2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/module.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hash.h>
55 #include <linux/namei.h>
56 #include <linux/smp_lock.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
63 #include <asm/atomic.h>
65 static DEFINE_MUTEX(cgroup_mutex
);
68 * Generate an array of cgroup subsystem pointers. At boot time, this is
69 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
70 * registered after that. The mutable section of this array is protected by
73 #define SUBSYS(_x) &_x ## _subsys,
74 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
75 #include <linux/cgroup_subsys.h>
78 #define MAX_CGROUP_ROOT_NAMELEN 64
81 * A cgroupfs_root represents the root of a cgroup hierarchy,
82 * and may be associated with a superblock to form an active
85 struct cgroupfs_root
{
86 struct super_block
*sb
;
89 * The bitmask of subsystems intended to be attached to this
92 unsigned long subsys_bits
;
94 /* Unique id for this hierarchy. */
97 /* The bitmask of subsystems currently attached to this hierarchy */
98 unsigned long actual_subsys_bits
;
100 /* A list running through the attached subsystems */
101 struct list_head subsys_list
;
103 /* The root cgroup for this hierarchy */
104 struct cgroup top_cgroup
;
106 /* Tracks how many cgroups are currently defined in hierarchy.*/
107 int number_of_cgroups
;
109 /* A list running through the active hierarchies */
110 struct list_head root_list
;
112 /* Hierarchy-specific flags */
115 /* The path to use for release notifications. */
116 char release_agent_path
[PATH_MAX
];
118 /* The name for this hierarchy - may be empty */
119 char name
[MAX_CGROUP_ROOT_NAMELEN
];
123 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
124 * subsystems that are otherwise unattached - it never has more than a
125 * single cgroup, and all tasks are part of that cgroup.
127 static struct cgroupfs_root rootnode
;
130 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
131 * cgroup_subsys->use_id != 0.
133 #define CSS_ID_MAX (65535)
136 * The css to which this ID points. This pointer is set to valid value
137 * after cgroup is populated. If cgroup is removed, this will be NULL.
138 * This pointer is expected to be RCU-safe because destroy()
139 * is called after synchronize_rcu(). But for safe use, css_is_removed()
140 * css_tryget() should be used for avoiding race.
142 struct cgroup_subsys_state
*css
;
148 * Depth in hierarchy which this ID belongs to.
150 unsigned short depth
;
152 * ID is freed by RCU. (and lookup routine is RCU safe.)
154 struct rcu_head rcu_head
;
156 * Hierarchy of CSS ID belongs to.
158 unsigned short stack
[0]; /* Array of Length (depth+1) */
162 * cgroup_event represents events which userspace want to recieve.
164 struct cgroup_event
{
166 * Cgroup which the event belongs to.
170 * Control file which the event associated.
174 * eventfd to signal userspace about the event.
176 struct eventfd_ctx
*eventfd
;
178 * Each of these stored in a list by the cgroup.
180 struct list_head list
;
182 * All fields below needed to unregister event when
183 * userspace closes eventfd.
186 wait_queue_head_t
*wqh
;
188 struct work_struct remove
;
191 /* The list of hierarchy roots */
193 static LIST_HEAD(roots
);
194 static int root_count
;
196 static DEFINE_IDA(hierarchy_ida
);
197 static int next_hierarchy_id
;
198 static DEFINE_SPINLOCK(hierarchy_id_lock
);
200 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
201 #define dummytop (&rootnode.top_cgroup)
203 /* This flag indicates whether tasks in the fork and exit paths should
204 * check for fork/exit handlers to call. This avoids us having to do
205 * extra work in the fork/exit path if none of the subsystems need to
208 static int need_forkexit_callback __read_mostly
;
210 #ifdef CONFIG_PROVE_LOCKING
211 int cgroup_lock_is_held(void)
213 return lockdep_is_held(&cgroup_mutex
);
215 #else /* #ifdef CONFIG_PROVE_LOCKING */
216 int cgroup_lock_is_held(void)
218 return mutex_is_locked(&cgroup_mutex
);
220 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
222 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
224 /* convenient tests for these bits */
225 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
227 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
230 /* bits in struct cgroupfs_root flags field */
232 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
235 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
238 (1 << CGRP_RELEASABLE
) |
239 (1 << CGRP_NOTIFY_ON_RELEASE
);
240 return (cgrp
->flags
& bits
) == bits
;
243 static int notify_on_release(const struct cgroup
*cgrp
)
245 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
249 * for_each_subsys() allows you to iterate on each subsystem attached to
250 * an active hierarchy
252 #define for_each_subsys(_root, _ss) \
253 list_for_each_entry(_ss, &_root->subsys_list, sibling)
255 /* for_each_active_root() allows you to iterate across the active hierarchies */
256 #define for_each_active_root(_root) \
257 list_for_each_entry(_root, &roots, root_list)
259 /* the list of cgroups eligible for automatic release. Protected by
260 * release_list_lock */
261 static LIST_HEAD(release_list
);
262 static DEFINE_SPINLOCK(release_list_lock
);
263 static void cgroup_release_agent(struct work_struct
*work
);
264 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
265 static void check_for_release(struct cgroup
*cgrp
);
267 /* Link structure for associating css_set objects with cgroups */
268 struct cg_cgroup_link
{
270 * List running through cg_cgroup_links associated with a
271 * cgroup, anchored on cgroup->css_sets
273 struct list_head cgrp_link_list
;
276 * List running through cg_cgroup_links pointing at a
277 * single css_set object, anchored on css_set->cg_links
279 struct list_head cg_link_list
;
283 /* The default css_set - used by init and its children prior to any
284 * hierarchies being mounted. It contains a pointer to the root state
285 * for each subsystem. Also used to anchor the list of css_sets. Not
286 * reference-counted, to improve performance when child cgroups
287 * haven't been created.
290 static struct css_set init_css_set
;
291 static struct cg_cgroup_link init_css_set_link
;
293 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
294 struct cgroup_subsys_state
*css
);
296 /* css_set_lock protects the list of css_set objects, and the
297 * chain of tasks off each css_set. Nests outside task->alloc_lock
298 * due to cgroup_iter_start() */
299 static DEFINE_RWLOCK(css_set_lock
);
300 static int css_set_count
;
303 * hash table for cgroup groups. This improves the performance to find
304 * an existing css_set. This hash doesn't (currently) take into
305 * account cgroups in empty hierarchies.
307 #define CSS_SET_HASH_BITS 7
308 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
309 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
311 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
315 unsigned long tmp
= 0UL;
317 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
318 tmp
+= (unsigned long)css
[i
];
319 tmp
= (tmp
>> 16) ^ tmp
;
321 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
323 return &css_set_table
[index
];
326 static void free_css_set_rcu(struct rcu_head
*obj
)
328 struct css_set
*cg
= container_of(obj
, struct css_set
, rcu_head
);
332 /* We don't maintain the lists running through each css_set to its
333 * task until after the first call to cgroup_iter_start(). This
334 * reduces the fork()/exit() overhead for people who have cgroups
335 * compiled into their kernel but not actually in use */
336 static int use_task_css_set_links __read_mostly
;
338 static void __put_css_set(struct css_set
*cg
, int taskexit
)
340 struct cg_cgroup_link
*link
;
341 struct cg_cgroup_link
*saved_link
;
343 * Ensure that the refcount doesn't hit zero while any readers
344 * can see it. Similar to atomic_dec_and_lock(), but for an
347 if (atomic_add_unless(&cg
->refcount
, -1, 1))
349 write_lock(&css_set_lock
);
350 if (!atomic_dec_and_test(&cg
->refcount
)) {
351 write_unlock(&css_set_lock
);
355 /* This css_set is dead. unlink it and release cgroup refcounts */
356 hlist_del(&cg
->hlist
);
359 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
361 struct cgroup
*cgrp
= link
->cgrp
;
362 list_del(&link
->cg_link_list
);
363 list_del(&link
->cgrp_link_list
);
364 if (atomic_dec_and_test(&cgrp
->count
) &&
365 notify_on_release(cgrp
)) {
367 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
368 check_for_release(cgrp
);
374 write_unlock(&css_set_lock
);
375 call_rcu(&cg
->rcu_head
, free_css_set_rcu
);
379 * refcounted get/put for css_set objects
381 static inline void get_css_set(struct css_set
*cg
)
383 atomic_inc(&cg
->refcount
);
386 static inline void put_css_set(struct css_set
*cg
)
388 __put_css_set(cg
, 0);
391 static inline void put_css_set_taskexit(struct css_set
*cg
)
393 __put_css_set(cg
, 1);
397 * compare_css_sets - helper function for find_existing_css_set().
398 * @cg: candidate css_set being tested
399 * @old_cg: existing css_set for a task
400 * @new_cgrp: cgroup that's being entered by the task
401 * @template: desired set of css pointers in css_set (pre-calculated)
403 * Returns true if "cg" matches "old_cg" except for the hierarchy
404 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
406 static bool compare_css_sets(struct css_set
*cg
,
407 struct css_set
*old_cg
,
408 struct cgroup
*new_cgrp
,
409 struct cgroup_subsys_state
*template[])
411 struct list_head
*l1
, *l2
;
413 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
414 /* Not all subsystems matched */
419 * Compare cgroup pointers in order to distinguish between
420 * different cgroups in heirarchies with no subsystems. We
421 * could get by with just this check alone (and skip the
422 * memcmp above) but on most setups the memcmp check will
423 * avoid the need for this more expensive check on almost all
428 l2
= &old_cg
->cg_links
;
430 struct cg_cgroup_link
*cgl1
, *cgl2
;
431 struct cgroup
*cg1
, *cg2
;
435 /* See if we reached the end - both lists are equal length. */
436 if (l1
== &cg
->cg_links
) {
437 BUG_ON(l2
!= &old_cg
->cg_links
);
440 BUG_ON(l2
== &old_cg
->cg_links
);
442 /* Locate the cgroups associated with these links. */
443 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
444 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
447 /* Hierarchies should be linked in the same order. */
448 BUG_ON(cg1
->root
!= cg2
->root
);
451 * If this hierarchy is the hierarchy of the cgroup
452 * that's changing, then we need to check that this
453 * css_set points to the new cgroup; if it's any other
454 * hierarchy, then this css_set should point to the
455 * same cgroup as the old css_set.
457 if (cg1
->root
== new_cgrp
->root
) {
469 * find_existing_css_set() is a helper for
470 * find_css_set(), and checks to see whether an existing
471 * css_set is suitable.
473 * oldcg: the cgroup group that we're using before the cgroup
476 * cgrp: the cgroup that we're moving into
478 * template: location in which to build the desired set of subsystem
479 * state objects for the new cgroup group
481 static struct css_set
*find_existing_css_set(
482 struct css_set
*oldcg
,
484 struct cgroup_subsys_state
*template[])
487 struct cgroupfs_root
*root
= cgrp
->root
;
488 struct hlist_head
*hhead
;
489 struct hlist_node
*node
;
493 * Build the set of subsystem state objects that we want to see in the
494 * new css_set. while subsystems can change globally, the entries here
495 * won't change, so no need for locking.
497 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
498 if (root
->subsys_bits
& (1UL << i
)) {
499 /* Subsystem is in this hierarchy. So we want
500 * the subsystem state from the new
502 template[i
] = cgrp
->subsys
[i
];
504 /* Subsystem is not in this hierarchy, so we
505 * don't want to change the subsystem state */
506 template[i
] = oldcg
->subsys
[i
];
510 hhead
= css_set_hash(template);
511 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
512 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
515 /* This css_set matches what we need */
519 /* No existing cgroup group matched */
523 static void free_cg_links(struct list_head
*tmp
)
525 struct cg_cgroup_link
*link
;
526 struct cg_cgroup_link
*saved_link
;
528 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
529 list_del(&link
->cgrp_link_list
);
535 * allocate_cg_links() allocates "count" cg_cgroup_link structures
536 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
537 * success or a negative error
539 static int allocate_cg_links(int count
, struct list_head
*tmp
)
541 struct cg_cgroup_link
*link
;
544 for (i
= 0; i
< count
; i
++) {
545 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
550 list_add(&link
->cgrp_link_list
, tmp
);
556 * link_css_set - a helper function to link a css_set to a cgroup
557 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
558 * @cg: the css_set to be linked
559 * @cgrp: the destination cgroup
561 static void link_css_set(struct list_head
*tmp_cg_links
,
562 struct css_set
*cg
, struct cgroup
*cgrp
)
564 struct cg_cgroup_link
*link
;
566 BUG_ON(list_empty(tmp_cg_links
));
567 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
571 atomic_inc(&cgrp
->count
);
572 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
574 * Always add links to the tail of the list so that the list
575 * is sorted by order of hierarchy creation
577 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
581 * find_css_set() takes an existing cgroup group and a
582 * cgroup object, and returns a css_set object that's
583 * equivalent to the old group, but with the given cgroup
584 * substituted into the appropriate hierarchy. Must be called with
587 static struct css_set
*find_css_set(
588 struct css_set
*oldcg
, struct cgroup
*cgrp
)
591 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
593 struct list_head tmp_cg_links
;
595 struct hlist_head
*hhead
;
596 struct cg_cgroup_link
*link
;
598 /* First see if we already have a cgroup group that matches
600 read_lock(&css_set_lock
);
601 res
= find_existing_css_set(oldcg
, cgrp
, template);
604 read_unlock(&css_set_lock
);
609 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
613 /* Allocate all the cg_cgroup_link objects that we'll need */
614 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
619 atomic_set(&res
->refcount
, 1);
620 INIT_LIST_HEAD(&res
->cg_links
);
621 INIT_LIST_HEAD(&res
->tasks
);
622 INIT_HLIST_NODE(&res
->hlist
);
624 /* Copy the set of subsystem state objects generated in
625 * find_existing_css_set() */
626 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
628 write_lock(&css_set_lock
);
629 /* Add reference counts and links from the new css_set. */
630 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
631 struct cgroup
*c
= link
->cgrp
;
632 if (c
->root
== cgrp
->root
)
634 link_css_set(&tmp_cg_links
, res
, c
);
637 BUG_ON(!list_empty(&tmp_cg_links
));
641 /* Add this cgroup group to the hash table */
642 hhead
= css_set_hash(res
->subsys
);
643 hlist_add_head(&res
->hlist
, hhead
);
645 write_unlock(&css_set_lock
);
651 * Return the cgroup for "task" from the given hierarchy. Must be
652 * called with cgroup_mutex held.
