IRDA: convert donauboe to net_device_ops
[linux-2.6/kvm.git] / kernel / sched.c
blob9f8506d68fdc1dcb54c48ef27530ca5602dbe1d6
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
242 spin_unlock(&rt_b->rt_runtime_lock);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
248 hrtimer_cancel(&rt_b->rt_period_timer);
250 #endif
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
262 struct cfs_rq;
264 static LIST_HEAD(task_groups);
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
288 struct rt_bandwidth rt_bandwidth;
289 #endif
291 struct rcu_head rcu;
292 struct list_head list;
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
304 user->tg->uid = user->uid;
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock);
334 #ifdef CONFIG_SMP
335 static int root_task_group_empty(void)
337 return list_empty(&root_task_group.children);
339 #endif
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 #ifdef CONFIG_USER_SCHED
343 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
344 #else /* !CONFIG_USER_SCHED */
345 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
346 #endif /* CONFIG_USER_SCHED */
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
356 #define MIN_SHARES 2
357 #define MAX_SHARES (1UL << 18)
359 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360 #endif
362 /* Default task group.
363 * Every task in system belong to this group at bootup.
365 struct task_group init_task_group;
367 /* return group to which a task belongs */
368 static inline struct task_group *task_group(struct task_struct *p)
370 struct task_group *tg;
372 #ifdef CONFIG_USER_SCHED
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
376 #elif defined(CONFIG_CGROUP_SCHED)
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
379 #else
380 tg = &init_task_group;
381 #endif
382 return tg;
385 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
386 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
391 #endif
393 #ifdef CONFIG_RT_GROUP_SCHED
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
396 #endif
399 #else
401 #ifdef CONFIG_SMP
402 static int root_task_group_empty(void)
404 return 1;
406 #endif
408 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
409 static inline struct task_group *task_group(struct task_struct *p)
411 return NULL;
414 #endif /* CONFIG_GROUP_SCHED */
416 /* CFS-related fields in a runqueue */
417 struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
421 u64 exec_clock;
422 u64 min_vruntime;
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
427 struct list_head tasks;
428 struct list_head *balance_iterator;
431 * 'curr' points to currently running entity on this cfs_rq.
432 * It is set to NULL otherwise (i.e when none are currently running).
434 struct sched_entity *curr, *next, *last;
436 unsigned int nr_spread_over;
438 #ifdef CONFIG_FAIR_GROUP_SCHED
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
452 #ifdef CONFIG_SMP
454 * the part of load.weight contributed by tasks
456 unsigned long task_weight;
459 * h_load = weight * f(tg)
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
464 unsigned long h_load;
467 * this cpu's part of tg->shares
469 unsigned long shares;
472 * load.weight at the time we set shares
474 unsigned long rq_weight;
475 #endif
476 #endif
479 /* Real-Time classes' related field in a runqueue: */
480 struct rt_rq {
481 struct rt_prio_array active;
482 unsigned long rt_nr_running;
483 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
484 struct {
485 int curr; /* highest queued rt task prio */
486 #ifdef CONFIG_SMP
487 int next; /* next highest */
488 #endif
489 } highest_prio;
490 #endif
491 #ifdef CONFIG_SMP
492 unsigned long rt_nr_migratory;
493 int overloaded;
494 struct plist_head pushable_tasks;
495 #endif
496 int rt_throttled;
497 u64 rt_time;
498 u64 rt_runtime;
499 /* Nests inside the rq lock: */
500 spinlock_t rt_runtime_lock;
502 #ifdef CONFIG_RT_GROUP_SCHED
503 unsigned long rt_nr_boosted;
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509 #endif
512 #ifdef CONFIG_SMP
515 * We add the notion of a root-domain which will be used to define per-domain
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
522 struct root_domain {
523 atomic_t refcount;
524 cpumask_var_t span;
525 cpumask_var_t online;
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
531 cpumask_var_t rto_mask;
532 atomic_t rto_count;
533 #ifdef CONFIG_SMP
534 struct cpupri cpupri;
535 #endif
536 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
542 unsigned int sched_mc_preferred_wakeup_cpu;
543 #endif
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
550 static struct root_domain def_root_domain;
552 #endif
555 * This is the main, per-CPU runqueue data structure.
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
561 struct rq {
562 /* runqueue lock: */
563 spinlock_t lock;
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
569 unsigned long nr_running;
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
572 #ifdef CONFIG_NO_HZ
573 unsigned long last_tick_seen;
574 unsigned char in_nohz_recently;
575 #endif
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
578 unsigned long nr_load_updates;
579 u64 nr_switches;
581 struct cfs_rq cfs;
582 struct rt_rq rt;
584 #ifdef CONFIG_FAIR_GROUP_SCHED
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
587 #endif
588 #ifdef CONFIG_RT_GROUP_SCHED
589 struct list_head leaf_rt_rq_list;
590 #endif
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
598 unsigned long nr_uninterruptible;
600 struct task_struct *curr, *idle;
601 unsigned long next_balance;
602 struct mm_struct *prev_mm;
604 u64 clock;
606 atomic_t nr_iowait;
608 #ifdef CONFIG_SMP
609 struct root_domain *rd;
610 struct sched_domain *sd;
612 unsigned char idle_at_tick;
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
616 /* cpu of this runqueue: */
617 int cpu;
618 int online;
620 unsigned long avg_load_per_task;
622 struct task_struct *migration_thread;
623 struct list_head migration_queue;
624 #endif
626 #ifdef CONFIG_SCHED_HRTICK
627 #ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630 #endif
631 struct hrtimer hrtick_timer;
632 #endif
634 #ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
640 /* sys_sched_yield() stats */
641 unsigned int yld_count;
643 /* schedule() stats */
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
648 /* try_to_wake_up() stats */
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
652 /* BKL stats */
653 unsigned int bkl_count;
654 #endif
657 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
659 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
664 static inline int cpu_of(struct rq *rq)
666 #ifdef CONFIG_SMP
667 return rq->cpu;
668 #else
669 return 0;
670 #endif
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
675 * See detach_destroy_domains: synchronize_sched for details.
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
680 #define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
683 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684 #define this_rq() (&__get_cpu_var(runqueues))
685 #define task_rq(p) cpu_rq(task_cpu(p))
686 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
688 static inline void update_rq_clock(struct rq *rq)
690 rq->clock = sched_clock_cpu(cpu_of(rq));
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
696 #ifdef CONFIG_SCHED_DEBUG
697 # define const_debug __read_mostly
698 #else
699 # define const_debug static const
700 #endif
703 * runqueue_is_locked
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
709 int runqueue_is_locked(void)
711 int cpu = get_cpu();
712 struct rq *rq = cpu_rq(cpu);
713 int ret;
715 ret = spin_is_locked(&rq->lock);
716 put_cpu();
717 return ret;
721 * Debugging: various feature bits
724 #define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
727 enum {
728 #include "sched_features.h"
731 #undef SCHED_FEAT
733 #define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
736 const_debug unsigned int sysctl_sched_features =
737 #include "sched_features.h"
740 #undef SCHED_FEAT
742 #ifdef CONFIG_SCHED_DEBUG
743 #define SCHED_FEAT(name, enabled) \
744 #name ,
746 static __read_mostly char *sched_feat_names[] = {
747 #include "sched_features.h"
748 NULL
751 #undef SCHED_FEAT
753 static int sched_feat_show(struct seq_file *m, void *v)
755 int i;
757 for (i = 0; sched_feat_names[i]; i++) {
758 if (!(sysctl_sched_features & (1UL << i)))
759 seq_puts(m, "NO_");
760 seq_printf(m, "%s ", sched_feat_names[i]);
762 seq_puts(m, "\n");
764 return 0;
767 static ssize_t
768 sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
771 char buf[64];
772 char *cmp = buf;
773 int neg = 0;
774 int i;
776 if (cnt > 63)
777 cnt = 63;
779 if (copy_from_user(&buf, ubuf, cnt))
780 return -EFAULT;
782 buf[cnt] = 0;
784 if (strncmp(buf, "NO_", 3) == 0) {
785 neg = 1;
786 cmp += 3;
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
793 if (neg)
794 sysctl_sched_features &= ~(1UL << i);
795 else
796 sysctl_sched_features |= (1UL << i);
797 break;
801 if (!sched_feat_names[i])
802 return -EINVAL;
804 filp->f_pos += cnt;
806 return cnt;
809 static int sched_feat_open(struct inode *inode, struct file *filp)
811 return single_open(filp, sched_feat_show, NULL);
814 static struct file_operations sched_feat_fops = {
815 .open = sched_feat_open,
816 .write = sched_feat_write,
817 .read = seq_read,
818 .llseek = seq_lseek,
819 .release = single_release,
822 static __init int sched_init_debug(void)
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
825 &sched_feat_fops);
827 return 0;
829 late_initcall(sched_init_debug);
831 #endif
833 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
839 const_debug unsigned int sysctl_sched_nr_migrate = 32;
842 * ratelimit for updating the group shares.
843 * default: 0.25ms
845 unsigned int sysctl_sched_shares_ratelimit = 250000;
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
850 * default: 4
852 unsigned int sysctl_sched_shares_thresh = 4;
855 * period over which we measure -rt task cpu usage in us.
856 * default: 1s
858 unsigned int sysctl_sched_rt_period = 1000000;
860 static __read_mostly int scheduler_running;
863 * part of the period that we allow rt tasks to run in us.
864 * default: 0.95s
866 int sysctl_sched_rt_runtime = 950000;
868 static inline u64 global_rt_period(void)
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
873 static inline u64 global_rt_runtime(void)
875 if (sysctl_sched_rt_runtime < 0)
876 return RUNTIME_INF;
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
881 #ifndef prepare_arch_switch
882 # define prepare_arch_switch(next) do { } while (0)
883 #endif
884 #ifndef finish_arch_switch
885 # define finish_arch_switch(prev) do { } while (0)
886 #endif
888 static inline int task_current(struct rq *rq, struct task_struct *p)
890 return rq->curr == p;
893 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
894 static inline int task_running(struct rq *rq, struct task_struct *p)
896 return task_current(rq, p);
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
905 #ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
908 #endif
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
912 * prev into current:
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
916 spin_unlock_irq(&rq->lock);
919 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
920 static inline int task_running(struct rq *rq, struct task_struct *p)
922 #ifdef CONFIG_SMP
923 return p->oncpu;
924 #else
925 return task_current(rq, p);
926 #endif
929 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
931 #ifdef CONFIG_SMP
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
935 * here.
937 next->oncpu = 1;
938 #endif
939 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
941 #else
942 spin_unlock(&rq->lock);
943 #endif
946 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
948 #ifdef CONFIG_SMP
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
952 * finished.
954 smp_wmb();
955 prev->oncpu = 0;
956 #endif
957 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
958 local_irq_enable();
959 #endif
961 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
967 static inline struct rq *__task_rq_lock(struct task_struct *p)
968 __acquires(rq->lock)
970 for (;;) {
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 spin_unlock(&rq->lock);
980 * task_rq_lock - lock the runqueue a given task resides on and disable
981 * interrupts. Note the ordering: we can safely lookup the task_rq without
982 * explicitly disabling preemption.
984 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
985 __acquires(rq->lock)
987 struct rq *rq;
989 for (;;) {
990 local_irq_save(*flags);
991 rq = task_rq(p);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
994 return rq;
995 spin_unlock_irqrestore(&rq->lock, *flags);
999 void task_rq_unlock_wait(struct task_struct *p)
1001 struct rq *rq = task_rq(p);
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1007 static void __task_rq_unlock(struct rq *rq)
1008 __releases(rq->lock)
1010 spin_unlock(&rq->lock);
1013 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1014 __releases(rq->lock)
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1020 * this_rq_lock - lock this runqueue and disable interrupts.
1022 static struct rq *this_rq_lock(void)
1023 __acquires(rq->lock)
1025 struct rq *rq;
1027 local_irq_disable();
1028 rq = this_rq();
1029 spin_lock(&rq->lock);
1031 return rq;
1034 #ifdef CONFIG_SCHED_HRTICK
1036 * Use HR-timers to deliver accurate preemption points.
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1040 * reschedule event.
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1043 * rq->lock.
1047 * Use hrtick when:
1048 * - enabled by features
1049 * - hrtimer is actually high res
1051 static inline int hrtick_enabled(struct rq *rq)
1053 if (!sched_feat(HRTICK))
1054 return 0;
1055 if (!cpu_active(cpu_of(rq)))
1056 return 0;
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1060 static void hrtick_clear(struct rq *rq)
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1070 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1076 spin_lock(&rq->lock);
1077 update_rq_clock(rq);
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1081 return HRTIMER_NORESTART;
1084 #ifdef CONFIG_SMP
1086 * called from hardirq (IPI) context
1088 static void __hrtick_start(void *arg)
1090 struct rq *rq = arg;
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
1099 * Called to set the hrtick timer state.
1101 * called with rq->lock held and irqs disabled
1103 static void hrtick_start(struct rq *rq, u64 delay)
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1108 hrtimer_set_expires(timer, time);
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1118 static int
1119 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1121 int cpu = (int)(long)hcpu;
1123 switch (action) {
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1128 case CPU_DEAD:
1129 case CPU_DEAD_FROZEN:
1130 hrtick_clear(cpu_rq(cpu));
1131 return NOTIFY_OK;
1134 return NOTIFY_DONE;
1137 static __init void init_hrtick(void)
1139 hotcpu_notifier(hotplug_hrtick, 0);
1141 #else
1143 * Called to set the hrtick timer state.
1145 * called with rq->lock held and irqs disabled
1147 static void hrtick_start(struct rq *rq, u64 delay)
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SMP */
1157 static void init_rq_hrtick(struct rq *rq)
1159 #ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165 #endif
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
1170 #else /* CONFIG_SCHED_HRTICK */
1171 static inline void hrtick_clear(struct rq *rq)
1175 static inline void init_rq_hrtick(struct rq *rq)
1179 static inline void init_hrtick(void)
1182 #endif /* CONFIG_SCHED_HRTICK */
1185 * resched_task - mark a task 'to be rescheduled now'.
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1191 #ifdef CONFIG_SMP
1193 #ifndef tsk_is_polling
1194 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195 #endif
1197 static void resched_task(struct task_struct *p)
1199 int cpu;
1201 assert_spin_locked(&task_rq(p)->lock);
1203 if (test_tsk_need_resched(p))
1204 return;
1206 set_tsk_need_resched(p);
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1218 static void resched_cpu(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1229 #ifdef CONFIG_NO_HZ
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1240 void wake_up_idle_cpu(int cpu)
1242 struct rq *rq = cpu_rq(cpu);
1244 if (cpu == smp_processor_id())
1245 return;
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1254 if (rq->curr != rq->idle)
1255 return;
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1262 set_tsk_need_resched(rq->idle);
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1269 #endif /* CONFIG_NO_HZ */
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1274 assert_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1277 #endif /* CONFIG_SMP */
1279 #if BITS_PER_LONG == 32
1280 # define WMULT_CONST (~0UL)
1281 #else
1282 # define WMULT_CONST (1UL << 32)
1283 #endif
1285 #define WMULT_SHIFT 32
1288 * Shift right and round:
1290 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1293 * delta *= weight / lw
1295 static unsigned long
1296 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1299 u64 tmp;
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1309 tmp = (u64)delta_exec * weight;
1311 * Check whether we'd overflow the 64-bit multiplication:
1313 if (unlikely(tmp > WMULT_CONST))
1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1315 WMULT_SHIFT/2);
1316 else
1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1322 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1324 lw->weight += inc;
1325 lw->inv_weight = 0;
1328 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1330 lw->weight -= dec;
1331 lw->inv_weight = 0;
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1343 #define WEIGHT_IDLEPRIO 3
1344 #define WMULT_IDLEPRIO 1431655765
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
1358 static const int prio_to_weight[40] = {
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1376 static const u32 prio_to_wmult[40] = {
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1387 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1394 struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1400 #ifdef CONFIG_SMP
1401 static unsigned long
1402 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1407 static int
1408 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
1411 #endif
1413 #ifdef CONFIG_CGROUP_CPUACCT
1414 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415 #else
1416 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417 #endif
1419 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421 update_load_add(&rq->load, load);
1424 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426 update_load_sub(&rq->load, load);
1429 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1430 typedef int (*tg_visitor)(struct task_group *, void *);
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1436 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1438 struct task_group *parent, *child;
1439 int ret;
1441 rcu_read_lock();
1442 parent = &root_task_group;
1443 down:
1444 ret = (*down)(parent, data);
1445 if (ret)
1446 goto out_unlock;
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1448 parent = child;
1449 goto down;
1452 continue;
1454 ret = (*up)(parent, data);
1455 if (ret)
1456 goto out_unlock;
1458 child = parent;
1459 parent = parent->parent;
1460 if (parent)
1461 goto up;
1462 out_unlock:
1463 rcu_read_unlock();
1465 return ret;
1468 static int tg_nop(struct task_group *tg, void *data)
1470 return 0;
1472 #endif
1474 #ifdef CONFIG_SMP
1475 static unsigned long source_load(int cpu, int type);
1476 static unsigned long target_load(int cpu, int type);
1477 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1479 static unsigned long cpu_avg_load_per_task(int cpu)
1481 struct rq *rq = cpu_rq(cpu);
1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1484 if (nr_running)
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
1486 else
1487 rq->avg_load_per_task = 0;
1489 return rq->avg_load_per_task;
1492 #ifdef CONFIG_FAIR_GROUP_SCHED
1494 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1497 * Calculate and set the cpu's group shares.
