[PATCH] genirq: convert the x86_64 architecture to irq-chips
[linux-2.6/kvm.git] / kernel / sys.c
blob2314867ae34f138a80daf20e6ed930ef731d8f6e
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/unistd.h>
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
43 #endif
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
46 #endif
47 #ifndef SET_FPEMU_CTL
48 # define SET_FPEMU_CTL(a,b) (-EINVAL)
49 #endif
50 #ifndef GET_FPEMU_CTL
51 # define GET_FPEMU_CTL(a,b) (-EINVAL)
52 #endif
53 #ifndef SET_FPEXC_CTL
54 # define SET_FPEXC_CTL(a,b) (-EINVAL)
55 #endif
56 #ifndef GET_FPEXC_CTL
57 # define GET_FPEXC_CTL(a,b) (-EINVAL)
58 #endif
59 #ifndef GET_ENDIAN
60 # define GET_ENDIAN(a,b) (-EINVAL)
61 #endif
62 #ifndef SET_ENDIAN
63 # define SET_ENDIAN(a,b) (-EINVAL)
64 #endif
67 * this is where the system-wide overflow UID and GID are defined, for
68 * architectures that now have 32-bit UID/GID but didn't in the past
71 int overflowuid = DEFAULT_OVERFLOWUID;
72 int overflowgid = DEFAULT_OVERFLOWGID;
74 #ifdef CONFIG_UID16
75 EXPORT_SYMBOL(overflowuid);
76 EXPORT_SYMBOL(overflowgid);
77 #endif
80 * the same as above, but for filesystems which can only store a 16-bit
81 * UID and GID. as such, this is needed on all architectures
84 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
85 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
87 EXPORT_SYMBOL(fs_overflowuid);
88 EXPORT_SYMBOL(fs_overflowgid);
91 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
94 int C_A_D = 1;
95 struct pid *cad_pid;
96 EXPORT_SYMBOL(cad_pid);
99 * Notifier list for kernel code which wants to be called
100 * at shutdown. This is used to stop any idling DMA operations
101 * and the like.
104 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
107 * Notifier chain core routines. The exported routines below
108 * are layered on top of these, with appropriate locking added.
111 static int notifier_chain_register(struct notifier_block **nl,
112 struct notifier_block *n)
114 while ((*nl) != NULL) {
115 if (n->priority > (*nl)->priority)
116 break;
117 nl = &((*nl)->next);
119 n->next = *nl;
120 rcu_assign_pointer(*nl, n);
121 return 0;
124 static int notifier_chain_unregister(struct notifier_block **nl,
125 struct notifier_block *n)
127 while ((*nl) != NULL) {
128 if ((*nl) == n) {
129 rcu_assign_pointer(*nl, n->next);
130 return 0;
132 nl = &((*nl)->next);
134 return -ENOENT;
137 static int __kprobes notifier_call_chain(struct notifier_block **nl,
138 unsigned long val, void *v)
140 int ret = NOTIFY_DONE;
141 struct notifier_block *nb, *next_nb;
143 nb = rcu_dereference(*nl);
144 while (nb) {
145 next_nb = rcu_dereference(nb->next);
146 ret = nb->notifier_call(nb, val, v);
147 if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
148 break;
149 nb = next_nb;
151 return ret;
155 * Atomic notifier chain routines. Registration and unregistration
156 * use a mutex, and call_chain is synchronized by RCU (no locks).
160 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
161 * @nh: Pointer to head of the atomic notifier chain
162 * @n: New entry in notifier chain
164 * Adds a notifier to an atomic notifier chain.
166 * Currently always returns zero.
169 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
170 struct notifier_block *n)
172 unsigned long flags;
173 int ret;
175 spin_lock_irqsave(&nh->lock, flags);
176 ret = notifier_chain_register(&nh->head, n);
177 spin_unlock_irqrestore(&nh->lock, flags);
178 return ret;
181 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
184 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
185 * @nh: Pointer to head of the atomic notifier chain
186 * @n: Entry to remove from notifier chain
188 * Removes a notifier from an atomic notifier chain.
190 * Returns zero on success or %-ENOENT on failure.
192 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
193 struct notifier_block *n)
195 unsigned long flags;
196 int ret;
198 spin_lock_irqsave(&nh->lock, flags);
199 ret = notifier_chain_unregister(&nh->head, n);
200 spin_unlock_irqrestore(&nh->lock, flags);
201 synchronize_rcu();
202 return ret;
205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
208 * atomic_notifier_call_chain - Call functions in an atomic notifier chain
209 * @nh: Pointer to head of the atomic notifier chain
210 * @val: Value passed unmodified to notifier function
211 * @v: Pointer passed unmodified to notifier function
213 * Calls each function in a notifier chain in turn. The functions
214 * run in an atomic context, so they must not block.
215 * This routine uses RCU to synchronize with changes to the chain.
217 * If the return value of the notifier can be and'ed
218 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
219 * will return immediately, with the return value of
220 * the notifier function which halted execution.
221 * Otherwise the return value is the return value
222 * of the last notifier function called.
225 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
226 unsigned long val, void *v)
228 int ret;
230 rcu_read_lock();
231 ret = notifier_call_chain(&nh->head, val, v);
232 rcu_read_unlock();
233 return ret;
236 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
239 * Blocking notifier chain routines. All access to the chain is
240 * synchronized by an rwsem.
244 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
245 * @nh: Pointer to head of the blocking notifier chain
246 * @n: New entry in notifier chain
248 * Adds a notifier to a blocking notifier chain.
249 * Must be called in process context.
251 * Currently always returns zero.
254 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
255 struct notifier_block *n)
257 int ret;
260 * This code gets used during boot-up, when task switching is
261 * not yet working and interrupts must remain disabled. At
262 * such times we must not call down_write().
264 if (unlikely(system_state == SYSTEM_BOOTING))
265 return notifier_chain_register(&nh->head, n);
267 down_write(&nh->rwsem);
268 ret = notifier_chain_register(&nh->head, n);
269 up_write(&nh->rwsem);
270 return ret;
273 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
276 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
277 * @nh: Pointer to head of the blocking notifier chain
278 * @n: Entry to remove from notifier chain
280 * Removes a notifier from a blocking notifier chain.
281 * Must be called from process context.
283 * Returns zero on success or %-ENOENT on failure.
285 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
286 struct notifier_block *n)
288 int ret;
291 * This code gets used during boot-up, when task switching is
292 * not yet working and interrupts must remain disabled. At
293 * such times we must not call down_write().
295 if (unlikely(system_state == SYSTEM_BOOTING))
296 return notifier_chain_unregister(&nh->head, n);
298 down_write(&nh->rwsem);
299 ret = notifier_chain_unregister(&nh->head, n);
300 up_write(&nh->rwsem);
301 return ret;
304 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
307 * blocking_notifier_call_chain - Call functions in a blocking notifier chain
308 * @nh: Pointer to head of the blocking notifier chain
309 * @val: Value passed unmodified to notifier function
310 * @v: Pointer passed unmodified to notifier function
312 * Calls each function in a notifier chain in turn. The functions
313 * run in a process context, so they are allowed to block.
