) {
1238 ret = -EINVAL;
1239 drop_parsed_module_refcounts(opts.subsys_bits);
1240 goto out_unlock;
1243 ret = rebind_subsystems(root, opts.subsys_bits);
1244 if (ret) {
1245 drop_parsed_module_refcounts(opts.subsys_bits);
1246 goto out_unlock;
1249 /* (re)populate subsystem files */
1250 cgroup_populate_dir(cgrp);
1252 if (opts.release_agent)
1253 strcpy(root->release_agent_path, opts.release_agent);
1254 out_unlock:
1255 kfree(opts.release_agent);
1256 kfree(opts.name);
1257 mutex_unlock(&cgroup_mutex);
1258 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1259 unlock_kernel();
1260 return ret;
1263 static const struct super_operations cgroup_ops = {
1264 .statfs = simple_statfs,
1265 .drop_inode = generic_delete_inode,
1266 .show_options = cgroup_show_options,
1267 .remount_fs = cgroup_remount,
1270 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1272 INIT_LIST_HEAD(&cgrp->sibling);
1273 INIT_LIST_HEAD(&cgrp->children);
1274 INIT_LIST_HEAD(&cgrp->css_sets);
1275 INIT_LIST_HEAD(&cgrp->release_list);
1276 INIT_LIST_HEAD(&cgrp->pidlists);
1277 mutex_init(&cgrp->pidlist_mutex);
1278 INIT_LIST_HEAD(&cgrp->event_list);
1279 spin_lock_init(&cgrp->event_list_lock);
1282 static void init_cgroup_root(struct cgroupfs_root *root)
1284 struct cgroup *cgrp = &root->top_cgroup;
1285 INIT_LIST_HEAD(&root->subsys_list);
1286 INIT_LIST_HEAD(&root->root_list);
1287 root->number_of_cgroups = 1;
1288 cgrp->root = root;
1289 cgrp->top_cgroup = cgrp;
1290 init_cgroup_housekeeping(cgrp);
1293 static bool init_root_id(struct cgroupfs_root *root)
1295 int ret = 0;
1297 do {
1298 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1299 return false;
1300 spin_lock(&hierarchy_id_lock);
1301 /* Try to allocate the next unused ID */
1302 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1303 &root->hierarchy_id);
1304 if (ret == -ENOSPC)
1305 /* Try again starting from 0 */
1306 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1307 if (!ret) {
1308 next_hierarchy_id = root->hierarchy_id + 1;
1309 } else if (ret != -EAGAIN) {
1310 /* Can only get here if the 31-bit IDR is full ... */
1311 BUG_ON(ret);
1313 spin_unlock(&hierarchy_id_lock);
1314 } while (ret);
1315 return true;
1318 static int cgroup_test_super(struct super_block *sb, void *data)
1320 struct cgroup_sb_opts *opts = data;
1321 struct cgroupfs_root *root = sb->s_fs_info;
1323 /* If we asked for a name then it must match */
1324 if (opts->name && strcmp(opts->name, root->name))
1325 return 0;
1328 * If we asked for subsystems (or explicitly for no
1329 * subsystems) then they must match
1331 if ((opts->subsys_bits || opts->none)
1332 && (opts->subsys_bits != root->subsys_bits))
1333 return 0;
1335 return 1;
1338 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1340 struct cgroupfs_root *root;
1342 if (!opts->subsys_bits && !opts->none)
1343 return NULL;
1345 root = kzalloc(sizeof(*root), GFP_KERNEL);
1346 if (!root)
1347 return ERR_PTR(-ENOMEM);
1349 if (!init_root_id(root)) {
1350 kfree(root);
1351 return ERR_PTR(-ENOMEM);
1353 init_cgroup_root(root);
1355 root->subsys_bits = opts->subsys_bits;
1356 root->flags = opts->flags;
1357 if (opts->release_agent)
1358 strcpy(root->release_agent_path, opts->release_agent);
1359 if (opts->name)
1360 strcpy(root->name, opts->name);
1361 return root;
1364 static void cgroup_drop_root(struct cgroupfs_root *root)
1366 if (!root)
1367 return;
1369 BUG_ON(!root->hierarchy_id);
1370 spin_lock(&hierarchy_id_lock);
1371 ida_remove(&hierarchy_ida, root->hierarchy_id);
1372 spin_unlock(&hierarchy_id_lock);
1373 kfree(root);
1376 static int cgroup_set_super(struct super_block *sb, void *data)
1378 int ret;
1379 struct cgroup_sb_opts *opts = data;
1381 /* If we don't have a new root, we can't set up a new sb */
1382 if (!opts->new_root)
1383 return -EINVAL;
1385 BUG_ON(!opts->subsys_bits && !opts->none);
1387 ret = set_anon_super(sb, NULL);
1388 if (ret)
1389 return ret;
1391 sb->s_fs_info = opts->new_root;
1392 opts->new_root->sb = sb;
1394 sb->s_blocksize = PAGE_CACHE_SIZE;
1395 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1396 sb->s_magic = CGROUP_SUPER_MAGIC;
1397 sb->s_op = &cgroup_ops;
1399 return 0;
1402 static int cgroup_get_rootdir(struct super_block *sb)
1404 struct inode *inode =
1405 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1406 struct dentry *dentry;
1408 if (!inode)
1409 return -ENOMEM;
1411 inode->i_fop = &simple_dir_operations;
1412 inode->i_op = &cgroup_dir_inode_operations;
1413 /* directories start off with i_nlink == 2 (for "." entry) */
1414 inc_nlink(inode);
1415 dentry = d_alloc_root(inode);
1416 if (!dentry) {
1417 iput(inode);
1418 return -ENOMEM;
1420 sb->s_root = dentry;
1421 return 0;
1424 static int cgroup_get_sb(struct file_system_type *fs_type,
1425 int flags, const char *unused_dev_name,
1426 void *data, struct vfsmount *mnt)
1428 struct cgroup_sb_opts opts;
1429 struct cgroupfs_root *root;
1430 int ret = 0;
1431 struct super_block *sb;
1432 struct cgroupfs_root *new_root;
1434 /* First find the desired set of subsystems */
1435 mutex_lock(&cgroup_mutex);
1436 ret = parse_cgroupfs_options(data, &opts);
1437 mutex_unlock(&cgroup_mutex);
1438 if (ret)
1439 goto out_err;
1442 * Allocate a new cgroup root. We may not need it if we're
1443 * reusing an existing hierarchy.
1445 new_root = cgroup_root_from_opts(&opts);
1446 if (IS_ERR(new_root)) {
1447 ret = PTR_ERR(new_root);
1448 goto drop_modules;
1450 opts.new_root = new_root;
1452 /* Locate an existing or new sb for this hierarchy */
1453 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1454 if (IS_ERR(sb)) {
1455 ret = PTR_ERR(sb);
1456 cgroup_drop_root(opts.new_root);
1457 goto drop_modules;
1460 root = sb->s_fs_info;
1461 BUG_ON(!root);
1462 if (root == opts.new_root) {
1463 /* We used the new root structure, so this is a new hierarchy */
1464 struct list_head tmp_cg_links;
1465 struct cgroup *root_cgrp = &root->top_cgroup;
1466 struct inode *inode;
1467 struct cgroupfs_root *existing_root;
1468 int i;
1470 BUG_ON(sb->s_root != NULL);
1472 ret = cgroup_get_rootdir(sb);
1473 if (ret)
1474 goto drop_new_super;
1475 inode = sb->s_root->d_inode;
1477 mutex_lock(&inode->i_mutex);
1478 mutex_lock(&cgroup_mutex);
1480 if (strlen(root->name)) {
1481 /* Check for name clashes with existing mounts */
1482 for_each_active_root(existing_root) {
1483 if (!strcmp(existing_root->name, root->name)) {
1484 ret = -EBUSY;
1485 mutex_unlock(&cgroup_mutex);
1486 mutex_unlock(&inode->i_mutex);
1487 goto drop_new_super;
1493 * We're accessing css_set_count without locking
1494 * css_set_lock here, but that's OK - it can only be
1495 * increased by someone holding cgroup_lock, and
1496 * that's us. The worst that can happen is that we
1497 * have some link structures left over
1499 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1500 if (ret) {
1501 mutex_unlock(&cgroup_mutex);
1502 mutex_unlock(&inode->i_mutex);
1503 goto drop_new_super;
1506 ret = rebind_subsystems(root, root->subsys_bits);
1507 if (ret == -EBUSY) {
1508 mutex_unlock(&cgroup_mutex);
1509 mutex_unlock(&inode->i_mutex);
1510 free_cg_links(&tmp_cg_links);
1511 goto drop_new_super;
1514 * There must be no failure case after here, since rebinding
1515 * takes care of subsystems' refcounts, which are explicitly
1516 * dropped in the failure exit path.
1519 /* EBUSY should be the only error here */
1520 BUG_ON(ret);
1522 list_add(&root->root_list, &roots);
1523 root_count++;
1525 sb->s_root->d_fsdata = root_cgrp;
1526 root->top_cgroup.dentry = sb->s_root;
1528 /* Link the top cgroup in this hierarchy into all
1529 * the css_set objects */
1530 write_lock(&css_set_lock);
1531 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1532 struct hlist_head *hhead = &css_set_table[i];
1533 struct hlist_node *node;
1534 struct css_set *cg;
1536 hlist_for_each_entry(cg, node, hhead, hlist)
1537 link_css_set(&tmp_cg_links, cg, root_cgrp);
1539 write_unlock(&css_set_lock);
1541 free_cg_links(&tmp_cg_links);
1543 BUG_ON(!list_empty(&root_cgrp->sibling));
1544 BUG_ON(!list_empty(&root_cgrp->children));
1545 BUG_ON(root->number_of_cgroups != 1);
1547 cgroup_populate_dir(root_cgrp);
1548 mutex_unlock(&cgroup_mutex);
1549 mutex_unlock(&inode->i_mutex);
1550 } else {
1552 * We re-used an existing hierarchy - the new root (if
1553 * any) is not needed
1555 cgroup_drop_root(opts.new_root);
1556 /* no subsys rebinding, so refcounts don't change */
1557 drop_parsed_module_refcounts(opts.subsys_bits);
1560 simple_set_mnt(mnt, sb);
1561 kfree(opts.release_agent);
1562 kfree(opts.name);
1563 return 0;
1565 drop_new_super:
1566 deactivate_locked_super(sb);
1567 drop_modules:
1568 drop_parsed_module_refcounts(opts.subsys_bits);
1569 out_err:
1570 kfree(opts.release_agent);
1571 kfree(opts.name);
1573 return ret;
1576 static void cgroup_kill_sb(struct super_block *sb) {
1577 struct cgroupfs_root *root = sb->s_fs_info;
1578 struct cgroup *cgrp = &root->top_cgroup;
1579 int ret;
1580 struct cg_cgroup_link *link;
1581 struct cg_cgroup_link *saved_link;
1583 BUG_ON(!root);
1585 BUG_ON(root->number_of_cgroups != 1);
1586 BUG_ON(!list_empty(&cgrp->children));
1587 BUG_ON(!list_empty(&cgrp->sibling));
1589 mutex_lock(&cgroup_mutex);
1591 /* Rebind all subsystems back to the default hierarchy */
1592 ret = rebind_subsystems(root, 0);
1593 /* Shouldn't be able to fail ... */
1594 BUG_ON(ret);
1597 * Release all the links from css_sets to this hierarchy's
1598 * root cgroup
1600 write_lock(&css_set_lock);
1602 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1603 cgrp_link_list) {
1604 list_del(&link->cg_link_list);
1605 list_del(&link->cgrp_link_list);
1606 kfree(link);
1608 write_unlock(&css_set_lock);
1610 if (!list_empty(&root->root_list)) {
1611 list_del(&root->root_list);
1612 root_count--;
1615 mutex_unlock(&cgroup_mutex);
1617 kill_litter_super(sb);
1618 cgroup_drop_root(root);
1621 static struct file_system_type cgroup_fs_type = {
1622 .name = "cgroup",
1623 .get_sb = cgroup_get_sb,
1624 .kill_sb = cgroup_kill_sb,
1627 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1629 return dentry->d_fsdata;
1632 static inline struct cftype *__d_cft(struct dentry *dentry)
1634 return dentry->d_fsdata;
1638 * cgroup_path - generate the path of a cgroup
1639 * @cgrp: the cgroup in question
1640 * @buf: the buffer to write the path into
1641 * @buflen: the length of the buffer
1643 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1644 * reference. Writes path of cgroup into buf. Returns 0 on success,
1645 * -errno on error.
