cpu hotplug: slab: cleanup cpuup_callback()
[linux-2.6/kvm.git] / mm / slab.c
blob671588497e82ae2b4569220fbf145c56c6fd54e6
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
144 #endif
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #endif
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
168 #endif
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 #endif
174 /* Legal flag mask for kmem_cache_create(). */
175 #if DEBUG
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_CACHE_DMA | \
179 SLAB_STORE_USER | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182 #else
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
184 SLAB_CACHE_DMA | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
187 #endif
190 * kmem_bufctl_t:
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * struct slab
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct slab {
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
231 * struct slab_rcu
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct slab_rcu {
247 struct rcu_head head;
248 struct kmem_cache *cachep;
249 void *addr;
253 * struct array_cache
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
264 struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
269 spinlock_t lock;
270 void *entry[]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
288 * The slab lists for all objects.
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline int index_of(const size_t size)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size)) {
329 int i = 0;
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
344 static int slab_early_init = 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3 *parent)
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
376 * struct kmem_cache
378 * manages a cache.
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder;
400 /* force GFP flags, e.g. GFP_DMA */
401 gfp_t gfpflags;
403 size_t colour; /* cache colouring range */
404 unsigned int colour_off; /* colour offset */
405 struct kmem_cache *slabp_cache;
406 unsigned int slab_size;
407 unsigned int dflags; /* dynamic flags */
409 /* constructor func */
410 void (*ctor)(struct kmem_cache *, void *);
412 /* 5) cache creation/removal */
413 const char *name;
414 struct list_head next;
416 /* 6) statistics */
417 #if STATS
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
427 unsigned long node_overflow;
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
432 #endif
433 #if DEBUG
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
440 int obj_offset;
441 int obj_size;
442 #endif
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
452 * Do not add fields after nodelists[]
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459 #define BATCHREFILL_LIMIT 16
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
470 #if STATS
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494 #else
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
510 #endif
512 #if DEBUG
515 * memory layout of objects:
516 * 0 : objp
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
521 * redzone word.
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
527 static int obj_offset(struct kmem_cache *cachep)
529 return cachep->obj_offset;
532 static int obj_size(struct kmem_cache *cachep)
534 return cachep->obj_size;
537 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
544 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 REDZONE_ALIGN);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
555 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
561 #else
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
569 #endif
572 * Do not go above this order unless 0 objects fit into the slab.
574 #define BREAK_GFP_ORDER_HI 1
575 #define BREAK_GFP_ORDER_LO 0
576 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
583 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
585 page->lru.next = (struct list_head *)cache;
588 static inline struct kmem_cache *page_get_cache(struct page *page)
590 page = compound_head(page);
591 BUG_ON(!PageSlab(page));
592 return (struct kmem_cache *)page->lru.next;
595 static inline void page_set_slab(struct page *page, struct slab *slab)
597 page->lru.prev = (struct list_head *)slab;
600 static inline struct slab *page_get_slab(struct page *page)
602 BUG_ON(!PageSlab(page));
603 return (struct slab *)page->lru.prev;
606 static inline struct kmem_cache *virt_to_cache(const void *obj)
608 struct page *page = virt_to_head_page(obj);
609 return page_get_cache(page);
612 static inline struct slab *virt_to_slab(const void *obj)
614 struct page *page = virt_to_head_page(obj);
615 return page_get_slab(page);
618 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
621 return slab->s_mem + cache->buffer_size * idx;
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 struct cache_sizes malloc_sizes[] = {
641 #define CACHE(x) { .cs_size = (x) },
642 #include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644 #undef CACHE
646 EXPORT_SYMBOL(malloc_sizes);
648 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
649 struct cache_names {
650 char *name;
651 char *name_dma;
654 static struct cache_names __initdata cache_names[] = {
655 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656 #include <linux/kmalloc_sizes.h>
657 {NULL,}
658 #undef CACHE
661 static struct arraycache_init initarray_cache __initdata =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663 static struct arraycache_init initarray_generic =
664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
666 /* internal cache of cache description objs */
667 static struct kmem_cache cache_cache = {
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
671 .buffer_size = sizeof(struct kmem_cache),
672 .name = "kmem_cache",
675 #define BAD_ALIEN_MAGIC 0x01020304ul
677 #ifdef CONFIG_LOCKDEP
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
690 static struct lock_class_key on_slab_l3_key;
691 static struct lock_class_key on_slab_alc_key;
693 static inline void init_lock_keys(void)
696 int q;
697 struct cache_sizes *s = malloc_sizes;
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
723 s++;
726 #else
727 static inline void init_lock_keys(void)
730 #endif
733 * 1. Guard access to the cache-chain.
734 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 static DEFINE_MUTEX(cache_chain_mutex);
737 static struct list_head cache_chain;
740 * chicken and egg problem: delay the per-cpu array allocation
741 * until the general caches are up.
743 static enum {
744 NONE,
745 PARTIAL_AC,
746 PARTIAL_L3,
747 FULL
748 } g_cpucache_up;
751 * used by boot code to determine if it can use slab based allocator
753 int slab_is_available(void)
755 return g_cpucache_up == FULL;
758 static DEFINE_PER_CPU(struct delayed_work, reap_work);
760 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
762 return cachep->array[smp_processor_id()];
765 static inline struct kmem_cache *__find_general_cachep(size_t size,
766 gfp_t gfpflags)
768 struct cache_sizes *csizep = malloc_sizes;
770 #if DEBUG
771 /* This happens if someone tries to call
772 * kmem_cache_create(), or __kmalloc(), before
773 * the generic caches are initialized.
775 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
776 #endif
777 if (!size)
778 return ZERO_SIZE_PTR;
780 while (size > csizep->cs_size)
781 csizep++;
784 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
785 * has cs_{dma,}cachep==NULL. Thus no special case
786 * for large kmalloc calls required.
788 #ifdef CONFIG_ZONE_DMA
789 if (unlikely(gfpflags & GFP_DMA))
790 return csizep->cs_dmacachep;
791 #endif
792 return csizep->cs_cachep;
795 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
797 return __find_general_cachep(size, gfpflags);
800 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
802 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
806 * Calculate the number of objects and left-over bytes for a given buffer size.
808 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
809 size_t align, int flags, size_t *left_over,
810 unsigned int *num)
812 int nr_objs;
813 size_t mgmt_size;
814 size_t slab_size = PAGE_SIZE << gfporder;
817 * The slab management structure can be either off the slab or
818 * on it. For the latter case, the memory allocated for a
819 * slab is used for:
821 * - The struct slab
822 * - One kmem_bufctl_t for each object
823 * - Padding to respect alignment of @align
824 * - @buffer_size bytes for each object
826 * If the slab management structure is off the slab, then the
827 * alignment will already be calculated into the size. Because
828 * the slabs are all pages aligned, the objects will be at the
829 * correct alignment when allocated.
831 if (flags & CFLGS_OFF_SLAB) {
832 mgmt_size = 0;
833 nr_objs = slab_size / buffer_size;
835 if (nr_objs > SLAB_LIMIT)
836 nr_objs = SLAB_LIMIT;
837 } else {
839 * Ignore padding for the initial guess. The padding
840 * is at most @align-1 bytes, and @buffer_size is at
841 * least @align. In the worst case, this result will
842 * be one greater than the number of objects that fit
843 * into the memory allocation when taking the padding
844 * into account.
846 nr_objs = (slab_size - sizeof(struct slab)) /
847 (buffer_size + sizeof(kmem_bufctl_t));
850 * This calculated number will be either the right
851 * amount, or one greater than what we want.
853 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
854 > slab_size)
855 nr_objs--;
857 if (nr_objs > SLAB_LIMIT)
858 nr_objs = SLAB_LIMIT;
860 mgmt_size = slab_mgmt_size(nr_objs, align);
862 *num = nr_objs;
863 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
866 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
868 static void __slab_error(const char *function, struct kmem_cache *cachep,
869 char *msg)
871 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
872 function, cachep->name, msg);
873 dump_stack();
877 * By default on NUMA we use alien caches to stage the freeing of
878 * objects allocated from other nodes. This causes massive memory
879 * inefficiencies when using fake NUMA setup to split memory into a
880 * large number of small nodes, so it can be disabled on the command
881 * line
884 static int use_alien_caches __read_mostly = 1;
885 static int numa_platform __read_mostly = 1;
886 static int __init noaliencache_setup(char *s)
888 use_alien_caches = 0;
889 return 1;
891 __setup("noaliencache", noaliencache_setup);
893 #ifdef CONFIG_NUMA
895 * Special reaping functions for NUMA systems called from cache_reap().
896 * These take care of doing round robin flushing of alien caches (containing
897 * objects freed on different nodes from which they were allocated) and the
898 * flushing of remote pcps by calling drain_node_pages.
900 static DEFINE_PER_CPU(unsigned long, reap_node);
902 static void init_reap_node(int cpu)
904 int node;
906 node = next_node(cpu_to_node(cpu), node_online_map);
907 if (node == MAX_NUMNODES)
908 node = first_node(node_online_map);
910 per_cpu(reap_node, cpu) = node;
913 static void next_reap_node(void)
915 int node = __get_cpu_var(reap_node);
917 node = next_node(node, node_online_map);
918 if (unlikely(node >= MAX_NUMNODES))
919 node = first_node(node_online_map);
920 __get_cpu_var(reap_node) = node;
923 #else
924 #define init_reap_node(cpu) do { } while (0)
925 #define next_reap_node(void) do { } while (0)
926 #endif
929 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
930 * via the workqueue/eventd.
931 * Add the CPU number into the expiration time to minimize the possibility of
932 * the CPUs getting into lockstep and contending for the global cache chain
933 * lock.
935 static void __cpuinit start_cpu_timer(int cpu)
937 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
940 * When this gets called from do_initcalls via cpucache_init(),
941 * init_workqueues() has already run, so keventd will be setup
942 * at that time.
944 if (keventd_up() && reap_work->work.func == NULL) {
945 init_reap_node(cpu);
946 INIT_DELAYED_WORK(reap_work, cache_reap);
947 schedule_delayed_work_on(cpu, reap_work,
948 __round_jiffies_relative(HZ, cpu));
952 static struct array_cache *alloc_arraycache(int node, int entries,
953 int batchcount)
955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
956 struct array_cache *nc = NULL;
958 nc = kmalloc_node(memsize, GFP_KERNEL, node);
959 if (nc) {
960 nc->avail = 0;
961 nc->limit = entries;
962 nc->batchcount = batchcount;
963 nc->touched = 0;
964 spin_lock_init(&nc->lock);
966 return nc;
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
973 * Return the number of entries transferred.
