Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus
[linux-2.6/kvm.git] / fs / inode.c
blob96c77b81167c81b75bfdbaf6f8c1ea0566892748
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include "internal.h"
32 * Inode locking rules:
34 * inode->i_lock protects:
35 * inode->i_state, inode->i_hash, __iget()
36 * inode->i_sb->s_inode_lru_lock protects:
37 * inode->i_sb->s_inode_lru, inode->i_lru
38 * inode_sb_list_lock protects:
39 * sb->s_inodes, inode->i_sb_list
40 * inode_wb_list_lock protects:
41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42 * inode_hash_lock protects:
43 * inode_hashtable, inode->i_hash
45 * Lock ordering:
47 * inode_sb_list_lock
48 * inode->i_lock
49 * inode->i_sb->s_inode_lru_lock
51 * inode_wb_list_lock
52 * inode->i_lock
54 * inode_hash_lock
55 * inode_sb_list_lock
56 * inode->i_lock
58 * iunique_lock
59 * inode_hash_lock
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 static struct hlist_head *inode_hashtable __read_mostly;
65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
71 * Empty aops. Can be used for the cases where the user does not
72 * define any of the address_space operations.
74 const struct address_space_operations empty_aops = {
76 EXPORT_SYMBOL(empty_aops);
79 * Statistics gathering..
81 struct inodes_stat_t inodes_stat;
83 static DEFINE_PER_CPU(unsigned int, nr_inodes);
84 static DEFINE_PER_CPU(unsigned int, nr_unused);
86 static struct kmem_cache *inode_cachep __read_mostly;
88 static int get_nr_inodes(void)
90 int i;
91 int sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_inodes, i);
94 return sum < 0 ? 0 : sum;
97 static inline int get_nr_inodes_unused(void)
99 int i;
100 int sum = 0;
101 for_each_possible_cpu(i)
102 sum += per_cpu(nr_unused, i);
103 return sum < 0 ? 0 : sum;
106 int get_nr_dirty_inodes(void)
108 /* not actually dirty inodes, but a wild approximation */
109 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
110 return nr_dirty > 0 ? nr_dirty : 0;
114 * Handle nr_inode sysctl
116 #ifdef CONFIG_SYSCTL
117 int proc_nr_inodes(ctl_table *table, int write,
118 void __user *buffer, size_t *lenp, loff_t *ppos)
120 inodes_stat.nr_inodes = get_nr_inodes();
121 inodes_stat.nr_unused = get_nr_inodes_unused();
122 return proc_dointvec(table, write, buffer, lenp, ppos);
124 #endif
127 * inode_init_always - perform inode structure intialisation
128 * @sb: superblock inode belongs to
129 * @inode: inode to initialise
131 * These are initializations that need to be done on every inode
132 * allocation as the fields are not initialised by slab allocation.
134 int inode_init_always(struct super_block *sb, struct inode *inode)
136 static const struct inode_operations empty_iops;
137 static const struct file_operations empty_fops;
138 struct address_space *const mapping = &inode->i_data;
140 inode->i_sb = sb;
141 inode->i_blkbits = sb->s_blocksize_bits;
142 inode->i_flags = 0;
143 atomic_set(&inode->i_count, 1);
144 inode->i_op = &empty_iops;
145 inode->i_fop = &empty_fops;
146 inode->i_nlink = 1;
147 inode->i_uid = 0;
148 inode->i_gid = 0;
149 atomic_set(&inode->i_writecount, 0);
150 inode->i_size = 0;
151 inode->i_blocks = 0;
152 inode->i_bytes = 0;
153 inode->i_generation = 0;
154 #ifdef CONFIG_QUOTA
155 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
156 #endif
157 inode->i_pipe = NULL;
158 inode->i_bdev = NULL;
159 inode->i_cdev = NULL;
160 inode->i_rdev = 0;
161 inode->dirtied_when = 0;
163 if (security_inode_alloc(inode))
164 goto out;
165 spin_lock_init(&inode->i_lock);
166 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168 mutex_init(&inode->i_mutex);
169 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
171 atomic_set(&inode->i_dio_count, 0);
173 mapping->a_ops = &empty_aops;
174 mapping->host = inode;
175 mapping->flags = 0;
176 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
177 mapping->assoc_mapping = NULL;
178 mapping->backing_dev_info = &default_backing_dev_info;
179 mapping->writeback_index = 0;
182 * If the block_device provides a backing_dev_info for client
183 * inodes then use that. Otherwise the inode share the bdev's
184 * backing_dev_info.