1647 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1649 char *start;
1650 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1652 if (!dentry || cgrp == dummytop) {
1654 * Inactive subsystems have no dentry for their root
1655 * cgroup
1657 strcpy(buf, "/");
1658 return 0;
1661 start = buf + buflen;
1663 *--start = '\0';
1664 for (;;) {
1665 int len = dentry->d_name.len;
1666 if ((start -= len) < buf)
1667 return -ENAMETOOLONG;
1668 memcpy(start, cgrp->dentry->d_name.name, len);
1669 cgrp = cgrp->parent;
1670 if (!cgrp)
1671 break;
1672 dentry = rcu_dereference(cgrp->dentry);
1673 if (!cgrp->parent)
1674 continue;
1675 if (--start < buf)
1676 return -ENAMETOOLONG;
1677 *start = '/';
1679 memmove(buf, start, buf + buflen - start);
1680 return 0;
1682 EXPORT_SYMBOL_GPL(cgroup_path);
1685 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1686 * @cgrp: the cgroup the task is attaching to
1687 * @tsk: the task to be attached
1689 * Call holding cgroup_mutex. May take task_lock of
1690 * the task 'tsk' during call.
1692 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1694 int retval = 0;
1695 struct cgroup_subsys *ss, *failed_ss = NULL;
1696 struct cgroup *oldcgrp;
1697 struct css_set *cg;
1698 struct css_set *newcg;
1699 struct cgroupfs_root *root = cgrp->root;
1701 /* Nothing to do if the task is already in that cgroup */
1702 oldcgrp = task_cgroup_from_root(tsk, root);
1703 if (cgrp == oldcgrp)
1704 return 0;
1706 for_each_subsys(root, ss) {
1707 if (ss->can_attach) {
1708 retval = ss->can_attach(ss, cgrp, tsk, false);
1709 if (retval) {
1711 * Remember on which subsystem the can_attach()
1712 * failed, so that we only call cancel_attach()
1713 * against the subsystems whose can_attach()
1714 * succeeded. (See below)
1716 failed_ss = ss;
1717 goto out;
1722 task_lock(tsk);
1723 cg = tsk->cgroups;
1724 get_css_set(cg);
1725 task_unlock(tsk);
1727 * Locate or allocate a new css_set for this task,
1728 * based on its final set of cgroups
1730 newcg = find_css_set(cg, cgrp);
1731 put_css_set(cg);
1732 if (!newcg) {
1733 retval = -ENOMEM;
1734 goto out;
1737 task_lock(tsk);
1738 if (tsk->flags & PF_EXITING) {
1739 task_unlock(tsk);
1740 put_css_set(newcg);
1741 retval = -ESRCH;
1742 goto out;
1744 rcu_assign_pointer(tsk->cgroups, newcg);
1745 task_unlock(tsk);
1747 /* Update the css_set linked lists if we're using them */
1748 write_lock(&css_set_lock);
1749 if (!list_empty(&tsk->cg_list)) {
1750 list_del(&tsk->cg_list);
1751 list_add(&tsk->cg_list, &newcg->tasks);
1753 write_unlock(&css_set_lock);
1755 for_each_subsys(root, ss) {
1756 if (ss->attach)
1757 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1759 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1760 synchronize_rcu();
1761 put_css_set(cg);
1764 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1765 * is no longer empty.
1767 cgroup_wakeup_rmdir_waiter(cgrp);
1768 out:
1769 if (retval) {
1770 for_each_subsys(root, ss) {
1771 if (ss == failed_ss)
1773 * This subsystem was the one that failed the
1774 * can_attach() check earlier, so we don't need
1775 * to call cancel_attach() against it or any
1776 * remaining subsystems.
1778 break;
1779 if (ss->cancel_attach)
1780 ss->cancel_attach(ss, cgrp, tsk, false);
1783 return retval;
1787 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1788 * held. May take task_lock of task
1790 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1792 struct task_struct *tsk;
1793 const struct cred *cred = current_cred(), *tcred;
1794 int ret;
1796 if (pid) {
1797 rcu_read_lock();
1798 tsk = find_task_by_vpid(pid);
1799 if (!tsk || tsk->flags & PF_EXITING) {
1800 rcu_read_unlock();
1801 return -ESRCH;
1804 tcred = __task_cred(tsk);
1805 if (cred->euid &&
1806 cred->euid != tcred->uid &&
1807 cred->euid != tcred->suid) {
1808 rcu_read_unlock();
1809 return -EACCES;
1811 get_task_struct(tsk);
1812 rcu_read_unlock();
1813 } else {
1814 tsk = current;
1815 get_task_struct(tsk);
1818 ret = cgroup_attach_task(cgrp, tsk);
1819 put_task_struct(tsk);
1820 return ret;
1823 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1825 int ret;
1826 if (!cgroup_lock_live_group(cgrp))
1827 return -ENODEV;
1828 ret = attach_task_by_pid(cgrp, pid);
1829 cgroup_unlock();
1830 return ret;
1834 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1835 * @cgrp: the cgroup to be checked for liveness
1837 * On success, returns true; the lock should be later released with
1838 * cgroup_unlock(). On failure returns false with no lock held.
1840 bool cgroup_lock_live_group(struct cgroup *cgrp)
1842 mutex_lock(&cgroup_mutex);
1843 if (cgroup_is_removed(cgrp)) {
1844 mutex_unlock(&cgroup_mutex);
1845 return false;
1847 return true;
1849 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1851 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1852 const char *buffer)
1854 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1855 if (!cgroup_lock_live_group(cgrp))
1856 return -ENODEV;
1857 strcpy(cgrp->root->release_agent_path, buffer);
1858 cgroup_unlock();
1859 return 0;
1862 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1863 struct seq_file *seq)
1865 if (!cgroup_lock_live_group(cgrp))
1866 return -ENODEV;
1867 seq_puts(seq, cgrp->root->release_agent_path);
1868 seq_putc(seq, '\n');
1869 cgroup_unlock();
1870 return 0;
1873 /* A buffer size big enough for numbers or short strings */
1874 #define CGROUP_LOCAL_BUFFER_SIZE 64
1876 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1877 struct file *file,
1878 const char __user *userbuf,
1879 size_t nbytes, loff_t *unused_ppos)
1881 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1882 int retval = 0;
1883 char *end;
1885 if (!nbytes)
1886 return -EINVAL;
1887 if (nbytes >= sizeof(buffer))
1888 return -E2BIG;
1889 if (copy_from_user(buffer, userbuf, nbytes))
1890 return -EFAULT;
1892 buffer[nbytes] = 0; /* nul-terminate */
1893 if (cft->write_u64) {
1894 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1895 if (*end)
1896 return -EINVAL;
1897 retval = cft->write_u64(cgrp, cft, val);
1898 } else {
1899 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1900 if (*end)
1901 return -EINVAL;
1902 retval = cft->write_s64(cgrp, cft, val);
1904 if (!retval)
1905 retval = nbytes;
1906 return retval;
1909 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1910 struct file *file,
1911 const char __user *userbuf,
1912 size_t nbytes, loff_t *unused_ppos)
1914 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1915 int retval = 0;
1916 size_t max_bytes = cft->max_write_len;
1917 char *buffer = local_buffer;
1919 if (!max_bytes)
1920 max_bytes = sizeof(local_buffer) - 1;
1921 if (nbytes >= max_bytes)
1922 return -E2BIG;
1923 /* Allocate a dynamic buffer if we need one */
1924 if (nbytes >= sizeof(local_buffer)) {
1925 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1926 if (buffer == NULL)
1927 return -ENOMEM;
1929 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1930 retval = -EFAULT;
1931 goto out;
1934 buffer[nbytes] = 0; /* nul-terminate */
1935 retval = cft->write_string(cgrp, cft, strstrip(buffer));
1936 if (!retval)
1937 retval = nbytes;
1938 out:
1939 if (buffer != local_buffer)
1940 kfree(buffer);
1941 return retval;
1944 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1945 size_t nbytes, loff_t *ppos)
1947 struct cftype *cft = __d_cft(file->f_dentry);
1948 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1950 if (cgroup_is_removed(cgrp))
1951 return -ENODEV;
1952 if (cft->write)
1953 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1954 if (cft->write_u64 || cft->write_s64)
1955 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1956 if (cft->write_string)
1957 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1958 if (cft->trigger) {
1959 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1960 return ret ? ret : nbytes;
1962 return -EINVAL;
1965 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1966 struct file *file,
1967 char __user *buf, size_t nbytes,
1968 loff_t *ppos)
1970 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1971 u64 val = cft->read_u64(cgrp, cft);
1972 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1974 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1977 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1978 struct file *file,
1979 char __user *buf, size_t nbytes,
1980 loff_t *ppos)
1982 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1983 s64 val = cft->read_s64(cgrp, cft);
1984 int len = sprintf(tmp, "%lld\n", (long long) val);
1986 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1989 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1990 size_t nbytes, loff_t *ppos)
1992 struct cftype *cft = __d_cft(file->f_dentry);
1993 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1995 if (cgroup_is_removed(cgrp))
1996 return -ENODEV;
1998 if (cft->read)
1999 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2000 if (cft->read_u64)
2001 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2002 if (cft->read_s64)
2003 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2004 return -EINVAL;
2008 * seqfile ops/methods for returning structured data. Currently just
2009 * supports string->u64 maps, but can be extended in future.
2012 struct cgroup_seqfile_state {
2013 struct cftype *cft;
2014 struct cgroup *cgroup;
2017 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2019 struct seq_file *sf = cb->state;
2020 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2023 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2025 struct cgroup_seqfile_state *state = m->private;
2026 struct cftype *cft = state->cft;
2027 if (cft->read_map) {
2028 struct cgroup_map_cb cb = {
2029 .fill = cgroup_map_add,
2030 .state = m,
2032 return cft->read_map(state->cgroup, cft, &cb);
2034 return cft->read_seq_string(state->cgroup, cft, m);
2037 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2039 struct seq_file *seq = file->private_data;
2040 kfree(seq->private);
2041 return single_release(inode, file);
2044 static const struct file_operations cgroup_seqfile_operations = {
2045 .read = seq_read,
2046 .write = cgroup_file_write,
2047 .llseek = seq_lseek,
2048 .release = cgroup_seqfile_release,
2051 static int cgroup_file_open(struct inode *inode, struct file *file)
2053 int err;
2054 struct cftype *cft;
2056 err = generic_file_open(inode, file);
2057 if (err)
2058 return err;
2059 cft = __d_cft(file->f_dentry);
2061 if (cft->read_map || cft->read_seq_string) {
2062 struct cgroup_seqfile_state *state =
2063 kzalloc(sizeof(*state), GFP_USER);
2064 if (!state)
2065 return -ENOMEM;
2066 state->cft = cft;
2067 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2068 file->f_op = &cgroup_seqfile_operations;
2069 err = single_open(file, cgroup_seqfile_show, state);
2070 if (err < 0)
2071 kfree(state);
2072 } else if (cft->open)
2073 err = cft->open(inode, file);
2074 else
2075 err = 0;
2077 return err;
2080 static int cgroup_file_release(struct inode *inode, struct file *file)
2082 struct cftype *cft = __d_cft(file->f_dentry);
2083 if (cft->release)
2084 return cft->release(inode, file);
2085 return 0;
2089 * cgroup_rename - Only allow simple rename of directories in place.
2091 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2092 struct inode *new_dir, struct dentry *new_dentry)
2094 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2095 return -ENOTDIR;
2096 if (new_dentry->d_inode)
2097 return -EEXIST;
2098 if (old_dir != new_dir)
2099 return -EIO;
2100 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2103 static const struct file_operations cgroup_file_operations = {
2104 .read = cgroup_file_read,
2105 .write = cgroup_file_write,
2106 .llseek = generic_file_llseek,
2107 .open = cgroup_file_open,
2108 .release = cgroup_file_release,
2111 static const struct inode_operations cgroup_dir_inode_operations = {
2112 .lookup = simple_lookup,
2113 .mkdir = cgroup_mkdir,
2114 .rmdir = cgroup_rmdir,
2115 .rename = cgroup_rename,
2119 * Check if a file is a control file
2121 static inline struct cftype *__file_cft(struct file *file)
2123 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2124 return ERR_PTR(-EINVAL);
2125 return __d_cft(file->f_dentry);
2128 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2129 struct super_block *sb)
2131 static const struct dentry_operations cgroup_dops = {
2132 .d_iput = cgroup_diput,
2135 struct inode *inode;
2137 if (!dentry)
2138 return -ENOENT;
2139 if (dentry->d_inode)
2140 return -EEXIST;
2142 inode = cgroup_new_inode(mode, sb);
2143 if (!inode)
2144 return -ENOMEM;
2146 if (S_ISDIR(mode)) {
2147 inode->i_op = &cgroup_dir_inode_operations;
2148 inode->i_fop = &simple_dir_operations;
2150 /* start off with i_nlink == 2 (for "." entry) */
2151 inc_nlink(inode);
2153 /* start with the directory inode held, so that we can
2154 * populate it without racing with another mkdir */
2155 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2156 } else if (S_ISREG(mode)) {
2157 inode->i_size = 0;
2158 inode->i_fop = &cgroup_file_operations;
2160 dentry->d_op = &cgroup_dops;
2161 d_instantiate(dentry, inode);
2162 dget(dentry); /* Extra count - pin the dentry in core */
2163 return 0;
2167 * cgroup_create_dir - create a directory for an object.