975 static int transfer_objects(struct array_cache *to,
976 struct array_cache *from, unsigned int max)
978 /* Figure out how many entries to transfer */
979 int nr = min(min(from->avail, max), to->limit - to->avail);
981 if (!nr)
982 return 0;
984 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985 sizeof(void *) *nr);
987 from->avail -= nr;
988 to->avail += nr;
989 to->touched = 1;
990 return nr;
993 #ifndef CONFIG_NUMA
995 #define drain_alien_cache(cachep, alien) do { } while (0)
996 #define reap_alien(cachep, l3) do { } while (0)
998 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1000 return (struct array_cache **)BAD_ALIEN_MAGIC;
1003 static inline void free_alien_cache(struct array_cache **ac_ptr)
1007 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1009 return 0;
1012 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013 gfp_t flags)
1015 return NULL;
1018 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1019 gfp_t flags, int nodeid)
1021 return NULL;
1024 #else /* CONFIG_NUMA */
1026 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1027 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1029 static struct array_cache **alloc_alien_cache(int node, int limit)
1031 struct array_cache **ac_ptr;
1032 int memsize = sizeof(void *) * nr_node_ids;
1033 int i;
1035 if (limit > 1)
1036 limit = 12;
1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038 if (ac_ptr) {
1039 for_each_node(i) {
1040 if (i == node || !node_online(i)) {
1041 ac_ptr[i] = NULL;
1042 continue;
1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045 if (!ac_ptr[i]) {
1046 for (i--; i <= 0; i--)
1047 kfree(ac_ptr[i]);
1048 kfree(ac_ptr);
1049 return NULL;
1053 return ac_ptr;
1056 static void free_alien_cache(struct array_cache **ac_ptr)
1058 int i;
1060 if (!ac_ptr)
1061 return;
1062 for_each_node(i)
1063 kfree(ac_ptr[i]);
1064 kfree(ac_ptr);
1067 static void __drain_alien_cache(struct kmem_cache *cachep,
1068 struct array_cache *ac, int node)
1070 struct kmem_list3 *rl3 = cachep->nodelists[node];
1072 if (ac->avail) {
1073 spin_lock(&rl3->list_lock);
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1079 if (rl3->shared)
1080 transfer_objects(rl3->shared, ac, ac->limit);
1082 free_block(cachep, ac->entry, ac->avail, node);
1083 ac->avail = 0;
1084 spin_unlock(&rl3->list_lock);
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1091 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1093 int node = __get_cpu_var(reap_node);
1095 if (l3->alien) {
1096 struct array_cache *ac = l3->alien[node];
1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1099 __drain_alien_cache(cachep, ac, node);
1100 spin_unlock_irq(&ac->lock);
1105 static void drain_alien_cache(struct kmem_cache *cachep,
1106 struct array_cache **alien)
1108 int i = 0;
1109 struct array_cache *ac;
1110 unsigned long flags;
1112 for_each_online_node(i) {
1113 ac = alien[i];
1114 if (ac) {
1115 spin_lock_irqsave(&ac->lock, flags);
1116 __drain_alien_cache(cachep, ac, i);
1117 spin_unlock_irqrestore(&ac->lock, flags);
1122 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1124 struct slab *slabp = virt_to_slab(objp);
1125 int nodeid = slabp->nodeid;
1126 struct kmem_list3 *l3;
1127 struct array_cache *alien = NULL;
1128 int node;
1130 node = numa_node_id();
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1136 if (likely(slabp->nodeid == node))
1137 return 0;
1139 l3 = cachep->nodelists[node];
1140 STATS_INC_NODEFREES(cachep);
1141 if (l3->alien && l3->alien[nodeid]) {
1142 alien = l3->alien[nodeid];
1143 spin_lock(&alien->lock);
1144 if (unlikely(alien->avail == alien->limit)) {
1145 STATS_INC_ACOVERFLOW(cachep);
1146 __drain_alien_cache(cachep, alien, nodeid);
1148 alien->entry[alien->avail++] = objp;
1149 spin_unlock(&alien->lock);
1150 } else {
1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152 free_block(cachep, &objp, 1, nodeid);
1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1155 return 1;
1157 #endif
1159 static void __cpuinit cpuup_canceled(long cpu)
1161 struct kmem_cache *cachep;
1162 struct kmem_list3 *l3 = NULL;
1163 int node = cpu_to_node(cpu);
1165 list_for_each_entry(cachep, &cache_chain, next) {
1166 struct array_cache *nc;
1167 struct array_cache *shared;
1168 struct array_cache **alien;
1169 cpumask_t mask;
1171 mask = node_to_cpumask(node);
1172 /* cpu is dead; no one can alloc from it. */
1173 nc = cachep->array[cpu];
1174 cachep->array[cpu] = NULL;
1175 l3 = cachep->nodelists[node];
1177 if (!l3)
1178 goto free_array_cache;
1180 spin_lock_irq(&l3->list_lock);
1182 /* Free limit for this kmem_list3 */
1183 l3->free_limit -= cachep->batchcount;
1184 if (nc)
1185 free_block(cachep, nc->entry, nc->avail, node);
1187 if (!cpus_empty(mask)) {
1188 spin_unlock_irq(&l3->list_lock);
1189 goto free_array_cache;
1192 shared = l3->shared;
1193 if (shared) {
1194 free_block(cachep, shared->entry,
1195 shared->avail, node);
1196 l3->shared = NULL;
1199 alien = l3->alien;
1200 l3->alien = NULL;
1202 spin_unlock_irq(&l3->list_lock);
1204 kfree(shared);
1205 if (alien) {
1206 drain_alien_cache(cachep, alien);
1207 free_alien_cache(alien);
1209 free_array_cache:
1210 kfree(nc);
1213 * In the previous loop, all the objects were freed to
1214 * the respective cache's slabs, now we can go ahead and
1215 * shrink each nodelist to its limit.
1217 list_for_each_entry(cachep, &cache_chain, next) {
1218 l3 = cachep->nodelists[node];
1219 if (!l3)
1220 continue;
1221 drain_freelist(cachep, l3, l3->free_objects);
1225 static int __cpuinit cpuup_prepare(long cpu)
1227 struct kmem_cache *cachep;
1228 struct kmem_list3 *l3 = NULL;
1229 int node = cpu_to_node(cpu);
1230 const int memsize = sizeof(struct kmem_list3);
1233 * We need to do this right in the beginning since
1234 * alloc_arraycache's are going to use this list.
1235 * kmalloc_node allows us to add the slab to the right
1236 * kmem_list3 and not this cpu's kmem_list3
1239 list_for_each_entry(cachep, &cache_chain, next) {
1241 * Set up the size64 kmemlist for cpu before we can
1242 * begin anything. Make sure some other cpu on this
1243 * node has not already allocated this
1245 if (!cachep->nodelists[node]) {
1246 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1247 if (!l3)
1248 goto bad;
1249 kmem_list3_init(l3);
1250 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1251 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1254 * The l3s don't come and go as CPUs come and
1255 * go. cache_chain_mutex is sufficient
1256 * protection here.
1258 cachep->nodelists[node] = l3;
1261 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1262 cachep->nodelists[node]->free_limit =
1263 (1 + nr_cpus_node(node)) *
1264 cachep->batchcount + cachep->num;
1265 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1269 * Now we can go ahead with allocating the shared arrays and
1270 * array caches
1272 list_for_each_entry(cachep, &cache_chain, next) {
1273 struct array_cache *nc;
1274 struct array_cache *shared = NULL;
1275 struct array_cache **alien = NULL;
1277 nc = alloc_arraycache(node, cachep->limit,
1278 cachep->batchcount);
1279 if (!nc)
1280 goto bad;
1281 if (cachep->shared) {
1282 shared = alloc_arraycache(node,
1283 cachep->shared * cachep->batchcount,
1284 0xbaadf00d);
1285 if (!shared)
1286 goto bad;
1288 if (use_alien_caches) {
1289 alien = alloc_alien_cache(node, cachep->limit);
1290 if (!alien)
1291 goto bad;
1293 cachep->array[cpu] = nc;
1294 l3 = cachep->nodelists[node];
1295 BUG_ON(!l3);
1297 spin_lock_irq(&l3->list_lock);
1298 if (!l3->shared) {
1300 * We are serialised from CPU_DEAD or
1301 * CPU_UP_CANCELLED by the cpucontrol lock
1303 l3->shared = shared;
1304 shared = NULL;
1306 #ifdef CONFIG_NUMA
1307 if (!l3->alien) {
1308 l3->alien = alien;
1309 alien = NULL;
1311 #endif
1312 spin_unlock_irq(&l3->list_lock);
1313 kfree(shared);
1314 free_alien_cache(alien);
1316 return 0;
1317 bad:
1318 return -ENOMEM;
1321 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1322 unsigned long action, void *hcpu)
1324 long cpu = (long)hcpu;
1325 int err = 0;
1327 switch (action) {
1328 case CPU_LOCK_ACQUIRE:
1329 mutex_lock(&cache_chain_mutex);
1330 break;
1331 case CPU_UP_PREPARE:
1332 case CPU_UP_PREPARE_FROZEN:
1333 err = cpuup_prepare(cpu);
1334 break;
1335 case CPU_ONLINE:
1336 case CPU_ONLINE_FROZEN:
1337 start_cpu_timer(cpu);
1338 break;
1339 #ifdef CONFIG_HOTPLUG_CPU
1340 case CPU_DOWN_PREPARE:
1341 case CPU_DOWN_PREPARE_FROZEN:
1343 * Shutdown cache reaper. Note that the cache_chain_mutex is
1344 * held so that if cache_reap() is invoked it cannot do
1345 * anything expensive but will only modify reap_work
1346 * and reschedule the timer.
1348 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1349 /* Now the cache_reaper is guaranteed to be not running. */
1350 per_cpu(reap_work, cpu).work.func = NULL;
1351 break;
1352 case CPU_DOWN_FAILED:
1353 case CPU_DOWN_FAILED_FROZEN:
1354 start_cpu_timer(cpu);
1355 break;
1356 case CPU_DEAD:
1357 case CPU_DEAD_FROZEN:
1359 * Even if all the cpus of a node are down, we don't free the
1360 * kmem_list3 of any cache. This to avoid a race between
1361 * cpu_down, and a kmalloc allocation from another cpu for
1362 * memory from the node of the cpu going down. The list3
1363 * structure is usually allocated from kmem_cache_create() and
1364 * gets destroyed at kmem_cache_destroy().
1366 /* fall thru */
1367 #endif
1368 case CPU_UP_CANCELED:
1369 case CPU_UP_CANCELED_FROZEN:
1370 cpuup_canceled(cpu);
1371 break;
1372 case CPU_LOCK_RELEASE:
1373 mutex_unlock(&cache_chain_mutex);
1374 break;
1376 return err ? NOTIFY_BAD : NOTIFY_OK;
1379 static struct notifier_block __cpuinitdata cpucache_notifier = {
1380 &cpuup_callback, NULL, 0
1384 * swap the static kmem_list3 with kmalloced memory
1386 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1387 int nodeid)
1389 struct kmem_list3 *ptr;
1391 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1392 BUG_ON(!ptr);
1394 local_irq_disable();
1395 memcpy(ptr, list, sizeof(struct kmem_list3));
1397 * Do not assume that spinlocks can be initialized via memcpy:
1399 spin_lock_init(&ptr->list_lock);
1401 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1402 cachep->nodelists[nodeid] = ptr;
1403 local_irq_enable();
1407 * Initialisation. Called after the page allocator have been initialised and
1408 * before smp_init().
1410 void __init kmem_cache_init(void)
1412 size_t left_over;
1413 struct cache_sizes *sizes;
1414 struct cache_names *names;
1415 int i;
1416 int order;
1417 int node;
1419 if (num_possible_nodes() == 1) {
1420 use_alien_caches = 0;
1421 numa_platform = 0;
1424 for (i = 0; i < NUM_INIT_LISTS; i++) {
1425 kmem_list3_init(&initkmem_list3[i]);
1426 if (i < MAX_NUMNODES)
1427 cache_cache.nodelists[i] = NULL;
1431 * Fragmentation resistance on low memory - only use bigger
1432 * page orders on machines with more than 32MB of memory.
1434 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1435 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1437 /* Bootstrap is tricky, because several objects are allocated
1438 * from caches that do not exist yet:
1439 * 1) initialize the cache_cache cache: it contains the struct
1440 * kmem_cache structures of all caches, except cache_cache itself:
1441 * cache_cache is statically allocated.
1442 * Initially an __init data area is used for the head array and the
1443 * kmem_list3 structures, it's replaced with a kmalloc allocated
1444 * array at the end of the bootstrap.
1445 * 2) Create the first kmalloc cache.
1446 * The struct kmem_cache for the new cache is allocated normally.
1447 * An __init data area is used for the head array.
1448 * 3) Create the remaining kmalloc caches, with minimally sized
1449 * head arrays.
1450 * 4) Replace the __init data head arrays for cache_cache and the first
1451 * kmalloc cache with kmalloc allocated arrays.
1452 * 5) Replace the __init data for kmem_list3 for cache_cache and
1453 * the other cache's with kmalloc allocated memory.
1454 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1457 node = numa_node_id();
1459 /* 1) create the cache_cache */
1460 INIT_LIST_HEAD(&cache_chain);
1461 list_add(&cache_cache.next, &cache_chain);
1462 cache_cache.colour_off = cache_line_size();
1463 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1464 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1467 * struct kmem_cache size depends on nr_node_ids, which
1468 * can be less than MAX_NUMNODES.
1470 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1471 nr_node_ids * sizeof(struct kmem_list3 *);
1472 #if DEBUG
1473 cache_cache.obj_size = cache_cache.buffer_size;
1474 #endif
1475 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1476 cache_line_size());
1477 cache_cache.reciprocal_buffer_size =
1478 reciprocal_value(cache_cache.buffer_size);
1480 for (order = 0; order < MAX_ORDER; order++) {
1481 cache_estimate(order, cache_cache.buffer_size,
1482 cache_line_size(), 0, &left_over, &cache_cache.num);
1483 if (cache_cache.num)
1484 break;
1486 BUG_ON(!cache_cache.num);
1487 cache_cache.gfporder = order;
1488 cache_cache.colour = left_over / cache_cache.colour_off;
1489 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1490 sizeof(struct slab), cache_line_size());
1492 /* 2+3) create the kmalloc caches */
1493 sizes = malloc_sizes;
1494 names = cache_names;
1497 * Initialize the caches that provide memory for the array cache and the
1498 * kmem_list3 structures first. Without this, further allocations will
1499 * bug.
1502 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1503 sizes[INDEX_AC].cs_size,
1504 ARCH_KMALLOC_MINALIGN,
1505 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1506 NULL);
1508 if (INDEX_AC != INDEX_L3) {
1509 sizes[INDEX_L3].cs_cachep =
1510 kmem_cache_create(names[INDEX_L3].name,
1511 sizes[INDEX_L3].cs_size,
1512 ARCH_KMALLOC_MINALIGN,
1513 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1514 NULL);
1517 slab_early_init = 0;
1519 while (sizes->cs_size != ULONG_MAX) {
1521 * For performance, all the general caches are L1 aligned.
1522 * This should be particularly beneficial on SMP boxes, as it
1523 * eliminates "false sharing".
1524 * Note for systems short on memory removing the alignment will
1525 * allow tighter packing of the smaller caches.
