2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static int cfq_group_idle
= HZ
/ 125;
34 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
35 static const int cfq_hist_divisor
= 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61 static struct kmem_cache
*cfq_pool
;
62 static struct kmem_cache
*cfq_ioc_pool
;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
65 static struct completion
*ioc_gone
;
66 static DEFINE_SPINLOCK(ioc_gone_lock
);
68 static DEFINE_SPINLOCK(cic_index_lock
);
69 static DEFINE_IDA(cic_index_ida
);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
100 /* various state flags, see below */
102 /* parent cfq_data */
103 struct cfq_data
*cfqd
;
104 /* service_tree member */
105 struct rb_node rb_node
;
106 /* service_tree key */
107 unsigned long rb_key
;
108 /* prio tree member */
109 struct rb_node p_node
;
110 /* prio tree root we belong to, if any */
111 struct rb_root
*p_root
;
112 /* sorted list of pending requests */
113 struct rb_root sort_list
;
114 /* if fifo isn't expired, next request to serve */
115 struct request
*next_rq
;
116 /* requests queued in sort_list */
118 /* currently allocated requests */
120 /* fifo list of requests in sort_list */
121 struct list_head fifo
;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start
;
125 unsigned int allocated_slice
;
126 unsigned int slice_dispatch
;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start
;
129 unsigned long slice_end
;
132 /* pending metadata requests */
134 /* number of requests that are on the dispatch list or inside driver */
137 /* io prio of this group */
138 unsigned short ioprio
, org_ioprio
;
139 unsigned short ioprio_class
, org_ioprio_class
;
144 sector_t last_request_pos
;
146 struct cfq_rb_root
*service_tree
;
147 struct cfq_queue
*new_cfqq
;
148 struct cfq_group
*cfqg
;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors
;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
165 * Second index in the service_trees.
169 SYNC_NOIDLE_WORKLOAD
= 1,
173 /* This is per cgroup per device grouping structure */
175 /* group service_tree member */
176 struct rb_node rb_node
;
178 /* group service_tree key */
181 unsigned int new_weight
;
184 /* number of cfqq currently on this group */
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
193 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
200 * Counts are embedded in the cfq_rb_root
202 struct cfq_rb_root service_trees
[2][3];
203 struct cfq_rb_root service_tree_idle
;
205 unsigned long saved_workload_slice
;
206 enum wl_type_t saved_workload
;
207 enum wl_prio_t saved_serving_prio
;
208 struct blkio_group blkg
;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node
;
213 /* number of requests that are on the dispatch list or inside driver */
218 * Per block device queue structure
221 struct request_queue
*queue
;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree
;
224 struct cfq_group root_group
;
227 * The priority currently being served
229 enum wl_prio_t serving_prio
;
230 enum wl_type_t serving_type
;
231 unsigned long workload_expires
;
232 struct cfq_group
*serving_group
;
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
239 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
241 unsigned int busy_queues
;
242 unsigned int busy_sync_queues
;
248 * queue-depth detection
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
258 int hw_tag_est_depth
;
259 unsigned int hw_tag_samples
;
262 * idle window management
264 struct timer_list idle_slice_timer
;
265 struct work_struct unplug_work
;
267 struct cfq_queue
*active_queue
;
268 struct cfq_io_context
*active_cic
;
271 * async queue for each priority case
273 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
274 struct cfq_queue
*async_idle_cfqq
;
276 sector_t last_position
;
279 * tunables, see top of file
281 unsigned int cfq_quantum
;
282 unsigned int cfq_fifo_expire
[2];
283 unsigned int cfq_back_penalty
;
284 unsigned int cfq_back_max
;
285 unsigned int cfq_slice
[2];
286 unsigned int cfq_slice_async_rq
;
287 unsigned int cfq_slice_idle
;
288 unsigned int cfq_group_idle
;
289 unsigned int cfq_latency
;
291 unsigned int cic_index
;
292 struct list_head cic_list
;
295 * Fallback dummy cfqq for extreme OOM conditions
297 struct cfq_queue oom_cfqq
;
299 unsigned long last_delayed_sync
;
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list
;
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps
;
308 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
310 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
317 if (prio
== IDLE_WORKLOAD
)
318 return &cfqg
->service_tree_idle
;
320 return &cfqg
->service_trees
[prio
][type
];
323 enum cfqq_state_flags
{
324 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
326 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
327 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
328 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
331 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
332 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
333 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
334 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
335 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
336 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
339 #define CFQ_CFQQ_FNS(name) \
340 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
344 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
348 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
354 CFQ_CFQQ_FNS(wait_request
);
355 CFQ_CFQQ_FNS(must_dispatch
);
356 CFQ_CFQQ_FNS(must_alloc_slice
);
357 CFQ_CFQQ_FNS(fifo_expire
);
358 CFQ_CFQQ_FNS(idle_window
);
359 CFQ_CFQQ_FNS(prio_changed
);
360 CFQ_CFQQ_FNS(slice_new
);
363 CFQ_CFQQ_FNS(split_coop
);
365 CFQ_CFQQ_FNS(wait_busy
);
368 #ifdef CONFIG_CFQ_GROUP_IOSCHED
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args);
374 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args); \
379 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
383 #define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
386 /* Traverses through cfq group service trees */
387 #define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
397 static inline bool iops_mode(struct cfq_data *cfqd)
400 * If we are not idling on queues and it is a NCQ drive, parallel
401 * execution of requests is on and measuring time is not possible
402 * in most of the cases until and unless we drive shallower queue
403 * depths and that becomes a performance bottleneck. In such cases
404 * switch to start providing fairness in terms of number of IOs.
406 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
412 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
414 if (cfq_class_idle(cfqq
))
415 return IDLE_WORKLOAD
;
416 if (cfq_class_rt(cfqq
))
422 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
424 if (!cfq_cfqq_sync(cfqq
))
425 return ASYNC_WORKLOAD
;
426 if (!cfq_cfqq_idle_window(cfqq
))
427 return SYNC_NOIDLE_WORKLOAD
;
428 return SYNC_WORKLOAD
;
431 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
432 struct cfq_data
*cfqd
,
433 struct cfq_group
*cfqg
)
435 if (wl
== IDLE_WORKLOAD
)
436 return cfqg
->service_tree_idle
.count
;
438 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
439 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
440 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
443 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
444 struct cfq_group
*cfqg
)
446 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
447 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
450 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
451 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
452 struct io_context
*, gfp_t
);
453 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
454 struct io_context
*);
456 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
459 return cic
->cfqq
[is_sync
];
462 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
463 struct cfq_queue
*cfqq
, bool is_sync
)
465 cic
->cfqq
[is_sync
] = cfqq
;
468 #define CIC_DEAD_KEY 1ul
469 #define CIC_DEAD_INDEX_SHIFT 1
471 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
473 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
476 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
478 struct cfq_data
*cfqd
= cic
->key
;
480 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
490 static inline bool cfq_bio_sync(struct bio
*bio
)
492 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
499 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
501 if (cfqd
->busy_queues
) {
502 cfq_log(cfqd
, "schedule dispatch");
503 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
512 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
515 const int base_slice
= cfqd
->cfq_slice
[sync
];
517 WARN_ON(prio
>= IOPRIO_BE_NR
);
519 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
523 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
525 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
528 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
530 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
532 d
= d
* BLKIO_WEIGHT_DEFAULT
;
533 do_div(d
, cfqg
->weight
);
537 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
539 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
541 min_vdisktime
= vdisktime
;
543 return min_vdisktime
;
546 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
548 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
550 min_vdisktime
= vdisktime
;
552 return min_vdisktime
;
555 static void update_min_vdisktime(struct cfq_rb_root
*st
)
557 struct cfq_group
*cfqg
;
560 cfqg
= rb_entry_cfqg(st
->left
);
561 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
572 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
573 struct cfq_group
*cfqg
, bool rt
)
575 unsigned min_q
, max_q
;
576 unsigned mult
= cfq_hist_divisor
- 1;
577 unsigned round
= cfq_hist_divisor
/ 2;
578 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
580 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
581 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
582 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
584 return cfqg
->busy_queues_avg
[rt
];
587 static inline unsigned
588 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
590 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
592 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
595 static inline unsigned
596 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
598 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
599 if (cfqd
->cfq_latency
) {
601 * interested queues (we consider only the ones with the same
602 * priority class in the cfq group)
604 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
606 unsigned sync_slice
= cfqd
->cfq_slice
[1];
607 unsigned expect_latency
= sync_slice
* iq
;
608 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
610 if (expect_latency
> group_slice
) {
611 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
612 /* scale low_slice according to IO priority
613 * and sync vs async */
615 min(slice
, base_low_slice
* slice
/ sync_slice
);
616 /* the adapted slice value is scaled to fit all iqs
617 * into the target latency */
618 slice
= max(slice
* group_slice
/ expect_latency
,
626 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
628 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
630 cfqq
->slice_start
= jiffies
;
631 cfqq
->slice_end
= jiffies
+ slice
;
632 cfqq
->allocated_slice
= slice
;
633 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
641 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
643 if (cfq_cfqq_slice_new(cfqq
))
645 if (time_before(jiffies
, cfqq
->slice_end
))
652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
653 * We choose the request that is closest to the head right now. Distance
654 * behind the head is penalized and only allowed to a certain extent.