2168 * @cgrp: the cgroup we create the directory for. It must have a valid
2169 * ->parent field. And we are going to fill its ->dentry field.
2170 * @dentry: dentry of the new cgroup
2171 * @mode: mode to set on new directory.
2173 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2174 mode_t mode)
2176 struct dentry *parent;
2177 int error = 0;
2179 parent = cgrp->parent->dentry;
2180 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2181 if (!error) {
2182 dentry->d_fsdata = cgrp;
2183 inc_nlink(parent->d_inode);
2184 rcu_assign_pointer(cgrp->dentry, dentry);
2185 dget(dentry);
2187 dput(dentry);
2189 return error;
2193 * cgroup_file_mode - deduce file mode of a control file
2194 * @cft: the control file in question
2196 * returns cft->mode if ->mode is not 0
2197 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2198 * returns S_IRUGO if it has only a read handler
2199 * returns S_IWUSR if it has only a write hander
2201 static mode_t cgroup_file_mode(const struct cftype *cft)
2203 mode_t mode = 0;
2205 if (cft->mode)
2206 return cft->mode;
2208 if (cft->read || cft->read_u64 || cft->read_s64 ||
2209 cft->read_map || cft->read_seq_string)
2210 mode |= S_IRUGO;
2212 if (cft->write || cft->write_u64 || cft->write_s64 ||
2213 cft->write_string || cft->trigger)
2214 mode |= S_IWUSR;
2216 return mode;
2219 int cgroup_add_file(struct cgroup *cgrp,
2220 struct cgroup_subsys *subsys,
2221 const struct cftype *cft)
2223 struct dentry *dir = cgrp->dentry;
2224 struct dentry *dentry;
2225 int error;
2226 mode_t mode;
2228 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2229 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2230 strcpy(name, subsys->name);
2231 strcat(name, ".");
2233 strcat(name, cft->name);
2234 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2235 dentry = lookup_one_len(name, dir, strlen(name));
2236 if (!IS_ERR(dentry)) {
2237 mode = cgroup_file_mode(cft);
2238 error = cgroup_create_file(dentry, mode | S_IFREG,
2239 cgrp->root->sb);
2240 if (!error)
2241 dentry->d_fsdata = (void *)cft;
2242 dput(dentry);
2243 } else
2244 error = PTR_ERR(dentry);
2245 return error;
2247 EXPORT_SYMBOL_GPL(cgroup_add_file);
2249 int cgroup_add_files(struct cgroup *cgrp,
2250 struct cgroup_subsys *subsys,
2251 const struct cftype cft[],
2252 int count)
2254 int i, err;
2255 for (i = 0; i < count; i++) {
2256 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2257 if (err)
2258 return err;
2260 return 0;
2262 EXPORT_SYMBOL_GPL(cgroup_add_files);
2265 * cgroup_task_count - count the number of tasks in a cgroup.
2266 * @cgrp: the cgroup in question
2268 * Return the number of tasks in the cgroup.
2270 int cgroup_task_count(const struct cgroup *cgrp)
2272 int count = 0;
2273 struct cg_cgroup_link *link;
2275 read_lock(&css_set_lock);
2276 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2277 count += atomic_read(&link->cg->refcount);
2279 read_unlock(&css_set_lock);
2280 return count;
2284 * Advance a list_head iterator. The iterator should be positioned at
2285 * the start of a css_set
2287 static void cgroup_advance_iter(struct cgroup *cgrp,
2288 struct cgroup_iter *it)
2290 struct list_head *l = it->cg_link;
2291 struct cg_cgroup_link *link;
2292 struct css_set *cg;
2294 /* Advance to the next non-empty css_set */
2295 do {
2296 l = l->next;
2297 if (l == &cgrp->css_sets) {
2298 it->cg_link = NULL;
2299 return;
2301 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2302 cg = link->cg;
2303 } while (list_empty(&cg->tasks));
2304 it->cg_link = l;
2305 it->task = cg->tasks.next;
2309 * To reduce the fork() overhead for systems that are not actually
2310 * using their cgroups capability, we don't maintain the lists running
2311 * through each css_set to its tasks until we see the list actually
2312 * used - in other words after the first call to cgroup_iter_start().
2314 * The tasklist_lock is not held here, as do_each_thread() and
2315 * while_each_thread() are protected by RCU.
2317 static void cgroup_enable_task_cg_lists(void)
2319 struct task_struct *p, *g;
2320 write_lock(&css_set_lock);
2321 use_task_css_set_links = 1;
2322 do_each_thread(g, p) {
2323 task_lock(p);
2325 * We should check if the process is exiting, otherwise
2326 * it will race with cgroup_exit() in that the list
2327 * entry won't be deleted though the process has exited.
2329 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2330 list_add(&p->cg_list, &p->cgroups->tasks);
2331 task_unlock(p);
2332 } while_each_thread(g, p);
2333 write_unlock(&css_set_lock);
2336 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2339 * The first time anyone tries to iterate across a cgroup,
2340 * we need to enable the list linking each css_set to its
2341 * tasks, and fix up all existing tasks.
2343 if (!use_task_css_set_links)
2344 cgroup_enable_task_cg_lists();
2346 read_lock(&css_set_lock);
2347 it->cg_link = &cgrp->css_sets;
2348 cgroup_advance_iter(cgrp, it);
2351 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2352 struct cgroup_iter *it)
2354 struct task_struct *res;
2355 struct list_head *l = it->task;
2356 struct cg_cgroup_link *link;
2358 /* If the iterator cg is NULL, we have no tasks */
2359 if (!it->cg_link)
2360 return NULL;
2361 res = list_entry(l, struct task_struct, cg_list);
2362 /* Advance iterator to find next entry */
2363 l = l->next;
2364 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2365 if (l == &link->cg->tasks) {
2366 /* We reached the end of this task list - move on to
2367 * the next cg_cgroup_link */
2368 cgroup_advance_iter(cgrp, it);
2369 } else {
2370 it->task = l;
2372 return res;
2375 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2377 read_unlock(&css_set_lock);
2380 static inline int started_after_time(struct task_struct *t1,
2381 struct timespec *time,
2382 struct task_struct *t2)
2384 int start_diff = timespec_compare(&t1->start_time, time);
2385 if (start_diff > 0) {
2386 return 1;
2387 } else if (start_diff < 0) {
2388 return 0;
2389 } else {
2391 * Arbitrarily, if two processes started at the same
2392 * time, we'll say that the lower pointer value
2393 * started first. Note that t2 may have exited by now
2394 * so this may not be a valid pointer any longer, but
2395 * that's fine - it still serves to distinguish
2396 * between two tasks started (effectively) simultaneously.
2398 return t1 > t2;
2403 * This function is a callback from heap_insert() and is used to order
2404 * the heap.
2405 * In this case we order the heap in descending task start time.
2407 static inline int started_after(void *p1, void *p2)
2409 struct task_struct *t1 = p1;
2410 struct task_struct *t2 = p2;
2411 return started_after_time(t1, &t2->start_time, t2);
2415 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2416 * @scan: struct cgroup_scanner containing arguments for the scan
2418 * Arguments include pointers to callback functions test_task() and
2419 * process_task().
2420 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2421 * and if it returns true, call process_task() for it also.
2422 * The test_task pointer may be NULL, meaning always true (select all tasks).
2423 * Effectively duplicates cgroup_iter_{start,next,end}()
2424 * but does not lock css_set_lock for the call to process_task().
2425 * The struct cgroup_scanner may be embedded in any structure of the caller's
2426 * creation.
2427 * It is guaranteed that process_task() will act on every task that
2428 * is a member of the cgroup for the duration of this call. This
2429 * function may or may not call process_task() for tasks that exit
2430 * or move to a different cgroup during the call, or are forked or
2431 * move into the cgroup during the call.
2433 * Note that test_task() may be called with locks held, and may in some
2434 * situations be called multiple times for the same task, so it should
2435 * be cheap.
2436 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2437 * pre-allocated and will be used for heap operations (and its "gt" member will
2438 * be overwritten), else a temporary heap will be used (allocation of which
2439 * may cause this function to fail).
2441 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2443 int retval, i;
2444 struct cgroup_iter it;
2445 struct task_struct *p, *dropped;
2446 /* Never dereference latest_task, since it's not refcounted */
2447 struct task_struct *latest_task = NULL;
2448 struct ptr_heap tmp_heap;
2449 struct ptr_heap *heap;
2450 struct timespec latest_time = { 0, 0 };
2452 if (scan->heap) {
2453 /* The caller supplied our heap and pre-allocated its memory */
2454 heap = scan->heap;
2455 heap->gt = &started_after;
2456 } else {
2457 /* We need to allocate our own heap memory */
2458 heap = &tmp_heap;
2459 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2460 if (retval)
2461 /* cannot allocate the heap */
2462 return retval;
2465 again:
2467 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2468 * to determine which are of interest, and using the scanner's
2469 * "process_task" callback to process any of them that need an update.
2470 * Since we don't want to hold any locks during the task updates,
2471 * gather tasks to be processed in a heap structure.
2472 * The heap is sorted by descending task start time.
2473 * If the statically-sized heap fills up, we overflow tasks that
2474 * started later, and in future iterations only consider tasks that
2475 * started after the latest task in the previous pass. This
2476 * guarantees forward progress and that we don't miss any tasks.
2478 heap->size = 0;
2479 cgroup_iter_start(scan->cg, &it);
2480 while ((p = cgroup_iter_next(scan->cg, &it))) {
2482 * Only affect tasks that qualify per the caller's callback,
2483 * if he provided one
2485 if (scan->test_task && !scan->test_task(p, scan))
2486 continue;
2488 * Only process tasks that started after the last task
2489 * we processed
2491 if (!started_after_time(p, &latest_time, latest_task))
2492 continue;
2493 dropped = heap_insert(heap, p);
2494 if (dropped == NULL) {
2496 * The new task was inserted; the heap wasn't
2497 * previously full
2499 get_task_struct(p);
2500 } else if (dropped != p) {
2502 * The new task was inserted, and pushed out a
2503 * different task
2505 get_task_struct(p);
2506 put_task_struct(dropped);
2509 * Else the new task was newer than anything already in
2510 * the heap and wasn't inserted
2513 cgroup_iter_end(scan->cg, &it);
2515 if (heap->size) {
2516 for (i = 0; i < heap->size; i++) {
2517 struct task_struct *q = heap->ptrs[i];
2518 if (i == 0) {
2519 latest_time = q->start_time;
2520 latest_task = q;
2522 /* Process the task per the caller's callback */
2523 scan->process_task(q, scan);
2524 put_task_struct(q);
2527 * If we had to process any tasks at all, scan again
2528 * in case some of them were in the middle of forking
2529 * children that didn't get processed.
2530 * Not the most efficient way to do it, but it avoids
2531 * having to take callback_mutex in the fork path
2533 goto again;
2535 if (heap == &tmp_heap)
2536 heap_free(&tmp_heap);
2537 return 0;
2541 * Stuff for reading the 'tasks'/'procs' files.
2543 * Reading this file can return large amounts of data if a cgroup has
2544 * *lots* of attached tasks. So it may need several calls to read(),
2545 * but we cannot guarantee that the information we produce is correct
2546 * unless we produce it entirely atomically.
2551 * The following two functions "fix" the issue where there are more pids
2552 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2553 * TODO: replace with a kernel-wide solution to this problem
2555 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2556 static void *pidlist_allocate(int count)
2558 if (PIDLIST_TOO_LARGE(count))
2559 return vmalloc(count * sizeof(pid_t));
2560 else
2561 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2563 static void pidlist_free(void *p)
2565 if (is_vmalloc_addr(p))
2566 vfree(p);
2567 else
2568 kfree(p);
2570 static void *pidlist_resize(void *p, int newcount)
2572 void *newlist;
2573 /* note: if new alloc fails, old p will still be valid either way */
2574 if (is_vmalloc_addr(p)) {
2575 newlist = vmalloc(newcount * sizeof(pid_t));
2576 if (!newlist)
2577 return NULL;
2578 memcpy(newlist, p, newcount * sizeof(pid_t));
2579 vfree(p);
2580 } else {
2581 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2583 return newlist;
2587 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2588 * If the new stripped list is sufficiently smaller and there's enough memory
2589 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2590 * number of unique elements.
