libata: fix libata-scsi kernel-doc notation
[linux-2.6/kvm.git] / drivers / dma / fsldma.c
blob054eabffc185a893ff32ab51c01dfd876ab84b43
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA contorller is also added.
15 * This is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/dmaengine.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/of_platform.h>
32 #include "fsldma.h"
34 static void dma_init(struct fsl_dma_chan *fsl_chan)
36 /* Reset the channel */
37 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
39 switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
40 case FSL_DMA_IP_85XX:
41 /* Set the channel to below modes:
42 * EIE - Error interrupt enable
43 * EOSIE - End of segments interrupt enable (basic mode)
44 * EOLNIE - End of links interrupt enable
46 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
47 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
48 break;
49 case FSL_DMA_IP_83XX:
50 /* Set the channel to below modes:
51 * EOTIE - End-of-transfer interrupt enable
53 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE,
54 32);
55 break;
60 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val)
62 DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
65 static u32 get_sr(struct fsl_dma_chan *fsl_chan)
67 return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
70 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
71 struct fsl_dma_ld_hw *hw, u32 count)
73 hw->count = CPU_TO_DMA(fsl_chan, count, 32);
76 static void set_desc_src(struct fsl_dma_chan *fsl_chan,
77 struct fsl_dma_ld_hw *hw, dma_addr_t src)
79 u64 snoop_bits;
81 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
82 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
83 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
86 static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
87 struct fsl_dma_ld_hw *hw, dma_addr_t dest)
89 u64 snoop_bits;
91 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
92 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
93 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
96 static void set_desc_next(struct fsl_dma_chan *fsl_chan,
97 struct fsl_dma_ld_hw *hw, dma_addr_t next)
99 u64 snoop_bits;
101 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
102 ? FSL_DMA_SNEN : 0;
103 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
106 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
108 DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
111 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
113 return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
116 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
118 DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
121 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
123 return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
126 static u32 get_bcr(struct fsl_dma_chan *fsl_chan)
128 return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32);
131 static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
133 u32 sr = get_sr(fsl_chan);
134 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
137 static void dma_start(struct fsl_dma_chan *fsl_chan)
139 u32 mr_set = 0;;
141 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
142 DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
143 mr_set |= FSL_DMA_MR_EMP_EN;
144 } else
145 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
146 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
147 & ~FSL_DMA_MR_EMP_EN, 32);
149 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
150 mr_set |= FSL_DMA_MR_EMS_EN;
151 else
152 mr_set |= FSL_DMA_MR_CS;
154 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
155 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
156 | mr_set, 32);
159 static void dma_halt(struct fsl_dma_chan *fsl_chan)
161 int i = 0;
162 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
163 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
164 32);
165 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
166 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
167 | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
169 while (!dma_is_idle(fsl_chan) && (i++ < 100))
170 udelay(10);
171 if (i >= 100 && !dma_is_idle(fsl_chan))
172 dev_err(fsl_chan->dev, "DMA halt timeout!\n");
175 static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
176 struct fsl_desc_sw *desc)
178 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
179 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL,
180 64);
183 static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
184 struct fsl_desc_sw *new_desc)
186 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
188 if (list_empty(&fsl_chan->ld_queue))
189 return;
191 /* Link to the new descriptor physical address and
192 * Enable End-of-segment interrupt for
193 * the last link descriptor.
194 * (the previous node's next link descriptor)
196 * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
198 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
199 new_desc->async_tx.phys | FSL_DMA_EOSIE |
200 (((fsl_chan->feature & FSL_DMA_IP_MASK)
201 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
205 * fsl_chan_set_src_loop_size - Set source address hold transfer size
206 * @fsl_chan : Freescale DMA channel
207 * @size : Address loop size, 0 for disable loop
209 * The set source address hold transfer size. The source
210 * address hold or loop transfer size is when the DMA transfer
211 * data from source address (SA), if the loop size is 4, the DMA will
212 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
213 * SA + 1 ... and so on.
