net/core: Allow receive on active slaves.
[linux-2.6/kvm.git] / net / core / dev.c
blob600bb23c4c2e3743239dc571c459fe3a5e8b19d5
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
130 #include "net-sysfs.h"
133 * The list of packet types we will receive (as opposed to discard)
134 * and the routines to invoke.
136 * Why 16. Because with 16 the only overlap we get on a hash of the
137 * low nibble of the protocol value is RARP/SNAP/X.25.
139 * NOTE: That is no longer true with the addition of VLAN tags. Not
140 * sure which should go first, but I bet it won't make much
141 * difference if we are running VLANs. The good news is that
142 * this protocol won't be in the list unless compiled in, so
143 * the average user (w/out VLANs) will not be adversely affected.
144 * --BLG
146 * 0800 IP
147 * 8100 802.1Q VLAN
148 * 0001 802.3
149 * 0002 AX.25
150 * 0004 802.2
151 * 8035 RARP
152 * 0005 SNAP
153 * 0805 X.25
154 * 0806 ARP
155 * 8137 IPX
156 * 0009 Localtalk
157 * 86DD IPv6
160 #define PTYPE_HASH_SIZE (16)
161 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
163 static DEFINE_SPINLOCK(ptype_lock);
164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 static struct list_head ptype_all __read_mostly; /* Taps */
167 #ifdef CONFIG_NET_DMA
168 struct net_dma {
169 struct dma_client client;
170 spinlock_t lock;
171 cpumask_t channel_mask;
172 struct dma_chan **channels;
175 static enum dma_state_client
176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
177 enum dma_state state);
179 static struct net_dma net_dma = {
180 .client = {
181 .event_callback = netdev_dma_event,
184 #endif
187 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
188 * semaphore.
190 * Pure readers hold dev_base_lock for reading.
192 * Writers must hold the rtnl semaphore while they loop through the
193 * dev_base_head list, and hold dev_base_lock for writing when they do the
194 * actual updates. This allows pure readers to access the list even
195 * while a writer is preparing to update it.
197 * To put it another way, dev_base_lock is held for writing only to
198 * protect against pure readers; the rtnl semaphore provides the
199 * protection against other writers.
201 * See, for example usages, register_netdevice() and
202 * unregister_netdevice(), which must be called with the rtnl
203 * semaphore held.
205 DEFINE_RWLOCK(dev_base_lock);
207 EXPORT_SYMBOL(dev_base_lock);
209 #define NETDEV_HASHBITS 8
210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
226 struct net *net = dev_net(dev);
228 ASSERT_RTNL();
230 write_lock_bh(&dev_base_lock);
231 list_add_tail(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
234 write_unlock_bh(&dev_base_lock);
235 return 0;
238 /* Device list removal */
239 static void unlist_netdevice(struct net_device *dev)
241 ASSERT_RTNL();
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del(&dev->dev_list);
246 hlist_del(&dev->name_hlist);
247 hlist_del(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
252 * Our notifier list
255 static RAW_NOTIFIER_HEAD(netdev_chain);
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
262 DEFINE_PER_CPU(struct softnet_data, softnet_data);
264 #ifdef CONFIG_LOCKDEP
266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267 * according to dev->type
269 static const unsigned short netdev_lock_type[] =
270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
283 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 ARPHRD_NONE};
286 static const char *netdev_lock_name[] =
287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
300 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 "_xmit_NONE"};
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 int i;
310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 if (netdev_lock_type[i] == dev_type)
312 return i;
313 /* the last key is used by default */
314 return ARRAY_SIZE(netdev_lock_type) - 1;
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 unsigned short dev_type)
320 int i;
322 i = netdev_lock_pos(dev_type);
323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 netdev_lock_name[i]);
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 int i;
331 i = netdev_lock_pos(dev->type);
332 lockdep_set_class_and_name(&dev->addr_list_lock,
333 &netdev_addr_lock_key[i],
334 netdev_lock_name[i]);
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 unsigned short dev_type)
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 #endif
346 /*******************************************************************************
348 Protocol management and registration routines
350 *******************************************************************************/
353 * Add a protocol ID to the list. Now that the input handler is
354 * smarter we can dispense with all the messy stuff that used to be
355 * here.
357 * BEWARE!!! Protocol handlers, mangling input packets,
358 * MUST BE last in hash buckets and checking protocol handlers
359 * MUST start from promiscuous ptype_all chain in net_bh.
360 * It is true now, do not change it.
361 * Explanation follows: if protocol handler, mangling packet, will
362 * be the first on list, it is not able to sense, that packet
363 * is cloned and should be copied-on-write, so that it will
364 * change it and subsequent readers will get broken packet.
365 * --ANK (980803)
369 * dev_add_pack - add packet handler
370 * @pt: packet type declaration
372 * Add a protocol handler to the networking stack. The passed &packet_type
373 * is linked into kernel lists and may not be freed until it has been
374 * removed from the kernel lists.
376 * This call does not sleep therefore it can not
377 * guarantee all CPU's that are in middle of receiving packets
378 * will see the new packet type (until the next received packet).
381 void dev_add_pack(struct packet_type *pt)
383 int hash;
385 spin_lock_bh(&ptype_lock);
386 if (pt->type == htons(ETH_P_ALL))
387 list_add_rcu(&pt->list, &ptype_all);
388 else {
389 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
390 list_add_rcu(&pt->list, &ptype_base[hash]);
392 spin_unlock_bh(&ptype_lock);
396 * __dev_remove_pack - remove packet handler
397 * @pt: packet type declaration
399 * Remove a protocol handler that was previously added to the kernel
400 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
401 * from the kernel lists and can be freed or reused once this function
402 * returns.
404 * The packet type might still be in use by receivers
405 * and must not be freed until after all the CPU's have gone
406 * through a quiescent state.
408 void __dev_remove_pack(struct packet_type *pt)
410 struct list_head *head;
411 struct packet_type *pt1;
413 spin_lock_bh(&ptype_lock);
415 if (pt->type == htons(ETH_P_ALL))
416 head = &ptype_all;
417 else
418 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
427 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
428 out:
429 spin_unlock_bh(&ptype_lock);
432 * dev_remove_pack - remove packet handler
433 * @pt: packet type declaration
435 * Remove a protocol handler that was previously added to the kernel
436 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
437 * from the kernel lists and can be freed or reused once this function
438 * returns.
440 * This call sleeps to guarantee that no CPU is looking at the packet
441 * type after return.
443 void dev_remove_pack(struct packet_type *pt)
445 __dev_remove_pack(pt);
447 synchronize_net();
450 /******************************************************************************
452 Device Boot-time Settings Routines
454 *******************************************************************************/
456 /* Boot time configuration table */
457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
460 * netdev_boot_setup_add - add new setup entry
461 * @name: name of the device
462 * @map: configured settings for the device
464 * Adds new setup entry to the dev_boot_setup list. The function
465 * returns 0 on error and 1 on success. This is a generic routine to
466 * all netdevices.
468 static int netdev_boot_setup_add(char *name, struct ifmap *map)
470 struct netdev_boot_setup *s;
471 int i;
473 s = dev_boot_setup;
474 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
475 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
476 memset(s[i].name, 0, sizeof(s[i].name));
477 strlcpy(s[i].name, name, IFNAMSIZ);
478 memcpy(&s[i].map, map, sizeof(s[i].map));
479 break;
483 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
487 * netdev_boot_setup_check - check boot time settings
488 * @dev: the netdevice
490 * Check boot time settings for the device.
491 * The found settings are set for the device to be used
492 * later in the device probing.
493 * Returns 0 if no settings found, 1 if they are.
495 int netdev_boot_setup_check(struct net_device *dev)
497 struct netdev_boot_setup *s = dev_boot_setup;
498 int i;
500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
502 !strcmp(dev->name, s[i].name)) {
503 dev->irq = s[i].map.irq;
504 dev->base_addr = s[i].map.base_addr;
505 dev->mem_start = s[i].map.mem_start;
506 dev->mem_end = s[i].map.mem_end;
507 return 1;
510 return 0;
515 * netdev_boot_base - get address from boot time settings
516 * @prefix: prefix for network device
517 * @unit: id for network device
519 * Check boot time settings for the base address of device.
520 * The found settings are set for the device to be used
521 * later in the device probing.
522 * Returns 0 if no settings found.
524 unsigned long netdev_boot_base(const char *prefix, int unit)
526 const struct netdev_boot_setup *s = dev_boot_setup;
527 char name[IFNAMSIZ];
528 int i;
530 sprintf(name, "%s%d", prefix, unit);
533 * If device already registered then return base of 1
534 * to indicate not to probe for this interface
536 if (__dev_get_by_name(&init_net, name))
537 return 1;
539 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
540 if (!strcmp(name, s[i].name))
541 return s[i].map.base_addr;
542 return 0;
546 * Saves at boot time configured settings for any netdevice.
548 int __init netdev_boot_setup(char *str)
550 int ints[5];
551 struct ifmap map;
553 str = get_options(str, ARRAY_SIZE(ints), ints);
554 if (!str || !*str)
555 return 0;
557 /* Save settings */
558 memset(&map, 0, sizeof(map));
559 if (ints[0] > 0)
560 map.irq = ints[1];
561 if (ints[0] > 1)
562 map.base_addr = ints[2];
563 if (ints[0] > 2)
564 map.mem_start = ints[3];
565 if (ints[0] > 3)
566 map.mem_end = ints[4];
568 /* Add new entry to the list */
569 return netdev_boot_setup_add(str, &map);
572 __setup("netdev=", netdev_boot_setup);
574 /*******************************************************************************
576 Device Interface Subroutines
578 *******************************************************************************/
581 * __dev_get_by_name - find a device by its name
582 * @net: the applicable net namespace
583 * @name: name to find
585 * Find an interface by name. Must be called under RTNL semaphore
586 * or @dev_base_lock. If the name is found a pointer to the device
587 * is returned. If the name is not found then %NULL is returned. The
588 * reference counters are not incremented so the caller must be
589 * careful with locks.
592 struct net_device *__dev_get_by_name(struct net *net, const char *name)
594 struct hlist_node *p;
596 hlist_for_each(p, dev_name_hash(net, name)) {
597 struct net_device *dev
598 = hlist_entry(p, struct net_device, name_hlist);
599 if (!strncmp(dev->name, name, IFNAMSIZ))
600 return dev;
602 return NULL;
606 * dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
610 * Find an interface by name. This can be called from any
611 * context and does its own locking. The returned handle has
612 * the usage count incremented and the caller must use dev_put() to
613 * release it when it is no longer needed. %NULL is returned if no
614 * matching device is found.
617 struct net_device *dev_get_by_name(struct net *net, const char *name)
619 struct net_device *dev;
621 read_lock(&dev_base_lock);
622 dev = __dev_get_by_name(net, name);
623 if (dev)
624 dev_hold(dev);
625 read_unlock(&dev_base_lock);
626 return dev;
630 * __dev_get_by_index - find a device by its ifindex
631 * @net: the applicable net namespace
632 * @ifindex: index of device
634 * Search for an interface by index. Returns %NULL if the device
635 * is not found or a pointer to the device. The device has not
636 * had its reference counter increased so the caller must be careful
637 * about locking. The caller must hold either the RTNL semaphore
638 * or @dev_base_lock.
641 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
643 struct hlist_node *p;
645 hlist_for_each(p, dev_index_hash(net, ifindex)) {
646 struct net_device *dev
647 = hlist_entry(p, struct net_device, index_hlist);
648 if (dev->ifindex == ifindex)
649 return dev;
651 return NULL;
656 * dev_get_by_index - find a device by its ifindex
657 * @net: the applicable net namespace
658 * @ifindex: index of device
660 * Search for an interface by index. Returns NULL if the device
661 * is not found or a pointer to the device. The device returned has
662 * had a reference added and the pointer is safe until the user calls
663 * dev_put to indicate they have finished with it.
666 struct net_device *dev_get_by_index(struct net *net, int ifindex)
668 struct net_device *dev;
670 read_lock(&dev_base_lock);
671 dev = __dev_get_by_index(net, ifindex);
672 if (dev)
673 dev_hold(dev);
674 read_unlock(&dev_base_lock);
675 return dev;
679 * dev_getbyhwaddr - find a device by its hardware address
680 * @net: the applicable net namespace
681 * @type: media type of device
682 * @ha: hardware address
684 * Search for an interface by MAC address. Returns NULL if the device
685 * is not found or a pointer to the device. The caller must hold the
686 * rtnl semaphore. The returned device has not had its ref count increased
687 * and the caller must therefore be careful about locking
689 * BUGS:
690 * If the API was consistent this would be __dev_get_by_hwaddr
693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
695 struct net_device *dev;
697 ASSERT_RTNL();
699 for_each_netdev(net, dev)
700 if (dev->type == type &&
701 !memcmp(dev->dev_addr, ha, dev->addr_len))
702 return dev;
704 return NULL;
707 EXPORT_SYMBOL(dev_getbyhwaddr);
709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 struct net_device *dev;
713 ASSERT_RTNL();
714 for_each_netdev(net, dev)
715 if (dev->type == type)
716 return dev;
718 return NULL;
721 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
725 struct net_device *dev;
727 rtnl_lock();
728 dev = __dev_getfirstbyhwtype(net, type);
729 if (dev)
730 dev_hold(dev);
731 rtnl_unlock();
732 return dev;
735 EXPORT_SYMBOL(dev_getfirstbyhwtype);
738 * dev_get_by_flags - find any device with given flags
739 * @net: the applicable net namespace
740 * @if_flags: IFF_* values
741 * @mask: bitmask of bits in if_flags to check
743 * Search for any interface with the given flags. Returns NULL if a device
744 * is not found or a pointer to the device. The device returned has
745 * had a reference added and the pointer is safe until the user calls
746 * dev_put to indicate they have finished with it.
749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
751 struct net_device *dev, *ret;
753 ret = NULL;
754 read_lock(&dev_base_lock);
755 for_each_netdev(net, dev) {
756 if (((dev->flags ^ if_flags) & mask) == 0) {
757 dev_hold(dev);
758 ret = dev;
759 break;
762 read_unlock(&dev_base_lock);
763 return ret;
767 * dev_valid_name - check if name is okay for network device
768 * @name: name string
770 * Network device names need to be valid file names to
771 * to allow sysfs to work. We also disallow any kind of
772 * whitespace.
774 int dev_valid_name(const char *name)
776 if (*name == '\0')
777 return 0;
778 if (strlen(name) >= IFNAMSIZ)
779 return 0;
780 if (!strcmp(name, ".") || !strcmp(name, ".."))
781 return 0;
783 while (*name) {
784 if (*name == '/' || isspace(*name))
785 return 0;
786 name++;
788 return 1;
792 * __dev_alloc_name - allocate a name for a device
793 * @net: network namespace to allocate the device name in
794 * @name: name format string
795 * @buf: scratch buffer and result name string
797 * Passed a format string - eg "lt%d" it will try and find a suitable
798 * id. It scans list of devices to build up a free map, then chooses
799 * the first empty slot. The caller must hold the dev_base or rtnl lock
800 * while allocating the name and adding the device in order to avoid
801 * duplicates.
802 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
803 * Returns the number of the unit assigned or a negative errno code.