2592 /* is the size difference enough that we should re-allocate the array? */
2593 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2594 static int pidlist_uniq(pid_t **p, int length)
2596 int src, dest = 1;
2597 pid_t *list = *p;
2598 pid_t *newlist;
2601 * we presume the 0th element is unique, so i starts at 1. trivial
2602 * edge cases first; no work needs to be done for either
2604 if (length == 0 || length == 1)
2605 return length;
2606 /* src and dest walk down the list; dest counts unique elements */
2607 for (src = 1; src < length; src++) {
2608 /* find next unique element */
2609 while (list[src] == list[src-1]) {
2610 src++;
2611 if (src == length)
2612 goto after;
2614 /* dest always points to where the next unique element goes */
2615 list[dest] = list[src];
2616 dest++;
2618 after:
2620 * if the length difference is large enough, we want to allocate a
2621 * smaller buffer to save memory. if this fails due to out of memory,
2622 * we'll just stay with what we've got.
2624 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2625 newlist = pidlist_resize(list, dest);
2626 if (newlist)
2627 *p = newlist;
2629 return dest;
2632 static int cmppid(const void *a, const void *b)
2634 return *(pid_t *)a - *(pid_t *)b;
2638 * find the appropriate pidlist for our purpose (given procs vs tasks)
2639 * returns with the lock on that pidlist already held, and takes care
2640 * of the use count, or returns NULL with no locks held if we're out of
2641 * memory.
2643 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2644 enum cgroup_filetype type)
2646 struct cgroup_pidlist *l;
2647 /* don't need task_nsproxy() if we're looking at ourself */
2648 struct pid_namespace *ns = current->nsproxy->pid_ns;
2651 * We can't drop the pidlist_mutex before taking the l->mutex in case
2652 * the last ref-holder is trying to remove l from the list at the same
2653 * time. Holding the pidlist_mutex precludes somebody taking whichever
2654 * list we find out from under us - compare release_pid_array().
2656 mutex_lock(&cgrp->pidlist_mutex);
2657 list_for_each_entry(l, &cgrp->pidlists, links) {
2658 if (l->key.type == type && l->key.ns == ns) {
2659 /* make sure l doesn't vanish out from under us */
2660 down_write(&l->mutex);
2661 mutex_unlock(&cgrp->pidlist_mutex);
2662 return l;
2665 /* entry not found; create a new one */
2666 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2667 if (!l) {
2668 mutex_unlock(&cgrp->pidlist_mutex);
2669 return l;
2671 init_rwsem(&l->mutex);
2672 down_write(&l->mutex);
2673 l->key.type = type;
2674 l->key.ns = get_pid_ns(ns);
2675 l->use_count = 0; /* don't increment here */
2676 l->list = NULL;
2677 l->owner = cgrp;
2678 list_add(&l->links, &cgrp->pidlists);
2679 mutex_unlock(&cgrp->pidlist_mutex);
2680 return l;
2684 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2686 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2687 struct cgroup_pidlist **lp)
2689 pid_t *array;
2690 int length;
2691 int pid, n = 0; /* used for populating the array */
2692 struct cgroup_iter it;
2693 struct task_struct *tsk;
2694 struct cgroup_pidlist *l;
2697 * If cgroup gets more users after we read count, we won't have
2698 * enough space - tough. This race is indistinguishable to the
2699 * caller from the case that the additional cgroup users didn't
2700 * show up until sometime later on.
2702 length = cgroup_task_count(cgrp);
2703 array = pidlist_allocate(length);
2704 if (!array)
2705 return -ENOMEM;
2706 /* now, populate the array */
2707 cgroup_iter_start(cgrp, &it);
2708 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2709 if (unlikely(n == length))
2710 break;
2711 /* get tgid or pid for procs or tasks file respectively */
2712 if (type == CGROUP_FILE_PROCS)
2713 pid = task_tgid_vnr(tsk);
2714 else
2715 pid = task_pid_vnr(tsk);
2716 if (pid > 0) /* make sure to only use valid results */
2717 array[n++] = pid;
2719 cgroup_iter_end(cgrp, &it);
2720 length = n;
2721 /* now sort & (if procs) strip out duplicates */
2722 sort(array, length, sizeof(pid_t), cmppid, NULL);
2723 if (type == CGROUP_FILE_PROCS)
2724 length = pidlist_uniq(&array, length);
2725 l = cgroup_pidlist_find(cgrp, type);
2726 if (!l) {
2727 pidlist_free(array);
2728 return -ENOMEM;
2730 /* store array, freeing old if necessary - lock already held */
2731 pidlist_free(l->list);
2732 l->list = array;
2733 l->length = length;
2734 l->use_count++;
2735 up_write(&l->mutex);
2736 *lp = l;
2737 return 0;
2741 * cgroupstats_build - build and fill cgroupstats
2742 * @stats: cgroupstats to fill information into
2743 * @dentry: A dentry entry belonging to the cgroup for which stats have
2744 * been requested.
2746 * Build and fill cgroupstats so that taskstats can export it to user
2747 * space.
2749 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2751 int ret = -EINVAL;
2752 struct cgroup *cgrp;
2753 struct cgroup_iter it;
2754 struct task_struct *tsk;
2757 * Validate dentry by checking the superblock operations,
2758 * and make sure it's a directory.
2760 if (dentry->d_sb->s_op != &cgroup_ops ||
2761 !S_ISDIR(dentry->d_inode->i_mode))
2762 goto err;
2764 ret = 0;
2765 cgrp = dentry->d_fsdata;
2767 cgroup_iter_start(cgrp, &it);
2768 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2769 switch (tsk->state) {
2770 case TASK_RUNNING:
2771 stats->nr_running++;
2772 break;
2773 case TASK_INTERRUPTIBLE:
2774 stats->nr_sleeping++;
2775 break;
2776 case TASK_UNINTERRUPTIBLE:
2777 stats->nr_uninterruptible++;
2778 break;
2779 case TASK_STOPPED:
2780 stats->nr_stopped++;
2781 break;
2782 default:
2783 if (delayacct_is_task_waiting_on_io(tsk))
2784 stats->nr_io_wait++;
2785 break;
2788 cgroup_iter_end(cgrp, &it);
2790 err:
2791 return ret;
2796 * seq_file methods for the tasks/procs files. The seq_file position is the
2797 * next pid to display; the seq_file iterator is a pointer to the pid
2798 * in the cgroup->l->list array.
2801 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2804 * Initially we receive a position value that corresponds to
2805 * one more than the last pid shown (or 0 on the first call or
2806 * after a seek to the start). Use a binary-search to find the
2807 * next pid to display, if any
2809 struct cgroup_pidlist *l = s->private;
2810 int index = 0, pid = *pos;
2811 int *iter;
2813 down_read(&l->mutex);
2814 if (pid) {
2815 int end = l->length;
2817 while (index < end) {
2818 int mid = (index + end) / 2;
2819 if (l->list[mid] == pid) {
2820 index = mid;
2821 break;
2822 } else if (l->list[mid] <= pid)
2823 index = mid + 1;
2824 else
2825 end = mid;
2828 /* If we're off the end of the array, we're done */
2829 if (index >= l->length)
2830 return NULL;
2831 /* Update the abstract position to be the actual pid that we found */
2832 iter = l->list + index;
2833 *pos = *iter;
2834 return iter;
2837 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2839 struct cgroup_pidlist *l = s->private;
2840 up_read(&l->mutex);
2843 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2845 struct cgroup_pidlist *l = s->private;
2846 pid_t *p = v;
2847 pid_t *end = l->list + l->length;
2849 * Advance to the next pid in the array. If this goes off the
2850 * end, we're done
2852 p++;
2853 if (p >= end) {
2854 return NULL;
2855 } else {
2856 *pos = *p;
2857 return p;
2861 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2863 return seq_printf(s, "%d\n", *(int *)v);
2867 * seq_operations functions for iterating on pidlists through seq_file -
2868 * independent of whether it's tasks or procs
2870 static const struct seq_operations cgroup_pidlist_seq_operations = {
2871 .start = cgroup_pidlist_start,
2872 .stop = cgroup_pidlist_stop,
2873 .next = cgroup_pidlist_next,
2874 .show = cgroup_pidlist_show,
2877 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2880 * the case where we're the last user of this particular pidlist will
2881 * have us remove it from the cgroup's list, which entails taking the
2882 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2883 * pidlist_mutex, we have to take pidlist_mutex first.
2885 mutex_lock(&l->owner->pidlist_mutex);
2886 down_write(&l->mutex);
2887 BUG_ON(!l->use_count);
2888 if (!--l->use_count) {
2889 /* we're the last user if refcount is 0; remove and free */
2890 list_del(&l->links);
2891 mutex_unlock(&l->owner->pidlist_mutex);
2892 pidlist_free(l->list);
2893 put_pid_ns(l->key.ns);
2894 up_write(&l->mutex);
2895 kfree(l);
2896 return;
2898 mutex_unlock(&l->owner->pidlist_mutex);
2899 up_write(&l->mutex);
2902 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2904 struct cgroup_pidlist *l;
2905 if (!(file->f_mode & FMODE_READ))
2906 return 0;
2908 * the seq_file will only be initialized if the file was opened for
2909 * reading; hence we check if it's not null only in that case.
2911 l = ((struct seq_file *)file->private_data)->private;
2912 cgroup_release_pid_array(l);
2913 return seq_release(inode, file);
2916 static const struct file_operations cgroup_pidlist_operations = {
2917 .read = seq_read,
2918 .llseek = seq_lseek,
2919 .write = cgroup_file_write,
2920 .release = cgroup_pidlist_release,
2924 * The following functions handle opens on a file that displays a pidlist
2925 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2926 * in the cgroup.
2928 /* helper function for the two below it */
2929 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2931 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2932 struct cgroup_pidlist *l;
2933 int retval;
2935 /* Nothing to do for write-only files */
2936 if (!(file->f_mode & FMODE_READ))
2937 return 0;
2939 /* have the array populated */
2940 retval = pidlist_array_load(cgrp, type, &l);
2941 if (retval)
2942 return retval;
2943 /* configure file information */
2944 file->f_op = &cgroup_pidlist_operations;
2946 retval = seq_open(file, &cgroup_pidlist_seq_operations);
2947 if (retval) {
2948 cgroup_release_pid_array(l);
2949 return retval;
2951 ((struct seq_file *)file->private_data)->private = l;
2952 return 0;
2954 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2956 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2958 static int cgroup_procs_open(struct inode *unused, struct file *file)
2960 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2963 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2964 struct cftype *cft)
2966 return notify_on_release(cgrp);
2969 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2970 struct cftype *cft,
2971 u64 val)
2973 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2974 if (val)
2975 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2976 else
2977 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2978 return 0;
2982 * Unregister event and free resources.
2984 * Gets called from workqueue.
2986 static void cgroup_event_remove(struct work_struct *work)
2988 struct cgroup_event *event = container_of(work, struct cgroup_event,
2989 remove);
2990 struct cgroup *cgrp = event->cgrp;
2992 /* TODO: check return code */
2993 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
2995 eventfd_ctx_put(event->eventfd);
2996 kfree(event);
2997 dput(cgrp->dentry);
3001 * Gets called on POLLHUP on eventfd when user closes it.
3003 * Called with wqh->lock held and interrupts disabled.
3005 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3006 int sync, void *key)
3008 struct cgroup_event *event = container_of(wait,
3009 struct cgroup_event, wait);
3010 struct cgroup *cgrp = event->cgrp;
3011 unsigned long flags = (unsigned long)key;
3013 if (flags & POLLHUP) {
3014 remove_wait_queue_locked(event->wqh, &event->wait);
3015 spin_lock(&cgrp->event_list_lock);
3016 list_del(&event->list);
3017 spin_unlock(&cgrp->event_list_lock);
3019 * We are in atomic context, but cgroup_event_remove() may
3020 * sleep, so we have to call it in workqueue.
3022 schedule_work(&event->remove);
3025 return 0;
3028 static void cgroup_event_ptable_queue_proc(struct file *file,
3029 wait_queue_head_t *wqh, poll_table *pt)
3031 struct cgroup_event *event = container_of(pt,
3032 struct cgroup_event, pt);
3034 event->wqh = wqh;
3035 add_wait_queue(wqh, &event->wait);
3039 * Parse input and register new cgroup event handler.