186 if (sb->s_bdev) {
187 struct backing_dev_info *bdi;
189 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
190 mapping->backing_dev_info = bdi;
192 inode->i_private = NULL;
193 inode->i_mapping = mapping;
194 #ifdef CONFIG_FS_POSIX_ACL
195 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
196 #endif
198 #ifdef CONFIG_FSNOTIFY
199 inode->i_fsnotify_mask = 0;
200 #endif
202 this_cpu_inc(nr_inodes);
204 return 0;
205 out:
206 return -ENOMEM;
208 EXPORT_SYMBOL(inode_init_always);
210 static struct inode *alloc_inode(struct super_block *sb)
212 struct inode *inode;
214 if (sb->s_op->alloc_inode)
215 inode = sb->s_op->alloc_inode(sb);
216 else
217 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
219 if (!inode)
220 return NULL;
222 if (unlikely(inode_init_always(sb, inode))) {
223 if (inode->i_sb->s_op->destroy_inode)
224 inode->i_sb->s_op->destroy_inode(inode);
225 else
226 kmem_cache_free(inode_cachep, inode);
227 return NULL;
230 return inode;
233 void free_inode_nonrcu(struct inode *inode)
235 kmem_cache_free(inode_cachep, inode);
237 EXPORT_SYMBOL(free_inode_nonrcu);
239 void __destroy_inode(struct inode *inode)
241 BUG_ON(inode_has_buffers(inode));
242 security_inode_free(inode);
243 fsnotify_inode_delete(inode);
244 #ifdef CONFIG_FS_POSIX_ACL
245 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
246 posix_acl_release(inode->i_acl);
247 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
248 posix_acl_release(inode->i_default_acl);
249 #endif
250 this_cpu_dec(nr_inodes);
252 EXPORT_SYMBOL(__destroy_inode);
254 static void i_callback(struct rcu_head *head)
256 struct inode *inode = container_of(head, struct inode, i_rcu);
257 INIT_LIST_HEAD(&inode->i_dentry);
258 kmem_cache_free(inode_cachep, inode);
261 static void destroy_inode(struct inode *inode)
263 BUG_ON(!list_empty(&inode->i_lru));
264 __destroy_inode(inode);
265 if (inode->i_sb->s_op->destroy_inode)
266 inode->i_sb->s_op->destroy_inode(inode);
267 else
268 call_rcu(&inode->i_rcu, i_callback);
271 void address_space_init_once(struct address_space *mapping)
273 memset(mapping, 0, sizeof(*mapping));
274 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
275 spin_lock_init(&mapping->tree_lock);
276 mutex_init(&mapping->i_mmap_mutex);
277 INIT_LIST_HEAD(&mapping->private_list);
278 spin_lock_init(&mapping->private_lock);
279 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
280 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
282 EXPORT_SYMBOL(address_space_init_once);
285 * These are initializations that only need to be done
286 * once, because the fields are idempotent across use
287 * of the inode, so let the slab aware of that.
289 void inode_init_once(struct inode *inode)
291 memset(inode, 0, sizeof(*inode));
292 INIT_HLIST_NODE(&inode->i_hash);
293 INIT_LIST_HEAD(&inode->i_dentry);
294 INIT_LIST_HEAD(&inode->i_devices);
295 INIT_LIST_HEAD(&inode->i_wb_list);
296 INIT_LIST_HEAD(&inode->i_lru);
297 address_space_init_once(&inode->i_data);
298 i_size_ordered_init(inode);
299 #ifdef CONFIG_FSNOTIFY
300 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
301 #endif
303 EXPORT_SYMBOL(inode_init_once);
305 static void init_once(void *foo)
307 struct inode *inode = (struct inode *) foo;
309 inode_init_once(inode);
313 * inode->i_lock must be held
315 void __iget(struct inode *inode)
317 atomic_inc(&inode->i_count);
321 * get additional reference to inode; caller must already hold one.
323 void ihold(struct inode *inode)
325 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
327 EXPORT_SYMBOL(ihold);
329 static void inode_lru_list_add(struct inode *inode)
331 spin_lock(&inode->i_sb->s_inode_lru_lock);
332 if (list_empty(&inode->i_lru)) {
333 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
334 inode->i_sb->s_nr_inodes_unused++;
335 this_cpu_inc(nr_unused);
337 spin_unlock(&inode->i_sb->s_inode_lru_lock);
340 static void inode_lru_list_del(struct inode *inode)
342 spin_lock(&inode->i_sb->s_inode_lru_lock);
343 if (!list_empty(&inode->i_lru)) {
344 list_del_init(&inode->i_lru);
345 inode->i_sb->s_nr_inodes_unused--;
346 this_cpu_dec(nr_unused);
348 spin_unlock(&inode->i_sb->s_inode_lru_lock);
352 * inode_sb_list_add - add inode to the superblock list of inodes
353 * @inode: inode to add
355 void inode_sb_list_add(struct inode *inode)
357 spin_lock(&inode_sb_list_lock);
358 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
359 spin_unlock(&inode_sb_list_lock);
361 EXPORT_SYMBOL_GPL(inode_sb_list_add);
363 static inline void inode_sb_list_del(struct inode *inode)
365 spin_lock(&inode_sb_list_lock);
366 list_del_init(&inode->i_sb_list);
367 spin_unlock(&inode_sb_list_lock);
370 static unsigned long hash(struct super_block *sb, unsigned long hashval)
372 unsigned long tmp;
374 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
375 L1_CACHE_BYTES;
376 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
377 return tmp & i_hash_mask;
381 * __insert_inode_hash - hash an inode
382 * @inode: unhashed inode
383 * @hashval: unsigned long value used to locate this object in the
384 * inode_hashtable.
386 * Add an inode to the inode hash for this superblock.
388 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
390 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
392 spin_lock(&inode_hash_lock);
393 spin_lock(&inode->i_lock);
394 hlist_add_head(&inode->i_hash, b);
395 spin_unlock(&inode->i_lock);
396 spin_unlock(&inode_hash_lock);
398 EXPORT_SYMBOL(__insert_inode_hash);
401 * remove_inode_hash - remove an inode from the hash
402 * @inode: inode to unhash
404 * Remove an inode from the superblock.
406 void remove_inode_hash(struct inode *inode)
408 spin_lock(&inode_hash_lock);
409 spin_lock(&inode->i_lock);
410 hlist_del_init(&inode->i_hash);
411 spin_unlock(&inode->i_lock);
412 spin_unlock(&inode_hash_lock);
414 EXPORT_SYMBOL(remove_inode_hash);
416 void end_writeback(struct inode *inode)
418 might_sleep();
420 * We have to cycle tree_lock here because reclaim can be still in the
421 * process of removing the last page (in __delete_from_page_cache())
422 * and we must not free mapping under it.
