ACPI: cpuidle: port idle timer suspend/resume workaround to cpuidle
[linux-2.6/kvm.git] / drivers / acpi / processor_idle.c
blob0cad56ca342bdb0f0e556c53edc41cb752ef38a9
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 module_param(max_cstate, uint, 0000);
80 static unsigned int nocst __read_mostly;
81 module_param(nocst, uint, 0000);
83 #ifndef CONFIG_CPU_IDLE
85 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
86 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
87 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
88 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
89 * reduce history for more aggressive entry into C3
91 static unsigned int bm_history __read_mostly =
92 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
93 module_param(bm_history, uint, 0644);
95 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
97 #endif
100 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
101 * For now disable this. Probably a bug somewhere else.
103 * To skip this limit, boot/load with a large max_cstate limit.
105 static int set_max_cstate(struct dmi_system_id *id)
107 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
108 return 0;
110 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
111 " Override with \"processor.max_cstate=%d\"\n", id->ident,
112 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
114 max_cstate = (long)id->driver_data;
116 return 0;
119 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
120 callers to only run once -AK */
121 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
167 { set_max_cstate, "IBM ThinkPad R40e", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
170 { set_max_cstate, "Medion 41700", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
173 { set_max_cstate, "Clevo 5600D", {
174 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
175 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
176 (void *)2},
180 static inline u32 ticks_elapsed(u32 t1, u32 t2)
182 if (t2 >= t1)
183 return (t2 - t1);
184 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
185 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
186 else
187 return ((0xFFFFFFFF - t1) + t2);
190 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
192 if (t2 >= t1)
193 return PM_TIMER_TICKS_TO_US(t2 - t1);
194 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
195 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
196 else
197 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
200 #ifndef CONFIG_CPU_IDLE
202 static void
203 acpi_processor_power_activate(struct acpi_processor *pr,
204 struct acpi_processor_cx *new)
206 struct acpi_processor_cx *old;
208 if (!pr || !new)
209 return;
211 old = pr->power.state;
213 if (old)
214 old->promotion.count = 0;
215 new->demotion.count = 0;
217 /* Cleanup from old state. */
218 if (old) {
219 switch (old->type) {
220 case ACPI_STATE_C3:
221 /* Disable bus master reload */
222 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
223 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
224 break;
228 /* Prepare to use new state. */
229 switch (new->type) {
230 case ACPI_STATE_C3:
231 /* Enable bus master reload */
232 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
233 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
234 break;
237 pr->power.state = new;
239 return;
242 static void acpi_safe_halt(void)
244 current_thread_info()->status &= ~TS_POLLING;
246 * TS_POLLING-cleared state must be visible before we
247 * test NEED_RESCHED:
249 smp_mb();
250 if (!need_resched())
251 safe_halt();
252 current_thread_info()->status |= TS_POLLING;
255 static atomic_t c3_cpu_count;
257 /* Common C-state entry for C2, C3, .. */
258 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
260 if (cstate->space_id == ACPI_CSTATE_FFH) {
261 /* Call into architectural FFH based C-state */
262 acpi_processor_ffh_cstate_enter(cstate);
263 } else {
264 int unused;
265 /* IO port based C-state */
266 inb(cstate->address);
267 /* Dummy wait op - must do something useless after P_LVL2 read
268 because chipsets cannot guarantee that STPCLK# signal
269 gets asserted in time to freeze execution properly. */
270 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
273 #endif /* !CONFIG_CPU_IDLE */
275 #ifdef ARCH_APICTIMER_STOPS_ON_C3
278 * Some BIOS implementations switch to C3 in the published C2 state.
279 * This seems to be a common problem on AMD boxen, but other vendors
280 * are affected too. We pick the most conservative approach: we assume
281 * that the local APIC stops in both C2 and C3.
283 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
284 struct acpi_processor_cx *cx)
286 struct acpi_processor_power *pwr = &pr->power;
287 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
290 * Check, if one of the previous states already marked the lapic
291 * unstable
293 if (pwr->timer_broadcast_on_state < state)
294 return;
296 if (cx->type >= type)
297 pr->power.timer_broadcast_on_state = state;
300 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
302 #ifdef CONFIG_GENERIC_CLOCKEVENTS
303 unsigned long reason;
305 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
306 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
308 clockevents_notify(reason, &pr->id);
309 #else
310 cpumask_t mask = cpumask_of_cpu(pr->id);
312 if (pr->power.timer_broadcast_on_state < INT_MAX)
313 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
314 else
315 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
316 #endif
319 /* Power(C) State timer broadcast control */
320 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
321 struct acpi_processor_cx *cx,
322 int broadcast)
324 #ifdef CONFIG_GENERIC_CLOCKEVENTS
326 int state = cx - pr->power.states;
328 if (state >= pr->power.timer_broadcast_on_state) {
329 unsigned long reason;
331 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
332 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
333 clockevents_notify(reason, &pr->id);
335 #endif
338 #else
340 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
341 struct acpi_processor_cx *cstate) { }
342 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
343 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
344 struct acpi_processor_cx *cx,
345 int broadcast)
349 #endif
352 * Suspend / resume control
354 static int acpi_idle_suspend;
356 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
358 acpi_idle_suspend = 1;
359 return 0;
362 int acpi_processor_resume(struct acpi_device * device)
364 acpi_idle_suspend = 0;
365 return 0;
368 #ifndef CONFIG_CPU_IDLE
369 static void acpi_processor_idle(void)
371 struct acpi_processor *pr = NULL;
372 struct acpi_processor_cx *cx = NULL;
373 struct acpi_processor_cx *next_state = NULL;
374 int sleep_ticks = 0;
375 u32 t1, t2 = 0;
378 * Interrupts must be disabled during bus mastering calculations and
379 * for C2/C3 transitions.