3041 * Input must be in format '<event_fd> <control_fd> <args>'.
3042 * Interpretation of args is defined by control file implementation.
3044 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3045 const char *buffer)
3047 struct cgroup_event *event = NULL;
3048 unsigned int efd, cfd;
3049 struct file *efile = NULL;
3050 struct file *cfile = NULL;
3051 char *endp;
3052 int ret;
3054 efd = simple_strtoul(buffer, &endp, 10);
3055 if (*endp != ' ')
3056 return -EINVAL;
3057 buffer = endp + 1;
3059 cfd = simple_strtoul(buffer, &endp, 10);
3060 if ((*endp != ' ') && (*endp != '\0'))
3061 return -EINVAL;
3062 buffer = endp + 1;
3064 event = kzalloc(sizeof(*event), GFP_KERNEL);
3065 if (!event)
3066 return -ENOMEM;
3067 event->cgrp = cgrp;
3068 INIT_LIST_HEAD(&event->list);
3069 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3070 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3071 INIT_WORK(&event->remove, cgroup_event_remove);
3073 efile = eventfd_fget(efd);
3074 if (IS_ERR(efile)) {
3075 ret = PTR_ERR(efile);
3076 goto fail;
3079 event->eventfd = eventfd_ctx_fileget(efile);
3080 if (IS_ERR(event->eventfd)) {
3081 ret = PTR_ERR(event->eventfd);
3082 goto fail;
3085 cfile = fget(cfd);
3086 if (!cfile) {
3087 ret = -EBADF;
3088 goto fail;
3091 /* the process need read permission on control file */
3092 ret = file_permission(cfile, MAY_READ);
3093 if (ret < 0)
3094 goto fail;
3096 event->cft = __file_cft(cfile);
3097 if (IS_ERR(event->cft)) {
3098 ret = PTR_ERR(event->cft);
3099 goto fail;
3102 if (!event->cft->register_event || !event->cft->unregister_event) {
3103 ret = -EINVAL;
3104 goto fail;
3107 ret = event->cft->register_event(cgrp, event->cft,
3108 event->eventfd, buffer);
3109 if (ret)
3110 goto fail;
3112 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3113 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3114 ret = 0;
3115 goto fail;
3119 * Events should be removed after rmdir of cgroup directory, but before
3120 * destroying subsystem state objects. Let's take reference to cgroup
3121 * directory dentry to do that.
3123 dget(cgrp->dentry);
3125 spin_lock(&cgrp->event_list_lock);
3126 list_add(&event->list, &cgrp->event_list);
3127 spin_unlock(&cgrp->event_list_lock);
3129 fput(cfile);
3130 fput(efile);
3132 return 0;
3134 fail:
3135 if (cfile)
3136 fput(cfile);
3138 if (event && event->eventfd && !IS_ERR(event->eventfd))
3139 eventfd_ctx_put(event->eventfd);
3141 if (!IS_ERR_OR_NULL(efile))
3142 fput(efile);
3144 kfree(event);
3146 return ret;
3150 * for the common functions, 'private' gives the type of file
3152 /* for hysterical raisins, we can't put this on the older files */
3153 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3154 static struct cftype files[] = {
3156 .name = "tasks",
3157 .open = cgroup_tasks_open,
3158 .write_u64 = cgroup_tasks_write,
3159 .release = cgroup_pidlist_release,
3160 .mode = S_IRUGO | S_IWUSR,
3163 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3164 .open = cgroup_procs_open,
3165 /* .write_u64 = cgroup_procs_write, TODO */
3166 .release = cgroup_pidlist_release,
3167 .mode = S_IRUGO,
3170 .name = "notify_on_release",
3171 .read_u64 = cgroup_read_notify_on_release,
3172 .write_u64 = cgroup_write_notify_on_release,
3175 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3176 .write_string = cgroup_write_event_control,
3177 .mode = S_IWUGO,
3181 static struct cftype cft_release_agent = {
3182 .name = "release_agent",
3183 .read_seq_string = cgroup_release_agent_show,
3184 .write_string = cgroup_release_agent_write,
3185 .max_write_len = PATH_MAX,
3188 static int cgroup_populate_dir(struct cgroup *cgrp)
3190 int err;
3191 struct cgroup_subsys *ss;
3193 /* First clear out any existing files */
3194 cgroup_clear_directory(cgrp->dentry);
3196 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3197 if (err < 0)
3198 return err;
3200 if (cgrp == cgrp->top_cgroup) {
3201 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3202 return err;
3205 for_each_subsys(cgrp->root, ss) {
3206 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3207 return err;
3209 /* This cgroup is ready now */
3210 for_each_subsys(cgrp->root, ss) {
3211 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3213 * Update id->css pointer and make this css visible from
3214 * CSS ID functions. This pointer will be dereferened
3215 * from RCU-read-side without locks.
3217 if (css->id)
3218 rcu_assign_pointer(css->id->css, css);
3221 return 0;
3224 static void init_cgroup_css(struct cgroup_subsys_state *css,
3225 struct cgroup_subsys *ss,
3226 struct cgroup *cgrp)
3228 css->cgroup = cgrp;
3229 atomic_set(&css->refcnt, 1);
3230 css->flags = 0;
3231 css->id = NULL;
3232 if (cgrp == dummytop)
3233 set_bit(CSS_ROOT, &css->flags);
3234 BUG_ON(cgrp->subsys[ss->subsys_id]);
3235 cgrp->subsys[ss->subsys_id] = css;
3238 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3240 /* We need to take each hierarchy_mutex in a consistent order */
3241 int i;
3244 * No worry about a race with rebind_subsystems that might mess up the
3245 * locking order, since both parties are under cgroup_mutex.
3247 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3248 struct cgroup_subsys *ss = subsys[i];
3249 if (ss == NULL)
3250 continue;
3251 if (ss->root == root)
3252 mutex_lock(&ss->hierarchy_mutex);
3256 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3258 int i;
3260 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3261 struct cgroup_subsys *ss = subsys[i];
3262 if (ss == NULL)
3263 continue;
3264 if (ss->root == root)
3265 mutex_unlock(&ss->hierarchy_mutex);
3270 * cgroup_create - create a cgroup
3271 * @parent: cgroup that will be parent of the new cgroup
3272 * @dentry: dentry of the new cgroup
3273 * @mode: mode to set on new inode
3275 * Must be called with the mutex on the parent inode held
3277 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3278 mode_t mode)
3280 struct cgroup *cgrp;
3281 struct cgroupfs_root *root = parent->root;
3282 int err = 0;
3283 struct cgroup_subsys *ss;
3284 struct super_block *sb = root->sb;
3286 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3287 if (!cgrp)
3288 return -ENOMEM;
3290 /* Grab a reference on the superblock so the hierarchy doesn't
3291 * get deleted on unmount if there are child cgroups. This
3292 * can be done outside cgroup_mutex, since the sb can't
3293 * disappear while someone has an open control file on the
3294 * fs */
3295 atomic_inc(&sb->s_active);
3297 mutex_lock(&cgroup_mutex);
3299 init_cgroup_housekeeping(cgrp);
3301 cgrp->parent = parent;
3302 cgrp->root = parent->root;
3303 cgrp->top_cgroup = parent->top_cgroup;
3305 if (notify_on_release(parent))
3306 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3308 for_each_subsys(root, ss) {
3309 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3311 if (IS_ERR(css)) {
3312 err = PTR_ERR(css);
3313 goto err_destroy;
3315 init_cgroup_css(css, ss, cgrp);
3316 if (ss->use_id) {
3317 err = alloc_css_id(ss, parent, cgrp);
3318 if (err)
3319 goto err_destroy;
3321 /* At error, ->destroy() callback has to free assigned ID. */
3324 cgroup_lock_hierarchy(root);
3325 list_add(&cgrp->sibling, &cgrp->parent->children);
3326 cgroup_unlock_hierarchy(root);
3327 root->number_of_cgroups++;
3329 err = cgroup_create_dir(cgrp, dentry, mode);
3330 if (err < 0)
3331 goto err_remove;
3333 /* The cgroup directory was pre-locked for us */
3334 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3336 err = cgroup_populate_dir(cgrp);
3337 /* If err < 0, we have a half-filled directory - oh well ;) */
3339 mutex_unlock(&cgroup_mutex);
3340 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3342 return 0;
3344 err_remove:
3346 cgroup_lock_hierarchy(root);
3347 list_del(&cgrp->sibling);
3348 cgroup_unlock_hierarchy(root);
3349 root->number_of_cgroups--;
3351 err_destroy:
3353 for_each_subsys(root, ss) {
3354 if (cgrp->subsys[ss->subsys_id])
3355 ss->destroy(ss, cgrp);
3358 mutex_unlock(&cgroup_mutex);
3360 /* Release the reference count that we took on the superblock */
3361 deactivate_super(sb);
3363 kfree(cgrp);
3364 return err;
3367 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3369 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3371 /* the vfs holds inode->i_mutex already */
3372 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3375 static int cgroup_has_css_refs(struct cgroup *cgrp)
3377 /* Check the reference count on each subsystem. Since we
3378 * already established that there are no tasks in the
3379 * cgroup, if the css refcount is also 1, then there should
3380 * be no outstanding references, so the subsystem is safe to
3381 * destroy. We scan across all subsystems rather than using
3382 * the per-hierarchy linked list of mounted subsystems since
3383 * we can be called via check_for_release() with no
3384 * synchronization other than RCU, and the subsystem linked
3385 * list isn't RCU-safe */
3386 int i;
3388 * We won't need to lock the subsys array, because the subsystems
3389 * we're concerned about aren't going anywhere since our cgroup root
3390 * has a reference on them.
3392 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3393 struct cgroup_subsys *ss = subsys[i];
3394 struct cgroup_subsys_state *css;
3395 /* Skip subsystems not present or not in this hierarchy */
3396 if (ss == NULL || ss->root != cgrp->root)
3397 continue;
3398 css = cgrp->subsys[ss->subsys_id];
3399 /* When called from check_for_release() it's possible
3400 * that by this point the cgroup has been removed
3401 * and the css deleted. But a false-positive doesn't
3402 * matter, since it can only happen if the cgroup
3403 * has been deleted and hence no longer needs the
3404 * release agent to be called anyway. */
3405 if (css && (atomic_read(&css->refcnt) > 1))
3406 return 1;
3408 return 0;
3412 * Atomically mark all (or else none) of the cgroup's CSS objects as
3413 * CSS_REMOVED. Return true on success, or false if the cgroup has
3414 * busy subsystems. Call with cgroup_mutex held
3417 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3419 struct cgroup_subsys *ss;
3420 unsigned long flags;
3421 bool failed = false;
3422 local_irq_save(flags);
3423 for_each_subsys(cgrp->root, ss) {
3424 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3425 int refcnt;
3426 while (1) {
3427 /* We can only remove a CSS with a refcnt==1 */
3428 refcnt = atomic_read(&css->refcnt);
3429 if (refcnt > 1) {
3430 failed = true;
3431 goto done;
3433 BUG_ON(!refcnt);
3435 * Drop the refcnt to 0 while we check other
3436 * subsystems. This will cause any racing
3437 * css_tryget() to spin until we set the
3438 * CSS_REMOVED bits or abort
3440 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3441 break;
3442 cpu_relax();
3445 done:
3446 for_each_subsys(cgrp->root, ss) {
3447 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3448 if (failed) {
3450 * Restore old refcnt if we previously managed
3451 * to clear it from 1 to 0
3453 if (!atomic_read(&css->refcnt))
3454 atomic_set(&css->refcnt, 1);
3455 } else {
3456 /* Commit the fact that the CSS is removed */
3457 set_bit(CSS_REMOVED, &css->flags);
3460 local_irq_restore(flags);
3461 return !failed;
3464 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3466 struct cgroup *cgrp = dentry->d_fsdata;
3467 struct dentry *d;
3468 struct cgroup *parent;
3469 DEFINE_WAIT(wait);
3470 struct cgroup_event *event, *tmp;
3471 int ret;
3473 /* the vfs holds both inode->i_mutex already */
3474 again:
3475 mutex_lock(&cgroup_mutex);
3476 if (atomic_read(&cgrp->count) != 0) {
3477 mutex_unlock(&cgroup_mutex);
3478 return -EBUSY;
3480 if (!list_empty(&cgrp->children)) {
3481 mutex_unlock(&cgroup_mutex);
3482 return -EBUSY;
3484 mutex_unlock(&cgroup_mutex);
3487 * In general, subsystem has no css->refcnt after pre_destroy(). But
3488 * in racy cases, subsystem may have to get css->refcnt after
3489 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3490 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3491 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3492 * and subsystem's reference count handling. Please see css_get/put
3493 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3495 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3498 * Call pre_destroy handlers of subsys. Notify subsystems
3499 * that rmdir() request comes.