1499 static void
1500 update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
1503 unsigned long shares;
1504 unsigned long rq_weight;
1506 if (!tg->se[cpu])
1507 return;
1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1514 * \Sum rq_weight
1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
1525 spin_lock_irqsave(&rq->lock, flags);
1526 tg->cfs_rq[cpu]->shares = shares;
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
1538 static int tg_shares_up(struct task_group *tg, void *data)
1540 unsigned long weight, rq_weight = 0;
1541 unsigned long shares = 0;
1542 struct sched_domain *sd = data;
1543 int i;
1545 for_each_cpu(i, sched_domain_span(sd)) {
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1551 weight = tg->cfs_rq[i]->load.weight;
1552 if (!weight)
1553 weight = NICE_0_LOAD;
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
1557 shares += tg->cfs_rq[i]->shares;
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
1566 for_each_cpu(i, sched_domain_span(sd))
1567 update_group_shares_cpu(tg, i, shares, rq_weight);
1569 return 0;
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group *tg, void *data)
1579 unsigned long load;
1580 long cpu = (long)data;
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1590 tg->cfs_rq[cpu]->h_load = load;
1592 return 0;
1595 static void update_shares(struct sched_domain *sd)
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
1606 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1608 spin_unlock(&rq->lock);
1609 update_shares(sd);
1610 spin_lock(&rq->lock);
1613 static void update_h_load(long cpu)
1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1618 #else
1620 static inline void update_shares(struct sched_domain *sd)
1624 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 #endif
1630 #ifdef CONFIG_PREEMPT
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
1640 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1648 return 1;
1651 #else
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1659 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1664 int ret = 0;
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1671 ret = 1;
1672 } else
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1675 return ret;
1678 #endif /* CONFIG_PREEMPT */
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1683 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1688 BUG_ON(1);
1691 return _double_lock_balance(this_rq, busiest);
1694 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1700 #endif
1702 #ifdef CONFIG_FAIR_GROUP_SCHED
1703 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1705 #ifdef CONFIG_SMP
1706 cfs_rq->shares = shares;
1707 #endif
1709 #endif
1711 #include "sched_stats.h"
1712 #include "sched_idletask.c"
1713 #include "sched_fair.c"
1714 #include "sched_rt.c"
1715 #ifdef CONFIG_SCHED_DEBUG
1716 # include "sched_debug.c"
1717 #endif
1719 #define sched_class_highest (&rt_sched_class)
1720 #define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
1723 static void inc_nr_running(struct rq *rq)
1725 rq->nr_running++;
1728 static void dec_nr_running(struct rq *rq)
1730 rq->nr_running--;
1733 static void set_load_weight(struct task_struct *p)
1735 if (task_has_rt_policy(p)) {
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1738 return;
1742 * SCHED_IDLE tasks get minimal weight:
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1747 return;
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1754 static void update_avg(u64 *avg, u64 sample)
1756 s64 diff = sample - *avg;
1757 *avg += diff >> 3;
1760 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1762 if (wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1765 sched_info_queued(p);
1766 p->sched_class->enqueue_task(rq, p, wakeup);
1767 p->se.on_rq = 1;
1770 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1772 if (sleep) {
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1777 } else {
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1783 sched_info_dequeued(p);
1784 p->sched_class->dequeue_task(rq, p, sleep);
1785 p->se.on_rq = 0;
1789 * __normal_prio - return the priority that is based on the static prio
1791 static inline int __normal_prio(struct task_struct *p)
1793 return p->static_prio;
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1803 static inline int normal_prio(struct task_struct *p)
1805 int prio;
1807 if (task_has_rt_policy(p))
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1809 else
1810 prio = __normal_prio(p);
1811 return prio;
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1821 static int effective_prio(struct task_struct *p)
1823 p->normal_prio = normal_prio(p);
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1831 return p->prio;
1835 * activate_task - move a task to the runqueue.
1837 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1839 if (task_contributes_to_load(p))
1840 rq->nr_uninterruptible--;
1842 enqueue_task(rq, p, wakeup);
1843 inc_nr_running(rq);
1847 * deactivate_task - remove a task from the runqueue.
1849 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1851 if (task_contributes_to_load(p))
1852 rq->nr_uninterruptible++;
1854 dequeue_task(rq, p, sleep);
1855 dec_nr_running(rq);
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1862 inline int task_curr(const struct task_struct *p)
1864 return cpu_curr(task_cpu(p)) == p;
1867 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1869 set_task_rq(p, cpu);
1870 #ifdef CONFIG_SMP
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1876 smp_wmb();
1877 task_thread_info(p)->cpu = cpu;
1878 #endif
1881 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1889 } else
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1893 #ifdef CONFIG_SMP
1895 /* Used instead of source_load when we know the type == 0 */
1896 static unsigned long weighted_cpuload(const int cpu)
1898 return cpu_rq(cpu)->load.weight;
1902 * Is this task likely cache-hot:
1904 static int
1905 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1907 s64 delta;
1910 * Buddy candidates are cache hot:
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
1915 return 1;
1917 if (p->sched_class != &fair_sched_class)
1918 return 0;
1920 if (sysctl_sched_migration_cost == -1)
1921 return 1;
1922 if (sysctl_sched_migration_cost == 0)
1923 return 0;
1925 delta = now - p->se.exec_start;
1927 return delta < (s64)sysctl_sched_migration_cost;
1931 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1937 u64 clock_offset;
1939 clock_offset = old_rq->clock - new_rq->clock;
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1943 #ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1955 #endif
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
1959 __set_task_cpu(p, new_cpu);
1962 struct migration_req {
1963 struct list_head list;
1965 struct task_struct *task;
1966 int dest_cpu;
1968 struct completion done;
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1975 static int
1976 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1978 struct rq *rq = task_rq(p);
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1984 if (!p->se.on_rq && !task_running(rq, p)) {
1985 set_task_cpu(p, dest_cpu);
1986 return 0;
1989 init_completion(&req->done);
1990 req->task = p;
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
1994 return 1;
1998 * wait_task_inactive - wait for a thread to unschedule.
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2013 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2015 unsigned long flags;
2016 int running, on_rq;
2017 unsigned long ncsw;
2018 struct rq *rq;
2020 for (;;) {
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2025 * work out!
2027 rq = task_rq(p);
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2032 * any locks.
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2042 return 0;
2043 cpu_relax();
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2051 rq = task_rq_lock(p, &flags);
2052 trace_sched_wait_task(rq, p);
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
2055 ncsw = 0;
2056 if (!match_state || p->state == match_state)
2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2058 task_rq_unlock(rq, &flags);
2061 * If it changed from the expected state, bail out now.
2063 if (unlikely(!ncsw))
2064 break;
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2070 * Oops. Go back and try again..
2072 if (unlikely(running)) {
2073 cpu_relax();
2074 continue;
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2080 * preempted!
2082 * So if it was still runnable (but just not actively
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2088 continue;
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2096 break;
2099 return ncsw;
2102 /***
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2113 * achieved as well.
2115 void kick_process(struct task_struct *p)
2117 int cpu;
2119 preempt_disable();
2120 cpu = task_cpu(p);
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2123 preempt_enable();
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2133 static unsigned long source_load(int cpu, int type)
2135 struct rq *rq = cpu_rq(cpu);
2136 unsigned long total = weighted_cpuload(cpu);
2138 if (type == 0 || !sched_feat(LB_BIAS))
2139 return total;
2141 return min(rq->cpu_load[type-1], total);
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
2148 static unsigned long target_load(int cpu, int type)
2150 struct rq *rq = cpu_rq(cpu);
2151 unsigned long total = weighted_cpuload(cpu);
2153 if (type == 0 || !sched_feat(LB_BIAS))
2154 return total;
2156 return max(rq->cpu_load[type-1], total);
2160 * find_idlest_group finds and returns the least busy CPU group within the
2161 * domain.
2163 static struct sched_group *
2164 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2171 do {
2172 unsigned long load, avg_load;
2173 int local_group;
2174 int i;
2176 /* Skip over this group if it has no CPUs allowed */
2177 if (!cpumask_intersects(sched_group_cpus(group),
2178 &p->cpus_allowed))
2179 continue;
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
2184 /* Tally up the load of all CPUs in the group */
2185 avg_load = 0;
2187 for_each_cpu(i, sched_group_cpus(group)) {
2188 /* Bias balancing toward cpus of our domain */
2189 if (local_group)
2190 load = source_load(i, load_idx);
2191 else
2192 load = target_load(i, load_idx);
2194 avg_load += load;
2197 /* Adjust by relative CPU power of the group */
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
2201 if (local_group) {
2202 this_load = avg_load;
2203 this = group;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2206 idlest = group;
2208 } while (group = group->next, group != sd->groups);
2210 if (!idlest || 100*this_load < imbalance*min_load)
2211 return NULL;
2212 return idlest;
2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2218 static int
2219 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2221 unsigned long load, min_load = ULONG_MAX;
2222 int idlest = -1;
2223 int i;
2225 /* Traverse only the allowed CPUs */
2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2227 load = weighted_cpuload(i);
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2230 min_load = load;
2231 idlest = i;
2235 return idlest;
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2241 * SD_BALANCE_EXEC.
2243 * Balance, ie. select the least loaded group.
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2247 * preempt must be disabled.
2249 static int sched_balance_self(int cpu, int flag)
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
2254 for_each_domain(cpu, tmp) {
2256 * If power savings logic is enabled for a domain, stop there.
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2259 break;
2260 if (tmp->flags & flag)
2261 sd = tmp;
2264 if (sd)
2265 update_shares(sd);
2267 while (sd) {
2268 struct sched_group *group;
2269 int new_cpu, weight;
2271 if (!(sd->flags & flag)) {
2272 sd = sd->child;
2273 continue;
2276 group = find_idlest_group(sd, t, cpu);
2277 if (!group) {
2278 sd = sd->child;
2279 continue;
2282 new_cpu = find_idlest_cpu(group, t, cpu);
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2285 sd = sd->child;
2286 continue;
2289 /* Now try balancing at a lower domain level of new_cpu */
2290 cpu = new_cpu;
2291 weight = cpumask_weight(sched_domain_span(sd));
2292 sd = NULL;
2293 for_each_domain(cpu, tmp) {
2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2295 break;
2296 if (tmp->flags & flag)
2297 sd = tmp;
2299 /* while loop will break here if sd == NULL */
2302 return cpu;
2305 #endif /* CONFIG_SMP */
2307 /***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2319 * returns failure only if the task is already active.
2321 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2323 int cpu, orig_cpu, this_cpu, success = 0;
2324 unsigned long flags;
2325 long old_state;
2326 struct rq *rq;
2328 if (!sched_feat(SYNC_WAKEUPS))
2329 sync = 0;
2331 #ifdef CONFIG_SMP
2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2333 struct sched_domain *sd;
2335 this_cpu = raw_smp_processor_id();
2336 cpu = task_cpu(p);
2338 for_each_domain(this_cpu, sd) {
2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2340 update_shares(sd);
2341 break;
2345 #endif
2347 smp_wmb();
2348 rq = task_rq_lock(p, &flags);
2349 update_rq_clock(rq);
2350 old_state = p->state;
2351 if (!(old_state & state))
2352 goto out;
2354 if (p->se.on_rq)
2355 goto out_running;
2357 cpu = task_cpu(p);
2358 orig_cpu = cpu;
2359 this_cpu = smp_processor_id();
2361 #ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
2374 if (p->se.on_rq)
2375 goto out_running;
2377 this_cpu = smp_processor_id();
2378 cpu = task_cpu(p);
2381 #ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2394 #endif /* CONFIG_SCHEDSTATS */
2396 out_activate:
2397 #endif /* CONFIG_SMP */
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (sync)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
2407 activate_task(rq, p, 1);
2408 success = 1;
2411 * Only attribute actual wakeups done by this task.
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2423 se->last_wakeup = se->sum_exec_runtime;
2426 out_running:
2427 trace_sched_wakeup(rq, p, success);
2428 check_preempt_curr(rq, p, sync);
2430 p->state = TASK_RUNNING;
2431 #ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434 #endif
2435 out:
2436 task_rq_unlock(rq, &flags);
2438 return success;
2441 int wake_up_process(struct task_struct *p)
2443 return try_to_wake_up(p, TASK_ALL, 0);
2445 EXPORT_SYMBOL(wake_up_process);
2447 int wake_up_state(struct task_struct *p, unsigned int state)
2449 return try_to_wake_up(p, state, 0);
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
2456 * __sched_fork() is basic setup used by init_idle() too:
2458 static void __sched_fork(struct task_struct *p)
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
2462 p->se.prev_sum_exec_runtime = 0;
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2468 #ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
2476 p->se.slice_max = 0;
2477 p->se.wait_max = 0;
2478 #endif
2480 INIT_LIST_HEAD(&p->rt.run_list);
2481 p->se.on_rq = 0;
2482 INIT_LIST_HEAD(&p->se.group_node);
2484 #ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2486 #endif
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2494 p->state = TASK_RUNNING;
2498 * fork()/clone()-time setup:
2500 void sched_fork(struct task_struct *p, int clone_flags)
2502 int cpu = get_cpu();
2504 __sched_fork(p);
2506 #ifdef CONFIG_SMP
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2508 #endif
2509 set_task_cpu(p, cpu);
2512 * Make sure we do not leak PI boosting priority to the child:
2514 p->prio = current->normal_prio;
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
2518 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2519 if (likely(sched_info_on()))
2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
2521 #endif
2522 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2523 p->oncpu = 0;
2524 #endif
2525 #ifdef CONFIG_PREEMPT
2526 /* Want to start with kernel preemption disabled. */
2527 task_thread_info(p)->preempt_count = 1;
2528 #endif
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2531 put_cpu();
2535 * wake_up_new_task - wake up a newly created task for the first time.
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2541 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2543 unsigned long flags;
2544 struct rq *rq;
2546 rq = task_rq_lock(p, &flags);
2547 BUG_ON(p->state != TASK_RUNNING);
2548 update_rq_clock(rq);
2550 p->prio = effective_prio(p);
2552 if (!p->sched_class->task_new || !current->se.on_rq) {
2553 activate_task(rq, p, 0);
2554 } else {
2556 * Let the scheduling class do new task startup
2557 * management (if any):
2559 p->sched_class->task_new(rq, p);
2560 inc_nr_running(rq);
2562 trace_sched_wakeup_new(rq, p, 1);
2563 check_preempt_curr(rq, p, 0);
2564 #ifdef CONFIG_SMP
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2567 #endif
2568 task_rq_unlock(rq, &flags);
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2575 * @notifier: notifier struct to register
2577 void preempt_notifier_register(struct preempt_notifier *notifier)
2579 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2581 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
2585 * @notifier: notifier struct to unregister
2587 * This is safe to call from within a preemption notifier.
2589 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2591 hlist_del(&notifier->link);
2593 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2595 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2604 static void
2605 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2615 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2617 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2621 static void
2622 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2627 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
2632 * @prev: the current task that is being switched out
2633 * @next: the task we are going to switch to.
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2637 * switch.
2639 * prepare_task_switch sets up locking and calls architecture specific
2640 * hooks.
2642 static inline void
2643 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
2646 fire_sched_out_preempt_notifiers(prev, next);
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2652 * finish_task_switch - clean up after a task-switch
2653 * @rq: runqueue associated with task-switch
2654 * @prev: the thread we just switched away from.
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
2661 * Note that we may have delayed dropping an mm in context_switch(). If
2662 * so, we finish that here outside of the runqueue lock. (Doing it
2663 * with the lock held can cause deadlocks; see schedule() for
2664 * details.)
2666 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2667 __releases(rq->lock)
2669 struct mm_struct *mm = rq->prev_mm;
2670 long prev_state;
2671 #ifdef CONFIG_SMP
2672 int post_schedule = 0;
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2676 #endif
2678 rq->prev_mm = NULL;
2681 * A task struct has one reference for the use as "current".
2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
2685 * The test for TASK_DEAD must occur while the runqueue locks are
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2688 * be dropped twice.
2689 * Manfred Spraul <manfred@colorfullife.com>
2691 prev_state = prev->state;
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
2694 #ifdef CONFIG_SMP
2695 if (post_schedule)
2696 current->sched_class->post_schedule(rq);
2697 #endif
2699 fire_sched_in_preempt_notifiers(current);
2700 if (mm)
2701 mmdrop(mm);
2702 if (unlikely(prev_state == TASK_DEAD)) {
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
2707 kprobe_flush_task(prev);
2708 put_task_struct(prev);
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2716 asmlinkage void schedule_tail(struct task_struct *prev)
2717 __releases(rq->lock)
2719 struct rq *rq = this_rq();
2721 finish_task_switch(rq, prev);
2722 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2724 preempt_enable();
2725 #endif
2726 if (current->set_child_tid)
2727 put_user(task_pid_vnr(current), current->set_child_tid);
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2734 static inline void
2735 context_switch(struct rq *rq, struct task_struct *prev,
2736 struct task_struct *next)
2738 struct mm_struct *mm, *oldmm;
2740 prepare_task_switch(rq, prev, next);
2741 trace_sched_switch(rq, prev, next);
2742 mm = next->mm;
2743 oldmm = prev->active_mm;
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2747 * one hypercall.
2749 arch_enter_lazy_cpu_mode();
2751 if (unlikely(!mm)) {
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2755 } else
2756 switch_mm(oldmm, mm, next);
2758 if (unlikely(!prev->mm)) {
2759 prev->active_mm = NULL;
2760 rq->prev_mm = oldmm;
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2768 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2770 #endif
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2775 barrier();
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2781 finish_task_switch(this_rq(), prev);
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2791 unsigned long nr_running(void)
2793 unsigned long i, sum = 0;
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2798 return sum;
2801 unsigned long nr_uninterruptible(void)
2803 unsigned long i, sum = 0;
2805 for_each_possible_cpu(i)
2806 sum += cpu_rq(i)->nr_uninterruptible;
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2812 if (unlikely((long)sum < 0))
2813 sum = 0;
2815 return sum;
2818 unsigned long long nr_context_switches(void)
2820 int i;
2821 unsigned long long sum = 0;
2823 for_each_possible_cpu(i)
2824 sum += cpu_rq(i)->nr_switches;
2826 return sum;
2829 unsigned long nr_iowait(void)
2831 unsigned long i, sum = 0;
2833 for_each_possible_cpu(i)
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2836 return sum;
2839 unsigned long nr_active(void)
2841 unsigned long i, running = 0, uninterruptible = 0;
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2851 return running + uninterruptible;
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
2858 static void update_cpu_load(struct rq *this_rq)
2860 unsigned long this_load = this_rq->load.weight;
2861 int i, scale;
2863 this_rq->nr_load_updates++;
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2876 * example.
2878 if (new_load > old_load)
2879 new_load += scale-1;
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2884 #ifdef CONFIG_SMP
2887 * double_rq_lock - safely lock two runqueues
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2892 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2896 BUG_ON(!irqs_disabled());
2897 if (rq1 == rq2) {
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2900 } else {
2901 if (rq1 < rq2) {
2902 spin_lock(&rq1->lock);
2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2904 } else {
2905 spin_lock(&rq2->lock);
2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
2914 * double_rq_unlock - safely unlock two runqueues
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2919 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2923 spin_unlock(&rq1->lock);
2924 if (rq1 != rq2)
2925 spin_unlock(&rq2->lock);
2926 else
2927 __release(rq2->lock);
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2934 * the cpu_allowed mask is restored.
2936 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2938 struct migration_req req;
2939 unsigned long flags;
2940 struct rq *rq;
2942 rq = task_rq_lock(p, &flags);
2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2944 || unlikely(!cpu_active(dest_cpu)))
2945 goto out;
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
2958 return;
2960 out:
2961 task_rq_unlock(rq, &flags);
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
2968 void sched_exec(void)
2970 int new_cpu, this_cpu = get_cpu();
2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2972 put_cpu();
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2981 static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
2984 deactivate_task(src_rq, p, 0);
2985 set_task_cpu(p, this_cpu);
2986 activate_task(this_rq, p, 0);
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2991 check_preempt_curr(this_rq, p, 0);
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2997 static
2998 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2999 struct sched_domain *sd, enum cpu_idle_type idle,
3000 int *all_pinned)
3002 int tsk_cache_hot = 0;
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3010 schedstat_inc(p, se.nr_failed_migrations_affine);
3011 return 0;
3013 *all_pinned = 0;
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
3017 return 0;
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
3029 #ifdef CONFIG_SCHEDSTATS
3030 if (tsk_cache_hot) {
3031 schedstat_inc(sd, lb_hot_gained[idle]);
3032 schedstat_inc(p, se.nr_forced_migrations);
3034 #endif
3035 return 1;
3038 if (tsk_cache_hot) {
3039 schedstat_inc(p, se.nr_failed_migrations_hot);
3040 return 0;
3042 return 1;
3045 static unsigned long
3046 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
3051 int loops = 0, pulled = 0, pinned = 0;
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
3055 if (max_load_move == 0)
3056 goto out;
3058 pinned = 1;
3061 * Start the load-balancing iterator:
3063 p = iterator->start(iterator->arg);
3064 next:
3065 if (!p || loops++ > sysctl_sched_nr_migrate)
3066 goto out;
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3070 p = iterator->next(iterator->arg);
3071 goto next;
3074 pull_task(busiest, p, this_rq, this_cpu);
3075 pulled++;
3076 rem_load_move -= p->se.load.weight;
3078 #ifdef CONFIG_PREEMPT
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3082 * section.