424 spin_lock_irq(&inode->i_data.tree_lock);
425 BUG_ON(inode->i_data.nrpages);
426 spin_unlock_irq(&inode->i_data.tree_lock);
427 BUG_ON(!list_empty(&inode->i_data.private_list));
428 BUG_ON(!(inode->i_state & I_FREEING));
429 BUG_ON(inode->i_state & I_CLEAR);
430 inode_sync_wait(inode);
431 /* don't need i_lock here, no concurrent mods to i_state */
432 inode->i_state = I_FREEING | I_CLEAR;
434 EXPORT_SYMBOL(end_writeback);
437 * Free the inode passed in, removing it from the lists it is still connected
438 * to. We remove any pages still attached to the inode and wait for any IO that
439 * is still in progress before finally destroying the inode.
441 * An inode must already be marked I_FREEING so that we avoid the inode being
442 * moved back onto lists if we race with other code that manipulates the lists
443 * (e.g. writeback_single_inode). The caller is responsible for setting this.
445 * An inode must already be removed from the LRU list before being evicted from
446 * the cache. This should occur atomically with setting the I_FREEING state
447 * flag, so no inodes here should ever be on the LRU when being evicted.
449 static void evict(struct inode *inode)
451 const struct super_operations *op = inode->i_sb->s_op;
453 BUG_ON(!(inode->i_state & I_FREEING));
454 BUG_ON(!list_empty(&inode->i_lru));
456 inode_wb_list_del(inode);
457 inode_sb_list_del(inode);
459 if (op->evict_inode) {
460 op->evict_inode(inode);
461 } else {
462 if (inode->i_data.nrpages)
463 truncate_inode_pages(&inode->i_data, 0);
464 end_writeback(inode);
466 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
467 bd_forget(inode);
468 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
469 cd_forget(inode);
471 remove_inode_hash(inode);
473 spin_lock(&inode->i_lock);
474 wake_up_bit(&inode->i_state, __I_NEW);
475 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
476 spin_unlock(&inode->i_lock);
478 destroy_inode(inode);
482 * dispose_list - dispose of the contents of a local list
483 * @head: the head of the list to free
485 * Dispose-list gets a local list with local inodes in it, so it doesn't
486 * need to worry about list corruption and SMP locks.
488 static void dispose_list(struct list_head *head)
490 while (!list_empty(head)) {
491 struct inode *inode;
493 inode = list_first_entry(head, struct inode, i_lru);
494 list_del_init(&inode->i_lru);
496 evict(inode);
501 * evict_inodes - evict all evictable inodes for a superblock
502 * @sb: superblock to operate on
504 * Make sure that no inodes with zero refcount are retained. This is
505 * called by superblock shutdown after having MS_ACTIVE flag removed,
506 * so any inode reaching zero refcount during or after that call will
507 * be immediately evicted.
509 void evict_inodes(struct super_block *sb)
511 struct inode *inode, *next;
512 LIST_HEAD(dispose);
514 spin_lock(&inode_sb_list_lock);
515 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
516 if (atomic_read(&inode->i_count))
517 continue;
519 spin_lock(&inode->i_lock);
520 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
521 spin_unlock(&inode->i_lock);
522 continue;
525 inode->i_state |= I_FREEING;
526 inode_lru_list_del(inode);
527 spin_unlock(&inode->i_lock);
528 list_add(&inode->i_lru, &dispose);
530 spin_unlock(&inode_sb_list_lock);
532 dispose_list(&dispose);
536 * invalidate_inodes - attempt to free all inodes on a superblock
537 * @sb: superblock to operate on
538 * @kill_dirty: flag to guide handling of dirty inodes
540 * Attempts to free all inodes for a given superblock. If there were any
541 * busy inodes return a non-zero value, else zero.
542 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
543 * them as busy.
545 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
547 int busy = 0;
548 struct inode *inode, *next;
549 LIST_HEAD(dispose);
551 spin_lock(&inode_sb_list_lock);
552 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
553 spin_lock(&inode->i_lock);
554 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
555 spin_unlock(&inode->i_lock);
556 continue;
558 if (inode->i_state & I_DIRTY && !kill_dirty) {
559 spin_unlock(&inode->i_lock);
560 busy = 1;
561 continue;
563 if (atomic_read(&inode->i_count)) {
564 spin_unlock(&inode->i_lock);
565 busy = 1;
566 continue;
569 inode->i_state |= I_FREEING;
570 inode_lru_list_del(inode);
571 spin_unlock(&inode->i_lock);
572 list_add(&inode->i_lru, &dispose);
574 spin_unlock(&inode_sb_list_lock);
576 dispose_list(&dispose);
578 return busy;
581 static int can_unuse(struct inode *inode)
583 if (inode->i_state & ~I_REFERENCED)
584 return 0;
585 if (inode_has_buffers(inode))
586 return 0;
587 if (atomic_read(&inode->i_count))
588 return 0;
589 if (inode->i_data.nrpages)
590 return 0;
591 return 1;
595 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
596 * This is called from the superblock shrinker function with a number of inodes
597 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
598 * then are freed outside inode_lock by dispose_list().
600 * Any inodes which are pinned purely because of attached pagecache have their
601 * pagecache removed. If the inode has metadata buffers attached to
602 * mapping->private_list then try to remove them.
604 * If the inode has the I_REFERENCED flag set, then it means that it has been
605 * used recently - the flag is set in iput_final(). When we encounter such an
606 * inode, clear the flag and move it to the back of the LRU so it gets another
607 * pass through the LRU before it gets reclaimed. This is necessary because of
608 * the fact we are doing lazy LRU updates to minimise lock contention so the
609 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
610 * with this flag set because they are the inodes that are out of order.
612 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
614 LIST_HEAD(freeable);
615 int nr_scanned;
616 unsigned long reap = 0;
618 spin_lock(&sb->s_inode_lru_lock);
619 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
620 struct inode *inode;
622 if (list_empty(&sb->s_inode_lru))
623 break;
625 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
628 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
629 * so use a trylock. If we fail to get the lock, just move the
630 * inode to the back of the list so we don't spin on it.