315 * If the return value of the notifier can be and'ed
316 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
317 * will return immediately, with the return value of
318 * the notifier function which halted execution.
319 * Otherwise the return value is the return value
320 * of the last notifier function called.
323 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
324 unsigned long val, void *v)
326 int ret;
328 down_read(&nh->rwsem);
329 ret = notifier_call_chain(&nh->head, val, v);
330 up_read(&nh->rwsem);
331 return ret;
334 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
337 * Raw notifier chain routines. There is no protection;
338 * the caller must provide it. Use at your own risk!
342 * raw_notifier_chain_register - Add notifier to a raw notifier chain
343 * @nh: Pointer to head of the raw notifier chain
344 * @n: New entry in notifier chain
346 * Adds a notifier to a raw notifier chain.
347 * All locking must be provided by the caller.
349 * Currently always returns zero.
352 int raw_notifier_chain_register(struct raw_notifier_head *nh,
353 struct notifier_block *n)
355 return notifier_chain_register(&nh->head, n);
358 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
361 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
362 * @nh: Pointer to head of the raw notifier chain
363 * @n: Entry to remove from notifier chain
365 * Removes a notifier from a raw notifier chain.
366 * All locking must be provided by the caller.
368 * Returns zero on success or %-ENOENT on failure.
370 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
371 struct notifier_block *n)
373 return notifier_chain_unregister(&nh->head, n);
376 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
379 * raw_notifier_call_chain - Call functions in a raw notifier chain
380 * @nh: Pointer to head of the raw notifier chain
381 * @val: Value passed unmodified to notifier function
382 * @v: Pointer passed unmodified to notifier function
384 * Calls each function in a notifier chain in turn. The functions
385 * run in an undefined context.
386 * All locking must be provided by the caller.
388 * If the return value of the notifier can be and'ed
389 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain
390 * will return immediately, with the return value of
391 * the notifier function which halted execution.
392 * Otherwise the return value is the return value
393 * of the last notifier function called.
396 int raw_notifier_call_chain(struct raw_notifier_head *nh,
397 unsigned long val, void *v)
399 return notifier_call_chain(&nh->head, val, v);
402 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
405 * register_reboot_notifier - Register function to be called at reboot time
406 * @nb: Info about notifier function to be called
408 * Registers a function with the list of functions
409 * to be called at reboot time.
411 * Currently always returns zero, as blocking_notifier_chain_register
412 * always returns zero.
415 int register_reboot_notifier(struct notifier_block * nb)
417 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
420 EXPORT_SYMBOL(register_reboot_notifier);
423 * unregister_reboot_notifier - Unregister previously registered reboot notifier
424 * @nb: Hook to be unregistered
426 * Unregisters a previously registered reboot
427 * notifier function.
429 * Returns zero on success, or %-ENOENT on failure.
432 int unregister_reboot_notifier(struct notifier_block * nb)
434 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
437 EXPORT_SYMBOL(unregister_reboot_notifier);
439 static int set_one_prio(struct task_struct *p, int niceval, int error)
441 int no_nice;
443 if (p->uid != current->euid &&
444 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
445 error = -EPERM;
446 goto out;
448 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
449 error = -EACCES;
450 goto out;
452 no_nice = security_task_setnice(p, niceval);
453 if (no_nice) {
454 error = no_nice;
455 goto out;
457 if (error == -ESRCH)
458 error = 0;
459 set_user_nice(p, niceval);
460 out:
461 return error;
464 asmlinkage long sys_setpriority(int which, int who, int niceval)
466 struct task_struct *g, *p;
467 struct user_struct *user;
468 int error = -EINVAL;
470 if (which > 2 || which < 0)
471 goto out;
473 /* normalize: avoid signed division (rounding problems) */
474 error = -ESRCH;
475 if (niceval < -20)
476 niceval = -20;
477 if (niceval > 19)
478 niceval = 19;
480 read_lock(&tasklist_lock);
481 switch (which) {
482 case PRIO_PROCESS:
483 if (!who)
484 who = current->pid;
485 p = find_task_by_pid(who);
486 if (p)
487 error = set_one_prio(p, niceval, error);
488 break;
489 case PRIO_PGRP:
490 if (!who)
491 who = process_group(current);
492 do_each_task_pid(who, PIDTYPE_PGID, p) {
493 error = set_one_prio(p, niceval, error);
494 } while_each_task_pid(who, PIDTYPE_PGID, p);
495 break;
496 case PRIO_USER:
497 user = current->user;
498 if (!who)
499 who = current->uid;
500 else
501 if ((who != current->uid) && !(user = find_user(who)))
502 goto out_unlock; /* No processes for this user */
504 do_each_thread(g, p)
505 if (p->uid == who)
506 error = set_one_prio(p, niceval, error);
507 while_each_thread(g, p);
508 if (who != current->uid)
509 free_uid(user); /* For find_user() */
510 break;
512 out_unlock:
513 read_unlock(&tasklist_lock);
514 out:
515 return error;
519 * Ugh. To avoid negative return values, "getpriority()" will
520 * not return the normal nice-value, but a negated value that
521 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
522 * to stay compatible.
524 asmlinkage long sys_getpriority(int which, int who)
526 struct task_struct *g, *p;
527 struct user_struct *user;
528 long niceval, retval = -ESRCH;
530 if (which > 2 || which < 0)
531 return -EINVAL;
533 read_lock(&tasklist_lock);
534 switch (which) {
535 case PRIO_PROCESS:
536 if (!who)
537 who = current->pid;
538 p = find_task_by_pid(who);
539 if (p) {
540 niceval = 20 - task_nice(p);
541 if (niceval > retval)
542 retval = niceval;
544 break;
545 case PRIO_PGRP:
546 if (!who)
547 who = process_group(current);
548 do_each_task_pid(who, PIDTYPE_PGID, p) {
549 niceval = 20 - task_nice(p);
550 if (niceval > retval)
551 retval = niceval;
552 } while_each_task_pid(who, PIDTYPE_PGID, p);
553 break;
554 case PRIO_USER:
555 user = current->user;
556 if (!who)
557 who = current->uid;
558 else
559 if ((who != current->uid) && !(user = find_user(who)))
560 goto out_unlock; /* No processes for this user */
562 do_each_thread(g, p)
563 if (p->uid == who) {
564 niceval = 20 - task_nice(p);
565 if (niceval > retval)
566 retval = niceval;
568 while_each_thread(g, p);
569 if (who != current->uid)
570 free_uid(user); /* for find_user() */
571 break;
573 out_unlock:
574 read_unlock(&tasklist_lock);
576 return retval;
580 * emergency_restart - reboot the system
582 * Without shutting down any hardware or taking any locks
583 * reboot the system. This is called when we know we are in
584 * trouble so this is our best effort to reboot. This is
585 * safe to call in interrupt context.