3084 if (idle == CPU_NEWLY_IDLE)
3085 goto out;
3086 #endif
3089 * We only want to steal up to the prescribed amount of weighted load.
3091 if (rem_load_move > 0) {
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
3094 p = iterator->next(iterator->arg);
3095 goto next;
3097 out:
3099 * Right now, this is one of only two places pull_task() is called,
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3103 schedstat_add(sd, lb_gained[idle], pulled);
3105 if (all_pinned)
3106 *all_pinned = pinned;
3108 return max_load_move - rem_load_move;
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
3116 * Called with both runqueues locked.
3118 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3119 unsigned long max_load_move,
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3123 const struct sched_class *class = sched_class_highest;
3124 unsigned long total_load_moved = 0;
3125 int this_best_prio = this_rq->curr->prio;
3127 do {
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
3130 max_load_move - total_load_moved,
3131 sd, idle, all_pinned, &this_best_prio);
3132 class = class->next;
3134 #ifdef CONFIG_PREEMPT
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3141 break;
3142 #endif
3143 } while (class && max_load_move > total_load_moved);
3145 return total_load_moved > 0;
3148 static int
3149 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3153 struct task_struct *p = iterator->start(iterator->arg);
3154 int pinned = 0;
3156 while (p) {
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3164 schedstat_inc(sd, lb_gained[idle]);
3166 return 1;
3168 p = iterator->next(iterator->arg);
3171 return 0;
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3179 * Called with both runqueues locked.
3181 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3184 const struct sched_class *class;
3186 for (class = sched_class_highest; class; class = class->next)
3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3188 return 1;
3190 return 0;
3192 /********** Helpers for find_busiest_group ************************/
3194 * sd_lb_stats - Structure to store the statistics of a sched_domain
3195 * during load balancing.
3197 struct sd_lb_stats {
3198 struct sched_group *busiest; /* Busiest group in this sd */
3199 struct sched_group *this; /* Local group in this sd */
3200 unsigned long total_load; /* Total load of all groups in sd */
3201 unsigned long total_pwr; /* Total power of all groups in sd */
3202 unsigned long avg_load; /* Average load across all groups in sd */
3204 /** Statistics of this group */
3205 unsigned long this_load;
3206 unsigned long this_load_per_task;
3207 unsigned long this_nr_running;
3209 /* Statistics of the busiest group */
3210 unsigned long max_load;
3211 unsigned long busiest_load_per_task;
3212 unsigned long busiest_nr_running;
3214 int group_imb; /* Is there imbalance in this sd */
3215 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3216 int power_savings_balance; /* Is powersave balance needed for this sd */
3217 struct sched_group *group_min; /* Least loaded group in sd */
3218 struct sched_group *group_leader; /* Group which relieves group_min */
3219 unsigned long min_load_per_task; /* load_per_task in group_min */
3220 unsigned long leader_nr_running; /* Nr running of group_leader */
3221 unsigned long min_nr_running; /* Nr running of group_min */
3222 #endif
3226 * sg_lb_stats - stats of a sched_group required for load_balancing
3228 struct sg_lb_stats {
3229 unsigned long avg_load; /*Avg load across the CPUs of the group */
3230 unsigned long group_load; /* Total load over the CPUs of the group */
3231 unsigned long sum_nr_running; /* Nr tasks running in the group */
3232 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3233 unsigned long group_capacity;
3234 int group_imb; /* Is there an imbalance in the group ? */
3238 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3239 * @group: The group whose first cpu is to be returned.
3241 static inline unsigned int group_first_cpu(struct sched_group *group)
3243 return cpumask_first(sched_group_cpus(group));
3247 * get_sd_load_idx - Obtain the load index for a given sched domain.
3248 * @sd: The sched_domain whose load_idx is to be obtained.
3249 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3251 static inline int get_sd_load_idx(struct sched_domain *sd,
3252 enum cpu_idle_type idle)
3254 int load_idx;
3256 switch (idle) {
3257 case CPU_NOT_IDLE:
3258 load_idx = sd->busy_idx;
3259 break;
3261 case CPU_NEWLY_IDLE:
3262 load_idx = sd->newidle_idx;
3263 break;
3264 default:
3265 load_idx = sd->idle_idx;
3266 break;
3269 return load_idx;
3273 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3275 * init_sd_power_savings_stats - Initialize power savings statistics for
3276 * the given sched_domain, during load balancing.
3278 * @sd: Sched domain whose power-savings statistics are to be initialized.
3279 * @sds: Variable containing the statistics for sd.
3280 * @idle: Idle status of the CPU at which we're performing load-balancing.
3282 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3283 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3286 * Busy processors will not participate in power savings
3287 * balance.
3289 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3290 sds->power_savings_balance = 0;
3291 else {
3292 sds->power_savings_balance = 1;
3293 sds->min_nr_running = ULONG_MAX;
3294 sds->leader_nr_running = 0;
3299 * update_sd_power_savings_stats - Update the power saving stats for a
3300 * sched_domain while performing load balancing.
3302 * @group: sched_group belonging to the sched_domain under consideration.
3303 * @sds: Variable containing the statistics of the sched_domain
3304 * @local_group: Does group contain the CPU for which we're performing
3305 * load balancing ?
3306 * @sgs: Variable containing the statistics of the group.
3308 static inline void update_sd_power_savings_stats(struct sched_group *group,
3309 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3312 if (!sds->power_savings_balance)
3313 return;
3316 * If the local group is idle or completely loaded
3317 * no need to do power savings balance at this domain
3319 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3320 !sds->this_nr_running))
3321 sds->power_savings_balance = 0;
3324 * If a group is already running at full capacity or idle,
3325 * don't include that group in power savings calculations
3327 if (!sds->power_savings_balance ||
3328 sgs->sum_nr_running >= sgs->group_capacity ||
3329 !sgs->sum_nr_running)
3330 return;
3333 * Calculate the group which has the least non-idle load.
3334 * This is the group from where we need to pick up the load
3335 * for saving power
3337 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3338 (sgs->sum_nr_running == sds->min_nr_running &&
3339 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3340 sds->group_min = group;
3341 sds->min_nr_running = sgs->sum_nr_running;
3342 sds->min_load_per_task = sgs->sum_weighted_load /
3343 sgs->sum_nr_running;
3347 * Calculate the group which is almost near its
3348 * capacity but still has some space to pick up some load
3349 * from other group and save more power
3351 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3352 return;
3354 if (sgs->sum_nr_running > sds->leader_nr_running ||
3355 (sgs->sum_nr_running == sds->leader_nr_running &&
3356 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3357 sds->group_leader = group;
3358 sds->leader_nr_running = sgs->sum_nr_running;
3363 * check_power_save_busiest_group - Check if we have potential to perform
3364 * some power-savings balance. If yes, set the busiest group to be
3365 * the least loaded group in the sched_domain, so that it's CPUs can
3366 * be put to idle.
3368 * @sds: Variable containing the statistics of the sched_domain
3369 * under consideration.
3370 * @this_cpu: Cpu at which we're currently performing load-balancing.
3371 * @imbalance: Variable to store the imbalance.
3373 * Returns 1 if there is potential to perform power-savings balance.
3374 * Else returns 0.
3376 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3377 int this_cpu, unsigned long *imbalance)
3379 if (!sds->power_savings_balance)
3380 return 0;
3382 if (sds->this != sds->group_leader ||
3383 sds->group_leader == sds->group_min)
3384 return 0;
3386 *imbalance = sds->min_load_per_task;
3387 sds->busiest = sds->group_min;
3389 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3390 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3391 group_first_cpu(sds->group_leader);
3394 return 1;
3397 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3398 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3399 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3401 return;
3404 static inline void update_sd_power_savings_stats(struct sched_group *group,
3405 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3407 return;
3410 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3411 int this_cpu, unsigned long *imbalance)
3413 return 0;
3415 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3419 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3420 * @group: sched_group whose statistics are to be updated.
3421 * @this_cpu: Cpu for which load balance is currently performed.
3422 * @idle: Idle status of this_cpu
3423 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3424 * @sd_idle: Idle status of the sched_domain containing group.
3425 * @local_group: Does group contain this_cpu.
3426 * @cpus: Set of cpus considered for load balancing.
3427 * @balance: Should we balance.
3428 * @sgs: variable to hold the statistics for this group.
3430 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3431 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3432 int local_group, const struct cpumask *cpus,
3433 int *balance, struct sg_lb_stats *sgs)
3435 unsigned long load, max_cpu_load, min_cpu_load;
3436 int i;
3437 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3438 unsigned long sum_avg_load_per_task;
3439 unsigned long avg_load_per_task;
3441 if (local_group)
3442 balance_cpu = group_first_cpu(group);
3444 /* Tally up the load of all CPUs in the group */
3445 sum_avg_load_per_task = avg_load_per_task = 0;
3446 max_cpu_load = 0;
3447 min_cpu_load = ~0UL;
3449 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3450 struct rq *rq = cpu_rq(i);
3452 if (*sd_idle && rq->nr_running)
3453 *sd_idle = 0;
3455 /* Bias balancing toward cpus of our domain */
3456 if (local_group) {
3457 if (idle_cpu(i) && !first_idle_cpu) {
3458 first_idle_cpu = 1;
3459 balance_cpu = i;
3462 load = target_load(i, load_idx);
3463 } else {
3464 load = source_load(i, load_idx);
3465 if (load > max_cpu_load)
3466 max_cpu_load = load;
3467 if (min_cpu_load > load)
3468 min_cpu_load = load;
3471 sgs->group_load += load;
3472 sgs->sum_nr_running += rq->nr_running;
3473 sgs->sum_weighted_load += weighted_cpuload(i);
3475 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3479 * First idle cpu or the first cpu(busiest) in this sched group
3480 * is eligible for doing load balancing at this and above
3481 * domains. In the newly idle case, we will allow all the cpu's
3482 * to do the newly idle load balance.
3484 if (idle != CPU_NEWLY_IDLE && local_group &&
3485 balance_cpu != this_cpu && balance) {
3486 *balance = 0;
3487 return;
3490 /* Adjust by relative CPU power of the group */
3491 sgs->avg_load = sg_div_cpu_power(group,
3492 sgs->group_load * SCHED_LOAD_SCALE);
3496 * Consider the group unbalanced when the imbalance is larger
3497 * than the average weight of two tasks.
3499 * APZ: with cgroup the avg task weight can vary wildly and
3500 * might not be a suitable number - should we keep a
3501 * normalized nr_running number somewhere that negates
3502 * the hierarchy?
3504 avg_load_per_task = sg_div_cpu_power(group,
3505 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3507 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3508 sgs->group_imb = 1;
3510 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3515 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3516 * @sd: sched_domain whose statistics are to be updated.
3517 * @this_cpu: Cpu for which load balance is currently performed.
3518 * @idle: Idle status of this_cpu
3519 * @sd_idle: Idle status of the sched_domain containing group.
3520 * @cpus: Set of cpus considered for load balancing.
3521 * @balance: Should we balance.
3522 * @sds: variable to hold the statistics for this sched_domain.
3524 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3525 enum cpu_idle_type idle, int *sd_idle,
3526 const struct cpumask *cpus, int *balance,
3527 struct sd_lb_stats *sds)
3529 struct sched_group *group = sd->groups;
3530 struct sg_lb_stats sgs;
3531 int load_idx;
3533 init_sd_power_savings_stats(sd, sds, idle);
3534 load_idx = get_sd_load_idx(sd, idle);
3536 do {
3537 int local_group;
3539 local_group = cpumask_test_cpu(this_cpu,
3540 sched_group_cpus(group));
3541 memset(&sgs, 0, sizeof(sgs));
3542 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3543 local_group, cpus, balance, &sgs);
3545 if (local_group && balance && !(*balance))
3546 return;
3548 sds->total_load += sgs.group_load;
3549 sds->total_pwr += group->__cpu_power;
3551 if (local_group) {
3552 sds->this_load = sgs.avg_load;
3553 sds->this = group;
3554 sds->this_nr_running = sgs.sum_nr_running;
3555 sds->this_load_per_task = sgs.sum_weighted_load;
3556 } else if (sgs.avg_load > sds->max_load &&
3557 (sgs.sum_nr_running > sgs.group_capacity ||
3558 sgs.group_imb)) {
3559 sds->max_load = sgs.avg_load;
3560 sds->busiest = group;
3561 sds->busiest_nr_running = sgs.sum_nr_running;
3562 sds->busiest_load_per_task = sgs.sum_weighted_load;
3563 sds->group_imb = sgs.group_imb;
3566 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3567 group = group->next;
3568 } while (group != sd->groups);
3573 * fix_small_imbalance - Calculate the minor imbalance that exists
3574 * amongst the groups of a sched_domain, during
3575 * load balancing.
3576 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3577 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3578 * @imbalance: Variable to store the imbalance.
3580 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3581 int this_cpu, unsigned long *imbalance)
3583 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3584 unsigned int imbn = 2;
3586 if (sds->this_nr_running) {
3587 sds->this_load_per_task /= sds->this_nr_running;
3588 if (sds->busiest_load_per_task >
3589 sds->this_load_per_task)
3590 imbn = 1;
3591 } else
3592 sds->this_load_per_task =
3593 cpu_avg_load_per_task(this_cpu);
3595 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3596 sds->busiest_load_per_task * imbn) {
3597 *imbalance = sds->busiest_load_per_task;
3598 return;
3602 * OK, we don't have enough imbalance to justify moving tasks,
3603 * however we may be able to increase total CPU power used by
3604 * moving them.
3607 pwr_now += sds->busiest->__cpu_power *
3608 min(sds->busiest_load_per_task, sds->max_load);
3609 pwr_now += sds->this->__cpu_power *
3610 min(sds->this_load_per_task, sds->this_load);
3611 pwr_now /= SCHED_LOAD_SCALE;
3613 /* Amount of load we'd subtract */
3614 tmp = sg_div_cpu_power(sds->busiest,
3615 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3616 if (sds->max_load > tmp)
3617 pwr_move += sds->busiest->__cpu_power *
3618 min(sds->busiest_load_per_task, sds->max_load - tmp);
3620 /* Amount of load we'd add */
3621 if (sds->max_load * sds->busiest->__cpu_power <
3622 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3623 tmp = sg_div_cpu_power(sds->this,
3624 sds->max_load * sds->busiest->__cpu_power);
3625 else
3626 tmp = sg_div_cpu_power(sds->this,
3627 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3628 pwr_move += sds->this->__cpu_power *
3629 min(sds->this_load_per_task, sds->this_load + tmp);
3630 pwr_move /= SCHED_LOAD_SCALE;
3632 /* Move if we gain throughput */
3633 if (pwr_move > pwr_now)
3634 *imbalance = sds->busiest_load_per_task;
3638 * calculate_imbalance - Calculate the amount of imbalance present within the
3639 * groups of a given sched_domain during load balance.
3640 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3641 * @this_cpu: Cpu for which currently load balance is being performed.
3642 * @imbalance: The variable to store the imbalance.
3644 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3645 unsigned long *imbalance)
3647 unsigned long max_pull;
3649 * In the presence of smp nice balancing, certain scenarios can have
3650 * max load less than avg load(as we skip the groups at or below
3651 * its cpu_power, while calculating max_load..)
3653 if (sds->max_load < sds->avg_load) {
3654 *imbalance = 0;
3655 return fix_small_imbalance(sds, this_cpu, imbalance);
3658 /* Don't want to pull so many tasks that a group would go idle */
3659 max_pull = min(sds->max_load - sds->avg_load,
3660 sds->max_load - sds->busiest_load_per_task);
3662 /* How much load to actually move to equalise the imbalance */
3663 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3664 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3665 / SCHED_LOAD_SCALE;
3668 * if *imbalance is less than the average load per runnable task
3669 * there is no gaurantee that any tasks will be moved so we'll have
3670 * a think about bumping its value to force at least one task to be
3671 * moved
3673 if (*imbalance < sds->busiest_load_per_task)
3674 return fix_small_imbalance(sds, this_cpu, imbalance);
3677 /******* find_busiest_group() helpers end here *********************/
3680 * find_busiest_group - Returns the busiest group within the sched_domain
3681 * if there is an imbalance. If there isn't an imbalance, and
3682 * the user has opted for power-savings, it returns a group whose
3683 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3684 * such a group exists.
3686 * Also calculates the amount of weighted load which should be moved
3687 * to restore balance.
3689 * @sd: The sched_domain whose busiest group is to be returned.
3690 * @this_cpu: The cpu for which load balancing is currently being performed.
3691 * @imbalance: Variable which stores amount of weighted load which should
3692 * be moved to restore balance/put a group to idle.
3693 * @idle: The idle status of this_cpu.
3694 * @sd_idle: The idleness of sd
3695 * @cpus: The set of CPUs under consideration for load-balancing.
3696 * @balance: Pointer to a variable indicating if this_cpu
3697 * is the appropriate cpu to perform load balancing at this_level.
3699 * Returns: - the busiest group if imbalance exists.
3700 * - If no imbalance and user has opted for power-savings balance,
3701 * return the least loaded group whose CPUs can be
3702 * put to idle by rebalancing its tasks onto our group.
3704 static struct sched_group *
3705 find_busiest_group(struct sched_domain *sd, int this_cpu,
3706 unsigned long *imbalance, enum cpu_idle_type idle,
3707 int *sd_idle, const struct cpumask *cpus, int *balance)
3709 struct sd_lb_stats sds;
3711 memset(&sds, 0, sizeof(sds));
3714 * Compute the various statistics relavent for load balancing at
3715 * this level.
3717 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3718 balance, &sds);
3720 /* Cases where imbalance does not exist from POV of this_cpu */
3721 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3722 * at this level.
3723 * 2) There is no busy sibling group to pull from.
3724 * 3) This group is the busiest group.
3725 * 4) This group is more busy than the avg busieness at this
3726 * sched_domain.
3727 * 5) The imbalance is within the specified limit.
3728 * 6) Any rebalance would lead to ping-pong
3730 if (balance && !(*balance))
3731 goto ret;
3733 if (!sds.busiest || sds.busiest_nr_running == 0)
3734 goto out_balanced;
3736 if (sds.this_load >= sds.max_load)
3737 goto out_balanced;
3739 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3741 if (sds.this_load >= sds.avg_load)
3742 goto out_balanced;
3744 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3745 goto out_balanced;
3747 sds.busiest_load_per_task /= sds.busiest_nr_running;
3748 if (sds.group_imb)
3749 sds.busiest_load_per_task =
3750 min(sds.busiest_load_per_task, sds.avg_load);
3753 * We're trying to get all the cpus to the average_load, so we don't
3754 * want to push ourselves above the average load, nor do we wish to
3755 * reduce the max loaded cpu below the average load, as either of these
3756 * actions would just result in more rebalancing later, and ping-pong
3757 * tasks around. Thus we look for the minimum possible imbalance.