632 if (!spin_trylock(&inode->i_lock)) {
633 list_move(&inode->i_lru, &sb->s_inode_lru);
634 continue;
638 * Referenced or dirty inodes are still in use. Give them
639 * another pass through the LRU as we canot reclaim them now.
641 if (atomic_read(&inode->i_count) ||
642 (inode->i_state & ~I_REFERENCED)) {
643 list_del_init(&inode->i_lru);
644 spin_unlock(&inode->i_lock);
645 sb->s_nr_inodes_unused--;
646 this_cpu_dec(nr_unused);
647 continue;
650 /* recently referenced inodes get one more pass */
651 if (inode->i_state & I_REFERENCED) {
652 inode->i_state &= ~I_REFERENCED;
653 list_move(&inode->i_lru, &sb->s_inode_lru);
654 spin_unlock(&inode->i_lock);
655 continue;
657 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
658 __iget(inode);
659 spin_unlock(&inode->i_lock);
660 spin_unlock(&sb->s_inode_lru_lock);
661 if (remove_inode_buffers(inode))
662 reap += invalidate_mapping_pages(&inode->i_data,
663 0, -1);
664 iput(inode);
665 spin_lock(&sb->s_inode_lru_lock);
667 if (inode != list_entry(sb->s_inode_lru.next,
668 struct inode, i_lru))
669 continue; /* wrong inode or list_empty */
670 /* avoid lock inversions with trylock */
671 if (!spin_trylock(&inode->i_lock))
672 continue;
673 if (!can_unuse(inode)) {
674 spin_unlock(&inode->i_lock);
675 continue;
678 WARN_ON(inode->i_state & I_NEW);
679 inode->i_state |= I_FREEING;
680 spin_unlock(&inode->i_lock);
682 list_move(&inode->i_lru, &freeable);
683 sb->s_nr_inodes_unused--;
684 this_cpu_dec(nr_unused);
686 if (current_is_kswapd())
687 __count_vm_events(KSWAPD_INODESTEAL, reap);
688 else
689 __count_vm_events(PGINODESTEAL, reap);
690 spin_unlock(&sb->s_inode_lru_lock);
692 dispose_list(&freeable);
695 static void __wait_on_freeing_inode(struct inode *inode);
697 * Called with the inode lock held.
699 static struct inode *find_inode(struct super_block *sb,
700 struct hlist_head *head,
701 int (*test)(struct inode *, void *),
702 void *data)
704 struct hlist_node *node;
705 struct inode *inode = NULL;
707 repeat:
708 hlist_for_each_entry(inode, node, head, i_hash) {
709 spin_lock(&inode->i_lock);
710 if (inode->i_sb != sb) {
711 spin_unlock(&inode->i_lock);
712 continue;
714 if (!test(inode, data)) {
715 spin_unlock(&inode->i_lock);
716 continue;
718 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
719 __wait_on_freeing_inode(inode);
720 goto repeat;
722 __iget(inode);
723 spin_unlock(&inode->i_lock);
724 return inode;
726 return NULL;
730 * find_inode_fast is the fast path version of find_inode, see the comment at
731 * iget_locked for details.
733 static struct inode *find_inode_fast(struct super_block *sb,
734 struct hlist_head *head, unsigned long ino)
736 struct hlist_node *node;
737 struct inode *inode = NULL;
739 repeat:
740 hlist_for_each_entry(inode, node, head, i_hash) {
741 spin_lock(&inode->i_lock);
742 if (inode->i_ino != ino) {
743 spin_unlock(&inode->i_lock);
744 continue;
746 if (inode->i_sb != sb) {
747 spin_unlock(&inode->i_lock);
748 continue;
750 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
751 __wait_on_freeing_inode(inode);
752 goto repeat;
754 __iget(inode);
755 spin_unlock(&inode->i_lock);
756 return inode;
758 return NULL;
762 * Each cpu owns a range of LAST_INO_BATCH numbers.
763 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
764 * to renew the exhausted range.
766 * This does not significantly increase overflow rate because every CPU can
767 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
768 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
769 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
770 * overflow rate by 2x, which does not seem too significant.
772 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
773 * error if st_ino won't fit in target struct field. Use 32bit counter
774 * here to attempt to avoid that.
776 #define LAST_INO_BATCH 1024
777 static DEFINE_PER_CPU(unsigned int, last_ino);
779 unsigned int get_next_ino(void)
781 unsigned int *p = &get_cpu_var(last_ino);
782 unsigned int res = *p;
784 #ifdef CONFIG_SMP
785 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
786 static atomic_t shared_last_ino;
787 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
789 res = next - LAST_INO_BATCH;
791 #endif
793 *p = ++res;
794 put_cpu_var(last_ino);
795 return res;
797 EXPORT_SYMBOL(get_next_ino);
800 * new_inode - obtain an inode
801 * @sb: superblock
803 * Allocates a new inode for given superblock. The default gfp_mask
804 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
805 * If HIGHMEM pages are unsuitable or it is known that pages allocated
806 * for the page cache are not reclaimable or migratable,
807 * mapping_set_gfp_mask() must be called with suitable flags on the
808 * newly created inode's mapping
811 struct inode *new_inode(struct super_block *sb)
813 struct inode *inode;
815 spin_lock_prefetch(&inode_sb_list_lock);
817 inode = alloc_inode(sb);
818 if (inode) {
819 spin_lock(&inode->i_lock);
820 inode->i_state = 0;
821 spin_unlock(&inode->i_lock);
822 inode_sb_list_add(inode);
824 return inode;
826 EXPORT_SYMBOL(new_inode);
829 * unlock_new_inode - clear the I_NEW state and wake up any waiters
830 * @inode: new inode to unlock
832 * Called when the inode is fully initialised to clear the new state of the
833 * inode and wake up anyone waiting for the inode to finish initialisation.