1527 if (!sizes->cs_cachep) {
1528 sizes->cs_cachep = kmem_cache_create(names->name,
1529 sizes->cs_size,
1530 ARCH_KMALLOC_MINALIGN,
1531 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1532 NULL);
1534 #ifdef CONFIG_ZONE_DMA
1535 sizes->cs_dmacachep = kmem_cache_create(
1536 names->name_dma,
1537 sizes->cs_size,
1538 ARCH_KMALLOC_MINALIGN,
1539 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1540 SLAB_PANIC,
1541 NULL);
1542 #endif
1543 sizes++;
1544 names++;
1546 /* 4) Replace the bootstrap head arrays */
1548 struct array_cache *ptr;
1550 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1552 local_irq_disable();
1553 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1554 memcpy(ptr, cpu_cache_get(&cache_cache),
1555 sizeof(struct arraycache_init));
1557 * Do not assume that spinlocks can be initialized via memcpy:
1559 spin_lock_init(&ptr->lock);
1561 cache_cache.array[smp_processor_id()] = ptr;
1562 local_irq_enable();
1564 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1566 local_irq_disable();
1567 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1568 != &initarray_generic.cache);
1569 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1570 sizeof(struct arraycache_init));
1572 * Do not assume that spinlocks can be initialized via memcpy:
1574 spin_lock_init(&ptr->lock);
1576 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1577 ptr;
1578 local_irq_enable();
1580 /* 5) Replace the bootstrap kmem_list3's */
1582 int nid;
1584 /* Replace the static kmem_list3 structures for the boot cpu */
1585 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1587 for_each_node_state(nid, N_NORMAL_MEMORY) {
1588 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1589 &initkmem_list3[SIZE_AC + nid], nid);
1591 if (INDEX_AC != INDEX_L3) {
1592 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1593 &initkmem_list3[SIZE_L3 + nid], nid);
1598 /* 6) resize the head arrays to their final sizes */
1600 struct kmem_cache *cachep;
1601 mutex_lock(&cache_chain_mutex);
1602 list_for_each_entry(cachep, &cache_chain, next)
1603 if (enable_cpucache(cachep))
1604 BUG();
1605 mutex_unlock(&cache_chain_mutex);
1608 /* Annotate slab for lockdep -- annotate the malloc caches */
1609 init_lock_keys();
1612 /* Done! */
1613 g_cpucache_up = FULL;
1616 * Register a cpu startup notifier callback that initializes
1617 * cpu_cache_get for all new cpus
1619 register_cpu_notifier(&cpucache_notifier);
1622 * The reap timers are started later, with a module init call: That part
1623 * of the kernel is not yet operational.
1627 static int __init cpucache_init(void)
1629 int cpu;
1632 * Register the timers that return unneeded pages to the page allocator
1634 for_each_online_cpu(cpu)
1635 start_cpu_timer(cpu);
1636 return 0;
1638 __initcall(cpucache_init);
1641 * Interface to system's page allocator. No need to hold the cache-lock.
1643 * If we requested dmaable memory, we will get it. Even if we
1644 * did not request dmaable memory, we might get it, but that
1645 * would be relatively rare and ignorable.
1647 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1649 struct page *page;
1650 int nr_pages;
1651 int i;
1653 #ifndef CONFIG_MMU
1655 * Nommu uses slab's for process anonymous memory allocations, and thus
1656 * requires __GFP_COMP to properly refcount higher order allocations
1658 flags |= __GFP_COMP;
1659 #endif
1661 flags |= cachep->gfpflags;
1662 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1663 flags |= __GFP_RECLAIMABLE;
1665 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1666 if (!page)
1667 return NULL;
1669 nr_pages = (1 << cachep->gfporder);
1670 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1671 add_zone_page_state(page_zone(page),
1672 NR_SLAB_RECLAIMABLE, nr_pages);
1673 else
1674 add_zone_page_state(page_zone(page),
1675 NR_SLAB_UNRECLAIMABLE, nr_pages);
1676 for (i = 0; i < nr_pages; i++)
1677 __SetPageSlab(page + i);
1678 return page_address(page);
1682 * Interface to system's page release.
1684 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1686 unsigned long i = (1 << cachep->gfporder);
1687 struct page *page = virt_to_page(addr);
1688 const unsigned long nr_freed = i;
1690 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1691 sub_zone_page_state(page_zone(page),
1692 NR_SLAB_RECLAIMABLE, nr_freed);
1693 else
1694 sub_zone_page_state(page_zone(page),
1695 NR_SLAB_UNRECLAIMABLE, nr_freed);
1696 while (i--) {
1697 BUG_ON(!PageSlab(page));
1698 __ClearPageSlab(page);
1699 page++;
1701 if (current->reclaim_state)
1702 current->reclaim_state->reclaimed_slab += nr_freed;
1703 free_pages((unsigned long)addr, cachep->gfporder);
1706 static void kmem_rcu_free(struct rcu_head *head)
1708 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1709 struct kmem_cache *cachep = slab_rcu->cachep;
1711 kmem_freepages(cachep, slab_rcu->addr);
1712 if (OFF_SLAB(cachep))
1713 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1716 #if DEBUG
1718 #ifdef CONFIG_DEBUG_PAGEALLOC
1719 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1720 unsigned long caller)
1722 int size = obj_size(cachep);
1724 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1726 if (size < 5 * sizeof(unsigned long))
1727 return;
1729 *addr++ = 0x12345678;
1730 *addr++ = caller;
1731 *addr++ = smp_processor_id();
1732 size -= 3 * sizeof(unsigned long);
1734 unsigned long *sptr = &caller;
1735 unsigned long svalue;
1737 while (!kstack_end(sptr)) {
1738 svalue = *sptr++;
1739 if (kernel_text_address(svalue)) {
1740 *addr++ = svalue;
1741 size -= sizeof(unsigned long);
1742 if (size <= sizeof(unsigned long))
1743 break;
1748 *addr++ = 0x87654321;
1750 #endif
1752 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1754 int size = obj_size(cachep);
1755 addr = &((char *)addr)[obj_offset(cachep)];
1757 memset(addr, val, size);
1758 *(unsigned char *)(addr + size - 1) = POISON_END;
1761 static void dump_line(char *data, int offset, int limit)
1763 int i;
1764 unsigned char error = 0;
1765 int bad_count = 0;
1767 printk(KERN_ERR "%03x:", offset);
1768 for (i = 0; i < limit; i++) {
1769 if (data[offset + i] != POISON_FREE) {
1770 error = data[offset + i];
1771 bad_count++;
1773 printk(" %02x", (unsigned char)data[offset + i]);
1775 printk("\n");
1777 if (bad_count == 1) {
1778 error ^= POISON_FREE;
1779 if (!(error & (error - 1))) {
1780 printk(KERN_ERR "Single bit error detected. Probably "
1781 "bad RAM.\n");
1782 #ifdef CONFIG_X86
1783 printk(KERN_ERR "Run memtest86+ or a similar memory "
1784 "test tool.\n");
1785 #else
1786 printk(KERN_ERR "Run a memory test tool.\n");
1787 #endif
1791 #endif
1793 #if DEBUG
1795 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1797 int i, size;
1798 char *realobj;
1800 if (cachep->flags & SLAB_RED_ZONE) {
1801 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1802 *dbg_redzone1(cachep, objp),
1803 *dbg_redzone2(cachep, objp));
1806 if (cachep->flags & SLAB_STORE_USER) {
1807 printk(KERN_ERR "Last user: [<%p>]",
1808 *dbg_userword(cachep, objp));
1809 print_symbol("(%s)",
1810 (unsigned long)*dbg_userword(cachep, objp));
1811 printk("\n");
1813 realobj = (char *)objp + obj_offset(cachep);
1814 size = obj_size(cachep);
1815 for (i = 0; i < size && lines; i += 16, lines--) {
1816 int limit;
1817 limit = 16;
1818 if (i + limit > size)
1819 limit = size - i;
1820 dump_line(realobj, i, limit);
1824 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1826 char *realobj;
1827 int size, i;
1828 int lines = 0;
1830 realobj = (char *)objp + obj_offset(cachep);
1831 size = obj_size(cachep);
1833 for (i = 0; i < size; i++) {
1834 char exp = POISON_FREE;
1835 if (i == size - 1)
1836 exp = POISON_END;
1837 if (realobj[i] != exp) {
1838 int limit;
1839 /* Mismatch ! */
1840 /* Print header */
1841 if (lines == 0) {
1842 printk(KERN_ERR
1843 "Slab corruption: %s start=%p, len=%d\n",
1844 cachep->name, realobj, size);
1845 print_objinfo(cachep, objp, 0);
1847 /* Hexdump the affected line */
1848 i = (i / 16) * 16;
1849 limit = 16;
1850 if (i + limit > size)
1851 limit = size - i;
1852 dump_line(realobj, i, limit);
1853 i += 16;
1854 lines++;
1855 /* Limit to 5 lines */
1856 if (lines > 5)
1857 break;
1860 if (lines != 0) {
1861 /* Print some data about the neighboring objects, if they
1862 * exist:
1864 struct slab *slabp = virt_to_slab(objp);
1865 unsigned int objnr;
1867 objnr = obj_to_index(cachep, slabp, objp);
1868 if (objnr) {
1869 objp = index_to_obj(cachep, slabp, objnr - 1);
1870 realobj = (char *)objp + obj_offset(cachep);
1871 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1872 realobj, size);
1873 print_objinfo(cachep, objp, 2);
1875 if (objnr + 1 < cachep->num) {
1876 objp = index_to_obj(cachep, slabp, objnr + 1);
1877 realobj = (char *)objp + obj_offset(cachep);
1878 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1879 realobj, size);
1880 print_objinfo(cachep, objp, 2);
1884 #endif
1886 #if DEBUG
1888 * slab_destroy_objs - destroy a slab and its objects
1889 * @cachep: cache pointer being destroyed
1890 * @slabp: slab pointer being destroyed
1892 * Call the registered destructor for each object in a slab that is being
1893 * destroyed.
1895 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1897 int i;
1898 for (i = 0; i < cachep->num; i++) {
1899 void *objp = index_to_obj(cachep, slabp, i);
1901 if (cachep->flags & SLAB_POISON) {
1902 #ifdef CONFIG_DEBUG_PAGEALLOC
1903 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1904 OFF_SLAB(cachep))
1905 kernel_map_pages(virt_to_page(objp),
1906 cachep->buffer_size / PAGE_SIZE, 1);
1907 else
1908 check_poison_obj(cachep, objp);
1909 #else
1910 check_poison_obj(cachep, objp);
1911 #endif
1913 if (cachep->flags & SLAB_RED_ZONE) {
1914 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1915 slab_error(cachep, "start of a freed object "
1916 "was overwritten");
1917 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1918 slab_error(cachep, "end of a freed object "
1919 "was overwritten");
1923 #else
1924 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1927 #endif
1930 * slab_destroy - destroy and release all objects in a slab
1931 * @cachep: cache pointer being destroyed
1932 * @slabp: slab pointer being destroyed
1934 * Destroy all the objs in a slab, and release the mem back to the system.
1935 * Before calling the slab must have been unlinked from the cache. The
1936 * cache-lock is not held/needed.
1938 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1940 void *addr = slabp->s_mem - slabp->colouroff;
1942 slab_destroy_objs(cachep, slabp);
1943 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1944 struct slab_rcu *slab_rcu;
1946 slab_rcu = (struct slab_rcu *)slabp;
1947 slab_rcu->cachep = cachep;
1948 slab_rcu->addr = addr;
1949 call_rcu(&slab_rcu->head, kmem_rcu_free);
1950 } else {
1951 kmem_freepages(cachep, addr);
1952 if (OFF_SLAB(cachep))
1953 kmem_cache_free(cachep->slabp_cache, slabp);
1958 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1959 * size of kmem_list3.
1961 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1963 int node;
1965 for_each_node_state(node, N_NORMAL_MEMORY) {
1966 cachep->nodelists[node] = &initkmem_list3[index + node];
1967 cachep->nodelists[node]->next_reap = jiffies +
1968 REAPTIMEOUT_LIST3 +
1969 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1973 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1975 int i;
1976 struct kmem_list3 *l3;
1978 for_each_online_cpu(i)
1979 kfree(cachep->array[i]);
1981 /* NUMA: free the list3 structures */
1982 for_each_online_node(i) {
1983 l3 = cachep->nodelists[i];
1984 if (l3) {
1985 kfree(l3->shared);
1986 free_alien_cache(l3->alien);
1987 kfree(l3);
1990 kmem_cache_free(&cache_cache, cachep);
1995 * calculate_slab_order - calculate size (page order) of slabs
1996 * @cachep: pointer to the cache that is being created
1997 * @size: size of objects to be created in this cache.
1998 * @align: required alignment for the objects.
1999 * @flags: slab allocation flags
2001 * Also calculates the number of objects per slab.
2003 * This could be made much more intelligent. For now, try to avoid using
2004 * high order pages for slabs. When the gfp() functions are more friendly
2005 * towards high-order requests, this should be changed.
2007 static size_t calculate_slab_order(struct kmem_cache *cachep,
2008 size_t size, size_t align, unsigned long flags)
2010 unsigned long offslab_limit;
2011 size_t left_over = 0;
2012 int gfporder;
2014 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2015 unsigned int num;
2016 size_t remainder;
2018 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2019 if (!num)
2020 continue;
2022 if (flags & CFLGS_OFF_SLAB) {
2024 * Max number of objs-per-slab for caches which
2025 * use off-slab slabs. Needed to avoid a possible
2026 * looping condition in cache_grow().
2028 offslab_limit = size - sizeof(struct slab);
2029 offslab_limit /= sizeof(kmem_bufctl_t);
2031 if (num > offslab_limit)
2032 break;
2035 /* Found something acceptable - save it away */
2036 cachep->num = num;
2037 cachep->gfporder = gfporder;
2038 left_over = remainder;
2041 * A VFS-reclaimable slab tends to have most allocations
2042 * as GFP_NOFS and we really don't want to have to be allocating
2043 * higher-order pages when we are unable to shrink dcache.