656 static struct request
*
657 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
659 sector_t s1
, s2
, d1
= 0, d2
= 0;
660 unsigned long back_max
;
661 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
665 if (rq1
== NULL
|| rq1
== rq2
)
670 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
671 return rq_is_sync(rq1
) ? rq1
: rq2
;
673 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_META
)
674 return rq1
->cmd_flags
& REQ_META
? rq1
: rq2
;
676 s1
= blk_rq_pos(rq1
);
677 s2
= blk_rq_pos(rq2
);
680 * by definition, 1KiB is 2 sectors
682 back_max
= cfqd
->cfq_back_max
* 2;
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
691 else if (s1
+ back_max
>= last
)
692 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
694 wrap
|= CFQ_RQ1_WRAP
;
698 else if (s2
+ back_max
>= last
)
699 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
701 wrap
|= CFQ_RQ2_WRAP
;
703 /* Found required data */
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
726 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
742 * The below is leftmost cache rbtree addon
744 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
746 /* Service tree is empty */
751 root
->left
= rb_first(&root
->rb
);
754 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
759 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
762 root
->left
= rb_first(&root
->rb
);
765 return rb_entry_cfqg(root
->left
);
770 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
776 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
780 rb_erase_init(n
, &root
->rb
);
785 * would be nice to take fifo expire time into account as well
787 static struct request
*
788 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
789 struct request
*last
)
791 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
792 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
793 struct request
*next
= NULL
, *prev
= NULL
;
795 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
798 prev
= rb_entry_rq(rbprev
);
801 next
= rb_entry_rq(rbnext
);
803 rbnext
= rb_first(&cfqq
->sort_list
);
804 if (rbnext
&& rbnext
!= &last
->rb_node
)
805 next
= rb_entry_rq(rbnext
);
808 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
811 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
812 struct cfq_queue
*cfqq
)
815 * just an approximation, should be ok.
817 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
818 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
822 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
824 return cfqg
->vdisktime
- st
->min_vdisktime
;
828 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
830 struct rb_node
**node
= &st
->rb
.rb_node
;
831 struct rb_node
*parent
= NULL
;
832 struct cfq_group
*__cfqg
;
833 s64 key
= cfqg_key(st
, cfqg
);
836 while (*node
!= NULL
) {
838 __cfqg
= rb_entry_cfqg(parent
);
840 if (key
< cfqg_key(st
, __cfqg
))
841 node
= &parent
->rb_left
;
843 node
= &parent
->rb_right
;
849 st
->left
= &cfqg
->rb_node
;
851 rb_link_node(&cfqg
->rb_node
, parent
, node
);
852 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
856 cfq_update_group_weight(struct cfq_group
*cfqg
)
858 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
859 if (cfqg
->needs_update
) {
860 cfqg
->weight
= cfqg
->new_weight
;
861 cfqg
->needs_update
= false;
866 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
868 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
870 cfq_update_group_weight(cfqg
);
871 __cfq_group_service_tree_add(st
, cfqg
);
872 st
->total_weight
+= cfqg
->weight
;
876 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
878 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
879 struct cfq_group
*__cfqg
;
883 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
887 * Currently put the group at the end. Later implement something
888 * so that groups get lesser vtime based on their weights, so that
889 * if group does not loose all if it was not continuously backlogged.
891 n
= rb_last(&st
->rb
);
893 __cfqg
= rb_entry_cfqg(n
);
894 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
896 cfqg
->vdisktime
= st
->min_vdisktime
;
897 cfq_group_service_tree_add(st
, cfqg
);
901 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
903 st
->total_weight
-= cfqg
->weight
;
904 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
905 cfq_rb_erase(&cfqg
->rb_node
, st
);
909 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
911 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
913 BUG_ON(cfqg
->nr_cfqq
< 1);
916 /* If there are other cfq queues under this group, don't delete it */
920 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
921 cfq_group_service_tree_del(st
, cfqg
);
922 cfqg
->saved_workload_slice
= 0;
923 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
926 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
927 unsigned int *unaccounted_time
)
929 unsigned int slice_used
;
932 * Queue got expired before even a single request completed or
933 * got expired immediately after first request completion.
935 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
937 * Also charge the seek time incurred to the group, otherwise
938 * if there are mutiple queues in the group, each can dispatch
939 * a single request on seeky media and cause lots of seek time
940 * and group will never know it.
942 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
945 slice_used
= jiffies
- cfqq
->slice_start
;
946 if (slice_used
> cfqq
->allocated_slice
) {
947 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
948 slice_used
= cfqq
->allocated_slice
;
950 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
951 *unaccounted_time
+= cfqq
->slice_start
-
952 cfqq
->dispatch_start
;
958 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
959 struct cfq_queue
*cfqq
)
961 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
962 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
963 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
964 - cfqg
->service_tree_idle
.count
;
967 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
970 charge
= cfqq
->slice_dispatch
;
971 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
972 charge
= cfqq
->allocated_slice
;
974 /* Can't update vdisktime while group is on service tree */
975 cfq_group_service_tree_del(st
, cfqg
);
976 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
977 /* If a new weight was requested, update now, off tree */
978 cfq_group_service_tree_add(st
, cfqg
);
980 /* This group is being expired. Save the context */
981 if (time_after(cfqd
->workload_expires
, jiffies
)) {
982 cfqg
->saved_workload_slice
= cfqd
->workload_expires
984 cfqg
->saved_workload
= cfqd
->serving_type
;
985 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
987 cfqg
->saved_workload_slice
= 0;
989 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
991 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u disp=%u charge=%u iops=%u"
992 " sect=%u", used_sl
, cfqq
->slice_dispatch
, charge
,
993 iops_mode(cfqd
), cfqq
->nr_sectors
);
994 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
,
996 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
999 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1000 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
1003 return container_of(blkg
, struct cfq_group
, blkg
);
1007 void cfq_update_blkio_group_weight(void *key
, struct blkio_group
*blkg
,
1008 unsigned int weight
)
1010 struct cfq_group
*cfqg
= cfqg_of_blkg(blkg
);
1011 cfqg
->new_weight
= weight
;
1012 cfqg
->needs_update
= true;
1015 static void cfq_init_add_cfqg_lists(struct cfq_data
*cfqd
,
1016 struct cfq_group
*cfqg
, struct blkio_cgroup
*blkcg
)
1018 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1019 unsigned int major
, minor
;
1022 * Add group onto cgroup list. It might happen that bdi->dev is
1023 * not initialized yet. Initialize this new group without major
1024 * and minor info and this info will be filled in once a new thread
1028 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1029 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
,
1030 (void *)cfqd
, MKDEV(major
, minor
));
1032 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
,
1035 cfqd
->nr_blkcg_linked_grps
++;
1036 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1038 /* Add group on cfqd list */
1039 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1043 * Should be called from sleepable context. No request queue lock as per
1044 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1045 * from sleepable context.
1047 static struct cfq_group
* cfq_alloc_cfqg(struct cfq_data
*cfqd
)
1049 struct cfq_group
*cfqg
= NULL
;
1051 struct cfq_rb_root
*st
;
1053 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1057 for_each_cfqg_st(cfqg
, i
, j
, st
)
1059 RB_CLEAR_NODE(&cfqg
->rb_node
);
1062 * Take the initial reference that will be released on destroy
1063 * This can be thought of a joint reference by cgroup and
1064 * elevator which will be dropped by either elevator exit
1065 * or cgroup deletion path depending on who is exiting first.
1069 ret
= blkio_alloc_blkg_stats(&cfqg
->blkg
);
1078 static struct cfq_group
*
1079 cfq_find_cfqg(struct cfq_data
*cfqd
, struct blkio_cgroup
*blkcg
)
1081 struct cfq_group
*cfqg
= NULL
;
1083 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1084 unsigned int major
, minor
;
1087 * This is the common case when there are no blkio cgroups.
1088 * Avoid lookup in this case
1090 if (blkcg
== &blkio_root_cgroup
)
1091 cfqg
= &cfqd
->root_group
;
1093 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
1095 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
1096 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1097 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1104 * Search for the cfq group current task belongs to. request_queue lock must
1107 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
)
1109 struct blkio_cgroup
*blkcg
;
1110 struct cfq_group
*cfqg
= NULL
, *__cfqg
= NULL
;
1111 struct request_queue
*q
= cfqd
->queue
;
1114 blkcg
= task_blkio_cgroup(current
);
1115 cfqg
= cfq_find_cfqg(cfqd
, blkcg
);
1122 * Need to allocate a group. Allocation of group also needs allocation
1123 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1124 * we need to drop rcu lock and queue_lock before we call alloc.
1126 * Not taking any queue reference here and assuming that queue is
1127 * around by the time we return. CFQ queue allocation code does
1128 * the same. It might be racy though.
1132 spin_unlock_irq(q
->queue_lock
);
1134 cfqg
= cfq_alloc_cfqg(cfqd
);
1136 spin_lock_irq(q
->queue_lock
);
1139 blkcg
= task_blkio_cgroup(current
);
1142 * If some other thread already allocated the group while we were
1143 * not holding queue lock, free up the group
1145 __cfqg
= cfq_find_cfqg(cfqd
, blkcg
);
1154 cfqg
= &cfqd
->root_group
;
1156 cfq_init_add_cfqg_lists(cfqd
, cfqg
, blkcg
);
1161 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1167 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1169 /* Currently, all async queues are mapped to root group */
1170 if (!cfq_cfqq_sync(cfqq
))
1171 cfqg
= &cfqq
->cfqd
->root_group
;
1174 /* cfqq reference on cfqg */
1178 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1180 struct cfq_rb_root
*st
;
1183 BUG_ON(cfqg
->ref
<= 0);
1187 for_each_cfqg_st(cfqg
, i
, j
, st
)
1188 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
));
1189 free_percpu(cfqg
->blkg
.stats_cpu
);
1193 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1195 /* Something wrong if we are trying to remove same group twice */
1196 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1198 hlist_del_init(&cfqg
->cfqd_node
);
1201 * Put the reference taken at the time of creation so that when all
1202 * queues are gone, group can be destroyed.
1207 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1209 struct hlist_node
*pos
, *n
;
1210 struct cfq_group
*cfqg
;
1212 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1214 * If cgroup removal path got to blk_group first and removed
1215 * it from cgroup list, then it will take care of destroying
1218 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1219 cfq_destroy_cfqg(cfqd
, cfqg
);
1224 * Blk cgroup controller notification saying that blkio_group object is being
1225 * delinked as associated cgroup object is going away. That also means that
1226 * no new IO will come in this group. So get rid of this group as soon as
1227 * any pending IO in the group is finished.
1229 * This function is called under rcu_read_lock(). key is the rcu protected
1230 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1233 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1234 * it should not be NULL as even if elevator was exiting, cgroup deltion
1235 * path got to it first.