587 void emergency_restart(void)
589 machine_emergency_restart();
591 EXPORT_SYMBOL_GPL(emergency_restart);
593 static void kernel_restart_prepare(char *cmd)
595 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
596 system_state = SYSTEM_RESTART;
597 device_shutdown();
601 * kernel_restart - reboot the system
602 * @cmd: pointer to buffer containing command to execute for restart
603 * or %NULL
605 * Shutdown everything and perform a clean reboot.
606 * This is not safe to call in interrupt context.
608 void kernel_restart(char *cmd)
610 kernel_restart_prepare(cmd);
611 if (!cmd)
612 printk(KERN_EMERG "Restarting system.\n");
613 else
614 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
615 machine_restart(cmd);
617 EXPORT_SYMBOL_GPL(kernel_restart);
620 * kernel_kexec - reboot the system
622 * Move into place and start executing a preloaded standalone
623 * executable. If nothing was preloaded return an error.
625 static void kernel_kexec(void)
627 #ifdef CONFIG_KEXEC
628 struct kimage *image;
629 image = xchg(&kexec_image, NULL);
630 if (!image)
631 return;
632 kernel_restart_prepare(NULL);
633 printk(KERN_EMERG "Starting new kernel\n");
634 machine_shutdown();
635 machine_kexec(image);
636 #endif
639 void kernel_shutdown_prepare(enum system_states state)
641 blocking_notifier_call_chain(&reboot_notifier_list,
642 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
643 system_state = state;
644 device_shutdown();
647 * kernel_halt - halt the system
649 * Shutdown everything and perform a clean system halt.
651 void kernel_halt(void)
653 kernel_shutdown_prepare(SYSTEM_HALT);
654 printk(KERN_EMERG "System halted.\n");
655 machine_halt();
658 EXPORT_SYMBOL_GPL(kernel_halt);
661 * kernel_power_off - power_off the system
663 * Shutdown everything and perform a clean system power_off.
665 void kernel_power_off(void)
667 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
668 printk(KERN_EMERG "Power down.\n");
669 machine_power_off();
671 EXPORT_SYMBOL_GPL(kernel_power_off);
673 * Reboot system call: for obvious reasons only root may call it,
674 * and even root needs to set up some magic numbers in the registers
675 * so that some mistake won't make this reboot the whole machine.
676 * You can also set the meaning of the ctrl-alt-del-key here.
678 * reboot doesn't sync: do that yourself before calling this.
680 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
682 char buffer[256];
684 /* We only trust the superuser with rebooting the system. */
685 if (!capable(CAP_SYS_BOOT))
686 return -EPERM;
688 /* For safety, we require "magic" arguments. */
689 if (magic1 != LINUX_REBOOT_MAGIC1 ||
690 (magic2 != LINUX_REBOOT_MAGIC2 &&
691 magic2 != LINUX_REBOOT_MAGIC2A &&
692 magic2 != LINUX_REBOOT_MAGIC2B &&
693 magic2 != LINUX_REBOOT_MAGIC2C))
694 return -EINVAL;
696 /* Instead of trying to make the power_off code look like
697 * halt when pm_power_off is not set do it the easy way.
699 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
700 cmd = LINUX_REBOOT_CMD_HALT;
702 lock_kernel();
703 switch (cmd) {
704 case LINUX_REBOOT_CMD_RESTART:
705 kernel_restart(NULL);
706 break;
708 case LINUX_REBOOT_CMD_CAD_ON:
709 C_A_D = 1;
710 break;
712 case LINUX_REBOOT_CMD_CAD_OFF:
713 C_A_D = 0;
714 break;
716 case LINUX_REBOOT_CMD_HALT:
717 kernel_halt();
718 unlock_kernel();
719 do_exit(0);
720 break;
722 case LINUX_REBOOT_CMD_POWER_OFF:
723 kernel_power_off();
724 unlock_kernel();
725 do_exit(0);
726 break;
728 case LINUX_REBOOT_CMD_RESTART2:
729 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
730 unlock_kernel();
731 return -EFAULT;
733 buffer[sizeof(buffer) - 1] = '\0';
735 kernel_restart(buffer);
736 break;
738 case LINUX_REBOOT_CMD_KEXEC:
739 kernel_kexec();
740 unlock_kernel();
741 return -EINVAL;
743 #ifdef CONFIG_SOFTWARE_SUSPEND
744 case LINUX_REBOOT_CMD_SW_SUSPEND:
746 int ret = software_suspend();
747 unlock_kernel();
748 return ret;
750 #endif
752 default:
753 unlock_kernel();
754 return -EINVAL;
756 unlock_kernel();
757 return 0;
760 static void deferred_cad(void *dummy)
762 kernel_restart(NULL);
766 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
767 * As it's called within an interrupt, it may NOT sync: the only choice
768 * is whether to reboot at once, or just ignore the ctrl-alt-del.
770 void ctrl_alt_del(void)
772 static DECLARE_WORK(cad_work, deferred_cad, NULL);
774 if (C_A_D)
775 schedule_work(&cad_work);
776 else
777 kill_cad_pid(SIGINT, 1);
781 * Unprivileged users may change the real gid to the effective gid
782 * or vice versa. (BSD-style)
784 * If you set the real gid at all, or set the effective gid to a value not
785 * equal to the real gid, then the saved gid is set to the new effective gid.
787 * This makes it possible for a setgid program to completely drop its
788 * privileges, which is often a useful assertion to make when you are doing
789 * a security audit over a program.
791 * The general idea is that a program which uses just setregid() will be
792 * 100% compatible with BSD. A program which uses just setgid() will be
793 * 100% compatible with POSIX with saved IDs.
795 * SMP: There are not races, the GIDs are checked only by filesystem
796 * operations (as far as semantic preservation is concerned).
798 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
800 int old_rgid = current->gid;
801 int old_egid = current->egid;
802 int new_rgid = old_rgid;
803 int new_egid = old_egid;
804 int retval;
806 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
807 if (retval)
808 return retval;
810 if (rgid != (gid_t) -1) {
811 if ((old_rgid == rgid) ||
812 (current->egid==rgid) ||
813 capable(CAP_SETGID))
814 new_rgid = rgid;
815 else
816 return -EPERM;
818 if (egid != (gid_t) -1) {
819 if ((old_rgid == egid) ||
820 (current->egid == egid) ||
821 (current->sgid == egid) ||
822 capable(CAP_SETGID))
823 new_egid = egid;
824 else
825 return -EPERM;
827 if (new_egid != old_egid) {
828 current->mm->dumpable = suid_dumpable;
829 smp_wmb();
831 if (rgid != (gid_t) -1 ||
832 (egid != (gid_t) -1 && egid != old_rgid))
833 current->sgid = new_egid;
834 current->fsgid = new_egid;
835 current->egid = new_egid;
836 current->gid = new_rgid;
837 key_fsgid_changed(current);
838 proc_id_connector(current, PROC_EVENT_GID);
839 return 0;
843 * setgid() is implemented like SysV w/ SAVED_IDS
845 * SMP: Same implicit races as above.
