bitops kernel-doc: inline instead of macro
[linux-2.6/kvm.git] / net / sctp / auth.c
blob621113a109b2e2548769419e126568c637611abd
1 /* SCTP kernel reference Implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel reference Implementation
6 * The SCTP reference implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * The SCTP reference implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
24 * email address(es):
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
37 #include <linux/types.h>
38 #include <linux/crypto.h>
39 #include <linux/scatterlist.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/auth.h>
43 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
45 /* id 0 is reserved. as all 0 */
46 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
49 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
50 .hmac_name="hmac(sha1)",
51 .hmac_len = SCTP_SHA1_SIG_SIZE,
54 /* id 2 is reserved as well */
55 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
58 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
59 .hmac_name="hmac(sha256)",
60 .hmac_len = SCTP_SHA256_SIG_SIZE,
65 void sctp_auth_key_put(struct sctp_auth_bytes *key)
67 if (!key)
68 return;
70 if (atomic_dec_and_test(&key->refcnt)) {
71 kfree(key);
72 SCTP_DBG_OBJCNT_DEC(keys);
76 /* Create a new key structure of a given length */
77 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
79 struct sctp_auth_bytes *key;
81 /* Allocate the shared key */
82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 if (!key)
84 return NULL;
86 key->len = key_len;
87 atomic_set(&key->refcnt, 1);
88 SCTP_DBG_OBJCNT_INC(keys);
90 return key;
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
96 struct sctp_shared_key *new;
98 /* Allocate the shared key container */
99 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 if (!new)
101 return NULL;
103 INIT_LIST_HEAD(&new->key_list);
104 new->key_id = key_id;
106 return new;
109 /* Free the shared key stucture */
110 void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
112 BUG_ON(!list_empty(&sh_key->key_list));
113 sctp_auth_key_put(sh_key->key);
114 sh_key->key = NULL;
115 kfree(sh_key);
118 /* Destory the entire key list. This is done during the
119 * associon and endpoint free process.
121 void sctp_auth_destroy_keys(struct list_head *keys)
123 struct sctp_shared_key *ep_key;
124 struct sctp_shared_key *tmp;
126 if (list_empty(keys))
127 return;
129 key_for_each_safe(ep_key, tmp, keys) {
130 list_del_init(&ep_key->key_list);
131 sctp_auth_shkey_free(ep_key);
135 /* Compare two byte vectors as numbers. Return values
136 * are:
137 * 0 - vectors are equal
138 * < 0 - vector 1 is smaller then vector2
139 * > 0 - vector 1 is greater then vector2
141 * Algorithm is:
142 * This is performed by selecting the numerically smaller key vector...
143 * If the key vectors are equal as numbers but differ in length ...
144 * the shorter vector is considered smaller
146 * Examples (with small values):
147 * 000123456789 > 123456789 (first number is longer)
148 * 000123456789 < 234567891 (second number is larger numerically)
149 * 123456789 > 2345678 (first number is both larger & longer)
151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152 struct sctp_auth_bytes *vector2)
154 int diff;
155 int i;
156 const __u8 *longer;
158 diff = vector1->len - vector2->len;
159 if (diff) {
160 longer = (diff > 0) ? vector1->data : vector2->data;
162 /* Check to see if the longer number is
163 * lead-zero padded. If it is not, it
164 * is automatically larger numerically.
166 for (i = 0; i < abs(diff); i++ ) {
167 if (longer[i] != 0)
168 return diff;
172 /* lengths are the same, compare numbers */
173 return memcmp(vector1->data, vector2->data, vector1->len);
177 * Create a key vector as described in SCTP-AUTH, Section 6.1
178 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179 * parameter sent by each endpoint are concatenated as byte vectors.
180 * These parameters include the parameter type, parameter length, and
181 * the parameter value, but padding is omitted; all padding MUST be
182 * removed from this concatenation before proceeding with further
183 * computation of keys. Parameters which were not sent are simply
184 * omitted from the concatenation process. The resulting two vectors
185 * are called the two key vectors.