381 local_irq_disable();
383 pr = processors[smp_processor_id()];
384 if (!pr) {
385 local_irq_enable();
386 return;
390 * Check whether we truly need to go idle, or should
391 * reschedule:
393 if (unlikely(need_resched())) {
394 local_irq_enable();
395 return;
398 cx = pr->power.state;
399 if (!cx || acpi_idle_suspend) {
400 if (pm_idle_save)
401 pm_idle_save();
402 else
403 acpi_safe_halt();
404 return;
408 * Check BM Activity
409 * -----------------
410 * Check for bus mastering activity (if required), record, and check
411 * for demotion.
413 if (pr->flags.bm_check) {
414 u32 bm_status = 0;
415 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
417 if (diff > 31)
418 diff = 31;
420 pr->power.bm_activity <<= diff;
422 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
423 if (bm_status) {
424 pr->power.bm_activity |= 0x1;
425 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
428 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
429 * the true state of bus mastering activity; forcing us to
430 * manually check the BMIDEA bit of each IDE channel.
432 else if (errata.piix4.bmisx) {
433 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
434 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
435 pr->power.bm_activity |= 0x1;
438 pr->power.bm_check_timestamp = jiffies;
441 * If bus mastering is or was active this jiffy, demote
442 * to avoid a faulty transition. Note that the processor
443 * won't enter a low-power state during this call (to this
444 * function) but should upon the next.
446 * TBD: A better policy might be to fallback to the demotion
447 * state (use it for this quantum only) istead of
448 * demoting -- and rely on duration as our sole demotion
449 * qualification. This may, however, introduce DMA
450 * issues (e.g. floppy DMA transfer overrun/underrun).
452 if ((pr->power.bm_activity & 0x1) &&
453 cx->demotion.threshold.bm) {
454 local_irq_enable();
455 next_state = cx->demotion.state;
456 goto end;
460 #ifdef CONFIG_HOTPLUG_CPU
462 * Check for P_LVL2_UP flag before entering C2 and above on
463 * an SMP system. We do it here instead of doing it at _CST/P_LVL
464 * detection phase, to work cleanly with logical CPU hotplug.
466 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
467 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
468 cx = &pr->power.states[ACPI_STATE_C1];
469 #endif
472 * Sleep:
473 * ------
474 * Invoke the current Cx state to put the processor to sleep.
476 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
477 current_thread_info()->status &= ~TS_POLLING;
479 * TS_POLLING-cleared state must be visible before we
480 * test NEED_RESCHED:
482 smp_mb();
483 if (need_resched()) {
484 current_thread_info()->status |= TS_POLLING;
485 local_irq_enable();
486 return;
490 switch (cx->type) {
492 case ACPI_STATE_C1:
494 * Invoke C1.
495 * Use the appropriate idle routine, the one that would
496 * be used without acpi C-states.
498 if (pm_idle_save)
499 pm_idle_save();
500 else
501 acpi_safe_halt();
504 * TBD: Can't get time duration while in C1, as resumes
505 * go to an ISR rather than here. Need to instrument
506 * base interrupt handler.
508 * Note: the TSC better not stop in C1, sched_clock() will
509 * skew otherwise.
511 sleep_ticks = 0xFFFFFFFF;
512 break;
514 case ACPI_STATE_C2:
515 /* Get start time (ticks) */
516 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
517 /* Tell the scheduler that we are going deep-idle: */
518 sched_clock_idle_sleep_event();
519 /* Invoke C2 */
520 acpi_state_timer_broadcast(pr, cx, 1);
521 acpi_cstate_enter(cx);
522 /* Get end time (ticks) */
523 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
525 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
526 /* TSC halts in C2, so notify users */
527 mark_tsc_unstable("possible TSC halt in C2");
528 #endif
529 /* Compute time (ticks) that we were actually asleep */
530 sleep_ticks = ticks_elapsed(t1, t2);
532 /* Tell the scheduler how much we idled: */
533 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
535 /* Re-enable interrupts */
536 local_irq_enable();
537 /* Do not account our idle-switching overhead: */
538 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
540 current_thread_info()->status |= TS_POLLING;
541 acpi_state_timer_broadcast(pr, cx, 0);
542 break;
544 case ACPI_STATE_C3:
546 * disable bus master
547 * bm_check implies we need ARB_DIS
548 * !bm_check implies we need cache flush
549 * bm_control implies whether we can do ARB_DIS
551 * That leaves a case where bm_check is set and bm_control is
552 * not set. In that case we cannot do much, we enter C3
553 * without doing anything.
