mtd: orion/kirkwood: add RnB line support to orion mtd driver
[linux-2.6/kvm.git] / drivers / mtd / nand / davinci_nand.c
blob9c9d893affeb45da9712605892cda59cb8d871fa
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
37 #include <mach/nand.h>
39 #include <asm/mach-types.h>
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
55 struct davinci_nand_info {
56 struct mtd_info mtd;
57 struct nand_chip chip;
58 struct nand_ecclayout ecclayout;
60 struct device *dev;
61 struct clk *clk;
62 bool partitioned;
64 bool is_readmode;
66 void __iomem *base;
67 void __iomem *vaddr;
69 uint32_t ioaddr;
70 uint32_t current_cs;
72 uint32_t mask_chipsel;
73 uint32_t mask_ale;
74 uint32_t mask_cle;
76 uint32_t core_chipsel;
79 static DEFINE_SPINLOCK(davinci_nand_lock);
80 static bool ecc4_busy;
82 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
85 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
86 int offset)
88 return __raw_readl(info->base + offset);
91 static inline void davinci_nand_writel(struct davinci_nand_info *info,
92 int offset, unsigned long value)
94 __raw_writel(value, info->base + offset);
97 /*----------------------------------------------------------------------*/
100 * Access to hardware control lines: ALE, CLE, secondary chipselect.
103 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
104 unsigned int ctrl)
106 struct davinci_nand_info *info = to_davinci_nand(mtd);
107 uint32_t addr = info->current_cs;
108 struct nand_chip *nand = mtd->priv;
110 /* Did the control lines change? */
111 if (ctrl & NAND_CTRL_CHANGE) {
112 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
113 addr |= info->mask_cle;
114 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
115 addr |= info->mask_ale;
117 nand->IO_ADDR_W = (void __iomem __force *)addr;
120 if (cmd != NAND_CMD_NONE)
121 iowrite8(cmd, nand->IO_ADDR_W);
124 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126 struct davinci_nand_info *info = to_davinci_nand(mtd);
127 uint32_t addr = info->ioaddr;
129 /* maybe kick in a second chipselect */
130 if (chip > 0)
131 addr |= info->mask_chipsel;
132 info->current_cs = addr;
134 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
135 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
138 /*----------------------------------------------------------------------*/
141 * 1-bit hardware ECC ... context maintained for each core chipselect
144 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146 struct davinci_nand_info *info = to_davinci_nand(mtd);
148 return davinci_nand_readl(info, NANDF1ECC_OFFSET
149 + 4 * info->core_chipsel);
152 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154 struct davinci_nand_info *info;
155 uint32_t nandcfr;
156 unsigned long flags;
158 info = to_davinci_nand(mtd);
160 /* Reset ECC hardware */
161 nand_davinci_readecc_1bit(mtd);
163 spin_lock_irqsave(&davinci_nand_lock, flags);
165 /* Restart ECC hardware */
166 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
167 nandcfr |= BIT(8 + info->core_chipsel);
168 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170 spin_unlock_irqrestore(&davinci_nand_lock, flags);
174 * Read hardware ECC value and pack into three bytes
176 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
177 const u_char *dat, u_char *ecc_code)
179 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
180 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182 /* invert so that erased block ecc is correct */
183 ecc24 = ~ecc24;
184 ecc_code[0] = (u_char)(ecc24);
185 ecc_code[1] = (u_char)(ecc24 >> 8);
186 ecc_code[2] = (u_char)(ecc24 >> 16);
188 return 0;
191 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
192 u_char *read_ecc, u_char *calc_ecc)
194 struct nand_chip *chip = mtd->priv;
195 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
196 (read_ecc[2] << 16);
197 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
198 (calc_ecc[2] << 16);
199 uint32_t diff = eccCalc ^ eccNand;
201 if (diff) {
202 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
203 /* Correctable error */
204 if ((diff >> (12 + 3)) < chip->ecc.size) {
205 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
206 return 1;
207 } else {
208 return -1;
210 } else if (!(diff & (diff - 1))) {
211 /* Single bit ECC error in the ECC itself,
212 * nothing to fix */
213 return 1;
214 } else {
215 /* Uncorrectable error */
216 return -1;
220 return 0;
223 /*----------------------------------------------------------------------*/
226 * 4-bit hardware ECC ... context maintained over entire AEMIF
228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229 * since that forces use of a problematic "infix OOB" layout.
230 * Among other things, it trashes manufacturer bad block markers.