654 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
655 struct cgroupfs_root
*root
)
658 struct cgroup
*res
= NULL
;
660 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
661 read_lock(&css_set_lock
);
663 * No need to lock the task - since we hold cgroup_mutex the
664 * task can't change groups, so the only thing that can happen
665 * is that it exits and its css is set back to init_css_set.
668 if (css
== &init_css_set
) {
669 res
= &root
->top_cgroup
;
671 struct cg_cgroup_link
*link
;
672 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
673 struct cgroup
*c
= link
->cgrp
;
674 if (c
->root
== root
) {
680 read_unlock(&css_set_lock
);
686 * There is one global cgroup mutex. We also require taking
687 * task_lock() when dereferencing a task's cgroup subsys pointers.
688 * See "The task_lock() exception", at the end of this comment.
690 * A task must hold cgroup_mutex to modify cgroups.
692 * Any task can increment and decrement the count field without lock.
693 * So in general, code holding cgroup_mutex can't rely on the count
694 * field not changing. However, if the count goes to zero, then only
695 * cgroup_attach_task() can increment it again. Because a count of zero
696 * means that no tasks are currently attached, therefore there is no
697 * way a task attached to that cgroup can fork (the other way to
698 * increment the count). So code holding cgroup_mutex can safely
699 * assume that if the count is zero, it will stay zero. Similarly, if
700 * a task holds cgroup_mutex on a cgroup with zero count, it
701 * knows that the cgroup won't be removed, as cgroup_rmdir()
704 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
705 * (usually) take cgroup_mutex. These are the two most performance
706 * critical pieces of code here. The exception occurs on cgroup_exit(),
707 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
708 * is taken, and if the cgroup count is zero, a usermode call made
709 * to the release agent with the name of the cgroup (path relative to
710 * the root of cgroup file system) as the argument.
712 * A cgroup can only be deleted if both its 'count' of using tasks
713 * is zero, and its list of 'children' cgroups is empty. Since all
714 * tasks in the system use _some_ cgroup, and since there is always at
715 * least one task in the system (init, pid == 1), therefore, top_cgroup
716 * always has either children cgroups and/or using tasks. So we don't
717 * need a special hack to ensure that top_cgroup cannot be deleted.
719 * The task_lock() exception
721 * The need for this exception arises from the action of
722 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
723 * another. It does so using cgroup_mutex, however there are
724 * several performance critical places that need to reference
725 * task->cgroup without the expense of grabbing a system global
726 * mutex. Therefore except as noted below, when dereferencing or, as
727 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
728 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
729 * the task_struct routinely used for such matters.
731 * P.S. One more locking exception. RCU is used to guard the
732 * update of a tasks cgroup pointer by cgroup_attach_task()
736 * cgroup_lock - lock out any changes to cgroup structures
739 void cgroup_lock(void)
741 mutex_lock(&cgroup_mutex
);
743 EXPORT_SYMBOL_GPL(cgroup_lock
);
746 * cgroup_unlock - release lock on cgroup changes
748 * Undo the lock taken in a previous cgroup_lock() call.
750 void cgroup_unlock(void)
752 mutex_unlock(&cgroup_mutex
);
754 EXPORT_SYMBOL_GPL(cgroup_unlock
);
757 * A couple of forward declarations required, due to cyclic reference loop:
758 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
759 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
764 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
765 static int cgroup_populate_dir(struct cgroup
*cgrp
);
766 static const struct inode_operations cgroup_dir_inode_operations
;
767 static const struct file_operations proc_cgroupstats_operations
;
769 static struct backing_dev_info cgroup_backing_dev_info
= {
771 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
774 static int alloc_css_id(struct cgroup_subsys
*ss
,
775 struct cgroup
*parent
, struct cgroup
*child
);
777 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
779 struct inode
*inode
= new_inode(sb
);
782 inode
->i_mode
= mode
;
783 inode
->i_uid
= current_fsuid();
784 inode
->i_gid
= current_fsgid();
785 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
786 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
792 * Call subsys's pre_destroy handler.
793 * This is called before css refcnt check.
795 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
797 struct cgroup_subsys
*ss
;
800 for_each_subsys(cgrp
->root
, ss
)
801 if (ss
->pre_destroy
) {
802 ret
= ss
->pre_destroy(ss
, cgrp
);
810 static void free_cgroup_rcu(struct rcu_head
*obj
)
812 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
817 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
819 /* is dentry a directory ? if so, kfree() associated cgroup */
820 if (S_ISDIR(inode
->i_mode
)) {
821 struct cgroup
*cgrp
= dentry
->d_fsdata
;
822 struct cgroup_subsys
*ss
;
823 BUG_ON(!(cgroup_is_removed(cgrp
)));
824 /* It's possible for external users to be holding css
825 * reference counts on a cgroup; css_put() needs to
826 * be able to access the cgroup after decrementing
827 * the reference count in order to know if it needs to
828 * queue the cgroup to be handled by the release
832 mutex_lock(&cgroup_mutex
);
834 * Release the subsystem state objects.
836 for_each_subsys(cgrp
->root
, ss
)
837 ss
->destroy(ss
, cgrp
);
839 cgrp
->root
->number_of_cgroups
--;
840 mutex_unlock(&cgroup_mutex
);
843 * Drop the active superblock reference that we took when we
846 deactivate_super(cgrp
->root
->sb
);
849 * if we're getting rid of the cgroup, refcount should ensure
850 * that there are no pidlists left.
852 BUG_ON(!list_empty(&cgrp
->pidlists
));
854 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
859 static void remove_dir(struct dentry
*d
)
861 struct dentry
*parent
= dget(d
->d_parent
);
864 simple_rmdir(parent
->d_inode
, d
);
868 static void cgroup_clear_directory(struct dentry
*dentry
)
870 struct list_head
*node
;
872 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
873 spin_lock(&dcache_lock
);
874 node
= dentry
->d_subdirs
.next
;
875 while (node
!= &dentry
->d_subdirs
) {
876 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
879 /* This should never be called on a cgroup
880 * directory with child cgroups */
881 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
883 spin_unlock(&dcache_lock
);
885 simple_unlink(dentry
->d_inode
, d
);
887 spin_lock(&dcache_lock
);
889 node
= dentry
->d_subdirs
.next
;
891 spin_unlock(&dcache_lock
);
895 * NOTE : the dentry must have been dget()'ed
897 static void cgroup_d_remove_dir(struct dentry
*dentry
)
899 cgroup_clear_directory(dentry
);
901 spin_lock(&dcache_lock
);
902 list_del_init(&dentry
->d_u
.d_child
);
903 spin_unlock(&dcache_lock
);
908 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
909 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
910 * reference to css->refcnt. In general, this refcnt is expected to goes down
913 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
915 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
917 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
919 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
920 wake_up_all(&cgroup_rmdir_waitq
);
923 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
928 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
930 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
935 * Call with cgroup_mutex held. Drops reference counts on modules, including
936 * any duplicate ones that parse_cgroupfs_options took. If this function
937 * returns an error, no reference counts are touched.
939 static int rebind_subsystems(struct cgroupfs_root
*root
,
940 unsigned long final_bits
)
942 unsigned long added_bits
, removed_bits
;
943 struct cgroup
*cgrp
= &root
->top_cgroup
;
946 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
948 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
949 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
950 /* Check that any added subsystems are currently free */
951 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
952 unsigned long bit
= 1UL << i
;
953 struct cgroup_subsys
*ss
= subsys
[i
];
954 if (!(bit
& added_bits
))
957 * Nobody should tell us to do a subsys that doesn't exist:
958 * parse_cgroupfs_options should catch that case and refcounts
959 * ensure that subsystems won't disappear once selected.
962 if (ss
->root
!= &rootnode
) {
963 /* Subsystem isn't free */
968 /* Currently we don't handle adding/removing subsystems when
969 * any child cgroups exist. This is theoretically supportable
970 * but involves complex error handling, so it's being left until
972 if (root
->number_of_cgroups
> 1)
975 /* Process each subsystem */
976 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
977 struct cgroup_subsys
*ss
= subsys
[i
];
978 unsigned long bit
= 1UL << i
;
979 if (bit
& added_bits
) {
980 /* We're binding this subsystem to this hierarchy */
982 BUG_ON(cgrp
->subsys
[i
]);
983 BUG_ON(!dummytop
->subsys
[i
]);
984 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
985 mutex_lock(&ss
->hierarchy_mutex
);
986 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
987 cgrp
->subsys
[i
]->cgroup
= cgrp
;
988 list_move(&ss
->sibling
, &root
->subsys_list
);
992 mutex_unlock(&ss
->hierarchy_mutex
);
993 /* refcount was already taken, and we're keeping it */
994 } else if (bit
& removed_bits
) {
995 /* We're removing this subsystem */
997 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
998 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
999 mutex_lock(&ss
->hierarchy_mutex
);
1001 ss
->bind(ss
, dummytop
);
1002 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1003 cgrp
->subsys
[i
] = NULL
;
1004 subsys
[i
]->root
= &rootnode
;
1005 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1006 mutex_unlock(&ss
->hierarchy_mutex
);
1007 /* subsystem is now free - drop reference on module */
1008 module_put(ss
->module
);
1009 } else if (bit
& final_bits
) {
1010 /* Subsystem state should already exist */
1012 BUG_ON(!cgrp
->subsys
[i
]);
1014 * a refcount was taken, but we already had one, so
1015 * drop the extra reference.
1017 module_put(ss
->module
);
1018 #ifdef CONFIG_MODULE_UNLOAD
1019 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1022 /* Subsystem state shouldn't exist */
1023 BUG_ON(cgrp
->subsys
[i
]);
1026 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
1032 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
1034 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
1035 struct cgroup_subsys
*ss
;
1037 mutex_lock(&cgroup_mutex
);
1038 for_each_subsys(root
, ss
)
1039 seq_printf(seq
, ",%s", ss
->name
);
1040 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1041 seq_puts(seq
, ",noprefix");
1042 if (strlen(root
->release_agent_path
))
1043 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1044 if (strlen(root
->name
))
1045 seq_printf(seq
, ",name=%s", root
->name
);
1046 mutex_unlock(&cgroup_mutex
);
1050 struct cgroup_sb_opts
{
1051 unsigned long subsys_bits
;
1052 unsigned long flags
;
1053 char *release_agent
;
1055 /* User explicitly requested empty subsystem */
1058 struct cgroupfs_root
*new_root
;
1063 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1064 * with cgroup_mutex held to protect the subsys[] array. This function takes
1065 * refcounts on subsystems to be used, unless it returns error, in which case
1066 * no refcounts are taken.
1068 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1070 char *token
, *o
= data
?: "all";
1071 unsigned long mask
= (unsigned long)-1;
1073 bool module_pin_failed
= false;
1075 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1077 #ifdef CONFIG_CPUSETS
1078 mask
= ~(1UL << cpuset_subsys_id
);
1081 memset(opts
, 0, sizeof(*opts
));
1083 while ((token
= strsep(&o
, ",")) != NULL
) {
1086 if (!strcmp(token
, "all")) {
1087 /* Add all non-disabled subsystems */
1088 opts
->subsys_bits
= 0;
1089 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1090 struct cgroup_subsys
*ss
= subsys
[i
];
1094 opts
->subsys_bits
|= 1ul << i
;
1096 } else if (!strcmp(token
, "none")) {
1097 /* Explicitly have no subsystems */
1099 } else if (!strcmp(token
, "noprefix")) {
1100 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1101 } else if (!strncmp(token
, "release_agent=", 14)) {
1102 /* Specifying two release agents is forbidden */
1103 if (opts
->release_agent
)
1105 opts
->release_agent
=
1106 kstrndup(token
+ 14, PATH_MAX
, GFP_KERNEL
);
1107 if (!opts
->release_agent
)
1109 } else if (!strncmp(token
, "name=", 5)) {
1110 const char *name
= token
+ 5;
1111 /* Can't specify an empty name */
1114 /* Must match [\w.-]+ */
1115 for (i
= 0; i
< strlen(name
); i
++) {
1119 if ((c
== '.') || (c
== '-') || (c
== '_'))
1123 /* Specifying two names is forbidden */
1126 opts
->name
= kstrndup(name
,
1127 MAX_CGROUP_ROOT_NAMELEN
,
1132 struct cgroup_subsys
*ss
;
1133 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1137 if (!strcmp(token
, ss
->name
)) {
1139 set_bit(i
, &opts
->subsys_bits
);
1143 if (i
== CGROUP_SUBSYS_COUNT
)
1148 /* Consistency checks */
1151 * Option noprefix was introduced just for backward compatibility
1152 * with the old cpuset, so we allow noprefix only if mounting just
1153 * the cpuset subsystem.
1155 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1156 (opts
->subsys_bits
& mask
))
1160 /* Can't specify "none" and some subsystems */
1161 if (opts
->subsys_bits
&& opts
->none
)
1165 * We either have to specify by name or by subsystems. (So all
1166 * empty hierarchies must have a name).
1168 if (!opts
->subsys_bits
&& !opts
->name
)
1172 * Grab references on all the modules we'll need, so the subsystems
1173 * don't dance around before rebind_subsystems attaches them. This may
1174 * take duplicate reference counts on a subsystem that's already used,
1175 * but rebind_subsystems handles this case.
1177 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1178 unsigned long bit
= 1UL << i
;
1180 if (!(bit
& opts
->subsys_bits
))
1182 if (!try_module_get(subsys
[i
]->module
)) {
1183 module_pin_failed
= true;
1187 if (module_pin_failed
) {
1189 * oops, one of the modules was going away. this means that we
1190 * raced with a module_delete call, and to the user this is
1191 * essentially a "subsystem doesn't exist" case.