215 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
217 switch (size) {
218 case 0:
219 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
220 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
221 (~FSL_DMA_MR_SAHE), 32);
222 break;
223 case 1:
224 case 2:
225 case 4:
226 case 8:
227 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
228 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
229 FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
230 32);
231 break;
236 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
237 * @fsl_chan : Freescale DMA channel
238 * @size : Address loop size, 0 for disable loop
240 * The set destination address hold transfer size. The destination
241 * address hold or loop transfer size is when the DMA transfer
242 * data to destination address (TA), if the loop size is 4, the DMA will
243 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
244 * TA + 1 ... and so on.
246 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
248 switch (size) {
249 case 0:
250 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
251 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
252 (~FSL_DMA_MR_DAHE), 32);
253 break;
254 case 1:
255 case 2:
256 case 4:
257 case 8:
258 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
259 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
260 FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
261 32);
262 break;
267 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
268 * @fsl_chan : Freescale DMA channel
269 * @size : Pause control size, 0 for disable external pause control.
270 * The maximum is 1024.
272 * The Freescale DMA channel can be controlled by the external
273 * signal DREQ#. The pause control size is how many bytes are allowed
274 * to transfer before pausing the channel, after which a new assertion
275 * of DREQ# resumes channel operation.
277 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size)
279 if (size > 1024)
280 return;
282 if (size) {
283 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
284 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
285 | ((__ilog2(size) << 24) & 0x0f000000),
286 32);
287 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
288 } else
289 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
293 * fsl_chan_toggle_ext_start - Toggle channel external start status
294 * @fsl_chan : Freescale DMA channel
295 * @enable : 0 is disabled, 1 is enabled.
297 * If enable the external start, the channel can be started by an
298 * external DMA start pin. So the dma_start() does not start the
299 * transfer immediately. The DMA channel will wait for the
300 * control pin asserted.
302 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
304 if (enable)
305 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
306 else
307 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
310 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
312 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
313 struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
314 unsigned long flags;
315 dma_cookie_t cookie;
317 /* cookie increment and adding to ld_queue must be atomic */
318 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
320 cookie = fsl_chan->common.cookie;
321 cookie++;
322 if (cookie < 0)
323 cookie = 1;
324 desc->async_tx.cookie = cookie;
325 fsl_chan->common.cookie = desc->async_tx.cookie;
327 append_ld_queue(fsl_chan, desc);
328 list_splice_init(&desc->async_tx.tx_list, fsl_chan->ld_queue.prev);
330 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
332 return cookie;
336 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
337 * @fsl_chan : Freescale DMA channel
339 * Return - The descriptor allocated. NULL for failed.
341 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
342 struct fsl_dma_chan *fsl_chan)
344 dma_addr_t pdesc;
345 struct fsl_desc_sw *desc_sw;
347 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
348 if (desc_sw) {
349 memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
350 dma_async_tx_descriptor_init(&desc_sw->async_tx,
351 &fsl_chan->common);
352 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
353 INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
354 desc_sw->async_tx.phys = pdesc;
357 return desc_sw;
362 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
363 * @fsl_chan : Freescale DMA channel
365 * This function will create a dma pool for descriptor allocation.
367 * Return - The number of descriptors allocated.
369 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
371 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
372 LIST_HEAD(tmp_list);
374 /* We need the descriptor to be aligned to 32bytes
375 * for meeting FSL DMA specification requirement.
377 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
378 fsl_chan->dev, sizeof(struct fsl_desc_sw),
379 32, 0);
380 if (!fsl_chan->desc_pool) {
381 dev_err(fsl_chan->dev, "No memory for channel %d "
382 "descriptor dma pool.\n", fsl_chan->id);
383 return 0;
386 return 1;
390 * fsl_dma_free_chan_resources - Free all resources of the channel.