847 asmlinkage long sys_setgid(gid_t gid)
849 int old_egid = current->egid;
850 int retval;
852 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
853 if (retval)
854 return retval;
856 if (capable(CAP_SETGID)) {
857 if (old_egid != gid) {
858 current->mm->dumpable = suid_dumpable;
859 smp_wmb();
861 current->gid = current->egid = current->sgid = current->fsgid = gid;
862 } else if ((gid == current->gid) || (gid == current->sgid)) {
863 if (old_egid != gid) {
864 current->mm->dumpable = suid_dumpable;
865 smp_wmb();
867 current->egid = current->fsgid = gid;
869 else
870 return -EPERM;
872 key_fsgid_changed(current);
873 proc_id_connector(current, PROC_EVENT_GID);
874 return 0;
877 static int set_user(uid_t new_ruid, int dumpclear)
879 struct user_struct *new_user;
881 new_user = alloc_uid(new_ruid);
882 if (!new_user)
883 return -EAGAIN;
885 if (atomic_read(&new_user->processes) >=
886 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
887 new_user != &root_user) {
888 free_uid(new_user);
889 return -EAGAIN;
892 switch_uid(new_user);
894 if (dumpclear) {
895 current->mm->dumpable = suid_dumpable;
896 smp_wmb();
898 current->uid = new_ruid;
899 return 0;
903 * Unprivileged users may change the real uid to the effective uid
904 * or vice versa. (BSD-style)
906 * If you set the real uid at all, or set the effective uid to a value not
907 * equal to the real uid, then the saved uid is set to the new effective uid.
909 * This makes it possible for a setuid program to completely drop its
910 * privileges, which is often a useful assertion to make when you are doing
911 * a security audit over a program.
913 * The general idea is that a program which uses just setreuid() will be
914 * 100% compatible with BSD. A program which uses just setuid() will be
915 * 100% compatible with POSIX with saved IDs.
917 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
919 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
920 int retval;
922 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
923 if (retval)
924 return retval;
926 new_ruid = old_ruid = current->uid;
927 new_euid = old_euid = current->euid;
928 old_suid = current->suid;
930 if (ruid != (uid_t) -1) {
931 new_ruid = ruid;
932 if ((old_ruid != ruid) &&
933 (current->euid != ruid) &&
934 !capable(CAP_SETUID))
935 return -EPERM;
938 if (euid != (uid_t) -1) {
939 new_euid = euid;
940 if ((old_ruid != euid) &&
941 (current->euid != euid) &&
942 (current->suid != euid) &&
943 !capable(CAP_SETUID))
944 return -EPERM;
947 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
948 return -EAGAIN;
950 if (new_euid != old_euid) {
951 current->mm->dumpable = suid_dumpable;
952 smp_wmb();
954 current->fsuid = current->euid = new_euid;
955 if (ruid != (uid_t) -1 ||
956 (euid != (uid_t) -1 && euid != old_ruid))
957 current->suid = current->euid;
958 current->fsuid = current->euid;
960 key_fsuid_changed(current);
961 proc_id_connector(current, PROC_EVENT_UID);
963 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
969 * setuid() is implemented like SysV with SAVED_IDS
971 * Note that SAVED_ID's is deficient in that a setuid root program
972 * like sendmail, for example, cannot set its uid to be a normal
973 * user and then switch back, because if you're root, setuid() sets
974 * the saved uid too. If you don't like this, blame the bright people
975 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
976 * will allow a root program to temporarily drop privileges and be able to
977 * regain them by swapping the real and effective uid.
979 asmlinkage long sys_setuid(uid_t uid)
981 int old_euid = current->euid;
982 int old_ruid, old_suid, new_ruid, new_suid;
983 int retval;
985 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
986 if (retval)
987 return retval;
989 old_ruid = new_ruid = current->uid;
990 old_suid = current->suid;
991 new_suid = old_suid;
993 if (capable(CAP_SETUID)) {
994 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
995 return -EAGAIN;
996 new_suid = uid;
997 } else if ((uid != current->uid) && (uid != new_suid))
998 return -EPERM;
1000 if (old_euid != uid) {
1001 current->mm->dumpable = suid_dumpable;
1002 smp_wmb();
1004 current->fsuid = current->euid = uid;
1005 current->suid = new_suid;
1007 key_fsuid_changed(current);
1008 proc_id_connector(current, PROC_EVENT_UID);
1010 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1015 * This function implements a generic ability to update ruid, euid,
1016 * and suid. This allows you to implement the 4.4 compatible seteuid().
1018 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1020 int old_ruid = current->uid;
1021 int old_euid = current->euid;
1022 int old_suid = current->suid;
1023 int retval;
1025 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1026 if (retval)
1027 return retval;
1029 if (!capable(CAP_SETUID)) {
1030 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1031 (ruid != current->euid) && (ruid != current->suid))
1032 return -EPERM;
1033 if ((euid != (uid_t) -1) && (euid != current->uid) &&
1034 (euid != current->euid) && (euid != current->suid))
1035 return -EPERM;
1036 if ((suid != (uid_t) -1) && (suid != current->uid) &&
1037 (suid != current->euid) && (suid != current->suid))
1038 return -EPERM;
1040 if (ruid != (uid_t) -1) {
1041 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1042 return -EAGAIN;
1044 if (euid != (uid_t) -1) {
1045 if (euid != current->euid) {
1046 current->mm->dumpable = suid_dumpable;
1047 smp_wmb();
1049 current->euid = euid;
1051 current->fsuid = current->euid;
1052 if (suid != (uid_t) -1)
1053 current->suid = suid;
1055 key_fsuid_changed(current);
1056 proc_id_connector(current, PROC_EVENT_UID);
1058 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1061 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1063 int retval;
1065 if (!(retval = put_user(current->uid, ruid)) &&
1066 !(retval = put_user(current->euid, euid)))
1067 retval = put_user(current->suid, suid);
1069 return retval;
1073 * Same as above, but for rgid, egid, sgid.
