4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/nsproxy.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <linux/fs_struct.h>
32 #include <linux/fsnotify.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
38 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
39 #define HASH_SIZE (1UL << HASH_SHIFT)
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
45 static DEFINE_IDA(mnt_id_ida
);
46 static DEFINE_IDA(mnt_group_ida
);
47 static int mnt_id_start
= 0;
48 static int mnt_group_start
= 1;
50 static struct list_head
*mount_hashtable __read_mostly
;
51 static struct kmem_cache
*mnt_cache __read_mostly
;
52 static struct rw_semaphore namespace_sem
;
55 struct kobject
*fs_kobj
;
56 EXPORT_SYMBOL_GPL(fs_kobj
);
58 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
60 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
61 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
62 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
63 return tmp
& (HASH_SIZE
- 1);
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
68 /* allocation is serialized by namespace_sem */
69 static int mnt_alloc_id(struct vfsmount
*mnt
)
74 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
75 spin_lock(&vfsmount_lock
);
76 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
78 mnt_id_start
= mnt
->mnt_id
+ 1;
79 spin_unlock(&vfsmount_lock
);
86 static void mnt_free_id(struct vfsmount
*mnt
)
89 spin_lock(&vfsmount_lock
);
90 ida_remove(&mnt_id_ida
, id
);
91 if (mnt_id_start
> id
)
93 spin_unlock(&vfsmount_lock
);
97 * Allocate a new peer group ID
99 * mnt_group_ida is protected by namespace_sem
101 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
105 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
108 res
= ida_get_new_above(&mnt_group_ida
,
112 mnt_group_start
= mnt
->mnt_group_id
+ 1;
118 * Release a peer group ID
120 void mnt_release_group_id(struct vfsmount
*mnt
)
122 int id
= mnt
->mnt_group_id
;
123 ida_remove(&mnt_group_ida
, id
);
124 if (mnt_group_start
> id
)
125 mnt_group_start
= id
;
126 mnt
->mnt_group_id
= 0;
129 struct vfsmount
*alloc_vfsmnt(const char *name
)
131 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
135 err
= mnt_alloc_id(mnt
);
140 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
141 if (!mnt
->mnt_devname
)
145 atomic_set(&mnt
->mnt_count
, 1);
146 INIT_LIST_HEAD(&mnt
->mnt_hash
);
147 INIT_LIST_HEAD(&mnt
->mnt_child
);
148 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
149 INIT_LIST_HEAD(&mnt
->mnt_list
);
150 INIT_LIST_HEAD(&mnt
->mnt_expire
);
151 INIT_LIST_HEAD(&mnt
->mnt_share
);
152 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
153 INIT_LIST_HEAD(&mnt
->mnt_slave
);
154 #ifdef CONFIG_FSNOTIFY
155 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
158 mnt
->mnt_writers
= alloc_percpu(int);
159 if (!mnt
->mnt_writers
)
160 goto out_free_devname
;
162 mnt
->mnt_writers
= 0;
169 kfree(mnt
->mnt_devname
);
174 kmem_cache_free(mnt_cache
, mnt
);
179 * Most r/o checks on a fs are for operations that take
180 * discrete amounts of time, like a write() or unlink().
181 * We must keep track of when those operations start
182 * (for permission checks) and when they end, so that
183 * we can determine when writes are able to occur to
187 * __mnt_is_readonly: check whether a mount is read-only
188 * @mnt: the mount to check for its write status
190 * This shouldn't be used directly ouside of the VFS.
191 * It does not guarantee that the filesystem will stay
192 * r/w, just that it is right *now*. This can not and
193 * should not be used in place of IS_RDONLY(inode).
194 * mnt_want/drop_write() will _keep_ the filesystem
197 int __mnt_is_readonly(struct vfsmount
*mnt
)
199 if (mnt
->mnt_flags
& MNT_READONLY
)
201 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
205 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
207 static inline void inc_mnt_writers(struct vfsmount
*mnt
)
210 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))++;
216 static inline void dec_mnt_writers(struct vfsmount
*mnt
)
219 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))--;
225 static unsigned int count_mnt_writers(struct vfsmount
*mnt
)
228 unsigned int count
= 0;
231 for_each_possible_cpu(cpu
) {
232 count
+= *per_cpu_ptr(mnt
->mnt_writers
, cpu
);
237 return mnt
->mnt_writers
;
242 * Most r/o checks on a fs are for operations that take
243 * discrete amounts of time, like a write() or unlink().
244 * We must keep track of when those operations start
245 * (for permission checks) and when they end, so that
246 * we can determine when writes are able to occur to
250 * mnt_want_write - get write access to a mount
251 * @mnt: the mount on which to take a write
253 * This tells the low-level filesystem that a write is
254 * about to be performed to it, and makes sure that
255 * writes are allowed before returning success. When
256 * the write operation is finished, mnt_drop_write()
257 * must be called. This is effectively a refcount.
259 int mnt_want_write(struct vfsmount
*mnt
)
264 inc_mnt_writers(mnt
);
266 * The store to inc_mnt_writers must be visible before we pass
267 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
268 * incremented count after it has set MNT_WRITE_HOLD.
271 while (mnt
->mnt_flags
& MNT_WRITE_HOLD
)
274 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
275 * be set to match its requirements. So we must not load that until
276 * MNT_WRITE_HOLD is cleared.
279 if (__mnt_is_readonly(mnt
)) {
280 dec_mnt_writers(mnt
);
288 EXPORT_SYMBOL_GPL(mnt_want_write
);
291 * mnt_clone_write - get write access to a mount
292 * @mnt: the mount on which to take a write
294 * This is effectively like mnt_want_write, except
295 * it must only be used to take an extra write reference
296 * on a mountpoint that we already know has a write reference
297 * on it. This allows some optimisation.
299 * After finished, mnt_drop_write must be called as usual to
300 * drop the reference.
302 int mnt_clone_write(struct vfsmount
*mnt
)
304 /* superblock may be r/o */
305 if (__mnt_is_readonly(mnt
))
308 inc_mnt_writers(mnt
);
312 EXPORT_SYMBOL_GPL(mnt_clone_write
);
315 * mnt_want_write_file - get write access to a file's mount
316 * @file: the file who's mount on which to take a write
318 * This is like mnt_want_write, but it takes a file and can
319 * do some optimisations if the file is open for write already
321 int mnt_want_write_file(struct file
*file
)
323 struct inode
*inode
= file
->f_dentry
->d_inode
;
324 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
325 return mnt_want_write(file
->f_path
.mnt
);
327 return mnt_clone_write(file
->f_path
.mnt
);
329 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
332 * mnt_drop_write - give up write access to a mount
333 * @mnt: the mount on which to give up write access
335 * Tells the low-level filesystem that we are done
336 * performing writes to it. Must be matched with
337 * mnt_want_write() call above.