806 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
808 int i = 0;
809 const char *p;
810 const int max_netdevices = 8*PAGE_SIZE;
811 unsigned long *inuse;
812 struct net_device *d;
814 p = strnchr(name, IFNAMSIZ-1, '%');
815 if (p) {
817 * Verify the string as this thing may have come from
818 * the user. There must be either one "%d" and no other "%"
819 * characters.
821 if (p[1] != 'd' || strchr(p + 2, '%'))
822 return -EINVAL;
824 /* Use one page as a bit array of possible slots */
825 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
826 if (!inuse)
827 return -ENOMEM;
829 for_each_netdev(net, d) {
830 if (!sscanf(d->name, name, &i))
831 continue;
832 if (i < 0 || i >= max_netdevices)
833 continue;
835 /* avoid cases where sscanf is not exact inverse of printf */
836 snprintf(buf, IFNAMSIZ, name, i);
837 if (!strncmp(buf, d->name, IFNAMSIZ))
838 set_bit(i, inuse);
841 i = find_first_zero_bit(inuse, max_netdevices);
842 free_page((unsigned long) inuse);
845 snprintf(buf, IFNAMSIZ, name, i);
846 if (!__dev_get_by_name(net, buf))
847 return i;
849 /* It is possible to run out of possible slots
850 * when the name is long and there isn't enough space left
851 * for the digits, or if all bits are used.
853 return -ENFILE;
857 * dev_alloc_name - allocate a name for a device
858 * @dev: device
859 * @name: name format string
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
870 int dev_alloc_name(struct net_device *dev, const char *name)
872 char buf[IFNAMSIZ];
873 struct net *net;
874 int ret;
876 BUG_ON(!dev_net(dev));
877 net = dev_net(dev);
878 ret = __dev_alloc_name(net, name, buf);
879 if (ret >= 0)
880 strlcpy(dev->name, buf, IFNAMSIZ);
881 return ret;
886 * dev_change_name - change name of a device
887 * @dev: device
888 * @newname: name (or format string) must be at least IFNAMSIZ
890 * Change name of a device, can pass format strings "eth%d".
891 * for wildcarding.
893 int dev_change_name(struct net_device *dev, char *newname)
895 char oldname[IFNAMSIZ];
896 int err = 0;
897 int ret;
898 struct net *net;
900 ASSERT_RTNL();
901 BUG_ON(!dev_net(dev));
903 net = dev_net(dev);
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
907 if (!dev_valid_name(newname))
908 return -EINVAL;
910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 return 0;
913 memcpy(oldname, dev->name, IFNAMSIZ);
915 if (strchr(newname, '%')) {
916 err = dev_alloc_name(dev, newname);
917 if (err < 0)
918 return err;
919 strcpy(newname, dev->name);
921 else if (__dev_get_by_name(net, newname))
922 return -EEXIST;
923 else
924 strlcpy(dev->name, newname, IFNAMSIZ);
926 rollback:
927 err = device_rename(&dev->dev, dev->name);
928 if (err) {
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 return err;
933 write_lock_bh(&dev_base_lock);
934 hlist_del(&dev->name_hlist);
935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 write_unlock_bh(&dev_base_lock);
938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 ret = notifier_to_errno(ret);
941 if (ret) {
942 if (err) {
943 printk(KERN_ERR
944 "%s: name change rollback failed: %d.\n",
945 dev->name, ret);
946 } else {
947 err = ret;
948 memcpy(dev->name, oldname, IFNAMSIZ);
949 goto rollback;
953 return err;
957 * netdev_features_change - device changes features
958 * @dev: device to cause notification
960 * Called to indicate a device has changed features.
962 void netdev_features_change(struct net_device *dev)
964 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
966 EXPORT_SYMBOL(netdev_features_change);
969 * netdev_state_change - device changes state
970 * @dev: device to cause notification
972 * Called to indicate a device has changed state. This function calls
973 * the notifier chains for netdev_chain and sends a NEWLINK message
974 * to the routing socket.
976 void netdev_state_change(struct net_device *dev)
978 if (dev->flags & IFF_UP) {
979 call_netdevice_notifiers(NETDEV_CHANGE, dev);
980 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
984 void netdev_bonding_change(struct net_device *dev)
986 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
988 EXPORT_SYMBOL(netdev_bonding_change);
991 * dev_load - load a network module
992 * @net: the applicable net namespace
993 * @name: name of interface
995 * If a network interface is not present and the process has suitable
996 * privileges this function loads the module. If module loading is not
997 * available in this kernel then it becomes a nop.
1000 void dev_load(struct net *net, const char *name)
1002 struct net_device *dev;
1004 read_lock(&dev_base_lock);
1005 dev = __dev_get_by_name(net, name);
1006 read_unlock(&dev_base_lock);
1008 if (!dev && capable(CAP_SYS_MODULE))
1009 request_module("%s", name);
1013 * dev_open - prepare an interface for use.
1014 * @dev: device to open
1016 * Takes a device from down to up state. The device's private open
1017 * function is invoked and then the multicast lists are loaded. Finally
1018 * the device is moved into the up state and a %NETDEV_UP message is
1019 * sent to the netdev notifier chain.
1021 * Calling this function on an active interface is a nop. On a failure
1022 * a negative errno code is returned.
1024 int dev_open(struct net_device *dev)
1026 int ret = 0;
1028 ASSERT_RTNL();
1031 * Is it already up?
1034 if (dev->flags & IFF_UP)
1035 return 0;
1038 * Is it even present?
1040 if (!netif_device_present(dev))
1041 return -ENODEV;
1044 * Call device private open method
1046 set_bit(__LINK_STATE_START, &dev->state);
1048 if (dev->validate_addr)
1049 ret = dev->validate_addr(dev);
1051 if (!ret && dev->open)
1052 ret = dev->open(dev);
1055 * If it went open OK then:
1058 if (ret)
1059 clear_bit(__LINK_STATE_START, &dev->state);
1060 else {
1062 * Set the flags.
1064 dev->flags |= IFF_UP;
1067 * Initialize multicasting status
1069 dev_set_rx_mode(dev);
1072 * Wakeup transmit queue engine
1074 dev_activate(dev);
1077 * ... and announce new interface.
1079 call_netdevice_notifiers(NETDEV_UP, dev);
1082 return ret;
1086 * dev_close - shutdown an interface.
1087 * @dev: device to shutdown
1089 * This function moves an active device into down state. A
1090 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1091 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1092 * chain.
1094 int dev_close(struct net_device *dev)
1096 ASSERT_RTNL();
1098 might_sleep();
1100 if (!(dev->flags & IFF_UP))
1101 return 0;
1104 * Tell people we are going down, so that they can
1105 * prepare to death, when device is still operating.
1107 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1109 clear_bit(__LINK_STATE_START, &dev->state);
1111 /* Synchronize to scheduled poll. We cannot touch poll list,
1112 * it can be even on different cpu. So just clear netif_running().
1114 * dev->stop() will invoke napi_disable() on all of it's
1115 * napi_struct instances on this device.
1117 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1119 dev_deactivate(dev);
1122 * Call the device specific close. This cannot fail.
1123 * Only if device is UP
1125 * We allow it to be called even after a DETACH hot-plug
1126 * event.
1128 if (dev->stop)
1129 dev->stop(dev);
1132 * Device is now down.
1135 dev->flags &= ~IFF_UP;
1138 * Tell people we are down
1140 call_netdevice_notifiers(NETDEV_DOWN, dev);
1142 return 0;
1147 * dev_disable_lro - disable Large Receive Offload on a device
1148 * @dev: device
1150 * Disable Large Receive Offload (LRO) on a net device. Must be
1151 * called under RTNL. This is needed if received packets may be
1152 * forwarded to another interface.
1154 void dev_disable_lro(struct net_device *dev)
1156 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1157 dev->ethtool_ops->set_flags) {
1158 u32 flags = dev->ethtool_ops->get_flags(dev);
1159 if (flags & ETH_FLAG_LRO) {
1160 flags &= ~ETH_FLAG_LRO;
1161 dev->ethtool_ops->set_flags(dev, flags);
1164 WARN_ON(dev->features & NETIF_F_LRO);
1166 EXPORT_SYMBOL(dev_disable_lro);
1169 static int dev_boot_phase = 1;
1172 * Device change register/unregister. These are not inline or static
1173 * as we export them to the world.
1177 * register_netdevice_notifier - register a network notifier block
1178 * @nb: notifier
1180 * Register a notifier to be called when network device events occur.
1181 * The notifier passed is linked into the kernel structures and must
1182 * not be reused until it has been unregistered. A negative errno code
1183 * is returned on a failure.
1185 * When registered all registration and up events are replayed
1186 * to the new notifier to allow device to have a race free
1187 * view of the network device list.
1190 int register_netdevice_notifier(struct notifier_block *nb)
1192 struct net_device *dev;
1193 struct net_device *last;
1194 struct net *net;
1195 int err;
1197 rtnl_lock();
1198 err = raw_notifier_chain_register(&netdev_chain, nb);
1199 if (err)
1200 goto unlock;
1201 if (dev_boot_phase)
1202 goto unlock;
1203 for_each_net(net) {
1204 for_each_netdev(net, dev) {
1205 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1206 err = notifier_to_errno(err);
1207 if (err)
1208 goto rollback;
1210 if (!(dev->flags & IFF_UP))
1211 continue;
1213 nb->notifier_call(nb, NETDEV_UP, dev);
1217 unlock:
1218 rtnl_unlock();
1219 return err;
1221 rollback:
1222 last = dev;
1223 for_each_net(net) {
1224 for_each_netdev(net, dev) {
1225 if (dev == last)
1226 break;
1228 if (dev->flags & IFF_UP) {
1229 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1230 nb->notifier_call(nb, NETDEV_DOWN, dev);
1232 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1236 raw_notifier_chain_unregister(&netdev_chain, nb);
1237 goto unlock;
1241 * unregister_netdevice_notifier - unregister a network notifier block
1242 * @nb: notifier
1244 * Unregister a notifier previously registered by
1245 * register_netdevice_notifier(). The notifier is unlinked into the
1246 * kernel structures and may then be reused. A negative errno code
1247 * is returned on a failure.
1250 int unregister_netdevice_notifier(struct notifier_block *nb)
1252 int err;
1254 rtnl_lock();
1255 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1256 rtnl_unlock();
1257 return err;
1261 * call_netdevice_notifiers - call all network notifier blocks
1262 * @val: value passed unmodified to notifier function
1263 * @dev: net_device pointer passed unmodified to notifier function
1265 * Call all network notifier blocks. Parameters and return value
1266 * are as for raw_notifier_call_chain().
1269 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1271 return raw_notifier_call_chain(&netdev_chain, val, dev);
1274 /* When > 0 there are consumers of rx skb time stamps */
1275 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1277 void net_enable_timestamp(void)
1279 atomic_inc(&netstamp_needed);
1282 void net_disable_timestamp(void)
1284 atomic_dec(&netstamp_needed);
1287 static inline void net_timestamp(struct sk_buff *skb)
1289 if (atomic_read(&netstamp_needed))
1290 __net_timestamp(skb);
1291 else
1292 skb->tstamp.tv64 = 0;
1296 * Support routine. Sends outgoing frames to any network
1297 * taps currently in use.
1300 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1302 struct packet_type *ptype;
1304 net_timestamp(skb);
1306 rcu_read_lock();
1307 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1308 /* Never send packets back to the socket
1309 * they originated from - MvS (miquels@drinkel.ow.org)
1311 if ((ptype->dev == dev || !ptype->dev) &&
1312 (ptype->af_packet_priv == NULL ||
1313 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1314 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1315 if (!skb2)
1316 break;
1318 /* skb->nh should be correctly
1319 set by sender, so that the second statement is
1320 just protection against buggy protocols.
1322 skb_reset_mac_header(skb2);
1324 if (skb_network_header(skb2) < skb2->data ||
1325 skb2->network_header > skb2->tail) {
1326 if (net_ratelimit())
1327 printk(KERN_CRIT "protocol %04x is "
1328 "buggy, dev %s\n",
1329 skb2->protocol, dev->name);
1330 skb_reset_network_header(skb2);
1333 skb2->transport_header = skb2->network_header;
1334 skb2->pkt_type = PACKET_OUTGOING;
1335 ptype->func(skb2, skb->dev, ptype, skb->dev);
1338 rcu_read_unlock();
1342 void __netif_schedule(struct Qdisc *q)
1344 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) {
1345 struct softnet_data *sd;
1346 unsigned long flags;
1348 local_irq_save(flags);
1349 sd = &__get_cpu_var(softnet_data);
1350 q->next_sched = sd->output_queue;
1351 sd->output_queue = q;
1352 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1353 local_irq_restore(flags);
1356 EXPORT_SYMBOL(__netif_schedule);
1358 void dev_kfree_skb_irq(struct sk_buff *skb)
1360 if (atomic_dec_and_test(&skb->users)) {
1361 struct softnet_data *sd;
1362 unsigned long flags;
1364 local_irq_save(flags);
1365 sd = &__get_cpu_var(softnet_data);
1366 skb->next = sd->completion_queue;
1367 sd->completion_queue = skb;
1368 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1369 local_irq_restore(flags);
1372 EXPORT_SYMBOL(dev_kfree_skb_irq);
1374 void dev_kfree_skb_any(struct sk_buff *skb)
1376 if (in_irq() || irqs_disabled())
1377 dev_kfree_skb_irq(skb);
1378 else
1379 dev_kfree_skb(skb);
1381 EXPORT_SYMBOL(dev_kfree_skb_any);
1385 * netif_device_detach - mark device as removed
1386 * @dev: network device
1388 * Mark device as removed from system and therefore no longer available.
1390 void netif_device_detach(struct net_device *dev)
1392 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1393 netif_running(dev)) {
1394 netif_stop_queue(dev);
1397 EXPORT_SYMBOL(netif_device_detach);
1400 * netif_device_attach - mark device as attached
1401 * @dev: network device
1403 * Mark device as attached from system and restart if needed.
1405 void netif_device_attach(struct net_device *dev)
1407 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1408 netif_running(dev)) {
1409 netif_wake_queue(dev);
1410 __netdev_watchdog_up(dev);
1413 EXPORT_SYMBOL(netif_device_attach);
1415 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1417 return ((features & NETIF_F_GEN_CSUM) ||
1418 ((features & NETIF_F_IP_CSUM) &&
1419 protocol == htons(ETH_P_IP)) ||
1420 ((features & NETIF_F_IPV6_CSUM) &&
1421 protocol == htons(ETH_P_IPV6)));
1424 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1426 if (can_checksum_protocol(dev->features, skb->protocol))
1427 return true;
1429 if (skb->protocol == htons(ETH_P_8021Q)) {
1430 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1431 if (can_checksum_protocol(dev->features & dev->vlan_features,
1432 veh->h_vlan_encapsulated_proto))
1433 return true;
1436 return false;
1440 * Invalidate hardware checksum when packet is to be mangled, and
1441 * complete checksum manually on outgoing path.