231 * Also, and specific to this hardware, it ECC-protects the "prepad"
232 * in the OOB ... while having ECC protection for parts of OOB would
233 * seem useful, the current MTD stack sometimes wants to update the
234 * OOB without recomputing ECC.
237 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239 struct davinci_nand_info *info = to_davinci_nand(mtd);
240 unsigned long flags;
241 u32 val;
243 spin_lock_irqsave(&davinci_nand_lock, flags);
245 /* Start 4-bit ECC calculation for read/write */
246 val = davinci_nand_readl(info, NANDFCR_OFFSET);
247 val &= ~(0x03 << 4);
248 val |= (info->core_chipsel << 4) | BIT(12);
249 davinci_nand_writel(info, NANDFCR_OFFSET, val);
251 info->is_readmode = (mode == NAND_ECC_READ);
253 spin_unlock_irqrestore(&davinci_nand_lock, flags);
256 /* Read raw ECC code after writing to NAND. */
257 static void
258 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
260 const u32 mask = 0x03ff03ff;
262 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
263 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
264 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
265 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
268 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
270 const u_char *dat, u_char *ecc_code)
272 struct davinci_nand_info *info = to_davinci_nand(mtd);
273 u32 raw_ecc[4], *p;
274 unsigned i;
276 /* After a read, terminate ECC calculation by a dummy read
277 * of some 4-bit ECC register. ECC covers everything that
278 * was read; correct() just uses the hardware state, so
279 * ecc_code is not needed.
281 if (info->is_readmode) {
282 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
283 return 0;
286 /* Pack eight raw 10-bit ecc values into ten bytes, making
287 * two passes which each convert four values (in upper and
288 * lower halves of two 32-bit words) into five bytes. The
289 * ROM boot loader uses this same packing scheme.
291 nand_davinci_readecc_4bit(info, raw_ecc);
292 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
293 *ecc_code++ = p[0] & 0xff;
294 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
295 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
296 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
297 *ecc_code++ = (p[1] >> 18) & 0xff;
300 return 0;
303 /* Correct up to 4 bits in data we just read, using state left in the
304 * hardware plus the ecc_code computed when it was first written.
306 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
307 u_char *data, u_char *ecc_code, u_char *null)
309 int i;
310 struct davinci_nand_info *info = to_davinci_nand(mtd);
311 unsigned short ecc10[8];
312 unsigned short *ecc16;
313 u32 syndrome[4];
314 unsigned num_errors, corrected;
316 /* All bytes 0xff? It's an erased page; ignore its ECC. */
317 for (i = 0; i < 10; i++) {
318 if (ecc_code[i] != 0xff)
319 goto compare;
321 return 0;
323 compare:
324 /* Unpack ten bytes into eight 10 bit values. We know we're
325 * little-endian, and use type punning for less shifting/masking.
327 if (WARN_ON(0x01 & (unsigned) ecc_code))
328 return -EINVAL;
329 ecc16 = (unsigned short *)ecc_code;
331 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
332 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
333 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
334 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
335 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
336 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
337 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
338 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
340 /* Tell ECC controller about the expected ECC codes. */
341 for (i = 7; i >= 0; i--)
342 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
344 /* Allow time for syndrome calculation ... then read it.
345 * A syndrome of all zeroes 0 means no detected errors.
347 davinci_nand_readl(info, NANDFSR_OFFSET);
348 nand_davinci_readecc_4bit(info, syndrome);
349 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
350 return 0;
353 * Clear any previous address calculation by doing a dummy read of an
354 * error address register.
356 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
358 /* Start address calculation, and wait for it to complete.
359 * We _could_ start reading more data while this is working,
360 * to speed up the overall page read.
362 davinci_nand_writel(info, NANDFCR_OFFSET,
363 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
364 for (;;) {
365 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
367 switch ((fsr >> 8) & 0x0f) {
368 case 0: /* no error, should not happen */
369 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
370 return 0;
371 case 1: /* five or more errors detected */
372 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
373 return -EIO;
374 case 2: /* error addresses computed */
375 case 3:
376 num_errors = 1 + ((fsr >> 16) & 0x03);
377 goto correct;
378 default: /* still working on it */
379 cpu_relax();
380 continue;
384 correct:
385 /* correct each error */
386 for (i = 0, corrected = 0; i < num_errors; i++) {
387 int error_address, error_value;
389 if (i > 1) {
390 error_address = davinci_nand_readl(info,
391 NAND_ERR_ADD2_OFFSET);
392 error_value = davinci_nand_readl(info,
393 NAND_ERR_ERRVAL2_OFFSET);
394 } else {
395 error_address = davinci_nand_readl(info,
396 NAND_ERR_ADD1_OFFSET);
397 error_value = davinci_nand_readl(info,
398 NAND_ERR_ERRVAL1_OFFSET);
401 if (i & 1) {
402 error_address >>= 16;
403 error_value >>= 16;
405 error_address &= 0x3ff;
406 error_address = (512 + 7) - error_address;
408 if (error_address < 512) {
409 data[error_address] ^= error_value;
410 corrected++;
414 return corrected;
417 /*----------------------------------------------------------------------*/
420 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
421 * how these chips are normally wired. This translates to both 8 and 16
422 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
424 * For now we assume that configuration, or any other one which ignores
425 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
426 * and have that transparently morphed into multiple NAND operations.