339 void mnt_drop_write(struct vfsmount
*mnt
)
342 dec_mnt_writers(mnt
);
345 EXPORT_SYMBOL_GPL(mnt_drop_write
);
347 static int mnt_make_readonly(struct vfsmount
*mnt
)
351 spin_lock(&vfsmount_lock
);
352 mnt
->mnt_flags
|= MNT_WRITE_HOLD
;
354 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
355 * should be visible before we do.
360 * With writers on hold, if this value is zero, then there are
361 * definitely no active writers (although held writers may subsequently
362 * increment the count, they'll have to wait, and decrement it after
363 * seeing MNT_READONLY).
365 * It is OK to have counter incremented on one CPU and decremented on
366 * another: the sum will add up correctly. The danger would be when we
367 * sum up each counter, if we read a counter before it is incremented,
368 * but then read another CPU's count which it has been subsequently
369 * decremented from -- we would see more decrements than we should.
370 * MNT_WRITE_HOLD protects against this scenario, because
371 * mnt_want_write first increments count, then smp_mb, then spins on
372 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
373 * we're counting up here.
375 if (count_mnt_writers(mnt
) > 0)
378 mnt
->mnt_flags
|= MNT_READONLY
;
380 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
381 * that become unheld will see MNT_READONLY.
384 mnt
->mnt_flags
&= ~MNT_WRITE_HOLD
;
385 spin_unlock(&vfsmount_lock
);
389 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
391 spin_lock(&vfsmount_lock
);
392 mnt
->mnt_flags
&= ~MNT_READONLY
;
393 spin_unlock(&vfsmount_lock
);
396 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
399 mnt
->mnt_root
= dget(sb
->s_root
);
402 EXPORT_SYMBOL(simple_set_mnt
);
404 void free_vfsmnt(struct vfsmount
*mnt
)
406 kfree(mnt
->mnt_devname
);
409 free_percpu(mnt
->mnt_writers
);
411 kmem_cache_free(mnt_cache
, mnt
);
415 * find the first or last mount at @dentry on vfsmount @mnt depending on
416 * @dir. If @dir is set return the first mount else return the last mount.
418 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
421 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
422 struct list_head
*tmp
= head
;
423 struct vfsmount
*p
, *found
= NULL
;
426 tmp
= dir
? tmp
->next
: tmp
->prev
;
430 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
431 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
440 * lookup_mnt increments the ref count before returning
441 * the vfsmount struct.
443 struct vfsmount
*lookup_mnt(struct path
*path
)
445 struct vfsmount
*child_mnt
;
446 spin_lock(&vfsmount_lock
);
447 if ((child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1)))
449 spin_unlock(&vfsmount_lock
);
453 static inline int check_mnt(struct vfsmount
*mnt
)
455 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
458 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
462 wake_up_interruptible(&ns
->poll
);
466 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
468 if (ns
&& ns
->event
!= event
) {
470 wake_up_interruptible(&ns
->poll
);
474 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
476 old_path
->dentry
= mnt
->mnt_mountpoint
;
477 old_path
->mnt
= mnt
->mnt_parent
;
478 mnt
->mnt_parent
= mnt
;
479 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
480 list_del_init(&mnt
->mnt_child
);
481 list_del_init(&mnt
->mnt_hash
);
482 old_path
->dentry
->d_mounted
--;
485 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
486 struct vfsmount
*child_mnt
)
488 child_mnt
->mnt_parent
= mntget(mnt
);
489 child_mnt
->mnt_mountpoint
= dget(dentry
);
493 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
495 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
496 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
497 hash(path
->mnt
, path
->dentry
));
498 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
502 * the caller must hold vfsmount_lock
504 static void commit_tree(struct vfsmount
*mnt
)
506 struct vfsmount
*parent
= mnt
->mnt_parent
;
509 struct mnt_namespace
*n
= parent
->mnt_ns
;
511 BUG_ON(parent
== mnt
);
513 list_add_tail(&head
, &mnt
->mnt_list
);
514 list_for_each_entry(m
, &head
, mnt_list
)
516 list_splice(&head
, n
->list
.prev
);
518 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
519 hash(parent
, mnt
->mnt_mountpoint
));
520 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
521 touch_mnt_namespace(n
);
524 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
526 struct list_head
*next
= p
->mnt_mounts
.next
;
527 if (next
== &p
->mnt_mounts
) {
531 next
= p
->mnt_child
.next
;
532 if (next
!= &p
->mnt_parent
->mnt_mounts
)
537 return list_entry(next
, struct vfsmount
, mnt_child
);
540 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
542 struct list_head
*prev
= p
->mnt_mounts
.prev
;
543 while (prev
!= &p
->mnt_mounts
) {
544 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
545 prev
= p
->mnt_mounts
.prev
;
550 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
553 struct super_block
*sb
= old
->mnt_sb
;
554 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
557 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
558 mnt
->mnt_group_id
= 0; /* not a peer of original */
560 mnt
->mnt_group_id
= old
->mnt_group_id
;
562 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
563 int err
= mnt_alloc_group_id(mnt
);
568 mnt
->mnt_flags
= old
->mnt_flags
;
569 atomic_inc(&sb
->s_active
);
571 mnt
->mnt_root
= dget(root
);
572 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
573 mnt
->mnt_parent
= mnt
;
575 if (flag
& CL_SLAVE
) {
576 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
577 mnt
->mnt_master
= old
;
578 CLEAR_MNT_SHARED(mnt
);
579 } else if (!(flag
& CL_PRIVATE
)) {
580 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
581 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
582 if (IS_MNT_SLAVE(old
))
583 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
584 mnt
->mnt_master
= old
->mnt_master
;
586 if (flag
& CL_MAKE_SHARED
)
589 /* stick the duplicate mount on the same expiry list
590 * as the original if that was on one */
591 if (flag
& CL_EXPIRE
) {
592 if (!list_empty(&old
->mnt_expire
))
593 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
603 static inline void __mntput(struct vfsmount
*mnt
)
605 struct super_block
*sb
= mnt
->mnt_sb
;
607 * This probably indicates that somebody messed
608 * up a mnt_want/drop_write() pair. If this
609 * happens, the filesystem was probably unable
610 * to make r/w->r/o transitions.