1443 int skb_checksum_help(struct sk_buff *skb)
1445 __wsum csum;
1446 int ret = 0, offset;
1448 if (skb->ip_summed == CHECKSUM_COMPLETE)
1449 goto out_set_summed;
1451 if (unlikely(skb_shinfo(skb)->gso_size)) {
1452 /* Let GSO fix up the checksum. */
1453 goto out_set_summed;
1456 offset = skb->csum_start - skb_headroom(skb);
1457 BUG_ON(offset >= skb_headlen(skb));
1458 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1460 offset += skb->csum_offset;
1461 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1463 if (skb_cloned(skb) &&
1464 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1465 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1466 if (ret)
1467 goto out;
1470 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1471 out_set_summed:
1472 skb->ip_summed = CHECKSUM_NONE;
1473 out:
1474 return ret;
1478 * skb_gso_segment - Perform segmentation on skb.
1479 * @skb: buffer to segment
1480 * @features: features for the output path (see dev->features)
1482 * This function segments the given skb and returns a list of segments.
1484 * It may return NULL if the skb requires no segmentation. This is
1485 * only possible when GSO is used for verifying header integrity.
1487 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1489 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1490 struct packet_type *ptype;
1491 __be16 type = skb->protocol;
1492 int err;
1494 BUG_ON(skb_shinfo(skb)->frag_list);
1496 skb_reset_mac_header(skb);
1497 skb->mac_len = skb->network_header - skb->mac_header;
1498 __skb_pull(skb, skb->mac_len);
1500 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1501 if (skb_header_cloned(skb) &&
1502 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1503 return ERR_PTR(err);
1506 rcu_read_lock();
1507 list_for_each_entry_rcu(ptype,
1508 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1509 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1510 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1511 err = ptype->gso_send_check(skb);
1512 segs = ERR_PTR(err);
1513 if (err || skb_gso_ok(skb, features))
1514 break;
1515 __skb_push(skb, (skb->data -
1516 skb_network_header(skb)));
1518 segs = ptype->gso_segment(skb, features);
1519 break;
1522 rcu_read_unlock();
1524 __skb_push(skb, skb->data - skb_mac_header(skb));
1526 return segs;
1529 EXPORT_SYMBOL(skb_gso_segment);
1531 /* Take action when hardware reception checksum errors are detected. */
1532 #ifdef CONFIG_BUG
1533 void netdev_rx_csum_fault(struct net_device *dev)
1535 if (net_ratelimit()) {
1536 printk(KERN_ERR "%s: hw csum failure.\n",
1537 dev ? dev->name : "<unknown>");
1538 dump_stack();
1541 EXPORT_SYMBOL(netdev_rx_csum_fault);
1542 #endif
1544 /* Actually, we should eliminate this check as soon as we know, that:
1545 * 1. IOMMU is present and allows to map all the memory.
1546 * 2. No high memory really exists on this machine.
1549 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1551 #ifdef CONFIG_HIGHMEM
1552 int i;
1554 if (dev->features & NETIF_F_HIGHDMA)
1555 return 0;
1557 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1558 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1559 return 1;
1561 #endif
1562 return 0;
1565 struct dev_gso_cb {
1566 void (*destructor)(struct sk_buff *skb);
1569 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1571 static void dev_gso_skb_destructor(struct sk_buff *skb)
1573 struct dev_gso_cb *cb;
1575 do {
1576 struct sk_buff *nskb = skb->next;
1578 skb->next = nskb->next;
1579 nskb->next = NULL;
1580 kfree_skb(nskb);
1581 } while (skb->next);
1583 cb = DEV_GSO_CB(skb);
1584 if (cb->destructor)
1585 cb->destructor(skb);
1589 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1590 * @skb: buffer to segment
1592 * This function segments the given skb and stores the list of segments
1593 * in skb->next.
1595 static int dev_gso_segment(struct sk_buff *skb)
1597 struct net_device *dev = skb->dev;
1598 struct sk_buff *segs;
1599 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1600 NETIF_F_SG : 0);
1602 segs = skb_gso_segment(skb, features);
1604 /* Verifying header integrity only. */
1605 if (!segs)
1606 return 0;
1608 if (IS_ERR(segs))
1609 return PTR_ERR(segs);
1611 skb->next = segs;
1612 DEV_GSO_CB(skb)->destructor = skb->destructor;
1613 skb->destructor = dev_gso_skb_destructor;
1615 return 0;
1618 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1619 struct netdev_queue *txq)
1621 if (likely(!skb->next)) {
1622 if (!list_empty(&ptype_all))
1623 dev_queue_xmit_nit(skb, dev);
1625 if (netif_needs_gso(dev, skb)) {
1626 if (unlikely(dev_gso_segment(skb)))
1627 goto out_kfree_skb;
1628 if (skb->next)
1629 goto gso;
1632 return dev->hard_start_xmit(skb, dev);
1635 gso:
1636 do {
1637 struct sk_buff *nskb = skb->next;
1638 int rc;
1640 skb->next = nskb->next;
1641 nskb->next = NULL;
1642 rc = dev->hard_start_xmit(nskb, dev);
1643 if (unlikely(rc)) {
1644 nskb->next = skb->next;
1645 skb->next = nskb;
1646 return rc;
1648 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1649 return NETDEV_TX_BUSY;
1650 } while (skb->next);
1652 skb->destructor = DEV_GSO_CB(skb)->destructor;
1654 out_kfree_skb:
1655 kfree_skb(skb);
1656 return 0;
1659 static u32 simple_tx_hashrnd;
1660 static int simple_tx_hashrnd_initialized = 0;
1662 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1664 u32 addr1, addr2, ports;
1665 u32 hash, ihl;
1666 u8 ip_proto;
1668 if (unlikely(!simple_tx_hashrnd_initialized)) {
1669 get_random_bytes(&simple_tx_hashrnd, 4);
1670 simple_tx_hashrnd_initialized = 1;
1673 switch (skb->protocol) {
1674 case __constant_htons(ETH_P_IP):
1675 ip_proto = ip_hdr(skb)->protocol;
1676 addr1 = ip_hdr(skb)->saddr;
1677 addr2 = ip_hdr(skb)->daddr;
1678 ihl = ip_hdr(skb)->ihl;
1679 break;
1680 case __constant_htons(ETH_P_IPV6):
1681 ip_proto = ipv6_hdr(skb)->nexthdr;
1682 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1683 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1684 ihl = (40 >> 2);
1685 break;
1686 default:
1687 return 0;
1691 switch (ip_proto) {
1692 case IPPROTO_TCP:
1693 case IPPROTO_UDP:
1694 case IPPROTO_DCCP:
1695 case IPPROTO_ESP:
1696 case IPPROTO_AH:
1697 case IPPROTO_SCTP:
1698 case IPPROTO_UDPLITE:
1699 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1700 break;
1702 default:
1703 ports = 0;
1704 break;
1707 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1709 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1712 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1713 struct sk_buff *skb)
1715 u16 queue_index = 0;
1717 if (dev->select_queue)
1718 queue_index = dev->select_queue(dev, skb);
1719 else if (dev->real_num_tx_queues > 1)
1720 queue_index = simple_tx_hash(dev, skb);
1722 skb_set_queue_mapping(skb, queue_index);
1723 return netdev_get_tx_queue(dev, queue_index);
1727 * dev_queue_xmit - transmit a buffer
1728 * @skb: buffer to transmit
1730 * Queue a buffer for transmission to a network device. The caller must
1731 * have set the device and priority and built the buffer before calling
1732 * this function. The function can be called from an interrupt.
1734 * A negative errno code is returned on a failure. A success does not
1735 * guarantee the frame will be transmitted as it may be dropped due
1736 * to congestion or traffic shaping.
1738 * -----------------------------------------------------------------------------------
1739 * I notice this method can also return errors from the queue disciplines,
1740 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1741 * be positive.
1743 * Regardless of the return value, the skb is consumed, so it is currently
1744 * difficult to retry a send to this method. (You can bump the ref count
1745 * before sending to hold a reference for retry if you are careful.)
1747 * When calling this method, interrupts MUST be enabled. This is because
1748 * the BH enable code must have IRQs enabled so that it will not deadlock.
1749 * --BLG
1751 int dev_queue_xmit(struct sk_buff *skb)
1753 struct net_device *dev = skb->dev;
1754 struct netdev_queue *txq;
1755 struct Qdisc *q;
1756 int rc = -ENOMEM;
1758 /* GSO will handle the following emulations directly. */
1759 if (netif_needs_gso(dev, skb))
1760 goto gso;
1762 if (skb_shinfo(skb)->frag_list &&
1763 !(dev->features & NETIF_F_FRAGLIST) &&
1764 __skb_linearize(skb))
1765 goto out_kfree_skb;
1767 /* Fragmented skb is linearized if device does not support SG,
1768 * or if at least one of fragments is in highmem and device
1769 * does not support DMA from it.
1771 if (skb_shinfo(skb)->nr_frags &&
1772 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1773 __skb_linearize(skb))
1774 goto out_kfree_skb;
1776 /* If packet is not checksummed and device does not support
1777 * checksumming for this protocol, complete checksumming here.
1779 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1780 skb_set_transport_header(skb, skb->csum_start -
1781 skb_headroom(skb));
1782 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1783 goto out_kfree_skb;
1786 gso:
1787 /* Disable soft irqs for various locks below. Also
1788 * stops preemption for RCU.
1790 rcu_read_lock_bh();
1792 txq = dev_pick_tx(dev, skb);
1793 q = rcu_dereference(txq->qdisc);
1795 #ifdef CONFIG_NET_CLS_ACT
1796 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1797 #endif
1798 if (q->enqueue) {
1799 spinlock_t *root_lock = qdisc_lock(q);
1801 spin_lock(root_lock);
1803 rc = qdisc_enqueue_root(skb, q);
1804 qdisc_run(q);
1806 spin_unlock(root_lock);
1808 goto out;
1811 /* The device has no queue. Common case for software devices:
1812 loopback, all the sorts of tunnels...
1814 Really, it is unlikely that netif_tx_lock protection is necessary
1815 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1816 counters.)
1817 However, it is possible, that they rely on protection
1818 made by us here.
1820 Check this and shot the lock. It is not prone from deadlocks.
1821 Either shot noqueue qdisc, it is even simpler 8)
1823 if (dev->flags & IFF_UP) {
1824 int cpu = smp_processor_id(); /* ok because BHs are off */
1826 if (txq->xmit_lock_owner != cpu) {
1828 HARD_TX_LOCK(dev, txq, cpu);
1830 if (!netif_tx_queue_stopped(txq)) {
1831 rc = 0;
1832 if (!dev_hard_start_xmit(skb, dev, txq)) {
1833 HARD_TX_UNLOCK(dev, txq);
1834 goto out;
1837 HARD_TX_UNLOCK(dev, txq);
1838 if (net_ratelimit())
1839 printk(KERN_CRIT "Virtual device %s asks to "
1840 "queue packet!\n", dev->name);
1841 } else {
1842 /* Recursion is detected! It is possible,
1843 * unfortunately */
1844 if (net_ratelimit())
1845 printk(KERN_CRIT "Dead loop on virtual device "
1846 "%s, fix it urgently!\n", dev->name);
1850 rc = -ENETDOWN;
1851 rcu_read_unlock_bh();
1853 out_kfree_skb:
1854 kfree_skb(skb);
1855 return rc;
1856 out:
1857 rcu_read_unlock_bh();
1858 return rc;
1862 /*=======================================================================
1863 Receiver routines
1864 =======================================================================*/
1866 int netdev_max_backlog __read_mostly = 1000;
1867 int netdev_budget __read_mostly = 300;
1868 int weight_p __read_mostly = 64; /* old backlog weight */
1870 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1874 * netif_rx - post buffer to the network code
1875 * @skb: buffer to post
1877 * This function receives a packet from a device driver and queues it for
1878 * the upper (protocol) levels to process. It always succeeds. The buffer
1879 * may be dropped during processing for congestion control or by the
1880 * protocol layers.
1882 * return values:
1883 * NET_RX_SUCCESS (no congestion)
1884 * NET_RX_DROP (packet was dropped)
1888 int netif_rx(struct sk_buff *skb)
1890 struct softnet_data *queue;
1891 unsigned long flags;
1893 /* if netpoll wants it, pretend we never saw it */
1894 if (netpoll_rx(skb))
1895 return NET_RX_DROP;
1897 if (!skb->tstamp.tv64)
1898 net_timestamp(skb);
1901 * The code is rearranged so that the path is the most
1902 * short when CPU is congested, but is still operating.
1904 local_irq_save(flags);
1905 queue = &__get_cpu_var(softnet_data);
1907 __get_cpu_var(netdev_rx_stat).total++;
1908 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1909 if (queue->input_pkt_queue.qlen) {
1910 enqueue:
1911 __skb_queue_tail(&queue->input_pkt_queue, skb);
1912 local_irq_restore(flags);
1913 return NET_RX_SUCCESS;
1916 napi_schedule(&queue->backlog);
1917 goto enqueue;
1920 __get_cpu_var(netdev_rx_stat).dropped++;
1921 local_irq_restore(flags);
1923 kfree_skb(skb);
1924 return NET_RX_DROP;
1927 int netif_rx_ni(struct sk_buff *skb)
1929 int err;
1931 preempt_disable();
1932 err = netif_rx(skb);
1933 if (local_softirq_pending())
1934 do_softirq();
1935 preempt_enable();
1937 return err;
1940 EXPORT_SYMBOL(netif_rx_ni);
1942 static void net_tx_action(struct softirq_action *h)
1944 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1946 if (sd->completion_queue) {
1947 struct sk_buff *clist;
1949 local_irq_disable();
1950 clist = sd->completion_queue;
1951 sd->completion_queue = NULL;
1952 local_irq_enable();
1954 while (clist) {
1955 struct sk_buff *skb = clist;
1956 clist = clist->next;
1958 WARN_ON(atomic_read(&skb->users));
1959 __kfree_skb(skb);
1963 if (sd->output_queue) {
1964 struct Qdisc *head;
1966 local_irq_disable();
1967 head = sd->output_queue;
1968 sd->output_queue = NULL;
1969 local_irq_enable();
1971 while (head) {
1972 struct Qdisc *q = head;
1973 spinlock_t *root_lock;
1975 head = head->next_sched;
1977 smp_mb__before_clear_bit();
1978 clear_bit(__QDISC_STATE_SCHED, &q->state);
1980 root_lock = qdisc_lock(q);
1981 if (spin_trylock(root_lock)) {
1982 qdisc_run(q);
1983 spin_unlock(root_lock);
1984 } else {
1985 __netif_schedule(q);
1991 static inline int deliver_skb(struct sk_buff *skb,
1992 struct packet_type *pt_prev,
1993 struct net_device *orig_dev)
1995 atomic_inc(&skb->users);
1996 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1999 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2000 /* These hooks defined here for ATM */
2001 struct net_bridge;
2002 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2003 unsigned char *addr);
2004 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2007 * If bridge module is loaded call bridging hook.
2008 * returns NULL if packet was consumed.