2045 if (flags & SLAB_RECLAIM_ACCOUNT)
2046 break;
2049 * Large number of objects is good, but very large slabs are
2050 * currently bad for the gfp()s.
2052 if (gfporder >= slab_break_gfp_order)
2053 break;
2056 * Acceptable internal fragmentation?
2058 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2059 break;
2061 return left_over;
2064 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2066 if (g_cpucache_up == FULL)
2067 return enable_cpucache(cachep);
2069 if (g_cpucache_up == NONE) {
2071 * Note: the first kmem_cache_create must create the cache
2072 * that's used by kmalloc(24), otherwise the creation of
2073 * further caches will BUG().
2075 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2078 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2079 * the first cache, then we need to set up all its list3s,
2080 * otherwise the creation of further caches will BUG().
2082 set_up_list3s(cachep, SIZE_AC);
2083 if (INDEX_AC == INDEX_L3)
2084 g_cpucache_up = PARTIAL_L3;
2085 else
2086 g_cpucache_up = PARTIAL_AC;
2087 } else {
2088 cachep->array[smp_processor_id()] =
2089 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2091 if (g_cpucache_up == PARTIAL_AC) {
2092 set_up_list3s(cachep, SIZE_L3);
2093 g_cpucache_up = PARTIAL_L3;
2094 } else {
2095 int node;
2096 for_each_node_state(node, N_NORMAL_MEMORY) {
2097 cachep->nodelists[node] =
2098 kmalloc_node(sizeof(struct kmem_list3),
2099 GFP_KERNEL, node);
2100 BUG_ON(!cachep->nodelists[node]);
2101 kmem_list3_init(cachep->nodelists[node]);
2105 cachep->nodelists[numa_node_id()]->next_reap =
2106 jiffies + REAPTIMEOUT_LIST3 +
2107 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2109 cpu_cache_get(cachep)->avail = 0;
2110 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2111 cpu_cache_get(cachep)->batchcount = 1;
2112 cpu_cache_get(cachep)->touched = 0;
2113 cachep->batchcount = 1;
2114 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2115 return 0;
2119 * kmem_cache_create - Create a cache.
2120 * @name: A string which is used in /proc/slabinfo to identify this cache.
2121 * @size: The size of objects to be created in this cache.
2122 * @align: The required alignment for the objects.
2123 * @flags: SLAB flags
2124 * @ctor: A constructor for the objects.
2126 * Returns a ptr to the cache on success, NULL on failure.
2127 * Cannot be called within a int, but can be interrupted.
2128 * The @ctor is run when new pages are allocated by the cache.
2130 * @name must be valid until the cache is destroyed. This implies that
2131 * the module calling this has to destroy the cache before getting unloaded.
2133 * The flags are
2135 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2136 * to catch references to uninitialised memory.
2138 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2139 * for buffer overruns.
2141 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2142 * cacheline. This can be beneficial if you're counting cycles as closely
2143 * as davem.
2145 struct kmem_cache *
2146 kmem_cache_create (const char *name, size_t size, size_t align,
2147 unsigned long flags,
2148 void (*ctor)(struct kmem_cache *, void *))
2150 size_t left_over, slab_size, ralign;
2151 struct kmem_cache *cachep = NULL, *pc;
2154 * Sanity checks... these are all serious usage bugs.
2156 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2157 size > KMALLOC_MAX_SIZE) {
2158 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2159 name);
2160 BUG();
2164 * We use cache_chain_mutex to ensure a consistent view of
2165 * cpu_online_map as well. Please see cpuup_callback
2167 mutex_lock(&cache_chain_mutex);
2169 list_for_each_entry(pc, &cache_chain, next) {
2170 char tmp;
2171 int res;
2174 * This happens when the module gets unloaded and doesn't
2175 * destroy its slab cache and no-one else reuses the vmalloc
2176 * area of the module. Print a warning.
2178 res = probe_kernel_address(pc->name, tmp);
2179 if (res) {
2180 printk(KERN_ERR
2181 "SLAB: cache with size %d has lost its name\n",
2182 pc->buffer_size);
2183 continue;
2186 if (!strcmp(pc->name, name)) {
2187 printk(KERN_ERR
2188 "kmem_cache_create: duplicate cache %s\n", name);
2189 dump_stack();
2190 goto oops;
2194 #if DEBUG
2195 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2196 #if FORCED_DEBUG
2198 * Enable redzoning and last user accounting, except for caches with
2199 * large objects, if the increased size would increase the object size
2200 * above the next power of two: caches with object sizes just above a
2201 * power of two have a significant amount of internal fragmentation.
2203 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2204 2 * sizeof(unsigned long long)))
2205 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2206 if (!(flags & SLAB_DESTROY_BY_RCU))
2207 flags |= SLAB_POISON;
2208 #endif
2209 if (flags & SLAB_DESTROY_BY_RCU)
2210 BUG_ON(flags & SLAB_POISON);
2211 #endif
2213 * Always checks flags, a caller might be expecting debug support which
2214 * isn't available.
2216 BUG_ON(flags & ~CREATE_MASK);
2219 * Check that size is in terms of words. This is needed to avoid
2220 * unaligned accesses for some archs when redzoning is used, and makes
2221 * sure any on-slab bufctl's are also correctly aligned.
2223 if (size & (BYTES_PER_WORD - 1)) {
2224 size += (BYTES_PER_WORD - 1);
2225 size &= ~(BYTES_PER_WORD - 1);
2228 /* calculate the final buffer alignment: */
2230 /* 1) arch recommendation: can be overridden for debug */
2231 if (flags & SLAB_HWCACHE_ALIGN) {
2233 * Default alignment: as specified by the arch code. Except if
2234 * an object is really small, then squeeze multiple objects into
2235 * one cacheline.
2237 ralign = cache_line_size();
2238 while (size <= ralign / 2)
2239 ralign /= 2;
2240 } else {
2241 ralign = BYTES_PER_WORD;
2245 * Redzoning and user store require word alignment or possibly larger.
2246 * Note this will be overridden by architecture or caller mandated
2247 * alignment if either is greater than BYTES_PER_WORD.
2249 if (flags & SLAB_STORE_USER)
2250 ralign = BYTES_PER_WORD;
2252 if (flags & SLAB_RED_ZONE) {
2253 ralign = REDZONE_ALIGN;
2254 /* If redzoning, ensure that the second redzone is suitably
2255 * aligned, by adjusting the object size accordingly. */
2256 size += REDZONE_ALIGN - 1;
2257 size &= ~(REDZONE_ALIGN - 1);
2260 /* 2) arch mandated alignment */
2261 if (ralign < ARCH_SLAB_MINALIGN) {
2262 ralign = ARCH_SLAB_MINALIGN;
2264 /* 3) caller mandated alignment */
2265 if (ralign < align) {
2266 ralign = align;
2268 /* disable debug if necessary */
2269 if (ralign > __alignof__(unsigned long long))
2270 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2272 * 4) Store it.
2274 align = ralign;
2276 /* Get cache's description obj. */
2277 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2278 if (!cachep)
2279 goto oops;
2281 #if DEBUG
2282 cachep->obj_size = size;
2285 * Both debugging options require word-alignment which is calculated
2286 * into align above.
2288 if (flags & SLAB_RED_ZONE) {
2289 /* add space for red zone words */
2290 cachep->obj_offset += sizeof(unsigned long long);
2291 size += 2 * sizeof(unsigned long long);
2293 if (flags & SLAB_STORE_USER) {
2294 /* user store requires one word storage behind the end of
2295 * the real object. But if the second red zone needs to be
2296 * aligned to 64 bits, we must allow that much space.
2298 if (flags & SLAB_RED_ZONE)
2299 size += REDZONE_ALIGN;
2300 else
2301 size += BYTES_PER_WORD;
2303 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2304 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2305 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2306 cachep->obj_offset += PAGE_SIZE - size;
2307 size = PAGE_SIZE;
2309 #endif
2310 #endif
2313 * Determine if the slab management is 'on' or 'off' slab.
2314 * (bootstrapping cannot cope with offslab caches so don't do
2315 * it too early on.)
2317 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2319 * Size is large, assume best to place the slab management obj
2320 * off-slab (should allow better packing of objs).
2322 flags |= CFLGS_OFF_SLAB;
2324 size = ALIGN(size, align);
2326 left_over = calculate_slab_order(cachep, size, align, flags);
2328 if (!cachep->num) {
2329 printk(KERN_ERR
2330 "kmem_cache_create: couldn't create cache %s.\n", name);
2331 kmem_cache_free(&cache_cache, cachep);
2332 cachep = NULL;
2333 goto oops;
2335 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2336 + sizeof(struct slab), align);
2339 * If the slab has been placed off-slab, and we have enough space then
2340 * move it on-slab. This is at the expense of any extra colouring.
2342 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2343 flags &= ~CFLGS_OFF_SLAB;
2344 left_over -= slab_size;
2347 if (flags & CFLGS_OFF_SLAB) {
2348 /* really off slab. No need for manual alignment */
2349 slab_size =
2350 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2353 cachep->colour_off = cache_line_size();
2354 /* Offset must be a multiple of the alignment. */
2355 if (cachep->colour_off < align)
2356 cachep->colour_off = align;
2357 cachep->colour = left_over / cachep->colour_off;
2358 cachep->slab_size = slab_size;
2359 cachep->flags = flags;
2360 cachep->gfpflags = 0;
2361 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2362 cachep->gfpflags |= GFP_DMA;
2363 cachep->buffer_size = size;
2364 cachep->reciprocal_buffer_size = reciprocal_value(size);
2366 if (flags & CFLGS_OFF_SLAB) {
2367 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2369 * This is a possibility for one of the malloc_sizes caches.
2370 * But since we go off slab only for object size greater than
2371 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2372 * this should not happen at all.
2373 * But leave a BUG_ON for some lucky dude.
2375 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2377 cachep->ctor = ctor;
2378 cachep->name = name;
2380 if (setup_cpu_cache(cachep)) {
2381 __kmem_cache_destroy(cachep);
2382 cachep = NULL;
2383 goto oops;
2386 /* cache setup completed, link it into the list */
2387 list_add(&cachep->next, &cache_chain);
2388 oops:
2389 if (!cachep && (flags & SLAB_PANIC))
2390 panic("kmem_cache_create(): failed to create slab `%s'\n",
2391 name);
2392 mutex_unlock(&cache_chain_mutex);
2393 return cachep;
2395 EXPORT_SYMBOL(kmem_cache_create);
2397 #if DEBUG
2398 static void check_irq_off(void)
2400 BUG_ON(!irqs_disabled());
2403 static void check_irq_on(void)
2405 BUG_ON(irqs_disabled());
2408 static void check_spinlock_acquired(struct kmem_cache *cachep)
2410 #ifdef CONFIG_SMP
2411 check_irq_off();
2412 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2413 #endif
2416 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2418 #ifdef CONFIG_SMP
2419 check_irq_off();
2420 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2421 #endif
2424 #else
2425 #define check_irq_off() do { } while(0)
2426 #define check_irq_on() do { } while(0)
2427 #define check_spinlock_acquired(x) do { } while(0)
2428 #define check_spinlock_acquired_node(x, y) do { } while(0)
2429 #endif
2431 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2432 struct array_cache *ac,
2433 int force, int node);
2435 static void do_drain(void *arg)
2437 struct kmem_cache *cachep = arg;
2438 struct array_cache *ac;
2439 int node = numa_node_id();
2441 check_irq_off();
2442 ac = cpu_cache_get(cachep);
2443 spin_lock(&cachep->nodelists[node]->list_lock);
2444 free_block(cachep, ac->entry, ac->avail, node);
2445 spin_unlock(&cachep->nodelists[node]->list_lock);
2446 ac->avail = 0;
2449 static void drain_cpu_caches(struct kmem_cache *cachep)
2451 struct kmem_list3 *l3;
2452 int node;
2454 on_each_cpu(do_drain, cachep, 1, 1);
2455 check_irq_on();
2456 for_each_online_node(node) {
2457 l3 = cachep->nodelists[node];
2458 if (l3 && l3->alien)
2459 drain_alien_cache(cachep, l3->alien);
2462 for_each_online_node(node) {
2463 l3 = cachep->nodelists[node];
2464 if (l3)
2465 drain_array(cachep, l3, l3->shared, 1, node);
2470 * Remove slabs from the list of free slabs.
2471 * Specify the number of slabs to drain in tofree.
2473 * Returns the actual number of slabs released.
2475 static int drain_freelist(struct kmem_cache *cache,
2476 struct kmem_list3 *l3, int tofree)
2478 struct list_head *p;
2479 int nr_freed;
2480 struct slab *slabp;
2482 nr_freed = 0;
2483 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2485 spin_lock_irq(&l3->list_lock);
2486 p = l3->slabs_free.prev;
2487 if (p == &l3->slabs_free) {
2488 spin_unlock_irq(&l3->list_lock);
2489 goto out;
2492 slabp = list_entry(p, struct slab, list);
2493 #if DEBUG
2494 BUG_ON(slabp->inuse);
2495 #endif
2496 list_del(&slabp->list);
2498 * Safe to drop the lock. The slab is no longer linked
2499 * to the cache.