428 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
430 struct nand_chip *chip = mtd->priv;
432 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
433 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
434 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
435 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
436 else
437 ioread8_rep(chip->IO_ADDR_R, buf, len);
440 static void nand_davinci_write_buf(struct mtd_info *mtd,
441 const uint8_t *buf, int len)
443 struct nand_chip *chip = mtd->priv;
445 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
446 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
447 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
448 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
449 else
450 iowrite8_rep(chip->IO_ADDR_R, buf, len);
454 * Check hardware register for wait status. Returns 1 if device is ready,
455 * 0 if it is still busy.
457 static int nand_davinci_dev_ready(struct mtd_info *mtd)
459 struct davinci_nand_info *info = to_davinci_nand(mtd);
461 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
464 static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info)
466 uint32_t regval, a1cr;
469 * NAND FLASH timings @ PLL1 == 459 MHz
470 * - AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz
471 * - AEMIF.CLK period = 1/76.5 MHz = 13.1 ns
473 regval = 0
474 | (0 << 31) /* selectStrobe */
475 | (0 << 30) /* extWait (never with NAND) */
476 | (1 << 26) /* writeSetup 10 ns */
477 | (3 << 20) /* writeStrobe 40 ns */
478 | (1 << 17) /* writeHold 10 ns */
479 | (0 << 13) /* readSetup 10 ns */
480 | (3 << 7) /* readStrobe 60 ns */
481 | (0 << 4) /* readHold 10 ns */
482 | (3 << 2) /* turnAround ?? ns */
483 | (0 << 0) /* asyncSize 8-bit bus */
485 a1cr = davinci_nand_readl(info, A1CR_OFFSET);
486 if (a1cr != regval) {
487 dev_dbg(info->dev, "Warning: NAND config: Set A1CR " \
488 "reg to 0x%08x, was 0x%08x, should be done by " \
489 "bootloader.\n", regval, a1cr);
490 davinci_nand_writel(info, A1CR_OFFSET, regval);
494 /*----------------------------------------------------------------------*/
496 /* An ECC layout for using 4-bit ECC with small-page flash, storing
497 * ten ECC bytes plus the manufacturer's bad block marker byte, and
498 * and not overlapping the default BBT markers.
500 static struct nand_ecclayout hwecc4_small __initconst = {
501 .eccbytes = 10,
502 .eccpos = { 0, 1, 2, 3, 4,
503 /* offset 5 holds the badblock marker */
504 6, 7,
505 13, 14, 15, },
506 .oobfree = {
507 {.offset = 8, .length = 5, },
508 {.offset = 16, },
512 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
513 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
514 * and not overlapping the default BBT markers.