1237 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1239 unsigned long flags
;
1240 struct cfq_data
*cfqd
= key
;
1242 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1243 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1244 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1247 #else /* GROUP_IOSCHED */
1248 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
)
1250 return &cfqd
->root_group
;
1253 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1259 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1263 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1264 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1266 #endif /* GROUP_IOSCHED */
1269 * The cfqd->service_trees holds all pending cfq_queue's that have
1270 * requests waiting to be processed. It is sorted in the order that
1271 * we will service the queues.
1273 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1276 struct rb_node
**p
, *parent
;
1277 struct cfq_queue
*__cfqq
;
1278 unsigned long rb_key
;
1279 struct cfq_rb_root
*service_tree
;
1283 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1285 if (cfq_class_idle(cfqq
)) {
1286 rb_key
= CFQ_IDLE_DELAY
;
1287 parent
= rb_last(&service_tree
->rb
);
1288 if (parent
&& parent
!= &cfqq
->rb_node
) {
1289 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1290 rb_key
+= __cfqq
->rb_key
;
1293 } else if (!add_front
) {
1295 * Get our rb key offset. Subtract any residual slice
1296 * value carried from last service. A negative resid
1297 * count indicates slice overrun, and this should position
1298 * the next service time further away in the tree.
1300 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1301 rb_key
-= cfqq
->slice_resid
;
1302 cfqq
->slice_resid
= 0;
1305 __cfqq
= cfq_rb_first(service_tree
);
1306 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1309 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1312 * same position, nothing more to do
1314 if (rb_key
== cfqq
->rb_key
&&
1315 cfqq
->service_tree
== service_tree
)
1318 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1319 cfqq
->service_tree
= NULL
;
1324 cfqq
->service_tree
= service_tree
;
1325 p
= &service_tree
->rb
.rb_node
;
1330 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1333 * sort by key, that represents service time.
1335 if (time_before(rb_key
, __cfqq
->rb_key
))
1338 n
= &(*p
)->rb_right
;
1346 service_tree
->left
= &cfqq
->rb_node
;
1348 cfqq
->rb_key
= rb_key
;
1349 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1350 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1351 service_tree
->count
++;
1352 if (add_front
|| !new_cfqq
)
1354 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
1357 static struct cfq_queue
*
1358 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1359 sector_t sector
, struct rb_node
**ret_parent
,
1360 struct rb_node
***rb_link
)
1362 struct rb_node
**p
, *parent
;
1363 struct cfq_queue
*cfqq
= NULL
;
1371 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1374 * Sort strictly based on sector. Smallest to the left,
1375 * largest to the right.
1377 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1378 n
= &(*p
)->rb_right
;
1379 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1387 *ret_parent
= parent
;
1393 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1395 struct rb_node
**p
, *parent
;
1396 struct cfq_queue
*__cfqq
;
1399 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1400 cfqq
->p_root
= NULL
;
1403 if (cfq_class_idle(cfqq
))
1408 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1409 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1410 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1412 rb_link_node(&cfqq
->p_node
, parent
, p
);
1413 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1415 cfqq
->p_root
= NULL
;
1419 * Update cfqq's position in the service tree.
1421 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1424 * Resorting requires the cfqq to be on the RR list already.
1426 if (cfq_cfqq_on_rr(cfqq
)) {
1427 cfq_service_tree_add(cfqd
, cfqq
, 0);
1428 cfq_prio_tree_add(cfqd
, cfqq
);
1433 * add to busy list of queues for service, trying to be fair in ordering
1434 * the pending list according to last request service
1436 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1438 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1439 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1440 cfq_mark_cfqq_on_rr(cfqq
);
1441 cfqd
->busy_queues
++;
1442 if (cfq_cfqq_sync(cfqq
))
1443 cfqd
->busy_sync_queues
++;
1445 cfq_resort_rr_list(cfqd
, cfqq
);
1449 * Called when the cfqq no longer has requests pending, remove it from
1452 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1454 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1455 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1456 cfq_clear_cfqq_on_rr(cfqq
);
1458 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1459 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1460 cfqq
->service_tree
= NULL
;
1463 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1464 cfqq
->p_root
= NULL
;
1467 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
1468 BUG_ON(!cfqd
->busy_queues
);
1469 cfqd
->busy_queues
--;
1470 if (cfq_cfqq_sync(cfqq
))
1471 cfqd
->busy_sync_queues
--;
1475 * rb tree support functions
1477 static void cfq_del_rq_rb(struct request
*rq
)
1479 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1480 const int sync
= rq_is_sync(rq
);
1482 BUG_ON(!cfqq
->queued
[sync
]);
1483 cfqq
->queued
[sync
]--;
1485 elv_rb_del(&cfqq
->sort_list
, rq
);
1487 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1489 * Queue will be deleted from service tree when we actually
1490 * expire it later. Right now just remove it from prio tree
1494 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1495 cfqq
->p_root
= NULL
;
1500 static void cfq_add_rq_rb(struct request
*rq
)
1502 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1503 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1504 struct request
*__alias
, *prev
;
1506 cfqq
->queued
[rq_is_sync(rq
)]++;
1509 * looks a little odd, but the first insert might return an alias.
1510 * if that happens, put the alias on the dispatch list
1512 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1513 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1515 if (!cfq_cfqq_on_rr(cfqq
))
1516 cfq_add_cfqq_rr(cfqd
, cfqq
);
1519 * check if this request is a better next-serve candidate
1521 prev
= cfqq
->next_rq
;
1522 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1525 * adjust priority tree position, if ->next_rq changes
1527 if (prev
!= cfqq
->next_rq
)
1528 cfq_prio_tree_add(cfqd
, cfqq
);
1530 BUG_ON(!cfqq
->next_rq
);
1533 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1535 elv_rb_del(&cfqq
->sort_list
, rq
);
1536 cfqq
->queued
[rq_is_sync(rq
)]--;
1537 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1538 rq_data_dir(rq
), rq_is_sync(rq
));
1540 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1541 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1545 static struct request
*
1546 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1548 struct task_struct
*tsk
= current
;
1549 struct cfq_io_context
*cic
;
1550 struct cfq_queue
*cfqq
;
1552 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1556 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1558 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1560 return elv_rb_find(&cfqq
->sort_list
, sector
);
1566 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1568 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1570 cfqd
->rq_in_driver
++;
1571 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1572 cfqd
->rq_in_driver
);
1574 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1577 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1579 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1581 WARN_ON(!cfqd
->rq_in_driver
);
1582 cfqd
->rq_in_driver
--;
1583 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1584 cfqd
->rq_in_driver
);
1587 static void cfq_remove_request(struct request
*rq
)
1589 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1591 if (cfqq
->next_rq
== rq
)
1592 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1594 list_del_init(&rq
->queuelist
);
1597 cfqq
->cfqd
->rq_queued
--;
1598 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1599 rq_data_dir(rq
), rq_is_sync(rq
));
1600 if (rq
->cmd_flags
& REQ_META
) {
1601 WARN_ON(!cfqq
->meta_pending
);
1602 cfqq
->meta_pending
--;
1606 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1609 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1610 struct request
*__rq
;
1612 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1613 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1615 return ELEVATOR_FRONT_MERGE
;
1618 return ELEVATOR_NO_MERGE
;
1621 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1624 if (type
== ELEVATOR_FRONT_MERGE
) {
1625 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1627 cfq_reposition_rq_rb(cfqq
, req
);
1631 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1634 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1635 bio_data_dir(bio
), cfq_bio_sync(bio
));
1639 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1640 struct request
*next
)
1642 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1644 * reposition in fifo if next is older than rq
1646 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1647 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1648 list_move(&rq
->queuelist
, &next
->queuelist
);
1649 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1652 if (cfqq
->next_rq
== next
)
1654 cfq_remove_request(next
);
1655 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1656 rq_data_dir(next
), rq_is_sync(next
));
1659 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1662 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1663 struct cfq_io_context
*cic
;
1664 struct cfq_queue
*cfqq
;
1667 * Disallow merge of a sync bio into an async request.
1669 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1673 * Lookup the cfqq that this bio will be queued with. Allow
1674 * merge only if rq is queued there.
1676 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1680 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1681 return cfqq
== RQ_CFQQ(rq
);
1684 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1686 del_timer(&cfqd
->idle_slice_timer
);
1687 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1690 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1691 struct cfq_queue
*cfqq
)
1694 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1695 cfqd
->serving_prio
, cfqd
->serving_type
);
1696 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1697 cfqq
->slice_start
= 0;
1698 cfqq
->dispatch_start
= jiffies
;
1699 cfqq
->allocated_slice
= 0;
1700 cfqq
->slice_end
= 0;
1701 cfqq
->slice_dispatch
= 0;
1702 cfqq
->nr_sectors
= 0;
1704 cfq_clear_cfqq_wait_request(cfqq
);
1705 cfq_clear_cfqq_must_dispatch(cfqq
);
1706 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1707 cfq_clear_cfqq_fifo_expire(cfqq
);
1708 cfq_mark_cfqq_slice_new(cfqq
);
1710 cfq_del_timer(cfqd
, cfqq
);
1713 cfqd
->active_queue
= cfqq
;
1717 * current cfqq expired its slice (or was too idle), select new one
1720 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1723 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1725 if (cfq_cfqq_wait_request(cfqq
))
1726 cfq_del_timer(cfqd
, cfqq
);
1728 cfq_clear_cfqq_wait_request(cfqq
);
1729 cfq_clear_cfqq_wait_busy(cfqq
);
1732 * If this cfqq is shared between multiple processes, check to
1733 * make sure that those processes are still issuing I/Os within
1734 * the mean seek distance. If not, it may be time to break the
1735 * queues apart again.