187 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188 sctp_random_param_t *random,
189 sctp_chunks_param_t *chunks,
190 sctp_hmac_algo_param_t *hmacs,
191 gfp_t gfp)
193 struct sctp_auth_bytes *new;
194 __u32 len;
195 __u32 offset = 0;
197 len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
198 if (chunks)
199 len += ntohs(chunks->param_hdr.length);
201 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
202 if (!new)
203 return NULL;
205 new->len = len;
207 memcpy(new->data, random, ntohs(random->param_hdr.length));
208 offset += ntohs(random->param_hdr.length);
210 if (chunks) {
211 memcpy(new->data + offset, chunks,
212 ntohs(chunks->param_hdr.length));
213 offset += ntohs(chunks->param_hdr.length);
216 memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
218 return new;
222 /* Make a key vector based on our local parameters */
223 struct sctp_auth_bytes *sctp_auth_make_local_vector(
224 const struct sctp_association *asoc,
225 gfp_t gfp)
227 return sctp_auth_make_key_vector(
228 (sctp_random_param_t*)asoc->c.auth_random,
229 (sctp_chunks_param_t*)asoc->c.auth_chunks,
230 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
231 gfp);
234 /* Make a key vector based on peer's parameters */
235 struct sctp_auth_bytes *sctp_auth_make_peer_vector(
236 const struct sctp_association *asoc,
237 gfp_t gfp)
239 return sctp_auth_make_key_vector(asoc->peer.peer_random,
240 asoc->peer.peer_chunks,
241 asoc->peer.peer_hmacs,
242 gfp);
246 /* Set the value of the association shared key base on the parameters
247 * given. The algorithm is:
248 * From the endpoint pair shared keys and the key vectors the
249 * association shared keys are computed. This is performed by selecting
250 * the numerically smaller key vector and concatenating it to the
251 * endpoint pair shared key, and then concatenating the numerically
252 * larger key vector to that. The result of the concatenation is the
253 * association shared key.
255 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
256 struct sctp_shared_key *ep_key,
257 struct sctp_auth_bytes *first_vector,
258 struct sctp_auth_bytes *last_vector,
259 gfp_t gfp)
261 struct sctp_auth_bytes *secret;
262 __u32 offset = 0;
263 __u32 auth_len;
265 auth_len = first_vector->len + last_vector->len;
266 if (ep_key->key)
267 auth_len += ep_key->key->len;
269 secret = sctp_auth_create_key(auth_len, gfp);
270 if (!secret)
271 return NULL;
273 if (ep_key->key) {
274 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
275 offset += ep_key->key->len;
278 memcpy(secret->data + offset, first_vector->data, first_vector->len);
279 offset += first_vector->len;
281 memcpy(secret->data + offset, last_vector->data, last_vector->len);
283 return secret;
286 /* Create an association shared key. Follow the algorithm
287 * described in SCTP-AUTH, Section 6.1
289 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
290 const struct sctp_association *asoc,
291 struct sctp_shared_key *ep_key,
292 gfp_t gfp)
294 struct sctp_auth_bytes *local_key_vector;
295 struct sctp_auth_bytes *peer_key_vector;
296 struct sctp_auth_bytes *first_vector,
297 *last_vector;
298 struct sctp_auth_bytes *secret = NULL;
299 int cmp;
302 /* Now we need to build the key vectors
303 * SCTP-AUTH , Section 6.1
304 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
305 * parameter sent by each endpoint are concatenated as byte vectors.
306 * These parameters include the parameter type, parameter length, and
307 * the parameter value, but padding is omitted; all padding MUST be
308 * removed from this concatenation before proceeding with further
309 * computation of keys. Parameters which were not sent are simply
310 * omitted from the concatenation process. The resulting two vectors
311 * are called the two key vectors.