1193 for (i
--; i
>= CGROUP_BUILTIN_SUBSYS_COUNT
; i
--) {
1194 /* drop refcounts only on the ones we took */
1195 unsigned long bit
= 1UL << i
;
1197 if (!(bit
& opts
->subsys_bits
))
1199 module_put(subsys
[i
]->module
);
1207 static void drop_parsed_module_refcounts(unsigned long subsys_bits
)
1210 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1211 unsigned long bit
= 1UL << i
;
1213 if (!(bit
& subsys_bits
))
1215 module_put(subsys
[i
]->module
);
1219 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1222 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1223 struct cgroup
*cgrp
= &root
->top_cgroup
;
1224 struct cgroup_sb_opts opts
;
1227 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1228 mutex_lock(&cgroup_mutex
);
1230 /* See what subsystems are wanted */
1231 ret
= parse_cgroupfs_options(data
, &opts
);
1235 /* Don't allow flags or name to change at remount */
1236 if (opts
.flags
!= root
->flags
||
1237 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1239 drop_parsed_module_refcounts(opts
.subsys_bits
);
1243 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
1245 drop_parsed_module_refcounts(opts
.subsys_bits
);
1249 /* (re)populate subsystem files */
1250 cgroup_populate_dir(cgrp
);
1252 if (opts
.release_agent
)
1253 strcpy(root
->release_agent_path
, opts
.release_agent
);
1255 kfree(opts
.release_agent
);
1257 mutex_unlock(&cgroup_mutex
);
1258 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1263 static const struct super_operations cgroup_ops
= {
1264 .statfs
= simple_statfs
,
1265 .drop_inode
= generic_delete_inode
,
1266 .show_options
= cgroup_show_options
,
1267 .remount_fs
= cgroup_remount
,
1270 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1272 INIT_LIST_HEAD(&cgrp
->sibling
);
1273 INIT_LIST_HEAD(&cgrp
->children
);
1274 INIT_LIST_HEAD(&cgrp
->css_sets
);
1275 INIT_LIST_HEAD(&cgrp
->release_list
);
1276 INIT_LIST_HEAD(&cgrp
->pidlists
);
1277 mutex_init(&cgrp
->pidlist_mutex
);
1278 INIT_LIST_HEAD(&cgrp
->event_list
);
1279 spin_lock_init(&cgrp
->event_list_lock
);
1282 static void init_cgroup_root(struct cgroupfs_root
*root
)
1284 struct cgroup
*cgrp
= &root
->top_cgroup
;
1285 INIT_LIST_HEAD(&root
->subsys_list
);
1286 INIT_LIST_HEAD(&root
->root_list
);
1287 root
->number_of_cgroups
= 1;
1289 cgrp
->top_cgroup
= cgrp
;
1290 init_cgroup_housekeeping(cgrp
);
1293 static bool init_root_id(struct cgroupfs_root
*root
)
1298 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1300 spin_lock(&hierarchy_id_lock
);
1301 /* Try to allocate the next unused ID */
1302 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1303 &root
->hierarchy_id
);
1305 /* Try again starting from 0 */
1306 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1308 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1309 } else if (ret
!= -EAGAIN
) {
1310 /* Can only get here if the 31-bit IDR is full ... */
1313 spin_unlock(&hierarchy_id_lock
);
1318 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1320 struct cgroup_sb_opts
*opts
= data
;
1321 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1323 /* If we asked for a name then it must match */
1324 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1328 * If we asked for subsystems (or explicitly for no
1329 * subsystems) then they must match
1331 if ((opts
->subsys_bits
|| opts
->none
)
1332 && (opts
->subsys_bits
!= root
->subsys_bits
))
1338 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1340 struct cgroupfs_root
*root
;
1342 if (!opts
->subsys_bits
&& !opts
->none
)
1345 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1347 return ERR_PTR(-ENOMEM
);
1349 if (!init_root_id(root
)) {
1351 return ERR_PTR(-ENOMEM
);
1353 init_cgroup_root(root
);
1355 root
->subsys_bits
= opts
->subsys_bits
;
1356 root
->flags
= opts
->flags
;
1357 if (opts
->release_agent
)
1358 strcpy(root
->release_agent_path
, opts
->release_agent
);
1360 strcpy(root
->name
, opts
->name
);
1364 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1369 BUG_ON(!root
->hierarchy_id
);
1370 spin_lock(&hierarchy_id_lock
);
1371 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1372 spin_unlock(&hierarchy_id_lock
);
1376 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1379 struct cgroup_sb_opts
*opts
= data
;
1381 /* If we don't have a new root, we can't set up a new sb */
1382 if (!opts
->new_root
)
1385 BUG_ON(!opts
->subsys_bits
&& !opts
->none
);
1387 ret
= set_anon_super(sb
, NULL
);
1391 sb
->s_fs_info
= opts
->new_root
;
1392 opts
->new_root
->sb
= sb
;
1394 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1395 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1396 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1397 sb
->s_op
= &cgroup_ops
;
1402 static int cgroup_get_rootdir(struct super_block
*sb
)
1404 struct inode
*inode
=
1405 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1406 struct dentry
*dentry
;
1411 inode
->i_fop
= &simple_dir_operations
;
1412 inode
->i_op
= &cgroup_dir_inode_operations
;
1413 /* directories start off with i_nlink == 2 (for "." entry) */
1415 dentry
= d_alloc_root(inode
);
1420 sb
->s_root
= dentry
;
1424 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1425 int flags
, const char *unused_dev_name
,
1426 void *data
, struct vfsmount
*mnt
)
1428 struct cgroup_sb_opts opts
;
1429 struct cgroupfs_root
*root
;
1431 struct super_block
*sb
;
1432 struct cgroupfs_root
*new_root
;
1434 /* First find the desired set of subsystems */
1435 mutex_lock(&cgroup_mutex
);
1436 ret
= parse_cgroupfs_options(data
, &opts
);
1437 mutex_unlock(&cgroup_mutex
);
1442 * Allocate a new cgroup root. We may not need it if we're
1443 * reusing an existing hierarchy.
1445 new_root
= cgroup_root_from_opts(&opts
);
1446 if (IS_ERR(new_root
)) {
1447 ret
= PTR_ERR(new_root
);
1450 opts
.new_root
= new_root
;
1452 /* Locate an existing or new sb for this hierarchy */
1453 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, &opts
);
1456 cgroup_drop_root(opts
.new_root
);
1460 root
= sb
->s_fs_info
;
1462 if (root
== opts
.new_root
) {
1463 /* We used the new root structure, so this is a new hierarchy */
1464 struct list_head tmp_cg_links
;
1465 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1466 struct inode
*inode
;
1467 struct cgroupfs_root
*existing_root
;
1470 BUG_ON(sb
->s_root
!= NULL
);
1472 ret
= cgroup_get_rootdir(sb
);
1474 goto drop_new_super
;
1475 inode
= sb
->s_root
->d_inode
;
1477 mutex_lock(&inode
->i_mutex
);
1478 mutex_lock(&cgroup_mutex
);
1480 if (strlen(root
->name
)) {
1481 /* Check for name clashes with existing mounts */
1482 for_each_active_root(existing_root
) {
1483 if (!strcmp(existing_root
->name
, root
->name
)) {
1485 mutex_unlock(&cgroup_mutex
);
1486 mutex_unlock(&inode
->i_mutex
);
1487 goto drop_new_super
;
1493 * We're accessing css_set_count without locking
1494 * css_set_lock here, but that's OK - it can only be
1495 * increased by someone holding cgroup_lock, and
1496 * that's us. The worst that can happen is that we
1497 * have some link structures left over
1499 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1501 mutex_unlock(&cgroup_mutex
);
1502 mutex_unlock(&inode
->i_mutex
);
1503 goto drop_new_super
;
1506 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1507 if (ret
== -EBUSY
) {
1508 mutex_unlock(&cgroup_mutex
);
1509 mutex_unlock(&inode
->i_mutex
);
1510 free_cg_links(&tmp_cg_links
);
1511 goto drop_new_super
;
1514 * There must be no failure case after here, since rebinding
1515 * takes care of subsystems' refcounts, which are explicitly
1516 * dropped in the failure exit path.
1519 /* EBUSY should be the only error here */
1522 list_add(&root
->root_list
, &roots
);
1525 sb
->s_root
->d_fsdata
= root_cgrp
;
1526 root
->top_cgroup
.dentry
= sb
->s_root
;
1528 /* Link the top cgroup in this hierarchy into all
1529 * the css_set objects */
1530 write_lock(&css_set_lock
);
1531 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1532 struct hlist_head
*hhead
= &css_set_table
[i
];
1533 struct hlist_node
*node
;
1536 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1537 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1539 write_unlock(&css_set_lock
);
1541 free_cg_links(&tmp_cg_links
);
1543 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1544 BUG_ON(!list_empty(&root_cgrp
->children
));
1545 BUG_ON(root
->number_of_cgroups
!= 1);
1547 cgroup_populate_dir(root_cgrp
);
1548 mutex_unlock(&cgroup_mutex
);
1549 mutex_unlock(&inode
->i_mutex
);
1552 * We re-used an existing hierarchy - the new root (if
1553 * any) is not needed
1555 cgroup_drop_root(opts
.new_root
);
1556 /* no subsys rebinding, so refcounts don't change */
1557 drop_parsed_module_refcounts(opts
.subsys_bits
);
1560 simple_set_mnt(mnt
, sb
);
1561 kfree(opts
.release_agent
);
1566 deactivate_locked_super(sb
);
1568 drop_parsed_module_refcounts(opts
.subsys_bits
);
1570 kfree(opts
.release_agent
);
1576 static void cgroup_kill_sb(struct super_block
*sb
) {
1577 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1578 struct cgroup
*cgrp
= &root
->top_cgroup
;
1580 struct cg_cgroup_link
*link
;
1581 struct cg_cgroup_link
*saved_link
;
1585 BUG_ON(root
->number_of_cgroups
!= 1);
1586 BUG_ON(!list_empty(&cgrp
->children
));
1587 BUG_ON(!list_empty(&cgrp
->sibling
));
1589 mutex_lock(&cgroup_mutex
);
1591 /* Rebind all subsystems back to the default hierarchy */
1592 ret
= rebind_subsystems(root
, 0);
1593 /* Shouldn't be able to fail ... */
1597 * Release all the links from css_sets to this hierarchy's
1600 write_lock(&css_set_lock
);
1602 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1604 list_del(&link
->cg_link_list
);
1605 list_del(&link
->cgrp_link_list
);
1608 write_unlock(&css_set_lock
);
1610 if (!list_empty(&root
->root_list
)) {
1611 list_del(&root
->root_list
);
1615 mutex_unlock(&cgroup_mutex
);
1617 kill_litter_super(sb
);
1618 cgroup_drop_root(root
);
1621 static struct file_system_type cgroup_fs_type
= {
1623 .get_sb
= cgroup_get_sb
,
1624 .kill_sb
= cgroup_kill_sb
,
1627 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1629 return dentry
->d_fsdata
;
1632 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1634 return dentry
->d_fsdata
;
1638 * cgroup_path - generate the path of a cgroup
1639 * @cgrp: the cgroup in question
1640 * @buf: the buffer to write the path into
1641 * @buflen: the length of the buffer
1643 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1644 * reference. Writes path of cgroup into buf. Returns 0 on success,
1647 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1650 struct dentry
*dentry
= rcu_dereference(cgrp
->dentry
);
1652 if (!dentry
|| cgrp
== dummytop
) {
1654 * Inactive subsystems have no dentry for their root
1661 start
= buf
+ buflen
;
1665 int len
= dentry
->d_name
.len
;
1666 if ((start
-= len
) < buf
)
1667 return -ENAMETOOLONG
;
1668 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1669 cgrp
= cgrp
->parent
;
1672 dentry
= rcu_dereference(cgrp
->dentry
);
1676 return -ENAMETOOLONG
;
1679 memmove(buf
, start
, buf
+ buflen
- start
);
1682 EXPORT_SYMBOL_GPL(cgroup_path
);
1685 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1686 * @cgrp: the cgroup the task is attaching to
1687 * @tsk: the task to be attached
1689 * Call holding cgroup_mutex. May take task_lock of
1690 * the task 'tsk' during call.
1692 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1695 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1696 struct cgroup
*oldcgrp
;
1698 struct css_set
*newcg
;
1699 struct cgroupfs_root
*root
= cgrp
->root
;
1701 /* Nothing to do if the task is already in that cgroup */
1702 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1703 if (cgrp
== oldcgrp
)
1706 for_each_subsys(root
, ss
) {
1707 if (ss
->can_attach
) {
1708 retval
= ss
->can_attach(ss
, cgrp
, tsk
, false);
1711 * Remember on which subsystem the can_attach()
1712 * failed, so that we only call cancel_attach()
1713 * against the subsystems whose can_attach()
1714 * succeeded. (See below)
1727 * Locate or allocate a new css_set for this task,
1728 * based on its final set of cgroups
1730 newcg
= find_css_set(cg
, cgrp
);
1738 if (tsk
->flags
& PF_EXITING
) {
1744 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1747 /* Update the css_set linked lists if we're using them */
1748 write_lock(&css_set_lock
);
1749 if (!list_empty(&tsk
->cg_list
)) {
1750 list_del(&tsk
->cg_list
);
1751 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1753 write_unlock(&css_set_lock
);
1755 for_each_subsys(root
, ss
) {
1757 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
, false);
1759 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1764 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1765 * is no longer empty.
1767 cgroup_wakeup_rmdir_waiter(cgrp
);
1770 for_each_subsys(root
, ss
) {
1771 if (ss
== failed_ss
)
1773 * This subsystem was the one that failed the
1774 * can_attach() check earlier, so we don't need
1775 * to call cancel_attach() against it or any
1776 * remaining subsystems.
1779 if (ss
->cancel_attach
)
1780 ss
->cancel_attach(ss
, cgrp
, tsk
, false);
1787 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1788 * held. May take task_lock of task
1790 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1792 struct task_struct
*tsk
;
1793 const struct cred
*cred
= current_cred(), *tcred
;
1798 tsk
= find_task_by_vpid(pid
);
1799 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1804 tcred
= __task_cred(tsk
);
1806 cred
->euid
!= tcred
->uid
&&
1807 cred
->euid
!= tcred
->suid
) {
1811 get_task_struct(tsk
);
1815 get_task_struct(tsk
);
1818 ret
= cgroup_attach_task(cgrp
, tsk
);
1819 put_task_struct(tsk
);
1823 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1826 if (!cgroup_lock_live_group(cgrp
))
1828 ret
= attach_task_by_pid(cgrp
, pid
);
1834 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1835 * @cgrp: the cgroup to be checked for liveness
1837 * On success, returns true; the lock should be later released with
1838 * cgroup_unlock(). On failure returns false with no lock held.