391 * @fsl_chan : Freescale DMA channel
393 static void fsl_dma_free_chan_resources(struct dma_chan *chan)
395 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
396 struct fsl_desc_sw *desc, *_desc;
397 unsigned long flags;
399 dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
400 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
401 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
402 #ifdef FSL_DMA_LD_DEBUG
403 dev_dbg(fsl_chan->dev,
404 "LD %p will be released.\n", desc);
405 #endif
406 list_del(&desc->node);
407 /* free link descriptor */
408 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
410 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
411 dma_pool_destroy(fsl_chan->desc_pool);
414 static struct dma_async_tx_descriptor *
415 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
417 struct fsl_dma_chan *fsl_chan;
418 struct fsl_desc_sw *new;
420 if (!chan)
421 return NULL;
423 fsl_chan = to_fsl_chan(chan);
425 new = fsl_dma_alloc_descriptor(fsl_chan);
426 if (!new) {
427 dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
428 return NULL;
431 new->async_tx.cookie = -EBUSY;
432 new->async_tx.flags = flags;
434 /* Insert the link descriptor to the LD ring */
435 list_add_tail(&new->node, &new->async_tx.tx_list);
437 /* Set End-of-link to the last link descriptor of new list*/
438 set_ld_eol(fsl_chan, new);
440 return &new->async_tx;
443 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
444 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
445 size_t len, unsigned long flags)
447 struct fsl_dma_chan *fsl_chan;
448 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
449 size_t copy;
450 LIST_HEAD(link_chain);
452 if (!chan)
453 return NULL;
455 if (!len)
456 return NULL;
458 fsl_chan = to_fsl_chan(chan);
460 do {
462 /* Allocate the link descriptor from DMA pool */
463 new = fsl_dma_alloc_descriptor(fsl_chan);
464 if (!new) {
465 dev_err(fsl_chan->dev,
466 "No free memory for link descriptor\n");
467 return NULL;
469 #ifdef FSL_DMA_LD_DEBUG
470 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
471 #endif
473 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
475 set_desc_cnt(fsl_chan, &new->hw, copy);
476 set_desc_src(fsl_chan, &new->hw, dma_src);
477 set_desc_dest(fsl_chan, &new->hw, dma_dest);
479 if (!first)
480 first = new;
481 else
482 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
484 new->async_tx.cookie = 0;
485 async_tx_ack(&new->async_tx);
487 prev = new;
488 len -= copy;
489 dma_src += copy;
490 dma_dest += copy;
492 /* Insert the link descriptor to the LD ring */
493 list_add_tail(&new->node, &first->async_tx.tx_list);
494 } while (len);
496 new->async_tx.flags = flags; /* client is in control of this ack */
497 new->async_tx.cookie = -EBUSY;
499 /* Set End-of-link to the last link descriptor of new list*/
500 set_ld_eol(fsl_chan, new);
502 return first ? &first->async_tx : NULL;
506 * fsl_dma_update_completed_cookie - Update the completed cookie.
507 * @fsl_chan : Freescale DMA channel
509 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
511 struct fsl_desc_sw *cur_desc, *desc;
512 dma_addr_t ld_phy;
514 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
516 if (ld_phy) {
517 cur_desc = NULL;
518 list_for_each_entry(desc, &fsl_chan->ld_queue, node)
519 if (desc->async_tx.phys == ld_phy) {
520 cur_desc = desc;
521 break;
524 if (cur_desc && cur_desc->async_tx.cookie) {
525 if (dma_is_idle(fsl_chan))
526 fsl_chan->completed_cookie =
527 cur_desc->async_tx.cookie;
528 else
529 fsl_chan->completed_cookie =
530 cur_desc->async_tx.cookie - 1;
536 * fsl_chan_ld_cleanup - Clean up link descriptors
537 * @fsl_chan : Freescale DMA channel
539 * This function clean up the ld_queue of DMA channel.
540 * If 'in_intr' is set, the function will move the link descriptor to
541 * the recycle list. Otherwise, free it directly.
543 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
545 struct fsl_desc_sw *desc, *_desc;
546 unsigned long flags;
548 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
550 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
551 fsl_chan->completed_cookie);
552 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
553 dma_async_tx_callback callback;
554 void *callback_param;
556 if (dma_async_is_complete(desc->async_tx.cookie,
557 fsl_chan->completed_cookie, fsl_chan->common.cookie)
558 == DMA_IN_PROGRESS)
559 break;
561 callback = desc->async_tx.callback;
562 callback_param = desc->async_tx.callback_param;
564 /* Remove from ld_queue list */
565 list_del(&desc->node);
567 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
568 desc);
569 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
571 /* Run the link descriptor callback function */
572 if (callback) {
573 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
574 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
575 desc);
576 callback(callback_param);
577 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
580 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
584 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
585 * @fsl_chan : Freescale DMA channel
587 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
589 struct list_head *ld_node;
590 dma_addr_t next_dest_addr;
591 unsigned long flags;
593 if (!dma_is_idle(fsl_chan))
594 return;
596 dma_halt(fsl_chan);
598 /* If there are some link descriptors
599 * not transfered in queue. We need to start it.
