bitops kernel-doc: inline instead of macro
[linux-2.6/kvm.git] / include / asm-x86 / bitops_64.h
blobbba26e03f33f98891bf9f05f168bf0936b3abf3c
1 #ifndef _X86_64_BITOPS_H
2 #define _X86_64_BITOPS_H
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
12 #include <asm/alternative.h>
14 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
15 /* Technically wrong, but this avoids compilation errors on some gcc
16 versions. */
17 #define ADDR "=m" (*(volatile long *) addr)
18 #else
19 #define ADDR "+m" (*(volatile long *) addr)
20 #endif
22 /**
23 * set_bit - Atomically set a bit in memory
24 * @nr: the bit to set
25 * @addr: the address to start counting from
27 * This function is atomic and may not be reordered. See __set_bit()
28 * if you do not require the atomic guarantees.
29 * Note that @nr may be almost arbitrarily large; this function is not
30 * restricted to acting on a single-word quantity.
32 static __inline__ void set_bit(int nr, volatile void * addr)
34 __asm__ __volatile__( LOCK_PREFIX
35 "btsl %1,%0"
36 :ADDR
37 :"dIr" (nr) : "memory");
40 /**
41 * __set_bit - Set a bit in memory
42 * @nr: the bit to set
43 * @addr: the address to start counting from
45 * Unlike set_bit(), this function is non-atomic and may be reordered.
46 * If it's called on the same region of memory simultaneously, the effect
47 * may be that only one operation succeeds.
49 static __inline__ void __set_bit(int nr, volatile void * addr)
51 __asm__ volatile(
52 "btsl %1,%0"
53 :ADDR
54 :"dIr" (nr) : "memory");
57 /**
58 * clear_bit - Clears a bit in memory
59 * @nr: Bit to clear
60 * @addr: Address to start counting from
62 * clear_bit() is atomic and may not be reordered. However, it does
63 * not contain a memory barrier, so if it is used for locking purposes,
64 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
65 * in order to ensure changes are visible on other processors.
67 static __inline__ void clear_bit(int nr, volatile void * addr)
69 __asm__ __volatile__( LOCK_PREFIX
70 "btrl %1,%0"
71 :ADDR
72 :"dIr" (nr));
76 * clear_bit_unlock - Clears a bit in memory
77 * @nr: Bit to clear
78 * @addr: Address to start counting from
80 * clear_bit() is atomic and implies release semantics before the memory
81 * operation. It can be used for an unlock.
83 static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
85 barrier();
86 clear_bit(nr, addr);
89 static __inline__ void __clear_bit(int nr, volatile void * addr)
91 __asm__ __volatile__(
92 "btrl %1,%0"
93 :ADDR
94 :"dIr" (nr));
98 * __clear_bit_unlock - Clears a bit in memory
99 * @nr: Bit to clear
100 * @addr: Address to start counting from
102 * __clear_bit() is non-atomic and implies release semantics before the memory
103 * operation. It can be used for an unlock if no other CPUs can concurrently
104 * modify other bits in the word.
106 * No memory barrier is required here, because x86 cannot reorder stores past
107 * older loads. Same principle as spin_unlock.
109 static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
111 barrier();
112 __clear_bit(nr, addr);
115 #define smp_mb__before_clear_bit() barrier()
116 #define smp_mb__after_clear_bit() barrier()
119 * __change_bit - Toggle a bit in memory
120 * @nr: the bit to change
121 * @addr: the address to start counting from
123 * Unlike change_bit(), this function is non-atomic and may be reordered.
124 * If it's called on the same region of memory simultaneously, the effect
125 * may be that only one operation succeeds.
127 static __inline__ void __change_bit(int nr, volatile void * addr)
129 __asm__ __volatile__(
130 "btcl %1,%0"
131 :ADDR
132 :"dIr" (nr));
136 * change_bit - Toggle a bit in memory
137 * @nr: Bit to change
138 * @addr: Address to start counting from
140 * change_bit() is atomic and may not be reordered.
141 * Note that @nr may be almost arbitrarily large; this function is not
142 * restricted to acting on a single-word quantity.