314 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
315 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
317 if (!peer_key_vector || !local_key_vector)
318 goto out;
320 /* Figure out the order in wich the key_vectors will be
321 * added to the endpoint shared key.
322 * SCTP-AUTH, Section 6.1:
323 * This is performed by selecting the numerically smaller key
324 * vector and concatenating it to the endpoint pair shared
325 * key, and then concatenating the numerically larger key
326 * vector to that. If the key vectors are equal as numbers
327 * but differ in length, then the concatenation order is the
328 * endpoint shared key, followed by the shorter key vector,
329 * followed by the longer key vector. Otherwise, the key
330 * vectors are identical, and may be concatenated to the
331 * endpoint pair key in any order.
333 cmp = sctp_auth_compare_vectors(local_key_vector,
334 peer_key_vector);
335 if (cmp < 0) {
336 first_vector = local_key_vector;
337 last_vector = peer_key_vector;
338 } else {
339 first_vector = peer_key_vector;
340 last_vector = local_key_vector;
343 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
344 gfp);
345 out:
346 kfree(local_key_vector);
347 kfree(peer_key_vector);
349 return secret;
353 * Populate the association overlay list with the list
354 * from the endpoint.
356 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
357 struct sctp_association *asoc,
358 gfp_t gfp)
360 struct sctp_shared_key *sh_key;
361 struct sctp_shared_key *new;
363 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
365 key_for_each(sh_key, &ep->endpoint_shared_keys) {
366 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
367 if (!new)
368 goto nomem;
370 new->key = sh_key->key;
371 sctp_auth_key_hold(new->key);
372 list_add(&new->key_list, &asoc->endpoint_shared_keys);
375 return 0;
377 nomem:
378 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
379 return -ENOMEM;
383 /* Public interface to creat the association shared key.
384 * See code above for the algorithm.
386 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
388 struct sctp_auth_bytes *secret;
389 struct sctp_shared_key *ep_key;
391 /* If we don't support AUTH, or peer is not capable
392 * we don't need to do anything.
394 if (!sctp_auth_enable || !asoc->peer.auth_capable)
395 return 0;
397 /* If the key_id is non-zero and we couldn't find an
398 * endpoint pair shared key, we can't compute the
399 * secret.
400 * For key_id 0, endpoint pair shared key is a NULL key.
402 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
403 BUG_ON(!ep_key);
405 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
406 if (!secret)
407 return -ENOMEM;
409 sctp_auth_key_put(asoc->asoc_shared_key);
410 asoc->asoc_shared_key = secret;
412 return 0;
416 /* Find the endpoint pair shared key based on the key_id */
417 struct sctp_shared_key *sctp_auth_get_shkey(
418 const struct sctp_association *asoc,
419 __u16 key_id)
421 struct sctp_shared_key *key = NULL;
423 /* First search associations set of endpoint pair shared keys */
424 key_for_each(key, &asoc->endpoint_shared_keys) {
425 if (key->key_id == key_id)
426 break;
429 return key;
433 * Initialize all the possible digest transforms that we can use. Right now
434 * now, the supported digests are SHA1 and SHA256. We do this here once
435 * because of the restrictiong that transforms may only be allocated in
436 * user context. This forces us to pre-allocated all possible transforms
437 * at the endpoint init time.
439 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
441 struct crypto_hash *tfm = NULL;
442 __u16 id;
444 /* if the transforms are already allocted, we are done */
445 if (!sctp_auth_enable) {
446 ep->auth_hmacs = NULL;
447 return 0;
450 if (ep->auth_hmacs)
451 return 0;
453 /* Allocated the array of pointers to transorms */
454 ep->auth_hmacs = kzalloc(
455 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
456 gfp);
457 if (!ep->auth_hmacs)
458 return -ENOMEM;
460 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
462 /* See is we support the id. Supported IDs have name and
463 * length fields set, so that we can allocated and use
464 * them. We can safely just check for name, for without the
465 * name, we can't allocate the TFM.