555 if (pr->flags.bm_check && pr->flags.bm_control) {
556 if (atomic_inc_return(&c3_cpu_count) ==
557 num_online_cpus()) {
559 * All CPUs are trying to go to C3
560 * Disable bus master arbitration
562 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
564 } else if (!pr->flags.bm_check) {
565 /* SMP with no shared cache... Invalidate cache */
566 ACPI_FLUSH_CPU_CACHE();
569 /* Get start time (ticks) */
570 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
571 /* Invoke C3 */
572 acpi_state_timer_broadcast(pr, cx, 1);
573 /* Tell the scheduler that we are going deep-idle: */
574 sched_clock_idle_sleep_event();
575 acpi_cstate_enter(cx);
576 /* Get end time (ticks) */
577 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
578 if (pr->flags.bm_check && pr->flags.bm_control) {
579 /* Enable bus master arbitration */
580 atomic_dec(&c3_cpu_count);
581 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
584 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
585 /* TSC halts in C3, so notify users */
586 mark_tsc_unstable("TSC halts in C3");
587 #endif
588 /* Compute time (ticks) that we were actually asleep */
589 sleep_ticks = ticks_elapsed(t1, t2);
590 /* Tell the scheduler how much we idled: */
591 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
593 /* Re-enable interrupts */
594 local_irq_enable();
595 /* Do not account our idle-switching overhead: */
596 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
598 current_thread_info()->status |= TS_POLLING;
599 acpi_state_timer_broadcast(pr, cx, 0);
600 break;
602 default:
603 local_irq_enable();
604 return;
606 cx->usage++;
607 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
608 cx->time += sleep_ticks;
610 next_state = pr->power.state;
612 #ifdef CONFIG_HOTPLUG_CPU
613 /* Don't do promotion/demotion */
614 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
615 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
616 next_state = cx;
617 goto end;
619 #endif
622 * Promotion?
623 * ----------
624 * Track the number of longs (time asleep is greater than threshold)
625 * and promote when the count threshold is reached. Note that bus
626 * mastering activity may prevent promotions.
627 * Do not promote above max_cstate.
629 if (cx->promotion.state &&
630 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
631 if (sleep_ticks > cx->promotion.threshold.ticks &&
632 cx->promotion.state->latency <= system_latency_constraint()) {
633 cx->promotion.count++;
634 cx->demotion.count = 0;
635 if (cx->promotion.count >=
636 cx->promotion.threshold.count) {
637 if (pr->flags.bm_check) {
638 if (!
639 (pr->power.bm_activity & cx->
640 promotion.threshold.bm)) {
641 next_state =
642 cx->promotion.state;
643 goto end;
645 } else {
646 next_state = cx->promotion.state;
647 goto end;
654 * Demotion?
655 * ---------
656 * Track the number of shorts (time asleep is less than time threshold)
657 * and demote when the usage threshold is reached.
659 if (cx->demotion.state) {
660 if (sleep_ticks < cx->demotion.threshold.ticks) {
661 cx->demotion.count++;
662 cx->promotion.count = 0;
663 if (cx->demotion.count >= cx->demotion.threshold.count) {
664 next_state = cx->demotion.state;
665 goto end;
670 end:
672 * Demote if current state exceeds max_cstate
673 * or if the latency of the current state is unacceptable
675 if ((pr->power.state - pr->power.states) > max_cstate ||
676 pr->power.state->latency > system_latency_constraint()) {
677 if (cx->demotion.state)
678 next_state = cx->demotion.state;
682 * New Cx State?
683 * -------------
684 * If we're going to start using a new Cx state we must clean up
685 * from the previous and prepare to use the new.
687 if (next_state != pr->power.state)
688 acpi_processor_power_activate(pr, next_state);
691 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
693 unsigned int i;
694 unsigned int state_is_set = 0;
695 struct acpi_processor_cx *lower = NULL;
696 struct acpi_processor_cx *higher = NULL;
697 struct acpi_processor_cx *cx;
700 if (!pr)
701 return -EINVAL;
704 * This function sets the default Cx state policy (OS idle handler).
705 * Our scheme is to promote quickly to C2 but more conservatively
706 * to C3. We're favoring C2 for its characteristics of low latency
707 * (quick response), good power savings, and ability to allow bus
708 * mastering activity. Note that the Cx state policy is completely
709 * customizable and can be altered dynamically.
