powerpc: rename powermac files to remove pmac_ prefix
[linux-2.6/kvm.git] / arch / powerpc / platforms / powermac / smp.c
blobfb996336c58b6f5abc38f0ede4b18c50065a0243
1 /*
2 * SMP support for power macintosh.
4 * We support both the old "powersurge" SMP architecture
5 * and the current Core99 (G4 PowerMac) machines.
7 * Note that we don't support the very first rev. of
8 * Apple/DayStar 2 CPUs board, the one with the funky
9 * watchdog. Hopefully, none of these should be there except
10 * maybe internally to Apple. I should probably still add some
11 * code to detect this card though and disable SMP. --BenH.
13 * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
14 * and Ben Herrenschmidt <benh@kernel.crashing.org>.
16 * Support for DayStar quad CPU cards
17 * Copyright (C) XLR8, Inc. 1994-2000
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version
22 * 2 of the License, or (at your option) any later version.
24 #include <linux/config.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/errno.h>
35 #include <linux/hardirq.h>
36 #include <linux/cpu.h>
38 #include <asm/ptrace.h>
39 #include <asm/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/sections.h>
44 #include <asm/io.h>
45 #include <asm/prom.h>
46 #include <asm/smp.h>
47 #include <asm/residual.h>
48 #include <asm/machdep.h>
49 #include <asm/pmac_feature.h>
50 #include <asm/time.h>
51 #include <asm/mpic.h>
52 #include <asm/cacheflush.h>
53 #include <asm/keylargo.h>
56 * Powersurge (old powermac SMP) support.
59 extern void __secondary_start_pmac_0(void);
61 /* Addresses for powersurge registers */
62 #define HAMMERHEAD_BASE 0xf8000000
63 #define HHEAD_CONFIG 0x90
64 #define HHEAD_SEC_INTR 0xc0
66 /* register for interrupting the primary processor on the powersurge */
67 /* N.B. this is actually the ethernet ROM! */
68 #define PSURGE_PRI_INTR 0xf3019000
70 /* register for storing the start address for the secondary processor */
71 /* N.B. this is the PCI config space address register for the 1st bridge */
72 #define PSURGE_START 0xf2800000
74 /* Daystar/XLR8 4-CPU card */
75 #define PSURGE_QUAD_REG_ADDR 0xf8800000
77 #define PSURGE_QUAD_IRQ_SET 0
78 #define PSURGE_QUAD_IRQ_CLR 1
79 #define PSURGE_QUAD_IRQ_PRIMARY 2
80 #define PSURGE_QUAD_CKSTOP_CTL 3
81 #define PSURGE_QUAD_PRIMARY_ARB 4
82 #define PSURGE_QUAD_BOARD_ID 6
83 #define PSURGE_QUAD_WHICH_CPU 7
84 #define PSURGE_QUAD_CKSTOP_RDBK 8
85 #define PSURGE_QUAD_RESET_CTL 11
87 #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v)))
88 #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f)
89 #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
90 #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
92 /* virtual addresses for the above */
93 static volatile u8 __iomem *hhead_base;
94 static volatile u8 __iomem *quad_base;
95 static volatile u32 __iomem *psurge_pri_intr;
96 static volatile u8 __iomem *psurge_sec_intr;
97 static volatile u32 __iomem *psurge_start;
99 /* values for psurge_type */
100 #define PSURGE_NONE -1
101 #define PSURGE_DUAL 0
102 #define PSURGE_QUAD_OKEE 1
103 #define PSURGE_QUAD_COTTON 2
104 #define PSURGE_QUAD_ICEGRASS 3
106 /* what sort of powersurge board we have */
107 static int psurge_type = PSURGE_NONE;
109 /* L2 and L3 cache settings to pass from CPU0 to CPU1 */
110 volatile static long int core99_l2_cache;
111 volatile static long int core99_l3_cache;
113 /* Timebase freeze GPIO */
114 static unsigned int core99_tb_gpio;
116 /* Sync flag for HW tb sync */
117 static volatile int sec_tb_reset = 0;
118 static unsigned int pri_tb_hi, pri_tb_lo;
119 static unsigned int pri_tb_stamp;
121 static void __devinit core99_init_caches(int cpu)
123 if (!cpu_has_feature(CPU_FTR_L2CR))
124 return;
126 if (cpu == 0) {
127 core99_l2_cache = _get_L2CR();
128 printk("CPU0: L2CR is %lx\n", core99_l2_cache);
129 } else {
130 printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
131 _set_L2CR(0);
132 _set_L2CR(core99_l2_cache);
133 printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
136 if (!cpu_has_feature(CPU_FTR_L3CR))
137 return;
139 if (cpu == 0){
140 core99_l3_cache = _get_L3CR();
141 printk("CPU0: L3CR is %lx\n", core99_l3_cache);
142 } else {
143 printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
144 _set_L3CR(0);
145 _set_L3CR(core99_l3_cache);
146 printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
151 * Set and clear IPIs for powersurge.