467 if (!sctp_hmac_list[id].hmac_name)
468 continue;
470 /* If this TFM has been allocated, we are all set */
471 if (ep->auth_hmacs[id])
472 continue;
474 /* Allocate the ID */
475 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
476 CRYPTO_ALG_ASYNC);
477 if (IS_ERR(tfm))
478 goto out_err;
480 ep->auth_hmacs[id] = tfm;
483 return 0;
485 out_err:
486 /* Clean up any successfull allocations */
487 sctp_auth_destroy_hmacs(ep->auth_hmacs);
488 return -ENOMEM;
491 /* Destroy the hmac tfm array */
492 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
494 int i;
496 if (!auth_hmacs)
497 return;
499 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
501 if (auth_hmacs[i])
502 crypto_free_hash(auth_hmacs[i]);
504 kfree(auth_hmacs);
508 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
510 return &sctp_hmac_list[hmac_id];
513 /* Get an hmac description information that we can use to build
514 * the AUTH chunk
516 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
518 struct sctp_hmac_algo_param *hmacs;
519 __u16 n_elt;
520 __u16 id = 0;
521 int i;
523 /* If we have a default entry, use it */
524 if (asoc->default_hmac_id)
525 return &sctp_hmac_list[asoc->default_hmac_id];
527 /* Since we do not have a default entry, find the first entry
528 * we support and return that. Do not cache that id.
530 hmacs = asoc->peer.peer_hmacs;
531 if (!hmacs)
532 return NULL;
534 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
535 for (i = 0; i < n_elt; i++) {
536 id = ntohs(hmacs->hmac_ids[i]);
538 /* Check the id is in the supported range */
539 if (id > SCTP_AUTH_HMAC_ID_MAX)
540 continue;
542 /* See is we support the id. Supported IDs have name and
543 * length fields set, so that we can allocated and use
544 * them. We can safely just check for name, for without the
545 * name, we can't allocate the TFM.
547 if (!sctp_hmac_list[id].hmac_name)
548 continue;
550 break;
553 if (id == 0)
554 return NULL;
556 return &sctp_hmac_list[id];
559 static int __sctp_auth_find_hmacid(__u16 *hmacs, int n_elts, __u16 hmac_id)
561 int found = 0;
562 int i;
564 for (i = 0; i < n_elts; i++) {
565 if (hmac_id == hmacs[i]) {
566 found = 1;
567 break;
571 return found;
574 /* See if the HMAC_ID is one that we claim as supported */
575 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
576 __u16 hmac_id)
578 struct sctp_hmac_algo_param *hmacs;
579 __u16 n_elt;
581 if (!asoc)
582 return 0;
584 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
585 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
587 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
591 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
592 * Section 6.1:
593 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
594 * algorithm it supports.
