cfq-iosched: fix a kbuild regression
[linux-2.6/kvm.git] / drivers / net / au1000_eth.c
blob4da191b87b0d9ee857dea8ef4fff0adc347a482b
1 /*
3 * Alchemy Au1x00 ethernet driver
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
18 * ########################################################################
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
33 * ########################################################################
37 #include <linux/capability.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/module.h>
40 #include <linux/kernel.h>
41 #include <linux/string.h>
42 #include <linux/timer.h>
43 #include <linux/errno.h>
44 #include <linux/in.h>
45 #include <linux/ioport.h>
46 #include <linux/bitops.h>
47 #include <linux/slab.h>
48 #include <linux/interrupt.h>
49 #include <linux/init.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
58 #include <linux/platform_device.h>
60 #include <asm/cpu.h>
61 #include <asm/mipsregs.h>
62 #include <asm/irq.h>
63 #include <asm/io.h>
64 #include <asm/processor.h>
66 #include <au1000.h>
67 #include <au1xxx_eth.h>
68 #include <prom.h>
70 #include "au1000_eth.h"
72 #ifdef AU1000_ETH_DEBUG
73 static int au1000_debug = 5;
74 #else
75 static int au1000_debug = 3;
76 #endif
78 #define DRV_NAME "au1000_eth"
79 #define DRV_VERSION "1.6"
80 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
81 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
83 MODULE_AUTHOR(DRV_AUTHOR);
84 MODULE_DESCRIPTION(DRV_DESC);
85 MODULE_LICENSE("GPL");
88 * Theory of operation
90 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
91 * There are four receive and four transmit descriptors. These
92 * descriptors are not in memory; rather, they are just a set of
93 * hardware registers.
95 * Since the Au1000 has a coherent data cache, the receive and
96 * transmit buffers are allocated from the KSEG0 segment. The
97 * hardware registers, however, are still mapped at KSEG1 to
98 * make sure there's no out-of-order writes, and that all writes
99 * complete immediately.
102 /* These addresses are only used if yamon doesn't tell us what
103 * the mac address is, and the mac address is not passed on the
104 * command line.
106 static unsigned char au1000_mac_addr[6] __devinitdata = {
107 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
110 struct au1000_private *au_macs[NUM_ETH_INTERFACES];
113 * board-specific configurations
115 * PHY detection algorithm
117 * If phy_static_config is undefined, the PHY setup is
118 * autodetected:
120 * mii_probe() first searches the current MAC's MII bus for a PHY,
121 * selecting the first (or last, if phy_search_highest_addr is
122 * defined) PHY address not already claimed by another netdev.
124 * If nothing was found that way when searching for the 2nd ethernet
125 * controller's PHY and phy1_search_mac0 is defined, then
126 * the first MII bus is searched as well for an unclaimed PHY; this is
127 * needed in case of a dual-PHY accessible only through the MAC0's MII
128 * bus.
130 * Finally, if no PHY is found, then the corresponding ethernet
131 * controller is not registered to the network subsystem.
134 /* autodetection defaults: phy1_search_mac0 */
136 /* static PHY setup
138 * most boards PHY setup should be detectable properly with the
139 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
140 * you have a switch attached, or want to use the PHY's interrupt
141 * notification capabilities) you can provide a static PHY
142 * configuration here
144 * IRQs may only be set, if a PHY address was configured
145 * If a PHY address is given, also a bus id is required to be set
147 * ps: make sure the used irqs are configured properly in the board
148 * specific irq-map
151 static void enable_mac(struct net_device *dev, int force_reset)
153 unsigned long flags;
154 struct au1000_private *aup = netdev_priv(dev);
156 spin_lock_irqsave(&aup->lock, flags);
158 if(force_reset || (!aup->mac_enabled)) {
159 *aup->enable = MAC_EN_CLOCK_ENABLE;
160 au_sync_delay(2);
161 *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
162 | MAC_EN_CLOCK_ENABLE);
163 au_sync_delay(2);
165 aup->mac_enabled = 1;
168 spin_unlock_irqrestore(&aup->lock, flags);
172 * MII operations
174 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