3501 ret = cgroup_call_pre_destroy(cgrp);
3502 if (ret) {
3503 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3504 return ret;
3507 mutex_lock(&cgroup_mutex);
3508 parent = cgrp->parent;
3509 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3510 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3511 mutex_unlock(&cgroup_mutex);
3512 return -EBUSY;
3514 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3515 if (!cgroup_clear_css_refs(cgrp)) {
3516 mutex_unlock(&cgroup_mutex);
3518 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3519 * prepare_to_wait(), we need to check this flag.
3521 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3522 schedule();
3523 finish_wait(&cgroup_rmdir_waitq, &wait);
3524 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3525 if (signal_pending(current))
3526 return -EINTR;
3527 goto again;
3529 /* NO css_tryget() can success after here. */
3530 finish_wait(&cgroup_rmdir_waitq, &wait);
3531 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3533 spin_lock(&release_list_lock);
3534 set_bit(CGRP_REMOVED, &cgrp->flags);
3535 if (!list_empty(&cgrp->release_list))
3536 list_del(&cgrp->release_list);
3537 spin_unlock(&release_list_lock);
3539 cgroup_lock_hierarchy(cgrp->root);
3540 /* delete this cgroup from parent->children */
3541 list_del(&cgrp->sibling);
3542 cgroup_unlock_hierarchy(cgrp->root);
3544 spin_lock(&cgrp->dentry->d_lock);
3545 d = dget(cgrp->dentry);
3546 spin_unlock(&d->d_lock);
3548 cgroup_d_remove_dir(d);
3549 dput(d);
3551 set_bit(CGRP_RELEASABLE, &parent->flags);
3552 check_for_release(parent);
3555 * Unregister events and notify userspace.
3556 * Notify userspace about cgroup removing only after rmdir of cgroup
3557 * directory to avoid race between userspace and kernelspace
3559 spin_lock(&cgrp->event_list_lock);
3560 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3561 list_del(&event->list);
3562 remove_wait_queue(event->wqh, &event->wait);
3563 eventfd_signal(event->eventfd, 1);
3564 schedule_work(&event->remove);
3566 spin_unlock(&cgrp->event_list_lock);
3568 mutex_unlock(&cgroup_mutex);
3569 return 0;
3572 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3574 struct cgroup_subsys_state *css;
3576 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3578 /* Create the top cgroup state for this subsystem */
3579 list_add(&ss->sibling, &rootnode.subsys_list);
3580 ss->root = &rootnode;
3581 css = ss->create(ss, dummytop);
3582 /* We don't handle early failures gracefully */
3583 BUG_ON(IS_ERR(css));
3584 init_cgroup_css(css, ss, dummytop);
3586 /* Update the init_css_set to contain a subsys
3587 * pointer to this state - since the subsystem is
3588 * newly registered, all tasks and hence the
3589 * init_css_set is in the subsystem's top cgroup. */
3590 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3592 need_forkexit_callback |= ss->fork || ss->exit;
3594 /* At system boot, before all subsystems have been
3595 * registered, no tasks have been forked, so we don't
3596 * need to invoke fork callbacks here. */
3597 BUG_ON(!list_empty(&init_task.tasks));
3599 mutex_init(&ss->hierarchy_mutex);
3600 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3601 ss->active = 1;
3603 /* this function shouldn't be used with modular subsystems, since they
3604 * need to register a subsys_id, among other things */
3605 BUG_ON(ss->module);
3609 * cgroup_load_subsys: load and register a modular subsystem at runtime
3610 * @ss: the subsystem to load
3612 * This function should be called in a modular subsystem's initcall. If the
3613 * subsytem is built as a module, it will be assigned a new subsys_id and set
3614 * up for use. If the subsystem is built-in anyway, work is delegated to the
3615 * simpler cgroup_init_subsys.
3617 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3619 int i;
3620 struct cgroup_subsys_state *css;
3622 /* check name and function validity */
3623 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3624 ss->create == NULL || ss->destroy == NULL)
3625 return -EINVAL;
3628 * we don't support callbacks in modular subsystems. this check is
3629 * before the ss->module check for consistency; a subsystem that could
3630 * be a module should still have no callbacks even if the user isn't
3631 * compiling it as one.
3633 if (ss->fork || ss->exit)
3634 return -EINVAL;
3637 * an optionally modular subsystem is built-in: we want to do nothing,
3638 * since cgroup_init_subsys will have already taken care of it.
3640 if (ss->module == NULL) {
3641 /* a few sanity checks */
3642 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3643 BUG_ON(subsys[ss->subsys_id] != ss);
3644 return 0;
3648 * need to register a subsys id before anything else - for example,
3649 * init_cgroup_css needs it.
3651 mutex_lock(&cgroup_mutex);
3652 /* find the first empty slot in the array */
3653 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3654 if (subsys[i] == NULL)
3655 break;
3657 if (i == CGROUP_SUBSYS_COUNT) {
3658 /* maximum number of subsystems already registered! */
3659 mutex_unlock(&cgroup_mutex);
3660 return -EBUSY;
3662 /* assign ourselves the subsys_id */
3663 ss->subsys_id = i;
3664 subsys[i] = ss;
3667 * no ss->create seems to need anything important in the ss struct, so
3668 * this can happen first (i.e. before the rootnode attachment).
3670 css = ss->create(ss, dummytop);
3671 if (IS_ERR(css)) {
3672 /* failure case - need to deassign the subsys[] slot. */
3673 subsys[i] = NULL;
3674 mutex_unlock(&cgroup_mutex);
3675 return PTR_ERR(css);
3678 list_add(&ss->sibling, &rootnode.subsys_list);
3679 ss->root = &rootnode;
3681 /* our new subsystem will be attached to the dummy hierarchy. */
3682 init_cgroup_css(css, ss, dummytop);
3683 /* init_idr must be after init_cgroup_css because it sets css->id. */
3684 if (ss->use_id) {
3685 int ret = cgroup_init_idr(ss, css);
3686 if (ret) {
3687 dummytop->subsys[ss->subsys_id] = NULL;
3688 ss->destroy(ss, dummytop);
3689 subsys[i] = NULL;
3690 mutex_unlock(&cgroup_mutex);
3691 return ret;
3696 * Now we need to entangle the css into the existing css_sets. unlike
3697 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3698 * will need a new pointer to it; done by iterating the css_set_table.
3699 * furthermore, modifying the existing css_sets will corrupt the hash
3700 * table state, so each changed css_set will need its hash recomputed.
3701 * this is all done under the css_set_lock.
3703 write_lock(&css_set_lock);
3704 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3705 struct css_set *cg;
3706 struct hlist_node *node, *tmp;
3707 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3709 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3710 /* skip entries that we already rehashed */
3711 if (cg->subsys[ss->subsys_id])
3712 continue;
3713 /* remove existing entry */
3714 hlist_del(&cg->hlist);
3715 /* set new value */
3716 cg->subsys[ss->subsys_id] = css;
3717 /* recompute hash and restore entry */
3718 new_bucket = css_set_hash(cg->subsys);
3719 hlist_add_head(&cg->hlist, new_bucket);
3722 write_unlock(&css_set_lock);
3724 mutex_init(&ss->hierarchy_mutex);
3725 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3726 ss->active = 1;
3728 /* success! */
3729 mutex_unlock(&cgroup_mutex);
3730 return 0;
3732 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3735 * cgroup_unload_subsys: unload a modular subsystem
3736 * @ss: the subsystem to unload
3738 * This function should be called in a modular subsystem's exitcall. When this
3739 * function is invoked, the refcount on the subsystem's module will be 0, so
3740 * the subsystem will not be attached to any hierarchy.
3742 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3744 struct cg_cgroup_link *link;
3745 struct hlist_head *hhead;
3747 BUG_ON(ss->module == NULL);
3750 * we shouldn't be called if the subsystem is in use, and the use of
3751 * try_module_get in parse_cgroupfs_options should ensure that it
3752 * doesn't start being used while we're killing it off.
3754 BUG_ON(ss->root != &rootnode);
3756 mutex_lock(&cgroup_mutex);
3757 /* deassign the subsys_id */
3758 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3759 subsys[ss->subsys_id] = NULL;
3761 /* remove subsystem from rootnode's list of subsystems */
3762 list_del(&ss->sibling);
3765 * disentangle the css from all css_sets attached to the dummytop. as
3766 * in loading, we need to pay our respects to the hashtable gods.
3768 write_lock(&css_set_lock);
3769 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3770 struct css_set *cg = link->cg;
3772 hlist_del(&cg->hlist);
3773 BUG_ON(!cg->subsys[ss->subsys_id]);
3774 cg->subsys[ss->subsys_id] = NULL;
3775 hhead = css_set_hash(cg->subsys);
3776 hlist_add_head(&cg->hlist, hhead);
3778 write_unlock(&css_set_lock);
3781 * remove subsystem's css from the dummytop and free it - need to free
3782 * before marking as null because ss->destroy needs the cgrp->subsys
3783 * pointer to find their state. note that this also takes care of
3784 * freeing the css_id.
3786 ss->destroy(ss, dummytop);
3787 dummytop->subsys[ss->subsys_id] = NULL;
3789 mutex_unlock(&cgroup_mutex);
3791 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3794 * cgroup_init_early - cgroup initialization at system boot
3796 * Initialize cgroups at system boot, and initialize any
3797 * subsystems that request early init.
3799 int __init cgroup_init_early(void)
3801 int i;
3802 atomic_set(&init_css_set.refcount, 1);
3803 INIT_LIST_HEAD(&init_css_set.cg_links);
3804 INIT_LIST_HEAD(&init_css_set.tasks);
3805 INIT_HLIST_NODE(&init_css_set.hlist);
3806 css_set_count = 1;
3807 init_cgroup_root(&rootnode);
3808 root_count = 1;
3809 init_task.cgroups = &init_css_set;
3811 init_css_set_link.cg = &init_css_set;
3812 init_css_set_link.cgrp = dummytop;
3813 list_add(&init_css_set_link.cgrp_link_list,
3814 &rootnode.top_cgroup.css_sets);
3815 list_add(&init_css_set_link.cg_link_list,
3816 &init_css_set.cg_links);
3818 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3819 INIT_HLIST_HEAD(&css_set_table[i]);
3821 /* at bootup time, we don't worry about modular subsystems */
3822 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3823 struct cgroup_subsys *ss = subsys[i];
3825 BUG_ON(!ss->name);
3826 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3827 BUG_ON(!ss->create);
3828 BUG_ON(!ss->destroy);
3829 if (ss->subsys_id != i) {
3830 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3831 ss->name, ss->subsys_id);
3832 BUG();
3835 if (ss->early_init)
3836 cgroup_init_subsys(ss);
3838 return 0;
3842 * cgroup_init - cgroup initialization
3844 * Register cgroup filesystem and /proc file, and initialize
3845 * any subsystems that didn't request early init.
3847 int __init cgroup_init(void)
3849 int err;
3850 int i;
3851 struct hlist_head *hhead;
3853 err = bdi_init(&cgroup_backing_dev_info);
3854 if (err)
3855 return err;
3857 /* at bootup time, we don't worry about modular subsystems */
3858 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3859 struct cgroup_subsys *ss = subsys[i];
3860 if (!ss->early_init)
3861 cgroup_init_subsys(ss);
3862 if (ss->use_id)
3863 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3866 /* Add init_css_set to the hash table */
3867 hhead = css_set_hash(init_css_set.subsys);
3868 hlist_add_head(&init_css_set.hlist, hhead);
3869 BUG_ON(!init_root_id(&rootnode));
3870 err = register_filesystem(&cgroup_fs_type);
3871 if (err < 0)
3872 goto out;
3874 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3876 out:
3877 if (err)
3878 bdi_destroy(&cgroup_backing_dev_info);
3880 return err;
3884 * proc_cgroup_show()
3885 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3886 * - Used for /proc/<pid>/cgroup.
3887 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3888 * doesn't really matter if tsk->cgroup changes after we read it,
3889 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3890 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3891 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3892 * cgroup to top_cgroup.