596 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
597 struct sctp_hmac_algo_param *hmacs)
599 struct sctp_endpoint *ep;
600 __u16 id;
601 int i;
602 int n_params;
604 /* if the default id is already set, use it */
605 if (asoc->default_hmac_id)
606 return;
608 n_params = (ntohs(hmacs->param_hdr.length)
609 - sizeof(sctp_paramhdr_t)) >> 1;
610 ep = asoc->ep;
611 for (i = 0; i < n_params; i++) {
612 id = ntohs(hmacs->hmac_ids[i]);
614 /* Check the id is in the supported range */
615 if (id > SCTP_AUTH_HMAC_ID_MAX)
616 continue;
618 /* If this TFM has been allocated, use this id */
619 if (ep->auth_hmacs[id]) {
620 asoc->default_hmac_id = id;
621 break;
627 /* Check to see if the given chunk is supposed to be authenticated */
628 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
630 unsigned short len;
631 int found = 0;
632 int i;
634 if (!param)
635 return 0;
637 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
639 /* SCTP-AUTH, Section 3.2
640 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
641 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
642 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
643 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
645 for (i = 0; !found && i < len; i++) {
646 switch (param->chunks[i]) {
647 case SCTP_CID_INIT:
648 case SCTP_CID_INIT_ACK:
649 case SCTP_CID_SHUTDOWN_COMPLETE:
650 case SCTP_CID_AUTH:
651 break;
653 default:
654 if (param->chunks[i] == chunk)
655 found = 1;
656 break;
660 return found;
663 /* Check if peer requested that this chunk is authenticated */
664 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
666 if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
667 return 0;
669 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
672 /* Check if we requested that peer authenticate this chunk. */
673 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
675 if (!sctp_auth_enable || !asoc)
676 return 0;
678 return __sctp_auth_cid(chunk,
679 (struct sctp_chunks_param *)asoc->c.auth_chunks);
682 /* SCTP-AUTH: Section 6.2:
683 * The sender MUST calculate the MAC as described in RFC2104 [2] using
684 * the hash function H as described by the MAC Identifier and the shared
685 * association key K based on the endpoint pair shared key described by
686 * the shared key identifier. The 'data' used for the computation of
687 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
688 * zero (as shown in Figure 6) followed by all chunks that are placed
689 * after the AUTH chunk in the SCTP packet.
691 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
692 struct sk_buff *skb,
693 struct sctp_auth_chunk *auth,
694 gfp_t gfp)
696 struct scatterlist sg;
697 struct hash_desc desc;
698 struct sctp_auth_bytes *asoc_key;
699 __u16 key_id, hmac_id;
700 __u8 *digest;
701 unsigned char *end;
702 int free_key = 0;
704 /* Extract the info we need:
705 * - hmac id
706 * - key id
708 key_id = ntohs(auth->auth_hdr.shkey_id);
709 hmac_id = ntohs(auth->auth_hdr.hmac_id);
711 if (key_id == asoc->active_key_id)
712 asoc_key = asoc->asoc_shared_key;
713 else {
714 struct sctp_shared_key *ep_key;
716 ep_key = sctp_auth_get_shkey(asoc, key_id);
717 if (!ep_key)
718 return;
720 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
721 if (!asoc_key)
722 return;
724 free_key = 1;
727 /* set up scatter list */
728 end = skb_tail_pointer(skb);
729 sg_init_table(&sg, 1);
730 sg_set_buf(&sg, auth, end - (unsigned char *)auth);
732 desc.tfm = asoc->ep->auth_hmacs[hmac_id];
733 desc.flags = 0;
735 digest = auth->auth_hdr.hmac;
736 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
737 goto free;
739 crypto_hash_digest(&desc, &sg, sg.length, digest);
741 free:
742 if (free_key)
743 sctp_auth_key_put(asoc_key);
746 /* API Helpers */
748 /* Add a chunk to the endpoint authenticated chunk list */
749 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
751 struct sctp_chunks_param *p = ep->auth_chunk_list;
752 __u16 nchunks;
753 __u16 param_len;
755 /* If this chunk is already specified, we are done */
756 if (__sctp_auth_cid(chunk_id, p))
757 return 0;
759 /* Check if we can add this chunk to the array */
760 param_len = ntohs(p->param_hdr.length);
761 nchunks = param_len - sizeof(sctp_paramhdr_t);
762 if (nchunks == SCTP_NUM_CHUNK_TYPES)
763 return -EINVAL;
765 p->chunks[nchunks] = chunk_id;
766 p->param_hdr.length = htons(param_len + 1);
767 return 0;
770 /* Add hmac identifires to the endpoint list of supported hmac ids */
771 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
772 struct sctp_hmacalgo *hmacs)
774 int has_sha1 = 0;
775 __u16 id;
776 int i;
778 /* Scan the list looking for unsupported id. Also make sure that
779 * SHA1 is specified.