1737 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1738 cfq_mark_cfqq_split_coop(cfqq
);
1741 * store what was left of this slice, if the queue idled/timed out
1744 if (cfq_cfqq_slice_new(cfqq
))
1745 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1747 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1748 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1751 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1753 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1754 cfq_del_cfqq_rr(cfqd
, cfqq
);
1756 cfq_resort_rr_list(cfqd
, cfqq
);
1758 if (cfqq
== cfqd
->active_queue
)
1759 cfqd
->active_queue
= NULL
;
1761 if (cfqd
->active_cic
) {
1762 put_io_context(cfqd
->active_cic
->ioc
);
1763 cfqd
->active_cic
= NULL
;
1767 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1769 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1772 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1776 * Get next queue for service. Unless we have a queue preemption,
1777 * we'll simply select the first cfqq in the service tree.
1779 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1781 struct cfq_rb_root
*service_tree
=
1782 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1783 cfqd
->serving_type
);
1785 if (!cfqd
->rq_queued
)
1788 /* There is nothing to dispatch */
1791 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1793 return cfq_rb_first(service_tree
);
1796 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1798 struct cfq_group
*cfqg
;
1799 struct cfq_queue
*cfqq
;
1801 struct cfq_rb_root
*st
;
1803 if (!cfqd
->rq_queued
)
1806 cfqg
= cfq_get_next_cfqg(cfqd
);
1810 for_each_cfqg_st(cfqg
, i
, j
, st
)
1811 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1817 * Get and set a new active queue for service.
1819 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1820 struct cfq_queue
*cfqq
)
1823 cfqq
= cfq_get_next_queue(cfqd
);
1825 __cfq_set_active_queue(cfqd
, cfqq
);
1829 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1832 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1833 return blk_rq_pos(rq
) - cfqd
->last_position
;
1835 return cfqd
->last_position
- blk_rq_pos(rq
);
1838 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1841 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1844 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1845 struct cfq_queue
*cur_cfqq
)
1847 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1848 struct rb_node
*parent
, *node
;
1849 struct cfq_queue
*__cfqq
;
1850 sector_t sector
= cfqd
->last_position
;
1852 if (RB_EMPTY_ROOT(root
))
1856 * First, if we find a request starting at the end of the last
1857 * request, choose it.
1859 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1864 * If the exact sector wasn't found, the parent of the NULL leaf
1865 * will contain the closest sector.
1867 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1868 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1871 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1872 node
= rb_next(&__cfqq
->p_node
);
1874 node
= rb_prev(&__cfqq
->p_node
);
1878 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1879 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1887 * cur_cfqq - passed in so that we don't decide that the current queue is
1888 * closely cooperating with itself.
1890 * So, basically we're assuming that that cur_cfqq has dispatched at least
1891 * one request, and that cfqd->last_position reflects a position on the disk
1892 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1895 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1896 struct cfq_queue
*cur_cfqq
)
1898 struct cfq_queue
*cfqq
;
1900 if (cfq_class_idle(cur_cfqq
))
1902 if (!cfq_cfqq_sync(cur_cfqq
))
1904 if (CFQQ_SEEKY(cur_cfqq
))
1908 * Don't search priority tree if it's the only queue in the group.
1910 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1914 * We should notice if some of the queues are cooperating, eg
1915 * working closely on the same area of the disk. In that case,
1916 * we can group them together and don't waste time idling.
1918 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1922 /* If new queue belongs to different cfq_group, don't choose it */
1923 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1927 * It only makes sense to merge sync queues.
1929 if (!cfq_cfqq_sync(cfqq
))
1931 if (CFQQ_SEEKY(cfqq
))
1935 * Do not merge queues of different priority classes
1937 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1944 * Determine whether we should enforce idle window for this queue.
1947 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1949 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1950 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1952 BUG_ON(!service_tree
);
1953 BUG_ON(!service_tree
->count
);
1955 if (!cfqd
->cfq_slice_idle
)
1958 /* We never do for idle class queues. */
1959 if (prio
== IDLE_WORKLOAD
)
1962 /* We do for queues that were marked with idle window flag. */
1963 if (cfq_cfqq_idle_window(cfqq
) &&
1964 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1968 * Otherwise, we do only if they are the last ones
1969 * in their service tree.
1971 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1973 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1974 service_tree
->count
);
1978 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1980 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1981 struct cfq_io_context
*cic
;
1982 unsigned long sl
, group_idle
= 0;
1985 * SSD device without seek penalty, disable idling. But only do so
1986 * for devices that support queuing, otherwise we still have a problem
1987 * with sync vs async workloads.
1989 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1992 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1993 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1996 * idle is disabled, either manually or by past process history
1998 if (!cfq_should_idle(cfqd
, cfqq
)) {
1999 /* no queue idling. Check for group idling */
2000 if (cfqd
->cfq_group_idle
)
2001 group_idle
= cfqd
->cfq_group_idle
;
2007 * still active requests from this queue, don't idle
2009 if (cfqq
->dispatched
)
2013 * task has exited, don't wait
2015 cic
= cfqd
->active_cic
;
2016 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
2020 * If our average think time is larger than the remaining time
2021 * slice, then don't idle. This avoids overrunning the allotted
2024 if (sample_valid(cic
->ttime_samples
) &&
2025 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
2026 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%d",
2031 /* There are other queues in the group, don't do group idle */
2032 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
2035 cfq_mark_cfqq_wait_request(cfqq
);
2038 sl
= cfqd
->cfq_group_idle
;
2040 sl
= cfqd
->cfq_slice_idle
;
2042 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2043 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
2044 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2045 group_idle
? 1 : 0);
2049 * Move request from internal lists to the request queue dispatch list.
2051 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2053 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2054 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2056 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2058 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2059 cfq_remove_request(rq
);
2061 (RQ_CFQG(rq
))->dispatched
++;
2062 elv_dispatch_sort(q
, rq
);
2064 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
2065 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
2066 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
2067 rq_data_dir(rq
), rq_is_sync(rq
));
2071 * return expired entry, or NULL to just start from scratch in rbtree
2073 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2075 struct request
*rq
= NULL
;
2077 if (cfq_cfqq_fifo_expire(cfqq
))
2080 cfq_mark_cfqq_fifo_expire(cfqq
);
2082 if (list_empty(&cfqq
->fifo
))
2085 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2086 if (time_before(jiffies
, rq_fifo_time(rq
)))
2089 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2094 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2096 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2098 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2100 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
2104 * Must be called with the queue_lock held.
2106 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2108 int process_refs
, io_refs
;
2110 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2111 process_refs
= cfqq
->ref
- io_refs
;
2112 BUG_ON(process_refs
< 0);
2113 return process_refs
;
2116 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2118 int process_refs
, new_process_refs
;
2119 struct cfq_queue
*__cfqq
;
2122 * If there are no process references on the new_cfqq, then it is
2123 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2124 * chain may have dropped their last reference (not just their
2125 * last process reference).
2127 if (!cfqq_process_refs(new_cfqq
))
2130 /* Avoid a circular list and skip interim queue merges */
2131 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2137 process_refs
= cfqq_process_refs(cfqq
);
2138 new_process_refs
= cfqq_process_refs(new_cfqq
);
2140 * If the process for the cfqq has gone away, there is no
2141 * sense in merging the queues.
2143 if (process_refs
== 0 || new_process_refs
== 0)
2147 * Merge in the direction of the lesser amount of work.
2149 if (new_process_refs
>= process_refs
) {
2150 cfqq
->new_cfqq
= new_cfqq
;
2151 new_cfqq
->ref
+= process_refs
;
2153 new_cfqq
->new_cfqq
= cfqq
;
2154 cfqq
->ref
+= new_process_refs
;
2158 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2159 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2161 struct cfq_queue
*queue
;
2163 bool key_valid
= false;
2164 unsigned long lowest_key
= 0;
2165 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2167 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2168 /* select the one with lowest rb_key */
2169 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2171 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2172 lowest_key
= queue
->rb_key
;
2181 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2185 struct cfq_rb_root
*st
;
2186 unsigned group_slice
;
2187 enum wl_prio_t original_prio
= cfqd
->serving_prio
;
2189 /* Choose next priority. RT > BE > IDLE */
2190 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2191 cfqd
->serving_prio
= RT_WORKLOAD
;
2192 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2193 cfqd
->serving_prio
= BE_WORKLOAD
;
2195 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2196 cfqd
->workload_expires
= jiffies
+ 1;
2200 if (original_prio
!= cfqd
->serving_prio
)
2204 * For RT and BE, we have to choose also the type
2205 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2208 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2212 * check workload expiration, and that we still have other queues ready
2214 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2218 /* otherwise select new workload type */
2219 cfqd
->serving_type
=
2220 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2221 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2225 * the workload slice is computed as a fraction of target latency
2226 * proportional to the number of queues in that workload, over
2227 * all the queues in the same priority class
2229 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2231 slice
= group_slice
* count
/
2232 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2233 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2235 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2239 * Async queues are currently system wide. Just taking
2240 * proportion of queues with-in same group will lead to higher
2241 * async ratio system wide as generally root group is going
2242 * to have higher weight. A more accurate thing would be to
2243 * calculate system wide asnc/sync ratio.
2245 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2246 tmp
= tmp
/cfqd
->busy_queues
;
2247 slice
= min_t(unsigned, slice
, tmp
);
2249 /* async workload slice is scaled down according to
2250 * the sync/async slice ratio. */
2251 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2253 /* sync workload slice is at least 2 * cfq_slice_idle */
2254 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2256 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2257 cfq_log(cfqd
, "workload slice:%d", slice
);
2258 cfqd
->workload_expires
= jiffies
+ slice
;
2261 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2263 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2264 struct cfq_group
*cfqg
;
2266 if (RB_EMPTY_ROOT(&st
->rb
))
2268 cfqg
= cfq_rb_first_group(st
);
2269 update_min_vdisktime(st
);
2273 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2275 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2277 cfqd
->serving_group
= cfqg
;
2279 /* Restore the workload type data */
2280 if (cfqg
->saved_workload_slice
) {
2281 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2282 cfqd
->serving_type
= cfqg
->saved_workload
;
2283 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2285 cfqd
->workload_expires
= jiffies
- 1;
2287 choose_service_tree(cfqd
, cfqg
);
2291 * Select a queue for service. If we have a current active queue,
2292 * check whether to continue servicing it, or retrieve and set a new one.