3758 * Negative imbalances (*we* are more loaded than anyone else) will
3759 * be counted as no imbalance for these purposes -- we can't fix that
3760 * by pulling tasks to us. Be careful of negative numbers as they'll
3761 * appear as very large values with unsigned longs.
3763 if (sds.max_load <= sds.busiest_load_per_task)
3764 goto out_balanced;
3766 /* Looks like there is an imbalance. Compute it */
3767 calculate_imbalance(&sds, this_cpu, imbalance);
3768 return sds.busiest;
3770 out_balanced:
3772 * There is no obvious imbalance. But check if we can do some balancing
3773 * to save power.
3775 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3776 return sds.busiest;
3777 ret:
3778 *imbalance = 0;
3779 return NULL;
3783 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3785 static struct rq *
3786 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3787 unsigned long imbalance, const struct cpumask *cpus)
3789 struct rq *busiest = NULL, *rq;
3790 unsigned long max_load = 0;
3791 int i;
3793 for_each_cpu(i, sched_group_cpus(group)) {
3794 unsigned long wl;
3796 if (!cpumask_test_cpu(i, cpus))
3797 continue;
3799 rq = cpu_rq(i);
3800 wl = weighted_cpuload(i);
3802 if (rq->nr_running == 1 && wl > imbalance)
3803 continue;
3805 if (wl > max_load) {
3806 max_load = wl;
3807 busiest = rq;
3811 return busiest;
3815 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3816 * so long as it is large enough.
3818 #define MAX_PINNED_INTERVAL 512
3821 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3822 * tasks if there is an imbalance.
3824 static int load_balance(int this_cpu, struct rq *this_rq,
3825 struct sched_domain *sd, enum cpu_idle_type idle,
3826 int *balance, struct cpumask *cpus)
3828 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3829 struct sched_group *group;
3830 unsigned long imbalance;
3831 struct rq *busiest;
3832 unsigned long flags;
3834 cpumask_setall(cpus);
3837 * When power savings policy is enabled for the parent domain, idle
3838 * sibling can pick up load irrespective of busy siblings. In this case,
3839 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3840 * portraying it as CPU_NOT_IDLE.
3842 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3843 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3844 sd_idle = 1;
3846 schedstat_inc(sd, lb_count[idle]);
3848 redo:
3849 update_shares(sd);
3850 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3851 cpus, balance);
3853 if (*balance == 0)
3854 goto out_balanced;
3856 if (!group) {
3857 schedstat_inc(sd, lb_nobusyg[idle]);
3858 goto out_balanced;
3861 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3862 if (!busiest) {
3863 schedstat_inc(sd, lb_nobusyq[idle]);
3864 goto out_balanced;
3867 BUG_ON(busiest == this_rq);
3869 schedstat_add(sd, lb_imbalance[idle], imbalance);
3871 ld_moved = 0;
3872 if (busiest->nr_running > 1) {
3874 * Attempt to move tasks. If find_busiest_group has found
3875 * an imbalance but busiest->nr_running <= 1, the group is
3876 * still unbalanced. ld_moved simply stays zero, so it is
3877 * correctly treated as an imbalance.
3879 local_irq_save(flags);
3880 double_rq_lock(this_rq, busiest);
3881 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3882 imbalance, sd, idle, &all_pinned);
3883 double_rq_unlock(this_rq, busiest);
3884 local_irq_restore(flags);
3887 * some other cpu did the load balance for us.
3889 if (ld_moved && this_cpu != smp_processor_id())
3890 resched_cpu(this_cpu);
3892 /* All tasks on this runqueue were pinned by CPU affinity */
3893 if (unlikely(all_pinned)) {
3894 cpumask_clear_cpu(cpu_of(busiest), cpus);
3895 if (!cpumask_empty(cpus))
3896 goto redo;
3897 goto out_balanced;
3901 if (!ld_moved) {
3902 schedstat_inc(sd, lb_failed[idle]);
3903 sd->nr_balance_failed++;
3905 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3907 spin_lock_irqsave(&busiest->lock, flags);
3909 /* don't kick the migration_thread, if the curr
3910 * task on busiest cpu can't be moved to this_cpu
3912 if (!cpumask_test_cpu(this_cpu,
3913 &busiest->curr->cpus_allowed)) {
3914 spin_unlock_irqrestore(&busiest->lock, flags);
3915 all_pinned = 1;
3916 goto out_one_pinned;
3919 if (!busiest->active_balance) {
3920 busiest->active_balance = 1;
3921 busiest->push_cpu = this_cpu;
3922 active_balance = 1;
3924 spin_unlock_irqrestore(&busiest->lock, flags);
3925 if (active_balance)
3926 wake_up_process(busiest->migration_thread);
3929 * We've kicked active balancing, reset the failure
3930 * counter.
3932 sd->nr_balance_failed = sd->cache_nice_tries+1;
3934 } else
3935 sd->nr_balance_failed = 0;
3937 if (likely(!active_balance)) {
3938 /* We were unbalanced, so reset the balancing interval */
3939 sd->balance_interval = sd->min_interval;
3940 } else {
3942 * If we've begun active balancing, start to back off. This
3943 * case may not be covered by the all_pinned logic if there
3944 * is only 1 task on the busy runqueue (because we don't call
3945 * move_tasks).
3947 if (sd->balance_interval < sd->max_interval)
3948 sd->balance_interval *= 2;
3951 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3952 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3953 ld_moved = -1;
3955 goto out;
3957 out_balanced:
3958 schedstat_inc(sd, lb_balanced[idle]);
3960 sd->nr_balance_failed = 0;
3962 out_one_pinned:
3963 /* tune up the balancing interval */
3964 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3965 (sd->balance_interval < sd->max_interval))
3966 sd->balance_interval *= 2;
3968 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3969 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3970 ld_moved = -1;
3971 else
3972 ld_moved = 0;
3973 out:
3974 if (ld_moved)
3975 update_shares(sd);
3976 return ld_moved;
3980 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3981 * tasks if there is an imbalance.
3983 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3984 * this_rq is locked.
3986 static int
3987 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3988 struct cpumask *cpus)
3990 struct sched_group *group;
3991 struct rq *busiest = NULL;
3992 unsigned long imbalance;
3993 int ld_moved = 0;
3994 int sd_idle = 0;
3995 int all_pinned = 0;
3997 cpumask_setall(cpus);
4000 * When power savings policy is enabled for the parent domain, idle
4001 * sibling can pick up load irrespective of busy siblings. In this case,
4002 * let the state of idle sibling percolate up as IDLE, instead of
4003 * portraying it as CPU_NOT_IDLE.
4005 if (sd->flags & SD_SHARE_CPUPOWER &&
4006 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4007 sd_idle = 1;
4009 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4010 redo:
4011 update_shares_locked(this_rq, sd);
4012 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4013 &sd_idle, cpus, NULL);
4014 if (!group) {
4015 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4016 goto out_balanced;
4019 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4020 if (!busiest) {
4021 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4022 goto out_balanced;
4025 BUG_ON(busiest == this_rq);
4027 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4029 ld_moved = 0;
4030 if (busiest->nr_running > 1) {
4031 /* Attempt to move tasks */
4032 double_lock_balance(this_rq, busiest);
4033 /* this_rq->clock is already updated */
4034 update_rq_clock(busiest);
4035 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4036 imbalance, sd, CPU_NEWLY_IDLE,
4037 &all_pinned);
4038 double_unlock_balance(this_rq, busiest);
4040 if (unlikely(all_pinned)) {
4041 cpumask_clear_cpu(cpu_of(busiest), cpus);
4042 if (!cpumask_empty(cpus))
4043 goto redo;
4047 if (!ld_moved) {
4048 int active_balance = 0;
4050 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4051 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4052 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4053 return -1;
4055 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4056 return -1;
4058 if (sd->nr_balance_failed++ < 2)
4059 return -1;
4062 * The only task running in a non-idle cpu can be moved to this
4063 * cpu in an attempt to completely freeup the other CPU
4064 * package. The same method used to move task in load_balance()
4065 * have been extended for load_balance_newidle() to speedup
4066 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4068 * The package power saving logic comes from
4069 * find_busiest_group(). If there are no imbalance, then
4070 * f_b_g() will return NULL. However when sched_mc={1,2} then
4071 * f_b_g() will select a group from which a running task may be
4072 * pulled to this cpu in order to make the other package idle.
4073 * If there is no opportunity to make a package idle and if
4074 * there are no imbalance, then f_b_g() will return NULL and no
4075 * action will be taken in load_balance_newidle().
4077 * Under normal task pull operation due to imbalance, there
4078 * will be more than one task in the source run queue and
4079 * move_tasks() will succeed. ld_moved will be true and this
4080 * active balance code will not be triggered.
4083 /* Lock busiest in correct order while this_rq is held */
4084 double_lock_balance(this_rq, busiest);
4087 * don't kick the migration_thread, if the curr
4088 * task on busiest cpu can't be moved to this_cpu
4090 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4091 double_unlock_balance(this_rq, busiest);
4092 all_pinned = 1;
4093 return ld_moved;
4096 if (!busiest->active_balance) {
4097 busiest->active_balance = 1;
4098 busiest->push_cpu = this_cpu;
4099 active_balance = 1;
4102 double_unlock_balance(this_rq, busiest);
4104 * Should not call ttwu while holding a rq->lock
4106 spin_unlock(&this_rq->lock);
4107 if (active_balance)
4108 wake_up_process(busiest->migration_thread);
4109 spin_lock(&this_rq->lock);
4111 } else
4112 sd->nr_balance_failed = 0;
4114 update_shares_locked(this_rq, sd);
4115 return ld_moved;
4117 out_balanced:
4118 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4119 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4120 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4121 return -1;
4122 sd->nr_balance_failed = 0;
4124 return 0;
4128 * idle_balance is called by schedule() if this_cpu is about to become
4129 * idle. Attempts to pull tasks from other CPUs.
4131 static void idle_balance(int this_cpu, struct rq *this_rq)
4133 struct sched_domain *sd;
4134 int pulled_task = 0;
4135 unsigned long next_balance = jiffies + HZ;
4136 cpumask_var_t tmpmask;
4138 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
4139 return;
4141 for_each_domain(this_cpu, sd) {
4142 unsigned long interval;
4144 if (!(sd->flags & SD_LOAD_BALANCE))
4145 continue;
4147 if (sd->flags & SD_BALANCE_NEWIDLE)
4148 /* If we've pulled tasks over stop searching: */
4149 pulled_task = load_balance_newidle(this_cpu, this_rq,
4150 sd, tmpmask);
4152 interval = msecs_to_jiffies(sd->balance_interval);
4153 if (time_after(next_balance, sd->last_balance + interval))
4154 next_balance = sd->last_balance + interval;
4155 if (pulled_task)
4156 break;
4158 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4160 * We are going idle. next_balance may be set based on
4161 * a busy processor. So reset next_balance.
4163 this_rq->next_balance = next_balance;
4165 free_cpumask_var(tmpmask);
4169 * active_load_balance is run by migration threads. It pushes running tasks
4170 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4171 * running on each physical CPU where possible, and avoids physical /
4172 * logical imbalances.
4174 * Called with busiest_rq locked.
4176 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4178 int target_cpu = busiest_rq->push_cpu;
4179 struct sched_domain *sd;
4180 struct rq *target_rq;
4182 /* Is there any task to move? */
4183 if (busiest_rq->nr_running <= 1)
4184 return;
4186 target_rq = cpu_rq(target_cpu);
4189 * This condition is "impossible", if it occurs
4190 * we need to fix it. Originally reported by
4191 * Bjorn Helgaas on a 128-cpu setup.
4193 BUG_ON(busiest_rq == target_rq);
4195 /* move a task from busiest_rq to target_rq */
4196 double_lock_balance(busiest_rq, target_rq);
4197 update_rq_clock(busiest_rq);
4198 update_rq_clock(target_rq);
4200 /* Search for an sd spanning us and the target CPU. */
4201 for_each_domain(target_cpu, sd) {
4202 if ((sd->flags & SD_LOAD_BALANCE) &&
4203 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4204 break;
4207 if (likely(sd)) {
4208 schedstat_inc(sd, alb_count);
4210 if (move_one_task(target_rq, target_cpu, busiest_rq,
4211 sd, CPU_IDLE))
4212 schedstat_inc(sd, alb_pushed);
4213 else
4214 schedstat_inc(sd, alb_failed);
4216 double_unlock_balance(busiest_rq, target_rq);
4219 #ifdef CONFIG_NO_HZ
4220 static struct {
4221 atomic_t load_balancer;
4222 cpumask_var_t cpu_mask;
4223 } nohz ____cacheline_aligned = {
4224 .load_balancer = ATOMIC_INIT(-1),
4228 * This routine will try to nominate the ilb (idle load balancing)
4229 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4230 * load balancing on behalf of all those cpus. If all the cpus in the system
4231 * go into this tickless mode, then there will be no ilb owner (as there is
4232 * no need for one) and all the cpus will sleep till the next wakeup event
4233 * arrives...
4235 * For the ilb owner, tick is not stopped. And this tick will be used
4236 * for idle load balancing. ilb owner will still be part of
4237 * nohz.cpu_mask..
4239 * While stopping the tick, this cpu will become the ilb owner if there
4240 * is no other owner. And will be the owner till that cpu becomes busy
4241 * or if all cpus in the system stop their ticks at which point
4242 * there is no need for ilb owner.
4244 * When the ilb owner becomes busy, it nominates another owner, during the
4245 * next busy scheduler_tick()
4247 int select_nohz_load_balancer(int stop_tick)
4249 int cpu = smp_processor_id();
4251 if (stop_tick) {
4252 cpu_rq(cpu)->in_nohz_recently = 1;
4254 if (!cpu_active(cpu)) {
4255 if (atomic_read(&nohz.load_balancer) != cpu)
4256 return 0;
4259 * If we are going offline and still the leader,
4260 * give up!
4262 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4263 BUG();
4265 return 0;
4268 cpumask_set_cpu(cpu, nohz.cpu_mask);
4270 /* time for ilb owner also to sleep */
4271 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4272 if (atomic_read(&nohz.load_balancer) == cpu)
4273 atomic_set(&nohz.load_balancer, -1);
4274 return 0;
4277 if (atomic_read(&nohz.load_balancer) == -1) {
4278 /* make me the ilb owner */
4279 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4280 return 1;
4281 } else if (atomic_read(&nohz.load_balancer) == cpu)
4282 return 1;
4283 } else {
4284 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4285 return 0;
4287 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4289 if (atomic_read(&nohz.load_balancer) == cpu)
4290 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4291 BUG();
4293 return 0;
4295 #endif
4297 static DEFINE_SPINLOCK(balancing);
4300 * It checks each scheduling domain to see if it is due to be balanced,
4301 * and initiates a balancing operation if so.
4303 * Balancing parameters are set up in arch_init_sched_domains.
4305 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4307 int balance = 1;
4308 struct rq *rq = cpu_rq(cpu);
4309 unsigned long interval;
4310 struct sched_domain *sd;
4311 /* Earliest time when we have to do rebalance again */
4312 unsigned long next_balance = jiffies + 60*HZ;
4313 int update_next_balance = 0;
4314 int need_serialize;
4315 cpumask_var_t tmp;
4317 /* Fails alloc? Rebalancing probably not a priority right now. */
4318 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4319 return;
4321 for_each_domain(cpu, sd) {
4322 if (!(sd->flags & SD_LOAD_BALANCE))
4323 continue;
4325 interval = sd->balance_interval;
4326 if (idle != CPU_IDLE)
4327 interval *= sd->busy_factor;
4329 /* scale ms to jiffies */
4330 interval = msecs_to_jiffies(interval);
4331 if (unlikely(!interval))
4332 interval = 1;
4333 if (interval > HZ*NR_CPUS/10)
4334 interval = HZ*NR_CPUS/10;
4336 need_serialize = sd->flags & SD_SERIALIZE;
4338 if (need_serialize) {
4339 if (!spin_trylock(&balancing))
4340 goto out;
4343 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4344 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4346 * We've pulled tasks over so either we're no
4347 * longer idle, or one of our SMT siblings is
4348 * not idle.
4350 idle = CPU_NOT_IDLE;
4352 sd->last_balance = jiffies;
4354 if (need_serialize)
4355 spin_unlock(&balancing);
4356 out:
4357 if (time_after(next_balance, sd->last_balance + interval)) {
4358 next_balance = sd->last_balance + interval;
4359 update_next_balance = 1;
4363 * Stop the load balance at this level. There is another
4364 * CPU in our sched group which is doing load balancing more
4365 * actively.
4367 if (!balance)
4368 break;
4372 * next_balance will be updated only when there is a need.
4373 * When the cpu is attached to null domain for ex, it will not be
4374 * updated.
4376 if (likely(update_next_balance))
4377 rq->next_balance = next_balance;
4379 free_cpumask_var(tmp);
4383 * run_rebalance_domains is triggered when needed from the scheduler tick.
4384 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4385 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4387 static void run_rebalance_domains(struct softirq_action *h)
4389 int this_cpu = smp_processor_id();
4390 struct rq *this_rq = cpu_rq(this_cpu);
4391 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4392 CPU_IDLE : CPU_NOT_IDLE;
4394 rebalance_domains(this_cpu, idle);
4396 #ifdef CONFIG_NO_HZ
4398 * If this cpu is the owner for idle load balancing, then do the
4399 * balancing on behalf of the other idle cpus whose ticks are
4400 * stopped.
4402 if (this_rq->idle_at_tick &&
4403 atomic_read(&nohz.load_balancer) == this_cpu) {
4404 struct rq *rq;
4405 int balance_cpu;
4407 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4408 if (balance_cpu == this_cpu)
4409 continue;
4412 * If this cpu gets work to do, stop the load balancing
4413 * work being done for other cpus. Next load
4414 * balancing owner will pick it up.
4416 if (need_resched())
4417 break;
4419 rebalance_domains(balance_cpu, CPU_IDLE);
4421 rq = cpu_rq(balance_cpu);
4422 if (time_after(this_rq->next_balance, rq->next_balance))
4423 this_rq->next_balance = rq->next_balance;
4426 #endif
4429 static inline int on_null_domain(int cpu)
4431 return !rcu_dereference(cpu_rq(cpu)->sd);
4435 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4437 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4438 * idle load balancing owner or decide to stop the periodic load balancing,
4439 * if the whole system is idle.
4441 static inline void trigger_load_balance(struct rq *rq, int cpu)
4443 #ifdef CONFIG_NO_HZ
4445 * If we were in the nohz mode recently and busy at the current
4446 * scheduler tick, then check if we need to nominate new idle
4447 * load balancer.
4449 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4450 rq->in_nohz_recently = 0;
4452 if (atomic_read(&nohz.load_balancer) == cpu) {
4453 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4454 atomic_set(&nohz.load_balancer, -1);
4457 if (atomic_read(&nohz.load_balancer) == -1) {
4459 * simple selection for now: Nominate the
4460 * first cpu in the nohz list to be the next
4461 * ilb owner.
4463 * TBD: Traverse the sched domains and nominate
4464 * the nearest cpu in the nohz.cpu_mask.
4466 int ilb = cpumask_first(nohz.cpu_mask);
4468 if (ilb < nr_cpu_ids)
4469 resched_cpu(ilb);
4474 * If this cpu is idle and doing idle load balancing for all the
4475 * cpus with ticks stopped, is it time for that to stop?