781 for (i = 0; i < hmacs->shmac_num_idents; i++) {
782 id = hmacs->shmac_idents[i];
784 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
785 has_sha1 = 1;
787 if (!sctp_hmac_list[id].hmac_name)
788 return -EOPNOTSUPP;
791 if (!has_sha1)
792 return -EINVAL;
794 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
795 hmacs->shmac_num_idents * sizeof(__u16));
796 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
797 hmacs->shmac_num_idents * sizeof(__u16));
798 return 0;
801 /* Set a new shared key on either endpoint or association. If the
802 * the key with a same ID already exists, replace the key (remove the
803 * old key and add a new one).
805 int sctp_auth_set_key(struct sctp_endpoint *ep,
806 struct sctp_association *asoc,
807 struct sctp_authkey *auth_key)
809 struct sctp_shared_key *cur_key = NULL;
810 struct sctp_auth_bytes *key;
811 struct list_head *sh_keys;
812 int replace = 0;
814 /* Try to find the given key id to see if
815 * we are doing a replace, or adding a new key
817 if (asoc)
818 sh_keys = &asoc->endpoint_shared_keys;
819 else
820 sh_keys = &ep->endpoint_shared_keys;
822 key_for_each(cur_key, sh_keys) {
823 if (cur_key->key_id == auth_key->sca_keynumber) {
824 replace = 1;
825 break;
829 /* If we are not replacing a key id, we need to allocate
830 * a shared key.
832 if (!replace) {
833 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
834 GFP_KERNEL);
835 if (!cur_key)
836 return -ENOMEM;
839 /* Create a new key data based on the info passed in */
840 key = sctp_auth_create_key(auth_key->sca_keylen, GFP_KERNEL);
841 if (!key)
842 goto nomem;
844 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylen);
846 /* If we are replacing, remove the old keys data from the
847 * key id. If we are adding new key id, add it to the
848 * list.
850 if (replace)
851 sctp_auth_key_put(cur_key->key);
852 else
853 list_add(&cur_key->key_list, sh_keys);
855 cur_key->key = key;
856 sctp_auth_key_hold(key);
858 return 0;
859 nomem:
860 if (!replace)
861 sctp_auth_shkey_free(cur_key);
863 return -ENOMEM;
866 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
867 struct sctp_association *asoc,
868 __u16 key_id)
870 struct sctp_shared_key *key;
871 struct list_head *sh_keys;
872 int found = 0;
874 /* The key identifier MUST correst to an existing key */
875 if (asoc)
876 sh_keys = &asoc->endpoint_shared_keys;
877 else
878 sh_keys = &ep->endpoint_shared_keys;
880 key_for_each(key, sh_keys) {
881 if (key->key_id == key_id) {
882 found = 1;
883 break;
887 if (!found)
888 return -EINVAL;
890 if (asoc) {
891 asoc->active_key_id = key_id;
892 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
893 } else
894 ep->active_key_id = key_id;
896 return 0;
899 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
900 struct sctp_association *asoc,
901 __u16 key_id)
903 struct sctp_shared_key *key;
904 struct list_head *sh_keys;
905 int found = 0;
907 /* The key identifier MUST NOT be the current active key
908 * The key identifier MUST correst to an existing key
910 if (asoc) {
911 if (asoc->active_key_id == key_id)
912 return -EINVAL;
914 sh_keys = &asoc->endpoint_shared_keys;
915 } else {
916 if (ep->active_key_id == key_id)
917 return -EINVAL;
919 sh_keys = &ep->endpoint_shared_keys;
922 key_for_each(key, sh_keys) {
923 if (key->key_id == key_id) {
924 found = 1;
925 break;
929 if (!found)
930 return -EINVAL;
932 /* Delete the shared key */
933 list_del_init(&key->key_list);
934 sctp_auth_shkey_free(key);
936 return 0;