712 /* startup state */
713 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
714 cx = &pr->power.states[i];
715 if (!cx->valid)
716 continue;
718 if (!state_is_set)
719 pr->power.state = cx;
720 state_is_set++;
721 break;
724 if (!state_is_set)
725 return -ENODEV;
727 /* demotion */
728 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
729 cx = &pr->power.states[i];
730 if (!cx->valid)
731 continue;
733 if (lower) {
734 cx->demotion.state = lower;
735 cx->demotion.threshold.ticks = cx->latency_ticks;
736 cx->demotion.threshold.count = 1;
737 if (cx->type == ACPI_STATE_C3)
738 cx->demotion.threshold.bm = bm_history;
741 lower = cx;
744 /* promotion */
745 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
746 cx = &pr->power.states[i];
747 if (!cx->valid)
748 continue;
750 if (higher) {
751 cx->promotion.state = higher;
752 cx->promotion.threshold.ticks = cx->latency_ticks;
753 if (cx->type >= ACPI_STATE_C2)
754 cx->promotion.threshold.count = 4;
755 else
756 cx->promotion.threshold.count = 10;
757 if (higher->type == ACPI_STATE_C3)
758 cx->promotion.threshold.bm = bm_history;
761 higher = cx;
764 return 0;
766 #endif /* !CONFIG_CPU_IDLE */
768 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
771 if (!pr)
772 return -EINVAL;
774 if (!pr->pblk)
775 return -ENODEV;
777 /* if info is obtained from pblk/fadt, type equals state */
778 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
779 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
781 #ifndef CONFIG_HOTPLUG_CPU
783 * Check for P_LVL2_UP flag before entering C2 and above on
784 * an SMP system.
786 if ((num_online_cpus() > 1) &&
787 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
788 return -ENODEV;
789 #endif
791 /* determine C2 and C3 address from pblk */
792 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
793 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
795 /* determine latencies from FADT */
796 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
797 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
799 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
800 "lvl2[0x%08x] lvl3[0x%08x]\n",
801 pr->power.states[ACPI_STATE_C2].address,
802 pr->power.states[ACPI_STATE_C3].address));
804 return 0;
807 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
809 if (!pr->power.states[ACPI_STATE_C1].valid) {
810 /* set the first C-State to C1 */
811 /* all processors need to support C1 */
812 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
813 pr->power.states[ACPI_STATE_C1].valid = 1;
815 /* the C0 state only exists as a filler in our array */
816 pr->power.states[ACPI_STATE_C0].valid = 1;
817 return 0;
820 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
822 acpi_status status = 0;
823 acpi_integer count;
824 int current_count;
825 int i;
826 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
827 union acpi_object *cst;
830 if (nocst)
831 return -ENODEV;
833 current_count = 0;
835 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
836 if (ACPI_FAILURE(status)) {
837 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
838 return -ENODEV;
841 cst = buffer.pointer;
843 /* There must be at least 2 elements */
844 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
845 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
846 status = -EFAULT;
847 goto end;
850 count = cst->package.elements[0].integer.value;
852 /* Validate number of power states. */
853 if (count < 1 || count != cst->package.count - 1) {
854 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
855 status = -EFAULT;
856 goto end;
859 /* Tell driver that at least _CST is supported. */
860 pr->flags.has_cst = 1;
862 for (i = 1; i <= count; i++) {
863 union acpi_object *element;
864 union acpi_object *obj;
865 struct acpi_power_register *reg;
866 struct acpi_processor_cx cx;
868 memset(&cx, 0, sizeof(cx));
870 element = &(cst->package.elements[i]);
871 if (element->type != ACPI_TYPE_PACKAGE)
872 continue;
874 if (element->package.count != 4)
875 continue;
877 obj = &(element->package.elements[0]);
879 if (obj->type != ACPI_TYPE_BUFFER)
880 continue;
882 reg = (struct acpi_power_register *)obj->buffer.pointer;
884 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
885 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
886 continue;
888 /* There should be an easy way to extract an integer... */
889 obj = &(element->package.elements[1]);
890 if (obj->type != ACPI_TYPE_INTEGER)
891 continue;
893 cx.type = obj->integer.value;
895 * Some buggy BIOSes won't list C1 in _CST -
896 * Let acpi_processor_get_power_info_default() handle them later
898 if (i == 1 && cx.type != ACPI_STATE_C1)
899 current_count++;
901 cx.address = reg->address;
902 cx.index = current_count + 1;
904 cx.space_id = ACPI_CSTATE_SYSTEMIO;
905 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
906 if (acpi_processor_ffh_cstate_probe
907 (pr->id, &cx, reg) == 0) {
908 cx.space_id = ACPI_CSTATE_FFH;
909 } else if (cx.type != ACPI_STATE_C1) {
911 * C1 is a special case where FIXED_HARDWARE
912 * can be handled in non-MWAIT way as well.
913 * In that case, save this _CST entry info.
914 * That is, we retain space_id of SYSTEM_IO for
915 * halt based C1.
916 * Otherwise, ignore this info and continue.
918 continue;
922 obj = &(element->package.elements[2]);
923 if (obj->type != ACPI_TYPE_INTEGER)
924 continue;
926 cx.latency = obj->integer.value;
928 obj = &(element->package.elements[3]);
929 if (obj->type != ACPI_TYPE_INTEGER)
930 continue;
932 cx.power = obj->integer.value;
934 current_count++;
935 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
938 * We support total ACPI_PROCESSOR_MAX_POWER - 1
939 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
941 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
942 printk(KERN_WARNING
943 "Limiting number of power states to max (%d)\n",
944 ACPI_PROCESSOR_MAX_POWER);
945 printk(KERN_WARNING
946 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
947 break;
951 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
952 current_count));
954 /* Validate number of power states discovered */
955 if (current_count < 2)
956 status = -EFAULT;
958 end:
959 kfree(buffer.pointer);
961 return status;
964 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
967 if (!cx->address)
968 return;
971 * C2 latency must be less than or equal to 100
972 * microseconds.