176 struct au1000_private *aup = netdev_priv(dev);
177 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
178 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
179 u32 timedout = 20;
180 u32 mii_control;
182 while (*mii_control_reg & MAC_MII_BUSY) {
183 mdelay(1);
184 if (--timedout == 0) {
185 printk(KERN_ERR "%s: read_MII busy timeout!!\n",
186 dev->name);
187 return -1;
191 mii_control = MAC_SET_MII_SELECT_REG(reg) |
192 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
194 *mii_control_reg = mii_control;
196 timedout = 20;
197 while (*mii_control_reg & MAC_MII_BUSY) {
198 mdelay(1);
199 if (--timedout == 0) {
200 printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
201 dev->name);
202 return -1;
205 return (int)*mii_data_reg;
208 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
209 int reg, u16 value)
211 struct au1000_private *aup = netdev_priv(dev);
212 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
213 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
214 u32 timedout = 20;
215 u32 mii_control;
217 while (*mii_control_reg & MAC_MII_BUSY) {
218 mdelay(1);
219 if (--timedout == 0) {
220 printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
221 dev->name);
222 return;
226 mii_control = MAC_SET_MII_SELECT_REG(reg) |
227 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
229 *mii_data_reg = value;
230 *mii_control_reg = mii_control;
233 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
235 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
236 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
237 struct net_device *const dev = bus->priv;
239 enable_mac(dev, 0); /* make sure the MAC associated with this
240 * mii_bus is enabled */
241 return au1000_mdio_read(dev, phy_addr, regnum);
244 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
245 u16 value)
247 struct net_device *const dev = bus->priv;
249 enable_mac(dev, 0); /* make sure the MAC associated with this
250 * mii_bus is enabled */
251 au1000_mdio_write(dev, phy_addr, regnum, value);
252 return 0;
255 static int au1000_mdiobus_reset(struct mii_bus *bus)
257 struct net_device *const dev = bus->priv;
259 enable_mac(dev, 0); /* make sure the MAC associated with this
260 * mii_bus is enabled */
261 return 0;
264 static void hard_stop(struct net_device *dev)
266 struct au1000_private *aup = netdev_priv(dev);
268 if (au1000_debug > 4)
269 printk(KERN_INFO "%s: hard stop\n", dev->name);
271 aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
272 au_sync_delay(10);
275 static void enable_rx_tx(struct net_device *dev)
277 struct au1000_private *aup = netdev_priv(dev);
279 if (au1000_debug > 4)
280 printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
282 aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
283 au_sync_delay(10);
286 static void
287 au1000_adjust_link(struct net_device *dev)
289 struct au1000_private *aup = netdev_priv(dev);
290 struct phy_device *phydev = aup->phy_dev;
291 unsigned long flags;
293 int status_change = 0;
295 BUG_ON(!aup->phy_dev);
297 spin_lock_irqsave(&aup->lock, flags);
299 if (phydev->link && (aup->old_speed != phydev->speed)) {
300 // speed changed
302 switch(phydev->speed) {
303 case SPEED_10:
304 case SPEED_100:
305 break;
306 default:
307 printk(KERN_WARNING
308 "%s: Speed (%d) is not 10/100 ???\n",
309 dev->name, phydev->speed);
310 break;
313 aup->old_speed = phydev->speed;
315 status_change = 1;
318 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
319 // duplex mode changed
321 /* switching duplex mode requires to disable rx and tx! */
322 hard_stop(dev);
324 if (DUPLEX_FULL == phydev->duplex)
325 aup->mac->control = ((aup->mac->control
326 | MAC_FULL_DUPLEX)
327 & ~MAC_DISABLE_RX_OWN);
328 else
329 aup->mac->control = ((aup->mac->control
330 & ~MAC_FULL_DUPLEX)
331 | MAC_DISABLE_RX_OWN);
332 au_sync_delay(1);
334 enable_rx_tx(dev);
335 aup->old_duplex = phydev->duplex;
337 status_change = 1;
340 if(phydev->link != aup->old_link) {
341 // link state changed
343 if (!phydev->link) {
344 /* link went down */
345 aup->old_speed = 0;
346 aup->old_duplex = -1;
349 aup->old_link = phydev->link;
350 status_change = 1;
353 spin_unlock_irqrestore(&aup->lock, flags);
355 if (status_change) {
356 if (phydev->link)
357 printk(KERN_INFO "%s: link up (%d/%s)\n",