4477 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4478 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4479 resched_cpu(cpu);
4480 return;
4484 * If this cpu is idle and the idle load balancing is done by
4485 * someone else, then no need raise the SCHED_SOFTIRQ
4487 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4488 cpumask_test_cpu(cpu, nohz.cpu_mask))
4489 return;
4490 #endif
4491 /* Don't need to rebalance while attached to NULL domain */
4492 if (time_after_eq(jiffies, rq->next_balance) &&
4493 likely(!on_null_domain(cpu)))
4494 raise_softirq(SCHED_SOFTIRQ);
4497 #else /* CONFIG_SMP */
4500 * on UP we do not need to balance between CPUs:
4502 static inline void idle_balance(int cpu, struct rq *rq)
4506 #endif
4508 DEFINE_PER_CPU(struct kernel_stat, kstat);
4510 EXPORT_PER_CPU_SYMBOL(kstat);
4513 * Return any ns on the sched_clock that have not yet been banked in
4514 * @p in case that task is currently running.
4516 unsigned long long task_delta_exec(struct task_struct *p)
4518 unsigned long flags;
4519 struct rq *rq;
4520 u64 ns = 0;
4522 rq = task_rq_lock(p, &flags);
4524 if (task_current(rq, p)) {
4525 u64 delta_exec;
4527 update_rq_clock(rq);
4528 delta_exec = rq->clock - p->se.exec_start;
4529 if ((s64)delta_exec > 0)
4530 ns = delta_exec;
4533 task_rq_unlock(rq, &flags);
4535 return ns;
4539 * Account user cpu time to a process.
4540 * @p: the process that the cpu time gets accounted to
4541 * @cputime: the cpu time spent in user space since the last update
4542 * @cputime_scaled: cputime scaled by cpu frequency
4544 void account_user_time(struct task_struct *p, cputime_t cputime,
4545 cputime_t cputime_scaled)
4547 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4548 cputime64_t tmp;
4550 /* Add user time to process. */
4551 p->utime = cputime_add(p->utime, cputime);
4552 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4553 account_group_user_time(p, cputime);
4555 /* Add user time to cpustat. */
4556 tmp = cputime_to_cputime64(cputime);
4557 if (TASK_NICE(p) > 0)
4558 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4559 else
4560 cpustat->user = cputime64_add(cpustat->user, tmp);
4561 /* Account for user time used */
4562 acct_update_integrals(p);
4566 * Account guest cpu time to a process.
4567 * @p: the process that the cpu time gets accounted to
4568 * @cputime: the cpu time spent in virtual machine since the last update
4569 * @cputime_scaled: cputime scaled by cpu frequency
4571 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4572 cputime_t cputime_scaled)
4574 cputime64_t tmp;
4575 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4577 tmp = cputime_to_cputime64(cputime);
4579 /* Add guest time to process. */
4580 p->utime = cputime_add(p->utime, cputime);
4581 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4582 account_group_user_time(p, cputime);
4583 p->gtime = cputime_add(p->gtime, cputime);
4585 /* Add guest time to cpustat. */
4586 cpustat->user = cputime64_add(cpustat->user, tmp);
4587 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4591 * Account system cpu time to a process.
4592 * @p: the process that the cpu time gets accounted to
4593 * @hardirq_offset: the offset to subtract from hardirq_count()
4594 * @cputime: the cpu time spent in kernel space since the last update
4595 * @cputime_scaled: cputime scaled by cpu frequency
4597 void account_system_time(struct task_struct *p, int hardirq_offset,
4598 cputime_t cputime, cputime_t cputime_scaled)
4600 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4601 cputime64_t tmp;
4603 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4604 account_guest_time(p, cputime, cputime_scaled);
4605 return;
4608 /* Add system time to process. */
4609 p->stime = cputime_add(p->stime, cputime);
4610 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4611 account_group_system_time(p, cputime);
4613 /* Add system time to cpustat. */
4614 tmp = cputime_to_cputime64(cputime);
4615 if (hardirq_count() - hardirq_offset)
4616 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4617 else if (softirq_count())
4618 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4619 else
4620 cpustat->system = cputime64_add(cpustat->system, tmp);
4622 /* Account for system time used */
4623 acct_update_integrals(p);
4627 * Account for involuntary wait time.
4628 * @steal: the cpu time spent in involuntary wait
4630 void account_steal_time(cputime_t cputime)
4632 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4633 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4635 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4639 * Account for idle time.
4640 * @cputime: the cpu time spent in idle wait
4642 void account_idle_time(cputime_t cputime)
4644 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4645 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4646 struct rq *rq = this_rq();
4648 if (atomic_read(&rq->nr_iowait) > 0)
4649 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4650 else
4651 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4654 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4657 * Account a single tick of cpu time.
4658 * @p: the process that the cpu time gets accounted to
4659 * @user_tick: indicates if the tick is a user or a system tick
4661 void account_process_tick(struct task_struct *p, int user_tick)
4663 cputime_t one_jiffy = jiffies_to_cputime(1);
4664 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4665 struct rq *rq = this_rq();
4667 if (user_tick)
4668 account_user_time(p, one_jiffy, one_jiffy_scaled);
4669 else if (p != rq->idle)
4670 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4671 one_jiffy_scaled);
4672 else
4673 account_idle_time(one_jiffy);
4677 * Account multiple ticks of steal time.
4678 * @p: the process from which the cpu time has been stolen
4679 * @ticks: number of stolen ticks
4681 void account_steal_ticks(unsigned long ticks)
4683 account_steal_time(jiffies_to_cputime(ticks));
4687 * Account multiple ticks of idle time.
4688 * @ticks: number of stolen ticks
4690 void account_idle_ticks(unsigned long ticks)
4692 account_idle_time(jiffies_to_cputime(ticks));
4695 #endif
4698 * Use precise platform statistics if available:
4700 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4701 cputime_t task_utime(struct task_struct *p)
4703 return p->utime;
4706 cputime_t task_stime(struct task_struct *p)
4708 return p->stime;
4710 #else
4711 cputime_t task_utime(struct task_struct *p)
4713 clock_t utime = cputime_to_clock_t(p->utime),
4714 total = utime + cputime_to_clock_t(p->stime);
4715 u64 temp;
4718 * Use CFS's precise accounting:
4720 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4722 if (total) {
4723 temp *= utime;
4724 do_div(temp, total);
4726 utime = (clock_t)temp;
4728 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4729 return p->prev_utime;
4732 cputime_t task_stime(struct task_struct *p)
4734 clock_t stime;
4737 * Use CFS's precise accounting. (we subtract utime from
4738 * the total, to make sure the total observed by userspace
4739 * grows monotonically - apps rely on that):
4741 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4742 cputime_to_clock_t(task_utime(p));
4744 if (stime >= 0)
4745 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4747 return p->prev_stime;
4749 #endif
4751 inline cputime_t task_gtime(struct task_struct *p)
4753 return p->gtime;
4757 * This function gets called by the timer code, with HZ frequency.
4758 * We call it with interrupts disabled.
4760 * It also gets called by the fork code, when changing the parent's
4761 * timeslices.
4763 void scheduler_tick(void)
4765 int cpu = smp_processor_id();
4766 struct rq *rq = cpu_rq(cpu);
4767 struct task_struct *curr = rq->curr;
4769 sched_clock_tick();
4771 spin_lock(&rq->lock);
4772 update_rq_clock(rq);
4773 update_cpu_load(rq);
4774 curr->sched_class->task_tick(rq, curr, 0);
4775 spin_unlock(&rq->lock);
4777 #ifdef CONFIG_SMP
4778 rq->idle_at_tick = idle_cpu(cpu);
4779 trigger_load_balance(rq, cpu);
4780 #endif
4783 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4784 defined(CONFIG_PREEMPT_TRACER))
4786 static inline unsigned long get_parent_ip(unsigned long addr)
4788 if (in_lock_functions(addr)) {
4789 addr = CALLER_ADDR2;
4790 if (in_lock_functions(addr))
4791 addr = CALLER_ADDR3;
4793 return addr;
4796 void __kprobes add_preempt_count(int val)
4798 #ifdef CONFIG_DEBUG_PREEMPT
4800 * Underflow?
4802 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4803 return;
4804 #endif
4805 preempt_count() += val;
4806 #ifdef CONFIG_DEBUG_PREEMPT
4808 * Spinlock count overflowing soon?
4810 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4811 PREEMPT_MASK - 10);
4812 #endif
4813 if (preempt_count() == val)
4814 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4816 EXPORT_SYMBOL(add_preempt_count);
4818 void __kprobes sub_preempt_count(int val)
4820 #ifdef CONFIG_DEBUG_PREEMPT
4822 * Underflow?
4824 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4825 return;
4827 * Is the spinlock portion underflowing?
4829 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4830 !(preempt_count() & PREEMPT_MASK)))
4831 return;
4832 #endif
4834 if (preempt_count() == val)
4835 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4836 preempt_count() -= val;
4838 EXPORT_SYMBOL(sub_preempt_count);
4840 #endif
4843 * Print scheduling while atomic bug:
4845 static noinline void __schedule_bug(struct task_struct *prev)
4847 struct pt_regs *regs = get_irq_regs();
4849 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4850 prev->comm, prev->pid, preempt_count());
4852 debug_show_held_locks(prev);
4853 print_modules();
4854 if (irqs_disabled())
4855 print_irqtrace_events(prev);
4857 if (regs)
4858 show_regs(regs);
4859 else
4860 dump_stack();
4864 * Various schedule()-time debugging checks and statistics:
4866 static inline void schedule_debug(struct task_struct *prev)
4869 * Test if we are atomic. Since do_exit() needs to call into
4870 * schedule() atomically, we ignore that path for now.
4871 * Otherwise, whine if we are scheduling when we should not be.
4873 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4874 __schedule_bug(prev);
4876 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4878 schedstat_inc(this_rq(), sched_count);
4879 #ifdef CONFIG_SCHEDSTATS
4880 if (unlikely(prev->lock_depth >= 0)) {
4881 schedstat_inc(this_rq(), bkl_count);
4882 schedstat_inc(prev, sched_info.bkl_count);
4884 #endif
4887 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4889 if (prev->state == TASK_RUNNING) {
4890 u64 runtime = prev->se.sum_exec_runtime;
4892 runtime -= prev->se.prev_sum_exec_runtime;
4893 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4896 * In order to avoid avg_overlap growing stale when we are
4897 * indeed overlapping and hence not getting put to sleep, grow
4898 * the avg_overlap on preemption.
4900 * We use the average preemption runtime because that
4901 * correlates to the amount of cache footprint a task can
4902 * build up.
4904 update_avg(&prev->se.avg_overlap, runtime);
4906 prev->sched_class->put_prev_task(rq, prev);
4910 * Pick up the highest-prio task:
4912 static inline struct task_struct *
4913 pick_next_task(struct rq *rq)
4915 const struct sched_class *class;
4916 struct task_struct *p;
4919 * Optimization: we know that if all tasks are in
4920 * the fair class we can call that function directly:
4922 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4923 p = fair_sched_class.pick_next_task(rq);
4924 if (likely(p))
4925 return p;
4928 class = sched_class_highest;
4929 for ( ; ; ) {
4930 p = class->pick_next_task(rq);
4931 if (p)
4932 return p;
4934 * Will never be NULL as the idle class always
4935 * returns a non-NULL p:
4937 class = class->next;
4942 * schedule() is the main scheduler function.
4944 asmlinkage void __sched schedule(void)
4946 struct task_struct *prev, *next;
4947 unsigned long *switch_count;
4948 struct rq *rq;
4949 int cpu;
4951 need_resched:
4952 preempt_disable();
4953 cpu = smp_processor_id();
4954 rq = cpu_rq(cpu);
4955 rcu_qsctr_inc(cpu);
4956 prev = rq->curr;
4957 switch_count = &prev->nivcsw;
4959 release_kernel_lock(prev);
4960 need_resched_nonpreemptible:
4962 schedule_debug(prev);
4964 if (sched_feat(HRTICK))
4965 hrtick_clear(rq);
4967 spin_lock_irq(&rq->lock);
4968 update_rq_clock(rq);
4969 clear_tsk_need_resched(prev);
4971 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4972 if (unlikely(signal_pending_state(prev->state, prev)))
4973 prev->state = TASK_RUNNING;
4974 else
4975 deactivate_task(rq, prev, 1);
4976 switch_count = &prev->nvcsw;
4979 #ifdef CONFIG_SMP
4980 if (prev->sched_class->pre_schedule)
4981 prev->sched_class->pre_schedule(rq, prev);
4982 #endif
4984 if (unlikely(!rq->nr_running))
4985 idle_balance(cpu, rq);
4987 put_prev_task(rq, prev);
4988 next = pick_next_task(rq);
4990 if (likely(prev != next)) {
4991 sched_info_switch(prev, next);
4993 rq->nr_switches++;
4994 rq->curr = next;
4995 ++*switch_count;
4997 context_switch(rq, prev, next); /* unlocks the rq */
4999 * the context switch might have flipped the stack from under
5000 * us, hence refresh the local variables.
5002 cpu = smp_processor_id();
5003 rq = cpu_rq(cpu);
5004 } else
5005 spin_unlock_irq(&rq->lock);
5007 if (unlikely(reacquire_kernel_lock(current) < 0))
5008 goto need_resched_nonpreemptible;
5010 preempt_enable_no_resched();
5011 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5012 goto need_resched;
5014 EXPORT_SYMBOL(schedule);
5016 #ifdef CONFIG_PREEMPT
5018 * this is the entry point to schedule() from in-kernel preemption
5019 * off of preempt_enable. Kernel preemptions off return from interrupt
5020 * occur there and call schedule directly.
5022 asmlinkage void __sched preempt_schedule(void)
5024 struct thread_info *ti = current_thread_info();
5027 * If there is a non-zero preempt_count or interrupts are disabled,
5028 * we do not want to preempt the current task. Just return..
5030 if (likely(ti->preempt_count || irqs_disabled()))
5031 return;
5033 do {
5034 add_preempt_count(PREEMPT_ACTIVE);
5035 schedule();
5036 sub_preempt_count(PREEMPT_ACTIVE);
5039 * Check again in case we missed a preemption opportunity
5040 * between schedule and now.
5042 barrier();
5043 } while (need_resched());
5045 EXPORT_SYMBOL(preempt_schedule);
5048 * this is the entry point to schedule() from kernel preemption
5049 * off of irq context.
5050 * Note, that this is called and return with irqs disabled. This will
5051 * protect us against recursive calling from irq.
5053 asmlinkage void __sched preempt_schedule_irq(void)
5055 struct thread_info *ti = current_thread_info();
5057 /* Catch callers which need to be fixed */
5058 BUG_ON(ti->preempt_count || !irqs_disabled());
5060 do {
5061 add_preempt_count(PREEMPT_ACTIVE);
5062 local_irq_enable();
5063 schedule();
5064 local_irq_disable();
5065 sub_preempt_count(PREEMPT_ACTIVE);
5068 * Check again in case we missed a preemption opportunity
5069 * between schedule and now.
5071 barrier();
5072 } while (need_resched());
5075 #endif /* CONFIG_PREEMPT */
5077 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5078 void *key)
5080 return try_to_wake_up(curr->private, mode, sync);
5082 EXPORT_SYMBOL(default_wake_function);
5085 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5086 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5087 * number) then we wake all the non-exclusive tasks and one exclusive task.
5089 * There are circumstances in which we can try to wake a task which has already
5090 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5091 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5093 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5094 int nr_exclusive, int sync, void *key)
5096 wait_queue_t *curr, *next;
5098 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5099 unsigned flags = curr->flags;
5101 if (curr->func(curr, mode, sync, key) &&
5102 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5103 break;
5108 * __wake_up - wake up threads blocked on a waitqueue.
5109 * @q: the waitqueue
5110 * @mode: which threads
5111 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5112 * @key: is directly passed to the wakeup function
5114 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5115 int nr_exclusive, void *key)
5117 unsigned long flags;
5119 spin_lock_irqsave(&q->lock, flags);
5120 __wake_up_common(q, mode, nr_exclusive, 0, key);
5121 spin_unlock_irqrestore(&q->lock, flags);
5123 EXPORT_SYMBOL(__wake_up);
5126 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5128 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5130 __wake_up_common(q, mode, 1, 0, NULL);
5134 * __wake_up_sync - wake up threads blocked on a waitqueue.
5135 * @q: the waitqueue
5136 * @mode: which threads
5137 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5139 * The sync wakeup differs that the waker knows that it will schedule
5140 * away soon, so while the target thread will be woken up, it will not
5141 * be migrated to another CPU - ie. the two threads are 'synchronized'
5142 * with each other. This can prevent needless bouncing between CPUs.
5144 * On UP it can prevent extra preemption.
5146 void
5147 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5149 unsigned long flags;
5150 int sync = 1;
5152 if (unlikely(!q))
5153 return;
5155 if (unlikely(!nr_exclusive))
5156 sync = 0;
5158 spin_lock_irqsave(&q->lock, flags);
5159 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
5160 spin_unlock_irqrestore(&q->lock, flags);
5162 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5165 * complete: - signals a single thread waiting on this completion
5166 * @x: holds the state of this particular completion
5168 * This will wake up a single thread waiting on this completion. Threads will be
5169 * awakened in the same order in which they were queued.
5171 * See also complete_all(), wait_for_completion() and related routines.
5173 void complete(struct completion *x)
5175 unsigned long flags;
5177 spin_lock_irqsave(&x->wait.lock, flags);
5178 x->done++;
5179 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5180 spin_unlock_irqrestore(&x->wait.lock, flags);
5182 EXPORT_SYMBOL(complete);
5185 * complete_all: - signals all threads waiting on this completion
5186 * @x: holds the state of this particular completion
5188 * This will wake up all threads waiting on this particular completion event.
5190 void complete_all(struct completion *x)
5192 unsigned long flags;
5194 spin_lock_irqsave(&x->wait.lock, flags);
5195 x->done += UINT_MAX/2;
5196 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5197 spin_unlock_irqrestore(&x->wait.lock, flags);
5199 EXPORT_SYMBOL(complete_all);
5201 static inline long __sched
5202 do_wait_for_common(struct completion *x, long timeout, int state)
5204 if (!x->done) {
5205 DECLARE_WAITQUEUE(wait, current);
5207 wait.flags |= WQ_FLAG_EXCLUSIVE;
5208 __add_wait_queue_tail(&x->wait, &wait);
5209 do {
5210 if (signal_pending_state(state, current)) {
5211 timeout = -ERESTARTSYS;
5212 break;
5214 __set_current_state(state);
5215 spin_unlock_irq(&x->wait.lock);
5216 timeout = schedule_timeout(timeout);
5217 spin_lock_irq(&x->wait.lock);
5218 } while (!x->done && timeout);
5219 __remove_wait_queue(&x->wait, &wait);
5220 if (!x->done)
5221 return timeout;
5223 x->done--;
5224 return timeout ?: 1;
5227 static long __sched
5228 wait_for_common(struct completion *x, long timeout, int state)
5230 might_sleep();
5232 spin_lock_irq(&x->wait.lock);
5233 timeout = do_wait_for_common(x, timeout, state);
5234 spin_unlock_irq(&x->wait.lock);
5235 return timeout;
5239 * wait_for_completion: - waits for completion of a task
5240 * @x: holds the state of this particular completion
5242 * This waits to be signaled for completion of a specific task. It is NOT
5243 * interruptible and there is no timeout.