2501 l3->free_objects -= cache->num;
2502 spin_unlock_irq(&l3->list_lock);
2503 slab_destroy(cache, slabp);
2504 nr_freed++;
2506 out:
2507 return nr_freed;
2510 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2511 static int __cache_shrink(struct kmem_cache *cachep)
2513 int ret = 0, i = 0;
2514 struct kmem_list3 *l3;
2516 drain_cpu_caches(cachep);
2518 check_irq_on();
2519 for_each_online_node(i) {
2520 l3 = cachep->nodelists[i];
2521 if (!l3)
2522 continue;
2524 drain_freelist(cachep, l3, l3->free_objects);
2526 ret += !list_empty(&l3->slabs_full) ||
2527 !list_empty(&l3->slabs_partial);
2529 return (ret ? 1 : 0);
2533 * kmem_cache_shrink - Shrink a cache.
2534 * @cachep: The cache to shrink.
2536 * Releases as many slabs as possible for a cache.
2537 * To help debugging, a zero exit status indicates all slabs were released.
2539 int kmem_cache_shrink(struct kmem_cache *cachep)
2541 int ret;
2542 BUG_ON(!cachep || in_interrupt());
2544 mutex_lock(&cache_chain_mutex);
2545 ret = __cache_shrink(cachep);
2546 mutex_unlock(&cache_chain_mutex);
2547 return ret;
2549 EXPORT_SYMBOL(kmem_cache_shrink);
2552 * kmem_cache_destroy - delete a cache
2553 * @cachep: the cache to destroy
2555 * Remove a &struct kmem_cache object from the slab cache.
2557 * It is expected this function will be called by a module when it is
2558 * unloaded. This will remove the cache completely, and avoid a duplicate
2559 * cache being allocated each time a module is loaded and unloaded, if the
2560 * module doesn't have persistent in-kernel storage across loads and unloads.
2562 * The cache must be empty before calling this function.
2564 * The caller must guarantee that noone will allocate memory from the cache
2565 * during the kmem_cache_destroy().
2567 void kmem_cache_destroy(struct kmem_cache *cachep)
2569 BUG_ON(!cachep || in_interrupt());
2571 /* Find the cache in the chain of caches. */
2572 mutex_lock(&cache_chain_mutex);
2574 * the chain is never empty, cache_cache is never destroyed
2576 list_del(&cachep->next);
2577 if (__cache_shrink(cachep)) {
2578 slab_error(cachep, "Can't free all objects");
2579 list_add(&cachep->next, &cache_chain);
2580 mutex_unlock(&cache_chain_mutex);
2581 return;
2584 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2585 synchronize_rcu();
2587 __kmem_cache_destroy(cachep);
2588 mutex_unlock(&cache_chain_mutex);
2590 EXPORT_SYMBOL(kmem_cache_destroy);
2593 * Get the memory for a slab management obj.
2594 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2595 * always come from malloc_sizes caches. The slab descriptor cannot
2596 * come from the same cache which is getting created because,
2597 * when we are searching for an appropriate cache for these
2598 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2599 * If we are creating a malloc_sizes cache here it would not be visible to
2600 * kmem_find_general_cachep till the initialization is complete.
2601 * Hence we cannot have slabp_cache same as the original cache.
2603 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2604 int colour_off, gfp_t local_flags,
2605 int nodeid)
2607 struct slab *slabp;
2609 if (OFF_SLAB(cachep)) {
2610 /* Slab management obj is off-slab. */
2611 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2612 local_flags & ~GFP_THISNODE, nodeid);
2613 if (!slabp)
2614 return NULL;
2615 } else {
2616 slabp = objp + colour_off;
2617 colour_off += cachep->slab_size;
2619 slabp->inuse = 0;
2620 slabp->colouroff = colour_off;
2621 slabp->s_mem = objp + colour_off;
2622 slabp->nodeid = nodeid;
2623 return slabp;
2626 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2628 return (kmem_bufctl_t *) (slabp + 1);
2631 static void cache_init_objs(struct kmem_cache *cachep,
2632 struct slab *slabp)
2634 int i;
2636 for (i = 0; i < cachep->num; i++) {
2637 void *objp = index_to_obj(cachep, slabp, i);
2638 #if DEBUG
2639 /* need to poison the objs? */
2640 if (cachep->flags & SLAB_POISON)
2641 poison_obj(cachep, objp, POISON_FREE);
2642 if (cachep->flags & SLAB_STORE_USER)
2643 *dbg_userword(cachep, objp) = NULL;
2645 if (cachep->flags & SLAB_RED_ZONE) {
2646 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2647 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2650 * Constructors are not allowed to allocate memory from the same
2651 * cache which they are a constructor for. Otherwise, deadlock.
2652 * They must also be threaded.
2654 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2655 cachep->ctor(cachep, objp + obj_offset(cachep));
2657 if (cachep->flags & SLAB_RED_ZONE) {
2658 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2659 slab_error(cachep, "constructor overwrote the"
2660 " end of an object");
2661 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2662 slab_error(cachep, "constructor overwrote the"
2663 " start of an object");
2665 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2666 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2667 kernel_map_pages(virt_to_page(objp),
2668 cachep->buffer_size / PAGE_SIZE, 0);
2669 #else
2670 if (cachep->ctor)
2671 cachep->ctor(cachep, objp);
2672 #endif
2673 slab_bufctl(slabp)[i] = i + 1;
2675 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2676 slabp->free = 0;
2679 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2681 if (CONFIG_ZONE_DMA_FLAG) {
2682 if (flags & GFP_DMA)
2683 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2684 else
2685 BUG_ON(cachep->gfpflags & GFP_DMA);
2689 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2690 int nodeid)
2692 void *objp = index_to_obj(cachep, slabp, slabp->free);
2693 kmem_bufctl_t next;
2695 slabp->inuse++;
2696 next = slab_bufctl(slabp)[slabp->free];
2697 #if DEBUG
2698 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2699 WARN_ON(slabp->nodeid != nodeid);
2700 #endif
2701 slabp->free = next;
2703 return objp;
2706 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2707 void *objp, int nodeid)
2709 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2711 #if DEBUG
2712 /* Verify that the slab belongs to the intended node */
2713 WARN_ON(slabp->nodeid != nodeid);
2715 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2716 printk(KERN_ERR "slab: double free detected in cache "
2717 "'%s', objp %p\n", cachep->name, objp);
2718 BUG();
2720 #endif
2721 slab_bufctl(slabp)[objnr] = slabp->free;
2722 slabp->free = objnr;
2723 slabp->inuse--;
2727 * Map pages beginning at addr to the given cache and slab. This is required
2728 * for the slab allocator to be able to lookup the cache and slab of a
2729 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2731 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2732 void *addr)
2734 int nr_pages;
2735 struct page *page;
2737 page = virt_to_page(addr);
2739 nr_pages = 1;
2740 if (likely(!PageCompound(page)))
2741 nr_pages <<= cache->gfporder;
2743 do {
2744 page_set_cache(page, cache);
2745 page_set_slab(page, slab);
2746 page++;
2747 } while (--nr_pages);
2751 * Grow (by 1) the number of slabs within a cache. This is called by
2752 * kmem_cache_alloc() when there are no active objs left in a cache.
2754 static int cache_grow(struct kmem_cache *cachep,
2755 gfp_t flags, int nodeid, void *objp)
2757 struct slab *slabp;
2758 size_t offset;
2759 gfp_t local_flags;
2760 struct kmem_list3 *l3;
2763 * Be lazy and only check for valid flags here, keeping it out of the
2764 * critical path in kmem_cache_alloc().
2766 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2767 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2769 /* Take the l3 list lock to change the colour_next on this node */
2770 check_irq_off();
2771 l3 = cachep->nodelists[nodeid];
2772 spin_lock(&l3->list_lock);
2774 /* Get colour for the slab, and cal the next value. */
2775 offset = l3->colour_next;
2776 l3->colour_next++;
2777 if (l3->colour_next >= cachep->colour)
2778 l3->colour_next = 0;
2779 spin_unlock(&l3->list_lock);
2781 offset *= cachep->colour_off;
2783 if (local_flags & __GFP_WAIT)
2784 local_irq_enable();
2787 * The test for missing atomic flag is performed here, rather than
2788 * the more obvious place, simply to reduce the critical path length
2789 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2790 * will eventually be caught here (where it matters).
2792 kmem_flagcheck(cachep, flags);
2795 * Get mem for the objs. Attempt to allocate a physical page from
2796 * 'nodeid'.
2798 if (!objp)
2799 objp = kmem_getpages(cachep, local_flags, nodeid);
2800 if (!objp)
2801 goto failed;
2803 /* Get slab management. */
2804 slabp = alloc_slabmgmt(cachep, objp, offset,
2805 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2806 if (!slabp)
2807 goto opps1;
2809 slabp->nodeid = nodeid;
2810 slab_map_pages(cachep, slabp, objp);
2812 cache_init_objs(cachep, slabp);
2814 if (local_flags & __GFP_WAIT)
2815 local_irq_disable();
2816 check_irq_off();
2817 spin_lock(&l3->list_lock);
2819 /* Make slab active. */
2820 list_add_tail(&slabp->list, &(l3->slabs_free));
2821 STATS_INC_GROWN(cachep);
2822 l3->free_objects += cachep->num;
2823 spin_unlock(&l3->list_lock);
2824 return 1;
2825 opps1:
2826 kmem_freepages(cachep, objp);
2827 failed:
2828 if (local_flags & __GFP_WAIT)
2829 local_irq_disable();
2830 return 0;
2833 #if DEBUG
2836 * Perform extra freeing checks:
2837 * - detect bad pointers.
2838 * - POISON/RED_ZONE checking
2840 static void kfree_debugcheck(const void *objp)
2842 if (!virt_addr_valid(objp)) {
2843 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2844 (unsigned long)objp);
2845 BUG();
2849 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2851 unsigned long long redzone1, redzone2;
2853 redzone1 = *dbg_redzone1(cache, obj);
2854 redzone2 = *dbg_redzone2(cache, obj);
2857 * Redzone is ok.
2859 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2860 return;
2862 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2863 slab_error(cache, "double free detected");
2864 else
2865 slab_error(cache, "memory outside object was overwritten");
2867 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2868 obj, redzone1, redzone2);
2871 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2872 void *caller)
2874 struct page *page;
2875 unsigned int objnr;
2876 struct slab *slabp;
2878 objp -= obj_offset(cachep);
2879 kfree_debugcheck(objp);
2880 page = virt_to_head_page(objp);
2882 slabp = page_get_slab(page);
2884 if (cachep->flags & SLAB_RED_ZONE) {
2885 verify_redzone_free(cachep, objp);
2886 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2887 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2889 if (cachep->flags & SLAB_STORE_USER)
2890 *dbg_userword(cachep, objp) = caller;
2892 objnr = obj_to_index(cachep, slabp, objp);
2894 BUG_ON(objnr >= cachep->num);
2895 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2897 #ifdef CONFIG_DEBUG_SLAB_LEAK
2898 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2899 #endif
2900 if (cachep->flags & SLAB_POISON) {
2901 #ifdef CONFIG_DEBUG_PAGEALLOC
2902 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2903 store_stackinfo(cachep, objp, (unsigned long)caller);
2904 kernel_map_pages(virt_to_page(objp),
2905 cachep->buffer_size / PAGE_SIZE, 0);
2906 } else {
2907 poison_obj(cachep, objp, POISON_FREE);
2909 #else
2910 poison_obj(cachep, objp, POISON_FREE);
2911 #endif
2913 return objp;
2916 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2918 kmem_bufctl_t i;
2919 int entries = 0;
2921 /* Check slab's freelist to see if this obj is there. */
2922 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2923 entries++;
2924 if (entries > cachep->num || i >= cachep->num)
2925 goto bad;
2927 if (entries != cachep->num - slabp->inuse) {
2928 bad:
2929 printk(KERN_ERR "slab: Internal list corruption detected in "
2930 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2931 cachep->name, cachep->num, slabp, slabp->inuse);
2932 for (i = 0;
2933 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2934 i++) {
2935 if (i % 16 == 0)
2936 printk("\n%03x:", i);
2937 printk(" %02x", ((unsigned char *)slabp)[i]);
2939 printk("\n");
2940 BUG();
2943 #else
2944 #define kfree_debugcheck(x) do { } while(0)
2945 #define cache_free_debugcheck(x,objp,z) (objp)
2946 #define check_slabp(x,y) do { } while(0)
2947 #endif
2949 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2951 int batchcount;
2952 struct kmem_list3 *l3;
2953 struct array_cache *ac;
2954 int node;
2956 node = numa_node_id();
2958 check_irq_off();
2959 ac = cpu_cache_get(cachep);
2960 retry:
2961 batchcount = ac->batchcount;
2962 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2964 * If there was little recent activity on this cache, then
2965 * perform only a partial refill. Otherwise we could generate
2966 * refill bouncing.
2968 batchcount = BATCHREFILL_LIMIT;
2970 l3 = cachep->nodelists[node];
2972 BUG_ON(ac->avail > 0 || !l3);
2973 spin_lock(&l3->list_lock);
2975 /* See if we can refill from the shared array */
2976 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2977 goto alloc_done;
2979 while (batchcount > 0) {
2980 struct list_head *entry;
2981 struct slab *slabp;
2982 /* Get slab alloc is to come from. */
2983 entry = l3->slabs_partial.next;
2984 if (entry == &l3->slabs_partial) {
2985 l3->free_touched = 1;
2986 entry = l3->slabs_free.next;
2987 if (entry == &l3->slabs_free)
2988 goto must_grow;
2991 slabp = list_entry(entry, struct slab, list);
2992 check_slabp(cachep, slabp);
2993 check_spinlock_acquired(cachep);
2996 * The slab was either on partial or free list so
2997 * there must be at least one object available for
2998 * allocation.