601 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
603 /* Find the first un-transfer desciptor */
604 for (ld_node = fsl_chan->ld_queue.next;
605 (ld_node != &fsl_chan->ld_queue)
606 && (dma_async_is_complete(
607 to_fsl_desc(ld_node)->async_tx.cookie,
608 fsl_chan->completed_cookie,
609 fsl_chan->common.cookie) == DMA_SUCCESS);
610 ld_node = ld_node->next);
612 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
614 if (ld_node != &fsl_chan->ld_queue) {
615 /* Get the ld start address from ld_queue */
616 next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
617 dev_dbg(fsl_chan->dev, "xfer LDs staring from %p\n",
618 (void *)next_dest_addr);
619 set_cdar(fsl_chan, next_dest_addr);
620 dma_start(fsl_chan);
621 } else {
622 set_cdar(fsl_chan, 0);
623 set_ndar(fsl_chan, 0);
628 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
629 * @fsl_chan : Freescale DMA channel
631 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
633 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
635 #ifdef FSL_DMA_LD_DEBUG
636 struct fsl_desc_sw *ld;
637 unsigned long flags;
639 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
640 if (list_empty(&fsl_chan->ld_queue)) {
641 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
642 return;
645 dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
646 list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
647 int i;
648 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
649 fsl_chan->id, ld->async_tx.phys);
650 for (i = 0; i < 8; i++)
651 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
652 i, *(((u32 *)&ld->hw) + i));
654 dev_dbg(fsl_chan->dev, "----------------\n");
655 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
656 #endif
658 fsl_chan_xfer_ld_queue(fsl_chan);
662 * fsl_dma_is_complete - Determine the DMA status
663 * @fsl_chan : Freescale DMA channel
665 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
666 dma_cookie_t cookie,
667 dma_cookie_t *done,
668 dma_cookie_t *used)
670 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
671 dma_cookie_t last_used;
672 dma_cookie_t last_complete;
674 fsl_chan_ld_cleanup(fsl_chan);
676 last_used = chan->cookie;
677 last_complete = fsl_chan->completed_cookie;
679 if (done)
680 *done = last_complete;
682 if (used)
683 *used = last_used;
685 return dma_async_is_complete(cookie, last_complete, last_used);
688 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
690 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
691 u32 stat;
692 int update_cookie = 0;
693 int xfer_ld_q = 0;
695 stat = get_sr(fsl_chan);
696 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
697 fsl_chan->id, stat);
698 set_sr(fsl_chan, stat); /* Clear the event register */
700 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
701 if (!stat)
702 return IRQ_NONE;
704 if (stat & FSL_DMA_SR_TE)
705 dev_err(fsl_chan->dev, "Transfer Error!\n");
707 /* Programming Error
708 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
709 * triger a PE interrupt.
711 if (stat & FSL_DMA_SR_PE) {
712 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
713 if (get_bcr(fsl_chan) == 0) {
714 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
715 * Now, update the completed cookie, and continue the
716 * next uncompleted transfer.
718 update_cookie = 1;
719 xfer_ld_q = 1;
721 stat &= ~FSL_DMA_SR_PE;
724 /* If the link descriptor segment transfer finishes,
725 * we will recycle the used descriptor.
727 if (stat & FSL_DMA_SR_EOSI) {
728 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
729 dev_dbg(fsl_chan->dev, "event: clndar %p, nlndar %p\n",
730 (void *)get_cdar(fsl_chan), (void *)get_ndar(fsl_chan));
731 stat &= ~FSL_DMA_SR_EOSI;
732 update_cookie = 1;
735 /* For MPC8349, EOCDI event need to update cookie
736 * and start the next transfer if it exist.