974 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
975 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
976 "latency too large [%d]\n", cx->latency));
977 return;
981 * Otherwise we've met all of our C2 requirements.
982 * Normalize the C2 latency to expidite policy
984 cx->valid = 1;
986 #ifndef CONFIG_CPU_IDLE
987 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
988 #else
989 cx->latency_ticks = cx->latency;
990 #endif
992 return;
995 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
996 struct acpi_processor_cx *cx)
998 static int bm_check_flag;
1001 if (!cx->address)
1002 return;
1005 * C3 latency must be less than or equal to 1000
1006 * microseconds.
1008 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1009 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1010 "latency too large [%d]\n", cx->latency));
1011 return;
1015 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1016 * DMA transfers are used by any ISA device to avoid livelock.
1017 * Note that we could disable Type-F DMA (as recommended by
1018 * the erratum), but this is known to disrupt certain ISA
1019 * devices thus we take the conservative approach.
1021 else if (errata.piix4.fdma) {
1022 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1023 "C3 not supported on PIIX4 with Type-F DMA\n"));
1024 return;
1027 /* All the logic here assumes flags.bm_check is same across all CPUs */
1028 if (!bm_check_flag) {
1029 /* Determine whether bm_check is needed based on CPU */
1030 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1031 bm_check_flag = pr->flags.bm_check;
1032 } else {
1033 pr->flags.bm_check = bm_check_flag;
1036 if (pr->flags.bm_check) {
1037 if (!pr->flags.bm_control) {
1038 if (pr->flags.has_cst != 1) {
1039 /* bus mastering control is necessary */
1040 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1041 "C3 support requires BM control\n"));
1042 return;
1043 } else {
1044 /* Here we enter C3 without bus mastering */
1045 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1046 "C3 support without BM control\n"));
1049 } else {
1051 * WBINVD should be set in fadt, for C3 state to be
1052 * supported on when bm_check is not required.
1054 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1055 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1056 "Cache invalidation should work properly"
1057 " for C3 to be enabled on SMP systems\n"));
1058 return;
1060 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1064 * Otherwise we've met all of our C3 requirements.
1065 * Normalize the C3 latency to expidite policy. Enable
1066 * checking of bus mastering status (bm_check) so we can
1067 * use this in our C3 policy
1069 cx->valid = 1;
1071 #ifndef CONFIG_CPU_IDLE
1072 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1073 #else
1074 cx->latency_ticks = cx->latency;
1075 #endif
1077 return;
1080 static int acpi_processor_power_verify(struct acpi_processor *pr)
1082 unsigned int i;
1083 unsigned int working = 0;
1085 pr->power.timer_broadcast_on_state = INT_MAX;
1087 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1088 struct acpi_processor_cx *cx = &pr->power.states[i];
1090 switch (cx->type) {
1091 case ACPI_STATE_C1:
1092 cx->valid = 1;
1093 break;
1095 case ACPI_STATE_C2:
1096 acpi_processor_power_verify_c2(cx);
1097 if (cx->valid)
1098 acpi_timer_check_state(i, pr, cx);
1099 break;
1101 case ACPI_STATE_C3:
1102 acpi_processor_power_verify_c3(pr, cx);
1103 if (cx->valid)
1104 acpi_timer_check_state(i, pr, cx);
1105 break;
1108 if (cx->valid)
1109 working++;
1112 acpi_propagate_timer_broadcast(pr);
1114 return (working);
1117 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1119 unsigned int i;
1120 int result;
1123 /* NOTE: the idle thread may not be running while calling
1124 * this function */
1126 /* Zero initialize all the C-states info. */
1127 memset(pr->power.states, 0, sizeof(pr->power.states));
1129 result = acpi_processor_get_power_info_cst(pr);
1130 if (result == -ENODEV)
1131 result = acpi_processor_get_power_info_fadt(pr);
1133 if (result)
1134 return result;
1136 acpi_processor_get_power_info_default(pr);
1138 pr->power.count = acpi_processor_power_verify(pr);
1140 #ifndef CONFIG_CPU_IDLE
1142 * Set Default Policy
1143 * ------------------
1144 * Now that we know which states are supported, set the default
1145 * policy. Note that this policy can be changed dynamically
1146 * (e.g. encourage deeper sleeps to conserve battery life when
1147 * not on AC).