358 dev->name, phydev->speed,
359 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
360 else
361 printk(KERN_INFO "%s: link down\n", dev->name);
365 static int mii_probe (struct net_device *dev)
367 struct au1000_private *const aup = netdev_priv(dev);
368 struct phy_device *phydev = NULL;
370 if (aup->phy_static_config) {
371 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
373 if (aup->phy_addr)
374 phydev = aup->mii_bus->phy_map[aup->phy_addr];
375 else
376 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
377 dev->name);
378 return 0;
379 } else {
380 int phy_addr;
382 /* find the first (lowest address) PHY on the current MAC's MII bus */
383 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
384 if (aup->mii_bus->phy_map[phy_addr]) {
385 phydev = aup->mii_bus->phy_map[phy_addr];
386 if (!aup->phy_search_highest_addr)
387 break; /* break out with first one found */
390 if (aup->phy1_search_mac0) {
391 /* try harder to find a PHY */
392 if (!phydev && (aup->mac_id == 1)) {
393 /* no PHY found, maybe we have a dual PHY? */
394 printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
395 "let's see if it's attached to MAC0...\n");
397 /* find the first (lowest address) non-attached PHY on
398 * the MAC0 MII bus */
399 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
400 struct phy_device *const tmp_phydev =
401 aup->mii_bus->phy_map[phy_addr];
403 if (aup->mac_id == 1)
404 break;
406 if (!tmp_phydev)
407 continue; /* no PHY here... */
409 if (tmp_phydev->attached_dev)
410 continue; /* already claimed by MAC0 */
412 phydev = tmp_phydev;
413 break; /* found it */
419 if (!phydev) {
420 printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
421 return -1;
424 /* now we are supposed to have a proper phydev, to attach to... */
425 BUG_ON(phydev->attached_dev);
427 phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link,
428 0, PHY_INTERFACE_MODE_MII);
430 if (IS_ERR(phydev)) {
431 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
432 return PTR_ERR(phydev);
435 /* mask with MAC supported features */
436 phydev->supported &= (SUPPORTED_10baseT_Half
437 | SUPPORTED_10baseT_Full
438 | SUPPORTED_100baseT_Half
439 | SUPPORTED_100baseT_Full
440 | SUPPORTED_Autoneg
441 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
442 | SUPPORTED_MII
443 | SUPPORTED_TP);
445 phydev->advertising = phydev->supported;
447 aup->old_link = 0;
448 aup->old_speed = 0;
449 aup->old_duplex = -1;
450 aup->phy_dev = phydev;
452 printk(KERN_INFO "%s: attached PHY driver [%s] "
453 "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
454 phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
456 return 0;
461 * Buffer allocation/deallocation routines. The buffer descriptor returned
462 * has the virtual and dma address of a buffer suitable for
463 * both, receive and transmit operations.
465 static db_dest_t *GetFreeDB(struct au1000_private *aup)
467 db_dest_t *pDB;
468 pDB = aup->pDBfree;
470 if (pDB) {
471 aup->pDBfree = pDB->pnext;
473 return pDB;
476 void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
478 db_dest_t *pDBfree = aup->pDBfree;
479 if (pDBfree)
480 pDBfree->pnext = pDB;
481 aup->pDBfree = pDB;
484 static void reset_mac_unlocked(struct net_device *dev)
486 struct au1000_private *const aup = netdev_priv(dev);
487 int i;
489 hard_stop(dev);
491 *aup->enable = MAC_EN_CLOCK_ENABLE;
492 au_sync_delay(2);
493 *aup->enable = 0;
494 au_sync_delay(2);
496 aup->tx_full = 0;
497 for (i = 0; i < NUM_RX_DMA; i++) {
498 /* reset control bits */
499 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
501 for (i = 0; i < NUM_TX_DMA; i++) {
502 /* reset control bits */
503 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
506 aup->mac_enabled = 0;
510 static void reset_mac(struct net_device *dev)
512 struct au1000_private *const aup = netdev_priv(dev);
513 unsigned long flags;
515 if (au1000_debug > 4)
516 printk(KERN_INFO "%s: reset mac, aup %x\n",
517 dev->name, (unsigned)aup);
519 spin_lock_irqsave(&aup->lock, flags);
521 reset_mac_unlocked (dev);
523 spin_unlock_irqrestore(&aup->lock, flags);
527 * Setup the receive and transmit "rings". These pointers are the addresses
528 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
529 * these are not descriptors sitting in memory.