738 if (stat & FSL_DMA_SR_EOCDI) {
739 dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
740 stat &= ~FSL_DMA_SR_EOCDI;
741 update_cookie = 1;
742 xfer_ld_q = 1;
745 /* If it current transfer is the end-of-transfer,
746 * we should clear the Channel Start bit for
747 * prepare next transfer.
749 if (stat & FSL_DMA_SR_EOLNI) {
750 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
751 stat &= ~FSL_DMA_SR_EOLNI;
752 xfer_ld_q = 1;
755 if (update_cookie)
756 fsl_dma_update_completed_cookie(fsl_chan);
757 if (xfer_ld_q)
758 fsl_chan_xfer_ld_queue(fsl_chan);
759 if (stat)
760 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
761 stat);
763 dev_dbg(fsl_chan->dev, "event: Exit\n");
764 tasklet_schedule(&fsl_chan->tasklet);
765 return IRQ_HANDLED;
768 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
770 struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
771 u32 gsr;
772 int ch_nr;
774 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
775 : in_le32(fdev->reg_base);
776 ch_nr = (32 - ffs(gsr)) / 8;
778 return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
779 fdev->chan[ch_nr]) : IRQ_NONE;
782 static void dma_do_tasklet(unsigned long data)
784 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
785 fsl_chan_ld_cleanup(fsl_chan);
788 static void fsl_dma_callback_test(void *param)
790 struct fsl_dma_chan *fsl_chan = param;
791 if (fsl_chan)
792 dev_dbg(fsl_chan->dev, "selftest: callback is ok!\n");
795 static int fsl_dma_self_test(struct fsl_dma_chan *fsl_chan)
797 struct dma_chan *chan;
798 int err = 0;
799 dma_addr_t dma_dest, dma_src;
800 dma_cookie_t cookie;
801 u8 *src, *dest;
802 int i;
803 size_t test_size;
804 struct dma_async_tx_descriptor *tx1, *tx2, *tx3;
806 test_size = 4096;
808 src = kmalloc(test_size * 2, GFP_KERNEL);
809 if (!src) {
810 dev_err(fsl_chan->dev,
811 "selftest: Cannot alloc memory for test!\n");
812 err = -ENOMEM;
813 goto out;
816 dest = src + test_size;
818 for (i = 0; i < test_size; i++)
819 src[i] = (u8) i;
821 chan = &fsl_chan->common;
823 if (fsl_dma_alloc_chan_resources(chan) < 1) {
824 dev_err(fsl_chan->dev,
825 "selftest: Cannot alloc resources for DMA\n");
826 err = -ENODEV;
827 goto out;
830 /* TX 1 */
831 dma_src = dma_map_single(fsl_chan->dev, src, test_size / 2,
832 DMA_TO_DEVICE);
833 dma_dest = dma_map_single(fsl_chan->dev, dest, test_size / 2,
834 DMA_FROM_DEVICE);
835 tx1 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 2, 0);
836 async_tx_ack(tx1);
838 cookie = fsl_dma_tx_submit(tx1);
839 fsl_dma_memcpy_issue_pending(chan);
840 msleep(2);
842 if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
843 dev_err(fsl_chan->dev, "selftest: Time out!\n");
844 err = -ENODEV;
845 goto out;
848 /* Test free and re-alloc channel resources */
849 fsl_dma_free_chan_resources(chan);
851 if (fsl_dma_alloc_chan_resources(chan) < 1) {
852 dev_err(fsl_chan->dev,
853 "selftest: Cannot alloc resources for DMA\n");
854 err = -ENODEV;
855 goto free_resources;
858 /* Continue to test
859 * TX 2
861 dma_src = dma_map_single(fsl_chan->dev, src + test_size / 2,
862 test_size / 4, DMA_TO_DEVICE);
863 dma_dest = dma_map_single(fsl_chan->dev, dest + test_size / 2,
864 test_size / 4, DMA_FROM_DEVICE);
865 tx2 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
866 async_tx_ack(tx2);
868 /* TX 3 */
869 dma_src = dma_map_single(fsl_chan->dev, src + test_size * 3 / 4,
870 test_size / 4, DMA_TO_DEVICE);
871 dma_dest = dma_map_single(fsl_chan->dev, dest + test_size * 3 / 4,
872 test_size / 4, DMA_FROM_DEVICE);
873 tx3 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
874 async_tx_ack(tx3);