2010 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2011 struct sk_buff *skb) __read_mostly;
2012 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2013 struct packet_type **pt_prev, int *ret,
2014 struct net_device *orig_dev)
2016 struct net_bridge_port *port;
2018 if (skb->pkt_type == PACKET_LOOPBACK ||
2019 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2020 return skb;
2022 if (*pt_prev) {
2023 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2024 *pt_prev = NULL;
2027 return br_handle_frame_hook(port, skb);
2029 #else
2030 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2031 #endif
2033 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2034 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2035 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2037 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2038 struct packet_type **pt_prev,
2039 int *ret,
2040 struct net_device *orig_dev)
2042 if (skb->dev->macvlan_port == NULL)
2043 return skb;
2045 if (*pt_prev) {
2046 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2047 *pt_prev = NULL;
2049 return macvlan_handle_frame_hook(skb);
2051 #else
2052 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2053 #endif
2055 #ifdef CONFIG_NET_CLS_ACT
2056 /* TODO: Maybe we should just force sch_ingress to be compiled in
2057 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2058 * a compare and 2 stores extra right now if we dont have it on
2059 * but have CONFIG_NET_CLS_ACT
2060 * NOTE: This doesnt stop any functionality; if you dont have
2061 * the ingress scheduler, you just cant add policies on ingress.
2064 static int ing_filter(struct sk_buff *skb)
2066 struct net_device *dev = skb->dev;
2067 u32 ttl = G_TC_RTTL(skb->tc_verd);
2068 struct netdev_queue *rxq;
2069 int result = TC_ACT_OK;
2070 struct Qdisc *q;
2072 if (MAX_RED_LOOP < ttl++) {
2073 printk(KERN_WARNING
2074 "Redir loop detected Dropping packet (%d->%d)\n",
2075 skb->iif, dev->ifindex);
2076 return TC_ACT_SHOT;
2079 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2080 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2082 rxq = &dev->rx_queue;
2084 q = rxq->qdisc;
2085 if (q != &noop_qdisc) {
2086 spin_lock(qdisc_lock(q));
2087 result = qdisc_enqueue_root(skb, q);
2088 spin_unlock(qdisc_lock(q));
2091 return result;
2094 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2095 struct packet_type **pt_prev,
2096 int *ret, struct net_device *orig_dev)
2098 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2099 goto out;
2101 if (*pt_prev) {
2102 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2103 *pt_prev = NULL;
2104 } else {
2105 /* Huh? Why does turning on AF_PACKET affect this? */
2106 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2109 switch (ing_filter(skb)) {
2110 case TC_ACT_SHOT:
2111 case TC_ACT_STOLEN:
2112 kfree_skb(skb);
2113 return NULL;
2116 out:
2117 skb->tc_verd = 0;
2118 return skb;
2120 #endif
2123 * netif_nit_deliver - deliver received packets to network taps
2124 * @skb: buffer
2126 * This function is used to deliver incoming packets to network
2127 * taps. It should be used when the normal netif_receive_skb path
2128 * is bypassed, for example because of VLAN acceleration.
2130 void netif_nit_deliver(struct sk_buff *skb)
2132 struct packet_type *ptype;
2134 if (list_empty(&ptype_all))
2135 return;
2137 skb_reset_network_header(skb);
2138 skb_reset_transport_header(skb);
2139 skb->mac_len = skb->network_header - skb->mac_header;
2141 rcu_read_lock();
2142 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2143 if (!ptype->dev || ptype->dev == skb->dev)
2144 deliver_skb(skb, ptype, skb->dev);
2146 rcu_read_unlock();
2150 * netif_receive_skb - process receive buffer from network
2151 * @skb: buffer to process
2153 * netif_receive_skb() is the main receive data processing function.
2154 * It always succeeds. The buffer may be dropped during processing
2155 * for congestion control or by the protocol layers.
2157 * This function may only be called from softirq context and interrupts
2158 * should be enabled.
2160 * Return values (usually ignored):
2161 * NET_RX_SUCCESS: no congestion
2162 * NET_RX_DROP: packet was dropped
2164 int netif_receive_skb(struct sk_buff *skb)
2166 struct packet_type *ptype, *pt_prev;
2167 struct net_device *orig_dev;
2168 struct net_device *null_or_orig;
2169 int ret = NET_RX_DROP;
2170 __be16 type;
2172 /* if we've gotten here through NAPI, check netpoll */
2173 if (netpoll_receive_skb(skb))
2174 return NET_RX_DROP;
2176 if (!skb->tstamp.tv64)
2177 net_timestamp(skb);
2179 if (!skb->iif)
2180 skb->iif = skb->dev->ifindex;
2182 null_or_orig = NULL;
2183 orig_dev = skb->dev;
2184 if (orig_dev->master) {
2185 if (skb_bond_should_drop(skb))
2186 null_or_orig = orig_dev; /* deliver only exact match */
2187 else
2188 skb->dev = orig_dev->master;
2191 __get_cpu_var(netdev_rx_stat).total++;
2193 skb_reset_network_header(skb);
2194 skb_reset_transport_header(skb);
2195 skb->mac_len = skb->network_header - skb->mac_header;
2197 pt_prev = NULL;
2199 rcu_read_lock();
2201 /* Don't receive packets in an exiting network namespace */
2202 if (!net_alive(dev_net(skb->dev)))
2203 goto out;
2205 #ifdef CONFIG_NET_CLS_ACT
2206 if (skb->tc_verd & TC_NCLS) {
2207 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2208 goto ncls;
2210 #endif
2212 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2213 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2214 ptype->dev == orig_dev) {
2215 if (pt_prev)
2216 ret = deliver_skb(skb, pt_prev, orig_dev);
2217 pt_prev = ptype;
2221 #ifdef CONFIG_NET_CLS_ACT
2222 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2223 if (!skb)
2224 goto out;
2225 ncls:
2226 #endif
2228 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2229 if (!skb)
2230 goto out;
2231 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2232 if (!skb)
2233 goto out;
2235 type = skb->protocol;
2236 list_for_each_entry_rcu(ptype,
2237 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2238 if (ptype->type == type &&
2239 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2240 ptype->dev == orig_dev)) {
2241 if (pt_prev)
2242 ret = deliver_skb(skb, pt_prev, orig_dev);
2243 pt_prev = ptype;
2247 if (pt_prev) {
2248 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2249 } else {
2250 kfree_skb(skb);
2251 /* Jamal, now you will not able to escape explaining
2252 * me how you were going to use this. :-)
2254 ret = NET_RX_DROP;
2257 out:
2258 rcu_read_unlock();
2259 return ret;
2262 /* Network device is going away, flush any packets still pending */
2263 static void flush_backlog(void *arg)
2265 struct net_device *dev = arg;
2266 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2267 struct sk_buff *skb, *tmp;
2269 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2270 if (skb->dev == dev) {
2271 __skb_unlink(skb, &queue->input_pkt_queue);
2272 kfree_skb(skb);
2276 static int process_backlog(struct napi_struct *napi, int quota)
2278 int work = 0;
2279 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2280 unsigned long start_time = jiffies;
2282 napi->weight = weight_p;
2283 do {
2284 struct sk_buff *skb;
2286 local_irq_disable();
2287 skb = __skb_dequeue(&queue->input_pkt_queue);
2288 if (!skb) {
2289 __napi_complete(napi);
2290 local_irq_enable();
2291 break;
2293 local_irq_enable();
2295 netif_receive_skb(skb);
2296 } while (++work < quota && jiffies == start_time);
2298 return work;
2302 * __napi_schedule - schedule for receive
2303 * @n: entry to schedule
2305 * The entry's receive function will be scheduled to run
2307 void __napi_schedule(struct napi_struct *n)
2309 unsigned long flags;
2311 local_irq_save(flags);
2312 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2313 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2314 local_irq_restore(flags);
2316 EXPORT_SYMBOL(__napi_schedule);
2319 static void net_rx_action(struct softirq_action *h)
2321 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2322 unsigned long start_time = jiffies;
2323 int budget = netdev_budget;
2324 void *have;
2326 local_irq_disable();
2328 while (!list_empty(list)) {
2329 struct napi_struct *n;
2330 int work, weight;
2332 /* If softirq window is exhuasted then punt.
2334 * Note that this is a slight policy change from the
2335 * previous NAPI code, which would allow up to 2
2336 * jiffies to pass before breaking out. The test
2337 * used to be "jiffies - start_time > 1".
2339 if (unlikely(budget <= 0 || jiffies != start_time))
2340 goto softnet_break;
2342 local_irq_enable();
2344 /* Even though interrupts have been re-enabled, this
2345 * access is safe because interrupts can only add new
2346 * entries to the tail of this list, and only ->poll()
2347 * calls can remove this head entry from the list.
2349 n = list_entry(list->next, struct napi_struct, poll_list);
2351 have = netpoll_poll_lock(n);
2353 weight = n->weight;
2355 /* This NAPI_STATE_SCHED test is for avoiding a race
2356 * with netpoll's poll_napi(). Only the entity which
2357 * obtains the lock and sees NAPI_STATE_SCHED set will
2358 * actually make the ->poll() call. Therefore we avoid
2359 * accidently calling ->poll() when NAPI is not scheduled.
2361 work = 0;
2362 if (test_bit(NAPI_STATE_SCHED, &n->state))
2363 work = n->poll(n, weight);
2365 WARN_ON_ONCE(work > weight);
2367 budget -= work;
2369 local_irq_disable();
2371 /* Drivers must not modify the NAPI state if they
2372 * consume the entire weight. In such cases this code
2373 * still "owns" the NAPI instance and therefore can
2374 * move the instance around on the list at-will.
2376 if (unlikely(work == weight)) {
2377 if (unlikely(napi_disable_pending(n)))
2378 __napi_complete(n);
2379 else
2380 list_move_tail(&n->poll_list, list);
2383 netpoll_poll_unlock(have);
2385 out:
2386 local_irq_enable();
2388 #ifdef CONFIG_NET_DMA
2390 * There may not be any more sk_buffs coming right now, so push
2391 * any pending DMA copies to hardware
2393 if (!cpus_empty(net_dma.channel_mask)) {
2394 int chan_idx;
2395 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2396 struct dma_chan *chan = net_dma.channels[chan_idx];
2397 if (chan)
2398 dma_async_memcpy_issue_pending(chan);
2401 #endif
2403 return;
2405 softnet_break:
2406 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2407 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2408 goto out;
2411 static gifconf_func_t * gifconf_list [NPROTO];
2414 * register_gifconf - register a SIOCGIF handler
2415 * @family: Address family
2416 * @gifconf: Function handler
2418 * Register protocol dependent address dumping routines. The handler
2419 * that is passed must not be freed or reused until it has been replaced
2420 * by another handler.
2422 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2424 if (family >= NPROTO)
2425 return -EINVAL;
2426 gifconf_list[family] = gifconf;
2427 return 0;
2432 * Map an interface index to its name (SIOCGIFNAME)
2436 * We need this ioctl for efficient implementation of the
2437 * if_indextoname() function required by the IPv6 API. Without
2438 * it, we would have to search all the interfaces to find a
2439 * match. --pb
2442 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2444 struct net_device *dev;
2445 struct ifreq ifr;
2448 * Fetch the caller's info block.
2451 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2452 return -EFAULT;
2454 read_lock(&dev_base_lock);
2455 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2456 if (!dev) {
2457 read_unlock(&dev_base_lock);
2458 return -ENODEV;
2461 strcpy(ifr.ifr_name, dev->name);
2462 read_unlock(&dev_base_lock);
2464 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2465 return -EFAULT;
2466 return 0;
2470 * Perform a SIOCGIFCONF call. This structure will change
2471 * size eventually, and there is nothing I can do about it.
2472 * Thus we will need a 'compatibility mode'.
2475 static int dev_ifconf(struct net *net, char __user *arg)
2477 struct ifconf ifc;
2478 struct net_device *dev;
2479 char __user *pos;
2480 int len;
2481 int total;
2482 int i;
2485 * Fetch the caller's info block.
2488 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2489 return -EFAULT;
2491 pos = ifc.ifc_buf;
2492 len = ifc.ifc_len;
2495 * Loop over the interfaces, and write an info block for each.
2498 total = 0;
2499 for_each_netdev(net, dev) {
2500 for (i = 0; i < NPROTO; i++) {
2501 if (gifconf_list[i]) {
2502 int done;
2503 if (!pos)
2504 done = gifconf_list[i](dev, NULL, 0);
2505 else
2506 done = gifconf_list[i](dev, pos + total,
2507 len - total);
2508 if (done < 0)
2509 return -EFAULT;
2510 total += done;
2516 * All done. Write the updated control block back to the caller.
2518 ifc.ifc_len = total;
2521 * Both BSD and Solaris return 0 here, so we do too.
2523 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2526 #ifdef CONFIG_PROC_FS
2528 * This is invoked by the /proc filesystem handler to display a device
2529 * in detail.
2531 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2532 __acquires(dev_base_lock)
2534 struct net *net = seq_file_net(seq);
2535 loff_t off;
2536 struct net_device *dev;
2538 read_lock(&dev_base_lock);
2539 if (!*pos)
2540 return SEQ_START_TOKEN;
2542 off = 1;
2543 for_each_netdev(net, dev)
2544 if (off++ == *pos)
2545 return dev;
2547 return NULL;
2550 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2552 struct net *net = seq_file_net(seq);
2553 ++*pos;
2554 return v == SEQ_START_TOKEN ?