5245 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5246 * and interrupt capability. Also see complete().
5248 void __sched wait_for_completion(struct completion *x)
5250 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5252 EXPORT_SYMBOL(wait_for_completion);
5255 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5256 * @x: holds the state of this particular completion
5257 * @timeout: timeout value in jiffies
5259 * This waits for either a completion of a specific task to be signaled or for a
5260 * specified timeout to expire. The timeout is in jiffies. It is not
5261 * interruptible.
5263 unsigned long __sched
5264 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5266 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5268 EXPORT_SYMBOL(wait_for_completion_timeout);
5271 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5272 * @x: holds the state of this particular completion
5274 * This waits for completion of a specific task to be signaled. It is
5275 * interruptible.
5277 int __sched wait_for_completion_interruptible(struct completion *x)
5279 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5280 if (t == -ERESTARTSYS)
5281 return t;
5282 return 0;
5284 EXPORT_SYMBOL(wait_for_completion_interruptible);
5287 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5288 * @x: holds the state of this particular completion
5289 * @timeout: timeout value in jiffies
5291 * This waits for either a completion of a specific task to be signaled or for a
5292 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5294 unsigned long __sched
5295 wait_for_completion_interruptible_timeout(struct completion *x,
5296 unsigned long timeout)
5298 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5300 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5303 * wait_for_completion_killable: - waits for completion of a task (killable)
5304 * @x: holds the state of this particular completion
5306 * This waits to be signaled for completion of a specific task. It can be
5307 * interrupted by a kill signal.
5309 int __sched wait_for_completion_killable(struct completion *x)
5311 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5312 if (t == -ERESTARTSYS)
5313 return t;
5314 return 0;
5316 EXPORT_SYMBOL(wait_for_completion_killable);
5319 * try_wait_for_completion - try to decrement a completion without blocking
5320 * @x: completion structure
5322 * Returns: 0 if a decrement cannot be done without blocking
5323 * 1 if a decrement succeeded.
5325 * If a completion is being used as a counting completion,
5326 * attempt to decrement the counter without blocking. This
5327 * enables us to avoid waiting if the resource the completion
5328 * is protecting is not available.
5330 bool try_wait_for_completion(struct completion *x)
5332 int ret = 1;
5334 spin_lock_irq(&x->wait.lock);
5335 if (!x->done)
5336 ret = 0;
5337 else
5338 x->done--;
5339 spin_unlock_irq(&x->wait.lock);
5340 return ret;
5342 EXPORT_SYMBOL(try_wait_for_completion);
5345 * completion_done - Test to see if a completion has any waiters
5346 * @x: completion structure
5348 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5349 * 1 if there are no waiters.
5352 bool completion_done(struct completion *x)
5354 int ret = 1;
5356 spin_lock_irq(&x->wait.lock);
5357 if (!x->done)
5358 ret = 0;
5359 spin_unlock_irq(&x->wait.lock);
5360 return ret;
5362 EXPORT_SYMBOL(completion_done);
5364 static long __sched
5365 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5367 unsigned long flags;
5368 wait_queue_t wait;
5370 init_waitqueue_entry(&wait, current);
5372 __set_current_state(state);
5374 spin_lock_irqsave(&q->lock, flags);
5375 __add_wait_queue(q, &wait);
5376 spin_unlock(&q->lock);
5377 timeout = schedule_timeout(timeout);
5378 spin_lock_irq(&q->lock);
5379 __remove_wait_queue(q, &wait);
5380 spin_unlock_irqrestore(&q->lock, flags);
5382 return timeout;
5385 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5387 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5389 EXPORT_SYMBOL(interruptible_sleep_on);
5391 long __sched
5392 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5394 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5396 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5398 void __sched sleep_on(wait_queue_head_t *q)
5400 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5402 EXPORT_SYMBOL(sleep_on);
5404 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5406 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5408 EXPORT_SYMBOL(sleep_on_timeout);
5410 #ifdef CONFIG_RT_MUTEXES
5413 * rt_mutex_setprio - set the current priority of a task
5414 * @p: task
5415 * @prio: prio value (kernel-internal form)
5417 * This function changes the 'effective' priority of a task. It does
5418 * not touch ->normal_prio like __setscheduler().
5420 * Used by the rt_mutex code to implement priority inheritance logic.
5422 void rt_mutex_setprio(struct task_struct *p, int prio)
5424 unsigned long flags;
5425 int oldprio, on_rq, running;
5426 struct rq *rq;
5427 const struct sched_class *prev_class = p->sched_class;
5429 BUG_ON(prio < 0 || prio > MAX_PRIO);
5431 rq = task_rq_lock(p, &flags);
5432 update_rq_clock(rq);
5434 oldprio = p->prio;
5435 on_rq = p->se.on_rq;
5436 running = task_current(rq, p);
5437 if (on_rq)
5438 dequeue_task(rq, p, 0);
5439 if (running)
5440 p->sched_class->put_prev_task(rq, p);
5442 if (rt_prio(prio))
5443 p->sched_class = &rt_sched_class;
5444 else
5445 p->sched_class = &fair_sched_class;
5447 p->prio = prio;
5449 if (running)
5450 p->sched_class->set_curr_task(rq);
5451 if (on_rq) {
5452 enqueue_task(rq, p, 0);
5454 check_class_changed(rq, p, prev_class, oldprio, running);
5456 task_rq_unlock(rq, &flags);
5459 #endif
5461 void set_user_nice(struct task_struct *p, long nice)
5463 int old_prio, delta, on_rq;
5464 unsigned long flags;
5465 struct rq *rq;
5467 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5468 return;
5470 * We have to be careful, if called from sys_setpriority(),
5471 * the task might be in the middle of scheduling on another CPU.
5473 rq = task_rq_lock(p, &flags);
5474 update_rq_clock(rq);
5476 * The RT priorities are set via sched_setscheduler(), but we still
5477 * allow the 'normal' nice value to be set - but as expected
5478 * it wont have any effect on scheduling until the task is
5479 * SCHED_FIFO/SCHED_RR:
5481 if (task_has_rt_policy(p)) {
5482 p->static_prio = NICE_TO_PRIO(nice);
5483 goto out_unlock;
5485 on_rq = p->se.on_rq;
5486 if (on_rq)
5487 dequeue_task(rq, p, 0);
5489 p->static_prio = NICE_TO_PRIO(nice);
5490 set_load_weight(p);
5491 old_prio = p->prio;
5492 p->prio = effective_prio(p);
5493 delta = p->prio - old_prio;
5495 if (on_rq) {
5496 enqueue_task(rq, p, 0);
5498 * If the task increased its priority or is running and
5499 * lowered its priority, then reschedule its CPU:
5501 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5502 resched_task(rq->curr);
5504 out_unlock:
5505 task_rq_unlock(rq, &flags);
5507 EXPORT_SYMBOL(set_user_nice);
5510 * can_nice - check if a task can reduce its nice value
5511 * @p: task
5512 * @nice: nice value
5514 int can_nice(const struct task_struct *p, const int nice)
5516 /* convert nice value [19,-20] to rlimit style value [1,40] */
5517 int nice_rlim = 20 - nice;
5519 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5520 capable(CAP_SYS_NICE));
5523 #ifdef __ARCH_WANT_SYS_NICE
5526 * sys_nice - change the priority of the current process.
5527 * @increment: priority increment
5529 * sys_setpriority is a more generic, but much slower function that
5530 * does similar things.
5532 SYSCALL_DEFINE1(nice, int, increment)
5534 long nice, retval;
5537 * Setpriority might change our priority at the same moment.
5538 * We don't have to worry. Conceptually one call occurs first
5539 * and we have a single winner.
5541 if (increment < -40)
5542 increment = -40;
5543 if (increment > 40)
5544 increment = 40;
5546 nice = TASK_NICE(current) + increment;
5547 if (nice < -20)
5548 nice = -20;
5549 if (nice > 19)
5550 nice = 19;
5552 if (increment < 0 && !can_nice(current, nice))
5553 return -EPERM;
5555 retval = security_task_setnice(current, nice);
5556 if (retval)
5557 return retval;
5559 set_user_nice(current, nice);
5560 return 0;
5563 #endif
5566 * task_prio - return the priority value of a given task.
5567 * @p: the task in question.
5569 * This is the priority value as seen by users in /proc.
5570 * RT tasks are offset by -200. Normal tasks are centered
5571 * around 0, value goes from -16 to +15.
5573 int task_prio(const struct task_struct *p)
5575 return p->prio - MAX_RT_PRIO;
5579 * task_nice - return the nice value of a given task.
5580 * @p: the task in question.
5582 int task_nice(const struct task_struct *p)
5584 return TASK_NICE(p);
5586 EXPORT_SYMBOL(task_nice);
5589 * idle_cpu - is a given cpu idle currently?
5590 * @cpu: the processor in question.
5592 int idle_cpu(int cpu)
5594 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5598 * idle_task - return the idle task for a given cpu.
5599 * @cpu: the processor in question.
5601 struct task_struct *idle_task(int cpu)
5603 return cpu_rq(cpu)->idle;
5607 * find_process_by_pid - find a process with a matching PID value.
5608 * @pid: the pid in question.
5610 static struct task_struct *find_process_by_pid(pid_t pid)
5612 return pid ? find_task_by_vpid(pid) : current;
5615 /* Actually do priority change: must hold rq lock. */
5616 static void
5617 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5619 BUG_ON(p->se.on_rq);
5621 p->policy = policy;
5622 switch (p->policy) {
5623 case SCHED_NORMAL:
5624 case SCHED_BATCH:
5625 case SCHED_IDLE:
5626 p->sched_class = &fair_sched_class;
5627 break;
5628 case SCHED_FIFO:
5629 case SCHED_RR:
5630 p->sched_class = &rt_sched_class;
5631 break;
5634 p->rt_priority = prio;
5635 p->normal_prio = normal_prio(p);
5636 /* we are holding p->pi_lock already */
5637 p->prio = rt_mutex_getprio(p);
5638 set_load_weight(p);
5642 * check the target process has a UID that matches the current process's
5644 static bool check_same_owner(struct task_struct *p)
5646 const struct cred *cred = current_cred(), *pcred;
5647 bool match;
5649 rcu_read_lock();
5650 pcred = __task_cred(p);
5651 match = (cred->euid == pcred->euid ||
5652 cred->euid == pcred->uid);
5653 rcu_read_unlock();
5654 return match;
5657 static int __sched_setscheduler(struct task_struct *p, int policy,
5658 struct sched_param *param, bool user)
5660 int retval, oldprio, oldpolicy = -1, on_rq, running;
5661 unsigned long flags;
5662 const struct sched_class *prev_class = p->sched_class;
5663 struct rq *rq;
5665 /* may grab non-irq protected spin_locks */
5666 BUG_ON(in_interrupt());
5667 recheck:
5668 /* double check policy once rq lock held */
5669 if (policy < 0)
5670 policy = oldpolicy = p->policy;
5671 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5672 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5673 policy != SCHED_IDLE)
5674 return -EINVAL;
5676 * Valid priorities for SCHED_FIFO and SCHED_RR are
5677 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5678 * SCHED_BATCH and SCHED_IDLE is 0.
5680 if (param->sched_priority < 0 ||
5681 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5682 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5683 return -EINVAL;
5684 if (rt_policy(policy) != (param->sched_priority != 0))
5685 return -EINVAL;
5688 * Allow unprivileged RT tasks to decrease priority:
5690 if (user && !capable(CAP_SYS_NICE)) {
5691 if (rt_policy(policy)) {
5692 unsigned long rlim_rtprio;
5694 if (!lock_task_sighand(p, &flags))
5695 return -ESRCH;
5696 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5697 unlock_task_sighand(p, &flags);
5699 /* can't set/change the rt policy */
5700 if (policy != p->policy && !rlim_rtprio)
5701 return -EPERM;
5703 /* can't increase priority */
5704 if (param->sched_priority > p->rt_priority &&
5705 param->sched_priority > rlim_rtprio)
5706 return -EPERM;
5709 * Like positive nice levels, dont allow tasks to
5710 * move out of SCHED_IDLE either:
5712 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5713 return -EPERM;
5715 /* can't change other user's priorities */
5716 if (!check_same_owner(p))
5717 return -EPERM;
5720 if (user) {
5721 #ifdef CONFIG_RT_GROUP_SCHED
5723 * Do not allow realtime tasks into groups that have no runtime
5724 * assigned.
5726 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5727 task_group(p)->rt_bandwidth.rt_runtime == 0)
5728 return -EPERM;
5729 #endif
5731 retval = security_task_setscheduler(p, policy, param);
5732 if (retval)
5733 return retval;
5737 * make sure no PI-waiters arrive (or leave) while we are
5738 * changing the priority of the task:
5740 spin_lock_irqsave(&p->pi_lock, flags);
5742 * To be able to change p->policy safely, the apropriate
5743 * runqueue lock must be held.
5745 rq = __task_rq_lock(p);
5746 /* recheck policy now with rq lock held */
5747 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5748 policy = oldpolicy = -1;
5749 __task_rq_unlock(rq);
5750 spin_unlock_irqrestore(&p->pi_lock, flags);
5751 goto recheck;
5753 update_rq_clock(rq);
5754 on_rq = p->se.on_rq;
5755 running = task_current(rq, p);
5756 if (on_rq)
5757 deactivate_task(rq, p, 0);
5758 if (running)
5759 p->sched_class->put_prev_task(rq, p);
5761 oldprio = p->prio;
5762 __setscheduler(rq, p, policy, param->sched_priority);
5764 if (running)
5765 p->sched_class->set_curr_task(rq);
5766 if (on_rq) {
5767 activate_task(rq, p, 0);
5769 check_class_changed(rq, p, prev_class, oldprio, running);
5771 __task_rq_unlock(rq);
5772 spin_unlock_irqrestore(&p->pi_lock, flags);
5774 rt_mutex_adjust_pi(p);
5776 return 0;
5780 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5781 * @p: the task in question.
5782 * @policy: new policy.
5783 * @param: structure containing the new RT priority.
5785 * NOTE that the task may be already dead.
5787 int sched_setscheduler(struct task_struct *p, int policy,
5788 struct sched_param *param)
5790 return __sched_setscheduler(p, policy, param, true);
5792 EXPORT_SYMBOL_GPL(sched_setscheduler);
5795 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5796 * @p: the task in question.
5797 * @policy: new policy.
5798 * @param: structure containing the new RT priority.
5800 * Just like sched_setscheduler, only don't bother checking if the
5801 * current context has permission. For example, this is needed in
5802 * stop_machine(): we create temporary high priority worker threads,
5803 * but our caller might not have that capability.
5805 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5806 struct sched_param *param)
5808 return __sched_setscheduler(p, policy, param, false);
5811 static int
5812 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5814 struct sched_param lparam;
5815 struct task_struct *p;
5816 int retval;
5818 if (!param || pid < 0)
5819 return -EINVAL;
5820 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5821 return -EFAULT;
5823 rcu_read_lock();
5824 retval = -ESRCH;
5825 p = find_process_by_pid(pid);
5826 if (p != NULL)
5827 retval = sched_setscheduler(p, policy, &lparam);
5828 rcu_read_unlock();
5830 return retval;
5834 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5835 * @pid: the pid in question.
5836 * @policy: new policy.
5837 * @param: structure containing the new RT priority.
5839 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5840 struct sched_param __user *, param)
5842 /* negative values for policy are not valid */
5843 if (policy < 0)
5844 return -EINVAL;
5846 return do_sched_setscheduler(pid, policy, param);
5850 * sys_sched_setparam - set/change the RT priority of a thread
5851 * @pid: the pid in question.
5852 * @param: structure containing the new RT priority.
5854 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5856 return do_sched_setscheduler(pid, -1, param);
5860 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5861 * @pid: the pid in question.
5863 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5865 struct task_struct *p;
5866 int retval;
5868 if (pid < 0)
5869 return -EINVAL;
5871 retval = -ESRCH;
5872 read_lock(&tasklist_lock);
5873 p = find_process_by_pid(pid);
5874 if (p) {
5875 retval = security_task_getscheduler(p);
5876 if (!retval)
5877 retval = p->policy;
5879 read_unlock(&tasklist_lock);
5880 return retval;
5884 * sys_sched_getscheduler - get the RT priority of a thread
5885 * @pid: the pid in question.
5886 * @param: structure containing the RT priority.
5888 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5890 struct sched_param lp;
5891 struct task_struct *p;
5892 int retval;
5894 if (!param || pid < 0)
5895 return -EINVAL;
5897 read_lock(&tasklist_lock);
5898 p = find_process_by_pid(pid);
5899 retval = -ESRCH;
5900 if (!p)
5901 goto out_unlock;
5903 retval = security_task_getscheduler(p);
5904 if (retval)
5905 goto out_unlock;
5907 lp.sched_priority = p->rt_priority;
5908 read_unlock(&tasklist_lock);
5911 * This one might sleep, we cannot do it with a spinlock held ...
5913 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5915 return retval;
5917 out_unlock:
5918 read_unlock(&tasklist_lock);
5919 return retval;
5922 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5924 cpumask_var_t cpus_allowed, new_mask;
5925 struct task_struct *p;
5926 int retval;
5928 get_online_cpus();
5929 read_lock(&tasklist_lock);
5931 p = find_process_by_pid(pid);
5932 if (!p) {
5933 read_unlock(&tasklist_lock);
5934 put_online_cpus();
5935 return -ESRCH;
5939 * It is not safe to call set_cpus_allowed with the
5940 * tasklist_lock held. We will bump the task_struct's
5941 * usage count and then drop tasklist_lock.
5943 get_task_struct(p);
5944 read_unlock(&tasklist_lock);
5946 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5947 retval = -ENOMEM;
5948 goto out_put_task;
5950 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5951 retval = -ENOMEM;
5952 goto out_free_cpus_allowed;
5954 retval = -EPERM;
5955 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5956 goto out_unlock;
5958 retval = security_task_setscheduler(p, 0, NULL);
5959 if (retval)
5960 goto out_unlock;
5962 cpuset_cpus_allowed(p, cpus_allowed);
5963 cpumask_and(new_mask, in_mask, cpus_allowed);
5964 again:
5965 retval = set_cpus_allowed_ptr(p, new_mask);
5967 if (!retval) {
5968 cpuset_cpus_allowed(p, cpus_allowed);
5969 if (!cpumask_subset(new_mask, cpus_allowed)) {
5971 * We must have raced with a concurrent cpuset
5972 * update. Just reset the cpus_allowed to the
5973 * cpuset's cpus_allowed
5975 cpumask_copy(new_mask, cpus_allowed);
5976 goto again;
5979 out_unlock:
5980 free_cpumask_var(new_mask);
5981 out_free_cpus_allowed:
5982 free_cpumask_var(cpus_allowed);
5983 out_put_task:
5984 put_task_struct(p);
5985 put_online_cpus();
5986 return retval;
5989 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5990 struct cpumask *new_mask)
5992 if (len < cpumask_size())
5993 cpumask_clear(new_mask);
5994 else if (len > cpumask_size())
5995 len = cpumask_size();
5997 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6001 * sys_sched_setaffinity - set the cpu affinity of a process
6002 * @pid: pid of the process
6003 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6004 * @user_mask_ptr: user-space pointer to the new cpu mask
6006 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6007 unsigned long __user *, user_mask_ptr)
6009 cpumask_var_t new_mask;
6010 int retval;
6012 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6013 return -ENOMEM;
6015 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6016 if (retval == 0)
6017 retval = sched_setaffinity(pid, new_mask);
6018 free_cpumask_var(new_mask);
6019 return retval;
6022 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6024 struct task_struct *p;
6025 int retval;
6027 get_online_cpus();
6028 read_lock(&tasklist_lock);
6030 retval = -ESRCH;
6031 p = find_process_by_pid(pid);
6032 if (!p)
6033 goto out_unlock;
6035 retval = security_task_getscheduler(p);
6036 if (retval)
6037 goto out_unlock;
6039 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6041 out_unlock:
6042 read_unlock(&tasklist_lock);
6043 put_online_cpus();
6045 return retval;
6049 * sys_sched_getaffinity - get the cpu affinity of a process
6050 * @pid: pid of the process
6051 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6052 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6054 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6055 unsigned long __user *, user_mask_ptr)
6057 int ret;
6058 cpumask_var_t mask;
6060 if (len < cpumask_size())
6061 return -EINVAL;
6063 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064 return -ENOMEM;
6066 ret = sched_getaffinity(pid, mask);
6067 if (ret == 0) {
6068 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6069 ret = -EFAULT;
6070 else
6071 ret = cpumask_size();
6073 free_cpumask_var(mask);
6075 return ret;
6079 * sys_sched_yield - yield the current processor to other threads.