1149 result = acpi_processor_set_power_policy(pr);
1150 if (result)
1151 return result;
1152 #endif
1155 * if one state of type C2 or C3 is available, mark this
1156 * CPU as being "idle manageable"
1158 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1159 if (pr->power.states[i].valid) {
1160 pr->power.count = i;
1161 if (pr->power.states[i].type >= ACPI_STATE_C2)
1162 pr->flags.power = 1;
1166 return 0;
1169 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1171 struct acpi_processor *pr = seq->private;
1172 unsigned int i;
1175 if (!pr)
1176 goto end;
1178 seq_printf(seq, "active state: C%zd\n"
1179 "max_cstate: C%d\n"
1180 "bus master activity: %08x\n"
1181 "maximum allowed latency: %d usec\n",
1182 pr->power.state ? pr->power.state - pr->power.states : 0,
1183 max_cstate, (unsigned)pr->power.bm_activity,
1184 system_latency_constraint());
1186 seq_puts(seq, "states:\n");
1188 for (i = 1; i <= pr->power.count; i++) {
1189 seq_printf(seq, " %cC%d: ",
1190 (&pr->power.states[i] ==
1191 pr->power.state ? '*' : ' '), i);
1193 if (!pr->power.states[i].valid) {
1194 seq_puts(seq, "<not supported>\n");
1195 continue;
1198 switch (pr->power.states[i].type) {
1199 case ACPI_STATE_C1:
1200 seq_printf(seq, "type[C1] ");
1201 break;
1202 case ACPI_STATE_C2:
1203 seq_printf(seq, "type[C2] ");
1204 break;
1205 case ACPI_STATE_C3:
1206 seq_printf(seq, "type[C3] ");
1207 break;
1208 default:
1209 seq_printf(seq, "type[--] ");
1210 break;
1213 if (pr->power.states[i].promotion.state)
1214 seq_printf(seq, "promotion[C%zd] ",
1215 (pr->power.states[i].promotion.state -
1216 pr->power.states));
1217 else
1218 seq_puts(seq, "promotion[--] ");
1220 if (pr->power.states[i].demotion.state)
1221 seq_printf(seq, "demotion[C%zd] ",
1222 (pr->power.states[i].demotion.state -
1223 pr->power.states));
1224 else
1225 seq_puts(seq, "demotion[--] ");
1227 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1228 pr->power.states[i].latency,
1229 pr->power.states[i].usage,
1230 (unsigned long long)pr->power.states[i].time);
1233 end:
1234 return 0;
1237 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1239 return single_open(file, acpi_processor_power_seq_show,
1240 PDE(inode)->data);
1243 static const struct file_operations acpi_processor_power_fops = {
1244 .open = acpi_processor_power_open_fs,
1245 .read = seq_read,
1246 .llseek = seq_lseek,
1247 .release = single_release,
1250 #ifndef CONFIG_CPU_IDLE
1252 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1254 int result = 0;
1257 if (!pr)
1258 return -EINVAL;
1260 if (nocst) {
1261 return -ENODEV;
1264 if (!pr->flags.power_setup_done)
1265 return -ENODEV;
1267 /* Fall back to the default idle loop */
1268 pm_idle = pm_idle_save;
1269 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1271 pr->flags.power = 0;
1272 result = acpi_processor_get_power_info(pr);
1273 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1274 pm_idle = acpi_processor_idle;
1276 return result;
1279 #ifdef CONFIG_SMP
1280 static void smp_callback(void *v)
1282 /* we already woke the CPU up, nothing more to do */
1286 * This function gets called when a part of the kernel has a new latency
1287 * requirement. This means we need to get all processors out of their C-state,
1288 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1289 * wakes them all right up.
1291 static int acpi_processor_latency_notify(struct notifier_block *b,
1292 unsigned long l, void *v)
1294 smp_call_function(smp_callback, NULL, 0, 1);
1295 return NOTIFY_OK;
1298 static struct notifier_block acpi_processor_latency_notifier = {
1299 .notifier_call = acpi_processor_latency_notify,
1302 #endif
1304 #else /* CONFIG_CPU_IDLE */
1307 * acpi_idle_bm_check - checks if bus master activity was detected
1309 static int acpi_idle_bm_check(void)
1311 u32 bm_status = 0;
1313 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1314 if (bm_status)
1315 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1317 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1318 * the true state of bus mastering activity; forcing us to
1319 * manually check the BMIDEA bit of each IDE channel.
1321 else if (errata.piix4.bmisx) {
1322 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1323 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1324 bm_status = 1;
1326 return bm_status;
1330 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1331 * @pr: the processor
1332 * @target: the new target state
1334 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1335 struct acpi_processor_cx *target)
1337 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1338 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1339 pr->flags.bm_rld_set = 0;
1342 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1343 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1344 pr->flags.bm_rld_set = 1;
1349 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1350 * @cx: cstate data
1352 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1354 if (cx->space_id == ACPI_CSTATE_FFH) {
1355 /* Call into architectural FFH based C-state */
1356 acpi_processor_ffh_cstate_enter(cx);
1357 } else {
1358 int unused;
1359 /* IO port based C-state */
1360 inb(cx->address);
1361 /* Dummy wait op - must do something useless after P_LVL2 read
1362 because chipsets cannot guarantee that STPCLK# signal
1363 gets asserted in time to freeze execution properly. */
1364 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1369 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1370 * @dev: the target CPU
1371 * @state: the state data
1373 * This is equivalent to the HALT instruction.