835 void unlock_new_inode(struct inode *inode)
837 #ifdef CONFIG_DEBUG_LOCK_ALLOC
838 if (S_ISDIR(inode->i_mode)) {
839 struct file_system_type *type = inode->i_sb->s_type;
841 /* Set new key only if filesystem hasn't already changed it */
842 if (!lockdep_match_class(&inode->i_mutex,
843 &type->i_mutex_key)) {
845 * ensure nobody is actually holding i_mutex
847 mutex_destroy(&inode->i_mutex);
848 mutex_init(&inode->i_mutex);
849 lockdep_set_class(&inode->i_mutex,
850 &type->i_mutex_dir_key);
853 #endif
854 spin_lock(&inode->i_lock);
855 WARN_ON(!(inode->i_state & I_NEW));
856 inode->i_state &= ~I_NEW;
857 wake_up_bit(&inode->i_state, __I_NEW);
858 spin_unlock(&inode->i_lock);
860 EXPORT_SYMBOL(unlock_new_inode);
863 * iget5_locked - obtain an inode from a mounted file system
864 * @sb: super block of file system
865 * @hashval: hash value (usually inode number) to get
866 * @test: callback used for comparisons between inodes
867 * @set: callback used to initialize a new struct inode
868 * @data: opaque data pointer to pass to @test and @set
870 * Search for the inode specified by @hashval and @data in the inode cache,
871 * and if present it is return it with an increased reference count. This is
872 * a generalized version of iget_locked() for file systems where the inode
873 * number is not sufficient for unique identification of an inode.
875 * If the inode is not in cache, allocate a new inode and return it locked,
876 * hashed, and with the I_NEW flag set. The file system gets to fill it in
877 * before unlocking it via unlock_new_inode().
879 * Note both @test and @set are called with the inode_hash_lock held, so can't
880 * sleep.
882 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
883 int (*test)(struct inode *, void *),
884 int (*set)(struct inode *, void *), void *data)
886 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
887 struct inode *inode;
889 spin_lock(&inode_hash_lock);
890 inode = find_inode(sb, head, test, data);
891 spin_unlock(&inode_hash_lock);
893 if (inode) {
894 wait_on_inode(inode);
895 return inode;
898 inode = alloc_inode(sb);
899 if (inode) {
900 struct inode *old;
902 spin_lock(&inode_hash_lock);
903 /* We released the lock, so.. */
904 old = find_inode(sb, head, test, data);
905 if (!old) {
906 if (set(inode, data))
907 goto set_failed;
909 spin_lock(&inode->i_lock);
910 inode->i_state = I_NEW;
911 hlist_add_head(&inode->i_hash, head);
912 spin_unlock(&inode->i_lock);
913 inode_sb_list_add(inode);
914 spin_unlock(&inode_hash_lock);
916 /* Return the locked inode with I_NEW set, the
917 * caller is responsible for filling in the contents
919 return inode;
923 * Uhhuh, somebody else created the same inode under
924 * us. Use the old inode instead of the one we just
925 * allocated.
927 spin_unlock(&inode_hash_lock);
928 destroy_inode(inode);
929 inode = old;
930 wait_on_inode(inode);
932 return inode;
934 set_failed:
935 spin_unlock(&inode_hash_lock);
936 destroy_inode(inode);
937 return NULL;
939 EXPORT_SYMBOL(iget5_locked);
942 * iget_locked - obtain an inode from a mounted file system
943 * @sb: super block of file system
944 * @ino: inode number to get
946 * Search for the inode specified by @ino in the inode cache and if present
947 * return it with an increased reference count. This is for file systems
948 * where the inode number is sufficient for unique identification of an inode.
950 * If the inode is not in cache, allocate a new inode and return it locked,
951 * hashed, and with the I_NEW flag set. The file system gets to fill it in
952 * before unlocking it via unlock_new_inode().
954 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
956 struct hlist_head *head = inode_hashtable + hash(sb, ino);
957 struct inode *inode;
959 spin_lock(&inode_hash_lock);
960 inode = find_inode_fast(sb, head, ino);
961 spin_unlock(&inode_hash_lock);
962 if (inode) {
963 wait_on_inode(inode);
964 return inode;
967 inode = alloc_inode(sb);
968 if (inode) {
969 struct inode *old;
971 spin_lock(&inode_hash_lock);
972 /* We released the lock, so.. */
973 old = find_inode_fast(sb, head, ino);
974 if (!old) {
975 inode->i_ino = ino;
976 spin_lock(&inode->i_lock);
977 inode->i_state = I_NEW;
978 hlist_add_head(&inode->i_hash, head);
979 spin_unlock(&inode->i_lock);
980 inode_sb_list_add(inode);
981 spin_unlock(&inode_hash_lock);
983 /* Return the locked inode with I_NEW set, the
984 * caller is responsible for filling in the contents
986 return inode;
990 * Uhhuh, somebody else created the same inode under
991 * us. Use the old inode instead of the one we just
992 * allocated.
994 spin_unlock(&inode_hash_lock);
995 destroy_inode(inode);
996 inode = old;
997 wait_on_inode(inode);
999 return inode;
1001 EXPORT_SYMBOL(iget_locked);
1004 * search the inode cache for a matching inode number.
1005 * If we find one, then the inode number we are trying to
1006 * allocate is not unique and so we should not use it.
1008 * Returns 1 if the inode number is unique, 0 if it is not.