153 static inline void psurge_set_ipi(int cpu)
155 if (psurge_type == PSURGE_NONE)
156 return;
157 if (cpu == 0)
158 in_be32(psurge_pri_intr);
159 else if (psurge_type == PSURGE_DUAL)
160 out_8(psurge_sec_intr, 0);
161 else
162 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
165 static inline void psurge_clr_ipi(int cpu)
167 if (cpu > 0) {
168 switch(psurge_type) {
169 case PSURGE_DUAL:
170 out_8(psurge_sec_intr, ~0);
171 case PSURGE_NONE:
172 break;
173 default:
174 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
180 * On powersurge (old SMP powermac architecture) we don't have
181 * separate IPIs for separate messages like openpic does. Instead
182 * we have a bitmap for each processor, where a 1 bit means that
183 * the corresponding message is pending for that processor.
184 * Ideally each cpu's entry would be in a different cache line.
185 * -- paulus.
187 static unsigned long psurge_smp_message[NR_CPUS];
189 void psurge_smp_message_recv(struct pt_regs *regs)
191 int cpu = smp_processor_id();
192 int msg;
194 /* clear interrupt */
195 psurge_clr_ipi(cpu);
197 if (num_online_cpus() < 2)
198 return;
200 /* make sure there is a message there */
201 for (msg = 0; msg < 4; msg++)
202 if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
203 smp_message_recv(msg, regs);
206 irqreturn_t psurge_primary_intr(int irq, void *d, struct pt_regs *regs)
208 psurge_smp_message_recv(regs);
209 return IRQ_HANDLED;
212 static void smp_psurge_message_pass(int target, int msg, unsigned long data,
213 int wait)
215 int i;
217 if (num_online_cpus() < 2)
218 return;
220 for (i = 0; i < NR_CPUS; i++) {
221 if (!cpu_online(i))
222 continue;
223 if (target == MSG_ALL
224 || (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
225 || target == i) {
226 set_bit(msg, &psurge_smp_message[i]);
227 psurge_set_ipi(i);
233 * Determine a quad card presence. We read the board ID register, we
234 * force the data bus to change to something else, and we read it again.
235 * It it's stable, then the register probably exist (ugh !)
237 static int __init psurge_quad_probe(void)
239 int type;
240 unsigned int i;
242 type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
243 if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
244 || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
245 return PSURGE_DUAL;
247 /* looks OK, try a slightly more rigorous test */
248 /* bogus is not necessarily cacheline-aligned,
249 though I don't suppose that really matters. -- paulus */
250 for (i = 0; i < 100; i++) {
251 volatile u32 bogus[8];
252 bogus[(0+i)%8] = 0x00000000;
253 bogus[(1+i)%8] = 0x55555555;
254 bogus[(2+i)%8] = 0xFFFFFFFF;
255 bogus[(3+i)%8] = 0xAAAAAAAA;
256 bogus[(4+i)%8] = 0x33333333;
257 bogus[(5+i)%8] = 0xCCCCCCCC;
258 bogus[(6+i)%8] = 0xCCCCCCCC;
259 bogus[(7+i)%8] = 0x33333333;
260 wmb();
261 asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
262 mb();
263 if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
264 return PSURGE_DUAL;
266 return type;
269 static void __init psurge_quad_init(void)
271 int procbits;
273 if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
274 procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
275 if (psurge_type == PSURGE_QUAD_ICEGRASS)
276 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
277 else
278 PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
279 mdelay(33);
280 out_8(psurge_sec_intr, ~0);
281 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
282 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
283 if (psurge_type != PSURGE_QUAD_ICEGRASS)
284 PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
285 PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
286 mdelay(33);
287 PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
288 mdelay(33);
289 PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
290 mdelay(33);
293 static int __init smp_psurge_probe(void)
295 int i, ncpus;
297 /* We don't do SMP on the PPC601 -- paulus */
298 if (PVR_VER(mfspr(SPRN_PVR)) == 1)
299 return 1;
302 * The powersurge cpu board can be used in the generation
303 * of powermacs that have a socket for an upgradeable cpu card,
304 * including the 7500, 8500, 9500, 9600.