516 static struct nand_ecclayout hwecc4_2048 __initconst = {
517 .eccbytes = 40,
518 .eccpos = {
519 /* at the end of spare sector */
520 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
521 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
522 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
523 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
525 .oobfree = {
526 /* 2 bytes at offset 0 hold manufacturer badblock markers */
527 {.offset = 2, .length = 22, },
528 /* 5 bytes at offset 8 hold BBT markers */
529 /* 8 bytes at offset 16 hold JFFS2 clean markers */
533 static int __init nand_davinci_probe(struct platform_device *pdev)
535 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
536 struct davinci_nand_info *info;
537 struct resource *res1;
538 struct resource *res2;
539 void __iomem *vaddr;
540 void __iomem *base;
541 int ret;
542 uint32_t val;
543 nand_ecc_modes_t ecc_mode;
545 /* insist on board-specific configuration */
546 if (!pdata)
547 return -ENODEV;
549 /* which external chipselect will we be managing? */
550 if (pdev->id < 0 || pdev->id > 3)
551 return -ENODEV;
553 info = kzalloc(sizeof(*info), GFP_KERNEL);
554 if (!info) {
555 dev_err(&pdev->dev, "unable to allocate memory\n");
556 ret = -ENOMEM;
557 goto err_nomem;
560 platform_set_drvdata(pdev, info);
562 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
563 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
564 if (!res1 || !res2) {
565 dev_err(&pdev->dev, "resource missing\n");
566 ret = -EINVAL;
567 goto err_nomem;
570 vaddr = ioremap(res1->start, resource_size(res1));
571 base = ioremap(res2->start, resource_size(res2));
572 if (!vaddr || !base) {
573 dev_err(&pdev->dev, "ioremap failed\n");
574 ret = -EINVAL;
575 goto err_ioremap;
578 info->dev = &pdev->dev;
579 info->base = base;
580 info->vaddr = vaddr;
582 info->mtd.priv = &info->chip;
583 info->mtd.name = dev_name(&pdev->dev);
584 info->mtd.owner = THIS_MODULE;
586 info->mtd.dev.parent = &pdev->dev;
588 info->chip.IO_ADDR_R = vaddr;
589 info->chip.IO_ADDR_W = vaddr;
590 info->chip.chip_delay = 0;
591 info->chip.select_chip = nand_davinci_select_chip;
593 /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
594 info->chip.options = pdata->options;
595 info->chip.bbt_td = pdata->bbt_td;
596 info->chip.bbt_md = pdata->bbt_md;
598 info->ioaddr = (uint32_t __force) vaddr;
600 info->current_cs = info->ioaddr;
601 info->core_chipsel = pdev->id;
602 info->mask_chipsel = pdata->mask_chipsel;
604 /* use nandboot-capable ALE/CLE masks by default */
605 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
606 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
608 /* Set address of hardware control function */
609 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
610 info->chip.dev_ready = nand_davinci_dev_ready;
612 /* Speed up buffer I/O */
613 info->chip.read_buf = nand_davinci_read_buf;
614 info->chip.write_buf = nand_davinci_write_buf;
616 /* Use board-specific ECC config */
617 ecc_mode = pdata->ecc_mode;
619 ret = -EINVAL;
620 switch (ecc_mode) {
621 case NAND_ECC_NONE:
622 case NAND_ECC_SOFT:
623 pdata->ecc_bits = 0;
624 break;
625 case NAND_ECC_HW:
626 if (pdata->ecc_bits == 4) {
627 /* No sanity checks: CPUs must support this,
628 * and the chips may not use NAND_BUSWIDTH_16.
631 /* No sharing 4-bit hardware between chipselects yet */
632 spin_lock_irq(&davinci_nand_lock);
633 if (ecc4_busy)
634 ret = -EBUSY;
635 else
636 ecc4_busy = true;
637 spin_unlock_irq(&davinci_nand_lock);
639 if (ret == -EBUSY)
640 goto err_ecc;
642 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
643 info->chip.ecc.correct = nand_davinci_correct_4bit;
644 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
645 info->chip.ecc.bytes = 10;
646 } else {
647 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
648 info->chip.ecc.correct = nand_davinci_correct_1bit;
649 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
650 info->chip.ecc.bytes = 3;
652 info->chip.ecc.size = 512;
653 break;
654 default:
655 ret = -EINVAL;
656 goto err_ecc;
658 info->chip.ecc.mode = ecc_mode;
660 info->clk = clk_get(&pdev->dev, "aemif");
661 if (IS_ERR(info->clk)) {
662 ret = PTR_ERR(info->clk);
663 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
664 goto err_clk;
667 ret = clk_enable(info->clk);
668 if (ret < 0) {
669 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
670 ret);
671 goto err_clk_enable;
674 /* EMIF timings should normally be set by the boot loader,
675 * especially after boot-from-NAND. The *only* reason to
676 * have this special casing for the DM6446 EVM is to work
677 * with boot-from-NOR ... with CS0 manually re-jumpered
678 * (after startup) so it addresses the NAND flash, not NOR.
679 * Even for dev boards, that's unusually rude...
681 if (machine_is_davinci_evm())
682 nand_dm6446evm_flash_init(info);
684 spin_lock_irq(&davinci_nand_lock);
686 /* put CSxNAND into NAND mode */
687 val = davinci_nand_readl(info, NANDFCR_OFFSET);
688 val |= BIT(info->core_chipsel);
689 davinci_nand_writel(info, NANDFCR_OFFSET, val);
691 spin_unlock_irq(&davinci_nand_lock);
693 /* Scan to find existence of the device(s) */
694 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
695 if (ret < 0) {
696 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
697 goto err_scan;
700 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
701 * is OK, but it allocates 6 bytes when only 3 are needed (for
702 * each 512 bytes). For the 4-bit HW ECC, that default is not
703 * usable: 10 bytes are needed, not 6.