531 static void
532 setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
534 int i;
536 for (i = 0; i < NUM_RX_DMA; i++) {
537 aup->rx_dma_ring[i] =
538 (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
540 for (i = 0; i < NUM_TX_DMA; i++) {
541 aup->tx_dma_ring[i] =
542 (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
547 * ethtool operations
550 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
552 struct au1000_private *aup = netdev_priv(dev);
554 if (aup->phy_dev)
555 return phy_ethtool_gset(aup->phy_dev, cmd);
557 return -EINVAL;
560 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
562 struct au1000_private *aup = netdev_priv(dev);
564 if (!capable(CAP_NET_ADMIN))
565 return -EPERM;
567 if (aup->phy_dev)
568 return phy_ethtool_sset(aup->phy_dev, cmd);
570 return -EINVAL;
573 static void
574 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
576 struct au1000_private *aup = netdev_priv(dev);
578 strcpy(info->driver, DRV_NAME);
579 strcpy(info->version, DRV_VERSION);
580 info->fw_version[0] = '\0';
581 sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
582 info->regdump_len = 0;
585 static const struct ethtool_ops au1000_ethtool_ops = {
586 .get_settings = au1000_get_settings,
587 .set_settings = au1000_set_settings,
588 .get_drvinfo = au1000_get_drvinfo,
589 .get_link = ethtool_op_get_link,
594 * Initialize the interface.
596 * When the device powers up, the clocks are disabled and the
597 * mac is in reset state. When the interface is closed, we
598 * do the same -- reset the device and disable the clocks to
599 * conserve power. Thus, whenever au1000_init() is called,
600 * the device should already be in reset state.
602 static int au1000_init(struct net_device *dev)
604 struct au1000_private *aup = netdev_priv(dev);
605 unsigned long flags;
606 int i;
607 u32 control;
609 if (au1000_debug > 4)
610 printk("%s: au1000_init\n", dev->name);
612 /* bring the device out of reset */
613 enable_mac(dev, 1);
615 spin_lock_irqsave(&aup->lock, flags);
617 aup->mac->control = 0;
618 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
619 aup->tx_tail = aup->tx_head;
620 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
622 aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
623 aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
624 dev->dev_addr[1]<<8 | dev->dev_addr[0];
626 for (i = 0; i < NUM_RX_DMA; i++) {
627 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
629 au_sync();
631 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
632 #ifndef CONFIG_CPU_LITTLE_ENDIAN
633 control |= MAC_BIG_ENDIAN;
634 #endif
635 if (aup->phy_dev) {
636 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
637 control |= MAC_FULL_DUPLEX;
638 else
639 control |= MAC_DISABLE_RX_OWN;
640 } else { /* PHY-less op, assume full-duplex */
641 control |= MAC_FULL_DUPLEX;
644 aup->mac->control = control;
645 aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
646 au_sync();
648 spin_unlock_irqrestore(&aup->lock, flags);
649 return 0;
652 static inline void update_rx_stats(struct net_device *dev, u32 status)
654 struct net_device_stats *ps = &dev->stats;
656 ps->rx_packets++;
657 if (status & RX_MCAST_FRAME)
658 ps->multicast++;
660 if (status & RX_ERROR) {
661 ps->rx_errors++;
662 if (status & RX_MISSED_FRAME)
663 ps->rx_missed_errors++;
664 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
665 ps->rx_length_errors++;
666 if (status & RX_CRC_ERROR)
667 ps->rx_crc_errors++;
668 if (status & RX_COLL)
669 ps->collisions++;
671 else
672 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
677 * Au1000 receive routine.
679 static int au1000_rx(struct net_device *dev)
681 struct au1000_private *aup = netdev_priv(dev);
682 struct sk_buff *skb;
683 volatile rx_dma_t *prxd;
684 u32 buff_stat, status;
685 db_dest_t *pDB;
686 u32 frmlen;
688 if (au1000_debug > 5)
689 printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
691 prxd = aup->rx_dma_ring[aup->rx_head];
692 buff_stat = prxd->buff_stat;
693 while (buff_stat & RX_T_DONE) {
694 status = prxd->status;
695 pDB = aup->rx_db_inuse[aup->rx_head];
696 update_rx_stats(dev, status);
697 if (!(status & RX_ERROR)) {
699 /* good frame */