305 * The device tree doesn't tell you if you have 2 cpus because
306 * OF doesn't know anything about the 2nd processor.
307 * Instead we look for magic bits in magic registers,
308 * in the hammerhead memory controller in the case of the
309 * dual-cpu powersurge board. -- paulus.
311 if (find_devices("hammerhead") == NULL)
312 return 1;
314 hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
315 quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
316 psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
318 psurge_type = psurge_quad_probe();
319 if (psurge_type != PSURGE_DUAL) {
320 psurge_quad_init();
321 /* All released cards using this HW design have 4 CPUs */
322 ncpus = 4;
323 } else {
324 iounmap(quad_base);
325 if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
326 /* not a dual-cpu card */
327 iounmap(hhead_base);
328 psurge_type = PSURGE_NONE;
329 return 1;
331 ncpus = 2;
334 psurge_start = ioremap(PSURGE_START, 4);
335 psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
337 /* this is not actually strictly necessary -- paulus. */
338 for (i = 1; i < ncpus; ++i)
339 smp_hw_index[i] = i;
341 if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
343 return ncpus;
346 static void __init smp_psurge_kick_cpu(int nr)
348 unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8;
349 unsigned long a;
351 /* may need to flush here if secondary bats aren't setup */
352 for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
353 asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
354 asm volatile("sync");
356 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
358 out_be32(psurge_start, start);
359 mb();
361 psurge_set_ipi(nr);
362 udelay(10);
363 psurge_clr_ipi(nr);
365 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
369 * With the dual-cpu powersurge board, the decrementers and timebases
370 * of both cpus are frozen after the secondary cpu is started up,
371 * until we give the secondary cpu another interrupt. This routine
372 * uses this to get the timebases synchronized.
373 * -- paulus.
375 static void __init psurge_dual_sync_tb(int cpu_nr)
377 int t;
379 set_dec(tb_ticks_per_jiffy);
380 set_tb(0, 0);
381 last_jiffy_stamp(cpu_nr) = 0;
383 if (cpu_nr > 0) {
384 mb();
385 sec_tb_reset = 1;
386 return;
389 /* wait for the secondary to have reset its TB before proceeding */
390 for (t = 10000000; t > 0 && !sec_tb_reset; --t)
393 /* now interrupt the secondary, starting both TBs */
394 psurge_set_ipi(1);
396 smp_tb_synchronized = 1;
399 static struct irqaction psurge_irqaction = {
400 .handler = psurge_primary_intr,
401 .flags = SA_INTERRUPT,
402 .mask = CPU_MASK_NONE,
403 .name = "primary IPI",
406 static void __init smp_psurge_setup_cpu(int cpu_nr)
409 if (cpu_nr == 0) {
410 /* If we failed to start the second CPU, we should still
411 * send it an IPI to start the timebase & DEC or we might
412 * have them stuck.