6081 * This function yields the current CPU to other tasks. If there are no
6082 * other threads running on this CPU then this function will return.
6084 SYSCALL_DEFINE0(sched_yield)
6086 struct rq *rq = this_rq_lock();
6088 schedstat_inc(rq, yld_count);
6089 current->sched_class->yield_task(rq);
6092 * Since we are going to call schedule() anyway, there's
6093 * no need to preempt or enable interrupts:
6095 __release(rq->lock);
6096 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6097 _raw_spin_unlock(&rq->lock);
6098 preempt_enable_no_resched();
6100 schedule();
6102 return 0;
6105 static void __cond_resched(void)
6107 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6108 __might_sleep(__FILE__, __LINE__);
6109 #endif
6111 * The BKS might be reacquired before we have dropped
6112 * PREEMPT_ACTIVE, which could trigger a second
6113 * cond_resched() call.
6115 do {
6116 add_preempt_count(PREEMPT_ACTIVE);
6117 schedule();
6118 sub_preempt_count(PREEMPT_ACTIVE);
6119 } while (need_resched());
6122 int __sched _cond_resched(void)
6124 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6125 system_state == SYSTEM_RUNNING) {
6126 __cond_resched();
6127 return 1;
6129 return 0;
6131 EXPORT_SYMBOL(_cond_resched);
6134 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6135 * call schedule, and on return reacquire the lock.
6137 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6138 * operations here to prevent schedule() from being called twice (once via
6139 * spin_unlock(), once by hand).
6141 int cond_resched_lock(spinlock_t *lock)
6143 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6144 int ret = 0;
6146 if (spin_needbreak(lock) || resched) {
6147 spin_unlock(lock);
6148 if (resched && need_resched())
6149 __cond_resched();
6150 else
6151 cpu_relax();
6152 ret = 1;
6153 spin_lock(lock);
6155 return ret;
6157 EXPORT_SYMBOL(cond_resched_lock);
6159 int __sched cond_resched_softirq(void)
6161 BUG_ON(!in_softirq());
6163 if (need_resched() && system_state == SYSTEM_RUNNING) {
6164 local_bh_enable();
6165 __cond_resched();
6166 local_bh_disable();
6167 return 1;
6169 return 0;
6171 EXPORT_SYMBOL(cond_resched_softirq);
6174 * yield - yield the current processor to other threads.
6176 * This is a shortcut for kernel-space yielding - it marks the
6177 * thread runnable and calls sys_sched_yield().
6179 void __sched yield(void)
6181 set_current_state(TASK_RUNNING);
6182 sys_sched_yield();
6184 EXPORT_SYMBOL(yield);
6187 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6188 * that process accounting knows that this is a task in IO wait state.
6190 * But don't do that if it is a deliberate, throttling IO wait (this task
6191 * has set its backing_dev_info: the queue against which it should throttle)
6193 void __sched io_schedule(void)
6195 struct rq *rq = &__raw_get_cpu_var(runqueues);
6197 delayacct_blkio_start();
6198 atomic_inc(&rq->nr_iowait);
6199 schedule();
6200 atomic_dec(&rq->nr_iowait);
6201 delayacct_blkio_end();
6203 EXPORT_SYMBOL(io_schedule);
6205 long __sched io_schedule_timeout(long timeout)
6207 struct rq *rq = &__raw_get_cpu_var(runqueues);
6208 long ret;
6210 delayacct_blkio_start();
6211 atomic_inc(&rq->nr_iowait);
6212 ret = schedule_timeout(timeout);
6213 atomic_dec(&rq->nr_iowait);
6214 delayacct_blkio_end();
6215 return ret;
6219 * sys_sched_get_priority_max - return maximum RT priority.
6220 * @policy: scheduling class.
6222 * this syscall returns the maximum rt_priority that can be used
6223 * by a given scheduling class.
6225 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6227 int ret = -EINVAL;
6229 switch (policy) {
6230 case SCHED_FIFO:
6231 case SCHED_RR:
6232 ret = MAX_USER_RT_PRIO-1;
6233 break;
6234 case SCHED_NORMAL:
6235 case SCHED_BATCH:
6236 case SCHED_IDLE:
6237 ret = 0;
6238 break;
6240 return ret;
6244 * sys_sched_get_priority_min - return minimum RT priority.
6245 * @policy: scheduling class.
6247 * this syscall returns the minimum rt_priority that can be used
6248 * by a given scheduling class.
6250 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6252 int ret = -EINVAL;
6254 switch (policy) {
6255 case SCHED_FIFO:
6256 case SCHED_RR:
6257 ret = 1;
6258 break;
6259 case SCHED_NORMAL:
6260 case SCHED_BATCH:
6261 case SCHED_IDLE:
6262 ret = 0;
6264 return ret;
6268 * sys_sched_rr_get_interval - return the default timeslice of a process.
6269 * @pid: pid of the process.
6270 * @interval: userspace pointer to the timeslice value.
6272 * this syscall writes the default timeslice value of a given process
6273 * into the user-space timespec buffer. A value of '0' means infinity.
6275 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6276 struct timespec __user *, interval)
6278 struct task_struct *p;
6279 unsigned int time_slice;
6280 int retval;
6281 struct timespec t;
6283 if (pid < 0)
6284 return -EINVAL;
6286 retval = -ESRCH;
6287 read_lock(&tasklist_lock);
6288 p = find_process_by_pid(pid);
6289 if (!p)
6290 goto out_unlock;
6292 retval = security_task_getscheduler(p);
6293 if (retval)
6294 goto out_unlock;
6297 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6298 * tasks that are on an otherwise idle runqueue:
6300 time_slice = 0;
6301 if (p->policy == SCHED_RR) {
6302 time_slice = DEF_TIMESLICE;
6303 } else if (p->policy != SCHED_FIFO) {
6304 struct sched_entity *se = &p->se;
6305 unsigned long flags;
6306 struct rq *rq;
6308 rq = task_rq_lock(p, &flags);
6309 if (rq->cfs.load.weight)
6310 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6311 task_rq_unlock(rq, &flags);
6313 read_unlock(&tasklist_lock);
6314 jiffies_to_timespec(time_slice, &t);
6315 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6316 return retval;
6318 out_unlock:
6319 read_unlock(&tasklist_lock);
6320 return retval;
6323 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6325 void sched_show_task(struct task_struct *p)
6327 unsigned long free = 0;
6328 unsigned state;
6330 state = p->state ? __ffs(p->state) + 1 : 0;
6331 printk(KERN_INFO "%-13.13s %c", p->comm,
6332 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6333 #if BITS_PER_LONG == 32
6334 if (state == TASK_RUNNING)
6335 printk(KERN_CONT " running ");
6336 else
6337 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6338 #else
6339 if (state == TASK_RUNNING)
6340 printk(KERN_CONT " running task ");
6341 else
6342 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6343 #endif
6344 #ifdef CONFIG_DEBUG_STACK_USAGE
6346 unsigned long *n = end_of_stack(p);
6347 while (!*n)
6348 n++;
6349 free = (unsigned long)n - (unsigned long)end_of_stack(p);
6351 #endif
6352 printk(KERN_CONT "%5lu %5d %6d\n", free,
6353 task_pid_nr(p), task_pid_nr(p->real_parent));
6355 show_stack(p, NULL);
6358 void show_state_filter(unsigned long state_filter)
6360 struct task_struct *g, *p;
6362 #if BITS_PER_LONG == 32
6363 printk(KERN_INFO
6364 " task PC stack pid father\n");
6365 #else
6366 printk(KERN_INFO
6367 " task PC stack pid father\n");
6368 #endif
6369 read_lock(&tasklist_lock);
6370 do_each_thread(g, p) {
6372 * reset the NMI-timeout, listing all files on a slow
6373 * console might take alot of time:
6375 touch_nmi_watchdog();
6376 if (!state_filter || (p->state & state_filter))
6377 sched_show_task(p);
6378 } while_each_thread(g, p);
6380 touch_all_softlockup_watchdogs();
6382 #ifdef CONFIG_SCHED_DEBUG
6383 sysrq_sched_debug_show();
6384 #endif
6385 read_unlock(&tasklist_lock);
6387 * Only show locks if all tasks are dumped:
6389 if (state_filter == -1)
6390 debug_show_all_locks();
6393 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6395 idle->sched_class = &idle_sched_class;
6399 * init_idle - set up an idle thread for a given CPU
6400 * @idle: task in question
6401 * @cpu: cpu the idle task belongs to
6403 * NOTE: this function does not set the idle thread's NEED_RESCHED
6404 * flag, to make booting more robust.
6406 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6408 struct rq *rq = cpu_rq(cpu);
6409 unsigned long flags;
6411 spin_lock_irqsave(&rq->lock, flags);
6413 __sched_fork(idle);
6414 idle->se.exec_start = sched_clock();
6416 idle->prio = idle->normal_prio = MAX_PRIO;
6417 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6418 __set_task_cpu(idle, cpu);
6420 rq->curr = rq->idle = idle;
6421 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6422 idle->oncpu = 1;
6423 #endif
6424 spin_unlock_irqrestore(&rq->lock, flags);
6426 /* Set the preempt count _outside_ the spinlocks! */
6427 #if defined(CONFIG_PREEMPT)
6428 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6429 #else
6430 task_thread_info(idle)->preempt_count = 0;
6431 #endif
6433 * The idle tasks have their own, simple scheduling class:
6435 idle->sched_class = &idle_sched_class;
6436 ftrace_graph_init_task(idle);
6440 * In a system that switches off the HZ timer nohz_cpu_mask
6441 * indicates which cpus entered this state. This is used
6442 * in the rcu update to wait only for active cpus. For system
6443 * which do not switch off the HZ timer nohz_cpu_mask should
6444 * always be CPU_BITS_NONE.
6446 cpumask_var_t nohz_cpu_mask;
6449 * Increase the granularity value when there are more CPUs,
6450 * because with more CPUs the 'effective latency' as visible
6451 * to users decreases. But the relationship is not linear,
6452 * so pick a second-best guess by going with the log2 of the
6453 * number of CPUs.
6455 * This idea comes from the SD scheduler of Con Kolivas:
6457 static inline void sched_init_granularity(void)
6459 unsigned int factor = 1 + ilog2(num_online_cpus());
6460 const unsigned long limit = 200000000;
6462 sysctl_sched_min_granularity *= factor;
6463 if (sysctl_sched_min_granularity > limit)
6464 sysctl_sched_min_granularity = limit;
6466 sysctl_sched_latency *= factor;
6467 if (sysctl_sched_latency > limit)
6468 sysctl_sched_latency = limit;
6470 sysctl_sched_wakeup_granularity *= factor;
6472 sysctl_sched_shares_ratelimit *= factor;
6475 #ifdef CONFIG_SMP
6477 * This is how migration works:
6479 * 1) we queue a struct migration_req structure in the source CPU's
6480 * runqueue and wake up that CPU's migration thread.
6481 * 2) we down() the locked semaphore => thread blocks.
6482 * 3) migration thread wakes up (implicitly it forces the migrated
6483 * thread off the CPU)
6484 * 4) it gets the migration request and checks whether the migrated
6485 * task is still in the wrong runqueue.
6486 * 5) if it's in the wrong runqueue then the migration thread removes
6487 * it and puts it into the right queue.
6488 * 6) migration thread up()s the semaphore.
6489 * 7) we wake up and the migration is done.
6493 * Change a given task's CPU affinity. Migrate the thread to a
6494 * proper CPU and schedule it away if the CPU it's executing on
6495 * is removed from the allowed bitmask.
6497 * NOTE: the caller must have a valid reference to the task, the
6498 * task must not exit() & deallocate itself prematurely. The
6499 * call is not atomic; no spinlocks may be held.
6501 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6503 struct migration_req req;
6504 unsigned long flags;
6505 struct rq *rq;
6506 int ret = 0;
6508 rq = task_rq_lock(p, &flags);
6509 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6510 ret = -EINVAL;
6511 goto out;
6514 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6515 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6516 ret = -EINVAL;
6517 goto out;
6520 if (p->sched_class->set_cpus_allowed)
6521 p->sched_class->set_cpus_allowed(p, new_mask);
6522 else {
6523 cpumask_copy(&p->cpus_allowed, new_mask);
6524 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6527 /* Can the task run on the task's current CPU? If so, we're done */
6528 if (cpumask_test_cpu(task_cpu(p), new_mask))
6529 goto out;
6531 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6532 /* Need help from migration thread: drop lock and wait. */
6533 task_rq_unlock(rq, &flags);
6534 wake_up_process(rq->migration_thread);
6535 wait_for_completion(&req.done);
6536 tlb_migrate_finish(p->mm);
6537 return 0;
6539 out:
6540 task_rq_unlock(rq, &flags);
6542 return ret;
6544 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6547 * Move (not current) task off this cpu, onto dest cpu. We're doing
6548 * this because either it can't run here any more (set_cpus_allowed()
6549 * away from this CPU, or CPU going down), or because we're
6550 * attempting to rebalance this task on exec (sched_exec).
6552 * So we race with normal scheduler movements, but that's OK, as long
6553 * as the task is no longer on this CPU.
6555 * Returns non-zero if task was successfully migrated.
6557 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6559 struct rq *rq_dest, *rq_src;
6560 int ret = 0, on_rq;
6562 if (unlikely(!cpu_active(dest_cpu)))
6563 return ret;
6565 rq_src = cpu_rq(src_cpu);
6566 rq_dest = cpu_rq(dest_cpu);
6568 double_rq_lock(rq_src, rq_dest);
6569 /* Already moved. */
6570 if (task_cpu(p) != src_cpu)
6571 goto done;
6572 /* Affinity changed (again). */
6573 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6574 goto fail;
6576 on_rq = p->se.on_rq;
6577 if (on_rq)
6578 deactivate_task(rq_src, p, 0);
6580 set_task_cpu(p, dest_cpu);
6581 if (on_rq) {
6582 activate_task(rq_dest, p, 0);
6583 check_preempt_curr(rq_dest, p, 0);
6585 done:
6586 ret = 1;
6587 fail:
6588 double_rq_unlock(rq_src, rq_dest);
6589 return ret;
6593 * migration_thread - this is a highprio system thread that performs
6594 * thread migration by bumping thread off CPU then 'pushing' onto
6595 * another runqueue.
6597 static int migration_thread(void *data)
6599 int cpu = (long)data;
6600 struct rq *rq;
6602 rq = cpu_rq(cpu);
6603 BUG_ON(rq->migration_thread != current);
6605 set_current_state(TASK_INTERRUPTIBLE);
6606 while (!kthread_should_stop()) {
6607 struct migration_req *req;
6608 struct list_head *head;
6610 spin_lock_irq(&rq->lock);
6612 if (cpu_is_offline(cpu)) {
6613 spin_unlock_irq(&rq->lock);
6614 goto wait_to_die;
6617 if (rq->active_balance) {
6618 active_load_balance(rq, cpu);
6619 rq->active_balance = 0;
6622 head = &rq->migration_queue;
6624 if (list_empty(head)) {
6625 spin_unlock_irq(&rq->lock);
6626 schedule();
6627 set_current_state(TASK_INTERRUPTIBLE);
6628 continue;
6630 req = list_entry(head->next, struct migration_req, list);
6631 list_del_init(head->next);
6633 spin_unlock(&rq->lock);
6634 __migrate_task(req->task, cpu, req->dest_cpu);
6635 local_irq_enable();
6637 complete(&req->done);
6639 __set_current_state(TASK_RUNNING);
6640 return 0;
6642 wait_to_die:
6643 /* Wait for kthread_stop */
6644 set_current_state(TASK_INTERRUPTIBLE);
6645 while (!kthread_should_stop()) {
6646 schedule();
6647 set_current_state(TASK_INTERRUPTIBLE);
6649 __set_current_state(TASK_RUNNING);
6650 return 0;
6653 #ifdef CONFIG_HOTPLUG_CPU
6655 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6657 int ret;
6659 local_irq_disable();
6660 ret = __migrate_task(p, src_cpu, dest_cpu);
6661 local_irq_enable();
6662 return ret;
6666 * Figure out where task on dead CPU should go, use force if necessary.
6668 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6670 int dest_cpu;
6671 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6673 again:
6674 /* Look for allowed, online CPU in same node. */
6675 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6676 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6677 goto move;
6679 /* Any allowed, online CPU? */
6680 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6681 if (dest_cpu < nr_cpu_ids)
6682 goto move;
6684 /* No more Mr. Nice Guy. */
6685 if (dest_cpu >= nr_cpu_ids) {
6686 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6687 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6690 * Don't tell them about moving exiting tasks or
6691 * kernel threads (both mm NULL), since they never
6692 * leave kernel.
6694 if (p->mm && printk_ratelimit()) {
6695 printk(KERN_INFO "process %d (%s) no "
6696 "longer affine to cpu%d\n",
6697 task_pid_nr(p), p->comm, dead_cpu);
6701 move:
6702 /* It can have affinity changed while we were choosing. */
6703 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6704 goto again;
6708 * While a dead CPU has no uninterruptible tasks queued at this point,
6709 * it might still have a nonzero ->nr_uninterruptible counter, because
6710 * for performance reasons the counter is not stricly tracking tasks to
6711 * their home CPUs. So we just add the counter to another CPU's counter,
6712 * to keep the global sum constant after CPU-down:
6714 static void migrate_nr_uninterruptible(struct rq *rq_src)
6716 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6717 unsigned long flags;
6719 local_irq_save(flags);
6720 double_rq_lock(rq_src, rq_dest);
6721 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6722 rq_src->nr_uninterruptible = 0;
6723 double_rq_unlock(rq_src, rq_dest);
6724 local_irq_restore(flags);
6727 /* Run through task list and migrate tasks from the dead cpu. */
6728 static void migrate_live_tasks(int src_cpu)
6730 struct task_struct *p, *t;
6732 read_lock(&tasklist_lock);
6734 do_each_thread(t, p) {
6735 if (p == current)
6736 continue;
6738 if (task_cpu(p) == src_cpu)
6739 move_task_off_dead_cpu(src_cpu, p);
6740 } while_each_thread(t, p);
6742 read_unlock(&tasklist_lock);
6746 * Schedules idle task to be the next runnable task on current CPU.