1075 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1077 int retval;
1079 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1080 if (retval)
1081 return retval;
1083 if (!capable(CAP_SETGID)) {
1084 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1085 (rgid != current->egid) && (rgid != current->sgid))
1086 return -EPERM;
1087 if ((egid != (gid_t) -1) && (egid != current->gid) &&
1088 (egid != current->egid) && (egid != current->sgid))
1089 return -EPERM;
1090 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1091 (sgid != current->egid) && (sgid != current->sgid))
1092 return -EPERM;
1094 if (egid != (gid_t) -1) {
1095 if (egid != current->egid) {
1096 current->mm->dumpable = suid_dumpable;
1097 smp_wmb();
1099 current->egid = egid;
1101 current->fsgid = current->egid;
1102 if (rgid != (gid_t) -1)
1103 current->gid = rgid;
1104 if (sgid != (gid_t) -1)
1105 current->sgid = sgid;
1107 key_fsgid_changed(current);
1108 proc_id_connector(current, PROC_EVENT_GID);
1109 return 0;
1112 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1114 int retval;
1116 if (!(retval = put_user(current->gid, rgid)) &&
1117 !(retval = put_user(current->egid, egid)))
1118 retval = put_user(current->sgid, sgid);
1120 return retval;
1125 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1126 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1127 * whatever uid it wants to). It normally shadows "euid", except when
1128 * explicitly set by setfsuid() or for access..
1130 asmlinkage long sys_setfsuid(uid_t uid)
1132 int old_fsuid;
1134 old_fsuid = current->fsuid;
1135 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1136 return old_fsuid;
1138 if (uid == current->uid || uid == current->euid ||
1139 uid == current->suid || uid == current->fsuid ||
1140 capable(CAP_SETUID)) {
1141 if (uid != old_fsuid) {
1142 current->mm->dumpable = suid_dumpable;
1143 smp_wmb();
1145 current->fsuid = uid;
1148 key_fsuid_changed(current);
1149 proc_id_connector(current, PROC_EVENT_UID);
1151 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1153 return old_fsuid;
1157 * Samma på svenska..
1159 asmlinkage long sys_setfsgid(gid_t gid)
1161 int old_fsgid;
1163 old_fsgid = current->fsgid;
1164 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1165 return old_fsgid;
1167 if (gid == current->gid || gid == current->egid ||
1168 gid == current->sgid || gid == current->fsgid ||
1169 capable(CAP_SETGID)) {
1170 if (gid != old_fsgid) {
1171 current->mm->dumpable = suid_dumpable;
1172 smp_wmb();
1174 current->fsgid = gid;
1175 key_fsgid_changed(current);
1176 proc_id_connector(current, PROC_EVENT_GID);
1178 return old_fsgid;
1181 asmlinkage long sys_times(struct tms __user * tbuf)
1184 * In the SMP world we might just be unlucky and have one of
1185 * the times increment as we use it. Since the value is an
1186 * atomically safe type this is just fine. Conceptually its
1187 * as if the syscall took an instant longer to occur.
1189 if (tbuf) {
1190 struct tms tmp;
1191 struct task_struct *tsk = current;
1192 struct task_struct *t;
1193 cputime_t utime, stime, cutime, cstime;
1195 spin_lock_irq(&tsk->sighand->siglock);
1196 utime = tsk->signal->utime;
1197 stime = tsk->signal->stime;
1198 t = tsk;
1199 do {
1200 utime = cputime_add(utime, t->utime);
1201 stime = cputime_add(stime, t->stime);
1202 t = next_thread(t);
1203 } while (t != tsk);
1205 cutime = tsk->signal->cutime;
1206 cstime = tsk->signal->cstime;
1207 spin_unlock_irq(&tsk->sighand->siglock);
1209 tmp.tms_utime = cputime_to_clock_t(utime);
1210 tmp.tms_stime = cputime_to_clock_t(stime);
1211 tmp.tms_cutime = cputime_to_clock_t(cutime);
1212 tmp.tms_cstime = cputime_to_clock_t(cstime);
1213 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1214 return -EFAULT;
1216 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1220 * This needs some heavy checking ...
1221 * I just haven't the stomach for it. I also don't fully
1222 * understand sessions/pgrp etc. Let somebody who does explain it.
1224 * OK, I think I have the protection semantics right.... this is really
1225 * only important on a multi-user system anyway, to make sure one user
1226 * can't send a signal to a process owned by another. -TYT, 12/12/91
1228 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1229 * LBT 04.03.94
1232 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1234 struct task_struct *p;
1235 struct task_struct *group_leader = current->group_leader;
1236 int err = -EINVAL;
1238 if (!pid)
1239 pid = group_leader->pid;
1240 if (!pgid)
1241 pgid = pid;
1242 if (pgid < 0)
1243 return -EINVAL;
1245 /* From this point forward we keep holding onto the tasklist lock
1246 * so that our parent does not change from under us. -DaveM
1248 write_lock_irq(&tasklist_lock);
1250 err = -ESRCH;
1251 p = find_task_by_pid(pid);
1252 if (!p)
1253 goto out;
1255 err = -EINVAL;
1256 if (!thread_group_leader(p))
1257 goto out;
1259 if (p->real_parent == group_leader) {
1260 err = -EPERM;
1261 if (p->signal->session != group_leader->signal->session)
1262 goto out;
1263 err = -EACCES;
1264 if (p->did_exec)
1265 goto out;
1266 } else {
1267 err = -ESRCH;
1268 if (p != group_leader)
1269 goto out;
1272 err = -EPERM;
1273 if (p->signal->leader)
1274 goto out;
1276 if (pgid != pid) {
1277 struct task_struct *p;
1279 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1280 if (p->signal->session == group_leader->signal->session)
1281 goto ok_pgid;
1282 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1283 goto out;
1286 ok_pgid:
1287 err = security_task_setpgid(p, pgid);
1288 if (err)
1289 goto out;
1291 if (process_group(p) != pgid) {
1292 detach_pid(p, PIDTYPE_PGID);
1293 p->signal->pgrp = pgid;
1294 attach_pid(p, PIDTYPE_PGID, pgid);
1297 err = 0;
1298 out:
1299 /* All paths lead to here, thus we are safe. -DaveM */
1300 write_unlock_irq(&tasklist_lock);
1301 return err;
1304 asmlinkage long sys_getpgid(pid_t pid)
1306 if (!pid)
1307 return process_group(current);
1308 else {
1309 int retval;
1310 struct task_struct *p;
1312 read_lock(&tasklist_lock);
1313 p = find_task_by_pid(pid);
1315 retval = -ESRCH;
1316 if (p) {
1317 retval = security_task_getpgid(p);
1318 if (!retval)
1319 retval = process_group(p);
1321 read_unlock(&tasklist_lock);
1322 return retval;
1326 #ifdef __ARCH_WANT_SYS_GETPGRP
1328 asmlinkage long sys_getpgrp(void)
1330 /* SMP - assuming writes are word atomic this is fine */
1331 return process_group(current);
1334 #endif
1336 asmlinkage long sys_getsid(pid_t pid)
1338 if (!pid)
1339 return current->signal->session;
1340 else {
1341 int retval;
1342 struct task_struct *p;
1344 read_lock(&tasklist_lock);
1345 p = find_task_by_pid(pid);
1347 retval = -ESRCH;
1348 if (p) {
1349 retval = security_task_getsid(p);
1350 if (!retval)
1351 retval = p->signal->session;
1353 read_unlock(&tasklist_lock);
1354 return retval;
1358 asmlinkage long sys_setsid(void)
1360 struct task_struct *group_leader = current->group_leader;
1361 pid_t session;
1362 int err = -EPERM;
1364 mutex_lock(&tty_mutex);
1365 write_lock_irq(&tasklist_lock);
1367 /* Fail if I am already a session leader */
1368 if (group_leader->signal->leader)
1369 goto out;
1371 session = group_leader->pid;
1372 /* Fail if a process group id already exists that equals the
1373 * proposed session id.