414 if (num_online_cpus() < 2) {
415 if (psurge_type == PSURGE_DUAL)
416 psurge_set_ipi(1);
417 return;
419 /* reset the entry point so if we get another intr we won't
420 * try to startup again */
421 out_be32(psurge_start, 0x100);
422 if (setup_irq(30, &psurge_irqaction))
423 printk(KERN_ERR "Couldn't get primary IPI interrupt");
426 if (psurge_type == PSURGE_DUAL)
427 psurge_dual_sync_tb(cpu_nr);
430 void __init smp_psurge_take_timebase(void)
432 /* Dummy implementation */
435 void __init smp_psurge_give_timebase(void)
437 /* Dummy implementation */
440 static int __init smp_core99_probe(void)
442 #ifdef CONFIG_6xx
443 extern int powersave_nap;
444 #endif
445 struct device_node *cpus, *firstcpu;
446 int i, ncpus = 0, boot_cpu = -1;
447 u32 *tbprop = NULL;
449 if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
450 cpus = firstcpu = find_type_devices("cpu");
451 while(cpus != NULL) {
452 u32 *regprop = (u32 *)get_property(cpus, "reg", NULL);
453 char *stateprop = (char *)get_property(cpus, "state", NULL);
454 if (regprop != NULL && stateprop != NULL &&
455 !strncmp(stateprop, "running", 7))
456 boot_cpu = *regprop;
457 ++ncpus;
458 cpus = cpus->next;
460 if (boot_cpu == -1)
461 printk(KERN_WARNING "Couldn't detect boot CPU !\n");
462 if (boot_cpu != 0)
463 printk(KERN_WARNING "Boot CPU is %d, unsupported setup !\n", boot_cpu);
465 if (machine_is_compatible("MacRISC4")) {
466 extern struct smp_ops_t core99_smp_ops;
468 core99_smp_ops.take_timebase = smp_generic_take_timebase;
469 core99_smp_ops.give_timebase = smp_generic_give_timebase;
470 } else {
471 if (firstcpu != NULL)
472 tbprop = (u32 *)get_property(firstcpu, "timebase-enable", NULL);
473 if (tbprop)
474 core99_tb_gpio = *tbprop;
475 else
476 core99_tb_gpio = KL_GPIO_TB_ENABLE;
479 if (ncpus > 1) {
480 mpic_request_ipis();
481 for (i = 1; i < ncpus; ++i)
482 smp_hw_index[i] = i;
483 #ifdef CONFIG_6xx
484 powersave_nap = 0;
485 #endif
486 core99_init_caches(0);
489 return ncpus;
492 static void __devinit smp_core99_kick_cpu(int nr)
494 unsigned long save_vector, new_vector;
495 unsigned long flags;
497 volatile unsigned long *vector
498 = ((volatile unsigned long *)(KERNELBASE+0x100));
499 if (nr < 0 || nr > 3)
500 return;
501 if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346);
503 local_irq_save(flags);
504 local_irq_disable();
506 /* Save reset vector */
507 save_vector = *vector;
509 /* Setup fake reset vector that does
510 * b __secondary_start_pmac_0 + nr*8 - KERNELBASE
512 new_vector = (unsigned long) __secondary_start_pmac_0 + nr * 8;
513 *vector = 0x48000002 + new_vector - KERNELBASE;
515 /* flush data cache and inval instruction cache */
516 flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
518 /* Put some life in our friend */
519 pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
521 /* FIXME: We wait a bit for the CPU to take the exception, I should
522 * instead wait for the entry code to set something for me. Well,
523 * ideally, all that crap will be done in prom.c and the CPU left
524 * in a RAM-based wait loop like CHRP.
526 mdelay(1);
528 /* Restore our exception vector */
529 *vector = save_vector;
530 flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
532 local_irq_restore(flags);
533 if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
536 static void __devinit smp_core99_setup_cpu(int cpu_nr)
538 /* Setup L2/L3 */
539 if (cpu_nr != 0)
540 core99_init_caches(cpu_nr);
542 /* Setup openpic */
543 mpic_setup_this_cpu();
545 if (cpu_nr == 0) {
546 #ifdef CONFIG_POWER4
547 extern void g5_phy_disable_cpu1(void);
549 /* If we didn't start the second CPU, we must take
550 * it off the bus
552 if (machine_is_compatible("MacRISC4") &&
553 num_online_cpus() < 2)
554 g5_phy_disable_cpu1();
555 #endif /* CONFIG_POWER4 */
556 if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349);
560 /* not __init, called in sleep/wakeup code */