613 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
614 * provides barriers, so count_mnt_writers() below is safe. AV
616 WARN_ON(count_mnt_writers(mnt
));
617 fsnotify_vfsmount_delete(mnt
);
620 deactivate_super(sb
);
623 void mntput_no_expire(struct vfsmount
*mnt
)
626 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
627 if (likely(!mnt
->mnt_pinned
)) {
628 spin_unlock(&vfsmount_lock
);
632 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
634 spin_unlock(&vfsmount_lock
);
635 acct_auto_close_mnt(mnt
);
640 EXPORT_SYMBOL(mntput_no_expire
);
642 void mnt_pin(struct vfsmount
*mnt
)
644 spin_lock(&vfsmount_lock
);
646 spin_unlock(&vfsmount_lock
);
649 EXPORT_SYMBOL(mnt_pin
);
651 void mnt_unpin(struct vfsmount
*mnt
)
653 spin_lock(&vfsmount_lock
);
654 if (mnt
->mnt_pinned
) {
655 atomic_inc(&mnt
->mnt_count
);
658 spin_unlock(&vfsmount_lock
);
661 EXPORT_SYMBOL(mnt_unpin
);
663 static inline void mangle(struct seq_file
*m
, const char *s
)
665 seq_escape(m
, s
, " \t\n\\");
669 * Simple .show_options callback for filesystems which don't want to
670 * implement more complex mount option showing.
672 * See also save_mount_options().
674 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
679 options
= rcu_dereference(mnt
->mnt_sb
->s_options
);
681 if (options
!= NULL
&& options
[0]) {
689 EXPORT_SYMBOL(generic_show_options
);
692 * If filesystem uses generic_show_options(), this function should be
693 * called from the fill_super() callback.
695 * The .remount_fs callback usually needs to be handled in a special
696 * way, to make sure, that previous options are not overwritten if the
699 * Also note, that if the filesystem's .remount_fs function doesn't
700 * reset all options to their default value, but changes only newly
701 * given options, then the displayed options will not reflect reality
704 void save_mount_options(struct super_block
*sb
, char *options
)
706 BUG_ON(sb
->s_options
);
707 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
709 EXPORT_SYMBOL(save_mount_options
);
711 void replace_mount_options(struct super_block
*sb
, char *options
)
713 char *old
= sb
->s_options
;
714 rcu_assign_pointer(sb
->s_options
, options
);
720 EXPORT_SYMBOL(replace_mount_options
);
722 #ifdef CONFIG_PROC_FS
724 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
726 struct proc_mounts
*p
= m
->private;
728 down_read(&namespace_sem
);
729 return seq_list_start(&p
->ns
->list
, *pos
);
732 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
734 struct proc_mounts
*p
= m
->private;
736 return seq_list_next(v
, &p
->ns
->list
, pos
);
739 static void m_stop(struct seq_file
*m
, void *v
)
741 up_read(&namespace_sem
);
744 int mnt_had_events(struct proc_mounts
*p
)
746 struct mnt_namespace
*ns
= p
->ns
;
749 spin_lock(&vfsmount_lock
);
750 if (p
->event
!= ns
->event
) {
751 p
->event
= ns
->event
;
754 spin_unlock(&vfsmount_lock
);
759 struct proc_fs_info
{
764 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
766 static const struct proc_fs_info fs_info
[] = {
767 { MS_SYNCHRONOUS
, ",sync" },
768 { MS_DIRSYNC
, ",dirsync" },
769 { MS_MANDLOCK
, ",mand" },
772 const struct proc_fs_info
*fs_infop
;
774 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
775 if (sb
->s_flags
& fs_infop
->flag
)
776 seq_puts(m
, fs_infop
->str
);
779 return security_sb_show_options(m
, sb
);
782 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
784 static const struct proc_fs_info mnt_info
[] = {
785 { MNT_NOSUID
, ",nosuid" },
786 { MNT_NODEV
, ",nodev" },
787 { MNT_NOEXEC
, ",noexec" },
788 { MNT_NOATIME
, ",noatime" },
789 { MNT_NODIRATIME
, ",nodiratime" },
790 { MNT_RELATIME
, ",relatime" },
793 const struct proc_fs_info
*fs_infop
;
795 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
796 if (mnt
->mnt_flags
& fs_infop
->flag
)
797 seq_puts(m
, fs_infop
->str
);
801 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
803 mangle(m
, sb
->s_type
->name
);
804 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
806 mangle(m
, sb
->s_subtype
);
810 static int show_vfsmnt(struct seq_file
*m
, void *v
)
812 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
814 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
816 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
818 seq_path(m
, &mnt_path
, " \t\n\\");
820 show_type(m
, mnt
->mnt_sb
);
821 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
822 err
= show_sb_opts(m
, mnt
->mnt_sb
);
825 show_mnt_opts(m
, mnt
);
826 if (mnt
->mnt_sb
->s_op
->show_options
)
827 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
828 seq_puts(m
, " 0 0\n");
833 const struct seq_operations mounts_op
= {
840 static int show_mountinfo(struct seq_file
*m
, void *v
)
842 struct proc_mounts
*p
= m
->private;
843 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
844 struct super_block
*sb
= mnt
->mnt_sb
;
845 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
846 struct path root
= p
->root
;
849 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
850 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
851 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
853 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
854 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
856 * Mountpoint is outside root, discard that one. Ugly,
857 * but less so than trying to do that in iterator in a
858 * race-free way (due to renames).