2555 first_net_device(net) : next_net_device((struct net_device *)v);
2558 void dev_seq_stop(struct seq_file *seq, void *v)
2559 __releases(dev_base_lock)
2561 read_unlock(&dev_base_lock);
2564 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2566 struct net_device_stats *stats = dev->get_stats(dev);
2568 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2569 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2570 dev->name, stats->rx_bytes, stats->rx_packets,
2571 stats->rx_errors,
2572 stats->rx_dropped + stats->rx_missed_errors,
2573 stats->rx_fifo_errors,
2574 stats->rx_length_errors + stats->rx_over_errors +
2575 stats->rx_crc_errors + stats->rx_frame_errors,
2576 stats->rx_compressed, stats->multicast,
2577 stats->tx_bytes, stats->tx_packets,
2578 stats->tx_errors, stats->tx_dropped,
2579 stats->tx_fifo_errors, stats->collisions,
2580 stats->tx_carrier_errors +
2581 stats->tx_aborted_errors +
2582 stats->tx_window_errors +
2583 stats->tx_heartbeat_errors,
2584 stats->tx_compressed);
2588 * Called from the PROCfs module. This now uses the new arbitrary sized
2589 * /proc/net interface to create /proc/net/dev
2591 static int dev_seq_show(struct seq_file *seq, void *v)
2593 if (v == SEQ_START_TOKEN)
2594 seq_puts(seq, "Inter-| Receive "
2595 " | Transmit\n"
2596 " face |bytes packets errs drop fifo frame "
2597 "compressed multicast|bytes packets errs "
2598 "drop fifo colls carrier compressed\n");
2599 else
2600 dev_seq_printf_stats(seq, v);
2601 return 0;
2604 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2606 struct netif_rx_stats *rc = NULL;
2608 while (*pos < nr_cpu_ids)
2609 if (cpu_online(*pos)) {
2610 rc = &per_cpu(netdev_rx_stat, *pos);
2611 break;
2612 } else
2613 ++*pos;
2614 return rc;
2617 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2619 return softnet_get_online(pos);
2622 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2624 ++*pos;
2625 return softnet_get_online(pos);
2628 static void softnet_seq_stop(struct seq_file *seq, void *v)
2632 static int softnet_seq_show(struct seq_file *seq, void *v)
2634 struct netif_rx_stats *s = v;
2636 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2637 s->total, s->dropped, s->time_squeeze, 0,
2638 0, 0, 0, 0, /* was fastroute */
2639 s->cpu_collision );
2640 return 0;
2643 static const struct seq_operations dev_seq_ops = {
2644 .start = dev_seq_start,
2645 .next = dev_seq_next,
2646 .stop = dev_seq_stop,
2647 .show = dev_seq_show,
2650 static int dev_seq_open(struct inode *inode, struct file *file)
2652 return seq_open_net(inode, file, &dev_seq_ops,
2653 sizeof(struct seq_net_private));
2656 static const struct file_operations dev_seq_fops = {
2657 .owner = THIS_MODULE,
2658 .open = dev_seq_open,
2659 .read = seq_read,
2660 .llseek = seq_lseek,
2661 .release = seq_release_net,
2664 static const struct seq_operations softnet_seq_ops = {
2665 .start = softnet_seq_start,
2666 .next = softnet_seq_next,
2667 .stop = softnet_seq_stop,
2668 .show = softnet_seq_show,
2671 static int softnet_seq_open(struct inode *inode, struct file *file)
2673 return seq_open(file, &softnet_seq_ops);
2676 static const struct file_operations softnet_seq_fops = {
2677 .owner = THIS_MODULE,
2678 .open = softnet_seq_open,
2679 .read = seq_read,
2680 .llseek = seq_lseek,
2681 .release = seq_release,
2684 static void *ptype_get_idx(loff_t pos)
2686 struct packet_type *pt = NULL;
2687 loff_t i = 0;
2688 int t;
2690 list_for_each_entry_rcu(pt, &ptype_all, list) {
2691 if (i == pos)
2692 return pt;
2693 ++i;
2696 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2697 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2698 if (i == pos)
2699 return pt;
2700 ++i;
2703 return NULL;
2706 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2707 __acquires(RCU)
2709 rcu_read_lock();
2710 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2713 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2715 struct packet_type *pt;
2716 struct list_head *nxt;
2717 int hash;
2719 ++*pos;
2720 if (v == SEQ_START_TOKEN)
2721 return ptype_get_idx(0);
2723 pt = v;
2724 nxt = pt->list.next;
2725 if (pt->type == htons(ETH_P_ALL)) {
2726 if (nxt != &ptype_all)
2727 goto found;
2728 hash = 0;
2729 nxt = ptype_base[0].next;
2730 } else
2731 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2733 while (nxt == &ptype_base[hash]) {
2734 if (++hash >= PTYPE_HASH_SIZE)
2735 return NULL;
2736 nxt = ptype_base[hash].next;
2738 found:
2739 return list_entry(nxt, struct packet_type, list);
2742 static void ptype_seq_stop(struct seq_file *seq, void *v)
2743 __releases(RCU)
2745 rcu_read_unlock();
2748 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2750 #ifdef CONFIG_KALLSYMS
2751 unsigned long offset = 0, symsize;
2752 const char *symname;
2753 char *modname;
2754 char namebuf[128];
2756 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2757 &modname, namebuf);
2759 if (symname) {
2760 char *delim = ":";
2762 if (!modname)
2763 modname = delim = "";
2764 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2765 symname, offset);
2766 return;
2768 #endif
2770 seq_printf(seq, "[%p]", sym);
2773 static int ptype_seq_show(struct seq_file *seq, void *v)
2775 struct packet_type *pt = v;
2777 if (v == SEQ_START_TOKEN)
2778 seq_puts(seq, "Type Device Function\n");
2779 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2780 if (pt->type == htons(ETH_P_ALL))
2781 seq_puts(seq, "ALL ");
2782 else
2783 seq_printf(seq, "%04x", ntohs(pt->type));
2785 seq_printf(seq, " %-8s ",
2786 pt->dev ? pt->dev->name : "");
2787 ptype_seq_decode(seq, pt->func);
2788 seq_putc(seq, '\n');
2791 return 0;
2794 static const struct seq_operations ptype_seq_ops = {
2795 .start = ptype_seq_start,
2796 .next = ptype_seq_next,
2797 .stop = ptype_seq_stop,
2798 .show = ptype_seq_show,
2801 static int ptype_seq_open(struct inode *inode, struct file *file)
2803 return seq_open_net(inode, file, &ptype_seq_ops,
2804 sizeof(struct seq_net_private));
2807 static const struct file_operations ptype_seq_fops = {
2808 .owner = THIS_MODULE,
2809 .open = ptype_seq_open,
2810 .read = seq_read,
2811 .llseek = seq_lseek,
2812 .release = seq_release_net,
2816 static int __net_init dev_proc_net_init(struct net *net)
2818 int rc = -ENOMEM;
2820 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2821 goto out;
2822 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2823 goto out_dev;
2824 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2825 goto out_softnet;
2827 if (wext_proc_init(net))
2828 goto out_ptype;
2829 rc = 0;
2830 out:
2831 return rc;
2832 out_ptype:
2833 proc_net_remove(net, "ptype");
2834 out_softnet:
2835 proc_net_remove(net, "softnet_stat");
2836 out_dev:
2837 proc_net_remove(net, "dev");
2838 goto out;
2841 static void __net_exit dev_proc_net_exit(struct net *net)
2843 wext_proc_exit(net);
2845 proc_net_remove(net, "ptype");
2846 proc_net_remove(net, "softnet_stat");
2847 proc_net_remove(net, "dev");
2850 static struct pernet_operations __net_initdata dev_proc_ops = {
2851 .init = dev_proc_net_init,
2852 .exit = dev_proc_net_exit,
2855 static int __init dev_proc_init(void)
2857 return register_pernet_subsys(&dev_proc_ops);
2859 #else
2860 #define dev_proc_init() 0
2861 #endif /* CONFIG_PROC_FS */
2865 * netdev_set_master - set up master/slave pair
2866 * @slave: slave device
2867 * @master: new master device
2869 * Changes the master device of the slave. Pass %NULL to break the
2870 * bonding. The caller must hold the RTNL semaphore. On a failure
2871 * a negative errno code is returned. On success the reference counts
2872 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2873 * function returns zero.
2875 int netdev_set_master(struct net_device *slave, struct net_device *master)
2877 struct net_device *old = slave->master;
2879 ASSERT_RTNL();
2881 if (master) {
2882 if (old)
2883 return -EBUSY;
2884 dev_hold(master);
2887 slave->master = master;
2889 synchronize_net();
2891 if (old)
2892 dev_put(old);
2894 if (master)
2895 slave->flags |= IFF_SLAVE;
2896 else
2897 slave->flags &= ~IFF_SLAVE;
2899 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2900 return 0;
2903 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2905 unsigned short old_flags = dev->flags;
2907 ASSERT_RTNL();
2909 dev->flags |= IFF_PROMISC;
2910 dev->promiscuity += inc;
2911 if (dev->promiscuity == 0) {
2913 * Avoid overflow.
2914 * If inc causes overflow, untouch promisc and return error.
2916 if (inc < 0)
2917 dev->flags &= ~IFF_PROMISC;
2918 else {
2919 dev->promiscuity -= inc;
2920 printk(KERN_WARNING "%s: promiscuity touches roof, "
2921 "set promiscuity failed, promiscuity feature "
2922 "of device might be broken.\n", dev->name);
2923 return -EOVERFLOW;
2926 if (dev->flags != old_flags) {
2927 printk(KERN_INFO "device %s %s promiscuous mode\n",
2928 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2929 "left");
2930 if (audit_enabled)
2931 audit_log(current->audit_context, GFP_ATOMIC,
2932 AUDIT_ANOM_PROMISCUOUS,
2933 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2934 dev->name, (dev->flags & IFF_PROMISC),
2935 (old_flags & IFF_PROMISC),
2936 audit_get_loginuid(current),
2937 current->uid, current->gid,
2938 audit_get_sessionid(current));
2940 if (dev->change_rx_flags)
2941 dev->change_rx_flags(dev, IFF_PROMISC);
2943 return 0;
2947 * dev_set_promiscuity - update promiscuity count on a device
2948 * @dev: device
2949 * @inc: modifier
2951 * Add or remove promiscuity from a device. While the count in the device
2952 * remains above zero the interface remains promiscuous. Once it hits zero
2953 * the device reverts back to normal filtering operation. A negative inc
2954 * value is used to drop promiscuity on the device.
2955 * Return 0 if successful or a negative errno code on error.
2957 int dev_set_promiscuity(struct net_device *dev, int inc)
2959 unsigned short old_flags = dev->flags;
2960 int err;
2962 err = __dev_set_promiscuity(dev, inc);
2963 if (err < 0)
2964 return err;
2965 if (dev->flags != old_flags)
2966 dev_set_rx_mode(dev);
2967 return err;
2971 * dev_set_allmulti - update allmulti count on a device
2972 * @dev: device
2973 * @inc: modifier
2975 * Add or remove reception of all multicast frames to a device. While the
2976 * count in the device remains above zero the interface remains listening
2977 * to all interfaces. Once it hits zero the device reverts back to normal
2978 * filtering operation. A negative @inc value is used to drop the counter
2979 * when releasing a resource needing all multicasts.
2980 * Return 0 if successful or a negative errno code on error.
2983 int dev_set_allmulti(struct net_device *dev, int inc)
2985 unsigned short old_flags = dev->flags;
2987 ASSERT_RTNL();
2989 dev->flags |= IFF_ALLMULTI;
2990 dev->allmulti += inc;
2991 if (dev->allmulti == 0) {
2993 * Avoid overflow.
2994 * If inc causes overflow, untouch allmulti and return error.
2996 if (inc < 0)
2997 dev->flags &= ~IFF_ALLMULTI;
2998 else {
2999 dev->allmulti -= inc;
3000 printk(KERN_WARNING "%s: allmulti touches roof, "
3001 "set allmulti failed, allmulti feature of "
3002 "device might be broken.\n", dev->name);
3003 return -EOVERFLOW;
3006 if (dev->flags ^ old_flags) {
3007 if (dev->change_rx_flags)
3008 dev->change_rx_flags(dev, IFF_ALLMULTI);
3009 dev_set_rx_mode(dev);
3011 return 0;
3015 * Upload unicast and multicast address lists to device and
3016 * configure RX filtering. When the device doesn't support unicast
3017 * filtering it is put in promiscuous mode while unicast addresses
3018 * are present.
3020 void __dev_set_rx_mode(struct net_device *dev)
3022 /* dev_open will call this function so the list will stay sane. */
3023 if (!(dev->flags&IFF_UP))
3024 return;
3026 if (!netif_device_present(dev))
3027 return;
3029 if (dev->set_rx_mode)
3030 dev->set_rx_mode(dev);
3031 else {
3032 /* Unicast addresses changes may only happen under the rtnl,
3033 * therefore calling __dev_set_promiscuity here is safe.
3035 if (dev->uc_count > 0 && !dev->uc_promisc) {
3036 __dev_set_promiscuity(dev, 1);
3037 dev->uc_promisc = 1;
3038 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3039 __dev_set_promiscuity(dev, -1);
3040 dev->uc_promisc = 0;
3043 if (dev->set_multicast_list)
3044 dev->set_multicast_list(dev);
3048 void dev_set_rx_mode(struct net_device *dev)
3050 netif_addr_lock_bh(dev);
3051 __dev_set_rx_mode(dev);
3052 netif_addr_unlock_bh(dev);
3055 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3056 void *addr, int alen, int glbl)
3058 struct dev_addr_list *da;
3060 for (; (da = *list) != NULL; list = &da->next) {
3061 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3062 alen == da->da_addrlen) {
3063 if (glbl) {
3064 int old_glbl = da->da_gusers;
3065 da->da_gusers = 0;
3066 if (old_glbl == 0)
3067 break;
3069 if (--da->da_users)
3070 return 0;
3072 *list = da->next;
3073 kfree(da);
3074 (*count)--;
3075 return 0;
3078 return -ENOENT;
3081 int __dev_addr_add(struct dev_addr_list **list, int *count,
3082 void *addr, int alen, int glbl)
3084 struct dev_addr_list *da;
3086 for (da = *list; da != NULL; da = da->next) {
3087 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3088 da->da_addrlen == alen) {
3089 if (glbl) {
3090 int old_glbl = da->da_gusers;
3091 da->da_gusers = 1;
3092 if (old_glbl)
3093 return 0;
3095 da->da_users++;
3096 return 0;
3100 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3101 if (da == NULL)
3102 return -ENOMEM;
3103 memcpy(da->da_addr, addr, alen);
3104 da->da_addrlen = alen;
3105 da->da_users = 1;
3106 da->da_gusers = glbl ? 1 : 0;
3107 da->next = *list;
3108 *list = da;
3109 (*count)++;
3110 return 0;
3114 * dev_unicast_delete - Release secondary unicast address.
3115 * @dev: device
3116 * @addr: address to delete
3117 * @alen: length of @addr
3119 * Release reference to a secondary unicast address and remove it
3120 * from the device if the reference count drops to zero.
3122 * The caller must hold the rtnl_mutex.
3124 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3126 int err;
3128 ASSERT_RTNL();
3130 netif_addr_lock_bh(dev);
3131 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3132 if (!err)
3133 __dev_set_rx_mode(dev);
3134 netif_addr_unlock_bh(dev);
3135 return err;
3137 EXPORT_SYMBOL(dev_unicast_delete);
3140 * dev_unicast_add - add a secondary unicast address
3141 * @dev: device
3142 * @addr: address to add
3143 * @alen: length of @addr
3145 * Add a secondary unicast address to the device or increase
3146 * the reference count if it already exists.
3148 * The caller must hold the rtnl_mutex.
3150 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3152 int err;
3154 ASSERT_RTNL();
3156 netif_addr_lock_bh(dev);
3157 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3158 if (!err)
3159 __dev_set_rx_mode(dev);
3160 netif_addr_unlock_bh(dev);
3161 return err;
3163 EXPORT_SYMBOL(dev_unicast_add);
3165 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3166 struct dev_addr_list **from, int *from_count)
3168 struct dev_addr_list *da, *next;
3169 int err = 0;
3171 da = *from;
3172 while (da != NULL) {
3173 next = da->next;
3174 if (!da->da_synced) {
3175 err = __dev_addr_add(to, to_count,
3176 da->da_addr, da->da_addrlen, 0);
3177 if (err < 0)
3178 break;
3179 da->da_synced = 1;
3180 da->da_users++;
3181 } else if (da->da_users == 1) {
3182 __dev_addr_delete(to, to_count,
3183 da->da_addr, da->da_addrlen, 0);
3184 __dev_addr_delete(from, from_count,
3185 da->da_addr, da->da_addrlen, 0);
3187 da = next;
3189 return err;
3192 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3193 struct dev_addr_list **from, int *from_count)
3195 struct dev_addr_list *da, *next;
3197 da = *from;
3198 while (da != NULL) {
3199 next = da->next;
3200 if (da->da_synced) {
3201 __dev_addr_delete(to, to_count,
3202 da->da_addr, da->da_addrlen, 0);
3203 da->da_synced = 0;
3204 __dev_addr_delete(from, from_count,
3205 da->da_addr, da->da_addrlen, 0);
3207 da = next;
3212 * dev_unicast_sync - Synchronize device's unicast list to another device
3213 * @to: destination device
3214 * @from: source device
3216 * Add newly added addresses to the destination device and release
3217 * addresses that have no users left. The source device must be
3218 * locked by netif_tx_lock_bh.