144 static __inline__ void change_bit(int nr, volatile void * addr)
146 __asm__ __volatile__( LOCK_PREFIX
147 "btcl %1,%0"
148 :ADDR
149 :"dIr" (nr));
153 * test_and_set_bit - Set a bit and return its old value
154 * @nr: Bit to set
155 * @addr: Address to count from
157 * This operation is atomic and cannot be reordered.
158 * It also implies a memory barrier.
160 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
162 int oldbit;
164 __asm__ __volatile__( LOCK_PREFIX
165 "btsl %2,%1\n\tsbbl %0,%0"
166 :"=r" (oldbit),ADDR
167 :"dIr" (nr) : "memory");
168 return oldbit;
172 * test_and_set_bit_lock - Set a bit and return its old value for lock
173 * @nr: Bit to set
174 * @addr: Address to count from
176 * This is the same as test_and_set_bit on x86.
178 static __inline__ int test_and_set_bit_lock(int nr, volatile void *addr)
180 return test_and_set_bit(nr, addr);
184 * __test_and_set_bit - Set a bit and return its old value
185 * @nr: Bit to set
186 * @addr: Address to count from
188 * This operation is non-atomic and can be reordered.
189 * If two examples of this operation race, one can appear to succeed
190 * but actually fail. You must protect multiple accesses with a lock.
192 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
194 int oldbit;
196 __asm__(
197 "btsl %2,%1\n\tsbbl %0,%0"
198 :"=r" (oldbit),ADDR
199 :"dIr" (nr));
200 return oldbit;
204 * test_and_clear_bit - Clear a bit and return its old value
205 * @nr: Bit to clear
206 * @addr: Address to count from
208 * This operation is atomic and cannot be reordered.
209 * It also implies a memory barrier.
211 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
213 int oldbit;
215 __asm__ __volatile__( LOCK_PREFIX
216 "btrl %2,%1\n\tsbbl %0,%0"
217 :"=r" (oldbit),ADDR
218 :"dIr" (nr) : "memory");
219 return oldbit;
223 * __test_and_clear_bit - Clear a bit and return its old value
224 * @nr: Bit to clear
225 * @addr: Address to count from
227 * This operation is non-atomic and can be reordered.
228 * If two examples of this operation race, one can appear to succeed
229 * but actually fail. You must protect multiple accesses with a lock.
231 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
233 int oldbit;
235 __asm__(
236 "btrl %2,%1\n\tsbbl %0,%0"
237 :"=r" (oldbit),ADDR
238 :"dIr" (nr));
239 return oldbit;
242 /* WARNING: non atomic and it can be reordered! */
243 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
245 int oldbit;
247 __asm__ __volatile__(
248 "btcl %2,%1\n\tsbbl %0,%0"
249 :"=r" (oldbit),ADDR
250 :"dIr" (nr) : "memory");
251 return oldbit;
255 * test_and_change_bit - Change a bit and return its old value
256 * @nr: Bit to change
257 * @addr: Address to count from
259 * This operation is atomic and cannot be reordered.
260 * It also implies a memory barrier.
262 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
264 int oldbit;
266 __asm__ __volatile__( LOCK_PREFIX
267 "btcl %2,%1\n\tsbbl %0,%0"
268 :"=r" (oldbit),ADDR
269 :"dIr" (nr) : "memory");
270 return oldbit;
273 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
275 * test_bit - Determine whether a bit is set
276 * @nr: bit number to test
277 * @addr: Address to start counting from
279 static int test_bit(int nr, const volatile void * addr);
280 #endif
282 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
284 return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
287 static __inline__ int variable_test_bit(int nr, volatile const void * addr)
289 int oldbit;
291 __asm__ __volatile__(
292 "btl %2,%1\n\tsbbl %0,%0"
293 :"=r" (oldbit)
294 :"m" (*(volatile long *)addr),"dIr" (nr));
295 return oldbit;
298 #define test_bit(nr,addr) \
299 (__builtin_constant_p(nr) ? \
300 constant_test_bit((nr),(addr)) : \
301 variable_test_bit((nr),(addr)))
303 #undef ADDR
305 extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
306 extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
307 extern long find_first_bit(const unsigned long * addr, unsigned long size);
308 extern long find_next_bit(const unsigned long * addr, long size, long offset);
310 /* return index of first bet set in val or max when no bit is set */
311 static inline long __scanbit(unsigned long val, unsigned long max)
313 asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
314 return val;
317 #define find_first_bit(addr,size) \
318 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
319 (__scanbit(*(unsigned long *)addr,(size))) : \
320 find_first_bit(addr,size)))
322 #define find_next_bit(addr,size,off) \
323 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
324 ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
325 find_next_bit(addr,size,off)))
327 #define find_first_zero_bit(addr,size) \
328 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
329 (__scanbit(~*(unsigned long *)addr,(size))) : \
330 find_first_zero_bit(addr,size)))
332 #define find_next_zero_bit(addr,size,off) \
333 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
334 ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
335 find_next_zero_bit(addr,size,off)))
338 * Find string of zero bits in a bitmap. -1 when not found.