1010 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1012 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1013 struct hlist_node *node;
1014 struct inode *inode;
1016 spin_lock(&inode_hash_lock);
1017 hlist_for_each_entry(inode, node, b, i_hash) {
1018 if (inode->i_ino == ino && inode->i_sb == sb) {
1019 spin_unlock(&inode_hash_lock);
1020 return 0;
1023 spin_unlock(&inode_hash_lock);
1025 return 1;
1029 * iunique - get a unique inode number
1030 * @sb: superblock
1031 * @max_reserved: highest reserved inode number
1033 * Obtain an inode number that is unique on the system for a given
1034 * superblock. This is used by file systems that have no natural
1035 * permanent inode numbering system. An inode number is returned that
1036 * is higher than the reserved limit but unique.
1038 * BUGS:
1039 * With a large number of inodes live on the file system this function
1040 * currently becomes quite slow.
1042 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1045 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1046 * error if st_ino won't fit in target struct field. Use 32bit counter
1047 * here to attempt to avoid that.
1049 static DEFINE_SPINLOCK(iunique_lock);
1050 static unsigned int counter;
1051 ino_t res;
1053 spin_lock(&iunique_lock);
1054 do {
1055 if (counter <= max_reserved)
1056 counter = max_reserved + 1;
1057 res = counter++;
1058 } while (!test_inode_iunique(sb, res));
1059 spin_unlock(&iunique_lock);
1061 return res;
1063 EXPORT_SYMBOL(iunique);
1065 struct inode *igrab(struct inode *inode)
1067 spin_lock(&inode->i_lock);
1068 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1069 __iget(inode);
1070 spin_unlock(&inode->i_lock);
1071 } else {
1072 spin_unlock(&inode->i_lock);
1074 * Handle the case where s_op->clear_inode is not been
1075 * called yet, and somebody is calling igrab
1076 * while the inode is getting freed.
1078 inode = NULL;
1080 return inode;
1082 EXPORT_SYMBOL(igrab);
1085 * ilookup5_nowait - search for an inode in the inode cache
1086 * @sb: super block of file system to search
1087 * @hashval: hash value (usually inode number) to search for
1088 * @test: callback used for comparisons between inodes
1089 * @data: opaque data pointer to pass to @test
1091 * Search for the inode specified by @hashval and @data in the inode cache.
1092 * If the inode is in the cache, the inode is returned with an incremented
1093 * reference count.
1095 * Note: I_NEW is not waited upon so you have to be very careful what you do
1096 * with the returned inode. You probably should be using ilookup5() instead.
1098 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1100 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1101 int (*test)(struct inode *, void *), void *data)
1103 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1104 struct inode *inode;
1106 spin_lock(&inode_hash_lock);
1107 inode = find_inode(sb, head, test, data);
1108 spin_unlock(&inode_hash_lock);
1110 return inode;
1112 EXPORT_SYMBOL(ilookup5_nowait);
1115 * ilookup5 - search for an inode in the inode cache
1116 * @sb: super block of file system to search
1117 * @hashval: hash value (usually inode number) to search for
1118 * @test: callback used for comparisons between inodes
1119 * @data: opaque data pointer to pass to @test
1121 * Search for the inode specified by @hashval and @data in the inode cache,
1122 * and if the inode is in the cache, return the inode with an incremented
1123 * reference count. Waits on I_NEW before returning the inode.
1124 * returned with an incremented reference count.
1126 * This is a generalized version of ilookup() for file systems where the
1127 * inode number is not sufficient for unique identification of an inode.
1129 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1131 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1132 int (*test)(struct inode *, void *), void *data)
1134 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1136 if (inode)
1137 wait_on_inode(inode);
1138 return inode;
1140 EXPORT_SYMBOL(ilookup5);
1143 * ilookup - search for an inode in the inode cache
1144 * @sb: super block of file system to search
1145 * @ino: inode number to search for
1147 * Search for the inode @ino in the inode cache, and if the inode is in the
1148 * cache, the inode is returned with an incremented reference count.
1150 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1152 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1153 struct inode *inode;
1155 spin_lock(&inode_hash_lock);
1156 inode = find_inode_fast(sb, head, ino);
1157 spin_unlock(&inode_hash_lock);
1159 if (inode)
1160 wait_on_inode(inode);
1161 return inode;
1163 EXPORT_SYMBOL(ilookup);
1165 int insert_inode_locked(struct inode *inode)
1167 struct super_block *sb = inode->i_sb;
1168 ino_t ino = inode->i_ino;
1169 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1171 while (1) {
1172 struct hlist_node *node;
1173 struct inode *old = NULL;
1174 spin_lock(&inode_hash_lock);
1175 hlist_for_each_entry(old, node, head, i_hash) {
1176 if (old->i_ino != ino)
1177 continue;
1178 if (old->i_sb != sb)
1179 continue;
1180 spin_lock(&old->i_lock);
1181 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1182 spin_unlock(&old->i_lock);
1183 continue;
1185 break;
1187 if (likely(!node)) {
1188 spin_lock(&inode->i_lock);
1189 inode->i_state |= I_NEW;
1190 hlist_add_head(&inode->i_hash, head);
1191 spin_unlock(&inode->i_lock);
1192 spin_unlock(&inode_hash_lock);
1193 return 0;
1195 __iget(old);
1196 spin_unlock(&old->i_lock);
1197 spin_unlock(&inode_hash_lock);
1198 wait_on_inode(old);
1199 if (unlikely(!inode_unhashed(old))) {
1200 iput(old);
1201 return -EBUSY;
1203 iput(old);
1206 EXPORT_SYMBOL(insert_inode_locked);
1208 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1209 int (*test)(struct inode *, void *), void *data)
1211 struct super_block *sb = inode->i_sb;
1212 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1214 while (1) {
1215 struct hlist_node *node;
1216 struct inode *old = NULL;
1218 spin_lock(&inode_hash_lock);
1219 hlist_for_each_entry(old, node, head, i_hash) {
1220 if (old->i_sb != sb)
1221 continue;
1222 if (!test(old, data))
1223 continue;
1224 spin_lock(&old->i_lock);
1225 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1226 spin_unlock(&old->i_lock);
1227 continue;
1229 break;
1231 if (likely(!node)) {
1232 spin_lock(&inode->i_lock);
1233 inode->i_state |= I_NEW;
1234 hlist_add_head(&inode->i_hash, head);
1235 spin_unlock(&inode->i_lock);
1236 spin_unlock(&inode_hash_lock);
1237 return 0;
1239 __iget(old);
1240 spin_unlock(&old->i_lock);
1241 spin_unlock(&inode_hash_lock);
1242 wait_on_inode(old);
1243 if (unlikely(!inode_unhashed(old))) {
1244 iput(old);
1245 return -EBUSY;
1247 iput(old);
1250 EXPORT_SYMBOL(insert_inode_locked4);
1253 int generic_delete_inode(struct inode *inode)
1255 return 1;
1257 EXPORT_SYMBOL(generic_delete_inode);
1260 * Normal UNIX filesystem behaviour: delete the
1261 * inode when the usage count drops to zero, and
1262 * i_nlink is zero.