3220 * This function is intended to be called from the dev->set_rx_mode
3221 * function of layered software devices.
3223 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3225 int err = 0;
3227 netif_addr_lock_bh(to);
3228 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3229 &from->uc_list, &from->uc_count);
3230 if (!err)
3231 __dev_set_rx_mode(to);
3232 netif_addr_unlock_bh(to);
3233 return err;
3235 EXPORT_SYMBOL(dev_unicast_sync);
3238 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3239 * @to: destination device
3240 * @from: source device
3242 * Remove all addresses that were added to the destination device by
3243 * dev_unicast_sync(). This function is intended to be called from the
3244 * dev->stop function of layered software devices.
3246 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3248 netif_addr_lock_bh(from);
3249 netif_addr_lock(to);
3251 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3252 &from->uc_list, &from->uc_count);
3253 __dev_set_rx_mode(to);
3255 netif_addr_unlock(to);
3256 netif_addr_unlock_bh(from);
3258 EXPORT_SYMBOL(dev_unicast_unsync);
3260 static void __dev_addr_discard(struct dev_addr_list **list)
3262 struct dev_addr_list *tmp;
3264 while (*list != NULL) {
3265 tmp = *list;
3266 *list = tmp->next;
3267 if (tmp->da_users > tmp->da_gusers)
3268 printk("__dev_addr_discard: address leakage! "
3269 "da_users=%d\n", tmp->da_users);
3270 kfree(tmp);
3274 static void dev_addr_discard(struct net_device *dev)
3276 netif_addr_lock_bh(dev);
3278 __dev_addr_discard(&dev->uc_list);
3279 dev->uc_count = 0;
3281 __dev_addr_discard(&dev->mc_list);
3282 dev->mc_count = 0;
3284 netif_addr_unlock_bh(dev);
3287 unsigned dev_get_flags(const struct net_device *dev)
3289 unsigned flags;
3291 flags = (dev->flags & ~(IFF_PROMISC |
3292 IFF_ALLMULTI |
3293 IFF_RUNNING |
3294 IFF_LOWER_UP |
3295 IFF_DORMANT)) |
3296 (dev->gflags & (IFF_PROMISC |
3297 IFF_ALLMULTI));
3299 if (netif_running(dev)) {
3300 if (netif_oper_up(dev))
3301 flags |= IFF_RUNNING;
3302 if (netif_carrier_ok(dev))
3303 flags |= IFF_LOWER_UP;
3304 if (netif_dormant(dev))
3305 flags |= IFF_DORMANT;
3308 return flags;
3311 int dev_change_flags(struct net_device *dev, unsigned flags)
3313 int ret, changes;
3314 int old_flags = dev->flags;
3316 ASSERT_RTNL();
3319 * Set the flags on our device.
3322 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3323 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3324 IFF_AUTOMEDIA)) |
3325 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3326 IFF_ALLMULTI));
3329 * Load in the correct multicast list now the flags have changed.
3332 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3333 dev->change_rx_flags(dev, IFF_MULTICAST);
3335 dev_set_rx_mode(dev);
3338 * Have we downed the interface. We handle IFF_UP ourselves
3339 * according to user attempts to set it, rather than blindly
3340 * setting it.
3343 ret = 0;
3344 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3345 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3347 if (!ret)
3348 dev_set_rx_mode(dev);
3351 if (dev->flags & IFF_UP &&
3352 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3353 IFF_VOLATILE)))
3354 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3356 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3357 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3358 dev->gflags ^= IFF_PROMISC;
3359 dev_set_promiscuity(dev, inc);
3362 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3363 is important. Some (broken) drivers set IFF_PROMISC, when
3364 IFF_ALLMULTI is requested not asking us and not reporting.
3366 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3367 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3368 dev->gflags ^= IFF_ALLMULTI;
3369 dev_set_allmulti(dev, inc);
3372 /* Exclude state transition flags, already notified */
3373 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3374 if (changes)
3375 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3377 return ret;
3380 int dev_set_mtu(struct net_device *dev, int new_mtu)
3382 int err;
3384 if (new_mtu == dev->mtu)
3385 return 0;
3387 /* MTU must be positive. */
3388 if (new_mtu < 0)
3389 return -EINVAL;
3391 if (!netif_device_present(dev))
3392 return -ENODEV;
3394 err = 0;
3395 if (dev->change_mtu)
3396 err = dev->change_mtu(dev, new_mtu);
3397 else
3398 dev->mtu = new_mtu;
3399 if (!err && dev->flags & IFF_UP)
3400 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3401 return err;
3404 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3406 int err;
3408 if (!dev->set_mac_address)
3409 return -EOPNOTSUPP;
3410 if (sa->sa_family != dev->type)
3411 return -EINVAL;
3412 if (!netif_device_present(dev))
3413 return -ENODEV;
3414 err = dev->set_mac_address(dev, sa);
3415 if (!err)
3416 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3417 return err;
3421 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3423 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3425 int err;
3426 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3428 if (!dev)
3429 return -ENODEV;
3431 switch (cmd) {
3432 case SIOCGIFFLAGS: /* Get interface flags */
3433 ifr->ifr_flags = dev_get_flags(dev);
3434 return 0;
3436 case SIOCGIFMETRIC: /* Get the metric on the interface
3437 (currently unused) */
3438 ifr->ifr_metric = 0;
3439 return 0;
3441 case SIOCGIFMTU: /* Get the MTU of a device */
3442 ifr->ifr_mtu = dev->mtu;
3443 return 0;
3445 case SIOCGIFHWADDR:
3446 if (!dev->addr_len)
3447 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3448 else
3449 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3450 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3451 ifr->ifr_hwaddr.sa_family = dev->type;
3452 return 0;
3454 case SIOCGIFSLAVE:
3455 err = -EINVAL;
3456 break;
3458 case SIOCGIFMAP:
3459 ifr->ifr_map.mem_start = dev->mem_start;
3460 ifr->ifr_map.mem_end = dev->mem_end;
3461 ifr->ifr_map.base_addr = dev->base_addr;
3462 ifr->ifr_map.irq = dev->irq;
3463 ifr->ifr_map.dma = dev->dma;
3464 ifr->ifr_map.port = dev->if_port;
3465 return 0;
3467 case SIOCGIFINDEX:
3468 ifr->ifr_ifindex = dev->ifindex;
3469 return 0;
3471 case SIOCGIFTXQLEN:
3472 ifr->ifr_qlen = dev->tx_queue_len;
3473 return 0;
3475 default:
3476 /* dev_ioctl() should ensure this case
3477 * is never reached
3479 WARN_ON(1);
3480 err = -EINVAL;
3481 break;
3484 return err;
3488 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3490 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3492 int err;
3493 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3495 if (!dev)
3496 return -ENODEV;
3498 switch (cmd) {
3499 case SIOCSIFFLAGS: /* Set interface flags */
3500 return dev_change_flags(dev, ifr->ifr_flags);
3502 case SIOCSIFMETRIC: /* Set the metric on the interface
3503 (currently unused) */
3504 return -EOPNOTSUPP;
3506 case SIOCSIFMTU: /* Set the MTU of a device */
3507 return dev_set_mtu(dev, ifr->ifr_mtu);
3509 case SIOCSIFHWADDR:
3510 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3512 case SIOCSIFHWBROADCAST:
3513 if (ifr->ifr_hwaddr.sa_family != dev->type)
3514 return -EINVAL;
3515 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3516 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3517 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3518 return 0;
3520 case SIOCSIFMAP:
3521 if (dev->set_config) {
3522 if (!netif_device_present(dev))
3523 return -ENODEV;
3524 return dev->set_config(dev, &ifr->ifr_map);
3526 return -EOPNOTSUPP;
3528 case SIOCADDMULTI:
3529 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3530 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3531 return -EINVAL;
3532 if (!netif_device_present(dev))
3533 return -ENODEV;
3534 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3535 dev->addr_len, 1);
3537 case SIOCDELMULTI:
3538 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3539 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3540 return -EINVAL;
3541 if (!netif_device_present(dev))
3542 return -ENODEV;
3543 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3544 dev->addr_len, 1);
3546 case SIOCSIFTXQLEN:
3547 if (ifr->ifr_qlen < 0)
3548 return -EINVAL;
3549 dev->tx_queue_len = ifr->ifr_qlen;
3550 return 0;
3552 case SIOCSIFNAME:
3553 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3554 return dev_change_name(dev, ifr->ifr_newname);
3557 * Unknown or private ioctl
3560 default:
3561 if ((cmd >= SIOCDEVPRIVATE &&
3562 cmd <= SIOCDEVPRIVATE + 15) ||
3563 cmd == SIOCBONDENSLAVE ||
3564 cmd == SIOCBONDRELEASE ||
3565 cmd == SIOCBONDSETHWADDR ||
3566 cmd == SIOCBONDSLAVEINFOQUERY ||
3567 cmd == SIOCBONDINFOQUERY ||
3568 cmd == SIOCBONDCHANGEACTIVE ||
3569 cmd == SIOCGMIIPHY ||
3570 cmd == SIOCGMIIREG ||
3571 cmd == SIOCSMIIREG ||
3572 cmd == SIOCBRADDIF ||
3573 cmd == SIOCBRDELIF ||
3574 cmd == SIOCWANDEV) {
3575 err = -EOPNOTSUPP;
3576 if (dev->do_ioctl) {
3577 if (netif_device_present(dev))
3578 err = dev->do_ioctl(dev, ifr,
3579 cmd);
3580 else
3581 err = -ENODEV;
3583 } else
3584 err = -EINVAL;
3587 return err;
3591 * This function handles all "interface"-type I/O control requests. The actual
3592 * 'doing' part of this is dev_ifsioc above.
3596 * dev_ioctl - network device ioctl
3597 * @net: the applicable net namespace
3598 * @cmd: command to issue
3599 * @arg: pointer to a struct ifreq in user space
3601 * Issue ioctl functions to devices. This is normally called by the
3602 * user space syscall interfaces but can sometimes be useful for
3603 * other purposes. The return value is the return from the syscall if
3604 * positive or a negative errno code on error.
3607 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3609 struct ifreq ifr;
3610 int ret;
3611 char *colon;
3613 /* One special case: SIOCGIFCONF takes ifconf argument
3614 and requires shared lock, because it sleeps writing
3615 to user space.
3618 if (cmd == SIOCGIFCONF) {
3619 rtnl_lock();
3620 ret = dev_ifconf(net, (char __user *) arg);
3621 rtnl_unlock();
3622 return ret;
3624 if (cmd == SIOCGIFNAME)
3625 return dev_ifname(net, (struct ifreq __user *)arg);
3627 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3628 return -EFAULT;
3630 ifr.ifr_name[IFNAMSIZ-1] = 0;
3632 colon = strchr(ifr.ifr_name, ':');
3633 if (colon)
3634 *colon = 0;
3637 * See which interface the caller is talking about.
3640 switch (cmd) {
3642 * These ioctl calls:
3643 * - can be done by all.
3644 * - atomic and do not require locking.
3645 * - return a value
3647 case SIOCGIFFLAGS:
3648 case SIOCGIFMETRIC:
3649 case SIOCGIFMTU:
3650 case SIOCGIFHWADDR:
3651 case SIOCGIFSLAVE:
3652 case SIOCGIFMAP:
3653 case SIOCGIFINDEX:
3654 case SIOCGIFTXQLEN:
3655 dev_load(net, ifr.ifr_name);
3656 read_lock(&dev_base_lock);
3657 ret = dev_ifsioc_locked(net, &ifr, cmd);
3658 read_unlock(&dev_base_lock);
3659 if (!ret) {
3660 if (colon)
3661 *colon = ':';
3662 if (copy_to_user(arg, &ifr,
3663 sizeof(struct ifreq)))
3664 ret = -EFAULT;
3666 return ret;
3668 case SIOCETHTOOL:
3669 dev_load(net, ifr.ifr_name);
3670 rtnl_lock();
3671 ret = dev_ethtool(net, &ifr);
3672 rtnl_unlock();
3673 if (!ret) {
3674 if (colon)
3675 *colon = ':';
3676 if (copy_to_user(arg, &ifr,
3677 sizeof(struct ifreq)))
3678 ret = -EFAULT;
3680 return ret;
3683 * These ioctl calls:
3684 * - require superuser power.
3685 * - require strict serialization.
3686 * - return a value
3688 case SIOCGMIIPHY:
3689 case SIOCGMIIREG:
3690 case SIOCSIFNAME:
3691 if (!capable(CAP_NET_ADMIN))
3692 return -EPERM;
3693 dev_load(net, ifr.ifr_name);
3694 rtnl_lock();
3695 ret = dev_ifsioc(net, &ifr, cmd);
3696 rtnl_unlock();
3697 if (!ret) {
3698 if (colon)
3699 *colon = ':';
3700 if (copy_to_user(arg, &ifr,
3701 sizeof(struct ifreq)))
3702 ret = -EFAULT;
3704 return ret;
3707 * These ioctl calls:
3708 * - require superuser power.
3709 * - require strict serialization.
3710 * - do not return a value
3712 case SIOCSIFFLAGS:
3713 case SIOCSIFMETRIC:
3714 case SIOCSIFMTU:
3715 case SIOCSIFMAP:
3716 case SIOCSIFHWADDR:
3717 case SIOCSIFSLAVE:
3718 case SIOCADDMULTI:
3719 case SIOCDELMULTI:
3720 case SIOCSIFHWBROADCAST:
3721 case SIOCSIFTXQLEN:
3722 case SIOCSMIIREG:
3723 case SIOCBONDENSLAVE:
3724 case SIOCBONDRELEASE:
3725 case SIOCBONDSETHWADDR:
3726 case SIOCBONDCHANGEACTIVE:
3727 case SIOCBRADDIF:
3728 case SIOCBRDELIF:
3729 if (!capable(CAP_NET_ADMIN))
3730 return -EPERM;
3731 /* fall through */
3732 case SIOCBONDSLAVEINFOQUERY:
3733 case SIOCBONDINFOQUERY:
3734 dev_load(net, ifr.ifr_name);
3735 rtnl_lock();
3736 ret = dev_ifsioc(net, &ifr, cmd);
3737 rtnl_unlock();
3738 return ret;
3740 case SIOCGIFMEM:
3741 /* Get the per device memory space. We can add this but
3742 * currently do not support it */
3743 case SIOCSIFMEM:
3744 /* Set the per device memory buffer space.
3745 * Not applicable in our case */
3746 case SIOCSIFLINK:
3747 return -EINVAL;
3750 * Unknown or private ioctl.
3752 default:
3753 if (cmd == SIOCWANDEV ||
3754 (cmd >= SIOCDEVPRIVATE &&
3755 cmd <= SIOCDEVPRIVATE + 15)) {
3756 dev_load(net, ifr.ifr_name);
3757 rtnl_lock();
3758 ret = dev_ifsioc(net, &ifr, cmd);
3759 rtnl_unlock();
3760 if (!ret && copy_to_user(arg, &ifr,
3761 sizeof(struct ifreq)))
3762 ret = -EFAULT;
3763 return ret;
3765 /* Take care of Wireless Extensions */
3766 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3767 return wext_handle_ioctl(net, &ifr, cmd, arg);
3768 return -EINVAL;
3774 * dev_new_index - allocate an ifindex
3775 * @net: the applicable net namespace
3777 * Returns a suitable unique value for a new device interface
3778 * number. The caller must hold the rtnl semaphore or the
3779 * dev_base_lock to be sure it remains unique.