561 void smp_core99_take_timebase(void)
563 unsigned long flags;
565 /* tell the primary we're here */
566 sec_tb_reset = 1;
567 mb();
569 /* wait for the primary to set pri_tb_hi/lo */
570 while (sec_tb_reset < 2)
571 mb();
573 /* set our stuff the same as the primary */
574 local_irq_save(flags);
575 set_dec(1);
576 set_tb(pri_tb_hi, pri_tb_lo);
577 last_jiffy_stamp(smp_processor_id()) = pri_tb_stamp;
578 mb();
580 /* tell the primary we're done */
581 sec_tb_reset = 0;
582 mb();
583 local_irq_restore(flags);
586 /* not __init, called in sleep/wakeup code */
587 void smp_core99_give_timebase(void)
589 unsigned long flags;
590 unsigned int t;
592 /* wait for the secondary to be in take_timebase */
593 for (t = 100000; t > 0 && !sec_tb_reset; --t)
594 udelay(10);
595 if (!sec_tb_reset) {
596 printk(KERN_WARNING "Timeout waiting sync on second CPU\n");
597 return;
600 /* freeze the timebase and read it */
601 /* disable interrupts so the timebase is disabled for the
602 shortest possible time */
603 local_irq_save(flags);
604 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4);
605 pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
606 mb();
607 pri_tb_hi = get_tbu();
608 pri_tb_lo = get_tbl();
609 pri_tb_stamp = last_jiffy_stamp(smp_processor_id());
610 mb();
612 /* tell the secondary we're ready */
613 sec_tb_reset = 2;
614 mb();
616 /* wait for the secondary to have taken it */
617 for (t = 100000; t > 0 && sec_tb_reset; --t)
618 udelay(10);
619 if (sec_tb_reset)
620 printk(KERN_WARNING "Timeout waiting sync(2) on second CPU\n");
621 else
622 smp_tb_synchronized = 1;
624 /* Now, restart the timebase by leaving the GPIO to an open collector */
625 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0);
626 pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
627 local_irq_restore(flags);
630 void smp_core99_message_pass(int target, int msg, unsigned long data, int wait)
632 cpumask_t mask = CPU_MASK_ALL;
633 /* make sure we're sending something that translates to an IPI */
634 if (msg > 0x3) {
635 printk("SMP %d: smp_message_pass: unknown msg %d\n",
636 smp_processor_id(), msg);
637 return;
639 switch (target) {
640 case MSG_ALL:
641 mpic_send_ipi(msg, cpus_addr(mask)[0]);
642 break;
643 case MSG_ALL_BUT_SELF:
644 cpu_clear(smp_processor_id(), mask);
645 mpic_send_ipi(msg, cpus_addr(mask)[0]);
646 break;
647 default:
648 mpic_send_ipi(msg, 1 << target);
649 break;
654 /* PowerSurge-style Macs */
655 struct smp_ops_t psurge_smp_ops = {
656 .message_pass = smp_psurge_message_pass,
657 .probe = smp_psurge_probe,
658 .kick_cpu = smp_psurge_kick_cpu,
659 .setup_cpu = smp_psurge_setup_cpu,
660 .give_timebase = smp_psurge_give_timebase,
661 .take_timebase = smp_psurge_take_timebase,
664 /* Core99 Macs (dual G4s) */
665 struct smp_ops_t core99_smp_ops = {
666 .message_pass = smp_core99_message_pass,
667 .probe = smp_core99_probe,
668 .kick_cpu = smp_core99_kick_cpu,
669 .setup_cpu = smp_core99_setup_cpu,
670 .give_timebase = smp_core99_give_timebase,
671 .take_timebase = smp_core99_take_timebase,
674 #ifdef CONFIG_HOTPLUG_CPU
676 int __cpu_disable(void)
678 cpu_clear(smp_processor_id(), cpu_online_map);
680 /* XXX reset cpu affinity here */
681 mpic_cpu_set_priority(0xf);
682 asm volatile("mtdec %0" : : "r" (0x7fffffff));
683 mb();
684 udelay(20);
685 asm volatile("mtdec %0" : : "r" (0x7fffffff));
686 return 0;
689 extern void low_cpu_die(void) __attribute__((noreturn)); /* in pmac_sleep.S */
690 static int cpu_dead[NR_CPUS];
692 void cpu_die(void)
694 local_irq_disable();
695 cpu_dead[smp_processor_id()] = 1;
696 mb();
697 low_cpu_die();
700 void __cpu_die(unsigned int cpu)
702 int timeout;
704 timeout = 1000;
705 while (!cpu_dead[cpu]) {
706 if (--timeout == 0) {
707 printk("CPU %u refused to die!\n", cpu);
708 break;
710 msleep(1);
712 cpu_callin_map[cpu] = 0;
713 cpu_dead[cpu] = 0;
716 #endif