3000 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3002 while (slabp->inuse < cachep->num && batchcount--) {
3003 STATS_INC_ALLOCED(cachep);
3004 STATS_INC_ACTIVE(cachep);
3005 STATS_SET_HIGH(cachep);
3007 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3008 node);
3010 check_slabp(cachep, slabp);
3012 /* move slabp to correct slabp list: */
3013 list_del(&slabp->list);
3014 if (slabp->free == BUFCTL_END)
3015 list_add(&slabp->list, &l3->slabs_full);
3016 else
3017 list_add(&slabp->list, &l3->slabs_partial);
3020 must_grow:
3021 l3->free_objects -= ac->avail;
3022 alloc_done:
3023 spin_unlock(&l3->list_lock);
3025 if (unlikely(!ac->avail)) {
3026 int x;
3027 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3029 /* cache_grow can reenable interrupts, then ac could change. */
3030 ac = cpu_cache_get(cachep);
3031 if (!x && ac->avail == 0) /* no objects in sight? abort */
3032 return NULL;
3034 if (!ac->avail) /* objects refilled by interrupt? */
3035 goto retry;
3037 ac->touched = 1;
3038 return ac->entry[--ac->avail];
3041 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3042 gfp_t flags)
3044 might_sleep_if(flags & __GFP_WAIT);
3045 #if DEBUG
3046 kmem_flagcheck(cachep, flags);
3047 #endif
3050 #if DEBUG
3051 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3052 gfp_t flags, void *objp, void *caller)
3054 if (!objp)
3055 return objp;
3056 if (cachep->flags & SLAB_POISON) {
3057 #ifdef CONFIG_DEBUG_PAGEALLOC
3058 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3059 kernel_map_pages(virt_to_page(objp),
3060 cachep->buffer_size / PAGE_SIZE, 1);
3061 else
3062 check_poison_obj(cachep, objp);
3063 #else
3064 check_poison_obj(cachep, objp);
3065 #endif
3066 poison_obj(cachep, objp, POISON_INUSE);
3068 if (cachep->flags & SLAB_STORE_USER)
3069 *dbg_userword(cachep, objp) = caller;
3071 if (cachep->flags & SLAB_RED_ZONE) {
3072 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3073 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3074 slab_error(cachep, "double free, or memory outside"
3075 " object was overwritten");
3076 printk(KERN_ERR
3077 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3078 objp, *dbg_redzone1(cachep, objp),
3079 *dbg_redzone2(cachep, objp));
3081 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3082 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3084 #ifdef CONFIG_DEBUG_SLAB_LEAK
3086 struct slab *slabp;
3087 unsigned objnr;
3089 slabp = page_get_slab(virt_to_head_page(objp));
3090 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3091 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3093 #endif
3094 objp += obj_offset(cachep);
3095 if (cachep->ctor && cachep->flags & SLAB_POISON)
3096 cachep->ctor(cachep, objp);
3097 #if ARCH_SLAB_MINALIGN
3098 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3099 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3100 objp, ARCH_SLAB_MINALIGN);
3102 #endif
3103 return objp;
3105 #else
3106 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3107 #endif
3109 #ifdef CONFIG_FAILSLAB
3111 static struct failslab_attr {
3113 struct fault_attr attr;
3115 u32 ignore_gfp_wait;
3116 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3117 struct dentry *ignore_gfp_wait_file;
3118 #endif
3120 } failslab = {
3121 .attr = FAULT_ATTR_INITIALIZER,
3122 .ignore_gfp_wait = 1,
3125 static int __init setup_failslab(char *str)
3127 return setup_fault_attr(&failslab.attr, str);
3129 __setup("failslab=", setup_failslab);
3131 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3133 if (cachep == &cache_cache)
3134 return 0;
3135 if (flags & __GFP_NOFAIL)
3136 return 0;
3137 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3138 return 0;
3140 return should_fail(&failslab.attr, obj_size(cachep));
3143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3145 static int __init failslab_debugfs(void)
3147 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3148 struct dentry *dir;
3149 int err;
3151 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3152 if (err)
3153 return err;
3154 dir = failslab.attr.dentries.dir;
3156 failslab.ignore_gfp_wait_file =
3157 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3158 &failslab.ignore_gfp_wait);
3160 if (!failslab.ignore_gfp_wait_file) {
3161 err = -ENOMEM;
3162 debugfs_remove(failslab.ignore_gfp_wait_file);
3163 cleanup_fault_attr_dentries(&failslab.attr);
3166 return err;
3169 late_initcall(failslab_debugfs);
3171 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3173 #else /* CONFIG_FAILSLAB */
3175 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3177 return 0;
3180 #endif /* CONFIG_FAILSLAB */
3182 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3184 void *objp;
3185 struct array_cache *ac;
3187 check_irq_off();
3189 ac = cpu_cache_get(cachep);
3190 if (likely(ac->avail)) {
3191 STATS_INC_ALLOCHIT(cachep);
3192 ac->touched = 1;
3193 objp = ac->entry[--ac->avail];
3194 } else {
3195 STATS_INC_ALLOCMISS(cachep);
3196 objp = cache_alloc_refill(cachep, flags);
3198 return objp;
3201 #ifdef CONFIG_NUMA
3203 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3205 * If we are in_interrupt, then process context, including cpusets and
3206 * mempolicy, may not apply and should not be used for allocation policy.
3208 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3210 int nid_alloc, nid_here;
3212 if (in_interrupt() || (flags & __GFP_THISNODE))
3213 return NULL;
3214 nid_alloc = nid_here = numa_node_id();
3215 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3216 nid_alloc = cpuset_mem_spread_node();
3217 else if (current->mempolicy)
3218 nid_alloc = slab_node(current->mempolicy);
3219 if (nid_alloc != nid_here)
3220 return ____cache_alloc_node(cachep, flags, nid_alloc);
3221 return NULL;
3225 * Fallback function if there was no memory available and no objects on a
3226 * certain node and fall back is permitted. First we scan all the
3227 * available nodelists for available objects. If that fails then we
3228 * perform an allocation without specifying a node. This allows the page
3229 * allocator to do its reclaim / fallback magic. We then insert the
3230 * slab into the proper nodelist and then allocate from it.
3232 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3234 struct zonelist *zonelist;
3235 gfp_t local_flags;
3236 struct zone **z;
3237 void *obj = NULL;
3238 int nid;
3240 if (flags & __GFP_THISNODE)
3241 return NULL;
3243 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3244 ->node_zonelists[gfp_zone(flags)];
3245 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3247 retry:
3249 * Look through allowed nodes for objects available
3250 * from existing per node queues.
3252 for (z = zonelist->zones; *z && !obj; z++) {
3253 nid = zone_to_nid(*z);
3255 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3256 cache->nodelists[nid] &&
3257 cache->nodelists[nid]->free_objects)
3258 obj = ____cache_alloc_node(cache,
3259 flags | GFP_THISNODE, nid);
3262 if (!obj) {
3264 * This allocation will be performed within the constraints
3265 * of the current cpuset / memory policy requirements.
3266 * We may trigger various forms of reclaim on the allowed
3267 * set and go into memory reserves if necessary.
3269 if (local_flags & __GFP_WAIT)
3270 local_irq_enable();
3271 kmem_flagcheck(cache, flags);
3272 obj = kmem_getpages(cache, flags, -1);
3273 if (local_flags & __GFP_WAIT)
3274 local_irq_disable();
3275 if (obj) {
3277 * Insert into the appropriate per node queues
3279 nid = page_to_nid(virt_to_page(obj));
3280 if (cache_grow(cache, flags, nid, obj)) {
3281 obj = ____cache_alloc_node(cache,
3282 flags | GFP_THISNODE, nid);
3283 if (!obj)
3285 * Another processor may allocate the
3286 * objects in the slab since we are
3287 * not holding any locks.
3289 goto retry;
3290 } else {
3291 /* cache_grow already freed obj */
3292 obj = NULL;
3296 return obj;
3300 * A interface to enable slab creation on nodeid
3302 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3303 int nodeid)
3305 struct list_head *entry;
3306 struct slab *slabp;
3307 struct kmem_list3 *l3;
3308 void *obj;
3309 int x;
3311 l3 = cachep->nodelists[nodeid];
3312 BUG_ON(!l3);
3314 retry:
3315 check_irq_off();
3316 spin_lock(&l3->list_lock);
3317 entry = l3->slabs_partial.next;
3318 if (entry == &l3->slabs_partial) {
3319 l3->free_touched = 1;
3320 entry = l3->slabs_free.next;
3321 if (entry == &l3->slabs_free)
3322 goto must_grow;
3325 slabp = list_entry(entry, struct slab, list);
3326 check_spinlock_acquired_node(cachep, nodeid);
3327 check_slabp(cachep, slabp);
3329 STATS_INC_NODEALLOCS(cachep);
3330 STATS_INC_ACTIVE(cachep);
3331 STATS_SET_HIGH(cachep);
3333 BUG_ON(slabp->inuse == cachep->num);
3335 obj = slab_get_obj(cachep, slabp, nodeid);
3336 check_slabp(cachep, slabp);
3337 l3->free_objects--;
3338 /* move slabp to correct slabp list: */
3339 list_del(&slabp->list);
3341 if (slabp->free == BUFCTL_END)
3342 list_add(&slabp->list, &l3->slabs_full);
3343 else
3344 list_add(&slabp->list, &l3->slabs_partial);
3346 spin_unlock(&l3->list_lock);
3347 goto done;
3349 must_grow:
3350 spin_unlock(&l3->list_lock);
3351 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3352 if (x)
3353 goto retry;
3355 return fallback_alloc(cachep, flags);
3357 done:
3358 return obj;
3362 * kmem_cache_alloc_node - Allocate an object on the specified node
3363 * @cachep: The cache to allocate from.
3364 * @flags: See kmalloc().
3365 * @nodeid: node number of the target node.
3366 * @caller: return address of caller, used for debug information
3368 * Identical to kmem_cache_alloc but it will allocate memory on the given
3369 * node, which can improve the performance for cpu bound structures.
3371 * Fallback to other node is possible if __GFP_THISNODE is not set.
3373 static __always_inline void *
3374 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3375 void *caller)
3377 unsigned long save_flags;
3378 void *ptr;
3380 if (should_failslab(cachep, flags))
3381 return NULL;
3383 cache_alloc_debugcheck_before(cachep, flags);
3384 local_irq_save(save_flags);
3386 if (unlikely(nodeid == -1))
3387 nodeid = numa_node_id();
3389 if (unlikely(!cachep->nodelists[nodeid])) {
3390 /* Node not bootstrapped yet */
3391 ptr = fallback_alloc(cachep, flags);
3392 goto out;
3395 if (nodeid == numa_node_id()) {
3397 * Use the locally cached objects if possible.
3398 * However ____cache_alloc does not allow fallback
3399 * to other nodes. It may fail while we still have
3400 * objects on other nodes available.
3402 ptr = ____cache_alloc(cachep, flags);
3403 if (ptr)
3404 goto out;
3406 /* ___cache_alloc_node can fall back to other nodes */
3407 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3408 out:
3409 local_irq_restore(save_flags);
3410 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3412 if (unlikely((flags & __GFP_ZERO) && ptr))
3413 memset(ptr, 0, obj_size(cachep));
3415 return ptr;
3418 static __always_inline void *
3419 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3421 void *objp;
3423 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3424 objp = alternate_node_alloc(cache, flags);
3425 if (objp)
3426 goto out;
3428 objp = ____cache_alloc(cache, flags);
3431 * We may just have run out of memory on the local node.
3432 * ____cache_alloc_node() knows how to locate memory on other nodes
3434 if (!objp)
3435 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3437 out:
3438 return objp;
3440 #else
3442 static __always_inline void *
3443 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3445 return ____cache_alloc(cachep, flags);
3448 #endif /* CONFIG_NUMA */
3450 static __always_inline void *
3451 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3453 unsigned long save_flags;
3454 void *objp;
3456 if (should_failslab(cachep, flags))
3457 return NULL;
3459 cache_alloc_debugcheck_before(cachep, flags);
3460 local_irq_save(save_flags);
3461 objp = __do_cache_alloc(cachep, flags);
3462 local_irq_restore(save_flags);
3463 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3464 prefetchw(objp);
3466 if (unlikely((flags & __GFP_ZERO) && objp))
3467 memset(objp, 0, obj_size(cachep));
3469 return objp;
3473 * Caller needs to acquire correct kmem_list's list_lock
3475 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3476 int node)
3478 int i;
3479 struct kmem_list3 *l3;
3481 for (i = 0; i < nr_objects; i++) {
3482 void *objp = objpp[i];
3483 struct slab *slabp;
3485 slabp = virt_to_slab(objp);
3486 l3 = cachep->nodelists[node];
3487 list_del(&slabp->list);
3488 check_spinlock_acquired_node(cachep, node);
3489 check_slabp(cachep, slabp);
3490 slab_put_obj(cachep, slabp, objp, node);
3491 STATS_DEC_ACTIVE(cachep);
3492 l3->free_objects++;
3493 check_slabp(cachep, slabp);
3495 /* fixup slab chains */
3496 if (slabp->inuse == 0) {
3497 if (l3->free_objects > l3->free_limit) {
3498 l3->free_objects -= cachep->num;
3499 /* No need to drop any previously held
3500 * lock here, even if we have a off-slab slab
3501 * descriptor it is guaranteed to come from
3502 * a different cache, refer to comments before
3503 * alloc_slabmgmt.