700 frmlen = (status & RX_FRAME_LEN_MASK);
701 frmlen -= 4; /* Remove FCS */
702 skb = dev_alloc_skb(frmlen + 2);
703 if (skb == NULL) {
704 printk(KERN_ERR
705 "%s: Memory squeeze, dropping packet.\n",
706 dev->name);
707 dev->stats.rx_dropped++;
708 continue;
710 skb_reserve(skb, 2); /* 16 byte IP header align */
711 skb_copy_to_linear_data(skb,
712 (unsigned char *)pDB->vaddr, frmlen);
713 skb_put(skb, frmlen);
714 skb->protocol = eth_type_trans(skb, dev);
715 netif_rx(skb); /* pass the packet to upper layers */
717 else {
718 if (au1000_debug > 4) {
719 if (status & RX_MISSED_FRAME)
720 printk("rx miss\n");
721 if (status & RX_WDOG_TIMER)
722 printk("rx wdog\n");
723 if (status & RX_RUNT)
724 printk("rx runt\n");
725 if (status & RX_OVERLEN)
726 printk("rx overlen\n");
727 if (status & RX_COLL)
728 printk("rx coll\n");
729 if (status & RX_MII_ERROR)
730 printk("rx mii error\n");
731 if (status & RX_CRC_ERROR)
732 printk("rx crc error\n");
733 if (status & RX_LEN_ERROR)
734 printk("rx len error\n");
735 if (status & RX_U_CNTRL_FRAME)
736 printk("rx u control frame\n");
739 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
740 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
741 au_sync();
743 /* next descriptor */
744 prxd = aup->rx_dma_ring[aup->rx_head];
745 buff_stat = prxd->buff_stat;
747 return 0;
750 static void update_tx_stats(struct net_device *dev, u32 status)
752 struct au1000_private *aup = netdev_priv(dev);
753 struct net_device_stats *ps = &dev->stats;
755 if (status & TX_FRAME_ABORTED) {
756 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
757 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
758 /* any other tx errors are only valid
759 * in half duplex mode */
760 ps->tx_errors++;
761 ps->tx_aborted_errors++;
764 else {
765 ps->tx_errors++;
766 ps->tx_aborted_errors++;
767 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
768 ps->tx_carrier_errors++;
774 * Called from the interrupt service routine to acknowledge
775 * the TX DONE bits. This is a must if the irq is setup as
776 * edge triggered.
778 static void au1000_tx_ack(struct net_device *dev)
780 struct au1000_private *aup = netdev_priv(dev);
781 volatile tx_dma_t *ptxd;
783 ptxd = aup->tx_dma_ring[aup->tx_tail];
785 while (ptxd->buff_stat & TX_T_DONE) {
786 update_tx_stats(dev, ptxd->status);
787 ptxd->buff_stat &= ~TX_T_DONE;
788 ptxd->len = 0;
789 au_sync();
791 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
792 ptxd = aup->tx_dma_ring[aup->tx_tail];
794 if (aup->tx_full) {
795 aup->tx_full = 0;
796 netif_wake_queue(dev);
802 * Au1000 interrupt service routine.
804 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
806 struct net_device *dev = dev_id;
808 /* Handle RX interrupts first to minimize chance of overrun */
810 au1000_rx(dev);
811 au1000_tx_ack(dev);
812 return IRQ_RETVAL(1);
815 static int au1000_open(struct net_device *dev)
817 int retval;
818 struct au1000_private *aup = netdev_priv(dev);
820 if (au1000_debug > 4)
821 printk("%s: open: dev=%p\n", dev->name, dev);
823 if ((retval = request_irq(dev->irq, au1000_interrupt, 0,
824 dev->name, dev))) {
825 printk(KERN_ERR "%s: unable to get IRQ %d\n",
826 dev->name, dev->irq);
827 return retval;
830 if ((retval = au1000_init(dev))) {
831 printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
832 free_irq(dev->irq, dev);
833 return retval;
836 if (aup->phy_dev) {
837 /* cause the PHY state machine to schedule a link state check */
838 aup->phy_dev->state = PHY_CHANGELINK;
839 phy_start(aup->phy_dev);
842 netif_start_queue(dev);
844 if (au1000_debug > 4)
845 printk("%s: open: Initialization done.\n", dev->name);
847 return 0;
850 static int au1000_close(struct net_device *dev)
852 unsigned long flags;
853 struct au1000_private *const aup = netdev_priv(dev);
855 if (au1000_debug > 4)
856 printk("%s: close: dev=%p\n", dev->name, dev);
858 if (aup->phy_dev)
859 phy_stop(aup->phy_dev);
861 spin_lock_irqsave(&aup->lock, flags);
863 reset_mac_unlocked (dev);
865 /* stop the device */
866 netif_stop_queue(dev);
868 /* disable the interrupt */
869 free_irq(dev->irq, dev);
870 spin_unlock_irqrestore(&aup->lock, flags);
872 return 0;
876 * Au1000 transmit routine.