3895 /* TODO: Use a proper seq_file iterator */
3896 static int proc_cgroup_show(struct seq_file *m, void *v)
3898 struct pid *pid;
3899 struct task_struct *tsk;
3900 char *buf;
3901 int retval;
3902 struct cgroupfs_root *root;
3904 retval = -ENOMEM;
3905 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3906 if (!buf)
3907 goto out;
3909 retval = -ESRCH;
3910 pid = m->private;
3911 tsk = get_pid_task(pid, PIDTYPE_PID);
3912 if (!tsk)
3913 goto out_free;
3915 retval = 0;
3917 mutex_lock(&cgroup_mutex);
3919 for_each_active_root(root) {
3920 struct cgroup_subsys *ss;
3921 struct cgroup *cgrp;
3922 int count = 0;
3924 seq_printf(m, "%d:", root->hierarchy_id);
3925 for_each_subsys(root, ss)
3926 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3927 if (strlen(root->name))
3928 seq_printf(m, "%sname=%s", count ? "," : "",
3929 root->name);
3930 seq_putc(m, ':');
3931 cgrp = task_cgroup_from_root(tsk, root);
3932 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3933 if (retval < 0)
3934 goto out_unlock;
3935 seq_puts(m, buf);
3936 seq_putc(m, '\n');
3939 out_unlock:
3940 mutex_unlock(&cgroup_mutex);
3941 put_task_struct(tsk);
3942 out_free:
3943 kfree(buf);
3944 out:
3945 return retval;
3948 static int cgroup_open(struct inode *inode, struct file *file)
3950 struct pid *pid = PROC_I(inode)->pid;
3951 return single_open(file, proc_cgroup_show, pid);
3954 const struct file_operations proc_cgroup_operations = {
3955 .open = cgroup_open,
3956 .read = seq_read,
3957 .llseek = seq_lseek,
3958 .release = single_release,
3961 /* Display information about each subsystem and each hierarchy */
3962 static int proc_cgroupstats_show(struct seq_file *m, void *v)
3964 int i;
3966 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3968 * ideally we don't want subsystems moving around while we do this.
3969 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
3970 * subsys/hierarchy state.
3972 mutex_lock(&cgroup_mutex);
3973 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3974 struct cgroup_subsys *ss = subsys[i];
3975 if (ss == NULL)
3976 continue;
3977 seq_printf(m, "%s\t%d\t%d\t%d\n",
3978 ss->name, ss->root->hierarchy_id,
3979 ss->root->number_of_cgroups, !ss->disabled);
3981 mutex_unlock(&cgroup_mutex);
3982 return 0;
3985 static int cgroupstats_open(struct inode *inode, struct file *file)
3987 return single_open(file, proc_cgroupstats_show, NULL);
3990 static const struct file_operations proc_cgroupstats_operations = {
3991 .open = cgroupstats_open,
3992 .read = seq_read,
3993 .llseek = seq_lseek,
3994 .release = single_release,
3998 * cgroup_fork - attach newly forked task to its parents cgroup.
3999 * @child: pointer to task_struct of forking parent process.
4001 * Description: A task inherits its parent's cgroup at fork().
4003 * A pointer to the shared css_set was automatically copied in
4004 * fork.c by dup_task_struct(). However, we ignore that copy, since
4005 * it was not made under the protection of RCU or cgroup_mutex, so
4006 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4007 * have already changed current->cgroups, allowing the previously
4008 * referenced cgroup group to be removed and freed.
4010 * At the point that cgroup_fork() is called, 'current' is the parent
4011 * task, and the passed argument 'child' points to the child task.
4013 void cgroup_fork(struct task_struct *child)
4015 task_lock(current);
4016 child->cgroups = current->cgroups;
4017 get_css_set(child->cgroups);
4018 task_unlock(current);
4019 INIT_LIST_HEAD(&child->cg_list);
4023 * cgroup_fork_callbacks - run fork callbacks
4024 * @child: the new task
4026 * Called on a new task very soon before adding it to the
4027 * tasklist. No need to take any locks since no-one can
4028 * be operating on this task.
4030 void cgroup_fork_callbacks(struct task_struct *child)
4032 if (need_forkexit_callback) {
4033 int i;
4035 * forkexit callbacks are only supported for builtin
4036 * subsystems, and the builtin section of the subsys array is
4037 * immutable, so we don't need to lock the subsys array here.
4039 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4040 struct cgroup_subsys *ss = subsys[i];
4041 if (ss->fork)
4042 ss->fork(ss, child);
4048 * cgroup_post_fork - called on a new task after adding it to the task list
4049 * @child: the task in question
4051 * Adds the task to the list running through its css_set if necessary.
4052 * Has to be after the task is visible on the task list in case we race
4053 * with the first call to cgroup_iter_start() - to guarantee that the
4054 * new task ends up on its list.
4056 void cgroup_post_fork(struct task_struct *child)
4058 if (use_task_css_set_links) {
4059 write_lock(&css_set_lock);
4060 task_lock(child);
4061 if (list_empty(&child->cg_list))
4062 list_add(&child->cg_list, &child->cgroups->tasks);
4063 task_unlock(child);
4064 write_unlock(&css_set_lock);
4068 * cgroup_exit - detach cgroup from exiting task
4069 * @tsk: pointer to task_struct of exiting process
4070 * @run_callback: run exit callbacks?
4072 * Description: Detach cgroup from @tsk and release it.
4074 * Note that cgroups marked notify_on_release force every task in
4075 * them to take the global cgroup_mutex mutex when exiting.
4076 * This could impact scaling on very large systems. Be reluctant to
4077 * use notify_on_release cgroups where very high task exit scaling
4078 * is required on large systems.
4080 * the_top_cgroup_hack:
4082 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4084 * We call cgroup_exit() while the task is still competent to
4085 * handle notify_on_release(), then leave the task attached to the
4086 * root cgroup in each hierarchy for the remainder of its exit.
4088 * To do this properly, we would increment the reference count on
4089 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4090 * code we would add a second cgroup function call, to drop that
4091 * reference. This would just create an unnecessary hot spot on
4092 * the top_cgroup reference count, to no avail.
4094 * Normally, holding a reference to a cgroup without bumping its
4095 * count is unsafe. The cgroup could go away, or someone could
4096 * attach us to a different cgroup, decrementing the count on
4097 * the first cgroup that we never incremented. But in this case,
4098 * top_cgroup isn't going away, and either task has PF_EXITING set,
4099 * which wards off any cgroup_attach_task() attempts, or task is a failed
4100 * fork, never visible to cgroup_attach_task.
4102 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4104 int i;
4105 struct css_set *cg;
4107 if (run_callbacks && need_forkexit_callback) {
4109 * modular subsystems can't use callbacks, so no need to lock
4110 * the subsys array
4112 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4113 struct cgroup_subsys *ss = subsys[i];
4114 if (ss->exit)
4115 ss->exit(ss, tsk);
4120 * Unlink from the css_set task list if necessary.
4121 * Optimistically check cg_list before taking
4122 * css_set_lock
4124 if (!list_empty(&tsk->cg_list)) {
4125 write_lock(&css_set_lock);
4126 if (!list_empty(&tsk->cg_list))
4127 list_del(&tsk->cg_list);
4128 write_unlock(&css_set_lock);
4131 /* Reassign the task to the init_css_set. */
4132 task_lock(tsk);
4133 cg = tsk->cgroups;
4134 tsk->cgroups = &init_css_set;
4135 task_unlock(tsk);
4136 if (cg)
4137 put_css_set_taskexit(cg);
4141 * cgroup_clone - clone the cgroup the given subsystem is attached to
4142 * @tsk: the task to be moved
4143 * @subsys: the given subsystem
4144 * @nodename: the name for the new cgroup
4146 * Duplicate the current cgroup in the hierarchy that the given
4147 * subsystem is attached to, and move this task into the new
4148 * child.
4150 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4151 char *nodename)
4153 struct dentry *dentry;
4154 int ret = 0;
4155 struct cgroup *parent, *child;
4156 struct inode *inode;
4157 struct css_set *cg;
4158 struct cgroupfs_root *root;
4159 struct cgroup_subsys *ss;
4161 /* We shouldn't be called by an unregistered subsystem */
4162 BUG_ON(!subsys->active);
4164 /* First figure out what hierarchy and cgroup we're dealing
4165 * with, and pin them so we can drop cgroup_mutex */
4166 mutex_lock(&cgroup_mutex);
4167 again:
4168 root = subsys->root;
4169 if (root == &rootnode) {
4170 mutex_unlock(&cgroup_mutex);
4171 return 0;
4174 /* Pin the hierarchy */
4175 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4176 /* We race with the final deactivate_super() */
4177 mutex_unlock(&cgroup_mutex);
4178 return 0;
4181 /* Keep the cgroup alive */
4182 task_lock(tsk);
4183 parent = task_cgroup(tsk, subsys->subsys_id);
4184 cg = tsk->cgroups;
4185 get_css_set(cg);
4186 task_unlock(tsk);
4188 mutex_unlock(&cgroup_mutex);
4190 /* Now do the VFS work to create a cgroup */
4191 inode = parent->dentry->d_inode;
4193 /* Hold the parent directory mutex across this operation to
4194 * stop anyone else deleting the new cgroup */
4195 mutex_lock(&inode->i_mutex);
4196 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4197 if (IS_ERR(dentry)) {
4198 printk(KERN_INFO
4199 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4200 PTR_ERR(dentry));
4201 ret = PTR_ERR(dentry);
4202 goto out_release;
4205 /* Create the cgroup directory, which also creates the cgroup */
4206 ret = vfs_mkdir(inode, dentry, 0755);
4207 child = __d_cgrp(dentry);
4208 dput(dentry);
4209 if (ret) {
4210 printk(KERN_INFO
4211 "Failed to create cgroup %s: %d\n", nodename,
4212 ret);
4213 goto out_release;
4216 /* The cgroup now exists. Retake cgroup_mutex and check
4217 * that we're still in the same state that we thought we
4218 * were. */
4219 mutex_lock(&cgroup_mutex);
4220 if ((root != subsys->root) ||
4221 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4222 /* Aargh, we raced ... */
4223 mutex_unlock(&inode->i_mutex);
4224 put_css_set(cg);
4226 deactivate_super(root->sb);
4227 /* The cgroup is still accessible in the VFS, but
4228 * we're not going to try to rmdir() it at this
4229 * point. */
4230 printk(KERN_INFO
4231 "Race in cgroup_clone() - leaking cgroup %s\n",
4232 nodename);
4233 goto again;
4236 /* do any required auto-setup */
4237 for_each_subsys(root, ss) {
4238 if (ss->post_clone)
4239 ss->post_clone(ss, child);
4242 /* All seems fine. Finish by moving the task into the new cgroup */
4243 ret = cgroup_attach_task(child, tsk);
4244 mutex_unlock(&cgroup_mutex);
4246 out_release:
4247 mutex_unlock(&inode->i_mutex);
4249 mutex_lock(&cgroup_mutex);
4250 put_css_set(cg);
4251 mutex_unlock(&cgroup_mutex);
4252 deactivate_super(root->sb);
4253 return ret;
4257 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4258 * @cgrp: the cgroup in question
4259 * @task: the task in question
4261 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4262 * hierarchy.
4264 * If we are sending in dummytop, then presumably we are creating
4265 * the top cgroup in the subsystem.
4267 * Called only by the ns (nsproxy) cgroup.
4269 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4271 int ret;
4272 struct cgroup *target;
4274 if (cgrp == dummytop)
4275 return 1;
4277 target = task_cgroup_from_root(task, cgrp->root);
4278 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4279 cgrp = cgrp->parent;
4280 ret = (cgrp == target);
4281 return ret;
4284 static void check_for_release(struct cgroup *cgrp)
4286 /* All of these checks rely on RCU to keep the cgroup
4287 * structure alive */
4288 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4289 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4290 /* Control Group is currently removeable. If it's not
4291 * already queued for a userspace notification, queue
4292 * it now */
4293 int need_schedule_work = 0;
4294 spin_lock(&release_list_lock);
4295 if (!cgroup_is_removed(cgrp) &&
4296 list_empty(&cgrp->release_list)) {
4297 list_add(&cgrp->release_list, &release_list);
4298 need_schedule_work = 1;
4300 spin_unlock(&release_list_lock);
4301 if (need_schedule_work)
4302 schedule_work(&release_agent_work);
4306 /* Caller must verify that the css is not for root cgroup */
4307 void __css_put(struct cgroup_subsys_state *css, int count)
4309 struct cgroup *cgrp = css->cgroup;
4310 int val;
4311 rcu_read_lock();
4312 val = atomic_sub_return(count, &css->refcnt);
4313 if (val == 1) {
4314 if (notify_on_release(cgrp)) {
4315 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4316 check_for_release(cgrp);
4318 cgroup_wakeup_rmdir_waiter(cgrp);
4320 rcu_read_unlock();
4321 WARN_ON_ONCE(val < 1);
4323 EXPORT_SYMBOL_GPL(__css_put);
4326 * Notify userspace when a cgroup is released, by running the
4327 * configured release agent with the name of the cgroup (path
4328 * relative to the root of cgroup file system) as the argument.