2294 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2296 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2298 cfqq
= cfqd
->active_queue
;
2302 if (!cfqd
->rq_queued
)
2306 * We were waiting for group to get backlogged. Expire the queue
2308 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2312 * The active queue has run out of time, expire it and select new.
2314 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2316 * If slice had not expired at the completion of last request
2317 * we might not have turned on wait_busy flag. Don't expire
2318 * the queue yet. Allow the group to get backlogged.
2320 * The very fact that we have used the slice, that means we
2321 * have been idling all along on this queue and it should be
2322 * ok to wait for this request to complete.
2324 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2325 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2329 goto check_group_idle
;
2333 * The active queue has requests and isn't expired, allow it to
2336 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2340 * If another queue has a request waiting within our mean seek
2341 * distance, let it run. The expire code will check for close
2342 * cooperators and put the close queue at the front of the service
2343 * tree. If possible, merge the expiring queue with the new cfqq.
2345 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2347 if (!cfqq
->new_cfqq
)
2348 cfq_setup_merge(cfqq
, new_cfqq
);
2353 * No requests pending. If the active queue still has requests in
2354 * flight or is idling for a new request, allow either of these
2355 * conditions to happen (or time out) before selecting a new queue.
2357 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2363 * This is a deep seek queue, but the device is much faster than
2364 * the queue can deliver, don't idle
2366 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
2367 (cfq_cfqq_slice_new(cfqq
) ||
2368 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
2369 cfq_clear_cfqq_deep(cfqq
);
2370 cfq_clear_cfqq_idle_window(cfqq
);
2373 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2379 * If group idle is enabled and there are requests dispatched from
2380 * this group, wait for requests to complete.
2383 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1
2384 && cfqq
->cfqg
->dispatched
) {
2390 cfq_slice_expired(cfqd
, 0);
2393 * Current queue expired. Check if we have to switch to a new
2397 cfq_choose_cfqg(cfqd
);
2399 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2404 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2408 while (cfqq
->next_rq
) {
2409 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2413 BUG_ON(!list_empty(&cfqq
->fifo
));
2415 /* By default cfqq is not expired if it is empty. Do it explicitly */
2416 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2421 * Drain our current requests. Used for barriers and when switching
2422 * io schedulers on-the-fly.
2424 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2426 struct cfq_queue
*cfqq
;
2429 /* Expire the timeslice of the current active queue first */
2430 cfq_slice_expired(cfqd
, 0);
2431 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2432 __cfq_set_active_queue(cfqd
, cfqq
);
2433 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2436 BUG_ON(cfqd
->busy_queues
);
2438 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2442 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2443 struct cfq_queue
*cfqq
)
2445 /* the queue hasn't finished any request, can't estimate */
2446 if (cfq_cfqq_slice_new(cfqq
))
2448 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2455 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2457 unsigned int max_dispatch
;
2460 * Drain async requests before we start sync IO
2462 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2466 * If this is an async queue and we have sync IO in flight, let it wait
2468 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2471 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2472 if (cfq_class_idle(cfqq
))
2476 * Does this cfqq already have too much IO in flight?
2478 if (cfqq
->dispatched
>= max_dispatch
) {
2479 bool promote_sync
= false;
2481 * idle queue must always only have a single IO in flight
2483 if (cfq_class_idle(cfqq
))
2487 * If there is only one sync queue
2488 * we can ignore async queue here and give the sync
2489 * queue no dispatch limit. The reason is a sync queue can
2490 * preempt async queue, limiting the sync queue doesn't make
2491 * sense. This is useful for aiostress test.
2493 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
2494 promote_sync
= true;
2497 * We have other queues, don't allow more IO from this one
2499 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
2504 * Sole queue user, no limit
2506 if (cfqd
->busy_queues
== 1 || promote_sync
)
2510 * Normally we start throttling cfqq when cfq_quantum/2
2511 * requests have been dispatched. But we can drive
2512 * deeper queue depths at the beginning of slice
2513 * subjected to upper limit of cfq_quantum.
2515 max_dispatch
= cfqd
->cfq_quantum
;
2519 * Async queues must wait a bit before being allowed dispatch.
2520 * We also ramp up the dispatch depth gradually for async IO,
2521 * based on the last sync IO we serviced
2523 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2524 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2527 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2528 if (!depth
&& !cfqq
->dispatched
)
2530 if (depth
< max_dispatch
)
2531 max_dispatch
= depth
;
2535 * If we're below the current max, allow a dispatch
2537 return cfqq
->dispatched
< max_dispatch
;
2541 * Dispatch a request from cfqq, moving them to the request queue
2544 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2548 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2550 if (!cfq_may_dispatch(cfqd
, cfqq
))
2554 * follow expired path, else get first next available
2556 rq
= cfq_check_fifo(cfqq
);
2561 * insert request into driver dispatch list
2563 cfq_dispatch_insert(cfqd
->queue
, rq
);
2565 if (!cfqd
->active_cic
) {
2566 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2568 atomic_long_inc(&cic
->ioc
->refcount
);
2569 cfqd
->active_cic
= cic
;
2576 * Find the cfqq that we need to service and move a request from that to the
2579 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2581 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2582 struct cfq_queue
*cfqq
;
2584 if (!cfqd
->busy_queues
)
2587 if (unlikely(force
))
2588 return cfq_forced_dispatch(cfqd
);
2590 cfqq
= cfq_select_queue(cfqd
);
2595 * Dispatch a request from this cfqq, if it is allowed
2597 if (!cfq_dispatch_request(cfqd
, cfqq
))
2600 cfqq
->slice_dispatch
++;
2601 cfq_clear_cfqq_must_dispatch(cfqq
);
2604 * expire an async queue immediately if it has used up its slice. idle
2605 * queue always expire after 1 dispatch round.
2607 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2608 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2609 cfq_class_idle(cfqq
))) {
2610 cfqq
->slice_end
= jiffies
+ 1;
2611 cfq_slice_expired(cfqd
, 0);
2614 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2619 * task holds one reference to the queue, dropped when task exits. each rq
2620 * in-flight on this queue also holds a reference, dropped when rq is freed.
2622 * Each cfq queue took a reference on the parent group. Drop it now.
2623 * queue lock must be held here.
2625 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2627 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2628 struct cfq_group
*cfqg
;
2630 BUG_ON(cfqq
->ref
<= 0);
2636 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2637 BUG_ON(rb_first(&cfqq
->sort_list
));
2638 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2641 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2642 __cfq_slice_expired(cfqd
, cfqq
, 0);
2643 cfq_schedule_dispatch(cfqd
);
2646 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2647 kmem_cache_free(cfq_pool
, cfqq
);
2652 * Call func for each cic attached to this ioc.
2655 call_for_each_cic(struct io_context
*ioc
,
2656 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2658 struct cfq_io_context
*cic
;
2659 struct hlist_node
*n
;
2663 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2669 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2671 struct cfq_io_context
*cic
;
2673 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2675 kmem_cache_free(cfq_ioc_pool
, cic
);
2676 elv_ioc_count_dec(cfq_ioc_count
);
2680 * CFQ scheduler is exiting, grab exit lock and check
2681 * the pending io context count. If it hits zero,
2682 * complete ioc_gone and set it back to NULL
2684 spin_lock(&ioc_gone_lock
);
2685 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2689 spin_unlock(&ioc_gone_lock
);
2693 static void cfq_cic_free(struct cfq_io_context
*cic
)
2695 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2698 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2700 unsigned long flags
;
2701 unsigned long dead_key
= (unsigned long) cic
->key
;
2703 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2705 spin_lock_irqsave(&ioc
->lock
, flags
);
2706 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2707 hlist_del_rcu(&cic
->cic_list
);
2708 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2714 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2715 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2716 * and ->trim() which is called with the task lock held
2718 static void cfq_free_io_context(struct io_context
*ioc
)
2721 * ioc->refcount is zero here, or we are called from elv_unregister(),
2722 * so no more cic's are allowed to be linked into this ioc. So it
2723 * should be ok to iterate over the known list, we will see all cic's
2724 * since no new ones are added.
2726 call_for_each_cic(ioc
, cic_free_func
);
2729 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2731 struct cfq_queue
*__cfqq
, *next
;
2734 * If this queue was scheduled to merge with another queue, be
2735 * sure to drop the reference taken on that queue (and others in
2736 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2738 __cfqq
= cfqq
->new_cfqq
;
2740 if (__cfqq
== cfqq
) {
2741 WARN(1, "cfqq->new_cfqq loop detected\n");
2744 next
= __cfqq
->new_cfqq
;
2745 cfq_put_queue(__cfqq
);
2750 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2752 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2753 __cfq_slice_expired(cfqd
, cfqq
, 0);
2754 cfq_schedule_dispatch(cfqd
);
2757 cfq_put_cooperator(cfqq
);
2759 cfq_put_queue(cfqq
);
2762 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2763 struct cfq_io_context
*cic
)
2765 struct io_context
*ioc
= cic
->ioc
;
2767 list_del_init(&cic
->queue_list
);
2770 * Make sure dead mark is seen for dead queues
2773 cic
->key
= cfqd_dead_key(cfqd
);
2775 if (ioc
->ioc_data
== cic
)
2776 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2778 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2779 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2780 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2783 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2784 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2785 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2789 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2790 struct cfq_io_context
*cic
)
2792 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2795 struct request_queue
*q
= cfqd
->queue
;
2796 unsigned long flags
;
2798 spin_lock_irqsave(q
->queue_lock
, flags
);
2801 * Ensure we get a fresh copy of the ->key to prevent
2802 * race between exiting task and queue
2804 smp_read_barrier_depends();
2805 if (cic
->key
== cfqd
)
2806 __cfq_exit_single_io_context(cfqd
, cic
);
2808 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2813 * The process that ioc belongs to has exited, we need to clean up
2814 * and put the internal structures we have that belongs to that process.