1840 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1842 mutex_lock(&cgroup_mutex
);
1843 if (cgroup_is_removed(cgrp
)) {
1844 mutex_unlock(&cgroup_mutex
);
1849 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
1851 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1854 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1855 if (!cgroup_lock_live_group(cgrp
))
1857 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1862 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1863 struct seq_file
*seq
)
1865 if (!cgroup_lock_live_group(cgrp
))
1867 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1868 seq_putc(seq
, '\n');
1873 /* A buffer size big enough for numbers or short strings */
1874 #define CGROUP_LOCAL_BUFFER_SIZE 64
1876 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1878 const char __user
*userbuf
,
1879 size_t nbytes
, loff_t
*unused_ppos
)
1881 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1887 if (nbytes
>= sizeof(buffer
))
1889 if (copy_from_user(buffer
, userbuf
, nbytes
))
1892 buffer
[nbytes
] = 0; /* nul-terminate */
1893 if (cft
->write_u64
) {
1894 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
1897 retval
= cft
->write_u64(cgrp
, cft
, val
);
1899 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
1902 retval
= cft
->write_s64(cgrp
, cft
, val
);
1909 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1911 const char __user
*userbuf
,
1912 size_t nbytes
, loff_t
*unused_ppos
)
1914 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1916 size_t max_bytes
= cft
->max_write_len
;
1917 char *buffer
= local_buffer
;
1920 max_bytes
= sizeof(local_buffer
) - 1;
1921 if (nbytes
>= max_bytes
)
1923 /* Allocate a dynamic buffer if we need one */
1924 if (nbytes
>= sizeof(local_buffer
)) {
1925 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1929 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1934 buffer
[nbytes
] = 0; /* nul-terminate */
1935 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
1939 if (buffer
!= local_buffer
)
1944 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1945 size_t nbytes
, loff_t
*ppos
)
1947 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1948 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1950 if (cgroup_is_removed(cgrp
))
1953 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1954 if (cft
->write_u64
|| cft
->write_s64
)
1955 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1956 if (cft
->write_string
)
1957 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1959 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1960 return ret
? ret
: nbytes
;
1965 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1967 char __user
*buf
, size_t nbytes
,
1970 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1971 u64 val
= cft
->read_u64(cgrp
, cft
);
1972 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1974 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1977 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1979 char __user
*buf
, size_t nbytes
,
1982 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1983 s64 val
= cft
->read_s64(cgrp
, cft
);
1984 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1986 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1989 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1990 size_t nbytes
, loff_t
*ppos
)
1992 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1993 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1995 if (cgroup_is_removed(cgrp
))
1999 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2001 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2003 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2008 * seqfile ops/methods for returning structured data. Currently just
2009 * supports string->u64 maps, but can be extended in future.
2012 struct cgroup_seqfile_state
{
2014 struct cgroup
*cgroup
;
2017 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2019 struct seq_file
*sf
= cb
->state
;
2020 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2023 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2025 struct cgroup_seqfile_state
*state
= m
->private;
2026 struct cftype
*cft
= state
->cft
;
2027 if (cft
->read_map
) {
2028 struct cgroup_map_cb cb
= {
2029 .fill
= cgroup_map_add
,
2032 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2034 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2037 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2039 struct seq_file
*seq
= file
->private_data
;
2040 kfree(seq
->private);
2041 return single_release(inode
, file
);
2044 static const struct file_operations cgroup_seqfile_operations
= {
2046 .write
= cgroup_file_write
,
2047 .llseek
= seq_lseek
,
2048 .release
= cgroup_seqfile_release
,
2051 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2056 err
= generic_file_open(inode
, file
);
2059 cft
= __d_cft(file
->f_dentry
);
2061 if (cft
->read_map
|| cft
->read_seq_string
) {
2062 struct cgroup_seqfile_state
*state
=
2063 kzalloc(sizeof(*state
), GFP_USER
);
2067 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2068 file
->f_op
= &cgroup_seqfile_operations
;
2069 err
= single_open(file
, cgroup_seqfile_show
, state
);
2072 } else if (cft
->open
)
2073 err
= cft
->open(inode
, file
);
2080 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2082 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2084 return cft
->release(inode
, file
);
2089 * cgroup_rename - Only allow simple rename of directories in place.
2091 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2092 struct inode
*new_dir
, struct dentry
*new_dentry
)
2094 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2096 if (new_dentry
->d_inode
)
2098 if (old_dir
!= new_dir
)
2100 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2103 static const struct file_operations cgroup_file_operations
= {
2104 .read
= cgroup_file_read
,
2105 .write
= cgroup_file_write
,
2106 .llseek
= generic_file_llseek
,
2107 .open
= cgroup_file_open
,
2108 .release
= cgroup_file_release
,
2111 static const struct inode_operations cgroup_dir_inode_operations
= {
2112 .lookup
= simple_lookup
,
2113 .mkdir
= cgroup_mkdir
,
2114 .rmdir
= cgroup_rmdir
,
2115 .rename
= cgroup_rename
,
2119 * Check if a file is a control file
2121 static inline struct cftype
*__file_cft(struct file
*file
)
2123 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2124 return ERR_PTR(-EINVAL
);
2125 return __d_cft(file
->f_dentry
);
2128 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
2129 struct super_block
*sb
)
2131 static const struct dentry_operations cgroup_dops
= {
2132 .d_iput
= cgroup_diput
,
2135 struct inode
*inode
;
2139 if (dentry
->d_inode
)
2142 inode
= cgroup_new_inode(mode
, sb
);
2146 if (S_ISDIR(mode
)) {
2147 inode
->i_op
= &cgroup_dir_inode_operations
;
2148 inode
->i_fop
= &simple_dir_operations
;
2150 /* start off with i_nlink == 2 (for "." entry) */
2153 /* start with the directory inode held, so that we can
2154 * populate it without racing with another mkdir */
2155 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2156 } else if (S_ISREG(mode
)) {
2158 inode
->i_fop
= &cgroup_file_operations
;
2160 dentry
->d_op
= &cgroup_dops
;
2161 d_instantiate(dentry
, inode
);
2162 dget(dentry
); /* Extra count - pin the dentry in core */
2167 * cgroup_create_dir - create a directory for an object.
2168 * @cgrp: the cgroup we create the directory for. It must have a valid
2169 * ->parent field. And we are going to fill its ->dentry field.
2170 * @dentry: dentry of the new cgroup
2171 * @mode: mode to set on new directory.
2173 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2176 struct dentry
*parent
;
2179 parent
= cgrp
->parent
->dentry
;
2180 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2182 dentry
->d_fsdata
= cgrp
;
2183 inc_nlink(parent
->d_inode
);
2184 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2193 * cgroup_file_mode - deduce file mode of a control file
2194 * @cft: the control file in question
2196 * returns cft->mode if ->mode is not 0
2197 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2198 * returns S_IRUGO if it has only a read handler
2199 * returns S_IWUSR if it has only a write hander
2201 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
2208 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2209 cft
->read_map
|| cft
->read_seq_string
)
2212 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2213 cft
->write_string
|| cft
->trigger
)
2219 int cgroup_add_file(struct cgroup
*cgrp
,
2220 struct cgroup_subsys
*subsys
,
2221 const struct cftype
*cft
)
2223 struct dentry
*dir
= cgrp
->dentry
;
2224 struct dentry
*dentry
;
2228 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2229 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2230 strcpy(name
, subsys
->name
);
2233 strcat(name
, cft
->name
);
2234 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2235 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2236 if (!IS_ERR(dentry
)) {
2237 mode
= cgroup_file_mode(cft
);
2238 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
2241 dentry
->d_fsdata
= (void *)cft
;
2244 error
= PTR_ERR(dentry
);
2247 EXPORT_SYMBOL_GPL(cgroup_add_file
);
2249 int cgroup_add_files(struct cgroup
*cgrp
,
2250 struct cgroup_subsys
*subsys
,
2251 const struct cftype cft
[],
2255 for (i
= 0; i
< count
; i
++) {
2256 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
2262 EXPORT_SYMBOL_GPL(cgroup_add_files
);
2265 * cgroup_task_count - count the number of tasks in a cgroup.
2266 * @cgrp: the cgroup in question
2268 * Return the number of tasks in the cgroup.
2270 int cgroup_task_count(const struct cgroup
*cgrp
)
2273 struct cg_cgroup_link
*link
;
2275 read_lock(&css_set_lock
);
2276 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2277 count
+= atomic_read(&link
->cg
->refcount
);
2279 read_unlock(&css_set_lock
);
2284 * Advance a list_head iterator. The iterator should be positioned at
2285 * the start of a css_set
2287 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2288 struct cgroup_iter
*it
)
2290 struct list_head
*l
= it
->cg_link
;
2291 struct cg_cgroup_link
*link
;
2294 /* Advance to the next non-empty css_set */
2297 if (l
== &cgrp
->css_sets
) {
2301 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2303 } while (list_empty(&cg
->tasks
));
2305 it
->task
= cg
->tasks
.next
;
2309 * To reduce the fork() overhead for systems that are not actually
2310 * using their cgroups capability, we don't maintain the lists running
2311 * through each css_set to its tasks until we see the list actually
2312 * used - in other words after the first call to cgroup_iter_start().
2314 * The tasklist_lock is not held here, as do_each_thread() and
2315 * while_each_thread() are protected by RCU.
2317 static void cgroup_enable_task_cg_lists(void)
2319 struct task_struct
*p
, *g
;
2320 write_lock(&css_set_lock
);
2321 use_task_css_set_links
= 1;
2322 do_each_thread(g
, p
) {
2325 * We should check if the process is exiting, otherwise
2326 * it will race with cgroup_exit() in that the list
2327 * entry won't be deleted though the process has exited.
2329 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2330 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2332 } while_each_thread(g
, p
);
2333 write_unlock(&css_set_lock
);
2336 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2339 * The first time anyone tries to iterate across a cgroup,
2340 * we need to enable the list linking each css_set to its
2341 * tasks, and fix up all existing tasks.
2343 if (!use_task_css_set_links
)
2344 cgroup_enable_task_cg_lists();
2346 read_lock(&css_set_lock
);
2347 it
->cg_link
= &cgrp
->css_sets
;
2348 cgroup_advance_iter(cgrp
, it
);
2351 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
2352 struct cgroup_iter
*it
)
2354 struct task_struct
*res
;
2355 struct list_head
*l
= it
->task
;
2356 struct cg_cgroup_link
*link
;
2358 /* If the iterator cg is NULL, we have no tasks */
2361 res
= list_entry(l
, struct task_struct
, cg_list
);
2362 /* Advance iterator to find next entry */
2364 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
2365 if (l
== &link
->cg
->tasks
) {
2366 /* We reached the end of this task list - move on to
2367 * the next cg_cgroup_link */
2368 cgroup_advance_iter(cgrp
, it
);
2375 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2377 read_unlock(&css_set_lock
);
2380 static inline int started_after_time(struct task_struct
*t1
,
2381 struct timespec
*time
,
2382 struct task_struct
*t2
)
2384 int start_diff
= timespec_compare(&t1
->start_time
, time
);
2385 if (start_diff
> 0) {
2387 } else if (start_diff
< 0) {
2391 * Arbitrarily, if two processes started at the same
2392 * time, we'll say that the lower pointer value
2393 * started first. Note that t2 may have exited by now
2394 * so this may not be a valid pointer any longer, but
2395 * that's fine - it still serves to distinguish
2396 * between two tasks started (effectively) simultaneously.
2403 * This function is a callback from heap_insert() and is used to order
2405 * In this case we order the heap in descending task start time.
2407 static inline int started_after(void *p1
, void *p2
)
2409 struct task_struct
*t1
= p1
;
2410 struct task_struct
*t2
= p2
;
2411 return started_after_time(t1
, &t2
->start_time
, t2
);
2415 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2416 * @scan: struct cgroup_scanner containing arguments for the scan
2418 * Arguments include pointers to callback functions test_task() and
2420 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2421 * and if it returns true, call process_task() for it also.
2422 * The test_task pointer may be NULL, meaning always true (select all tasks).
2423 * Effectively duplicates cgroup_iter_{start,next,end}()
2424 * but does not lock css_set_lock for the call to process_task().
2425 * The struct cgroup_scanner may be embedded in any structure of the caller's
2427 * It is guaranteed that process_task() will act on every task that
2428 * is a member of the cgroup for the duration of this call. This
2429 * function may or may not call process_task() for tasks that exit
2430 * or move to a different cgroup during the call, or are forked or
2431 * move into the cgroup during the call.
2433 * Note that test_task() may be called with locks held, and may in some
2434 * situations be called multiple times for the same task, so it should
2436 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2437 * pre-allocated and will be used for heap operations (and its "gt" member will
2438 * be overwritten), else a temporary heap will be used (allocation of which
2439 * may cause this function to fail).
2441 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2444 struct cgroup_iter it
;
2445 struct task_struct
*p
, *dropped
;
2446 /* Never dereference latest_task, since it's not refcounted */
2447 struct task_struct
*latest_task
= NULL
;
2448 struct ptr_heap tmp_heap
;
2449 struct ptr_heap
*heap
;
2450 struct timespec latest_time
= { 0, 0 };
2453 /* The caller supplied our heap and pre-allocated its memory */
2455 heap
->gt
= &started_after
;
2457 /* We need to allocate our own heap memory */
2459 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2461 /* cannot allocate the heap */
2467 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2468 * to determine which are of interest, and using the scanner's
2469 * "process_task" callback to process any of them that need an update.
2470 * Since we don't want to hold any locks during the task updates,
2471 * gather tasks to be processed in a heap structure.
2472 * The heap is sorted by descending task start time.