705 if (pdata->ecc_bits == 4) {
706 int chunks = info->mtd.writesize / 512;
708 if (!chunks || info->mtd.oobsize < 16) {
709 dev_dbg(&pdev->dev, "too small\n");
710 ret = -EINVAL;
711 goto err_scan;
714 /* For small page chips, preserve the manufacturer's
715 * badblock marking data ... and make sure a flash BBT
716 * table marker fits in the free bytes.
718 if (chunks == 1) {
719 info->ecclayout = hwecc4_small;
720 info->ecclayout.oobfree[1].length =
721 info->mtd.oobsize - 16;
722 goto syndrome_done;
724 if (chunks == 4) {
725 info->ecclayout = hwecc4_2048;
726 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
727 goto syndrome_done;
730 /* 4KiB page chips are not yet supported. The eccpos from
731 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
732 * breaks userspace ioctl interface with mtd-utils. Once we
733 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
734 * for the 4KiB page chips.
736 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
737 "for 4KiB-page NAND\n");
738 ret = -EIO;
739 goto err_scan;
741 syndrome_done:
742 info->chip.ecc.layout = &info->ecclayout;
745 ret = nand_scan_tail(&info->mtd);
746 if (ret < 0)
747 goto err_scan;
749 if (mtd_has_partitions()) {
750 struct mtd_partition *mtd_parts = NULL;
751 int mtd_parts_nb = 0;
753 if (mtd_has_cmdlinepart()) {
754 static const char *probes[] __initconst =
755 { "cmdlinepart", NULL };
757 mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
758 &mtd_parts, 0);
761 if (mtd_parts_nb <= 0) {
762 mtd_parts = pdata->parts;
763 mtd_parts_nb = pdata->nr_parts;
766 /* Register any partitions */
767 if (mtd_parts_nb > 0) {
768 ret = add_mtd_partitions(&info->mtd,
769 mtd_parts, mtd_parts_nb);
770 if (ret == 0)
771 info->partitioned = true;
774 } else if (pdata->nr_parts) {
775 dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n",
776 pdata->nr_parts, info->mtd.name);
779 /* If there's no partition info, just package the whole chip
780 * as a single MTD device.
782 if (!info->partitioned)
783 ret = add_mtd_device(&info->mtd) ? -ENODEV : 0;
785 if (ret < 0)
786 goto err_scan;
788 val = davinci_nand_readl(info, NRCSR_OFFSET);
789 dev_info(&pdev->dev, "controller rev. %d.%d\n",
790 (val >> 8) & 0xff, val & 0xff);
792 return 0;
794 err_scan:
795 clk_disable(info->clk);
797 err_clk_enable:
798 clk_put(info->clk);
800 spin_lock_irq(&davinci_nand_lock);
801 if (ecc_mode == NAND_ECC_HW_SYNDROME)
802 ecc4_busy = false;
803 spin_unlock_irq(&davinci_nand_lock);
805 err_ecc:
806 err_clk:
807 err_ioremap:
808 if (base)
809 iounmap(base);
810 if (vaddr)
811 iounmap(vaddr);
813 err_nomem:
814 kfree(info);
815 return ret;
818 static int __exit nand_davinci_remove(struct platform_device *pdev)
820 struct davinci_nand_info *info = platform_get_drvdata(pdev);
821 int status;
823 if (mtd_has_partitions() && info->partitioned)
824 status = del_mtd_partitions(&info->mtd);
825 else
826 status = del_mtd_device(&info->mtd);
828 spin_lock_irq(&davinci_nand_lock);
829 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
830 ecc4_busy = false;
831 spin_unlock_irq(&davinci_nand_lock);
833 iounmap(info->base);
834 iounmap(info->vaddr);
836 nand_release(&info->mtd);
838 clk_disable(info->clk);
839 clk_put(info->clk);
841 kfree(info);
843 return 0;
846 static struct platform_driver nand_davinci_driver = {
847 .remove = __exit_p(nand_davinci_remove),
848 .driver = {
849 .name = "davinci_nand",
852 MODULE_ALIAS("platform:davinci_nand");
854 static int __init nand_davinci_init(void)
856 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
858 module_init(nand_davinci_init);
860 static void __exit nand_davinci_exit(void)
862 platform_driver_unregister(&nand_davinci_driver);
864 module_exit(nand_davinci_exit);
866 MODULE_LICENSE("GPL");
867 MODULE_AUTHOR("Texas Instruments");
868 MODULE_DESCRIPTION("Davinci NAND flash driver");