2816 static void cfq_exit_io_context(struct io_context
*ioc
)
2818 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2821 static struct cfq_io_context
*
2822 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2824 struct cfq_io_context
*cic
;
2826 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2829 cic
->last_end_request
= jiffies
;
2830 INIT_LIST_HEAD(&cic
->queue_list
);
2831 INIT_HLIST_NODE(&cic
->cic_list
);
2832 cic
->dtor
= cfq_free_io_context
;
2833 cic
->exit
= cfq_exit_io_context
;
2834 elv_ioc_count_inc(cfq_ioc_count
);
2840 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2842 struct task_struct
*tsk
= current
;
2845 if (!cfq_cfqq_prio_changed(cfqq
))
2848 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2849 switch (ioprio_class
) {
2851 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2852 case IOPRIO_CLASS_NONE
:
2854 * no prio set, inherit CPU scheduling settings
2856 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2857 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2859 case IOPRIO_CLASS_RT
:
2860 cfqq
->ioprio
= task_ioprio(ioc
);
2861 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2863 case IOPRIO_CLASS_BE
:
2864 cfqq
->ioprio
= task_ioprio(ioc
);
2865 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2867 case IOPRIO_CLASS_IDLE
:
2868 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2870 cfq_clear_cfqq_idle_window(cfqq
);
2875 * keep track of original prio settings in case we have to temporarily
2876 * elevate the priority of this queue
2878 cfqq
->org_ioprio
= cfqq
->ioprio
;
2879 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2880 cfq_clear_cfqq_prio_changed(cfqq
);
2883 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2885 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2886 struct cfq_queue
*cfqq
;
2887 unsigned long flags
;
2889 if (unlikely(!cfqd
))
2892 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2894 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2896 struct cfq_queue
*new_cfqq
;
2897 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2900 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2901 cfq_put_queue(cfqq
);
2905 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2907 cfq_mark_cfqq_prio_changed(cfqq
);
2909 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2912 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2914 call_for_each_cic(ioc
, changed_ioprio
);
2915 ioc
->ioprio_changed
= 0;
2918 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2919 pid_t pid
, bool is_sync
)
2921 RB_CLEAR_NODE(&cfqq
->rb_node
);
2922 RB_CLEAR_NODE(&cfqq
->p_node
);
2923 INIT_LIST_HEAD(&cfqq
->fifo
);
2928 cfq_mark_cfqq_prio_changed(cfqq
);
2931 if (!cfq_class_idle(cfqq
))
2932 cfq_mark_cfqq_idle_window(cfqq
);
2933 cfq_mark_cfqq_sync(cfqq
);
2938 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2939 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2941 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2942 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2943 unsigned long flags
;
2944 struct request_queue
*q
;
2946 if (unlikely(!cfqd
))
2951 spin_lock_irqsave(q
->queue_lock
, flags
);
2955 * Drop reference to sync queue. A new sync queue will be
2956 * assigned in new group upon arrival of a fresh request.
2958 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2959 cic_set_cfqq(cic
, NULL
, 1);
2960 cfq_put_queue(sync_cfqq
);
2963 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2966 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2968 call_for_each_cic(ioc
, changed_cgroup
);
2969 ioc
->cgroup_changed
= 0;
2971 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2973 static struct cfq_queue
*
2974 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2975 struct io_context
*ioc
, gfp_t gfp_mask
)
2977 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2978 struct cfq_io_context
*cic
;
2979 struct cfq_group
*cfqg
;
2982 cfqg
= cfq_get_cfqg(cfqd
);
2983 cic
= cfq_cic_lookup(cfqd
, ioc
);
2984 /* cic always exists here */
2985 cfqq
= cic_to_cfqq(cic
, is_sync
);
2988 * Always try a new alloc if we fell back to the OOM cfqq
2989 * originally, since it should just be a temporary situation.
2991 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2996 } else if (gfp_mask
& __GFP_WAIT
) {
2997 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2998 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2999 gfp_mask
| __GFP_ZERO
,
3001 spin_lock_irq(cfqd
->queue
->queue_lock
);
3005 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3006 gfp_mask
| __GFP_ZERO
,
3011 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3012 cfq_init_prio_data(cfqq
, ioc
);
3013 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3014 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3016 cfqq
= &cfqd
->oom_cfqq
;
3020 kmem_cache_free(cfq_pool
, new_cfqq
);
3025 static struct cfq_queue
**
3026 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
3028 switch (ioprio_class
) {
3029 case IOPRIO_CLASS_RT
:
3030 return &cfqd
->async_cfqq
[0][ioprio
];
3031 case IOPRIO_CLASS_BE
:
3032 return &cfqd
->async_cfqq
[1][ioprio
];
3033 case IOPRIO_CLASS_IDLE
:
3034 return &cfqd
->async_idle_cfqq
;
3040 static struct cfq_queue
*
3041 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
3044 const int ioprio
= task_ioprio(ioc
);
3045 const int ioprio_class
= task_ioprio_class(ioc
);
3046 struct cfq_queue
**async_cfqq
= NULL
;
3047 struct cfq_queue
*cfqq
= NULL
;
3050 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
3055 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
3058 * pin the queue now that it's allocated, scheduler exit will prune it
3060 if (!is_sync
&& !(*async_cfqq
)) {
3070 * We drop cfq io contexts lazily, so we may find a dead one.
3073 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3074 struct cfq_io_context
*cic
)
3076 unsigned long flags
;
3078 WARN_ON(!list_empty(&cic
->queue_list
));
3079 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
3081 spin_lock_irqsave(&ioc
->lock
, flags
);
3083 BUG_ON(ioc
->ioc_data
== cic
);
3085 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
3086 hlist_del_rcu(&cic
->cic_list
);
3087 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3092 static struct cfq_io_context
*
3093 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
3095 struct cfq_io_context
*cic
;
3096 unsigned long flags
;
3104 * we maintain a last-hit cache, to avoid browsing over the tree
3106 cic
= rcu_dereference(ioc
->ioc_data
);
3107 if (cic
&& cic
->key
== cfqd
) {
3113 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
3117 if (unlikely(cic
->key
!= cfqd
)) {
3118 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
3123 spin_lock_irqsave(&ioc
->lock
, flags
);
3124 rcu_assign_pointer(ioc
->ioc_data
, cic
);
3125 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3133 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3134 * the process specific cfq io context when entered from the block layer.
3135 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3137 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3138 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
3140 unsigned long flags
;
3143 ret
= radix_tree_preload(gfp_mask
);
3148 spin_lock_irqsave(&ioc
->lock
, flags
);
3149 ret
= radix_tree_insert(&ioc
->radix_root
,
3150 cfqd
->cic_index
, cic
);
3152 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
3153 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3155 radix_tree_preload_end();
3158 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3159 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3160 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3165 printk(KERN_ERR
"cfq: cic link failed!\n");
3171 * Setup general io context and cfq io context. There can be several cfq
3172 * io contexts per general io context, if this process is doing io to more
3173 * than one device managed by cfq.
3175 static struct cfq_io_context
*
3176 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3178 struct io_context
*ioc
= NULL
;
3179 struct cfq_io_context
*cic
;
3181 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3183 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3187 cic
= cfq_cic_lookup(cfqd
, ioc
);
3191 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3195 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3199 smp_read_barrier_depends();
3200 if (unlikely(ioc
->ioprio_changed
))
3201 cfq_ioc_set_ioprio(ioc
);
3203 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3204 if (unlikely(ioc
->cgroup_changed
))
3205 cfq_ioc_set_cgroup(ioc
);
3211 put_io_context(ioc
);
3216 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
3218 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
3219 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
3221 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
3222 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
3223 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3227 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3231 sector_t n_sec
= blk_rq_sectors(rq
);
3232 if (cfqq
->last_request_pos
) {
3233 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3234 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3236 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3239 cfqq
->seek_history
<<= 1;
3240 if (blk_queue_nonrot(cfqd
->queue
))
3241 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3243 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3247 * Disable idle window if the process thinks too long or seeks so much that
3251 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3252 struct cfq_io_context
*cic
)
3254 int old_idle
, enable_idle
;
3257 * Don't idle for async or idle io prio class
3259 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3262 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3264 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3265 cfq_mark_cfqq_deep(cfqq
);
3267 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3269 else if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3270 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3272 else if (sample_valid(cic
->ttime_samples
)) {
3273 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3279 if (old_idle
!= enable_idle
) {
3280 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3282 cfq_mark_cfqq_idle_window(cfqq
);
3284 cfq_clear_cfqq_idle_window(cfqq
);
3289 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3290 * no or if we aren't sure, a 1 will cause a preempt.
3293 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3296 struct cfq_queue
*cfqq
;
3298 cfqq
= cfqd
->active_queue
;
3302 if (cfq_class_idle(new_cfqq
))
3305 if (cfq_class_idle(cfqq
))
3309 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3311 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3315 * if the new request is sync, but the currently running queue is
3316 * not, let the sync request have priority.
3318 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3321 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3324 if (cfq_slice_used(cfqq
))
3327 /* Allow preemption only if we are idling on sync-noidle tree */
3328 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3329 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3330 new_cfqq
->service_tree
->count
== 2 &&
3331 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3335 * So both queues are sync. Let the new request get disk time if
3336 * it's a metadata request and the current queue is doing regular IO.
3338 if ((rq
->cmd_flags
& REQ_META
) && !cfqq
->meta_pending
)
3342 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3344 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3347 /* An idle queue should not be idle now for some reason */
3348 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3351 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3355 * if this request is as-good as one we would expect from the
3356 * current cfqq, let it preempt
3358 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3365 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3366 * let it have half of its nominal slice.
3368 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3370 struct cfq_queue
*old_cfqq
= cfqd
->active_queue
;
3372 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3373 cfq_slice_expired(cfqd
, 1);
3376 * workload type is changed, don't save slice, otherwise preempt
3379 if (cfqq_type(old_cfqq
) != cfqq_type(cfqq
))
3380 cfqq
->cfqg
->saved_workload_slice
= 0;
3383 * Put the new queue at the front of the of the current list,
3384 * so we know that it will be selected next.