3781 static int dev_new_index(struct net *net)
3783 static int ifindex;
3784 for (;;) {
3785 if (++ifindex <= 0)
3786 ifindex = 1;
3787 if (!__dev_get_by_index(net, ifindex))
3788 return ifindex;
3792 /* Delayed registration/unregisteration */
3793 static DEFINE_SPINLOCK(net_todo_list_lock);
3794 static LIST_HEAD(net_todo_list);
3796 static void net_set_todo(struct net_device *dev)
3798 spin_lock(&net_todo_list_lock);
3799 list_add_tail(&dev->todo_list, &net_todo_list);
3800 spin_unlock(&net_todo_list_lock);
3803 static void rollback_registered(struct net_device *dev)
3805 BUG_ON(dev_boot_phase);
3806 ASSERT_RTNL();
3808 /* Some devices call without registering for initialization unwind. */
3809 if (dev->reg_state == NETREG_UNINITIALIZED) {
3810 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3811 "was registered\n", dev->name, dev);
3813 WARN_ON(1);
3814 return;
3817 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3819 /* If device is running, close it first. */
3820 dev_close(dev);
3822 /* And unlink it from device chain. */
3823 unlist_netdevice(dev);
3825 dev->reg_state = NETREG_UNREGISTERING;
3827 synchronize_net();
3829 /* Shutdown queueing discipline. */
3830 dev_shutdown(dev);
3833 /* Notify protocols, that we are about to destroy
3834 this device. They should clean all the things.
3836 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3839 * Flush the unicast and multicast chains
3841 dev_addr_discard(dev);
3843 if (dev->uninit)
3844 dev->uninit(dev);
3846 /* Notifier chain MUST detach us from master device. */
3847 WARN_ON(dev->master);
3849 /* Remove entries from kobject tree */
3850 netdev_unregister_kobject(dev);
3852 synchronize_net();
3854 dev_put(dev);
3857 static void __netdev_init_queue_locks_one(struct net_device *dev,
3858 struct netdev_queue *dev_queue,
3859 void *_unused)
3861 spin_lock_init(&dev_queue->_xmit_lock);
3862 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3863 dev_queue->xmit_lock_owner = -1;
3866 static void netdev_init_queue_locks(struct net_device *dev)
3868 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3869 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3873 * register_netdevice - register a network device
3874 * @dev: device to register
3876 * Take a completed network device structure and add it to the kernel
3877 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3878 * chain. 0 is returned on success. A negative errno code is returned
3879 * on a failure to set up the device, or if the name is a duplicate.
3881 * Callers must hold the rtnl semaphore. You may want
3882 * register_netdev() instead of this.
3884 * BUGS:
3885 * The locking appears insufficient to guarantee two parallel registers
3886 * will not get the same name.
3889 int register_netdevice(struct net_device *dev)
3891 struct hlist_head *head;
3892 struct hlist_node *p;
3893 int ret;
3894 struct net *net;
3896 BUG_ON(dev_boot_phase);
3897 ASSERT_RTNL();
3899 might_sleep();
3901 /* When net_device's are persistent, this will be fatal. */
3902 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3903 BUG_ON(!dev_net(dev));
3904 net = dev_net(dev);
3906 spin_lock_init(&dev->addr_list_lock);
3907 netdev_set_addr_lockdep_class(dev);
3908 netdev_init_queue_locks(dev);
3910 dev->iflink = -1;
3912 /* Init, if this function is available */
3913 if (dev->init) {
3914 ret = dev->init(dev);
3915 if (ret) {
3916 if (ret > 0)
3917 ret = -EIO;
3918 goto out;
3922 if (!dev_valid_name(dev->name)) {
3923 ret = -EINVAL;
3924 goto err_uninit;
3927 dev->ifindex = dev_new_index(net);
3928 if (dev->iflink == -1)
3929 dev->iflink = dev->ifindex;
3931 /* Check for existence of name */
3932 head = dev_name_hash(net, dev->name);
3933 hlist_for_each(p, head) {
3934 struct net_device *d
3935 = hlist_entry(p, struct net_device, name_hlist);
3936 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3937 ret = -EEXIST;
3938 goto err_uninit;
3942 /* Fix illegal checksum combinations */
3943 if ((dev->features & NETIF_F_HW_CSUM) &&
3944 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3945 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3946 dev->name);
3947 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3950 if ((dev->features & NETIF_F_NO_CSUM) &&
3951 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3952 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3953 dev->name);
3954 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3958 /* Fix illegal SG+CSUM combinations. */
3959 if ((dev->features & NETIF_F_SG) &&
3960 !(dev->features & NETIF_F_ALL_CSUM)) {
3961 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3962 dev->name);
3963 dev->features &= ~NETIF_F_SG;
3966 /* TSO requires that SG is present as well. */
3967 if ((dev->features & NETIF_F_TSO) &&
3968 !(dev->features & NETIF_F_SG)) {
3969 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3970 dev->name);
3971 dev->features &= ~NETIF_F_TSO;
3973 if (dev->features & NETIF_F_UFO) {
3974 if (!(dev->features & NETIF_F_HW_CSUM)) {
3975 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3976 "NETIF_F_HW_CSUM feature.\n",
3977 dev->name);
3978 dev->features &= ~NETIF_F_UFO;
3980 if (!(dev->features & NETIF_F_SG)) {
3981 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3982 "NETIF_F_SG feature.\n",
3983 dev->name);
3984 dev->features &= ~NETIF_F_UFO;
3988 /* Enable software GSO if SG is supported. */
3989 if (dev->features & NETIF_F_SG)
3990 dev->features |= NETIF_F_GSO;
3992 netdev_initialize_kobject(dev);
3993 ret = netdev_register_kobject(dev);
3994 if (ret)
3995 goto err_uninit;
3996 dev->reg_state = NETREG_REGISTERED;
3999 * Default initial state at registry is that the
4000 * device is present.
4003 set_bit(__LINK_STATE_PRESENT, &dev->state);
4005 dev_init_scheduler(dev);
4006 dev_hold(dev);
4007 list_netdevice(dev);
4009 /* Notify protocols, that a new device appeared. */
4010 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4011 ret = notifier_to_errno(ret);
4012 if (ret) {
4013 rollback_registered(dev);
4014 dev->reg_state = NETREG_UNREGISTERED;
4017 out:
4018 return ret;
4020 err_uninit:
4021 if (dev->uninit)
4022 dev->uninit(dev);
4023 goto out;
4027 * register_netdev - register a network device
4028 * @dev: device to register
4030 * Take a completed network device structure and add it to the kernel
4031 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4032 * chain. 0 is returned on success. A negative errno code is returned
4033 * on a failure to set up the device, or if the name is a duplicate.
4035 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4036 * and expands the device name if you passed a format string to
4037 * alloc_netdev.
4039 int register_netdev(struct net_device *dev)
4041 int err;
4043 rtnl_lock();
4046 * If the name is a format string the caller wants us to do a
4047 * name allocation.
4049 if (strchr(dev->name, '%')) {
4050 err = dev_alloc_name(dev, dev->name);
4051 if (err < 0)
4052 goto out;
4055 err = register_netdevice(dev);
4056 out:
4057 rtnl_unlock();
4058 return err;
4060 EXPORT_SYMBOL(register_netdev);
4063 * netdev_wait_allrefs - wait until all references are gone.
4065 * This is called when unregistering network devices.
4067 * Any protocol or device that holds a reference should register
4068 * for netdevice notification, and cleanup and put back the
4069 * reference if they receive an UNREGISTER event.
4070 * We can get stuck here if buggy protocols don't correctly
4071 * call dev_put.
4073 static void netdev_wait_allrefs(struct net_device *dev)
4075 unsigned long rebroadcast_time, warning_time;
4077 rebroadcast_time = warning_time = jiffies;
4078 while (atomic_read(&dev->refcnt) != 0) {
4079 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4080 rtnl_lock();
4082 /* Rebroadcast unregister notification */
4083 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4085 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4086 &dev->state)) {
4087 /* We must not have linkwatch events
4088 * pending on unregister. If this
4089 * happens, we simply run the queue
4090 * unscheduled, resulting in a noop
4091 * for this device.
4093 linkwatch_run_queue();
4096 __rtnl_unlock();
4098 rebroadcast_time = jiffies;
4101 msleep(250);
4103 if (time_after(jiffies, warning_time + 10 * HZ)) {
4104 printk(KERN_EMERG "unregister_netdevice: "
4105 "waiting for %s to become free. Usage "
4106 "count = %d\n",
4107 dev->name, atomic_read(&dev->refcnt));
4108 warning_time = jiffies;
4113 /* The sequence is:
4115 * rtnl_lock();
4116 * ...
4117 * register_netdevice(x1);
4118 * register_netdevice(x2);
4119 * ...
4120 * unregister_netdevice(y1);
4121 * unregister_netdevice(y2);
4122 * ...
4123 * rtnl_unlock();
4124 * free_netdev(y1);
4125 * free_netdev(y2);
4127 * We are invoked by rtnl_unlock() after it drops the semaphore.
4128 * This allows us to deal with problems:
4129 * 1) We can delete sysfs objects which invoke hotplug
4130 * without deadlocking with linkwatch via keventd.
4131 * 2) Since we run with the RTNL semaphore not held, we can sleep
4132 * safely in order to wait for the netdev refcnt to drop to zero.
4134 static DEFINE_MUTEX(net_todo_run_mutex);
4135 void netdev_run_todo(void)
4137 struct list_head list;
4139 /* Need to guard against multiple cpu's getting out of order. */
4140 mutex_lock(&net_todo_run_mutex);
4142 /* Not safe to do outside the semaphore. We must not return
4143 * until all unregister events invoked by the local processor
4144 * have been completed (either by this todo run, or one on
4145 * another cpu).
4147 if (list_empty(&net_todo_list))
4148 goto out;
4150 /* Snapshot list, allow later requests */
4151 spin_lock(&net_todo_list_lock);
4152 list_replace_init(&net_todo_list, &list);
4153 spin_unlock(&net_todo_list_lock);
4155 while (!list_empty(&list)) {
4156 struct net_device *dev
4157 = list_entry(list.next, struct net_device, todo_list);
4158 list_del(&dev->todo_list);
4160 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4161 printk(KERN_ERR "network todo '%s' but state %d\n",
4162 dev->name, dev->reg_state);
4163 dump_stack();
4164 continue;
4167 dev->reg_state = NETREG_UNREGISTERED;
4169 on_each_cpu(flush_backlog, dev, 1);
4171 netdev_wait_allrefs(dev);
4173 /* paranoia */
4174 BUG_ON(atomic_read(&dev->refcnt));
4175 WARN_ON(dev->ip_ptr);
4176 WARN_ON(dev->ip6_ptr);
4177 WARN_ON(dev->dn_ptr);
4179 if (dev->destructor)
4180 dev->destructor(dev);
4182 /* Free network device */
4183 kobject_put(&dev->dev.kobj);
4186 out:
4187 mutex_unlock(&net_todo_run_mutex);
4190 static struct net_device_stats *internal_stats(struct net_device *dev)
4192 return &dev->stats;
4195 static void netdev_init_one_queue(struct net_device *dev,
4196 struct netdev_queue *queue,
4197 void *_unused)
4199 queue->dev = dev;
4202 static void netdev_init_queues(struct net_device *dev)
4204 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4205 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4206 spin_lock_init(&dev->tx_global_lock);
4210 * alloc_netdev_mq - allocate network device
4211 * @sizeof_priv: size of private data to allocate space for
4212 * @name: device name format string
4213 * @setup: callback to initialize device
4214 * @queue_count: the number of subqueues to allocate
4216 * Allocates a struct net_device with private data area for driver use
4217 * and performs basic initialization. Also allocates subquue structs
4218 * for each queue on the device at the end of the netdevice.
4220 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4221 void (*setup)(struct net_device *), unsigned int queue_count)
4223 struct netdev_queue *tx;
4224 struct net_device *dev;
4225 size_t alloc_size;
4226 void *p;
4228 BUG_ON(strlen(name) >= sizeof(dev->name));
4230 alloc_size = sizeof(struct net_device);
4231 if (sizeof_priv) {
4232 /* ensure 32-byte alignment of private area */
4233 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4234 alloc_size += sizeof_priv;
4236 /* ensure 32-byte alignment of whole construct */
4237 alloc_size += NETDEV_ALIGN_CONST;
4239 p = kzalloc(alloc_size, GFP_KERNEL);
4240 if (!p) {
4241 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4242 return NULL;
4245 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4246 if (!tx) {
4247 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4248 "tx qdiscs.\n");
4249 kfree(p);
4250 return NULL;
4253 dev = (struct net_device *)
4254 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4255 dev->padded = (char *)dev - (char *)p;
4256 dev_net_set(dev, &init_net);
4258 dev->_tx = tx;
4259 dev->num_tx_queues = queue_count;
4260 dev->real_num_tx_queues = queue_count;
4262 if (sizeof_priv) {
4263 dev->priv = ((char *)dev +
4264 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4265 & ~NETDEV_ALIGN_CONST));
4268 dev->gso_max_size = GSO_MAX_SIZE;
4270 netdev_init_queues(dev);
4272 dev->get_stats = internal_stats;
4273 netpoll_netdev_init(dev);
4274 setup(dev);
4275 strcpy(dev->name, name);
4276 return dev;
4278 EXPORT_SYMBOL(alloc_netdev_mq);
4281 * free_netdev - free network device
4282 * @dev: device
4284 * This function does the last stage of destroying an allocated device
4285 * interface. The reference to the device object is released.
4286 * If this is the last reference then it will be freed.
4288 void free_netdev(struct net_device *dev)
4290 release_net(dev_net(dev));
4292 kfree(dev->_tx);
4294 /* Compatibility with error handling in drivers */
4295 if (dev->reg_state == NETREG_UNINITIALIZED) {
4296 kfree((char *)dev - dev->padded);
4297 return;
4300 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4301 dev->reg_state = NETREG_RELEASED;
4303 /* will free via device release */
4304 put_device(&dev->dev);
4307 /* Synchronize with packet receive processing. */
4308 void synchronize_net(void)
4310 might_sleep();
4311 synchronize_rcu();
4315 * unregister_netdevice - remove device from the kernel
4316 * @dev: device
4318 * This function shuts down a device interface and removes it
4319 * from the kernel tables.
4321 * Callers must hold the rtnl semaphore. You may want
4322 * unregister_netdev() instead of this.
4325 void unregister_netdevice(struct net_device *dev)
4327 ASSERT_RTNL();
4329 rollback_registered(dev);
4330 /* Finish processing unregister after unlock */
4331 net_set_todo(dev);
4335 * unregister_netdev - remove device from the kernel
4336 * @dev: device
4338 * This function shuts down a device interface and removes it
4339 * from the kernel tables.
4341 * This is just a wrapper for unregister_netdevice that takes
4342 * the rtnl semaphore. In general you want to use this and not
4343 * unregister_netdevice.