1375 * Don't check if session id == 1 because kernel threads use this
1376 * session id and so the check will always fail and make it so
1377 * init cannot successfully call setsid.
1379 if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1380 goto out;
1382 group_leader->signal->leader = 1;
1383 __set_special_pids(session, session);
1384 group_leader->signal->tty = NULL;
1385 group_leader->signal->tty_old_pgrp = 0;
1386 err = process_group(group_leader);
1387 out:
1388 write_unlock_irq(&tasklist_lock);
1389 mutex_unlock(&tty_mutex);
1390 return err;
1394 * Supplementary group IDs
1397 /* init to 2 - one for init_task, one to ensure it is never freed */
1398 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1400 struct group_info *groups_alloc(int gidsetsize)
1402 struct group_info *group_info;
1403 int nblocks;
1404 int i;
1406 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1407 /* Make sure we always allocate at least one indirect block pointer */
1408 nblocks = nblocks ? : 1;
1409 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1410 if (!group_info)
1411 return NULL;
1412 group_info->ngroups = gidsetsize;
1413 group_info->nblocks = nblocks;
1414 atomic_set(&group_info->usage, 1);
1416 if (gidsetsize <= NGROUPS_SMALL)
1417 group_info->blocks[0] = group_info->small_block;
1418 else {
1419 for (i = 0; i < nblocks; i++) {
1420 gid_t *b;
1421 b = (void *)__get_free_page(GFP_USER);
1422 if (!b)
1423 goto out_undo_partial_alloc;
1424 group_info->blocks[i] = b;
1427 return group_info;
1429 out_undo_partial_alloc:
1430 while (--i >= 0) {
1431 free_page((unsigned long)group_info->blocks[i]);
1433 kfree(group_info);
1434 return NULL;
1437 EXPORT_SYMBOL(groups_alloc);
1439 void groups_free(struct group_info *group_info)
1441 if (group_info->blocks[0] != group_info->small_block) {
1442 int i;
1443 for (i = 0; i < group_info->nblocks; i++)
1444 free_page((unsigned long)group_info->blocks[i]);
1446 kfree(group_info);
1449 EXPORT_SYMBOL(groups_free);
1451 /* export the group_info to a user-space array */
1452 static int groups_to_user(gid_t __user *grouplist,
1453 struct group_info *group_info)
1455 int i;
1456 int count = group_info->ngroups;
1458 for (i = 0; i < group_info->nblocks; i++) {
1459 int cp_count = min(NGROUPS_PER_BLOCK, count);
1460 int off = i * NGROUPS_PER_BLOCK;
1461 int len = cp_count * sizeof(*grouplist);
1463 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1464 return -EFAULT;
1466 count -= cp_count;
1468 return 0;
1471 /* fill a group_info from a user-space array - it must be allocated already */
1472 static int groups_from_user(struct group_info *group_info,
1473 gid_t __user *grouplist)
1475 int i;
1476 int count = group_info->ngroups;
1478 for (i = 0; i < group_info->nblocks; i++) {
1479 int cp_count = min(NGROUPS_PER_BLOCK, count);
1480 int off = i * NGROUPS_PER_BLOCK;
1481 int len = cp_count * sizeof(*grouplist);
1483 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1484 return -EFAULT;
1486 count -= cp_count;
1488 return 0;
1491 /* a simple Shell sort */
1492 static void groups_sort(struct group_info *group_info)
1494 int base, max, stride;
1495 int gidsetsize = group_info->ngroups;
1497 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1498 ; /* nothing */
1499 stride /= 3;
1501 while (stride) {
1502 max = gidsetsize - stride;
1503 for (base = 0; base < max; base++) {
1504 int left = base;
1505 int right = left + stride;
1506 gid_t tmp = GROUP_AT(group_info, right);
1508 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1509 GROUP_AT(group_info, right) =
1510 GROUP_AT(group_info, left);
1511 right = left;
1512 left -= stride;
1514 GROUP_AT(group_info, right) = tmp;
1516 stride /= 3;
1520 /* a simple bsearch */
1521 int groups_search(struct group_info *group_info, gid_t grp)
1523 unsigned int left, right;
1525 if (!group_info)
1526 return 0;
1528 left = 0;
1529 right = group_info->ngroups;
1530 while (left < right) {
1531 unsigned int mid = (left+right)/2;
1532 int cmp = grp - GROUP_AT(group_info, mid);
1533 if (cmp > 0)
1534 left = mid + 1;
1535 else if (cmp < 0)
1536 right = mid;
1537 else
1538 return 1;
1540 return 0;
1543 /* validate and set current->group_info */
1544 int set_current_groups(struct group_info *group_info)
1546 int retval;
1547 struct group_info *old_info;
1549 retval = security_task_setgroups(group_info);
1550 if (retval)
1551 return retval;
1553 groups_sort(group_info);
1554 get_group_info(group_info);
1556 task_lock(current);
1557 old_info = current->group_info;
1558 current->group_info = group_info;
1559 task_unlock(current);
1561 put_group_info(old_info);
1563 return 0;
1566 EXPORT_SYMBOL(set_current_groups);
1568 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1570 int i = 0;
1573 * SMP: Nobody else can change our grouplist. Thus we are
1574 * safe.
1577 if (gidsetsize < 0)
1578 return -EINVAL;
1580 /* no need to grab task_lock here; it cannot change */
1581 i = current->group_info->ngroups;
1582 if (gidsetsize) {
1583 if (i > gidsetsize) {
1584 i = -EINVAL;
1585 goto out;
1587 if (groups_to_user(grouplist, current->group_info)) {
1588 i = -EFAULT;
1589 goto out;
1592 out:
1593 return i;
1597 * SMP: Our groups are copy-on-write. We can set them safely
1598 * without another task interfering.