3386 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3388 cfq_service_tree_add(cfqd
, cfqq
, 1);
3390 cfqq
->slice_end
= 0;
3391 cfq_mark_cfqq_slice_new(cfqq
);
3395 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3396 * something we should do about it
3399 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3402 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3405 if (rq
->cmd_flags
& REQ_META
)
3406 cfqq
->meta_pending
++;
3408 cfq_update_io_thinktime(cfqd
, cic
);
3409 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3410 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3412 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3414 if (cfqq
== cfqd
->active_queue
) {
3416 * Remember that we saw a request from this process, but
3417 * don't start queuing just yet. Otherwise we risk seeing lots
3418 * of tiny requests, because we disrupt the normal plugging
3419 * and merging. If the request is already larger than a single
3420 * page, let it rip immediately. For that case we assume that
3421 * merging is already done. Ditto for a busy system that
3422 * has other work pending, don't risk delaying until the
3423 * idle timer unplug to continue working.
3425 if (cfq_cfqq_wait_request(cfqq
)) {
3426 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3427 cfqd
->busy_queues
> 1) {
3428 cfq_del_timer(cfqd
, cfqq
);
3429 cfq_clear_cfqq_wait_request(cfqq
);
3430 __blk_run_queue(cfqd
->queue
);
3432 cfq_blkiocg_update_idle_time_stats(
3434 cfq_mark_cfqq_must_dispatch(cfqq
);
3437 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3439 * not the active queue - expire current slice if it is
3440 * idle and has expired it's mean thinktime or this new queue
3441 * has some old slice time left and is of higher priority or
3442 * this new queue is RT and the current one is BE
3444 cfq_preempt_queue(cfqd
, cfqq
);
3445 __blk_run_queue(cfqd
->queue
);
3449 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3451 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3452 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3454 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3455 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3457 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3458 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3460 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3461 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3463 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3467 * Update hw_tag based on peak queue depth over 50 samples under
3470 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3472 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3474 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3475 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3477 if (cfqd
->hw_tag
== 1)
3480 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3481 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3485 * If active queue hasn't enough requests and can idle, cfq might not
3486 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3489 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3490 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3491 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3494 if (cfqd
->hw_tag_samples
++ < 50)
3497 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3503 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3505 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3507 /* If the queue already has requests, don't wait */
3508 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3511 /* If there are other queues in the group, don't wait */
3512 if (cfqq
->cfqg
->nr_cfqq
> 1)
3515 if (cfq_slice_used(cfqq
))
3518 /* if slice left is less than think time, wait busy */
3519 if (cic
&& sample_valid(cic
->ttime_samples
)
3520 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3524 * If think times is less than a jiffy than ttime_mean=0 and above
3525 * will not be true. It might happen that slice has not expired yet
3526 * but will expire soon (4-5 ns) during select_queue(). To cover the
3527 * case where think time is less than a jiffy, mark the queue wait
3528 * busy if only 1 jiffy is left in the slice.
3530 if (cfqq
->slice_end
- jiffies
== 1)
3536 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3538 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3539 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3540 const int sync
= rq_is_sync(rq
);
3544 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3545 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3547 cfq_update_hw_tag(cfqd
);
3549 WARN_ON(!cfqd
->rq_in_driver
);
3550 WARN_ON(!cfqq
->dispatched
);
3551 cfqd
->rq_in_driver
--;
3553 (RQ_CFQG(rq
))->dispatched
--;
3554 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3555 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3556 rq_data_dir(rq
), rq_is_sync(rq
));
3558 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3561 RQ_CIC(rq
)->last_end_request
= now
;
3562 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3563 cfqd
->last_delayed_sync
= now
;
3567 * If this is the active queue, check if it needs to be expired,
3568 * or if we want to idle in case it has no pending requests.
3570 if (cfqd
->active_queue
== cfqq
) {
3571 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3573 if (cfq_cfqq_slice_new(cfqq
)) {
3574 cfq_set_prio_slice(cfqd
, cfqq
);
3575 cfq_clear_cfqq_slice_new(cfqq
);
3579 * Should we wait for next request to come in before we expire
3582 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3583 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3584 if (!cfqd
->cfq_slice_idle
)
3585 extend_sl
= cfqd
->cfq_group_idle
;
3586 cfqq
->slice_end
= jiffies
+ extend_sl
;
3587 cfq_mark_cfqq_wait_busy(cfqq
);
3588 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3592 * Idling is not enabled on:
3594 * - idle-priority queues
3596 * - queues with still some requests queued
3597 * - when there is a close cooperator
3599 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3600 cfq_slice_expired(cfqd
, 1);
3601 else if (sync
&& cfqq_empty
&&
3602 !cfq_close_cooperator(cfqd
, cfqq
)) {
3603 cfq_arm_slice_timer(cfqd
);
3607 if (!cfqd
->rq_in_driver
)
3608 cfq_schedule_dispatch(cfqd
);
3612 * we temporarily boost lower priority queues if they are holding fs exclusive
3613 * resources. they are boosted to normal prio (CLASS_BE/4)
3615 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3617 if (has_fs_excl()) {
3619 * boost idle prio on transactions that would lock out other
3620 * users of the filesystem
3622 if (cfq_class_idle(cfqq
))
3623 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3624 if (cfqq
->ioprio
> IOPRIO_NORM
)
3625 cfqq
->ioprio
= IOPRIO_NORM
;
3628 * unboost the queue (if needed)
3630 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3631 cfqq
->ioprio
= cfqq
->org_ioprio
;
3635 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3637 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3638 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3639 return ELV_MQUEUE_MUST
;
3642 return ELV_MQUEUE_MAY
;
3645 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3647 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3648 struct task_struct
*tsk
= current
;
3649 struct cfq_io_context
*cic
;
3650 struct cfq_queue
*cfqq
;
3653 * don't force setup of a queue from here, as a call to may_queue
3654 * does not necessarily imply that a request actually will be queued.
3655 * so just lookup a possibly existing queue, or return 'may queue'
3658 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3660 return ELV_MQUEUE_MAY
;
3662 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3664 cfq_init_prio_data(cfqq
, cic
->ioc
);
3665 cfq_prio_boost(cfqq
);
3667 return __cfq_may_queue(cfqq
);
3670 return ELV_MQUEUE_MAY
;
3674 * queue lock held here
3676 static void cfq_put_request(struct request
*rq
)
3678 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3681 const int rw
= rq_data_dir(rq
);
3683 BUG_ON(!cfqq
->allocated
[rw
]);
3684 cfqq
->allocated
[rw
]--;
3686 put_io_context(RQ_CIC(rq
)->ioc
);
3688 rq
->elevator_private
[0] = NULL
;
3689 rq
->elevator_private
[1] = NULL
;
3691 /* Put down rq reference on cfqg */
3692 cfq_put_cfqg(RQ_CFQG(rq
));
3693 rq
->elevator_private
[2] = NULL
;
3695 cfq_put_queue(cfqq
);
3699 static struct cfq_queue
*
3700 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3701 struct cfq_queue
*cfqq
)
3703 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3704 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3705 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3706 cfq_put_queue(cfqq
);
3707 return cic_to_cfqq(cic
, 1);
3711 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3712 * was the last process referring to said cfqq.
3714 static struct cfq_queue
*
3715 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3717 if (cfqq_process_refs(cfqq
) == 1) {
3718 cfqq
->pid
= current
->pid
;
3719 cfq_clear_cfqq_coop(cfqq
);
3720 cfq_clear_cfqq_split_coop(cfqq
);
3724 cic_set_cfqq(cic
, NULL
, 1);
3726 cfq_put_cooperator(cfqq
);
3728 cfq_put_queue(cfqq
);
3732 * Allocate cfq data structures associated with this request.
3735 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3737 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3738 struct cfq_io_context
*cic
;
3739 const int rw
= rq_data_dir(rq
);
3740 const bool is_sync
= rq_is_sync(rq
);
3741 struct cfq_queue
*cfqq
;
3742 unsigned long flags
;
3744 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3746 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3748 spin_lock_irqsave(q
->queue_lock
, flags
);
3754 cfqq
= cic_to_cfqq(cic
, is_sync
);
3755 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3756 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3757 cic_set_cfqq(cic
, cfqq
, is_sync
);
3760 * If the queue was seeky for too long, break it apart.
3762 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3763 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3764 cfqq
= split_cfqq(cic
, cfqq
);
3770 * Check to see if this queue is scheduled to merge with
3771 * another, closely cooperating queue. The merging of
3772 * queues happens here as it must be done in process context.
3773 * The reference on new_cfqq was taken in merge_cfqqs.
3776 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3779 cfqq
->allocated
[rw
]++;
3782 rq
->elevator_private
[0] = cic
;
3783 rq
->elevator_private
[1] = cfqq
;
3784 rq
->elevator_private
[2] = cfq_ref_get_cfqg(cfqq
->cfqg
);
3785 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3790 put_io_context(cic
->ioc
);
3792 cfq_schedule_dispatch(cfqd
);
3793 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3794 cfq_log(cfqd
, "set_request fail");
3798 static void cfq_kick_queue(struct work_struct
*work
)
3800 struct cfq_data
*cfqd
=
3801 container_of(work
, struct cfq_data
, unplug_work
);
3802 struct request_queue
*q
= cfqd
->queue
;
3804 spin_lock_irq(q
->queue_lock
);
3805 __blk_run_queue(cfqd
->queue
);
3806 spin_unlock_irq(q
->queue_lock
);
3810 * Timer running if the active_queue is currently idling inside its time slice
3812 static void cfq_idle_slice_timer(unsigned long data
)
3814 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3815 struct cfq_queue
*cfqq
;
3816 unsigned long flags
;
3819 cfq_log(cfqd
, "idle timer fired");
3821 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3823 cfqq
= cfqd
->active_queue
;
3828 * We saw a request before the queue expired, let it through
3830 if (cfq_cfqq_must_dispatch(cfqq
))
3836 if (cfq_slice_used(cfqq
))
3840 * only expire and reinvoke request handler, if there are
3841 * other queues with pending requests
3843 if (!cfqd
->busy_queues
)
3847 * not expired and it has a request pending, let it dispatch
3849 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3853 * Queue depth flag is reset only when the idle didn't succeed
3855 cfq_clear_cfqq_deep(cfqq
);
3858 cfq_slice_expired(cfqd
, timed_out
);
3860 cfq_schedule_dispatch(cfqd
);
3862 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3865 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3867 del_timer_sync(&cfqd
->idle_slice_timer
);
3868 cancel_work_sync(&cfqd
->unplug_work
);
3871 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3875 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3876 if (cfqd
->async_cfqq
[0][i
])
3877 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3878 if (cfqd
->async_cfqq
[1][i
])
3879 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3882 if (cfqd
->async_idle_cfqq
)
3883 cfq_put_queue(cfqd
->async_idle_cfqq
);
3886 static void cfq_exit_queue(struct elevator_queue
*e
)
3888 struct cfq_data
*cfqd
= e
->elevator_data
;
3889 struct request_queue
*q
= cfqd
->queue
;
3892 cfq_shutdown_timer_wq(cfqd
);
3894 spin_lock_irq(q
->queue_lock
);
3896 if (cfqd
->active_queue
)
3897 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3899 while (!list_empty(&cfqd
->cic_list
)) {
3900 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3901 struct cfq_io_context
,
3904 __cfq_exit_single_io_context(cfqd
, cic
);
3907 cfq_put_async_queues(cfqd
);
3908 cfq_release_cfq_groups(cfqd
);
3911 * If there are groups which we could not unlink from blkcg list,
3912 * wait for a rcu period for them to be freed.