1264 int generic_drop_inode(struct inode *inode)
1266 return !inode->i_nlink || inode_unhashed(inode);
1268 EXPORT_SYMBOL_GPL(generic_drop_inode);
1271 * Called when we're dropping the last reference
1272 * to an inode.
1274 * Call the FS "drop_inode()" function, defaulting to
1275 * the legacy UNIX filesystem behaviour. If it tells
1276 * us to evict inode, do so. Otherwise, retain inode
1277 * in cache if fs is alive, sync and evict if fs is
1278 * shutting down.
1280 static void iput_final(struct inode *inode)
1282 struct super_block *sb = inode->i_sb;
1283 const struct super_operations *op = inode->i_sb->s_op;
1284 int drop;
1286 WARN_ON(inode->i_state & I_NEW);
1288 if (op->drop_inode)
1289 drop = op->drop_inode(inode);
1290 else
1291 drop = generic_drop_inode(inode);
1293 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1294 inode->i_state |= I_REFERENCED;
1295 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1296 inode_lru_list_add(inode);
1297 spin_unlock(&inode->i_lock);
1298 return;
1301 if (!drop) {
1302 inode->i_state |= I_WILL_FREE;
1303 spin_unlock(&inode->i_lock);
1304 write_inode_now(inode, 1);
1305 spin_lock(&inode->i_lock);
1306 WARN_ON(inode->i_state & I_NEW);
1307 inode->i_state &= ~I_WILL_FREE;
1310 inode->i_state |= I_FREEING;
1311 inode_lru_list_del(inode);
1312 spin_unlock(&inode->i_lock);
1314 evict(inode);
1318 * iput - put an inode
1319 * @inode: inode to put
1321 * Puts an inode, dropping its usage count. If the inode use count hits
1322 * zero, the inode is then freed and may also be destroyed.
1324 * Consequently, iput() can sleep.
1326 void iput(struct inode *inode)
1328 if (inode) {
1329 BUG_ON(inode->i_state & I_CLEAR);
1331 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1332 iput_final(inode);
1335 EXPORT_SYMBOL(iput);
1338 * bmap - find a block number in a file
1339 * @inode: inode of file
1340 * @block: block to find
1342 * Returns the block number on the device holding the inode that
1343 * is the disk block number for the block of the file requested.
1344 * That is, asked for block 4 of inode 1 the function will return the
1345 * disk block relative to the disk start that holds that block of the
1346 * file.
1348 sector_t bmap(struct inode *inode, sector_t block)
1350 sector_t res = 0;
1351 if (inode->i_mapping->a_ops->bmap)
1352 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1353 return res;
1355 EXPORT_SYMBOL(bmap);
1358 * With relative atime, only update atime if the previous atime is
1359 * earlier than either the ctime or mtime or if at least a day has
1360 * passed since the last atime update.
1362 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1363 struct timespec now)
1366 if (!(mnt->mnt_flags & MNT_RELATIME))
1367 return 1;
1369 * Is mtime younger than atime? If yes, update atime:
1371 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1372 return 1;
1374 * Is ctime younger than atime? If yes, update atime:
1376 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1377 return 1;
1380 * Is the previous atime value older than a day? If yes,
1381 * update atime:
1383 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1384 return 1;
1386 * Good, we can skip the atime update:
1388 return 0;
1392 * touch_atime - update the access time
1393 * @mnt: mount the inode is accessed on
1394 * @dentry: dentry accessed
1396 * Update the accessed time on an inode and mark it for writeback.
1397 * This function automatically handles read only file systems and media,
1398 * as well as the "noatime" flag and inode specific "noatime" markers.
1400 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1402 struct inode *inode = dentry->d_inode;
1403 struct timespec now;
1405 if (inode->i_flags & S_NOATIME)
1406 return;
1407 if (IS_NOATIME(inode))
1408 return;
1409 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1410 return;
1412 if (mnt->mnt_flags & MNT_NOATIME)
1413 return;
1414 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1415 return;
1417 now = current_fs_time(inode->i_sb);
1419 if (!relatime_need_update(mnt, inode, now))
1420 return;
1422 if (timespec_equal(&inode->i_atime, &now))
1423 return;
1425 if (mnt_want_write(mnt))
1426 return;
1428 inode->i_atime = now;
1429 mark_inode_dirty_sync(inode);
1430 mnt_drop_write(mnt);
1432 EXPORT_SYMBOL(touch_atime);
1435 * file_update_time - update mtime and ctime time
1436 * @file: file accessed
1438 * Update the mtime and ctime members of an inode and mark the inode
1439 * for writeback. Note that this function is meant exclusively for
1440 * usage in the file write path of filesystems, and filesystems may
1441 * choose to explicitly ignore update via this function with the
1442 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1443 * timestamps are handled by the server.