4345 void unregister_netdev(struct net_device *dev)
4347 rtnl_lock();
4348 unregister_netdevice(dev);
4349 rtnl_unlock();
4352 EXPORT_SYMBOL(unregister_netdev);
4355 * dev_change_net_namespace - move device to different nethost namespace
4356 * @dev: device
4357 * @net: network namespace
4358 * @pat: If not NULL name pattern to try if the current device name
4359 * is already taken in the destination network namespace.
4361 * This function shuts down a device interface and moves it
4362 * to a new network namespace. On success 0 is returned, on
4363 * a failure a netagive errno code is returned.
4365 * Callers must hold the rtnl semaphore.
4368 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4370 char buf[IFNAMSIZ];
4371 const char *destname;
4372 int err;
4374 ASSERT_RTNL();
4376 /* Don't allow namespace local devices to be moved. */
4377 err = -EINVAL;
4378 if (dev->features & NETIF_F_NETNS_LOCAL)
4379 goto out;
4381 /* Ensure the device has been registrered */
4382 err = -EINVAL;
4383 if (dev->reg_state != NETREG_REGISTERED)
4384 goto out;
4386 /* Get out if there is nothing todo */
4387 err = 0;
4388 if (net_eq(dev_net(dev), net))
4389 goto out;
4391 /* Pick the destination device name, and ensure
4392 * we can use it in the destination network namespace.
4394 err = -EEXIST;
4395 destname = dev->name;
4396 if (__dev_get_by_name(net, destname)) {
4397 /* We get here if we can't use the current device name */
4398 if (!pat)
4399 goto out;
4400 if (!dev_valid_name(pat))
4401 goto out;
4402 if (strchr(pat, '%')) {
4403 if (__dev_alloc_name(net, pat, buf) < 0)
4404 goto out;
4405 destname = buf;
4406 } else
4407 destname = pat;
4408 if (__dev_get_by_name(net, destname))
4409 goto out;
4413 * And now a mini version of register_netdevice unregister_netdevice.
4416 /* If device is running close it first. */
4417 dev_close(dev);
4419 /* And unlink it from device chain */
4420 err = -ENODEV;
4421 unlist_netdevice(dev);
4423 synchronize_net();
4425 /* Shutdown queueing discipline. */
4426 dev_shutdown(dev);
4428 /* Notify protocols, that we are about to destroy
4429 this device. They should clean all the things.
4431 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4434 * Flush the unicast and multicast chains
4436 dev_addr_discard(dev);
4438 /* Actually switch the network namespace */
4439 dev_net_set(dev, net);
4441 /* Assign the new device name */
4442 if (destname != dev->name)
4443 strcpy(dev->name, destname);
4445 /* If there is an ifindex conflict assign a new one */
4446 if (__dev_get_by_index(net, dev->ifindex)) {
4447 int iflink = (dev->iflink == dev->ifindex);
4448 dev->ifindex = dev_new_index(net);
4449 if (iflink)
4450 dev->iflink = dev->ifindex;
4453 /* Fixup kobjects */
4454 netdev_unregister_kobject(dev);
4455 err = netdev_register_kobject(dev);
4456 WARN_ON(err);
4458 /* Add the device back in the hashes */
4459 list_netdevice(dev);
4461 /* Notify protocols, that a new device appeared. */
4462 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4464 synchronize_net();
4465 err = 0;
4466 out:
4467 return err;
4470 static int dev_cpu_callback(struct notifier_block *nfb,
4471 unsigned long action,
4472 void *ocpu)
4474 struct sk_buff **list_skb;
4475 struct Qdisc **list_net;
4476 struct sk_buff *skb;
4477 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4478 struct softnet_data *sd, *oldsd;
4480 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4481 return NOTIFY_OK;
4483 local_irq_disable();
4484 cpu = smp_processor_id();
4485 sd = &per_cpu(softnet_data, cpu);
4486 oldsd = &per_cpu(softnet_data, oldcpu);
4488 /* Find end of our completion_queue. */
4489 list_skb = &sd->completion_queue;
4490 while (*list_skb)
4491 list_skb = &(*list_skb)->next;
4492 /* Append completion queue from offline CPU. */
4493 *list_skb = oldsd->completion_queue;
4494 oldsd->completion_queue = NULL;
4496 /* Find end of our output_queue. */
4497 list_net = &sd->output_queue;
4498 while (*list_net)
4499 list_net = &(*list_net)->next_sched;
4500 /* Append output queue from offline CPU. */
4501 *list_net = oldsd->output_queue;
4502 oldsd->output_queue = NULL;
4504 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4505 local_irq_enable();
4507 /* Process offline CPU's input_pkt_queue */
4508 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4509 netif_rx(skb);
4511 return NOTIFY_OK;
4514 #ifdef CONFIG_NET_DMA
4516 * net_dma_rebalance - try to maintain one DMA channel per CPU
4517 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4519 * This is called when the number of channels allocated to the net_dma client
4520 * changes. The net_dma client tries to have one DMA channel per CPU.
4523 static void net_dma_rebalance(struct net_dma *net_dma)
4525 unsigned int cpu, i, n, chan_idx;
4526 struct dma_chan *chan;
4528 if (cpus_empty(net_dma->channel_mask)) {
4529 for_each_online_cpu(cpu)
4530 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4531 return;
4534 i = 0;
4535 cpu = first_cpu(cpu_online_map);
4537 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4538 chan = net_dma->channels[chan_idx];
4540 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4541 + (i < (num_online_cpus() %
4542 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4544 while(n) {
4545 per_cpu(softnet_data, cpu).net_dma = chan;
4546 cpu = next_cpu(cpu, cpu_online_map);
4547 n--;
4549 i++;
4554 * netdev_dma_event - event callback for the net_dma_client
4555 * @client: should always be net_dma_client
4556 * @chan: DMA channel for the event
4557 * @state: DMA state to be handled
4559 static enum dma_state_client
4560 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4561 enum dma_state state)
4563 int i, found = 0, pos = -1;
4564 struct net_dma *net_dma =
4565 container_of(client, struct net_dma, client);
4566 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4568 spin_lock(&net_dma->lock);
4569 switch (state) {
4570 case DMA_RESOURCE_AVAILABLE:
4571 for (i = 0; i < nr_cpu_ids; i++)
4572 if (net_dma->channels[i] == chan) {
4573 found = 1;
4574 break;
4575 } else if (net_dma->channels[i] == NULL && pos < 0)
4576 pos = i;
4578 if (!found && pos >= 0) {
4579 ack = DMA_ACK;
4580 net_dma->channels[pos] = chan;
4581 cpu_set(pos, net_dma->channel_mask);
4582 net_dma_rebalance(net_dma);
4584 break;
4585 case DMA_RESOURCE_REMOVED:
4586 for (i = 0; i < nr_cpu_ids; i++)
4587 if (net_dma->channels[i] == chan) {
4588 found = 1;
4589 pos = i;
4590 break;
4593 if (found) {
4594 ack = DMA_ACK;
4595 cpu_clear(pos, net_dma->channel_mask);
4596 net_dma->channels[i] = NULL;
4597 net_dma_rebalance(net_dma);
4599 break;
4600 default:
4601 break;
4603 spin_unlock(&net_dma->lock);
4605 return ack;
4609 * netdev_dma_regiser - register the networking subsystem as a DMA client
4611 static int __init netdev_dma_register(void)
4613 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4614 GFP_KERNEL);
4615 if (unlikely(!net_dma.channels)) {
4616 printk(KERN_NOTICE
4617 "netdev_dma: no memory for net_dma.channels\n");
4618 return -ENOMEM;
4620 spin_lock_init(&net_dma.lock);
4621 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4622 dma_async_client_register(&net_dma.client);
4623 dma_async_client_chan_request(&net_dma.client);
4624 return 0;
4627 #else
4628 static int __init netdev_dma_register(void) { return -ENODEV; }
4629 #endif /* CONFIG_NET_DMA */
4632 * netdev_compute_feature - compute conjunction of two feature sets
4633 * @all: first feature set
4634 * @one: second feature set
4636 * Computes a new feature set after adding a device with feature set
4637 * @one to the master device with current feature set @all. Returns
4638 * the new feature set.
4640 int netdev_compute_features(unsigned long all, unsigned long one)
4642 /* if device needs checksumming, downgrade to hw checksumming */
4643 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4644 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4646 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4647 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4648 all ^= NETIF_F_HW_CSUM
4649 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4651 if (one & NETIF_F_GSO)
4652 one |= NETIF_F_GSO_SOFTWARE;
4653 one |= NETIF_F_GSO;
4655 /* If even one device supports robust GSO, enable it for all. */
4656 if (one & NETIF_F_GSO_ROBUST)
4657 all |= NETIF_F_GSO_ROBUST;
4659 all &= one | NETIF_F_LLTX;
4661 if (!(all & NETIF_F_ALL_CSUM))
4662 all &= ~NETIF_F_SG;
4663 if (!(all & NETIF_F_SG))
4664 all &= ~NETIF_F_GSO_MASK;
4666 return all;
4668 EXPORT_SYMBOL(netdev_compute_features);
4670 static struct hlist_head *netdev_create_hash(void)
4672 int i;
4673 struct hlist_head *hash;
4675 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4676 if (hash != NULL)
4677 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4678 INIT_HLIST_HEAD(&hash[i]);
4680 return hash;
4683 /* Initialize per network namespace state */
4684 static int __net_init netdev_init(struct net *net)
4686 INIT_LIST_HEAD(&net->dev_base_head);
4688 net->dev_name_head = netdev_create_hash();
4689 if (net->dev_name_head == NULL)
4690 goto err_name;
4692 net->dev_index_head = netdev_create_hash();
4693 if (net->dev_index_head == NULL)
4694 goto err_idx;
4696 return 0;
4698 err_idx:
4699 kfree(net->dev_name_head);
4700 err_name:
4701 return -ENOMEM;
4704 char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4706 struct device_driver *driver;
4707 struct device *parent;
4709 if (len <= 0 || !buffer)
4710 return buffer;
4711 buffer[0] = 0;
4713 parent = dev->dev.parent;
4715 if (!parent)
4716 return buffer;
4718 driver = parent->driver;
4719 if (driver && driver->name)
4720 strlcpy(buffer, driver->name, len);
4721 return buffer;
4724 static void __net_exit netdev_exit(struct net *net)
4726 kfree(net->dev_name_head);
4727 kfree(net->dev_index_head);
4730 static struct pernet_operations __net_initdata netdev_net_ops = {
4731 .init = netdev_init,
4732 .exit = netdev_exit,
4735 static void __net_exit default_device_exit(struct net *net)
4737 struct net_device *dev, *next;
4739 * Push all migratable of the network devices back to the
4740 * initial network namespace
4742 rtnl_lock();
4743 for_each_netdev_safe(net, dev, next) {
4744 int err;
4745 char fb_name[IFNAMSIZ];
4747 /* Ignore unmoveable devices (i.e. loopback) */
4748 if (dev->features & NETIF_F_NETNS_LOCAL)
4749 continue;
4751 /* Push remaing network devices to init_net */
4752 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4753 err = dev_change_net_namespace(dev, &init_net, fb_name);
4754 if (err) {
4755 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4756 __func__, dev->name, err);
4757 BUG();
4760 rtnl_unlock();
4763 static struct pernet_operations __net_initdata default_device_ops = {
4764 .exit = default_device_exit,
4768 * Initialize the DEV module. At boot time this walks the device list and
4769 * unhooks any devices that fail to initialise (normally hardware not
4770 * present) and leaves us with a valid list of present and active devices.
4775 * This is called single threaded during boot, so no need
4776 * to take the rtnl semaphore.
4778 static int __init net_dev_init(void)
4780 int i, rc = -ENOMEM;
4782 BUG_ON(!dev_boot_phase);
4784 if (dev_proc_init())
4785 goto out;
4787 if (netdev_kobject_init())
4788 goto out;
4790 INIT_LIST_HEAD(&ptype_all);
4791 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4792 INIT_LIST_HEAD(&ptype_base[i]);
4794 if (register_pernet_subsys(&netdev_net_ops))
4795 goto out;
4797 if (register_pernet_device(&default_device_ops))
4798 goto out;
4801 * Initialise the packet receive queues.
4804 for_each_possible_cpu(i) {
4805 struct softnet_data *queue;
4807 queue = &per_cpu(softnet_data, i);
4808 skb_queue_head_init(&queue->input_pkt_queue);
4809 queue->completion_queue = NULL;
4810 INIT_LIST_HEAD(&queue->poll_list);
4812 queue->backlog.poll = process_backlog;
4813 queue->backlog.weight = weight_p;
4816 netdev_dma_register();
4818 dev_boot_phase = 0;
4820 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4821 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4823 hotcpu_notifier(dev_cpu_callback, 0);
4824 dst_init();
4825 dev_mcast_init();
4826 rc = 0;
4827 out:
4828 return rc;
4831 subsys_initcall(net_dev_init);
4833 EXPORT_SYMBOL(__dev_get_by_index);
4834 EXPORT_SYMBOL(__dev_get_by_name);
4835 EXPORT_SYMBOL(__dev_remove_pack);
4836 EXPORT_SYMBOL(dev_valid_name);
4837 EXPORT_SYMBOL(dev_add_pack);
4838 EXPORT_SYMBOL(dev_alloc_name);
4839 EXPORT_SYMBOL(dev_close);
4840 EXPORT_SYMBOL(dev_get_by_flags);
4841 EXPORT_SYMBOL(dev_get_by_index);
4842 EXPORT_SYMBOL(dev_get_by_name);
4843 EXPORT_SYMBOL(dev_open);
4844 EXPORT_SYMBOL(dev_queue_xmit);
4845 EXPORT_SYMBOL(dev_remove_pack);
4846 EXPORT_SYMBOL(dev_set_allmulti);
4847 EXPORT_SYMBOL(dev_set_promiscuity);
4848 EXPORT_SYMBOL(dev_change_flags);
4849 EXPORT_SYMBOL(dev_set_mtu);
4850 EXPORT_SYMBOL(dev_set_mac_address);
4851 EXPORT_SYMBOL(free_netdev);
4852 EXPORT_SYMBOL(netdev_boot_setup_check);
4853 EXPORT_SYMBOL(netdev_set_master);
4854 EXPORT_SYMBOL(netdev_state_change);
4855 EXPORT_SYMBOL(netif_receive_skb);
4856 EXPORT_SYMBOL(netif_rx);
4857 EXPORT_SYMBOL(register_gifconf);
4858 EXPORT_SYMBOL(register_netdevice);
4859 EXPORT_SYMBOL(register_netdevice_notifier);
4860 EXPORT_SYMBOL(skb_checksum_help);
4861 EXPORT_SYMBOL(synchronize_net);
4862 EXPORT_SYMBOL(unregister_netdevice);
4863 EXPORT_SYMBOL(unregister_netdevice_notifier);
4864 EXPORT_SYMBOL(net_enable_timestamp);
4865 EXPORT_SYMBOL(net_disable_timestamp);
4866 EXPORT_SYMBOL(dev_get_flags);
4868 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4869 EXPORT_SYMBOL(br_handle_frame_hook);
4870 EXPORT_SYMBOL(br_fdb_get_hook);
4871 EXPORT_SYMBOL(br_fdb_put_hook);
4872 #endif
4874 #ifdef CONFIG_KMOD
4875 EXPORT_SYMBOL(dev_load);
4876 #endif
4878 EXPORT_PER_CPU_SYMBOL(softnet_data);