878 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
880 struct au1000_private *aup = netdev_priv(dev);
881 struct net_device_stats *ps = &dev->stats;
882 volatile tx_dma_t *ptxd;
883 u32 buff_stat;
884 db_dest_t *pDB;
885 int i;
887 if (au1000_debug > 5)
888 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
889 dev->name, (unsigned)aup, skb->len,
890 skb->data, aup->tx_head);
892 ptxd = aup->tx_dma_ring[aup->tx_head];
893 buff_stat = ptxd->buff_stat;
894 if (buff_stat & TX_DMA_ENABLE) {
895 /* We've wrapped around and the transmitter is still busy */
896 netif_stop_queue(dev);
897 aup->tx_full = 1;
898 return NETDEV_TX_BUSY;
900 else if (buff_stat & TX_T_DONE) {
901 update_tx_stats(dev, ptxd->status);
902 ptxd->len = 0;
905 if (aup->tx_full) {
906 aup->tx_full = 0;
907 netif_wake_queue(dev);
910 pDB = aup->tx_db_inuse[aup->tx_head];
911 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
912 if (skb->len < ETH_ZLEN) {
913 for (i=skb->len; i<ETH_ZLEN; i++) {
914 ((char *)pDB->vaddr)[i] = 0;
916 ptxd->len = ETH_ZLEN;
918 else
919 ptxd->len = skb->len;
921 ps->tx_packets++;
922 ps->tx_bytes += ptxd->len;
924 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
925 au_sync();
926 dev_kfree_skb(skb);
927 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
928 dev->trans_start = jiffies;
929 return NETDEV_TX_OK;
933 * The Tx ring has been full longer than the watchdog timeout
934 * value. The transmitter must be hung?
936 static void au1000_tx_timeout(struct net_device *dev)
938 printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
939 reset_mac(dev);
940 au1000_init(dev);
941 dev->trans_start = jiffies;
942 netif_wake_queue(dev);
945 static void au1000_multicast_list(struct net_device *dev)
947 struct au1000_private *aup = netdev_priv(dev);
949 if (au1000_debug > 4)
950 printk("%s: au1000_multicast_list: flags=%x\n", dev->name, dev->flags);
952 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
953 aup->mac->control |= MAC_PROMISCUOUS;
954 } else if ((dev->flags & IFF_ALLMULTI) ||
955 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
956 aup->mac->control |= MAC_PASS_ALL_MULTI;
957 aup->mac->control &= ~MAC_PROMISCUOUS;
958 printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
959 } else {
960 struct dev_mc_list *mclist;
961 u32 mc_filter[2]; /* Multicast hash filter */
963 mc_filter[1] = mc_filter[0] = 0;
964 netdev_for_each_mc_addr(mclist, dev)
965 set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
966 (long *)mc_filter);
967 aup->mac->multi_hash_high = mc_filter[1];
968 aup->mac->multi_hash_low = mc_filter[0];
969 aup->mac->control &= ~MAC_PROMISCUOUS;
970 aup->mac->control |= MAC_HASH_MODE;
974 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
976 struct au1000_private *aup = netdev_priv(dev);
978 if (!netif_running(dev)) return -EINVAL;
980 if (!aup->phy_dev) return -EINVAL; // PHY not controllable
982 return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
985 static const struct net_device_ops au1000_netdev_ops = {
986 .ndo_open = au1000_open,
987 .ndo_stop = au1000_close,
988 .ndo_start_xmit = au1000_tx,
989 .ndo_set_multicast_list = au1000_multicast_list,
990 .ndo_do_ioctl = au1000_ioctl,
991 .ndo_tx_timeout = au1000_tx_timeout,
992 .ndo_set_mac_address = eth_mac_addr,
993 .ndo_validate_addr = eth_validate_addr,
994 .ndo_change_mtu = eth_change_mtu,
997 static int __devinit au1000_probe(struct platform_device *pdev)
999 static unsigned version_printed = 0;
1000 struct au1000_private *aup = NULL;
1001 struct au1000_eth_platform_data *pd;
1002 struct net_device *dev = NULL;
1003 db_dest_t *pDB, *pDBfree;
1004 int irq, i, err = 0;
1005 struct resource *base, *macen;
1006 char ethaddr[6];
1008 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1009 if (!base) {
1010 printk(KERN_ERR DRV_NAME ": failed to retrieve base register\n");
1011 err = -ENODEV;
1012 goto out;
1015 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1016 if (!macen) {
1017 printk(KERN_ERR DRV_NAME ": failed to retrieve MAC Enable register\n");
1018 err = -ENODEV;
1019 goto out;
1022 irq = platform_get_irq(pdev, 0);
1023 if (irq < 0) {
1024 printk(KERN_ERR DRV_NAME ": failed to retrieve IRQ\n");
1025 err = -ENODEV;
1026 goto out;
1029 if (!request_mem_region(base->start, resource_size(base), pdev->name)) {
1030 printk(KERN_ERR DRV_NAME ": failed to request memory region for base registers\n");
1031 err = -ENXIO;
1032 goto out;
1035 if (!request_mem_region(macen->start, resource_size(macen), pdev->name)) {
1036 printk(KERN_ERR DRV_NAME ": failed to request memory region for MAC enable register\n");
1037 err = -ENXIO;
1038 goto err_request;
1041 dev = alloc_etherdev(sizeof(struct au1000_private));
1042 if (!dev) {