1375 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1376 struct cpuidle_state *state)
1378 struct acpi_processor *pr;
1379 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1380 pr = processors[smp_processor_id()];
1382 if (unlikely(!pr))
1383 return 0;
1385 if (pr->flags.bm_check)
1386 acpi_idle_update_bm_rld(pr, cx);
1388 current_thread_info()->status &= ~TS_POLLING;
1390 * TS_POLLING-cleared state must be visible before we test
1391 * NEED_RESCHED:
1393 smp_mb();
1394 if (!need_resched())
1395 safe_halt();
1396 current_thread_info()->status |= TS_POLLING;
1398 cx->usage++;
1400 return 0;
1404 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1405 * @dev: the target CPU
1406 * @state: the state data
1408 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1409 struct cpuidle_state *state)
1411 struct acpi_processor *pr;
1412 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1413 u32 t1, t2;
1414 pr = processors[smp_processor_id()];
1416 if (unlikely(!pr))
1417 return 0;
1419 if (acpi_idle_suspend)
1420 return(acpi_idle_enter_c1(dev, state));
1422 if (pr->flags.bm_check)
1423 acpi_idle_update_bm_rld(pr, cx);
1425 local_irq_disable();
1426 current_thread_info()->status &= ~TS_POLLING;
1428 * TS_POLLING-cleared state must be visible before we test
1429 * NEED_RESCHED:
1431 smp_mb();
1433 if (unlikely(need_resched())) {
1434 current_thread_info()->status |= TS_POLLING;
1435 local_irq_enable();
1436 return 0;
1439 if (cx->type == ACPI_STATE_C3)
1440 ACPI_FLUSH_CPU_CACHE();
1442 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1443 acpi_state_timer_broadcast(pr, cx, 1);
1444 acpi_idle_do_entry(cx);
1445 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1447 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1448 /* TSC could halt in idle, so notify users */
1449 mark_tsc_unstable("TSC halts in idle");;
1450 #endif
1452 local_irq_enable();
1453 current_thread_info()->status |= TS_POLLING;
1455 cx->usage++;
1457 acpi_state_timer_broadcast(pr, cx, 0);
1458 cx->time += ticks_elapsed(t1, t2);
1459 return ticks_elapsed_in_us(t1, t2);
1462 static int c3_cpu_count;
1463 static DEFINE_SPINLOCK(c3_lock);
1466 * acpi_idle_enter_bm - enters C3 with proper BM handling
1467 * @dev: the target CPU
1468 * @state: the state data
1470 * If BM is detected, the deepest non-C3 idle state is entered instead.
1472 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1473 struct cpuidle_state *state)
1475 struct acpi_processor *pr;
1476 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1477 u32 t1, t2;
1478 pr = processors[smp_processor_id()];
1480 if (unlikely(!pr))
1481 return 0;
1483 if (acpi_idle_suspend)
1484 return(acpi_idle_enter_c1(dev, state));
1486 local_irq_disable();
1487 current_thread_info()->status &= ~TS_POLLING;
1489 * TS_POLLING-cleared state must be visible before we test
1490 * NEED_RESCHED:
1492 smp_mb();
1494 if (unlikely(need_resched())) {
1495 current_thread_info()->status |= TS_POLLING;
1496 local_irq_enable();
1497 return 0;
1501 * Must be done before busmaster disable as we might need to
1502 * access HPET !
1504 acpi_state_timer_broadcast(pr, cx, 1);
1506 if (acpi_idle_bm_check()) {
1507 cx = pr->power.bm_state;
1509 acpi_idle_update_bm_rld(pr, cx);
1511 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1512 acpi_idle_do_entry(cx);
1513 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1514 } else {
1515 acpi_idle_update_bm_rld(pr, cx);
1517 spin_lock(&c3_lock);
1518 c3_cpu_count++;
1519 /* Disable bus master arbitration when all CPUs are in C3 */
1520 if (c3_cpu_count == num_online_cpus())
1521 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1522 spin_unlock(&c3_lock);
1524 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1525 acpi_idle_do_entry(cx);
1526 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1528 spin_lock(&c3_lock);
1529 /* Re-enable bus master arbitration */
1530 if (c3_cpu_count == num_online_cpus())
1531 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1532 c3_cpu_count--;
1533 spin_unlock(&c3_lock);
1536 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1537 /* TSC could halt in idle, so notify users */
1538 mark_tsc_unstable("TSC halts in idle");
1539 #endif
1541 local_irq_enable();
1542 current_thread_info()->status |= TS_POLLING;
1544 cx->usage++;
1546 acpi_state_timer_broadcast(pr, cx, 0);
1547 cx->time += ticks_elapsed(t1, t2);
1548 return ticks_elapsed_in_us(t1, t2);
1551 struct cpuidle_driver acpi_idle_driver = {
1552 .name = "acpi_idle",
1553 .owner = THIS_MODULE,
1557 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1558 * @pr: the ACPI processor
1560 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1562 int i, count = 0;
1563 struct acpi_processor_cx *cx;
1564 struct cpuidle_state *state;
1565 struct cpuidle_device *dev = &pr->power.dev;
1567 if (!pr->flags.power_setup_done)
1568 return -EINVAL;
1570 if (pr->flags.power == 0) {
1571 return -EINVAL;
1574 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1575 cx = &pr->power.states[i];
1576 state = &dev->states[count];
1578 if (!cx->valid)
1579 continue;
1581 #ifdef CONFIG_HOTPLUG_CPU
1582 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1583 !pr->flags.has_cst &&
1584 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1585 continue;
1586 #endif
1587 cpuidle_set_statedata(state, cx);
1589 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1590 state->exit_latency = cx->latency;
1591 state->target_residency = cx->latency * 6;
1592 state->power_usage = cx->power;
1594 state->flags = 0;
1595 switch (cx->type) {
1596 case ACPI_STATE_C1:
1597 state->flags |= CPUIDLE_FLAG_SHALLOW;
1598 state->enter = acpi_idle_enter_c1;
1599 break;
1601 case ACPI_STATE_C2:
1602 state->flags |= CPUIDLE_FLAG_BALANCED;
1603 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1604 state->enter = acpi_idle_enter_simple;
1605 break;
1607 case ACPI_STATE_C3:
1608 state->flags |= CPUIDLE_FLAG_DEEP;
1609 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1610 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1611 state->enter = pr->flags.bm_check ?