1601 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1603 struct group_info *group_info;
1604 int retval;
1606 if (!capable(CAP_SETGID))
1607 return -EPERM;
1608 if ((unsigned)gidsetsize > NGROUPS_MAX)
1609 return -EINVAL;
1611 group_info = groups_alloc(gidsetsize);
1612 if (!group_info)
1613 return -ENOMEM;
1614 retval = groups_from_user(group_info, grouplist);
1615 if (retval) {
1616 put_group_info(group_info);
1617 return retval;
1620 retval = set_current_groups(group_info);
1621 put_group_info(group_info);
1623 return retval;
1627 * Check whether we're fsgid/egid or in the supplemental group..
1629 int in_group_p(gid_t grp)
1631 int retval = 1;
1632 if (grp != current->fsgid)
1633 retval = groups_search(current->group_info, grp);
1634 return retval;
1637 EXPORT_SYMBOL(in_group_p);
1639 int in_egroup_p(gid_t grp)
1641 int retval = 1;
1642 if (grp != current->egid)
1643 retval = groups_search(current->group_info, grp);
1644 return retval;
1647 EXPORT_SYMBOL(in_egroup_p);
1649 DECLARE_RWSEM(uts_sem);
1651 EXPORT_SYMBOL(uts_sem);
1653 asmlinkage long sys_newuname(struct new_utsname __user * name)
1655 int errno = 0;
1657 down_read(&uts_sem);
1658 if (copy_to_user(name, utsname(), sizeof *name))
1659 errno = -EFAULT;
1660 up_read(&uts_sem);
1661 return errno;
1664 asmlinkage long sys_sethostname(char __user *name, int len)
1666 int errno;
1667 char tmp[__NEW_UTS_LEN];
1669 if (!capable(CAP_SYS_ADMIN))
1670 return -EPERM;
1671 if (len < 0 || len > __NEW_UTS_LEN)
1672 return -EINVAL;
1673 down_write(&uts_sem);
1674 errno = -EFAULT;
1675 if (!copy_from_user(tmp, name, len)) {
1676 memcpy(utsname()->nodename, tmp, len);
1677 utsname()->nodename[len] = 0;
1678 errno = 0;
1680 up_write(&uts_sem);
1681 return errno;
1684 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1686 asmlinkage long sys_gethostname(char __user *name, int len)
1688 int i, errno;
1690 if (len < 0)
1691 return -EINVAL;
1692 down_read(&uts_sem);
1693 i = 1 + strlen(utsname()->nodename);
1694 if (i > len)
1695 i = len;
1696 errno = 0;
1697 if (copy_to_user(name, utsname()->nodename, i))
1698 errno = -EFAULT;
1699 up_read(&uts_sem);
1700 return errno;
1703 #endif
1706 * Only setdomainname; getdomainname can be implemented by calling
1707 * uname()
1709 asmlinkage long sys_setdomainname(char __user *name, int len)
1711 int errno;
1712 char tmp[__NEW_UTS_LEN];
1714 if (!capable(CAP_SYS_ADMIN))
1715 return -EPERM;
1716 if (len < 0 || len > __NEW_UTS_LEN)
1717 return -EINVAL;
1719 down_write(&uts_sem);
1720 errno = -EFAULT;
1721 if (!copy_from_user(tmp, name, len)) {
1722 memcpy(utsname()->domainname, tmp, len);
1723 utsname()->domainname[len] = 0;
1724 errno = 0;
1726 up_write(&uts_sem);
1727 return errno;
1730 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1732 if (resource >= RLIM_NLIMITS)
1733 return -EINVAL;
1734 else {
1735 struct rlimit value;
1736 task_lock(current->group_leader);
1737 value = current->signal->rlim[resource];
1738 task_unlock(current->group_leader);
1739 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1743 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1746 * Back compatibility for getrlimit. Needed for some apps.
1749 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1751 struct rlimit x;
1752 if (resource >= RLIM_NLIMITS)
1753 return -EINVAL;
1755 task_lock(current->group_leader);
1756 x = current->signal->rlim[resource];
1757 task_unlock(current->group_leader);
1758 if (x.rlim_cur > 0x7FFFFFFF)
1759 x.rlim_cur = 0x7FFFFFFF;
1760 if (x.rlim_max > 0x7FFFFFFF)
1761 x.rlim_max = 0x7FFFFFFF;
1762 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1765 #endif
1767 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1769 struct rlimit new_rlim, *old_rlim;
1770 unsigned long it_prof_secs;
1771 int retval;
1773 if (resource >= RLIM_NLIMITS)
1774 return -EINVAL;
1775 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1776 return -EFAULT;
1777 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1778 return -EINVAL;
1779 old_rlim = current->signal->rlim + resource;
1780 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1781 !capable(CAP_SYS_RESOURCE))
1782 return -EPERM;
1783 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1784 return -EPERM;
1786 retval = security_task_setrlimit(resource, &new_rlim);
1787 if (retval)
1788 return retval;
1790 task_lock(current->group_leader);
1791 *old_rlim = new_rlim;
1792 task_unlock(current->group_leader);
1794 if (resource != RLIMIT_CPU)
1795 goto out;
1798 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1799 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1800 * very long-standing error, and fixing it now risks breakage of
1801 * applications, so we live with it
1803 if (new_rlim.rlim_cur == RLIM_INFINITY)
1804 goto out;
1806 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1807 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1808 unsigned long rlim_cur = new_rlim.rlim_cur;
1809 cputime_t cputime;
1811 if (rlim_cur == 0) {
1813 * The caller is asking for an immediate RLIMIT_CPU
1814 * expiry. But we use the zero value to mean "it was
1815 * never set". So let's cheat and make it one second
1816 * instead
1818 rlim_cur = 1;
1820 cputime = secs_to_cputime(rlim_cur);
1821 read_lock(&tasklist_lock);
1822 spin_lock_irq(&current->sighand->siglock);
1823 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1824 spin_unlock_irq(&current->sighand->siglock);
1825 read_unlock(&tasklist_lock);
1827 out:
1828 return 0;
1832 * It would make sense to put struct rusage in the task_struct,
1833 * except that would make the task_struct be *really big*. After
1834 * task_struct gets moved into malloc'ed memory, it would
1835 * make sense to do this. It will make moving the rest of the information
1836 * a lot simpler! (Which we're not doing right now because we're not
1837 * measuring them yet).
1839 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1840 * races with threads incrementing their own counters. But since word
1841 * reads are atomic, we either get new values or old values and we don't
1842 * care which for the sums. We always take the siglock to protect reading
1843 * the c* fields from p->signal from races with exit.c updating those
1844 * fields when reaping, so a sample either gets all the additions of a
1845 * given child after it's reaped, or none so this sample is before reaping.
1847 * Locking:
1848 * We need to take the siglock for CHILDEREN, SELF and BOTH
1849 * for the cases current multithreaded, non-current single threaded
1850 * non-current multithreaded. Thread traversal is now safe with
1851 * the siglock held.