876 /* Interrupt tx test */
877 tx1 = fsl_dma_prep_interrupt(chan, 0);
878 async_tx_ack(tx1);
879 cookie = fsl_dma_tx_submit(tx1);
881 /* Test exchanging the prepared tx sort */
882 cookie = fsl_dma_tx_submit(tx3);
883 cookie = fsl_dma_tx_submit(tx2);
885 if (dma_has_cap(DMA_INTERRUPT, ((struct fsl_dma_device *)
886 dev_get_drvdata(fsl_chan->dev->parent))->common.cap_mask)) {
887 tx3->callback = fsl_dma_callback_test;
888 tx3->callback_param = fsl_chan;
890 fsl_dma_memcpy_issue_pending(chan);
891 msleep(2);
893 if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
894 dev_err(fsl_chan->dev, "selftest: Time out!\n");
895 err = -ENODEV;
896 goto free_resources;
899 err = memcmp(src, dest, test_size);
900 if (err) {
901 for (i = 0; (*(src + i) == *(dest + i)) && (i < test_size);
902 i++);
903 dev_err(fsl_chan->dev, "selftest: Test failed, data %d/%ld is "
904 "error! src 0x%x, dest 0x%x\n",
905 i, (long)test_size, *(src + i), *(dest + i));
908 free_resources:
909 fsl_dma_free_chan_resources(chan);
910 out:
911 kfree(src);
912 return err;
915 static int __devinit of_fsl_dma_chan_probe(struct of_device *dev,
916 const struct of_device_id *match)
918 struct fsl_dma_device *fdev;
919 struct fsl_dma_chan *new_fsl_chan;
920 int err;
922 fdev = dev_get_drvdata(dev->dev.parent);
923 BUG_ON(!fdev);
925 /* alloc channel */
926 new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
927 if (!new_fsl_chan) {
928 dev_err(&dev->dev, "No free memory for allocating "
929 "dma channels!\n");
930 err = -ENOMEM;
931 goto err;
934 /* get dma channel register base */
935 err = of_address_to_resource(dev->node, 0, &new_fsl_chan->reg);
936 if (err) {
937 dev_err(&dev->dev, "Can't get %s property 'reg'\n",
938 dev->node->full_name);
939 goto err;
942 new_fsl_chan->feature = *(u32 *)match->data;
944 if (!fdev->feature)
945 fdev->feature = new_fsl_chan->feature;
947 /* If the DMA device's feature is different than its channels',
948 * report the bug.
950 WARN_ON(fdev->feature != new_fsl_chan->feature);
952 new_fsl_chan->dev = &dev->dev;
953 new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
954 new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
956 new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
957 if (new_fsl_chan->id > FSL_DMA_MAX_CHANS_PER_DEVICE) {
958 dev_err(&dev->dev, "There is no %d channel!\n",
959 new_fsl_chan->id);
960 err = -EINVAL;
961 goto err;
963 fdev->chan[new_fsl_chan->id] = new_fsl_chan;
964 tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
965 (unsigned long)new_fsl_chan);
967 /* Init the channel */
968 dma_init(new_fsl_chan);
970 /* Clear cdar registers */
971 set_cdar(new_fsl_chan, 0);
973 switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
974 case FSL_DMA_IP_85XX:
975 new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
976 new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
977 case FSL_DMA_IP_83XX:
978 new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
979 new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
982 spin_lock_init(&new_fsl_chan->desc_lock);
983 INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
985 new_fsl_chan->common.device = &fdev->common;
987 /* Add the channel to DMA device channel list */
988 list_add_tail(&new_fsl_chan->common.device_node,
989 &fdev->common.channels);
990 fdev->common.chancnt++;
992 new_fsl_chan->irq = irq_of_parse_and_map(dev->node, 0);
993 if (new_fsl_chan->irq != NO_IRQ) {
994 err = request_irq(new_fsl_chan->irq,
995 &fsl_dma_chan_do_interrupt, IRQF_SHARED,
996 "fsldma-channel", new_fsl_chan);
997 if (err) {
998 dev_err(&dev->dev, "DMA channel %s request_irq error "