862 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
863 show_mnt_opts(m
, mnt
);
865 /* Tagged fields ("foo:X" or "bar") */
866 if (IS_MNT_SHARED(mnt
))
867 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
868 if (IS_MNT_SLAVE(mnt
)) {
869 int master
= mnt
->mnt_master
->mnt_group_id
;
870 int dom
= get_dominating_id(mnt
, &p
->root
);
871 seq_printf(m
, " master:%i", master
);
872 if (dom
&& dom
!= master
)
873 seq_printf(m
, " propagate_from:%i", dom
);
875 if (IS_MNT_UNBINDABLE(mnt
))
876 seq_puts(m
, " unbindable");
878 /* Filesystem specific data */
882 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
883 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
884 err
= show_sb_opts(m
, sb
);
887 if (sb
->s_op
->show_options
)
888 err
= sb
->s_op
->show_options(m
, mnt
);
894 const struct seq_operations mountinfo_op
= {
898 .show
= show_mountinfo
,
901 static int show_vfsstat(struct seq_file
*m
, void *v
)
903 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
904 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
908 if (mnt
->mnt_devname
) {
909 seq_puts(m
, "device ");
910 mangle(m
, mnt
->mnt_devname
);
912 seq_puts(m
, "no device");
915 seq_puts(m
, " mounted on ");
916 seq_path(m
, &mnt_path
, " \t\n\\");
919 /* file system type */
920 seq_puts(m
, "with fstype ");
921 show_type(m
, mnt
->mnt_sb
);
923 /* optional statistics */
924 if (mnt
->mnt_sb
->s_op
->show_stats
) {
926 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
933 const struct seq_operations mountstats_op
= {
937 .show
= show_vfsstat
,
939 #endif /* CONFIG_PROC_FS */
942 * may_umount_tree - check if a mount tree is busy
943 * @mnt: root of mount tree
945 * This is called to check if a tree of mounts has any
946 * open files, pwds, chroots or sub mounts that are
949 int may_umount_tree(struct vfsmount
*mnt
)
952 int minimum_refs
= 0;
955 spin_lock(&vfsmount_lock
);
956 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
957 actual_refs
+= atomic_read(&p
->mnt_count
);
960 spin_unlock(&vfsmount_lock
);
962 if (actual_refs
> minimum_refs
)
968 EXPORT_SYMBOL(may_umount_tree
);
971 * may_umount - check if a mount point is busy
972 * @mnt: root of mount
974 * This is called to check if a mount point has any
975 * open files, pwds, chroots or sub mounts. If the
976 * mount has sub mounts this will return busy
977 * regardless of whether the sub mounts are busy.
979 * Doesn't take quota and stuff into account. IOW, in some cases it will
980 * give false negatives. The main reason why it's here is that we need
981 * a non-destructive way to look for easily umountable filesystems.
983 int may_umount(struct vfsmount
*mnt
)
986 down_read(&namespace_sem
);
987 spin_lock(&vfsmount_lock
);
988 if (propagate_mount_busy(mnt
, 2))
990 spin_unlock(&vfsmount_lock
);
991 up_read(&namespace_sem
);
995 EXPORT_SYMBOL(may_umount
);
997 void release_mounts(struct list_head
*head
)
999 struct vfsmount
*mnt
;
1000 while (!list_empty(head
)) {
1001 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
1002 list_del_init(&mnt
->mnt_hash
);
1003 if (mnt
->mnt_parent
!= mnt
) {
1004 struct dentry
*dentry
;
1006 spin_lock(&vfsmount_lock
);
1007 dentry
= mnt
->mnt_mountpoint
;
1008 m
= mnt
->mnt_parent
;
1009 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
1010 mnt
->mnt_parent
= mnt
;
1012 spin_unlock(&vfsmount_lock
);
1020 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1024 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1025 list_move(&p
->mnt_hash
, kill
);
1028 propagate_umount(kill
);
1030 list_for_each_entry(p
, kill
, mnt_hash
) {
1031 list_del_init(&p
->mnt_expire
);
1032 list_del_init(&p
->mnt_list
);
1033 __touch_mnt_namespace(p
->mnt_ns
);
1035 list_del_init(&p
->mnt_child
);
1036 if (p
->mnt_parent
!= p
) {
1037 p
->mnt_parent
->mnt_ghosts
++;
1038 p
->mnt_mountpoint
->d_mounted
--;
1040 change_mnt_propagation(p
, MS_PRIVATE
);
1044 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1046 static int do_umount(struct vfsmount
*mnt
, int flags
)
1048 struct super_block
*sb
= mnt
->mnt_sb
;
1050 LIST_HEAD(umount_list
);
1052 retval
= security_sb_umount(mnt
, flags
);
1057 * Allow userspace to request a mountpoint be expired rather than
1058 * unmounting unconditionally. Unmount only happens if:
1059 * (1) the mark is already set (the mark is cleared by mntput())
1060 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1062 if (flags
& MNT_EXPIRE
) {
1063 if (mnt
== current
->fs
->root
.mnt
||
1064 flags
& (MNT_FORCE
| MNT_DETACH
))
1067 if (atomic_read(&mnt
->mnt_count
) != 2)
1070 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1075 * If we may have to abort operations to get out of this
1076 * mount, and they will themselves hold resources we must
1077 * allow the fs to do things. In the Unix tradition of
1078 * 'Gee thats tricky lets do it in userspace' the umount_begin
1079 * might fail to complete on the first run through as other tasks
1080 * must return, and the like. Thats for the mount program to worry
1081 * about for the moment.
1084 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1085 sb
->s_op
->umount_begin(sb
);
1089 * No sense to grab the lock for this test, but test itself looks
1090 * somewhat bogus. Suggestions for better replacement?
1091 * Ho-hum... In principle, we might treat that as umount + switch
1092 * to rootfs. GC would eventually take care of the old vfsmount.
1093 * Actually it makes sense, especially if rootfs would contain a
1094 * /reboot - static binary that would close all descriptors and
1095 * call reboot(9). Then init(8) could umount root and exec /reboot.
1097 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1099 * Special case for "unmounting" root ...
1100 * we just try to remount it readonly.
1102 down_write(&sb
->s_umount
);
1103 if (!(sb
->s_flags
& MS_RDONLY
))
1104 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1105 up_write(&sb
->s_umount
);
1109 down_write(&namespace_sem
);
1110 spin_lock(&vfsmount_lock
);
1113 if (!(flags
& MNT_DETACH
))
1114 shrink_submounts(mnt
, &umount_list
);
1117 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1118 if (!list_empty(&mnt
->mnt_list
))
1119 umount_tree(mnt
, 1, &umount_list
);
1122 spin_unlock(&vfsmount_lock
);
1123 up_write(&namespace_sem
);
1124 release_mounts(&umount_list
);
1129 * Now umount can handle mount points as well as block devices.
1130 * This is important for filesystems which use unnamed block devices.