2473 * If the statically-sized heap fills up, we overflow tasks that
2474 * started later, and in future iterations only consider tasks that
2475 * started after the latest task in the previous pass. This
2476 * guarantees forward progress and that we don't miss any tasks.
2479 cgroup_iter_start(scan
->cg
, &it
);
2480 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2482 * Only affect tasks that qualify per the caller's callback,
2483 * if he provided one
2485 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2488 * Only process tasks that started after the last task
2491 if (!started_after_time(p
, &latest_time
, latest_task
))
2493 dropped
= heap_insert(heap
, p
);
2494 if (dropped
== NULL
) {
2496 * The new task was inserted; the heap wasn't
2500 } else if (dropped
!= p
) {
2502 * The new task was inserted, and pushed out a
2506 put_task_struct(dropped
);
2509 * Else the new task was newer than anything already in
2510 * the heap and wasn't inserted
2513 cgroup_iter_end(scan
->cg
, &it
);
2516 for (i
= 0; i
< heap
->size
; i
++) {
2517 struct task_struct
*q
= heap
->ptrs
[i
];
2519 latest_time
= q
->start_time
;
2522 /* Process the task per the caller's callback */
2523 scan
->process_task(q
, scan
);
2527 * If we had to process any tasks at all, scan again
2528 * in case some of them were in the middle of forking
2529 * children that didn't get processed.
2530 * Not the most efficient way to do it, but it avoids
2531 * having to take callback_mutex in the fork path
2535 if (heap
== &tmp_heap
)
2536 heap_free(&tmp_heap
);
2541 * Stuff for reading the 'tasks'/'procs' files.
2543 * Reading this file can return large amounts of data if a cgroup has
2544 * *lots* of attached tasks. So it may need several calls to read(),
2545 * but we cannot guarantee that the information we produce is correct
2546 * unless we produce it entirely atomically.
2551 * The following two functions "fix" the issue where there are more pids
2552 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2553 * TODO: replace with a kernel-wide solution to this problem
2555 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2556 static void *pidlist_allocate(int count
)
2558 if (PIDLIST_TOO_LARGE(count
))
2559 return vmalloc(count
* sizeof(pid_t
));
2561 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
2563 static void pidlist_free(void *p
)
2565 if (is_vmalloc_addr(p
))
2570 static void *pidlist_resize(void *p
, int newcount
)
2573 /* note: if new alloc fails, old p will still be valid either way */
2574 if (is_vmalloc_addr(p
)) {
2575 newlist
= vmalloc(newcount
* sizeof(pid_t
));
2578 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
2581 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
2587 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2588 * If the new stripped list is sufficiently smaller and there's enough memory
2589 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2590 * number of unique elements.
2592 /* is the size difference enough that we should re-allocate the array? */
2593 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2594 static int pidlist_uniq(pid_t
**p
, int length
)
2601 * we presume the 0th element is unique, so i starts at 1. trivial
2602 * edge cases first; no work needs to be done for either
2604 if (length
== 0 || length
== 1)
2606 /* src and dest walk down the list; dest counts unique elements */
2607 for (src
= 1; src
< length
; src
++) {
2608 /* find next unique element */
2609 while (list
[src
] == list
[src
-1]) {
2614 /* dest always points to where the next unique element goes */
2615 list
[dest
] = list
[src
];
2620 * if the length difference is large enough, we want to allocate a
2621 * smaller buffer to save memory. if this fails due to out of memory,
2622 * we'll just stay with what we've got.
2624 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
2625 newlist
= pidlist_resize(list
, dest
);
2632 static int cmppid(const void *a
, const void *b
)
2634 return *(pid_t
*)a
- *(pid_t
*)b
;
2638 * find the appropriate pidlist for our purpose (given procs vs tasks)
2639 * returns with the lock on that pidlist already held, and takes care
2640 * of the use count, or returns NULL with no locks held if we're out of
2643 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
2644 enum cgroup_filetype type
)
2646 struct cgroup_pidlist
*l
;
2647 /* don't need task_nsproxy() if we're looking at ourself */
2648 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2651 * We can't drop the pidlist_mutex before taking the l->mutex in case
2652 * the last ref-holder is trying to remove l from the list at the same
2653 * time. Holding the pidlist_mutex precludes somebody taking whichever
2654 * list we find out from under us - compare release_pid_array().
2656 mutex_lock(&cgrp
->pidlist_mutex
);
2657 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
2658 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
2659 /* make sure l doesn't vanish out from under us */
2660 down_write(&l
->mutex
);
2661 mutex_unlock(&cgrp
->pidlist_mutex
);
2665 /* entry not found; create a new one */
2666 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
2668 mutex_unlock(&cgrp
->pidlist_mutex
);
2671 init_rwsem(&l
->mutex
);
2672 down_write(&l
->mutex
);
2674 l
->key
.ns
= get_pid_ns(ns
);
2675 l
->use_count
= 0; /* don't increment here */
2678 list_add(&l
->links
, &cgrp
->pidlists
);
2679 mutex_unlock(&cgrp
->pidlist_mutex
);
2684 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2686 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
2687 struct cgroup_pidlist
**lp
)
2691 int pid
, n
= 0; /* used for populating the array */
2692 struct cgroup_iter it
;
2693 struct task_struct
*tsk
;
2694 struct cgroup_pidlist
*l
;
2697 * If cgroup gets more users after we read count, we won't have
2698 * enough space - tough. This race is indistinguishable to the
2699 * caller from the case that the additional cgroup users didn't
2700 * show up until sometime later on.
2702 length
= cgroup_task_count(cgrp
);
2703 array
= pidlist_allocate(length
);
2706 /* now, populate the array */
2707 cgroup_iter_start(cgrp
, &it
);
2708 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2709 if (unlikely(n
== length
))
2711 /* get tgid or pid for procs or tasks file respectively */
2712 if (type
== CGROUP_FILE_PROCS
)
2713 pid
= task_tgid_vnr(tsk
);
2715 pid
= task_pid_vnr(tsk
);
2716 if (pid
> 0) /* make sure to only use valid results */
2719 cgroup_iter_end(cgrp
, &it
);
2721 /* now sort & (if procs) strip out duplicates */
2722 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
2723 if (type
== CGROUP_FILE_PROCS
)
2724 length
= pidlist_uniq(&array
, length
);
2725 l
= cgroup_pidlist_find(cgrp
, type
);
2727 pidlist_free(array
);
2730 /* store array, freeing old if necessary - lock already held */
2731 pidlist_free(l
->list
);
2735 up_write(&l
->mutex
);
2741 * cgroupstats_build - build and fill cgroupstats
2742 * @stats: cgroupstats to fill information into
2743 * @dentry: A dentry entry belonging to the cgroup for which stats have
2746 * Build and fill cgroupstats so that taskstats can export it to user
2749 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2752 struct cgroup
*cgrp
;
2753 struct cgroup_iter it
;
2754 struct task_struct
*tsk
;
2757 * Validate dentry by checking the superblock operations,
2758 * and make sure it's a directory.
2760 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2761 !S_ISDIR(dentry
->d_inode
->i_mode
))
2765 cgrp
= dentry
->d_fsdata
;
2767 cgroup_iter_start(cgrp
, &it
);
2768 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2769 switch (tsk
->state
) {
2771 stats
->nr_running
++;
2773 case TASK_INTERRUPTIBLE
:
2774 stats
->nr_sleeping
++;
2776 case TASK_UNINTERRUPTIBLE
:
2777 stats
->nr_uninterruptible
++;
2780 stats
->nr_stopped
++;
2783 if (delayacct_is_task_waiting_on_io(tsk
))
2784 stats
->nr_io_wait
++;
2788 cgroup_iter_end(cgrp
, &it
);
2796 * seq_file methods for the tasks/procs files. The seq_file position is the
2797 * next pid to display; the seq_file iterator is a pointer to the pid
2798 * in the cgroup->l->list array.
2801 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
2804 * Initially we receive a position value that corresponds to
2805 * one more than the last pid shown (or 0 on the first call or
2806 * after a seek to the start). Use a binary-search to find the
2807 * next pid to display, if any
2809 struct cgroup_pidlist
*l
= s
->private;
2810 int index
= 0, pid
= *pos
;
2813 down_read(&l
->mutex
);
2815 int end
= l
->length
;
2817 while (index
< end
) {
2818 int mid
= (index
+ end
) / 2;
2819 if (l
->list
[mid
] == pid
) {
2822 } else if (l
->list
[mid
] <= pid
)
2828 /* If we're off the end of the array, we're done */
2829 if (index
>= l
->length
)
2831 /* Update the abstract position to be the actual pid that we found */
2832 iter
= l
->list
+ index
;
2837 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
2839 struct cgroup_pidlist
*l
= s
->private;
2843 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2845 struct cgroup_pidlist
*l
= s
->private;
2847 pid_t
*end
= l
->list
+ l
->length
;
2849 * Advance to the next pid in the array. If this goes off the
2861 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
2863 return seq_printf(s
, "%d\n", *(int *)v
);
2867 * seq_operations functions for iterating on pidlists through seq_file -
2868 * independent of whether it's tasks or procs
2870 static const struct seq_operations cgroup_pidlist_seq_operations
= {
2871 .start
= cgroup_pidlist_start
,
2872 .stop
= cgroup_pidlist_stop
,
2873 .next
= cgroup_pidlist_next
,
2874 .show
= cgroup_pidlist_show
,
2877 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
2880 * the case where we're the last user of this particular pidlist will
2881 * have us remove it from the cgroup's list, which entails taking the
2882 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2883 * pidlist_mutex, we have to take pidlist_mutex first.
2885 mutex_lock(&l
->owner
->pidlist_mutex
);
2886 down_write(&l
->mutex
);
2887 BUG_ON(!l
->use_count
);
2888 if (!--l
->use_count
) {
2889 /* we're the last user if refcount is 0; remove and free */
2890 list_del(&l
->links
);
2891 mutex_unlock(&l
->owner
->pidlist_mutex
);
2892 pidlist_free(l
->list
);
2893 put_pid_ns(l
->key
.ns
);
2894 up_write(&l
->mutex
);
2898 mutex_unlock(&l
->owner
->pidlist_mutex
);
2899 up_write(&l
->mutex
);
2902 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
2904 struct cgroup_pidlist
*l
;
2905 if (!(file
->f_mode
& FMODE_READ
))
2908 * the seq_file will only be initialized if the file was opened for
2909 * reading; hence we check if it's not null only in that case.
2911 l
= ((struct seq_file
*)file
->private_data
)->private;
2912 cgroup_release_pid_array(l
);
2913 return seq_release(inode
, file
);
2916 static const struct file_operations cgroup_pidlist_operations
= {
2918 .llseek
= seq_lseek
,
2919 .write
= cgroup_file_write
,
2920 .release
= cgroup_pidlist_release
,
2924 * The following functions handle opens on a file that displays a pidlist
2925 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2928 /* helper function for the two below it */
2929 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
2931 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2932 struct cgroup_pidlist
*l
;
2935 /* Nothing to do for write-only files */
2936 if (!(file
->f_mode
& FMODE_READ
))
2939 /* have the array populated */
2940 retval
= pidlist_array_load(cgrp
, type
, &l
);
2943 /* configure file information */
2944 file
->f_op
= &cgroup_pidlist_operations
;
2946 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
2948 cgroup_release_pid_array(l
);
2951 ((struct seq_file
*)file
->private_data
)->private = l
;
2954 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2956 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
2958 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
2960 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
2963 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2966 return notify_on_release(cgrp
);
2969 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2973 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2975 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2977 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2982 * Unregister event and free resources.
2984 * Gets called from workqueue.
2986 static void cgroup_event_remove(struct work_struct
*work
)
2988 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
2990 struct cgroup
*cgrp
= event
->cgrp
;
2992 /* TODO: check return code */
2993 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
2995 eventfd_ctx_put(event
->eventfd
);
3001 * Gets called on POLLHUP on eventfd when user closes it.
3003 * Called with wqh->lock held and interrupts disabled.
3005 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3006 int sync
, void *key
)
3008 struct cgroup_event
*event
= container_of(wait
,
3009 struct cgroup_event
, wait
);
3010 struct cgroup
*cgrp
= event
->cgrp
;
3011 unsigned long flags
= (unsigned long)key
;
3013 if (flags
& POLLHUP
) {
3014 remove_wait_queue_locked(event
->wqh
, &event
->wait
);
3015 spin_lock(&cgrp
->event_list_lock
);
3016 list_del(&event
->list
);
3017 spin_unlock(&cgrp
->event_list_lock
);
3019 * We are in atomic context, but cgroup_event_remove() may
3020 * sleep, so we have to call it in workqueue.
3022 schedule_work(&event
->remove
);
3028 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3029 wait_queue_head_t
*wqh
, poll_table
*pt
)
3031 struct cgroup_event
*event
= container_of(pt
,
3032 struct cgroup_event
, pt
);
3035 add_wait_queue(wqh
, &event
->wait
);
3039 * Parse input and register new cgroup event handler.
3041 * Input must be in format '<event_fd> <control_fd> <args>'.
3042 * Interpretation of args is defined by control file implementation.
3044 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3047 struct cgroup_event
*event
= NULL
;
3048 unsigned int efd
, cfd
;
3049 struct file
*efile
= NULL
;
3050 struct file
*cfile
= NULL
;
3054 efd
= simple_strtoul(buffer
, &endp
, 10);
3059 cfd
= simple_strtoul(buffer
, &endp
, 10);
3060 if ((*endp
!= ' ') && (*endp
!= '\0'))
3064 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3068 INIT_LIST_HEAD(&event
->list
);
3069 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3070 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3071 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3073 efile
= eventfd_fget(efd
);
3074 if (IS_ERR(efile
)) {
3075 ret
= PTR_ERR(efile
);
3079 event
->eventfd
= eventfd_ctx_fileget(efile
);
3080 if (IS_ERR(event
->eventfd
)) {
3081 ret
= PTR_ERR(event
->eventfd
);
3091 /* the process need read permission on control file */
3092 ret
= file_permission(cfile
, MAY_READ
);
3096 event
->cft
= __file_cft(cfile
);
3097 if (IS_ERR(event
->cft
)) {
3098 ret
= PTR_ERR(event
->cft
);
3102 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3107 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3108 event
->eventfd
, buffer
);
3112 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3113 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3119 * Events should be removed after rmdir of cgroup directory, but before
3120 * destroying subsystem state objects. Let's take reference to cgroup
3121 * directory dentry to do that.