3505 slab_destroy(cachep, slabp);
3506 } else {
3507 list_add(&slabp->list, &l3->slabs_free);
3509 } else {
3510 /* Unconditionally move a slab to the end of the
3511 * partial list on free - maximum time for the
3512 * other objects to be freed, too.
3514 list_add_tail(&slabp->list, &l3->slabs_partial);
3519 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3521 int batchcount;
3522 struct kmem_list3 *l3;
3523 int node = numa_node_id();
3525 batchcount = ac->batchcount;
3526 #if DEBUG
3527 BUG_ON(!batchcount || batchcount > ac->avail);
3528 #endif
3529 check_irq_off();
3530 l3 = cachep->nodelists[node];
3531 spin_lock(&l3->list_lock);
3532 if (l3->shared) {
3533 struct array_cache *shared_array = l3->shared;
3534 int max = shared_array->limit - shared_array->avail;
3535 if (max) {
3536 if (batchcount > max)
3537 batchcount = max;
3538 memcpy(&(shared_array->entry[shared_array->avail]),
3539 ac->entry, sizeof(void *) * batchcount);
3540 shared_array->avail += batchcount;
3541 goto free_done;
3545 free_block(cachep, ac->entry, batchcount, node);
3546 free_done:
3547 #if STATS
3549 int i = 0;
3550 struct list_head *p;
3552 p = l3->slabs_free.next;
3553 while (p != &(l3->slabs_free)) {
3554 struct slab *slabp;
3556 slabp = list_entry(p, struct slab, list);
3557 BUG_ON(slabp->inuse);
3559 i++;
3560 p = p->next;
3562 STATS_SET_FREEABLE(cachep, i);
3564 #endif
3565 spin_unlock(&l3->list_lock);
3566 ac->avail -= batchcount;
3567 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3571 * Release an obj back to its cache. If the obj has a constructed state, it must
3572 * be in this state _before_ it is released. Called with disabled ints.
3574 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3576 struct array_cache *ac = cpu_cache_get(cachep);
3578 check_irq_off();
3579 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3582 * Skip calling cache_free_alien() when the platform is not numa.
3583 * This will avoid cache misses that happen while accessing slabp (which
3584 * is per page memory reference) to get nodeid. Instead use a global
3585 * variable to skip the call, which is mostly likely to be present in
3586 * the cache.
3588 if (numa_platform && cache_free_alien(cachep, objp))
3589 return;
3591 if (likely(ac->avail < ac->limit)) {
3592 STATS_INC_FREEHIT(cachep);
3593 ac->entry[ac->avail++] = objp;
3594 return;
3595 } else {
3596 STATS_INC_FREEMISS(cachep);
3597 cache_flusharray(cachep, ac);
3598 ac->entry[ac->avail++] = objp;
3603 * kmem_cache_alloc - Allocate an object
3604 * @cachep: The cache to allocate from.
3605 * @flags: See kmalloc().
3607 * Allocate an object from this cache. The flags are only relevant
3608 * if the cache has no available objects.
3610 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3612 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3614 EXPORT_SYMBOL(kmem_cache_alloc);
3617 * kmem_ptr_validate - check if an untrusted pointer might
3618 * be a slab entry.
3619 * @cachep: the cache we're checking against
3620 * @ptr: pointer to validate
3622 * This verifies that the untrusted pointer looks sane:
3623 * it is _not_ a guarantee that the pointer is actually
3624 * part of the slab cache in question, but it at least
3625 * validates that the pointer can be dereferenced and
3626 * looks half-way sane.
3628 * Currently only used for dentry validation.
3630 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3632 unsigned long addr = (unsigned long)ptr;
3633 unsigned long min_addr = PAGE_OFFSET;
3634 unsigned long align_mask = BYTES_PER_WORD - 1;
3635 unsigned long size = cachep->buffer_size;
3636 struct page *page;
3638 if (unlikely(addr < min_addr))
3639 goto out;
3640 if (unlikely(addr > (unsigned long)high_memory - size))
3641 goto out;
3642 if (unlikely(addr & align_mask))
3643 goto out;
3644 if (unlikely(!kern_addr_valid(addr)))
3645 goto out;
3646 if (unlikely(!kern_addr_valid(addr + size - 1)))
3647 goto out;
3648 page = virt_to_page(ptr);
3649 if (unlikely(!PageSlab(page)))
3650 goto out;
3651 if (unlikely(page_get_cache(page) != cachep))
3652 goto out;
3653 return 1;
3654 out:
3655 return 0;
3658 #ifdef CONFIG_NUMA
3659 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3661 return __cache_alloc_node(cachep, flags, nodeid,
3662 __builtin_return_address(0));
3664 EXPORT_SYMBOL(kmem_cache_alloc_node);
3666 static __always_inline void *
3667 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3669 struct kmem_cache *cachep;
3671 cachep = kmem_find_general_cachep(size, flags);
3672 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3673 return cachep;
3674 return kmem_cache_alloc_node(cachep, flags, node);
3677 #ifdef CONFIG_DEBUG_SLAB
3678 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3680 return __do_kmalloc_node(size, flags, node,
3681 __builtin_return_address(0));
3683 EXPORT_SYMBOL(__kmalloc_node);
3685 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3686 int node, void *caller)
3688 return __do_kmalloc_node(size, flags, node, caller);
3690 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3691 #else
3692 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694 return __do_kmalloc_node(size, flags, node, NULL);
3696 EXPORT_SYMBOL(__kmalloc_node);
3697 #endif /* CONFIG_DEBUG_SLAB */
3698 #endif /* CONFIG_NUMA */
3701 * __do_kmalloc - allocate memory
3702 * @size: how many bytes of memory are required.
3703 * @flags: the type of memory to allocate (see kmalloc).
3704 * @caller: function caller for debug tracking of the caller
3706 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3707 void *caller)
3709 struct kmem_cache *cachep;
3711 /* If you want to save a few bytes .text space: replace
3712 * __ with kmem_.
3713 * Then kmalloc uses the uninlined functions instead of the inline
3714 * functions.
3716 cachep = __find_general_cachep(size, flags);
3717 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3718 return cachep;
3719 return __cache_alloc(cachep, flags, caller);
3723 #ifdef CONFIG_DEBUG_SLAB
3724 void *__kmalloc(size_t size, gfp_t flags)
3726 return __do_kmalloc(size, flags, __builtin_return_address(0));
3728 EXPORT_SYMBOL(__kmalloc);
3730 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3732 return __do_kmalloc(size, flags, caller);
3734 EXPORT_SYMBOL(__kmalloc_track_caller);
3736 #else
3737 void *__kmalloc(size_t size, gfp_t flags)
3739 return __do_kmalloc(size, flags, NULL);
3741 EXPORT_SYMBOL(__kmalloc);
3742 #endif
3745 * kmem_cache_free - Deallocate an object
3746 * @cachep: The cache the allocation was from.
3747 * @objp: The previously allocated object.
3749 * Free an object which was previously allocated from this
3750 * cache.
3752 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3754 unsigned long flags;
3756 BUG_ON(virt_to_cache(objp) != cachep);
3758 local_irq_save(flags);
3759 debug_check_no_locks_freed(objp, obj_size(cachep));
3760 __cache_free(cachep, objp);
3761 local_irq_restore(flags);
3763 EXPORT_SYMBOL(kmem_cache_free);
3766 * kfree - free previously allocated memory
3767 * @objp: pointer returned by kmalloc.
3769 * If @objp is NULL, no operation is performed.
3771 * Don't free memory not originally allocated by kmalloc()
3772 * or you will run into trouble.
3774 void kfree(const void *objp)
3776 struct kmem_cache *c;
3777 unsigned long flags;
3779 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3780 return;
3781 local_irq_save(flags);
3782 kfree_debugcheck(objp);
3783 c = virt_to_cache(objp);
3784 debug_check_no_locks_freed(objp, obj_size(c));
3785 __cache_free(c, (void *)objp);
3786 local_irq_restore(flags);
3788 EXPORT_SYMBOL(kfree);
3790 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3792 return obj_size(cachep);
3794 EXPORT_SYMBOL(kmem_cache_size);
3796 const char *kmem_cache_name(struct kmem_cache *cachep)
3798 return cachep->name;
3800 EXPORT_SYMBOL_GPL(kmem_cache_name);
3803 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3805 static int alloc_kmemlist(struct kmem_cache *cachep)
3807 int node;
3808 struct kmem_list3 *l3;
3809 struct array_cache *new_shared;
3810 struct array_cache **new_alien = NULL;
3812 for_each_node_state(node, N_NORMAL_MEMORY) {
3814 if (use_alien_caches) {
3815 new_alien = alloc_alien_cache(node, cachep->limit);
3816 if (!new_alien)
3817 goto fail;
3820 new_shared = NULL;
3821 if (cachep->shared) {
3822 new_shared = alloc_arraycache(node,
3823 cachep->shared*cachep->batchcount,
3824 0xbaadf00d);
3825 if (!new_shared) {
3826 free_alien_cache(new_alien);
3827 goto fail;
3831 l3 = cachep->nodelists[node];
3832 if (l3) {
3833 struct array_cache *shared = l3->shared;
3835 spin_lock_irq(&l3->list_lock);
3837 if (shared)
3838 free_block(cachep, shared->entry,
3839 shared->avail, node);
3841 l3->shared = new_shared;
3842 if (!l3->alien) {
3843 l3->alien = new_alien;
3844 new_alien = NULL;
3846 l3->free_limit = (1 + nr_cpus_node(node)) *
3847 cachep->batchcount + cachep->num;
3848 spin_unlock_irq(&l3->list_lock);
3849 kfree(shared);
3850 free_alien_cache(new_alien);
3851 continue;
3853 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3854 if (!l3) {
3855 free_alien_cache(new_alien);
3856 kfree(new_shared);
3857 goto fail;
3860 kmem_list3_init(l3);
3861 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3862 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3863 l3->shared = new_shared;
3864 l3->alien = new_alien;
3865 l3->free_limit = (1 + nr_cpus_node(node)) *
3866 cachep->batchcount + cachep->num;
3867 cachep->nodelists[node] = l3;
3869 return 0;
3871 fail:
3872 if (!cachep->next.next) {
3873 /* Cache is not active yet. Roll back what we did */
3874 node--;
3875 while (node >= 0) {
3876 if (cachep->nodelists[node]) {
3877 l3 = cachep->nodelists[node];
3879 kfree(l3->shared);
3880 free_alien_cache(l3->alien);
3881 kfree(l3);
3882 cachep->nodelists[node] = NULL;
3884 node--;
3887 return -ENOMEM;
3890 struct ccupdate_struct {
3891 struct kmem_cache *cachep;
3892 struct array_cache *new[NR_CPUS];
3895 static void do_ccupdate_local(void *info)
3897 struct ccupdate_struct *new = info;
3898 struct array_cache *old;
3900 check_irq_off();
3901 old = cpu_cache_get(new->cachep);
3903 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3904 new->new[smp_processor_id()] = old;
3907 /* Always called with the cache_chain_mutex held */
3908 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3909 int batchcount, int shared)
3911 struct ccupdate_struct *new;
3912 int i;
3914 new = kzalloc(sizeof(*new), GFP_KERNEL);
3915 if (!new)
3916 return -ENOMEM;
3918 for_each_online_cpu(i) {
3919 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3920 batchcount);
3921 if (!new->new[i]) {
3922 for (i--; i >= 0; i--)
3923 kfree(new->new[i]);
3924 kfree(new);
3925 return -ENOMEM;
3928 new->cachep = cachep;
3930 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3932 check_irq_on();
3933 cachep->batchcount = batchcount;
3934 cachep->limit = limit;
3935 cachep->shared = shared;
3937 for_each_online_cpu(i) {
3938 struct array_cache *ccold = new->new[i];
3939 if (!ccold)
3940 continue;
3941 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3942 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3943 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3944 kfree(ccold);
3946 kfree(new);
3947 return alloc_kmemlist(cachep);
3950 /* Called with cache_chain_mutex held always */
3951 static int enable_cpucache(struct kmem_cache *cachep)
3953 int err;
3954 int limit, shared;
3957 * The head array serves three purposes:
3958 * - create a LIFO ordering, i.e. return objects that are cache-warm
3959 * - reduce the number of spinlock operations.
3960 * - reduce the number of linked list operations on the slab and
3961 * bufctl chains: array operations are cheaper.
3962 * The numbers are guessed, we should auto-tune as described by
3963 * Bonwick.
3965 if (cachep->buffer_size > 131072)
3966 limit = 1;
3967 else if (cachep->buffer_size > PAGE_SIZE)
3968 limit = 8;
3969 else if (cachep->buffer_size > 1024)
3970 limit = 24;
3971 else if (cachep->buffer_size > 256)
3972 limit = 54;
3973 else
3974 limit = 120;
3977 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3978 * allocation behaviour: Most allocs on one cpu, most free operations
3979 * on another cpu. For these cases, an efficient object passing between
3980 * cpus is necessary. This is provided by a shared array. The array
3981 * replaces Bonwick's magazine layer.