1132 * We now support a flag for forced unmount like the other 'big iron'
1133 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1136 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1140 int lookup_flags
= 0;
1142 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1145 if (!(flags
& UMOUNT_NOFOLLOW
))
1146 lookup_flags
|= LOOKUP_FOLLOW
;
1148 retval
= user_path_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1152 if (path
.dentry
!= path
.mnt
->mnt_root
)
1154 if (!check_mnt(path
.mnt
))
1158 if (!capable(CAP_SYS_ADMIN
))
1161 retval
= do_umount(path
.mnt
, flags
);
1163 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1165 mntput_no_expire(path
.mnt
);
1170 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1173 * The 2.0 compatible umount. No flags.
1175 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1177 return sys_umount(name
, 0);
1182 static int mount_is_safe(struct path
*path
)
1184 if (capable(CAP_SYS_ADMIN
))
1188 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1190 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1191 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1194 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1200 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1203 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1206 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1209 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1212 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1215 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1216 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1219 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1220 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1221 s
= skip_mnt_tree(s
);
1224 while (p
!= s
->mnt_parent
) {
1230 path
.dentry
= p
->mnt_mountpoint
;
1231 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1234 spin_lock(&vfsmount_lock
);
1235 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1236 attach_mnt(q
, &path
);
1237 spin_unlock(&vfsmount_lock
);
1243 LIST_HEAD(umount_list
);
1244 spin_lock(&vfsmount_lock
);
1245 umount_tree(res
, 0, &umount_list
);
1246 spin_unlock(&vfsmount_lock
);
1247 release_mounts(&umount_list
);
1252 struct vfsmount
*collect_mounts(struct path
*path
)
1254 struct vfsmount
*tree
;
1255 down_write(&namespace_sem
);
1256 tree
= copy_tree(path
->mnt
, path
->dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1257 up_write(&namespace_sem
);
1261 void drop_collected_mounts(struct vfsmount
*mnt
)
1263 LIST_HEAD(umount_list
);
1264 down_write(&namespace_sem
);
1265 spin_lock(&vfsmount_lock
);
1266 umount_tree(mnt
, 0, &umount_list
);
1267 spin_unlock(&vfsmount_lock
);
1268 up_write(&namespace_sem
);
1269 release_mounts(&umount_list
);
1272 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1273 struct vfsmount
*root
)
1275 struct vfsmount
*mnt
;
1276 int res
= f(root
, arg
);
1279 list_for_each_entry(mnt
, &root
->mnt_list
, mnt_list
) {
1287 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1291 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1292 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1293 mnt_release_group_id(p
);
1297 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1301 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1302 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1303 int err
= mnt_alloc_group_id(p
);
1305 cleanup_group_ids(mnt
, p
);
1315 * @source_mnt : mount tree to be attached
1316 * @nd : place the mount tree @source_mnt is attached
1317 * @parent_nd : if non-null, detach the source_mnt from its parent and
1318 * store the parent mount and mountpoint dentry.
1319 * (done when source_mnt is moved)
1321 * NOTE: in the table below explains the semantics when a source mount
1322 * of a given type is attached to a destination mount of a given type.
1323 * ---------------------------------------------------------------------------
1324 * | BIND MOUNT OPERATION |
1325 * |**************************************************************************
1326 * | source-->| shared | private | slave | unbindable |
1330 * |**************************************************************************
1331 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1333 * |non-shared| shared (+) | private | slave (*) | invalid |
1334 * ***************************************************************************
1335 * A bind operation clones the source mount and mounts the clone on the
1336 * destination mount.
1338 * (++) the cloned mount is propagated to all the mounts in the propagation
1339 * tree of the destination mount and the cloned mount is added to
1340 * the peer group of the source mount.
1341 * (+) the cloned mount is created under the destination mount and is marked
1342 * as shared. The cloned mount is added to the peer group of the source
1344 * (+++) the mount is propagated to all the mounts in the propagation tree
1345 * of the destination mount and the cloned mount is made slave
1346 * of the same master as that of the source mount. The cloned mount
1347 * is marked as 'shared and slave'.
1348 * (*) the cloned mount is made a slave of the same master as that of the
1351 * ---------------------------------------------------------------------------
1352 * | MOVE MOUNT OPERATION |
1353 * |**************************************************************************
1354 * | source-->| shared | private | slave | unbindable |
1358 * |**************************************************************************
1359 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1361 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1362 * ***************************************************************************
1364 * (+) the mount is moved to the destination. And is then propagated to
1365 * all the mounts in the propagation tree of the destination mount.
1366 * (+*) the mount is moved to the destination.
1367 * (+++) the mount is moved to the destination and is then propagated to
1368 * all the mounts belonging to the destination mount's propagation tree.
1369 * the mount is marked as 'shared and slave'.
1370 * (*) the mount continues to be a slave at the new location.
1372 * if the source mount is a tree, the operations explained above is
1373 * applied to each mount in the tree.
1374 * Must be called without spinlocks held, since this function can sleep
1377 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1378 struct path
*path
, struct path
*parent_path
)
1380 LIST_HEAD(tree_list
);
1381 struct vfsmount
*dest_mnt
= path
->mnt
;
1382 struct dentry
*dest_dentry
= path
->dentry
;
1383 struct vfsmount
*child
, *p
;
1386 if (IS_MNT_SHARED(dest_mnt
)) {
1387 err
= invent_group_ids(source_mnt
, true);
1391 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1393 goto out_cleanup_ids
;
1395 spin_lock(&vfsmount_lock
);
1397 if (IS_MNT_SHARED(dest_mnt
)) {
1398 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1402 detach_mnt(source_mnt
, parent_path
);
1403 attach_mnt(source_mnt
, path
);
1404 touch_mnt_namespace(parent_path
->mnt
->mnt_ns
);
1406 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1407 commit_tree(source_mnt
);
1410 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1411 list_del_init(&child
->mnt_hash
);
1414 spin_unlock(&vfsmount_lock
);
1418 if (IS_MNT_SHARED(dest_mnt
))
1419 cleanup_group_ids(source_mnt
, NULL
);
1424 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1427 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1430 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1431 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1435 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1436 if (cant_mount(path
->dentry
))
1439 if (!d_unlinked(path
->dentry
))
1440 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1442 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1447 * recursively change the type of the mountpoint.