3914 if (cfqd
->nr_blkcg_linked_grps
)
3917 spin_unlock_irq(q
->queue_lock
);
3919 cfq_shutdown_timer_wq(cfqd
);
3921 spin_lock(&cic_index_lock
);
3922 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3923 spin_unlock(&cic_index_lock
);
3926 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3927 * Do this wait only if there are other unlinked groups out
3928 * there. This can happen if cgroup deletion path claimed the
3929 * responsibility of cleaning up a group before queue cleanup code
3932 * Do not call synchronize_rcu() unconditionally as there are drivers
3933 * which create/delete request queue hundreds of times during scan/boot
3934 * and synchronize_rcu() can take significant time and slow down boot.
3939 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3940 /* Free up per cpu stats for root group */
3941 free_percpu(cfqd
->root_group
.blkg
.stats_cpu
);
3946 static int cfq_alloc_cic_index(void)
3951 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3954 spin_lock(&cic_index_lock
);
3955 error
= ida_get_new(&cic_index_ida
, &index
);
3956 spin_unlock(&cic_index_lock
);
3957 if (error
&& error
!= -EAGAIN
)
3964 static void *cfq_init_queue(struct request_queue
*q
)
3966 struct cfq_data
*cfqd
;
3968 struct cfq_group
*cfqg
;
3969 struct cfq_rb_root
*st
;
3971 i
= cfq_alloc_cic_index();
3975 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3977 spin_lock(&cic_index_lock
);
3978 ida_remove(&cic_index_ida
, i
);
3979 spin_unlock(&cic_index_lock
);
3984 * Don't need take queue_lock in the routine, since we are
3985 * initializing the ioscheduler, and nobody is using cfqd
3987 cfqd
->cic_index
= i
;
3989 /* Init root service tree */
3990 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3992 /* Init root group */
3993 cfqg
= &cfqd
->root_group
;
3994 for_each_cfqg_st(cfqg
, i
, j
, st
)
3996 RB_CLEAR_NODE(&cfqg
->rb_node
);
3998 /* Give preference to root group over other groups */
3999 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
4001 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4003 * Set root group reference to 2. One reference will be dropped when
4004 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4005 * Other reference will remain there as we don't want to delete this
4006 * group as it is statically allocated and gets destroyed when
4007 * throtl_data goes away.
4011 if (blkio_alloc_blkg_stats(&cfqg
->blkg
)) {
4019 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
4022 cfqd
->nr_blkcg_linked_grps
++;
4024 /* Add group on cfqd->cfqg_list */
4025 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
4028 * Not strictly needed (since RB_ROOT just clears the node and we
4029 * zeroed cfqd on alloc), but better be safe in case someone decides
4030 * to add magic to the rb code
4032 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4033 cfqd
->prio_trees
[i
] = RB_ROOT
;
4036 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4037 * Grab a permanent reference to it, so that the normal code flow
4038 * will not attempt to free it.
4040 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4041 cfqd
->oom_cfqq
.ref
++;
4042 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
4044 INIT_LIST_HEAD(&cfqd
->cic_list
);
4048 init_timer(&cfqd
->idle_slice_timer
);
4049 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4050 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
4052 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4054 cfqd
->cfq_quantum
= cfq_quantum
;
4055 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4056 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4057 cfqd
->cfq_back_max
= cfq_back_max
;
4058 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4059 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4060 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4061 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4062 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4063 cfqd
->cfq_group_idle
= cfq_group_idle
;
4064 cfqd
->cfq_latency
= 1;
4067 * we optimistically start assuming sync ops weren't delayed in last
4068 * second, in order to have larger depth for async operations.
4070 cfqd
->last_delayed_sync
= jiffies
- HZ
;
4074 static void cfq_slab_kill(void)
4077 * Caller already ensured that pending RCU callbacks are completed,
4078 * so we should have no busy allocations at this point.
4081 kmem_cache_destroy(cfq_pool
);
4083 kmem_cache_destroy(cfq_ioc_pool
);
4086 static int __init
cfq_slab_setup(void)
4088 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4092 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
4103 * sysfs parts below -->
4106 cfq_var_show(unsigned int var
, char *page
)
4108 return sprintf(page
, "%d\n", var
);
4112 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4114 char *p
= (char *) page
;
4116 *var
= simple_strtoul(p
, &p
, 10);
4120 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4121 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4123 struct cfq_data *cfqd = e->elevator_data; \
4124 unsigned int __data = __VAR; \
4126 __data = jiffies_to_msecs(__data); \
4127 return cfq_var_show(__data, (page)); \
4129 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4130 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4131 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4132 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4133 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4134 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4135 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4136 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4137 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4138 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4139 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4140 #undef SHOW_FUNCTION
4142 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4143 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4145 struct cfq_data *cfqd = e->elevator_data; \
4146 unsigned int __data; \
4147 int ret = cfq_var_store(&__data, (page), count); \
4148 if (__data < (MIN)) \
4150 else if (__data > (MAX)) \
4153 *(__PTR) = msecs_to_jiffies(__data); \
4155 *(__PTR) = __data; \
4158 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4159 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4161 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4163 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4164 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4166 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4167 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4168 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4169 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4170 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4172 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4173 #undef STORE_FUNCTION
4175 #define CFQ_ATTR(name) \
4176 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4178 static struct elv_fs_entry cfq_attrs
[] = {
4180 CFQ_ATTR(fifo_expire_sync
),
4181 CFQ_ATTR(fifo_expire_async
),
4182 CFQ_ATTR(back_seek_max
),
4183 CFQ_ATTR(back_seek_penalty
),
4184 CFQ_ATTR(slice_sync
),
4185 CFQ_ATTR(slice_async
),
4186 CFQ_ATTR(slice_async_rq
),
4187 CFQ_ATTR(slice_idle
),
4188 CFQ_ATTR(group_idle
),
4189 CFQ_ATTR(low_latency
),
4193 static struct elevator_type iosched_cfq
= {
4195 .elevator_merge_fn
= cfq_merge
,
4196 .elevator_merged_fn
= cfq_merged_request
,
4197 .elevator_merge_req_fn
= cfq_merged_requests
,
4198 .elevator_allow_merge_fn
= cfq_allow_merge
,
4199 .elevator_bio_merged_fn
= cfq_bio_merged
,
4200 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4201 .elevator_add_req_fn
= cfq_insert_request
,
4202 .elevator_activate_req_fn
= cfq_activate_request
,
4203 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4204 .elevator_completed_req_fn
= cfq_completed_request
,
4205 .elevator_former_req_fn
= elv_rb_former_request
,
4206 .elevator_latter_req_fn
= elv_rb_latter_request
,
4207 .elevator_set_req_fn
= cfq_set_request
,
4208 .elevator_put_req_fn
= cfq_put_request
,
4209 .elevator_may_queue_fn
= cfq_may_queue
,
4210 .elevator_init_fn
= cfq_init_queue
,
4211 .elevator_exit_fn
= cfq_exit_queue
,
4212 .trim
= cfq_free_io_context
,
4214 .elevator_attrs
= cfq_attrs
,
4215 .elevator_name
= "cfq",
4216 .elevator_owner
= THIS_MODULE
,
4219 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4220 static struct blkio_policy_type blkio_policy_cfq
= {
4222 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4223 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4225 .plid
= BLKIO_POLICY_PROP
,
4228 static struct blkio_policy_type blkio_policy_cfq
;
4231 static int __init
cfq_init(void)
4234 * could be 0 on HZ < 1000 setups
4236 if (!cfq_slice_async
)
4237 cfq_slice_async
= 1;
4238 if (!cfq_slice_idle
)
4241 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4242 if (!cfq_group_idle
)
4247 if (cfq_slab_setup())
4250 elv_register(&iosched_cfq
);
4251 blkio_policy_register(&blkio_policy_cfq
);
4256 static void __exit
cfq_exit(void)
4258 DECLARE_COMPLETION_ONSTACK(all_gone
);
4259 blkio_policy_unregister(&blkio_policy_cfq
);
4260 elv_unregister(&iosched_cfq
);
4261 ioc_gone
= &all_gone
;
4262 /* ioc_gone's update must be visible before reading ioc_count */
4266 * this also protects us from entering cfq_slab_kill() with
4267 * pending RCU callbacks
4269 if (elv_ioc_count_read(cfq_ioc_count
))
4270 wait_for_completion(&all_gone
);
4271 ida_destroy(&cic_index_ida
);
4275 module_init(cfq_init
);
4276 module_exit(cfq_exit
);
4278 MODULE_AUTHOR("Jens Axboe");
4279 MODULE_LICENSE("GPL");
4280 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");