1043 printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
1044 err = -ENOMEM;
1045 goto err_alloc;
1048 SET_NETDEV_DEV(dev, &pdev->dev);
1049 platform_set_drvdata(pdev, dev);
1050 aup = netdev_priv(dev);
1052 spin_lock_init(&aup->lock);
1054 /* Allocate the data buffers */
1055 /* Snooping works fine with eth on all au1xxx */
1056 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1057 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1058 &aup->dma_addr, 0);
1059 if (!aup->vaddr) {
1060 printk(KERN_ERR DRV_NAME ": failed to allocate data buffers\n");
1061 err = -ENOMEM;
1062 goto err_vaddr;
1065 /* aup->mac is the base address of the MAC's registers */
1066 aup->mac = (volatile mac_reg_t *)ioremap_nocache(base->start, resource_size(base));
1067 if (!aup->mac) {
1068 printk(KERN_ERR DRV_NAME ": failed to ioremap MAC registers\n");
1069 err = -ENXIO;
1070 goto err_remap1;
1073 /* Setup some variables for quick register address access */
1074 aup->enable = (volatile u32 *)ioremap_nocache(macen->start, resource_size(macen));
1075 if (!aup->enable) {
1076 printk(KERN_ERR DRV_NAME ": failed to ioremap MAC enable register\n");
1077 err = -ENXIO;
1078 goto err_remap2;
1080 aup->mac_id = pdev->id;
1082 if (pdev->id == 0) {
1083 if (prom_get_ethernet_addr(ethaddr) == 0)
1084 memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
1085 else {
1086 printk(KERN_INFO "%s: No MAC address found\n",
1087 dev->name);
1088 /* Use the hard coded MAC addresses */
1091 setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
1092 } else if (pdev->id == 1)
1093 setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
1096 * Assign to the Ethernet ports two consecutive MAC addresses
1097 * to match those that are printed on their stickers
1099 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
1100 dev->dev_addr[5] += pdev->id;
1102 *aup->enable = 0;
1103 aup->mac_enabled = 0;
1105 pd = pdev->dev.platform_data;
1106 if (!pd) {
1107 printk(KERN_INFO DRV_NAME ": no platform_data passed, PHY search on MAC0\n");
1108 aup->phy1_search_mac0 = 1;
1109 } else {
1110 aup->phy_static_config = pd->phy_static_config;
1111 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1112 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1113 aup->phy_addr = pd->phy_addr;
1114 aup->phy_busid = pd->phy_busid;
1115 aup->phy_irq = pd->phy_irq;
1118 if (aup->phy_busid && aup->phy_busid > 0) {
1119 printk(KERN_ERR DRV_NAME ": MAC0-associated PHY attached 2nd MACs MII"
1120 "bus not supported yet\n");
1121 err = -ENODEV;
1122 goto err_mdiobus_alloc;
1125 aup->mii_bus = mdiobus_alloc();
1126 if (aup->mii_bus == NULL) {
1127 printk(KERN_ERR DRV_NAME ": failed to allocate mdiobus structure\n");
1128 err = -ENOMEM;
1129 goto err_mdiobus_alloc;
1132 aup->mii_bus->priv = dev;
1133 aup->mii_bus->read = au1000_mdiobus_read;
1134 aup->mii_bus->write = au1000_mdiobus_write;
1135 aup->mii_bus->reset = au1000_mdiobus_reset;
1136 aup->mii_bus->name = "au1000_eth_mii";
1137 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id);
1138 aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1139 if (aup->mii_bus->irq == NULL)
1140 goto err_out;
1142 for(i = 0; i < PHY_MAX_ADDR; ++i)
1143 aup->mii_bus->irq[i] = PHY_POLL;
1144 /* if known, set corresponding PHY IRQs */
1145 if (aup->phy_static_config)
1146 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1147 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1149 err = mdiobus_register(aup->mii_bus);
1150 if (err) {
1151 printk(KERN_ERR DRV_NAME " failed to register MDIO bus\n");
1152 goto err_mdiobus_reg;
1155 if (mii_probe(dev) != 0)
1156 goto err_out;
1158 pDBfree = NULL;
1159 /* setup the data buffer descriptors and attach a buffer to each one */
1160 pDB = aup->db;
1161 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1162 pDB->pnext = pDBfree;
1163 pDBfree = pDB;
1164 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1165 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1166 pDB++;
1168 aup->pDBfree = pDBfree;
1170 for (i = 0; i < NUM_RX_DMA; i++) {
1171 pDB = GetFreeDB(aup);
1172 if (!pDB) {
1173 goto err_out;
1175 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1176 aup->rx_db_inuse[i] = pDB;
1178 for (i = 0; i < NUM_TX_DMA; i++) {
1179 pDB = GetFreeDB(aup);
1180 if (!pDB) {
1181 goto err_out;
1183 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1184 aup->tx_dma_ring[i]->len = 0;
1185 aup->tx_db_inuse[i] = pDB;
1188 dev->base_addr = base->start;
1189 dev->irq = irq;
1190 dev->netdev_ops = &au1000_netdev_ops;
1191 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1192 dev->watchdog_timeo = ETH_TX_TIMEOUT;
1195 * The boot code uses the ethernet controller, so reset it to start
1196 * fresh. au1000_init() expects that the device is in reset state.