1612 acpi_idle_enter_bm :
1613 acpi_idle_enter_simple;
1614 break;
1617 count++;
1620 dev->state_count = count;
1622 if (!count)
1623 return -EINVAL;
1625 /* find the deepest state that can handle active BM */
1626 if (pr->flags.bm_check) {
1627 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++)
1628 if (pr->power.states[i].type == ACPI_STATE_C3)
1629 break;
1630 pr->power.bm_state = &pr->power.states[i-1];
1633 return 0;
1636 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1638 int ret;
1640 if (!pr)
1641 return -EINVAL;
1643 if (nocst) {
1644 return -ENODEV;
1647 if (!pr->flags.power_setup_done)
1648 return -ENODEV;
1650 cpuidle_pause_and_lock();
1651 cpuidle_disable_device(&pr->power.dev);
1652 acpi_processor_get_power_info(pr);
1653 acpi_processor_setup_cpuidle(pr);
1654 ret = cpuidle_enable_device(&pr->power.dev);
1655 cpuidle_resume_and_unlock();
1657 return ret;
1660 #endif /* CONFIG_CPU_IDLE */
1662 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1663 struct acpi_device *device)
1665 acpi_status status = 0;
1666 static int first_run;
1667 struct proc_dir_entry *entry = NULL;
1668 unsigned int i;
1671 if (!first_run) {
1672 dmi_check_system(processor_power_dmi_table);
1673 if (max_cstate < ACPI_C_STATES_MAX)
1674 printk(KERN_NOTICE
1675 "ACPI: processor limited to max C-state %d\n",
1676 max_cstate);
1677 first_run++;
1678 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1679 register_latency_notifier(&acpi_processor_latency_notifier);
1680 #endif
1683 if (!pr)
1684 return -EINVAL;
1686 if (acpi_gbl_FADT.cst_control && !nocst) {
1687 status =
1688 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1689 if (ACPI_FAILURE(status)) {
1690 ACPI_EXCEPTION((AE_INFO, status,
1691 "Notifying BIOS of _CST ability failed"));
1695 acpi_processor_get_power_info(pr);
1696 pr->flags.power_setup_done = 1;
1699 * Install the idle handler if processor power management is supported.
1700 * Note that we use previously set idle handler will be used on
1701 * platforms that only support C1.
1703 if ((pr->flags.power) && (!boot_option_idle_override)) {
1704 #ifdef CONFIG_CPU_IDLE
1705 acpi_processor_setup_cpuidle(pr);
1706 pr->power.dev.cpu = pr->id;
1707 if (cpuidle_register_device(&pr->power.dev))
1708 return -EIO;
1709 #endif
1711 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1712 for (i = 1; i <= pr->power.count; i++)
1713 if (pr->power.states[i].valid)
1714 printk(" C%d[C%d]", i,
1715 pr->power.states[i].type);
1716 printk(")\n");
1718 #ifndef CONFIG_CPU_IDLE
1719 if (pr->id == 0) {
1720 pm_idle_save = pm_idle;
1721 pm_idle = acpi_processor_idle;
1723 #endif
1726 /* 'power' [R] */
1727 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1728 S_IRUGO, acpi_device_dir(device));
1729 if (!entry)
1730 return -EIO;
1731 else {
1732 entry->proc_fops = &acpi_processor_power_fops;
1733 entry->data = acpi_driver_data(device);
1734 entry->owner = THIS_MODULE;
1737 return 0;
1740 int acpi_processor_power_exit(struct acpi_processor *pr,
1741 struct acpi_device *device)
1743 #ifdef CONFIG_CPU_IDLE
1744 if ((pr->flags.power) && (!boot_option_idle_override))
1745 cpuidle_unregister_device(&pr->power.dev);
1746 #endif
1747 pr->flags.power_setup_done = 0;
1749 if (acpi_device_dir(device))
1750 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1751 acpi_device_dir(device));
1753 #ifndef CONFIG_CPU_IDLE
1755 /* Unregister the idle handler when processor #0 is removed. */
1756 if (pr->id == 0) {
1757 pm_idle = pm_idle_save;
1760 * We are about to unload the current idle thread pm callback
1761 * (pm_idle), Wait for all processors to update cached/local
1762 * copies of pm_idle before proceeding.
1764 cpu_idle_wait();
1765 #ifdef CONFIG_SMP
1766 unregister_latency_notifier(&acpi_processor_latency_notifier);
1767 #endif
1769 #endif
1771 return 0;