3982 * On uniprocessor, it's functionally equivalent (but less efficient)
3983 * to a larger limit. Thus disabled by default.
3985 shared = 0;
3986 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3987 shared = 8;
3989 #if DEBUG
3991 * With debugging enabled, large batchcount lead to excessively long
3992 * periods with disabled local interrupts. Limit the batchcount
3994 if (limit > 32)
3995 limit = 32;
3996 #endif
3997 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3998 if (err)
3999 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4000 cachep->name, -err);
4001 return err;
4005 * Drain an array if it contains any elements taking the l3 lock only if
4006 * necessary. Note that the l3 listlock also protects the array_cache
4007 * if drain_array() is used on the shared array.
4009 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4010 struct array_cache *ac, int force, int node)
4012 int tofree;
4014 if (!ac || !ac->avail)
4015 return;
4016 if (ac->touched && !force) {
4017 ac->touched = 0;
4018 } else {
4019 spin_lock_irq(&l3->list_lock);
4020 if (ac->avail) {
4021 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4022 if (tofree > ac->avail)
4023 tofree = (ac->avail + 1) / 2;
4024 free_block(cachep, ac->entry, tofree, node);
4025 ac->avail -= tofree;
4026 memmove(ac->entry, &(ac->entry[tofree]),
4027 sizeof(void *) * ac->avail);
4029 spin_unlock_irq(&l3->list_lock);
4034 * cache_reap - Reclaim memory from caches.
4035 * @w: work descriptor
4037 * Called from workqueue/eventd every few seconds.
4038 * Purpose:
4039 * - clear the per-cpu caches for this CPU.
4040 * - return freeable pages to the main free memory pool.
4042 * If we cannot acquire the cache chain mutex then just give up - we'll try
4043 * again on the next iteration.
4045 static void cache_reap(struct work_struct *w)
4047 struct kmem_cache *searchp;
4048 struct kmem_list3 *l3;
4049 int node = numa_node_id();
4050 struct delayed_work *work =
4051 container_of(w, struct delayed_work, work);
4053 if (!mutex_trylock(&cache_chain_mutex))
4054 /* Give up. Setup the next iteration. */
4055 goto out;
4057 list_for_each_entry(searchp, &cache_chain, next) {
4058 check_irq_on();
4061 * We only take the l3 lock if absolutely necessary and we
4062 * have established with reasonable certainty that
4063 * we can do some work if the lock was obtained.
4065 l3 = searchp->nodelists[node];
4067 reap_alien(searchp, l3);
4069 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4072 * These are racy checks but it does not matter
4073 * if we skip one check or scan twice.
4075 if (time_after(l3->next_reap, jiffies))
4076 goto next;
4078 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4080 drain_array(searchp, l3, l3->shared, 0, node);
4082 if (l3->free_touched)
4083 l3->free_touched = 0;
4084 else {
4085 int freed;
4087 freed = drain_freelist(searchp, l3, (l3->free_limit +
4088 5 * searchp->num - 1) / (5 * searchp->num));
4089 STATS_ADD_REAPED(searchp, freed);
4091 next:
4092 cond_resched();
4094 check_irq_on();
4095 mutex_unlock(&cache_chain_mutex);
4096 next_reap_node();
4097 out:
4098 /* Set up the next iteration */
4099 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4102 #ifdef CONFIG_PROC_FS
4104 static void print_slabinfo_header(struct seq_file *m)
4107 * Output format version, so at least we can change it
4108 * without _too_ many complaints.
4110 #if STATS
4111 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4112 #else
4113 seq_puts(m, "slabinfo - version: 2.1\n");
4114 #endif
4115 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4116 "<objperslab> <pagesperslab>");
4117 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4118 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4119 #if STATS
4120 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4121 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4122 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4123 #endif
4124 seq_putc(m, '\n');
4127 static void *s_start(struct seq_file *m, loff_t *pos)
4129 loff_t n = *pos;
4131 mutex_lock(&cache_chain_mutex);
4132 if (!n)
4133 print_slabinfo_header(m);
4135 return seq_list_start(&cache_chain, *pos);
4138 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4140 return seq_list_next(p, &cache_chain, pos);
4143 static void s_stop(struct seq_file *m, void *p)
4145 mutex_unlock(&cache_chain_mutex);
4148 static int s_show(struct seq_file *m, void *p)
4150 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4151 struct slab *slabp;
4152 unsigned long active_objs;
4153 unsigned long num_objs;
4154 unsigned long active_slabs = 0;
4155 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4156 const char *name;
4157 char *error = NULL;
4158 int node;
4159 struct kmem_list3 *l3;
4161 active_objs = 0;
4162 num_slabs = 0;
4163 for_each_online_node(node) {
4164 l3 = cachep->nodelists[node];
4165 if (!l3)
4166 continue;
4168 check_irq_on();
4169 spin_lock_irq(&l3->list_lock);
4171 list_for_each_entry(slabp, &l3->slabs_full, list) {
4172 if (slabp->inuse != cachep->num && !error)
4173 error = "slabs_full accounting error";
4174 active_objs += cachep->num;
4175 active_slabs++;
4177 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4178 if (slabp->inuse == cachep->num && !error)
4179 error = "slabs_partial inuse accounting error";
4180 if (!slabp->inuse && !error)
4181 error = "slabs_partial/inuse accounting error";
4182 active_objs += slabp->inuse;
4183 active_slabs++;
4185 list_for_each_entry(slabp, &l3->slabs_free, list) {
4186 if (slabp->inuse && !error)
4187 error = "slabs_free/inuse accounting error";
4188 num_slabs++;
4190 free_objects += l3->free_objects;
4191 if (l3->shared)
4192 shared_avail += l3->shared->avail;
4194 spin_unlock_irq(&l3->list_lock);
4196 num_slabs += active_slabs;
4197 num_objs = num_slabs * cachep->num;
4198 if (num_objs - active_objs != free_objects && !error)
4199 error = "free_objects accounting error";
4201 name = cachep->name;
4202 if (error)
4203 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4205 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4206 name, active_objs, num_objs, cachep->buffer_size,
4207 cachep->num, (1 << cachep->gfporder));
4208 seq_printf(m, " : tunables %4u %4u %4u",
4209 cachep->limit, cachep->batchcount, cachep->shared);
4210 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4211 active_slabs, num_slabs, shared_avail);
4212 #if STATS
4213 { /* list3 stats */
4214 unsigned long high = cachep->high_mark;
4215 unsigned long allocs = cachep->num_allocations;
4216 unsigned long grown = cachep->grown;
4217 unsigned long reaped = cachep->reaped;
4218 unsigned long errors = cachep->errors;
4219 unsigned long max_freeable = cachep->max_freeable;
4220 unsigned long node_allocs = cachep->node_allocs;
4221 unsigned long node_frees = cachep->node_frees;
4222 unsigned long overflows = cachep->node_overflow;
4224 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4225 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4226 reaped, errors, max_freeable, node_allocs,
4227 node_frees, overflows);
4229 /* cpu stats */
4231 unsigned long allochit = atomic_read(&cachep->allochit);
4232 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4233 unsigned long freehit = atomic_read(&cachep->freehit);
4234 unsigned long freemiss = atomic_read(&cachep->freemiss);
4236 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4237 allochit, allocmiss, freehit, freemiss);
4239 #endif
4240 seq_putc(m, '\n');
4241 return 0;
4245 * slabinfo_op - iterator that generates /proc/slabinfo
4247 * Output layout:
4248 * cache-name
4249 * num-active-objs
4250 * total-objs
4251 * object size
4252 * num-active-slabs
4253 * total-slabs
4254 * num-pages-per-slab
4255 * + further values on SMP and with statistics enabled
4258 const struct seq_operations slabinfo_op = {
4259 .start = s_start,
4260 .next = s_next,
4261 .stop = s_stop,
4262 .show = s_show,
4265 #define MAX_SLABINFO_WRITE 128
4267 * slabinfo_write - Tuning for the slab allocator
4268 * @file: unused
4269 * @buffer: user buffer
4270 * @count: data length
4271 * @ppos: unused
4273 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4274 size_t count, loff_t *ppos)
4276 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4277 int limit, batchcount, shared, res;
4278 struct kmem_cache *cachep;
4280 if (count > MAX_SLABINFO_WRITE)
4281 return -EINVAL;
4282 if (copy_from_user(&kbuf, buffer, count))
4283 return -EFAULT;
4284 kbuf[MAX_SLABINFO_WRITE] = '\0';
4286 tmp = strchr(kbuf, ' ');
4287 if (!tmp)
4288 return -EINVAL;
4289 *tmp = '\0';
4290 tmp++;
4291 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4292 return -EINVAL;
4294 /* Find the cache in the chain of caches. */
4295 mutex_lock(&cache_chain_mutex);
4296 res = -EINVAL;
4297 list_for_each_entry(cachep, &cache_chain, next) {
4298 if (!strcmp(cachep->name, kbuf)) {
4299 if (limit < 1 || batchcount < 1 ||
4300 batchcount > limit || shared < 0) {
4301 res = 0;
4302 } else {
4303 res = do_tune_cpucache(cachep, limit,
4304 batchcount, shared);
4306 break;
4309 mutex_unlock(&cache_chain_mutex);
4310 if (res >= 0)
4311 res = count;
4312 return res;
4315 #ifdef CONFIG_DEBUG_SLAB_LEAK
4317 static void *leaks_start(struct seq_file *m, loff_t *pos)
4319 mutex_lock(&cache_chain_mutex);
4320 return seq_list_start(&cache_chain, *pos);
4323 static inline int add_caller(unsigned long *n, unsigned long v)
4325 unsigned long *p;
4326 int l;
4327 if (!v)
4328 return 1;
4329 l = n[1];
4330 p = n + 2;
4331 while (l) {
4332 int i = l/2;
4333 unsigned long *q = p + 2 * i;
4334 if (*q == v) {
4335 q[1]++;
4336 return 1;
4338 if (*q > v) {
4339 l = i;
4340 } else {
4341 p = q + 2;
4342 l -= i + 1;
4345 if (++n[1] == n[0])
4346 return 0;
4347 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4348 p[0] = v;
4349 p[1] = 1;
4350 return 1;
4353 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4355 void *p;
4356 int i;
4357 if (n[0] == n[1])
4358 return;
4359 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4360 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4361 continue;
4362 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4363 return;
4367 static void show_symbol(struct seq_file *m, unsigned long address)
4369 #ifdef CONFIG_KALLSYMS
4370 unsigned long offset, size;
4371 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4373 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4374 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4375 if (modname[0])
4376 seq_printf(m, " [%s]", modname);
4377 return;
4379 #endif
4380 seq_printf(m, "%p", (void *)address);
4383 static int leaks_show(struct seq_file *m, void *p)
4385 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4386 struct slab *slabp;
4387 struct kmem_list3 *l3;
4388 const char *name;
4389 unsigned long *n = m->private;
4390 int node;
4391 int i;
4393 if (!(cachep->flags & SLAB_STORE_USER))
4394 return 0;
4395 if (!(cachep->flags & SLAB_RED_ZONE))
4396 return 0;
4398 /* OK, we can do it */
4400 n[1] = 0;
4402 for_each_online_node(node) {
4403 l3 = cachep->nodelists[node];
4404 if (!l3)
4405 continue;
4407 check_irq_on();
4408 spin_lock_irq(&l3->list_lock);
4410 list_for_each_entry(slabp, &l3->slabs_full, list)
4411 handle_slab(n, cachep, slabp);
4412 list_for_each_entry(slabp, &l3->slabs_partial, list)
4413 handle_slab(n, cachep, slabp);
4414 spin_unlock_irq(&l3->list_lock);
4416 name = cachep->name;
4417 if (n[0] == n[1]) {
4418 /* Increase the buffer size */
4419 mutex_unlock(&cache_chain_mutex);
4420 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4421 if (!m->private) {
4422 /* Too bad, we are really out */
4423 m->private = n;
4424 mutex_lock(&cache_chain_mutex);
4425 return -ENOMEM;
4427 *(unsigned long *)m->private = n[0] * 2;
4428 kfree(n);
4429 mutex_lock(&cache_chain_mutex);
4430 /* Now make sure this entry will be retried */
4431 m->count = m->size;
4432 return 0;
4434 for (i = 0; i < n[1]; i++) {
4435 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4436 show_symbol(m, n[2*i+2]);
4437 seq_putc(m, '\n');
4440 return 0;
4443 const struct seq_operations slabstats_op = {
4444 .start = leaks_start,
4445 .next = s_next,
4446 .stop = s_stop,
4447 .show = leaks_show,
4449 #endif
4450 #endif
4453 * ksize - get the actual amount of memory allocated for a given object
4454 * @objp: Pointer to the object
4456 * kmalloc may internally round up allocations and return more memory
4457 * than requested. ksize() can be used to determine the actual amount of
4458 * memory allocated. The caller may use this additional memory, even though
4459 * a smaller amount of memory was initially specified with the kmalloc call.
4460 * The caller must guarantee that objp points to a valid object previously
4461 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4462 * must not be freed during the duration of the call.
4464 size_t ksize(const void *objp)
4466 BUG_ON(!objp);
4467 if (unlikely(objp == ZERO_SIZE_PTR))
4468 return 0;
4470 return obj_size(virt_to_cache(objp));