1446 void file_update_time(struct file *file)
1448 struct inode *inode = file->f_path.dentry->d_inode;
1449 struct timespec now;
1450 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1452 /* First try to exhaust all avenues to not sync */
1453 if (IS_NOCMTIME(inode))
1454 return;
1456 now = current_fs_time(inode->i_sb);
1457 if (!timespec_equal(&inode->i_mtime, &now))
1458 sync_it = S_MTIME;
1460 if (!timespec_equal(&inode->i_ctime, &now))
1461 sync_it |= S_CTIME;
1463 if (IS_I_VERSION(inode))
1464 sync_it |= S_VERSION;
1466 if (!sync_it)
1467 return;
1469 /* Finally allowed to write? Takes lock. */
1470 if (mnt_want_write_file(file))
1471 return;
1473 /* Only change inode inside the lock region */
1474 if (sync_it & S_VERSION)
1475 inode_inc_iversion(inode);
1476 if (sync_it & S_CTIME)
1477 inode->i_ctime = now;
1478 if (sync_it & S_MTIME)
1479 inode->i_mtime = now;
1480 mark_inode_dirty_sync(inode);
1481 mnt_drop_write(file->f_path.mnt);
1483 EXPORT_SYMBOL(file_update_time);
1485 int inode_needs_sync(struct inode *inode)
1487 if (IS_SYNC(inode))
1488 return 1;
1489 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1490 return 1;
1491 return 0;
1493 EXPORT_SYMBOL(inode_needs_sync);
1495 int inode_wait(void *word)
1497 schedule();
1498 return 0;
1500 EXPORT_SYMBOL(inode_wait);
1503 * If we try to find an inode in the inode hash while it is being
1504 * deleted, we have to wait until the filesystem completes its
1505 * deletion before reporting that it isn't found. This function waits
1506 * until the deletion _might_ have completed. Callers are responsible
1507 * to recheck inode state.
1509 * It doesn't matter if I_NEW is not set initially, a call to
1510 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1511 * will DTRT.
1513 static void __wait_on_freeing_inode(struct inode *inode)
1515 wait_queue_head_t *wq;
1516 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1517 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1518 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1519 spin_unlock(&inode->i_lock);
1520 spin_unlock(&inode_hash_lock);
1521 schedule();
1522 finish_wait(wq, &wait.wait);
1523 spin_lock(&inode_hash_lock);
1526 static __initdata unsigned long ihash_entries;
1527 static int __init set_ihash_entries(char *str)
1529 if (!str)
1530 return 0;
1531 ihash_entries = simple_strtoul(str, &str, 0);
1532 return 1;
1534 __setup("ihash_entries=", set_ihash_entries);
1537 * Initialize the waitqueues and inode hash table.
1539 void __init inode_init_early(void)
1541 int loop;
1543 /* If hashes are distributed across NUMA nodes, defer
1544 * hash allocation until vmalloc space is available.
1546 if (hashdist)
1547 return;
1549 inode_hashtable =
1550 alloc_large_system_hash("Inode-cache",
1551 sizeof(struct hlist_head),
1552 ihash_entries,
1554 HASH_EARLY,
1555 &i_hash_shift,
1556 &i_hash_mask,
1559 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1560 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1563 void __init inode_init(void)
1565 int loop;
1567 /* inode slab cache */
1568 inode_cachep = kmem_cache_create("inode_cache",
1569 sizeof(struct inode),
1571 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1572 SLAB_MEM_SPREAD),
1573 init_once);
1575 /* Hash may have been set up in inode_init_early */
1576 if (!hashdist)
1577 return;
1579 inode_hashtable =
1580 alloc_large_system_hash("Inode-cache",
1581 sizeof(struct hlist_head),
1582 ihash_entries,
1585 &i_hash_shift,
1586 &i_hash_mask,
1589 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1590 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1593 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1595 inode->i_mode = mode;
1596 if (S_ISCHR(mode)) {
1597 inode->i_fop = &def_chr_fops;
1598 inode->i_rdev = rdev;
1599 } else if (S_ISBLK(mode)) {
1600 inode->i_fop = &def_blk_fops;
1601 inode->i_rdev = rdev;
1602 } else if (S_ISFIFO(mode))
1603 inode->i_fop = &def_fifo_fops;
1604 else if (S_ISSOCK(mode))
1605 inode->i_fop = &bad_sock_fops;
1606 else
1607 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1608 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1609 inode->i_ino);
1611 EXPORT_SYMBOL(init_special_inode);
1614 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1615 * @inode: New inode
1616 * @dir: Directory inode
1617 * @mode: mode of the new inode
1619 void inode_init_owner(struct inode *inode, const struct inode *dir,
1620 mode_t mode)
1622 inode->i_uid = current_fsuid();
1623 if (dir && dir->i_mode & S_ISGID) {
1624 inode->i_gid = dir->i_gid;
1625 if (S_ISDIR(mode))
1626 mode |= S_ISGID;
1627 } else
1628 inode->i_gid = current_fsgid();
1629 inode->i_mode = mode;
1631 EXPORT_SYMBOL(inode_init_owner);
1634 * inode_owner_or_capable - check current task permissions to inode
1635 * @inode: inode being checked
1637 * Return true if current either has CAP_FOWNER to the inode, or
1638 * owns the file.
1640 bool inode_owner_or_capable(const struct inode *inode)
1642 struct user_namespace *ns = inode_userns(inode);
1644 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1645 return true;
1646 if (ns_capable(ns, CAP_FOWNER))
1647 return true;
1648 return false;
1650 EXPORT_SYMBOL(inode_owner_or_capable);