999 "with return %d\n", dev->node->full_name, err);
1000 goto err;
1004 err = fsl_dma_self_test(new_fsl_chan);
1005 if (err)
1006 goto err;
1008 dev_info(&dev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
1009 match->compatible, new_fsl_chan->irq);
1011 return 0;
1012 err:
1013 dma_halt(new_fsl_chan);
1014 iounmap(new_fsl_chan->reg_base);
1015 free_irq(new_fsl_chan->irq, new_fsl_chan);
1016 list_del(&new_fsl_chan->common.device_node);
1017 kfree(new_fsl_chan);
1018 return err;
1021 const u32 mpc8540_dma_ip_feature = FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN;
1022 const u32 mpc8349_dma_ip_feature = FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN;
1024 static struct of_device_id of_fsl_dma_chan_ids[] = {
1026 .compatible = "fsl,eloplus-dma-channel",
1027 .data = (void *)&mpc8540_dma_ip_feature,
1030 .compatible = "fsl,elo-dma-channel",
1031 .data = (void *)&mpc8349_dma_ip_feature,
1036 static struct of_platform_driver of_fsl_dma_chan_driver = {
1037 .name = "of-fsl-dma-channel",
1038 .match_table = of_fsl_dma_chan_ids,
1039 .probe = of_fsl_dma_chan_probe,
1042 static __init int of_fsl_dma_chan_init(void)
1044 return of_register_platform_driver(&of_fsl_dma_chan_driver);
1047 static int __devinit of_fsl_dma_probe(struct of_device *dev,
1048 const struct of_device_id *match)
1050 int err;
1051 unsigned int irq;
1052 struct fsl_dma_device *fdev;
1054 fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
1055 if (!fdev) {
1056 dev_err(&dev->dev, "No enough memory for 'priv'\n");
1057 err = -ENOMEM;
1058 goto err;
1060 fdev->dev = &dev->dev;
1061 INIT_LIST_HEAD(&fdev->common.channels);
1063 /* get DMA controller register base */
1064 err = of_address_to_resource(dev->node, 0, &fdev->reg);
1065 if (err) {
1066 dev_err(&dev->dev, "Can't get %s property 'reg'\n",
1067 dev->node->full_name);
1068 goto err;
1071 dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
1072 "controller at %p...\n",
1073 match->compatible, (void *)fdev->reg.start);
1074 fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
1075 - fdev->reg.start + 1);
1077 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1078 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1079 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1080 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1081 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1082 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1083 fdev->common.device_is_tx_complete = fsl_dma_is_complete;
1084 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1085 fdev->common.dev = &dev->dev;
1087 irq = irq_of_parse_and_map(dev->node, 0);
1088 if (irq != NO_IRQ) {
1089 err = request_irq(irq, &fsl_dma_do_interrupt, IRQF_SHARED,
1090 "fsldma-device", fdev);
1091 if (err) {
1092 dev_err(&dev->dev, "DMA device request_irq error "
1093 "with return %d\n", err);
1094 goto err;
1098 dev_set_drvdata(&(dev->dev), fdev);
1099 of_platform_bus_probe(dev->node, of_fsl_dma_chan_ids, &dev->dev);
1101 dma_async_device_register(&fdev->common);
1102 return 0;
1104 err:
1105 iounmap(fdev->reg_base);
1106 kfree(fdev);
1107 return err;
1110 static struct of_device_id of_fsl_dma_ids[] = {
1111 { .compatible = "fsl,eloplus-dma", },
1112 { .compatible = "fsl,elo-dma", },
1116 static struct of_platform_driver of_fsl_dma_driver = {
1117 .name = "of-fsl-dma",
1118 .match_table = of_fsl_dma_ids,
1119 .probe = of_fsl_dma_probe,
1122 static __init int of_fsl_dma_init(void)
1124 return of_register_platform_driver(&of_fsl_dma_driver);
1127 subsys_initcall(of_fsl_dma_chan_init);
1128 subsys_initcall(of_fsl_dma_init);