1198 reset_mac(dev);
1200 err = register_netdev(dev);
1201 if (err) {
1202 printk(KERN_ERR DRV_NAME "%s: Cannot register net device, aborting.\n",
1203 dev->name);
1204 goto err_out;
1207 printk("%s: Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1208 dev->name, (unsigned long)base->start, irq);
1209 if (version_printed++ == 0)
1210 printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1212 return 0;
1214 err_out:
1215 if (aup->mii_bus != NULL)
1216 mdiobus_unregister(aup->mii_bus);
1218 /* here we should have a valid dev plus aup-> register addresses
1219 * so we can reset the mac properly.*/
1220 reset_mac(dev);
1222 for (i = 0; i < NUM_RX_DMA; i++) {
1223 if (aup->rx_db_inuse[i])
1224 ReleaseDB(aup, aup->rx_db_inuse[i]);
1226 for (i = 0; i < NUM_TX_DMA; i++) {
1227 if (aup->tx_db_inuse[i])
1228 ReleaseDB(aup, aup->tx_db_inuse[i]);
1230 err_mdiobus_reg:
1231 mdiobus_free(aup->mii_bus);
1232 err_mdiobus_alloc:
1233 iounmap(aup->enable);
1234 err_remap2:
1235 iounmap(aup->mac);
1236 err_remap1:
1237 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1238 (void *)aup->vaddr, aup->dma_addr);
1239 err_vaddr:
1240 free_netdev(dev);
1241 err_alloc:
1242 release_mem_region(macen->start, resource_size(macen));
1243 err_request:
1244 release_mem_region(base->start, resource_size(base));
1245 out:
1246 return err;
1249 static int __devexit au1000_remove(struct platform_device *pdev)
1251 struct net_device *dev = platform_get_drvdata(pdev);
1252 struct au1000_private *aup = netdev_priv(dev);
1253 int i;
1254 struct resource *base, *macen;
1256 platform_set_drvdata(pdev, NULL);
1258 unregister_netdev(dev);
1259 mdiobus_unregister(aup->mii_bus);
1260 mdiobus_free(aup->mii_bus);
1262 for (i = 0; i < NUM_RX_DMA; i++)
1263 if (aup->rx_db_inuse[i])
1264 ReleaseDB(aup, aup->rx_db_inuse[i]);
1266 for (i = 0; i < NUM_TX_DMA; i++)
1267 if (aup->tx_db_inuse[i])
1268 ReleaseDB(aup, aup->tx_db_inuse[i]);
1270 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1271 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1272 (void *)aup->vaddr, aup->dma_addr);
1274 iounmap(aup->mac);
1275 iounmap(aup->enable);
1277 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1278 release_mem_region(base->start, resource_size(base));
1280 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1281 release_mem_region(macen->start, resource_size(macen));
1283 free_netdev(dev);
1285 return 0;
1288 static struct platform_driver au1000_eth_driver = {
1289 .probe = au1000_probe,
1290 .remove = __devexit_p(au1000_remove),
1291 .driver = {
1292 .name = "au1000-eth",
1293 .owner = THIS_MODULE,
1296 MODULE_ALIAS("platform:au1000-eth");
1299 static int __init au1000_init_module(void)
1301 return platform_driver_register(&au1000_eth_driver);
1304 static void __exit au1000_exit_module(void)
1306 platform_driver_unregister(&au1000_eth_driver);
1309 module_init(au1000_init_module);
1310 module_exit(au1000_exit_module);