4330 * Most likely, this user command will try to rmdir this cgroup.
4332 * This races with the possibility that some other task will be
4333 * attached to this cgroup before it is removed, or that some other
4334 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4335 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4336 * unused, and this cgroup will be reprieved from its death sentence,
4337 * to continue to serve a useful existence. Next time it's released,
4338 * we will get notified again, if it still has 'notify_on_release' set.
4340 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4341 * means only wait until the task is successfully execve()'d. The
4342 * separate release agent task is forked by call_usermodehelper(),
4343 * then control in this thread returns here, without waiting for the
4344 * release agent task. We don't bother to wait because the caller of
4345 * this routine has no use for the exit status of the release agent
4346 * task, so no sense holding our caller up for that.
4348 static void cgroup_release_agent(struct work_struct *work)
4350 BUG_ON(work != &release_agent_work);
4351 mutex_lock(&cgroup_mutex);
4352 spin_lock(&release_list_lock);
4353 while (!list_empty(&release_list)) {
4354 char *argv[3], *envp[3];
4355 int i;
4356 char *pathbuf = NULL, *agentbuf = NULL;
4357 struct cgroup *cgrp = list_entry(release_list.next,
4358 struct cgroup,
4359 release_list);
4360 list_del_init(&cgrp->release_list);
4361 spin_unlock(&release_list_lock);
4362 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4363 if (!pathbuf)
4364 goto continue_free;
4365 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4366 goto continue_free;
4367 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4368 if (!agentbuf)
4369 goto continue_free;
4371 i = 0;
4372 argv[i++] = agentbuf;
4373 argv[i++] = pathbuf;
4374 argv[i] = NULL;
4376 i = 0;
4377 /* minimal command environment */
4378 envp[i++] = "HOME=/";
4379 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4380 envp[i] = NULL;
4382 /* Drop the lock while we invoke the usermode helper,
4383 * since the exec could involve hitting disk and hence
4384 * be a slow process */
4385 mutex_unlock(&cgroup_mutex);
4386 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4387 mutex_lock(&cgroup_mutex);
4388 continue_free:
4389 kfree(pathbuf);
4390 kfree(agentbuf);
4391 spin_lock(&release_list_lock);
4393 spin_unlock(&release_list_lock);
4394 mutex_unlock(&cgroup_mutex);
4397 static int __init cgroup_disable(char *str)
4399 int i;
4400 char *token;
4402 while ((token = strsep(&str, ",")) != NULL) {
4403 if (!*token)
4404 continue;
4406 * cgroup_disable, being at boot time, can't know about module
4407 * subsystems, so we don't worry about them.
4409 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4410 struct cgroup_subsys *ss = subsys[i];
4412 if (!strcmp(token, ss->name)) {
4413 ss->disabled = 1;
4414 printk(KERN_INFO "Disabling %s control group"
4415 " subsystem\n", ss->name);
4416 break;
4420 return 1;
4422 __setup("cgroup_disable=", cgroup_disable);
4425 * Functons for CSS ID.
4429 *To get ID other than 0, this should be called when !cgroup_is_removed().
4431 unsigned short css_id(struct cgroup_subsys_state *css)
4433 struct css_id *cssid = rcu_dereference(css->id);
4435 if (cssid)
4436 return cssid->id;
4437 return 0;
4439 EXPORT_SYMBOL_GPL(css_id);
4441 unsigned short css_depth(struct cgroup_subsys_state *css)
4443 struct css_id *cssid = rcu_dereference(css->id);
4445 if (cssid)
4446 return cssid->depth;
4447 return 0;
4449 EXPORT_SYMBOL_GPL(css_depth);
4451 bool css_is_ancestor(struct cgroup_subsys_state *child,
4452 const struct cgroup_subsys_state *root)
4454 struct css_id *child_id = rcu_dereference(child->id);
4455 struct css_id *root_id = rcu_dereference(root->id);
4457 if (!child_id || !root_id || (child_id->depth < root_id->depth))
4458 return false;
4459 return child_id->stack[root_id->depth] == root_id->id;
4462 static void __free_css_id_cb(struct rcu_head *head)
4464 struct css_id *id;
4466 id = container_of(head, struct css_id, rcu_head);
4467 kfree(id);
4470 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4472 struct css_id *id = css->id;
4473 /* When this is called before css_id initialization, id can be NULL */
4474 if (!id)
4475 return;
4477 BUG_ON(!ss->use_id);
4479 rcu_assign_pointer(id->css, NULL);
4480 rcu_assign_pointer(css->id, NULL);
4481 spin_lock(&ss->id_lock);
4482 idr_remove(&ss->idr, id->id);
4483 spin_unlock(&ss->id_lock);
4484 call_rcu(&id->rcu_head, __free_css_id_cb);
4486 EXPORT_SYMBOL_GPL(free_css_id);
4489 * This is called by init or create(). Then, calls to this function are
4490 * always serialized (By cgroup_mutex() at create()).
4493 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4495 struct css_id *newid;
4496 int myid, error, size;
4498 BUG_ON(!ss->use_id);
4500 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4501 newid = kzalloc(size, GFP_KERNEL);
4502 if (!newid)
4503 return ERR_PTR(-ENOMEM);
4504 /* get id */
4505 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4506 error = -ENOMEM;
4507 goto err_out;
4509 spin_lock(&ss->id_lock);
4510 /* Don't use 0. allocates an ID of 1-65535 */
4511 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4512 spin_unlock(&ss->id_lock);
4514 /* Returns error when there are no free spaces for new ID.*/
4515 if (error) {
4516 error = -ENOSPC;
4517 goto err_out;
4519 if (myid > CSS_ID_MAX)
4520 goto remove_idr;
4522 newid->id = myid;
4523 newid->depth = depth;
4524 return newid;
4525 remove_idr:
4526 error = -ENOSPC;
4527 spin_lock(&ss->id_lock);
4528 idr_remove(&ss->idr, myid);
4529 spin_unlock(&ss->id_lock);
4530 err_out:
4531 kfree(newid);
4532 return ERR_PTR(error);
4536 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4537 struct cgroup_subsys_state *rootcss)
4539 struct css_id *newid;
4541 spin_lock_init(&ss->id_lock);
4542 idr_init(&ss->idr);
4544 newid = get_new_cssid(ss, 0);
4545 if (IS_ERR(newid))
4546 return PTR_ERR(newid);
4548 newid->stack[0] = newid->id;
4549 newid->css = rootcss;
4550 rootcss->id = newid;
4551 return 0;
4554 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4555 struct cgroup *child)
4557 int subsys_id, i, depth = 0;
4558 struct cgroup_subsys_state *parent_css, *child_css;
4559 struct css_id *child_id, *parent_id = NULL;
4561 subsys_id = ss->subsys_id;
4562 parent_css = parent->subsys[subsys_id];
4563 child_css = child->subsys[subsys_id];
4564 depth = css_depth(parent_css) + 1;
4565 parent_id = parent_css->id;
4567 child_id = get_new_cssid(ss, depth);
4568 if (IS_ERR(child_id))
4569 return PTR_ERR(child_id);
4571 for (i = 0; i < depth; i++)
4572 child_id->stack[i] = parent_id->stack[i];
4573 child_id->stack[depth] = child_id->id;
4575 * child_id->css pointer will be set after this cgroup is available
4576 * see cgroup_populate_dir()
4578 rcu_assign_pointer(child_css->id, child_id);
4580 return 0;
4584 * css_lookup - lookup css by id
4585 * @ss: cgroup subsys to be looked into.
4586 * @id: the id
4588 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4589 * NULL if not. Should be called under rcu_read_lock()
4591 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4593 struct css_id *cssid = NULL;
4595 BUG_ON(!ss->use_id);
4596 cssid = idr_find(&ss->idr, id);
4598 if (unlikely(!cssid))
4599 return NULL;
4601 return rcu_dereference(cssid->css);
4603 EXPORT_SYMBOL_GPL(css_lookup);
4606 * css_get_next - lookup next cgroup under specified hierarchy.
4607 * @ss: pointer to subsystem
4608 * @id: current position of iteration.
4609 * @root: pointer to css. search tree under this.
4610 * @foundid: position of found object.
4612 * Search next css under the specified hierarchy of rootid. Calling under
4613 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4615 struct cgroup_subsys_state *
4616 css_get_next(struct cgroup_subsys *ss, int id,
4617 struct cgroup_subsys_state *root, int *foundid)
4619 struct cgroup_subsys_state *ret = NULL;
4620 struct css_id *tmp;
4621 int tmpid;
4622 int rootid = css_id(root);
4623 int depth = css_depth(root);
4625 if (!rootid)
4626 return NULL;
4628 BUG_ON(!ss->use_id);
4629 /* fill start point for scan */
4630 tmpid = id;
4631 while (1) {
4633 * scan next entry from bitmap(tree), tmpid is updated after
4634 * idr_get_next().
4636 spin_lock(&ss->id_lock);
4637 tmp = idr_get_next(&ss->idr, &tmpid);
4638 spin_unlock(&ss->id_lock);
4640 if (!tmp)
4641 break;
4642 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4643 ret = rcu_dereference(tmp->css);
4644 if (ret) {
4645 *foundid = tmpid;
4646 break;
4649 /* continue to scan from next id */
4650 tmpid = tmpid + 1;
4652 return ret;
4655 #ifdef CONFIG_CGROUP_DEBUG
4656 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4657 struct cgroup *cont)
4659 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4661 if (!css)
4662 return ERR_PTR(-ENOMEM);
4664 return css;
4667 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4669 kfree(cont->subsys[debug_subsys_id]);
4672 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4674 return atomic_read(&cont->count);
4677 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4679 return cgroup_task_count(cont);
4682 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4684 return (u64)(unsigned long)current->cgroups;
4687 static u64 current_css_set_refcount_read(struct cgroup *cont,
4688 struct cftype *cft)
4690 u64 count;
4692 rcu_read_lock();
4693 count = atomic_read(&current->cgroups->refcount);
4694 rcu_read_unlock();
4695 return count;
4698 static int current_css_set_cg_links_read(struct cgroup *cont,
4699 struct cftype *cft,
4700 struct seq_file *seq)
4702 struct cg_cgroup_link *link;
4703 struct css_set *cg;
4705 read_lock(&css_set_lock);
4706 rcu_read_lock();
4707 cg = rcu_dereference(current->cgroups);
4708 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4709 struct cgroup *c = link->cgrp;
4710 const char *name;
4712 if (c->dentry)
4713 name = c->dentry->d_name.name;
4714 else
4715 name = "?";
4716 seq_printf(seq, "Root %d group %s\n",
4717 c->root->hierarchy_id, name);
4719 rcu_read_unlock();
4720 read_unlock(&css_set_lock);
4721 return 0;
4724 #define MAX_TASKS_SHOWN_PER_CSS 25
4725 static int cgroup_css_links_read(struct cgroup *cont,
4726 struct cftype *cft,
4727 struct seq_file *seq)
4729 struct cg_cgroup_link *link;
4731 read_lock(&css_set_lock);
4732 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4733 struct css_set *cg = link->cg;
4734 struct task_struct *task;
4735 int count = 0;
4736 seq_printf(seq, "css_set %p\n", cg);
4737 list_for_each_entry(task, &cg->tasks, cg_list) {
4738 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4739 seq_puts(seq, " ...\n");
4740 break;
4741 } else {
4742 seq_printf(seq, " task %d\n",
4743 task_pid_vnr(task));
4747 read_unlock(&css_set_lock);
4748 return 0;
4751 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4753 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4756 static struct cftype debug_files[] = {
4758 .name = "cgroup_refcount",
4759 .read_u64 = cgroup_refcount_read,
4762 .name = "taskcount",
4763 .read_u64 = debug_taskcount_read,
4767 .name = "current_css_set",
4768 .read_u64 = current_css_set_read,
4772 .name = "current_css_set_refcount",
4773 .read_u64 = current_css_set_refcount_read,
4777 .name = "current_css_set_cg_links",
4778 .read_seq_string = current_css_set_cg_links_read,
4782 .name = "cgroup_css_links",
4783 .read_seq_string = cgroup_css_links_read,
4787 .name = "releasable",
4788 .read_u64 = releasable_read,
4792 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4794 return cgroup_add_files(cont, ss, debug_files,
4795 ARRAY_SIZE(debug_files));
4798 struct cgroup_subsys debug_subsys = {
4799 .name = "debug",
4800 .create = debug_create,
4801 .destroy = debug_destroy,
4802 .populate = debug_populate,
4803 .subsys_id = debug_subsys_id,
4805 #endif /* CONFIG_CGROUP_DEBUG */