3125 spin_lock(&cgrp
->event_list_lock
);
3126 list_add(&event
->list
, &cgrp
->event_list
);
3127 spin_unlock(&cgrp
->event_list_lock
);
3138 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3139 eventfd_ctx_put(event
->eventfd
);
3141 if (!IS_ERR_OR_NULL(efile
))
3150 * for the common functions, 'private' gives the type of file
3152 /* for hysterical raisins, we can't put this on the older files */
3153 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3154 static struct cftype files
[] = {
3157 .open
= cgroup_tasks_open
,
3158 .write_u64
= cgroup_tasks_write
,
3159 .release
= cgroup_pidlist_release
,
3160 .mode
= S_IRUGO
| S_IWUSR
,
3163 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3164 .open
= cgroup_procs_open
,
3165 /* .write_u64 = cgroup_procs_write, TODO */
3166 .release
= cgroup_pidlist_release
,
3170 .name
= "notify_on_release",
3171 .read_u64
= cgroup_read_notify_on_release
,
3172 .write_u64
= cgroup_write_notify_on_release
,
3175 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3176 .write_string
= cgroup_write_event_control
,
3181 static struct cftype cft_release_agent
= {
3182 .name
= "release_agent",
3183 .read_seq_string
= cgroup_release_agent_show
,
3184 .write_string
= cgroup_release_agent_write
,
3185 .max_write_len
= PATH_MAX
,
3188 static int cgroup_populate_dir(struct cgroup
*cgrp
)
3191 struct cgroup_subsys
*ss
;
3193 /* First clear out any existing files */
3194 cgroup_clear_directory(cgrp
->dentry
);
3196 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
3200 if (cgrp
== cgrp
->top_cgroup
) {
3201 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
3205 for_each_subsys(cgrp
->root
, ss
) {
3206 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
3209 /* This cgroup is ready now */
3210 for_each_subsys(cgrp
->root
, ss
) {
3211 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3213 * Update id->css pointer and make this css visible from
3214 * CSS ID functions. This pointer will be dereferened
3215 * from RCU-read-side without locks.
3218 rcu_assign_pointer(css
->id
->css
, css
);
3224 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
3225 struct cgroup_subsys
*ss
,
3226 struct cgroup
*cgrp
)
3229 atomic_set(&css
->refcnt
, 1);
3232 if (cgrp
== dummytop
)
3233 set_bit(CSS_ROOT
, &css
->flags
);
3234 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
3235 cgrp
->subsys
[ss
->subsys_id
] = css
;
3238 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
3240 /* We need to take each hierarchy_mutex in a consistent order */
3244 * No worry about a race with rebind_subsystems that might mess up the
3245 * locking order, since both parties are under cgroup_mutex.
3247 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3248 struct cgroup_subsys
*ss
= subsys
[i
];
3251 if (ss
->root
== root
)
3252 mutex_lock(&ss
->hierarchy_mutex
);
3256 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
3260 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3261 struct cgroup_subsys
*ss
= subsys
[i
];
3264 if (ss
->root
== root
)
3265 mutex_unlock(&ss
->hierarchy_mutex
);
3270 * cgroup_create - create a cgroup
3271 * @parent: cgroup that will be parent of the new cgroup
3272 * @dentry: dentry of the new cgroup
3273 * @mode: mode to set on new inode
3275 * Must be called with the mutex on the parent inode held
3277 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
3280 struct cgroup
*cgrp
;
3281 struct cgroupfs_root
*root
= parent
->root
;
3283 struct cgroup_subsys
*ss
;
3284 struct super_block
*sb
= root
->sb
;
3286 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
3290 /* Grab a reference on the superblock so the hierarchy doesn't
3291 * get deleted on unmount if there are child cgroups. This
3292 * can be done outside cgroup_mutex, since the sb can't
3293 * disappear while someone has an open control file on the
3295 atomic_inc(&sb
->s_active
);
3297 mutex_lock(&cgroup_mutex
);
3299 init_cgroup_housekeeping(cgrp
);
3301 cgrp
->parent
= parent
;
3302 cgrp
->root
= parent
->root
;
3303 cgrp
->top_cgroup
= parent
->top_cgroup
;
3305 if (notify_on_release(parent
))
3306 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3308 for_each_subsys(root
, ss
) {
3309 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
3315 init_cgroup_css(css
, ss
, cgrp
);
3317 err
= alloc_css_id(ss
, parent
, cgrp
);
3321 /* At error, ->destroy() callback has to free assigned ID. */
3324 cgroup_lock_hierarchy(root
);
3325 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
3326 cgroup_unlock_hierarchy(root
);
3327 root
->number_of_cgroups
++;
3329 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
3333 /* The cgroup directory was pre-locked for us */
3334 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
3336 err
= cgroup_populate_dir(cgrp
);
3337 /* If err < 0, we have a half-filled directory - oh well ;) */
3339 mutex_unlock(&cgroup_mutex
);
3340 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
3346 cgroup_lock_hierarchy(root
);
3347 list_del(&cgrp
->sibling
);
3348 cgroup_unlock_hierarchy(root
);
3349 root
->number_of_cgroups
--;
3353 for_each_subsys(root
, ss
) {
3354 if (cgrp
->subsys
[ss
->subsys_id
])
3355 ss
->destroy(ss
, cgrp
);
3358 mutex_unlock(&cgroup_mutex
);
3360 /* Release the reference count that we took on the superblock */
3361 deactivate_super(sb
);
3367 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3369 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
3371 /* the vfs holds inode->i_mutex already */
3372 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
3375 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
3377 /* Check the reference count on each subsystem. Since we
3378 * already established that there are no tasks in the
3379 * cgroup, if the css refcount is also 1, then there should
3380 * be no outstanding references, so the subsystem is safe to
3381 * destroy. We scan across all subsystems rather than using
3382 * the per-hierarchy linked list of mounted subsystems since
3383 * we can be called via check_for_release() with no
3384 * synchronization other than RCU, and the subsystem linked
3385 * list isn't RCU-safe */
3388 * We won't need to lock the subsys array, because the subsystems
3389 * we're concerned about aren't going anywhere since our cgroup root
3390 * has a reference on them.
3392 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3393 struct cgroup_subsys
*ss
= subsys
[i
];
3394 struct cgroup_subsys_state
*css
;
3395 /* Skip subsystems not present or not in this hierarchy */
3396 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
3398 css
= cgrp
->subsys
[ss
->subsys_id
];
3399 /* When called from check_for_release() it's possible
3400 * that by this point the cgroup has been removed
3401 * and the css deleted. But a false-positive doesn't
3402 * matter, since it can only happen if the cgroup
3403 * has been deleted and hence no longer needs the
3404 * release agent to be called anyway. */
3405 if (css
&& (atomic_read(&css
->refcnt
) > 1))
3412 * Atomically mark all (or else none) of the cgroup's CSS objects as
3413 * CSS_REMOVED. Return true on success, or false if the cgroup has
3414 * busy subsystems. Call with cgroup_mutex held
3417 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
3419 struct cgroup_subsys
*ss
;
3420 unsigned long flags
;
3421 bool failed
= false;
3422 local_irq_save(flags
);
3423 for_each_subsys(cgrp
->root
, ss
) {
3424 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3427 /* We can only remove a CSS with a refcnt==1 */
3428 refcnt
= atomic_read(&css
->refcnt
);
3435 * Drop the refcnt to 0 while we check other
3436 * subsystems. This will cause any racing
3437 * css_tryget() to spin until we set the
3438 * CSS_REMOVED bits or abort
3440 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
3446 for_each_subsys(cgrp
->root
, ss
) {
3447 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3450 * Restore old refcnt if we previously managed
3451 * to clear it from 1 to 0
3453 if (!atomic_read(&css
->refcnt
))
3454 atomic_set(&css
->refcnt
, 1);
3456 /* Commit the fact that the CSS is removed */
3457 set_bit(CSS_REMOVED
, &css
->flags
);
3460 local_irq_restore(flags
);
3464 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
3466 struct cgroup
*cgrp
= dentry
->d_fsdata
;
3468 struct cgroup
*parent
;
3470 struct cgroup_event
*event
, *tmp
;
3473 /* the vfs holds both inode->i_mutex already */
3475 mutex_lock(&cgroup_mutex
);
3476 if (atomic_read(&cgrp
->count
) != 0) {
3477 mutex_unlock(&cgroup_mutex
);
3480 if (!list_empty(&cgrp
->children
)) {
3481 mutex_unlock(&cgroup_mutex
);
3484 mutex_unlock(&cgroup_mutex
);
3487 * In general, subsystem has no css->refcnt after pre_destroy(). But
3488 * in racy cases, subsystem may have to get css->refcnt after
3489 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3490 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3491 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3492 * and subsystem's reference count handling. Please see css_get/put
3493 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3495 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3498 * Call pre_destroy handlers of subsys. Notify subsystems
3499 * that rmdir() request comes.
3501 ret
= cgroup_call_pre_destroy(cgrp
);
3503 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3507 mutex_lock(&cgroup_mutex
);
3508 parent
= cgrp
->parent
;
3509 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
3510 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3511 mutex_unlock(&cgroup_mutex
);
3514 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
3515 if (!cgroup_clear_css_refs(cgrp
)) {
3516 mutex_unlock(&cgroup_mutex
);
3518 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3519 * prepare_to_wait(), we need to check this flag.
3521 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
3523 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3524 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3525 if (signal_pending(current
))
3529 /* NO css_tryget() can success after here. */
3530 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3531 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3533 spin_lock(&release_list_lock
);
3534 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
3535 if (!list_empty(&cgrp
->release_list
))
3536 list_del(&cgrp
->release_list
);
3537 spin_unlock(&release_list_lock
);
3539 cgroup_lock_hierarchy(cgrp
->root
);
3540 /* delete this cgroup from parent->children */
3541 list_del(&cgrp
->sibling
);
3542 cgroup_unlock_hierarchy(cgrp
->root
);
3544 spin_lock(&cgrp
->dentry
->d_lock
);
3545 d
= dget(cgrp
->dentry
);
3546 spin_unlock(&d
->d_lock
);
3548 cgroup_d_remove_dir(d
);
3551 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
3552 check_for_release(parent
);
3555 * Unregister events and notify userspace.
3556 * Notify userspace about cgroup removing only after rmdir of cgroup
3557 * directory to avoid race between userspace and kernelspace
3559 spin_lock(&cgrp
->event_list_lock
);
3560 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
3561 list_del(&event
->list
);
3562 remove_wait_queue(event
->wqh
, &event
->wait
);
3563 eventfd_signal(event
->eventfd
, 1);
3564 schedule_work(&event
->remove
);
3566 spin_unlock(&cgrp
->event_list_lock
);
3568 mutex_unlock(&cgroup_mutex
);
3572 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
3574 struct cgroup_subsys_state
*css
;
3576 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
3578 /* Create the top cgroup state for this subsystem */
3579 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3580 ss
->root
= &rootnode
;
3581 css
= ss
->create(ss
, dummytop
);
3582 /* We don't handle early failures gracefully */
3583 BUG_ON(IS_ERR(css
));
3584 init_cgroup_css(css
, ss
, dummytop
);
3586 /* Update the init_css_set to contain a subsys
3587 * pointer to this state - since the subsystem is
3588 * newly registered, all tasks and hence the
3589 * init_css_set is in the subsystem's top cgroup. */
3590 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
3592 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
3594 /* At system boot, before all subsystems have been
3595 * registered, no tasks have been forked, so we don't
3596 * need to invoke fork callbacks here. */
3597 BUG_ON(!list_empty(&init_task
.tasks
));
3599 mutex_init(&ss
->hierarchy_mutex
);
3600 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3603 /* this function shouldn't be used with modular subsystems, since they
3604 * need to register a subsys_id, among other things */
3609 * cgroup_load_subsys: load and register a modular subsystem at runtime
3610 * @ss: the subsystem to load
3612 * This function should be called in a modular subsystem's initcall. If the
3613 * subsytem is built as a module, it will be assigned a new subsys_id and set
3614 * up for use. If the subsystem is built-in anyway, work is delegated to the
3615 * simpler cgroup_init_subsys.
3617 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
3620 struct cgroup_subsys_state
*css
;
3622 /* check name and function validity */
3623 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
3624 ss
->create
== NULL
|| ss
->destroy
== NULL
)
3628 * we don't support callbacks in modular subsystems. this check is
3629 * before the ss->module check for consistency; a subsystem that could
3630 * be a module should still have no callbacks even if the user isn't
3631 * compiling it as one.
3633 if (ss
->fork
|| ss
->exit
)
3637 * an optionally modular subsystem is built-in: we want to do nothing,
3638 * since cgroup_init_subsys will have already taken care of it.
3640 if (ss
->module
== NULL
) {
3641 /* a few sanity checks */
3642 BUG_ON(ss
->subsys_id
>= CGROUP_BUILTIN_SUBSYS_COUNT
);
3643 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
3648 * need to register a subsys id before anything else - for example,
3649 * init_cgroup_css needs it.
3651 mutex_lock(&cgroup_mutex
);
3652 /* find the first empty slot in the array */
3653 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3654 if (subsys
[i
] == NULL
)
3657 if (i
== CGROUP_SUBSYS_COUNT
) {
3658 /* maximum number of subsystems already registered! */
3659 mutex_unlock(&cgroup_mutex
);
3662 /* assign ourselves the subsys_id */
3667 * no ss->create seems to need anything important in the ss struct, so
3668 * this can happen first (i.e. before the rootnode attachment).