1449 static int do_change_type(struct path
*path
, int flag
)
1451 struct vfsmount
*m
, *mnt
= path
->mnt
;
1452 int recurse
= flag
& MS_REC
;
1453 int type
= flag
& ~MS_REC
;
1456 if (!capable(CAP_SYS_ADMIN
))
1459 if (path
->dentry
!= path
->mnt
->mnt_root
)
1462 down_write(&namespace_sem
);
1463 if (type
== MS_SHARED
) {
1464 err
= invent_group_ids(mnt
, recurse
);
1469 spin_lock(&vfsmount_lock
);
1470 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1471 change_mnt_propagation(m
, type
);
1472 spin_unlock(&vfsmount_lock
);
1475 up_write(&namespace_sem
);
1480 * do loopback mount.
1482 static int do_loopback(struct path
*path
, char *old_name
,
1485 struct path old_path
;
1486 struct vfsmount
*mnt
= NULL
;
1487 int err
= mount_is_safe(path
);
1490 if (!old_name
|| !*old_name
)
1492 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1496 down_write(&namespace_sem
);
1498 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1501 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1506 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1508 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1513 err
= graft_tree(mnt
, path
);
1515 LIST_HEAD(umount_list
);
1516 spin_lock(&vfsmount_lock
);
1517 umount_tree(mnt
, 0, &umount_list
);
1518 spin_unlock(&vfsmount_lock
);
1519 release_mounts(&umount_list
);
1523 up_write(&namespace_sem
);
1524 path_put(&old_path
);
1528 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1531 int readonly_request
= 0;
1533 if (ms_flags
& MS_RDONLY
)
1534 readonly_request
= 1;
1535 if (readonly_request
== __mnt_is_readonly(mnt
))
1538 if (readonly_request
)
1539 error
= mnt_make_readonly(mnt
);
1541 __mnt_unmake_readonly(mnt
);
1546 * change filesystem flags. dir should be a physical root of filesystem.
1547 * If you've mounted a non-root directory somewhere and want to do remount
1548 * on it - tough luck.
1550 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1554 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1556 if (!capable(CAP_SYS_ADMIN
))
1559 if (!check_mnt(path
->mnt
))
1562 if (path
->dentry
!= path
->mnt
->mnt_root
)
1565 down_write(&sb
->s_umount
);
1566 if (flags
& MS_BIND
)
1567 err
= change_mount_flags(path
->mnt
, flags
);
1569 err
= do_remount_sb(sb
, flags
, data
, 0);
1571 spin_lock(&vfsmount_lock
);
1572 mnt_flags
|= path
->mnt
->mnt_flags
& MNT_PROPAGATION_MASK
;
1573 path
->mnt
->mnt_flags
= mnt_flags
;
1574 spin_unlock(&vfsmount_lock
);
1576 up_write(&sb
->s_umount
);
1578 spin_lock(&vfsmount_lock
);
1579 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1580 spin_unlock(&vfsmount_lock
);
1585 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1588 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1589 if (IS_MNT_UNBINDABLE(p
))
1595 static int do_move_mount(struct path
*path
, char *old_name
)
1597 struct path old_path
, parent_path
;
1600 if (!capable(CAP_SYS_ADMIN
))
1602 if (!old_name
|| !*old_name
)
1604 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1608 down_write(&namespace_sem
);
1609 while (d_mountpoint(path
->dentry
) &&
1613 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1617 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1618 if (cant_mount(path
->dentry
))
1621 if (d_unlinked(path
->dentry
))
1625 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1628 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1631 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1632 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1635 * Don't move a mount residing in a shared parent.
1637 if (old_path
.mnt
->mnt_parent
&&
1638 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1641 * Don't move a mount tree containing unbindable mounts to a destination
1642 * mount which is shared.
1644 if (IS_MNT_SHARED(path
->mnt
) &&
1645 tree_contains_unbindable(old_path
.mnt
))
1648 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1649 if (p
== old_path
.mnt
)
1652 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1656 /* if the mount is moved, it should no longer be expire
1658 list_del_init(&old_path
.mnt
->mnt_expire
);
1660 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1662 up_write(&namespace_sem
);
1664 path_put(&parent_path
);
1665 path_put(&old_path
);
1670 * create a new mount for userspace and request it to be added into the
1673 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1674 int mnt_flags
, char *name
, void *data
)
1676 struct vfsmount
*mnt
;
1681 /* we need capabilities... */
1682 if (!capable(CAP_SYS_ADMIN
))
1686 mnt
= do_kern_mount(type
, flags
, name
, data
);
1689 return PTR_ERR(mnt
);
1691 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1695 * add a mount into a namespace's mount tree
1696 * - provide the option of adding the new mount to an expiration list
1698 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1699 int mnt_flags
, struct list_head
*fslist
)
1703 mnt_flags
&= ~(MNT_SHARED
| MNT_WRITE_HOLD
| MNT_INTERNAL
);
1705 down_write(&namespace_sem
);
1706 /* Something was mounted here while we slept */
1707 while (d_mountpoint(path
->dentry
) &&
1711 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(path
->mnt
))
1714 /* Refuse the same filesystem on the same mount point */
1716 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1717 path
->mnt
->mnt_root
== path
->dentry
)
1721 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1724 newmnt
->mnt_flags
= mnt_flags
;
1725 if ((err
= graft_tree(newmnt
, path
)))
1728 if (fslist
) /* add to the specified expiration list */
1729 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1731 up_write(&namespace_sem
);
1735 up_write(&namespace_sem
);
1740 EXPORT_SYMBOL_GPL(do_add_mount
);
1743 * process a list of expirable mountpoints with the intent of discarding any
1744 * mountpoints that aren't in use and haven't been touched since last we came
1747 void mark_mounts_for_expiry(struct list_head
*mounts
)
1749 struct vfsmount
*mnt
, *next
;
1750 LIST_HEAD(graveyard
);
1753 if (list_empty(mounts
))
1756 down_write(&namespace_sem
);
1757 spin_lock(&vfsmount_lock
);
1759 /* extract from the expiration list every vfsmount that matches the
1760 * following criteria:
1761 * - only referenced by its parent vfsmount
1762 * - still marked for expiry (marked on the last call here; marks are
1763 * cleared by mntput())
1765 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1766 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1767 propagate_mount_busy(mnt
, 1))
1769 list_move(&mnt
->mnt_expire
, &graveyard
);
1771 while (!list_empty(&graveyard
)) {
1772 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1773 touch_mnt_namespace(mnt
->mnt_ns
);
1774 umount_tree(mnt
, 1, &umounts
);
1776 spin_unlock(&vfsmount_lock
);
1777 up_write(&namespace_sem
);
1779 release_mounts(&umounts
);
1782 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1785 * Ripoff of 'select_parent()'
1787 * search the list of submounts for a given mountpoint, and move any
1788 * shrinkable submounts to the 'graveyard' list.