1852 * Strictly speaking, we donot need to take the siglock if we are current and
1853 * single threaded, as no one else can take our signal_struct away, no one
1854 * else can reap the children to update signal->c* counters, and no one else
1855 * can race with the signal-> fields. If we do not take any lock, the
1856 * signal-> fields could be read out of order while another thread was just
1857 * exiting. So we should place a read memory barrier when we avoid the lock.
1858 * On the writer side, write memory barrier is implied in __exit_signal
1859 * as __exit_signal releases the siglock spinlock after updating the signal->
1860 * fields. But we don't do this yet to keep things simple.
1864 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1866 struct task_struct *t;
1867 unsigned long flags;
1868 cputime_t utime, stime;
1870 memset((char *) r, 0, sizeof *r);
1871 utime = stime = cputime_zero;
1873 rcu_read_lock();
1874 if (!lock_task_sighand(p, &flags)) {
1875 rcu_read_unlock();
1876 return;
1879 switch (who) {
1880 case RUSAGE_BOTH:
1881 case RUSAGE_CHILDREN:
1882 utime = p->signal->cutime;
1883 stime = p->signal->cstime;
1884 r->ru_nvcsw = p->signal->cnvcsw;
1885 r->ru_nivcsw = p->signal->cnivcsw;
1886 r->ru_minflt = p->signal->cmin_flt;
1887 r->ru_majflt = p->signal->cmaj_flt;
1889 if (who == RUSAGE_CHILDREN)
1890 break;
1892 case RUSAGE_SELF:
1893 utime = cputime_add(utime, p->signal->utime);
1894 stime = cputime_add(stime, p->signal->stime);
1895 r->ru_nvcsw += p->signal->nvcsw;
1896 r->ru_nivcsw += p->signal->nivcsw;
1897 r->ru_minflt += p->signal->min_flt;
1898 r->ru_majflt += p->signal->maj_flt;
1899 t = p;
1900 do {
1901 utime = cputime_add(utime, t->utime);
1902 stime = cputime_add(stime, t->stime);
1903 r->ru_nvcsw += t->nvcsw;
1904 r->ru_nivcsw += t->nivcsw;
1905 r->ru_minflt += t->min_flt;
1906 r->ru_majflt += t->maj_flt;
1907 t = next_thread(t);
1908 } while (t != p);
1909 break;
1911 default:
1912 BUG();
1915 unlock_task_sighand(p, &flags);
1916 rcu_read_unlock();
1918 cputime_to_timeval(utime, &r->ru_utime);
1919 cputime_to_timeval(stime, &r->ru_stime);
1922 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1924 struct rusage r;
1925 k_getrusage(p, who, &r);
1926 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1929 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1931 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1932 return -EINVAL;
1933 return getrusage(current, who, ru);
1936 asmlinkage long sys_umask(int mask)
1938 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1939 return mask;
1942 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1943 unsigned long arg4, unsigned long arg5)
1945 long error;
1947 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1948 if (error)
1949 return error;
1951 switch (option) {
1952 case PR_SET_PDEATHSIG:
1953 if (!valid_signal(arg2)) {
1954 error = -EINVAL;
1955 break;
1957 current->pdeath_signal = arg2;
1958 break;
1959 case PR_GET_PDEATHSIG:
1960 error = put_user(current->pdeath_signal, (int __user *)arg2);
1961 break;
1962 case PR_GET_DUMPABLE:
1963 error = current->mm->dumpable;
1964 break;
1965 case PR_SET_DUMPABLE:
1966 if (arg2 < 0 || arg2 > 1) {
1967 error = -EINVAL;
1968 break;
1970 current->mm->dumpable = arg2;
1971 break;
1973 case PR_SET_UNALIGN:
1974 error = SET_UNALIGN_CTL(current, arg2);
1975 break;
1976 case PR_GET_UNALIGN:
1977 error = GET_UNALIGN_CTL(current, arg2);
1978 break;
1979 case PR_SET_FPEMU:
1980 error = SET_FPEMU_CTL(current, arg2);
1981 break;
1982 case PR_GET_FPEMU:
1983 error = GET_FPEMU_CTL(current, arg2);
1984 break;
1985 case PR_SET_FPEXC:
1986 error = SET_FPEXC_CTL(current, arg2);
1987 break;
1988 case PR_GET_FPEXC:
1989 error = GET_FPEXC_CTL(current, arg2);
1990 break;
1991 case PR_GET_TIMING:
1992 error = PR_TIMING_STATISTICAL;
1993 break;
1994 case PR_SET_TIMING:
1995 if (arg2 == PR_TIMING_STATISTICAL)
1996 error = 0;
1997 else
1998 error = -EINVAL;
1999 break;
2001 case PR_GET_KEEPCAPS:
2002 if (current->keep_capabilities)
2003 error = 1;
2004 break;
2005 case PR_SET_KEEPCAPS:
2006 if (arg2 != 0 && arg2 != 1) {
2007 error = -EINVAL;
2008 break;
2010 current->keep_capabilities = arg2;
2011 break;
2012 case PR_SET_NAME: {
2013 struct task_struct *me = current;
2014 unsigned char ncomm[sizeof(me->comm)];
2016 ncomm[sizeof(me->comm)-1] = 0;
2017 if (strncpy_from_user(ncomm, (char __user *)arg2,
2018 sizeof(me->comm)-1) < 0)
2019 return -EFAULT;
2020 set_task_comm(me, ncomm);
2021 return 0;
2023 case PR_GET_NAME: {
2024 struct task_struct *me = current;
2025 unsigned char tcomm[sizeof(me->comm)];
2027 get_task_comm(tcomm, me);
2028 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2029 return -EFAULT;
2030 return 0;
2032 case PR_GET_ENDIAN:
2033 error = GET_ENDIAN(current, arg2);
2034 break;
2035 case PR_SET_ENDIAN:
2036 error = SET_ENDIAN(current, arg2);
2037 break;
2039 default:
2040 error = -EINVAL;
2041 break;
2043 return error;
2046 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2047 struct getcpu_cache __user *cache)
2049 int err = 0;
2050 int cpu = raw_smp_processor_id();
2051 if (cpup)
2052 err |= put_user(cpu, cpup);
2053 if (nodep)
2054 err |= put_user(cpu_to_node(cpu), nodep);
2055 if (cache) {
2057 * The cache is not needed for this implementation,
2058 * but make sure user programs pass something
2059 * valid. vsyscall implementations can instead make
2060 * good use of the cache. Only use t0 and t1 because
2061 * these are available in both 32bit and 64bit ABI (no
2062 * need for a compat_getcpu). 32bit has enough
2063 * padding
2065 unsigned long t0, t1;
2066 get_user(t0, &cache->blob[0]);
2067 get_user(t1, &cache->blob[1]);
2068 t0++;
2069 t1++;
2070 put_user(t0, &cache->blob[0]);
2071 put_user(t1, &cache->blob[1]);
2073 return err ? -EFAULT : 0;