3670 css
= ss
->create(ss
, dummytop
);
3672 /* failure case - need to deassign the subsys[] slot. */
3674 mutex_unlock(&cgroup_mutex
);
3675 return PTR_ERR(css
);
3678 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3679 ss
->root
= &rootnode
;
3681 /* our new subsystem will be attached to the dummy hierarchy. */
3682 init_cgroup_css(css
, ss
, dummytop
);
3683 /* init_idr must be after init_cgroup_css because it sets css->id. */
3685 int ret
= cgroup_init_idr(ss
, css
);
3687 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3688 ss
->destroy(ss
, dummytop
);
3690 mutex_unlock(&cgroup_mutex
);
3696 * Now we need to entangle the css into the existing css_sets. unlike
3697 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3698 * will need a new pointer to it; done by iterating the css_set_table.
3699 * furthermore, modifying the existing css_sets will corrupt the hash
3700 * table state, so each changed css_set will need its hash recomputed.
3701 * this is all done under the css_set_lock.
3703 write_lock(&css_set_lock
);
3704 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
3706 struct hlist_node
*node
, *tmp
;
3707 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
3709 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
3710 /* skip entries that we already rehashed */
3711 if (cg
->subsys
[ss
->subsys_id
])
3713 /* remove existing entry */
3714 hlist_del(&cg
->hlist
);
3716 cg
->subsys
[ss
->subsys_id
] = css
;
3717 /* recompute hash and restore entry */
3718 new_bucket
= css_set_hash(cg
->subsys
);
3719 hlist_add_head(&cg
->hlist
, new_bucket
);
3722 write_unlock(&css_set_lock
);
3724 mutex_init(&ss
->hierarchy_mutex
);
3725 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3729 mutex_unlock(&cgroup_mutex
);
3732 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
3735 * cgroup_unload_subsys: unload a modular subsystem
3736 * @ss: the subsystem to unload
3738 * This function should be called in a modular subsystem's exitcall. When this
3739 * function is invoked, the refcount on the subsystem's module will be 0, so
3740 * the subsystem will not be attached to any hierarchy.
3742 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
3744 struct cg_cgroup_link
*link
;
3745 struct hlist_head
*hhead
;
3747 BUG_ON(ss
->module
== NULL
);
3750 * we shouldn't be called if the subsystem is in use, and the use of
3751 * try_module_get in parse_cgroupfs_options should ensure that it
3752 * doesn't start being used while we're killing it off.
3754 BUG_ON(ss
->root
!= &rootnode
);
3756 mutex_lock(&cgroup_mutex
);
3757 /* deassign the subsys_id */
3758 BUG_ON(ss
->subsys_id
< CGROUP_BUILTIN_SUBSYS_COUNT
);
3759 subsys
[ss
->subsys_id
] = NULL
;
3761 /* remove subsystem from rootnode's list of subsystems */
3762 list_del(&ss
->sibling
);
3765 * disentangle the css from all css_sets attached to the dummytop. as
3766 * in loading, we need to pay our respects to the hashtable gods.
3768 write_lock(&css_set_lock
);
3769 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
3770 struct css_set
*cg
= link
->cg
;
3772 hlist_del(&cg
->hlist
);
3773 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
3774 cg
->subsys
[ss
->subsys_id
] = NULL
;
3775 hhead
= css_set_hash(cg
->subsys
);
3776 hlist_add_head(&cg
->hlist
, hhead
);
3778 write_unlock(&css_set_lock
);
3781 * remove subsystem's css from the dummytop and free it - need to free
3782 * before marking as null because ss->destroy needs the cgrp->subsys
3783 * pointer to find their state. note that this also takes care of
3784 * freeing the css_id.
3786 ss
->destroy(ss
, dummytop
);
3787 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3789 mutex_unlock(&cgroup_mutex
);
3791 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
3794 * cgroup_init_early - cgroup initialization at system boot
3796 * Initialize cgroups at system boot, and initialize any
3797 * subsystems that request early init.
3799 int __init
cgroup_init_early(void)
3802 atomic_set(&init_css_set
.refcount
, 1);
3803 INIT_LIST_HEAD(&init_css_set
.cg_links
);
3804 INIT_LIST_HEAD(&init_css_set
.tasks
);
3805 INIT_HLIST_NODE(&init_css_set
.hlist
);
3807 init_cgroup_root(&rootnode
);
3809 init_task
.cgroups
= &init_css_set
;
3811 init_css_set_link
.cg
= &init_css_set
;
3812 init_css_set_link
.cgrp
= dummytop
;
3813 list_add(&init_css_set_link
.cgrp_link_list
,
3814 &rootnode
.top_cgroup
.css_sets
);
3815 list_add(&init_css_set_link
.cg_link_list
,
3816 &init_css_set
.cg_links
);
3818 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
3819 INIT_HLIST_HEAD(&css_set_table
[i
]);
3821 /* at bootup time, we don't worry about modular subsystems */
3822 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3823 struct cgroup_subsys
*ss
= subsys
[i
];
3826 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
3827 BUG_ON(!ss
->create
);
3828 BUG_ON(!ss
->destroy
);
3829 if (ss
->subsys_id
!= i
) {
3830 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
3831 ss
->name
, ss
->subsys_id
);
3836 cgroup_init_subsys(ss
);
3842 * cgroup_init - cgroup initialization
3844 * Register cgroup filesystem and /proc file, and initialize
3845 * any subsystems that didn't request early init.
3847 int __init
cgroup_init(void)
3851 struct hlist_head
*hhead
;
3853 err
= bdi_init(&cgroup_backing_dev_info
);
3857 /* at bootup time, we don't worry about modular subsystems */
3858 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3859 struct cgroup_subsys
*ss
= subsys
[i
];
3860 if (!ss
->early_init
)
3861 cgroup_init_subsys(ss
);
3863 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
3866 /* Add init_css_set to the hash table */
3867 hhead
= css_set_hash(init_css_set
.subsys
);
3868 hlist_add_head(&init_css_set
.hlist
, hhead
);
3869 BUG_ON(!init_root_id(&rootnode
));
3870 err
= register_filesystem(&cgroup_fs_type
);
3874 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
3878 bdi_destroy(&cgroup_backing_dev_info
);
3884 * proc_cgroup_show()
3885 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3886 * - Used for /proc/<pid>/cgroup.
3887 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3888 * doesn't really matter if tsk->cgroup changes after we read it,
3889 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3890 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3891 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3892 * cgroup to top_cgroup.
3895 /* TODO: Use a proper seq_file iterator */
3896 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
3899 struct task_struct
*tsk
;
3902 struct cgroupfs_root
*root
;
3905 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3911 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
3917 mutex_lock(&cgroup_mutex
);
3919 for_each_active_root(root
) {
3920 struct cgroup_subsys
*ss
;
3921 struct cgroup
*cgrp
;
3924 seq_printf(m
, "%d:", root
->hierarchy_id
);
3925 for_each_subsys(root
, ss
)
3926 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
3927 if (strlen(root
->name
))
3928 seq_printf(m
, "%sname=%s", count
? "," : "",
3931 cgrp
= task_cgroup_from_root(tsk
, root
);
3932 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
3940 mutex_unlock(&cgroup_mutex
);
3941 put_task_struct(tsk
);
3948 static int cgroup_open(struct inode
*inode
, struct file
*file
)
3950 struct pid
*pid
= PROC_I(inode
)->pid
;
3951 return single_open(file
, proc_cgroup_show
, pid
);
3954 const struct file_operations proc_cgroup_operations
= {
3955 .open
= cgroup_open
,
3957 .llseek
= seq_lseek
,
3958 .release
= single_release
,
3961 /* Display information about each subsystem and each hierarchy */
3962 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
3966 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3968 * ideally we don't want subsystems moving around while we do this.
3969 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
3970 * subsys/hierarchy state.
3972 mutex_lock(&cgroup_mutex
);
3973 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3974 struct cgroup_subsys
*ss
= subsys
[i
];
3977 seq_printf(m
, "%s\t%d\t%d\t%d\n",
3978 ss
->name
, ss
->root
->hierarchy_id
,
3979 ss
->root
->number_of_cgroups
, !ss
->disabled
);
3981 mutex_unlock(&cgroup_mutex
);
3985 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
3987 return single_open(file
, proc_cgroupstats_show
, NULL
);
3990 static const struct file_operations proc_cgroupstats_operations
= {
3991 .open
= cgroupstats_open
,
3993 .llseek
= seq_lseek
,
3994 .release
= single_release
,
3998 * cgroup_fork - attach newly forked task to its parents cgroup.
3999 * @child: pointer to task_struct of forking parent process.
4001 * Description: A task inherits its parent's cgroup at fork().
4003 * A pointer to the shared css_set was automatically copied in
4004 * fork.c by dup_task_struct(). However, we ignore that copy, since
4005 * it was not made under the protection of RCU or cgroup_mutex, so
4006 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4007 * have already changed current->cgroups, allowing the previously
4008 * referenced cgroup group to be removed and freed.
4010 * At the point that cgroup_fork() is called, 'current' is the parent
4011 * task, and the passed argument 'child' points to the child task.
4013 void cgroup_fork(struct task_struct
*child
)
4016 child
->cgroups
= current
->cgroups
;
4017 get_css_set(child
->cgroups
);
4018 task_unlock(current
);
4019 INIT_LIST_HEAD(&child
->cg_list
);
4023 * cgroup_fork_callbacks - run fork callbacks
4024 * @child: the new task
4026 * Called on a new task very soon before adding it to the
4027 * tasklist. No need to take any locks since no-one can
4028 * be operating on this task.
4030 void cgroup_fork_callbacks(struct task_struct
*child
)
4032 if (need_forkexit_callback
) {
4035 * forkexit callbacks are only supported for builtin
4036 * subsystems, and the builtin section of the subsys array is
4037 * immutable, so we don't need to lock the subsys array here.
4039 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4040 struct cgroup_subsys
*ss
= subsys
[i
];
4042 ss
->fork(ss
, child
);
4048 * cgroup_post_fork - called on a new task after adding it to the task list
4049 * @child: the task in question
4051 * Adds the task to the list running through its css_set if necessary.
4052 * Has to be after the task is visible on the task list in case we race
4053 * with the first call to cgroup_iter_start() - to guarantee that the
4054 * new task ends up on its list.
4056 void cgroup_post_fork(struct task_struct
*child
)
4058 if (use_task_css_set_links
) {
4059 write_lock(&css_set_lock
);
4061 if (list_empty(&child
->cg_list
))
4062 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4064 write_unlock(&css_set_lock
);
4068 * cgroup_exit - detach cgroup from exiting task
4069 * @tsk: pointer to task_struct of exiting process
4070 * @run_callback: run exit callbacks?
4072 * Description: Detach cgroup from @tsk and release it.
4074 * Note that cgroups marked notify_on_release force every task in
4075 * them to take the global cgroup_mutex mutex when exiting.
4076 * This could impact scaling on very large systems. Be reluctant to
4077 * use notify_on_release cgroups where very high task exit scaling
4078 * is required on large systems.
4080 * the_top_cgroup_hack:
4082 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4084 * We call cgroup_exit() while the task is still competent to
4085 * handle notify_on_release(), then leave the task attached to the
4086 * root cgroup in each hierarchy for the remainder of its exit.
4088 * To do this properly, we would increment the reference count on
4089 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4090 * code we would add a second cgroup function call, to drop that
4091 * reference. This would just create an unnecessary hot spot on
4092 * the top_cgroup reference count, to no avail.
4094 * Normally, holding a reference to a cgroup without bumping its
4095 * count is unsafe. The cgroup could go away, or someone could
4096 * attach us to a different cgroup, decrementing the count on
4097 * the first cgroup that we never incremented. But in this case,
4098 * top_cgroup isn't going away, and either task has PF_EXITING set,
4099 * which wards off any cgroup_attach_task() attempts, or task is a failed
4100 * fork, never visible to cgroup_attach_task.
4102 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4107 if (run_callbacks
&& need_forkexit_callback
) {
4109 * modular subsystems can't use callbacks, so no need to lock
4112 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4113 struct cgroup_subsys
*ss
= subsys
[i
];
4120 * Unlink from the css_set task list if necessary.
4121 * Optimistically check cg_list before taking
4124 if (!list_empty(&tsk
->cg_list
)) {
4125 write_lock(&css_set_lock
);
4126 if (!list_empty(&tsk
->cg_list
))
4127 list_del(&tsk
->cg_list
);
4128 write_unlock(&css_set_lock
);
4131 /* Reassign the task to the init_css_set. */
4134 tsk
->cgroups
= &init_css_set
;
4137 put_css_set_taskexit(cg
);
4141 * cgroup_clone - clone the cgroup the given subsystem is attached to
4142 * @tsk: the task to be moved
4143 * @subsys: the given subsystem
4144 * @nodename: the name for the new cgroup
4146 * Duplicate the current cgroup in the hierarchy that the given
4147 * subsystem is attached to, and move this task into the new
4150 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
4153 struct dentry
*dentry
;
4155 struct cgroup
*parent
, *child
;
4156 struct inode
*inode
;
4158 struct cgroupfs_root
*root
;
4159 struct cgroup_subsys
*ss
;
4161 /* We shouldn't be called by an unregistered subsystem */
4162 BUG_ON(!subsys
->active
);
4164 /* First figure out what hierarchy and cgroup we're dealing
4165 * with, and pin them so we can drop cgroup_mutex */
4166 mutex_lock(&cgroup_mutex
);
4168 root
= subsys
->root
;
4169 if (root
== &rootnode
) {
4170 mutex_unlock(&cgroup_mutex
);
4174 /* Pin the hierarchy */
4175 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
4176 /* We race with the final deactivate_super() */
4177 mutex_unlock(&cgroup_mutex
);
4181 /* Keep the cgroup alive */
4183 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
4188 mutex_unlock(&cgroup_mutex
);
4190 /* Now do the VFS work to create a cgroup */
4191 inode
= parent
->dentry
->d_inode
;
4193 /* Hold the parent directory mutex across this operation to
4194 * stop anyone else deleting the new cgroup */
4195 mutex_lock(&inode
->i_mutex
);
4196 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
4197 if (IS_ERR(dentry
)) {
4199 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
4201 ret
= PTR_ERR(dentry
);
4205 /* Create the cgroup directory, which also creates the cgroup */
4206 ret
= vfs_mkdir(inode
, dentry
, 0755);
4207 child
= __d_cgrp(dentry
);
4211 "Failed to create cgroup %s: %d\n", nodename
,
4216 /* The cgroup now exists. Retake cgroup_mutex and check
4217 * that we're still in the same state that we thought we
4219 mutex_lock(&cgroup_mutex
);
4220 if ((root
!= subsys
->root
) ||
4221 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
4222 /* Aargh, we raced ... */
4223 mutex_unlock(&inode
->i_mutex
);
4226 deactivate_super(root
->sb
);
4227 /* The cgroup is still accessible in the VFS, but
4228 * we're not going to try to rmdir() it at this
4231 "Race in cgroup_clone() - leaking cgroup %s\n",
4236 /* do any required auto-setup */
4237 for_each_subsys(root
, ss
) {
4239 ss
->post_clone(ss
, child
);
4242 /* All seems fine. Finish by moving the task into the new cgroup */
4243 ret
= cgroup_attach_task(child
, tsk
);
4244 mutex_unlock(&cgroup_mutex
);
4247 mutex_unlock(&inode
->i_mutex
);
4249 mutex_lock(&cgroup_mutex
);
4251 mutex_unlock(&cgroup_mutex
);
4252 deactivate_super(root
->sb
);
4257 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4258 * @cgrp: the cgroup in question
4259 * @task: the task in question
4261 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4264 * If we are sending in dummytop, then presumably we are creating
4265 * the top cgroup in the subsystem.