1790 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1792 struct vfsmount
*this_parent
= parent
;
1793 struct list_head
*next
;
1797 next
= this_parent
->mnt_mounts
.next
;
1799 while (next
!= &this_parent
->mnt_mounts
) {
1800 struct list_head
*tmp
= next
;
1801 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1804 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1807 * Descend a level if the d_mounts list is non-empty.
1809 if (!list_empty(&mnt
->mnt_mounts
)) {
1814 if (!propagate_mount_busy(mnt
, 1)) {
1815 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1820 * All done at this level ... ascend and resume the search
1822 if (this_parent
!= parent
) {
1823 next
= this_parent
->mnt_child
.next
;
1824 this_parent
= this_parent
->mnt_parent
;
1831 * process a list of expirable mountpoints with the intent of discarding any
1832 * submounts of a specific parent mountpoint
1834 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1836 LIST_HEAD(graveyard
);
1839 /* extract submounts of 'mountpoint' from the expiration list */
1840 while (select_submounts(mnt
, &graveyard
)) {
1841 while (!list_empty(&graveyard
)) {
1842 m
= list_first_entry(&graveyard
, struct vfsmount
,
1844 touch_mnt_namespace(m
->mnt_ns
);
1845 umount_tree(m
, 1, umounts
);
1851 * Some copy_from_user() implementations do not return the exact number of
1852 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1853 * Note that this function differs from copy_from_user() in that it will oops
1854 * on bad values of `to', rather than returning a short copy.
1856 static long exact_copy_from_user(void *to
, const void __user
* from
,
1860 const char __user
*f
= from
;
1863 if (!access_ok(VERIFY_READ
, from
, n
))
1867 if (__get_user(c
, f
)) {
1878 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1888 if (!(page
= __get_free_page(GFP_KERNEL
)))
1891 /* We only care that *some* data at the address the user
1892 * gave us is valid. Just in case, we'll zero
1893 * the remainder of the page.
1895 /* copy_from_user cannot cross TASK_SIZE ! */
1896 size
= TASK_SIZE
- (unsigned long)data
;
1897 if (size
> PAGE_SIZE
)
1900 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1906 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1911 int copy_mount_string(const void __user
*data
, char **where
)
1920 tmp
= strndup_user(data
, PAGE_SIZE
);
1922 return PTR_ERR(tmp
);
1929 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1930 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1932 * data is a (void *) that can point to any structure up to
1933 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1934 * information (or be NULL).
1936 * Pre-0.97 versions of mount() didn't have a flags word.
1937 * When the flags word was introduced its top half was required
1938 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1939 * Therefore, if this magic number is present, it carries no information
1940 * and must be discarded.
1942 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1943 unsigned long flags
, void *data_page
)
1950 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1951 flags
&= ~MS_MGC_MSK
;
1953 /* Basic sanity checks */
1955 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1959 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1961 /* ... and get the mountpoint */
1962 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
1966 retval
= security_sb_mount(dev_name
, &path
,
1967 type_page
, flags
, data_page
);
1971 /* Default to relatime unless overriden */
1972 if (!(flags
& MS_NOATIME
))
1973 mnt_flags
|= MNT_RELATIME
;
1975 /* Separate the per-mountpoint flags */
1976 if (flags
& MS_NOSUID
)
1977 mnt_flags
|= MNT_NOSUID
;
1978 if (flags
& MS_NODEV
)
1979 mnt_flags
|= MNT_NODEV
;
1980 if (flags
& MS_NOEXEC
)
1981 mnt_flags
|= MNT_NOEXEC
;
1982 if (flags
& MS_NOATIME
)
1983 mnt_flags
|= MNT_NOATIME
;
1984 if (flags
& MS_NODIRATIME
)
1985 mnt_flags
|= MNT_NODIRATIME
;
1986 if (flags
& MS_STRICTATIME
)
1987 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
1988 if (flags
& MS_RDONLY
)
1989 mnt_flags
|= MNT_READONLY
;
1991 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
1992 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
1995 if (flags
& MS_REMOUNT
)
1996 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
1998 else if (flags
& MS_BIND
)
1999 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2000 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2001 retval
= do_change_type(&path
, flags
);
2002 else if (flags
& MS_MOVE
)
2003 retval
= do_move_mount(&path
, dev_name
);
2005 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2006 dev_name
, data_page
);
2012 static struct mnt_namespace
*alloc_mnt_ns(void)
2014 struct mnt_namespace
*new_ns
;
2016 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2018 return ERR_PTR(-ENOMEM
);
2019 atomic_set(&new_ns
->count
, 1);
2020 new_ns
->root
= NULL
;
2021 INIT_LIST_HEAD(&new_ns
->list
);
2022 init_waitqueue_head(&new_ns
->poll
);
2028 * Allocate a new namespace structure and populate it with contents
2029 * copied from the namespace of the passed in task structure.
2031 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
2032 struct fs_struct
*fs
)
2034 struct mnt_namespace
*new_ns
;
2035 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2036 struct vfsmount
*p
, *q
;
2038 new_ns
= alloc_mnt_ns();
2042 down_write(&namespace_sem
);
2043 /* First pass: copy the tree topology */
2044 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
2045 CL_COPY_ALL
| CL_EXPIRE
);
2046 if (!new_ns
->root
) {
2047 up_write(&namespace_sem
);
2049 return ERR_PTR(-ENOMEM
);
2051 spin_lock(&vfsmount_lock
);
2052 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2053 spin_unlock(&vfsmount_lock
);
2056 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2057 * as belonging to new namespace. We have already acquired a private
2058 * fs_struct, so tsk->fs->lock is not needed.