340 extern unsigned long
341 find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
343 static inline void set_bit_string(unsigned long *bitmap, unsigned long i,
344 int len)
346 unsigned long end = i + len;
347 while (i < end) {
348 __set_bit(i, bitmap);
349 i++;
353 static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
354 int len)
356 unsigned long end = i + len;
357 while (i < end) {
358 __clear_bit(i, bitmap);
359 i++;
364 * ffz - find first zero in word.
365 * @word: The word to search
367 * Undefined if no zero exists, so code should check against ~0UL first.
369 static __inline__ unsigned long ffz(unsigned long word)
371 __asm__("bsfq %1,%0"
372 :"=r" (word)
373 :"r" (~word));
374 return word;
378 * __ffs - find first bit in word.
379 * @word: The word to search
381 * Undefined if no bit exists, so code should check against 0 first.
383 static __inline__ unsigned long __ffs(unsigned long word)
385 __asm__("bsfq %1,%0"
386 :"=r" (word)
387 :"rm" (word));
388 return word;
392 * __fls: find last bit set.
393 * @word: The word to search
395 * Undefined if no zero exists, so code should check against ~0UL first.
397 static __inline__ unsigned long __fls(unsigned long word)
399 __asm__("bsrq %1,%0"
400 :"=r" (word)
401 :"rm" (word));
402 return word;
405 #ifdef __KERNEL__
407 #include <asm-generic/bitops/sched.h>
410 * ffs - find first bit set
411 * @x: the word to search
413 * This is defined the same way as
414 * the libc and compiler builtin ffs routines, therefore
415 * differs in spirit from the above ffz (man ffs).
417 static __inline__ int ffs(int x)
419 int r;
421 __asm__("bsfl %1,%0\n\t"
422 "cmovzl %2,%0"
423 : "=r" (r) : "rm" (x), "r" (-1));
424 return r+1;
428 * fls64 - find last bit set in 64 bit word
429 * @x: the word to search
431 * This is defined the same way as fls.
433 static __inline__ int fls64(__u64 x)
435 if (x == 0)
436 return 0;
437 return __fls(x) + 1;
441 * fls - find last bit set
442 * @x: the word to search
444 * This is defined the same way as ffs.
446 static __inline__ int fls(int x)
448 int r;
450 __asm__("bsrl %1,%0\n\t"
451 "cmovzl %2,%0"
452 : "=&r" (r) : "rm" (x), "rm" (-1));
453 return r+1;
456 #define ARCH_HAS_FAST_MULTIPLIER 1
458 #include <asm-generic/bitops/hweight.h>
460 #endif /* __KERNEL__ */
462 #ifdef __KERNEL__
464 #include <asm-generic/bitops/ext2-non-atomic.h>
466 #define ext2_set_bit_atomic(lock,nr,addr) \
467 test_and_set_bit((nr),(unsigned long*)addr)
468 #define ext2_clear_bit_atomic(lock,nr,addr) \
469 test_and_clear_bit((nr),(unsigned long*)addr)
471 #include <asm-generic/bitops/minix.h>
473 #endif /* __KERNEL__ */
475 #endif /* _X86_64_BITOPS_H */