4267 * Called only by the ns (nsproxy) cgroup.
4269 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4272 struct cgroup
*target
;
4274 if (cgrp
== dummytop
)
4277 target
= task_cgroup_from_root(task
, cgrp
->root
);
4278 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4279 cgrp
= cgrp
->parent
;
4280 ret
= (cgrp
== target
);
4284 static void check_for_release(struct cgroup
*cgrp
)
4286 /* All of these checks rely on RCU to keep the cgroup
4287 * structure alive */
4288 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
4289 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
4290 /* Control Group is currently removeable. If it's not
4291 * already queued for a userspace notification, queue
4293 int need_schedule_work
= 0;
4294 spin_lock(&release_list_lock
);
4295 if (!cgroup_is_removed(cgrp
) &&
4296 list_empty(&cgrp
->release_list
)) {
4297 list_add(&cgrp
->release_list
, &release_list
);
4298 need_schedule_work
= 1;
4300 spin_unlock(&release_list_lock
);
4301 if (need_schedule_work
)
4302 schedule_work(&release_agent_work
);
4306 /* Caller must verify that the css is not for root cgroup */
4307 void __css_put(struct cgroup_subsys_state
*css
, int count
)
4309 struct cgroup
*cgrp
= css
->cgroup
;
4312 val
= atomic_sub_return(count
, &css
->refcnt
);
4314 if (notify_on_release(cgrp
)) {
4315 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4316 check_for_release(cgrp
);
4318 cgroup_wakeup_rmdir_waiter(cgrp
);
4321 WARN_ON_ONCE(val
< 1);
4323 EXPORT_SYMBOL_GPL(__css_put
);
4326 * Notify userspace when a cgroup is released, by running the
4327 * configured release agent with the name of the cgroup (path
4328 * relative to the root of cgroup file system) as the argument.
4330 * Most likely, this user command will try to rmdir this cgroup.
4332 * This races with the possibility that some other task will be
4333 * attached to this cgroup before it is removed, or that some other
4334 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4335 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4336 * unused, and this cgroup will be reprieved from its death sentence,
4337 * to continue to serve a useful existence. Next time it's released,
4338 * we will get notified again, if it still has 'notify_on_release' set.
4340 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4341 * means only wait until the task is successfully execve()'d. The
4342 * separate release agent task is forked by call_usermodehelper(),
4343 * then control in this thread returns here, without waiting for the
4344 * release agent task. We don't bother to wait because the caller of
4345 * this routine has no use for the exit status of the release agent
4346 * task, so no sense holding our caller up for that.
4348 static void cgroup_release_agent(struct work_struct
*work
)
4350 BUG_ON(work
!= &release_agent_work
);
4351 mutex_lock(&cgroup_mutex
);
4352 spin_lock(&release_list_lock
);
4353 while (!list_empty(&release_list
)) {
4354 char *argv
[3], *envp
[3];
4356 char *pathbuf
= NULL
, *agentbuf
= NULL
;
4357 struct cgroup
*cgrp
= list_entry(release_list
.next
,
4360 list_del_init(&cgrp
->release_list
);
4361 spin_unlock(&release_list_lock
);
4362 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4365 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
4367 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
4372 argv
[i
++] = agentbuf
;
4373 argv
[i
++] = pathbuf
;
4377 /* minimal command environment */
4378 envp
[i
++] = "HOME=/";
4379 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4382 /* Drop the lock while we invoke the usermode helper,
4383 * since the exec could involve hitting disk and hence
4384 * be a slow process */
4385 mutex_unlock(&cgroup_mutex
);
4386 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
4387 mutex_lock(&cgroup_mutex
);
4391 spin_lock(&release_list_lock
);
4393 spin_unlock(&release_list_lock
);
4394 mutex_unlock(&cgroup_mutex
);
4397 static int __init
cgroup_disable(char *str
)
4402 while ((token
= strsep(&str
, ",")) != NULL
) {
4406 * cgroup_disable, being at boot time, can't know about module
4407 * subsystems, so we don't worry about them.
4409 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4410 struct cgroup_subsys
*ss
= subsys
[i
];
4412 if (!strcmp(token
, ss
->name
)) {
4414 printk(KERN_INFO
"Disabling %s control group"
4415 " subsystem\n", ss
->name
);
4422 __setup("cgroup_disable=", cgroup_disable
);
4425 * Functons for CSS ID.
4429 *To get ID other than 0, this should be called when !cgroup_is_removed().
4431 unsigned short css_id(struct cgroup_subsys_state
*css
)
4433 struct css_id
*cssid
= rcu_dereference(css
->id
);
4439 EXPORT_SYMBOL_GPL(css_id
);
4441 unsigned short css_depth(struct cgroup_subsys_state
*css
)
4443 struct css_id
*cssid
= rcu_dereference(css
->id
);
4446 return cssid
->depth
;
4449 EXPORT_SYMBOL_GPL(css_depth
);
4451 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
4452 const struct cgroup_subsys_state
*root
)
4454 struct css_id
*child_id
= rcu_dereference(child
->id
);
4455 struct css_id
*root_id
= rcu_dereference(root
->id
);
4457 if (!child_id
|| !root_id
|| (child_id
->depth
< root_id
->depth
))
4459 return child_id
->stack
[root_id
->depth
] == root_id
->id
;
4462 static void __free_css_id_cb(struct rcu_head
*head
)
4466 id
= container_of(head
, struct css_id
, rcu_head
);
4470 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
4472 struct css_id
*id
= css
->id
;
4473 /* When this is called before css_id initialization, id can be NULL */
4477 BUG_ON(!ss
->use_id
);
4479 rcu_assign_pointer(id
->css
, NULL
);
4480 rcu_assign_pointer(css
->id
, NULL
);
4481 spin_lock(&ss
->id_lock
);
4482 idr_remove(&ss
->idr
, id
->id
);
4483 spin_unlock(&ss
->id_lock
);
4484 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
4486 EXPORT_SYMBOL_GPL(free_css_id
);
4489 * This is called by init or create(). Then, calls to this function are
4490 * always serialized (By cgroup_mutex() at create()).
4493 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
4495 struct css_id
*newid
;
4496 int myid
, error
, size
;
4498 BUG_ON(!ss
->use_id
);
4500 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
4501 newid
= kzalloc(size
, GFP_KERNEL
);
4503 return ERR_PTR(-ENOMEM
);
4505 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
4509 spin_lock(&ss
->id_lock
);
4510 /* Don't use 0. allocates an ID of 1-65535 */
4511 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
4512 spin_unlock(&ss
->id_lock
);
4514 /* Returns error when there are no free spaces for new ID.*/
4519 if (myid
> CSS_ID_MAX
)
4523 newid
->depth
= depth
;
4527 spin_lock(&ss
->id_lock
);
4528 idr_remove(&ss
->idr
, myid
);
4529 spin_unlock(&ss
->id_lock
);
4532 return ERR_PTR(error
);
4536 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
4537 struct cgroup_subsys_state
*rootcss
)
4539 struct css_id
*newid
;
4541 spin_lock_init(&ss
->id_lock
);
4544 newid
= get_new_cssid(ss
, 0);
4546 return PTR_ERR(newid
);
4548 newid
->stack
[0] = newid
->id
;
4549 newid
->css
= rootcss
;
4550 rootcss
->id
= newid
;
4554 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
4555 struct cgroup
*child
)
4557 int subsys_id
, i
, depth
= 0;
4558 struct cgroup_subsys_state
*parent_css
, *child_css
;
4559 struct css_id
*child_id
, *parent_id
= NULL
;
4561 subsys_id
= ss
->subsys_id
;
4562 parent_css
= parent
->subsys
[subsys_id
];
4563 child_css
= child
->subsys
[subsys_id
];
4564 depth
= css_depth(parent_css
) + 1;
4565 parent_id
= parent_css
->id
;
4567 child_id
= get_new_cssid(ss
, depth
);
4568 if (IS_ERR(child_id
))
4569 return PTR_ERR(child_id
);
4571 for (i
= 0; i
< depth
; i
++)
4572 child_id
->stack
[i
] = parent_id
->stack
[i
];
4573 child_id
->stack
[depth
] = child_id
->id
;
4575 * child_id->css pointer will be set after this cgroup is available
4576 * see cgroup_populate_dir()
4578 rcu_assign_pointer(child_css
->id
, child_id
);
4584 * css_lookup - lookup css by id
4585 * @ss: cgroup subsys to be looked into.
4588 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4589 * NULL if not. Should be called under rcu_read_lock()
4591 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
4593 struct css_id
*cssid
= NULL
;
4595 BUG_ON(!ss
->use_id
);
4596 cssid
= idr_find(&ss
->idr
, id
);
4598 if (unlikely(!cssid
))
4601 return rcu_dereference(cssid
->css
);
4603 EXPORT_SYMBOL_GPL(css_lookup
);
4606 * css_get_next - lookup next cgroup under specified hierarchy.
4607 * @ss: pointer to subsystem
4608 * @id: current position of iteration.
4609 * @root: pointer to css. search tree under this.
4610 * @foundid: position of found object.
4612 * Search next css under the specified hierarchy of rootid. Calling under
4613 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4615 struct cgroup_subsys_state
*
4616 css_get_next(struct cgroup_subsys
*ss
, int id
,
4617 struct cgroup_subsys_state
*root
, int *foundid
)
4619 struct cgroup_subsys_state
*ret
= NULL
;
4622 int rootid
= css_id(root
);
4623 int depth
= css_depth(root
);
4628 BUG_ON(!ss
->use_id
);
4629 /* fill start point for scan */
4633 * scan next entry from bitmap(tree), tmpid is updated after
4636 spin_lock(&ss
->id_lock
);
4637 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
4638 spin_unlock(&ss
->id_lock
);
4642 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
4643 ret
= rcu_dereference(tmp
->css
);
4649 /* continue to scan from next id */
4655 #ifdef CONFIG_CGROUP_DEBUG
4656 static struct cgroup_subsys_state
*debug_create(struct cgroup_subsys
*ss
,
4657 struct cgroup
*cont
)
4659 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
4662 return ERR_PTR(-ENOMEM
);
4667 static void debug_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4669 kfree(cont
->subsys
[debug_subsys_id
]);
4672 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4674 return atomic_read(&cont
->count
);
4677 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4679 return cgroup_task_count(cont
);
4682 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
4684 return (u64
)(unsigned long)current
->cgroups
;
4687 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
4693 count
= atomic_read(¤t
->cgroups
->refcount
);
4698 static int current_css_set_cg_links_read(struct cgroup
*cont
,
4700 struct seq_file
*seq
)
4702 struct cg_cgroup_link
*link
;
4705 read_lock(&css_set_lock
);
4707 cg
= rcu_dereference(current
->cgroups
);
4708 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
4709 struct cgroup
*c
= link
->cgrp
;
4713 name
= c
->dentry
->d_name
.name
;
4716 seq_printf(seq
, "Root %d group %s\n",
4717 c
->root
->hierarchy_id
, name
);
4720 read_unlock(&css_set_lock
);
4724 #define MAX_TASKS_SHOWN_PER_CSS 25
4725 static int cgroup_css_links_read(struct cgroup
*cont
,
4727 struct seq_file
*seq
)
4729 struct cg_cgroup_link
*link
;
4731 read_lock(&css_set_lock
);
4732 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
4733 struct css_set
*cg
= link
->cg
;
4734 struct task_struct
*task
;
4736 seq_printf(seq
, "css_set %p\n", cg
);
4737 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
4738 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
4739 seq_puts(seq
, " ...\n");
4742 seq_printf(seq
, " task %d\n",
4743 task_pid_vnr(task
));
4747 read_unlock(&css_set_lock
);
4751 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4753 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4756 static struct cftype debug_files
[] = {
4758 .name
= "cgroup_refcount",
4759 .read_u64
= cgroup_refcount_read
,
4762 .name
= "taskcount",
4763 .read_u64
= debug_taskcount_read
,
4767 .name
= "current_css_set",
4768 .read_u64
= current_css_set_read
,
4772 .name
= "current_css_set_refcount",
4773 .read_u64
= current_css_set_refcount_read
,
4777 .name
= "current_css_set_cg_links",
4778 .read_seq_string
= current_css_set_cg_links_read
,
4782 .name
= "cgroup_css_links",
4783 .read_seq_string
= cgroup_css_links_read
,
4787 .name
= "releasable",
4788 .read_u64
= releasable_read
,
4792 static int debug_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4794 return cgroup_add_files(cont
, ss
, debug_files
,
4795 ARRAY_SIZE(debug_files
));
4798 struct cgroup_subsys debug_subsys
= {
4800 .create
= debug_create
,
4801 .destroy
= debug_destroy
,
4802 .populate
= debug_populate
,
4803 .subsys_id
= debug_subsys_id
,
4805 #endif /* CONFIG_CGROUP_DEBUG */