2065 if (p
== fs
->root
.mnt
) {
2067 fs
->root
.mnt
= mntget(q
);
2069 if (p
== fs
->pwd
.mnt
) {
2071 fs
->pwd
.mnt
= mntget(q
);
2074 p
= next_mnt(p
, mnt_ns
->root
);
2075 q
= next_mnt(q
, new_ns
->root
);
2077 up_write(&namespace_sem
);
2087 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2088 struct fs_struct
*new_fs
)
2090 struct mnt_namespace
*new_ns
;
2095 if (!(flags
& CLONE_NEWNS
))
2098 new_ns
= dup_mnt_ns(ns
, new_fs
);
2105 * create_mnt_ns - creates a private namespace and adds a root filesystem
2106 * @mnt: pointer to the new root filesystem mountpoint
2108 struct mnt_namespace
*create_mnt_ns(struct vfsmount
*mnt
)
2110 struct mnt_namespace
*new_ns
;
2112 new_ns
= alloc_mnt_ns();
2113 if (!IS_ERR(new_ns
)) {
2114 mnt
->mnt_ns
= new_ns
;
2116 list_add(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2120 EXPORT_SYMBOL(create_mnt_ns
);
2122 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2123 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2129 unsigned long data_page
;
2131 ret
= copy_mount_string(type
, &kernel_type
);
2135 kernel_dir
= getname(dir_name
);
2136 if (IS_ERR(kernel_dir
)) {
2137 ret
= PTR_ERR(kernel_dir
);
2141 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2145 ret
= copy_mount_options(data
, &data_page
);
2149 ret
= do_mount(kernel_dev
, kernel_dir
, kernel_type
, flags
,
2150 (void *) data_page
);
2152 free_page(data_page
);
2156 putname(kernel_dir
);
2164 * pivot_root Semantics:
2165 * Moves the root file system of the current process to the directory put_old,
2166 * makes new_root as the new root file system of the current process, and sets
2167 * root/cwd of all processes which had them on the current root to new_root.
2170 * The new_root and put_old must be directories, and must not be on the
2171 * same file system as the current process root. The put_old must be
2172 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2173 * pointed to by put_old must yield the same directory as new_root. No other
2174 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2176 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2177 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2178 * in this situation.
2181 * - we don't move root/cwd if they are not at the root (reason: if something
2182 * cared enough to change them, it's probably wrong to force them elsewhere)
2183 * - it's okay to pick a root that isn't the root of a file system, e.g.
2184 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2185 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2188 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2189 const char __user
*, put_old
)
2191 struct vfsmount
*tmp
;
2192 struct path
new, old
, parent_path
, root_parent
, root
;
2195 if (!capable(CAP_SYS_ADMIN
))
2198 error
= user_path_dir(new_root
, &new);
2202 if (!check_mnt(new.mnt
))
2205 error
= user_path_dir(put_old
, &old
);
2209 error
= security_sb_pivotroot(&old
, &new);
2215 get_fs_root(current
->fs
, &root
);
2216 down_write(&namespace_sem
);
2217 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2219 if (IS_MNT_SHARED(old
.mnt
) ||
2220 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2221 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2223 if (!check_mnt(root
.mnt
))
2226 if (cant_mount(old
.dentry
))
2228 if (d_unlinked(new.dentry
))
2230 if (d_unlinked(old
.dentry
))
2233 if (new.mnt
== root
.mnt
||
2234 old
.mnt
== root
.mnt
)
2235 goto out2
; /* loop, on the same file system */
2237 if (root
.mnt
->mnt_root
!= root
.dentry
)
2238 goto out2
; /* not a mountpoint */
2239 if (root
.mnt
->mnt_parent
== root
.mnt
)
2240 goto out2
; /* not attached */
2241 if (new.mnt
->mnt_root
!= new.dentry
)
2242 goto out2
; /* not a mountpoint */
2243 if (new.mnt
->mnt_parent
== new.mnt
)
2244 goto out2
; /* not attached */
2245 /* make sure we can reach put_old from new_root */
2247 spin_lock(&vfsmount_lock
);
2248 if (tmp
!= new.mnt
) {
2250 if (tmp
->mnt_parent
== tmp
)
2251 goto out3
; /* already mounted on put_old */
2252 if (tmp
->mnt_parent
== new.mnt
)
2254 tmp
= tmp
->mnt_parent
;
2256 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2258 } else if (!is_subdir(old
.dentry
, new.dentry
))
2260 detach_mnt(new.mnt
, &parent_path
);
2261 detach_mnt(root
.mnt
, &root_parent
);
2262 /* mount old root on put_old */
2263 attach_mnt(root
.mnt
, &old
);
2264 /* mount new_root on / */
2265 attach_mnt(new.mnt
, &root_parent
);
2266 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2267 spin_unlock(&vfsmount_lock
);
2268 chroot_fs_refs(&root
, &new);
2270 path_put(&root_parent
);
2271 path_put(&parent_path
);
2273 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2274 up_write(&namespace_sem
);
2282 spin_unlock(&vfsmount_lock
);
2286 static void __init
init_mount_tree(void)
2288 struct vfsmount
*mnt
;
2289 struct mnt_namespace
*ns
;
2292 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2294 panic("Can't create rootfs");
2295 ns
= create_mnt_ns(mnt
);
2297 panic("Can't allocate initial namespace");
2299 init_task
.nsproxy
->mnt_ns
= ns
;
2302 root
.mnt
= ns
->root
;
2303 root
.dentry
= ns
->root
->mnt_root
;
2305 set_fs_pwd(current
->fs
, &root
);
2306 set_fs_root(current
->fs
, &root
);
2309 void __init
mnt_init(void)
2314 init_rwsem(&namespace_sem
);
2316 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2317 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2319 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2321 if (!mount_hashtable
)
2322 panic("Failed to allocate mount hash table\n");
2324 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2326 for (u
= 0; u
< HASH_SIZE
; u
++)
2327 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2331 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2333 fs_kobj
= kobject_create_and_add("fs", NULL
);
2335 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2340 void put_mnt_ns(struct mnt_namespace
*ns
)
2342 LIST_HEAD(umount_list
);
2344 if (!atomic_dec_and_test(&ns
->count
))
2346 down_write(&namespace_sem
);
2347 spin_lock(&vfsmount_lock
);
2348 umount_tree(ns
->root
, 0, &umount_list
);
2349 spin_unlock(&vfsmount_lock
);
2350 up_write(&namespace_sem
);
2351 release_mounts(&umount_list
);
2354 EXPORT_SYMBOL(put_mnt_ns
);