6747 * It does so by boosting its priority to highest possible.
6748 * Used by CPU offline code.
6750 void sched_idle_next(void)
6752 int this_cpu = smp_processor_id();
6753 struct rq *rq = cpu_rq(this_cpu);
6754 struct task_struct *p = rq->idle;
6755 unsigned long flags;
6757 /* cpu has to be offline */
6758 BUG_ON(cpu_online(this_cpu));
6761 * Strictly not necessary since rest of the CPUs are stopped by now
6762 * and interrupts disabled on the current cpu.
6764 spin_lock_irqsave(&rq->lock, flags);
6766 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6768 update_rq_clock(rq);
6769 activate_task(rq, p, 0);
6771 spin_unlock_irqrestore(&rq->lock, flags);
6775 * Ensures that the idle task is using init_mm right before its cpu goes
6776 * offline.
6778 void idle_task_exit(void)
6780 struct mm_struct *mm = current->active_mm;
6782 BUG_ON(cpu_online(smp_processor_id()));
6784 if (mm != &init_mm)
6785 switch_mm(mm, &init_mm, current);
6786 mmdrop(mm);
6789 /* called under rq->lock with disabled interrupts */
6790 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6792 struct rq *rq = cpu_rq(dead_cpu);
6794 /* Must be exiting, otherwise would be on tasklist. */
6795 BUG_ON(!p->exit_state);
6797 /* Cannot have done final schedule yet: would have vanished. */
6798 BUG_ON(p->state == TASK_DEAD);
6800 get_task_struct(p);
6803 * Drop lock around migration; if someone else moves it,
6804 * that's OK. No task can be added to this CPU, so iteration is
6805 * fine.
6807 spin_unlock_irq(&rq->lock);
6808 move_task_off_dead_cpu(dead_cpu, p);
6809 spin_lock_irq(&rq->lock);
6811 put_task_struct(p);
6814 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6815 static void migrate_dead_tasks(unsigned int dead_cpu)
6817 struct rq *rq = cpu_rq(dead_cpu);
6818 struct task_struct *next;
6820 for ( ; ; ) {
6821 if (!rq->nr_running)
6822 break;
6823 update_rq_clock(rq);
6824 next = pick_next_task(rq);
6825 if (!next)
6826 break;
6827 next->sched_class->put_prev_task(rq, next);
6828 migrate_dead(dead_cpu, next);
6832 #endif /* CONFIG_HOTPLUG_CPU */
6834 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6836 static struct ctl_table sd_ctl_dir[] = {
6838 .procname = "sched_domain",
6839 .mode = 0555,
6841 {0, },
6844 static struct ctl_table sd_ctl_root[] = {
6846 .ctl_name = CTL_KERN,
6847 .procname = "kernel",
6848 .mode = 0555,
6849 .child = sd_ctl_dir,
6851 {0, },
6854 static struct ctl_table *sd_alloc_ctl_entry(int n)
6856 struct ctl_table *entry =
6857 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6859 return entry;
6862 static void sd_free_ctl_entry(struct ctl_table **tablep)
6864 struct ctl_table *entry;
6867 * In the intermediate directories, both the child directory and
6868 * procname are dynamically allocated and could fail but the mode
6869 * will always be set. In the lowest directory the names are
6870 * static strings and all have proc handlers.
6872 for (entry = *tablep; entry->mode; entry++) {
6873 if (entry->child)
6874 sd_free_ctl_entry(&entry->child);
6875 if (entry->proc_handler == NULL)
6876 kfree(entry->procname);
6879 kfree(*tablep);
6880 *tablep = NULL;
6883 static void
6884 set_table_entry(struct ctl_table *entry,
6885 const char *procname, void *data, int maxlen,
6886 mode_t mode, proc_handler *proc_handler)
6888 entry->procname = procname;
6889 entry->data = data;
6890 entry->maxlen = maxlen;
6891 entry->mode = mode;
6892 entry->proc_handler = proc_handler;
6895 static struct ctl_table *
6896 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6898 struct ctl_table *table = sd_alloc_ctl_entry(13);
6900 if (table == NULL)
6901 return NULL;
6903 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6904 sizeof(long), 0644, proc_doulongvec_minmax);
6905 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6906 sizeof(long), 0644, proc_doulongvec_minmax);
6907 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6908 sizeof(int), 0644, proc_dointvec_minmax);
6909 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6910 sizeof(int), 0644, proc_dointvec_minmax);
6911 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6912 sizeof(int), 0644, proc_dointvec_minmax);
6913 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6914 sizeof(int), 0644, proc_dointvec_minmax);
6915 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6916 sizeof(int), 0644, proc_dointvec_minmax);
6917 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6918 sizeof(int), 0644, proc_dointvec_minmax);
6919 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6920 sizeof(int), 0644, proc_dointvec_minmax);
6921 set_table_entry(&table[9], "cache_nice_tries",
6922 &sd->cache_nice_tries,
6923 sizeof(int), 0644, proc_dointvec_minmax);
6924 set_table_entry(&table[10], "flags", &sd->flags,
6925 sizeof(int), 0644, proc_dointvec_minmax);
6926 set_table_entry(&table[11], "name", sd->name,
6927 CORENAME_MAX_SIZE, 0444, proc_dostring);
6928 /* &table[12] is terminator */
6930 return table;
6933 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6935 struct ctl_table *entry, *table;
6936 struct sched_domain *sd;
6937 int domain_num = 0, i;
6938 char buf[32];
6940 for_each_domain(cpu, sd)
6941 domain_num++;
6942 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6943 if (table == NULL)
6944 return NULL;
6946 i = 0;
6947 for_each_domain(cpu, sd) {
6948 snprintf(buf, 32, "domain%d", i);
6949 entry->procname = kstrdup(buf, GFP_KERNEL);
6950 entry->mode = 0555;
6951 entry->child = sd_alloc_ctl_domain_table(sd);
6952 entry++;
6953 i++;
6955 return table;
6958 static struct ctl_table_header *sd_sysctl_header;
6959 static void register_sched_domain_sysctl(void)
6961 int i, cpu_num = num_online_cpus();
6962 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6963 char buf[32];
6965 WARN_ON(sd_ctl_dir[0].child);
6966 sd_ctl_dir[0].child = entry;
6968 if (entry == NULL)
6969 return;
6971 for_each_online_cpu(i) {
6972 snprintf(buf, 32, "cpu%d", i);
6973 entry->procname = kstrdup(buf, GFP_KERNEL);
6974 entry->mode = 0555;
6975 entry->child = sd_alloc_ctl_cpu_table(i);
6976 entry++;
6979 WARN_ON(sd_sysctl_header);
6980 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6983 /* may be called multiple times per register */
6984 static void unregister_sched_domain_sysctl(void)
6986 if (sd_sysctl_header)
6987 unregister_sysctl_table(sd_sysctl_header);
6988 sd_sysctl_header = NULL;
6989 if (sd_ctl_dir[0].child)
6990 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6992 #else
6993 static void register_sched_domain_sysctl(void)
6996 static void unregister_sched_domain_sysctl(void)
6999 #endif
7001 static void set_rq_online(struct rq *rq)
7003 if (!rq->online) {
7004 const struct sched_class *class;
7006 cpumask_set_cpu(rq->cpu, rq->rd->online);
7007 rq->online = 1;
7009 for_each_class(class) {
7010 if (class->rq_online)
7011 class->rq_online(rq);
7016 static void set_rq_offline(struct rq *rq)
7018 if (rq->online) {
7019 const struct sched_class *class;
7021 for_each_class(class) {
7022 if (class->rq_offline)
7023 class->rq_offline(rq);
7026 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7027 rq->online = 0;
7032 * migration_call - callback that gets triggered when a CPU is added.
7033 * Here we can start up the necessary migration thread for the new CPU.
7035 static int __cpuinit
7036 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7038 struct task_struct *p;
7039 int cpu = (long)hcpu;
7040 unsigned long flags;
7041 struct rq *rq;
7043 switch (action) {
7045 case CPU_UP_PREPARE:
7046 case CPU_UP_PREPARE_FROZEN:
7047 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7048 if (IS_ERR(p))
7049 return NOTIFY_BAD;
7050 kthread_bind(p, cpu);
7051 /* Must be high prio: stop_machine expects to yield to it. */
7052 rq = task_rq_lock(p, &flags);
7053 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7054 task_rq_unlock(rq, &flags);
7055 cpu_rq(cpu)->migration_thread = p;
7056 break;
7058 case CPU_ONLINE:
7059 case CPU_ONLINE_FROZEN:
7060 /* Strictly unnecessary, as first user will wake it. */
7061 wake_up_process(cpu_rq(cpu)->migration_thread);
7063 /* Update our root-domain */
7064 rq = cpu_rq(cpu);
7065 spin_lock_irqsave(&rq->lock, flags);
7066 if (rq->rd) {
7067 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7069 set_rq_online(rq);
7071 spin_unlock_irqrestore(&rq->lock, flags);
7072 break;
7074 #ifdef CONFIG_HOTPLUG_CPU
7075 case CPU_UP_CANCELED:
7076 case CPU_UP_CANCELED_FROZEN:
7077 if (!cpu_rq(cpu)->migration_thread)
7078 break;
7079 /* Unbind it from offline cpu so it can run. Fall thru. */
7080 kthread_bind(cpu_rq(cpu)->migration_thread,
7081 cpumask_any(cpu_online_mask));
7082 kthread_stop(cpu_rq(cpu)->migration_thread);
7083 cpu_rq(cpu)->migration_thread = NULL;
7084 break;
7086 case CPU_DEAD:
7087 case CPU_DEAD_FROZEN:
7088 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7089 migrate_live_tasks(cpu);
7090 rq = cpu_rq(cpu);
7091 kthread_stop(rq->migration_thread);
7092 rq->migration_thread = NULL;
7093 /* Idle task back to normal (off runqueue, low prio) */
7094 spin_lock_irq(&rq->lock);
7095 update_rq_clock(rq);
7096 deactivate_task(rq, rq->idle, 0);
7097 rq->idle->static_prio = MAX_PRIO;
7098 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7099 rq->idle->sched_class = &idle_sched_class;
7100 migrate_dead_tasks(cpu);
7101 spin_unlock_irq(&rq->lock);
7102 cpuset_unlock();
7103 migrate_nr_uninterruptible(rq);
7104 BUG_ON(rq->nr_running != 0);
7107 * No need to migrate the tasks: it was best-effort if
7108 * they didn't take sched_hotcpu_mutex. Just wake up
7109 * the requestors.
7111 spin_lock_irq(&rq->lock);
7112 while (!list_empty(&rq->migration_queue)) {
7113 struct migration_req *req;
7115 req = list_entry(rq->migration_queue.next,
7116 struct migration_req, list);
7117 list_del_init(&req->list);
7118 spin_unlock_irq(&rq->lock);
7119 complete(&req->done);
7120 spin_lock_irq(&rq->lock);
7122 spin_unlock_irq(&rq->lock);
7123 break;
7125 case CPU_DYING:
7126 case CPU_DYING_FROZEN:
7127 /* Update our root-domain */
7128 rq = cpu_rq(cpu);
7129 spin_lock_irqsave(&rq->lock, flags);
7130 if (rq->rd) {
7131 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7132 set_rq_offline(rq);
7134 spin_unlock_irqrestore(&rq->lock, flags);
7135 break;
7136 #endif
7138 return NOTIFY_OK;
7141 /* Register at highest priority so that task migration (migrate_all_tasks)
7142 * happens before everything else.
7144 static struct notifier_block __cpuinitdata migration_notifier = {
7145 .notifier_call = migration_call,
7146 .priority = 10
7149 static int __init migration_init(void)
7151 void *cpu = (void *)(long)smp_processor_id();
7152 int err;
7154 /* Start one for the boot CPU: */
7155 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7156 BUG_ON(err == NOTIFY_BAD);
7157 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7158 register_cpu_notifier(&migration_notifier);
7160 return err;
7162 early_initcall(migration_init);
7163 #endif
7165 #ifdef CONFIG_SMP
7167 #ifdef CONFIG_SCHED_DEBUG
7169 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7170 struct cpumask *groupmask)
7172 struct sched_group *group = sd->groups;
7173 char str[256];
7175 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7176 cpumask_clear(groupmask);
7178 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7180 if (!(sd->flags & SD_LOAD_BALANCE)) {
7181 printk("does not load-balance\n");
7182 if (sd->parent)
7183 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7184 " has parent");
7185 return -1;
7188 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7190 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7191 printk(KERN_ERR "ERROR: domain->span does not contain "
7192 "CPU%d\n", cpu);
7194 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7195 printk(KERN_ERR "ERROR: domain->groups does not contain"
7196 " CPU%d\n", cpu);
7199 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7200 do {
7201 if (!group) {
7202 printk("\n");
7203 printk(KERN_ERR "ERROR: group is NULL\n");
7204 break;
7207 if (!group->__cpu_power) {
7208 printk(KERN_CONT "\n");
7209 printk(KERN_ERR "ERROR: domain->cpu_power not "
7210 "set\n");
7211 break;
7214 if (!cpumask_weight(sched_group_cpus(group))) {
7215 printk(KERN_CONT "\n");
7216 printk(KERN_ERR "ERROR: empty group\n");
7217 break;
7220 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7221 printk(KERN_CONT "\n");
7222 printk(KERN_ERR "ERROR: repeated CPUs\n");
7223 break;
7226 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7228 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7229 printk(KERN_CONT " %s", str);
7231 group = group->next;
7232 } while (group != sd->groups);
7233 printk(KERN_CONT "\n");
7235 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7236 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7238 if (sd->parent &&
7239 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7240 printk(KERN_ERR "ERROR: parent span is not a superset "
7241 "of domain->span\n");
7242 return 0;
7245 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7247 cpumask_var_t groupmask;
7248 int level = 0;
7250 if (!sd) {
7251 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7252 return;
7255 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7257 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7258 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7259 return;
7262 for (;;) {
7263 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7264 break;
7265 level++;
7266 sd = sd->parent;
7267 if (!sd)
7268 break;
7270 free_cpumask_var(groupmask);
7272 #else /* !CONFIG_SCHED_DEBUG */
7273 # define sched_domain_debug(sd, cpu) do { } while (0)
7274 #endif /* CONFIG_SCHED_DEBUG */
7276 static int sd_degenerate(struct sched_domain *sd)
7278 if (cpumask_weight(sched_domain_span(sd)) == 1)
7279 return 1;
7281 /* Following flags need at least 2 groups */
7282 if (sd->flags & (SD_LOAD_BALANCE |
7283 SD_BALANCE_NEWIDLE |
7284 SD_BALANCE_FORK |
7285 SD_BALANCE_EXEC |
7286 SD_SHARE_CPUPOWER |
7287 SD_SHARE_PKG_RESOURCES)) {
7288 if (sd->groups != sd->groups->next)
7289 return 0;
7292 /* Following flags don't use groups */
7293 if (sd->flags & (SD_WAKE_IDLE |
7294 SD_WAKE_AFFINE |
7295 SD_WAKE_BALANCE))
7296 return 0;
7298 return 1;
7301 static int
7302 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7304 unsigned long cflags = sd->flags, pflags = parent->flags;
7306 if (sd_degenerate(parent))
7307 return 1;
7309 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7310 return 0;
7312 /* Does parent contain flags not in child? */
7313 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7314 if (cflags & SD_WAKE_AFFINE)
7315 pflags &= ~SD_WAKE_BALANCE;
7316 /* Flags needing groups don't count if only 1 group in parent */
7317 if (parent->groups == parent->groups->next) {
7318 pflags &= ~(SD_LOAD_BALANCE |
7319 SD_BALANCE_NEWIDLE |
7320 SD_BALANCE_FORK |
7321 SD_BALANCE_EXEC |
7322 SD_SHARE_CPUPOWER |
7323 SD_SHARE_PKG_RESOURCES);
7324 if (nr_node_ids == 1)
7325 pflags &= ~SD_SERIALIZE;
7327 if (~cflags & pflags)
7328 return 0;
7330 return 1;
7333 static void free_rootdomain(struct root_domain *rd)
7335 cpupri_cleanup(&rd->cpupri);
7337 free_cpumask_var(rd->rto_mask);
7338 free_cpumask_var(rd->online);
7339 free_cpumask_var(rd->span);
7340 kfree(rd);
7343 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7345 struct root_domain *old_rd = NULL;
7346 unsigned long flags;
7348 spin_lock_irqsave(&rq->lock, flags);
7350 if (rq->rd) {
7351 old_rd = rq->rd;
7353 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7354 set_rq_offline(rq);
7356 cpumask_clear_cpu(rq->cpu, old_rd->span);
7359 * If we dont want to free the old_rt yet then
7360 * set old_rd to NULL to skip the freeing later
7361 * in this function:
7363 if (!atomic_dec_and_test(&old_rd->refcount))
7364 old_rd = NULL;
7367 atomic_inc(&rd->refcount);
7368 rq->rd = rd;
7370 cpumask_set_cpu(rq->cpu, rd->span);
7371 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7372 set_rq_online(rq);
7374 spin_unlock_irqrestore(&rq->lock, flags);
7376 if (old_rd)
7377 free_rootdomain(old_rd);
7380 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7382 memset(rd, 0, sizeof(*rd));
7384 if (bootmem) {
7385 alloc_bootmem_cpumask_var(&def_root_domain.span);
7386 alloc_bootmem_cpumask_var(&def_root_domain.online);
7387 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7388 cpupri_init(&rd->cpupri, true);
7389 return 0;
7392 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7393 goto out;
7394 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7395 goto free_span;
7396 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7397 goto free_online;
7399 if (cpupri_init(&rd->cpupri, false) != 0)
7400 goto free_rto_mask;
7401 return 0;
7403 free_rto_mask:
7404 free_cpumask_var(rd->rto_mask);
7405 free_online:
7406 free_cpumask_var(rd->online);
7407 free_span:
7408 free_cpumask_var(rd->span);
7409 out:
7410 return -ENOMEM;
7413 static void init_defrootdomain(void)
7415 init_rootdomain(&def_root_domain, true);
7417 atomic_set(&def_root_domain.refcount, 1);
7420 static struct root_domain *alloc_rootdomain(void)
7422 struct root_domain *rd;
7424 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7425 if (!rd)
7426 return NULL;
7428 if (init_rootdomain(rd, false) != 0) {
7429 kfree(rd);
7430 return NULL;
7433 return rd;
7437 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7438 * hold the hotplug lock.
7440 static void
7441 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7443 struct rq *rq = cpu_rq(cpu);
7444 struct sched_domain *tmp;
7446 /* Remove the sched domains which do not contribute to scheduling. */
7447 for (tmp = sd; tmp; ) {
7448 struct sched_domain *parent = tmp->parent;
7449 if (!parent)
7450 break;
7452 if (sd_parent_degenerate(tmp, parent)) {
7453 tmp->parent = parent->parent;
7454 if (parent->parent)
7455 parent->parent->child = tmp;
7456 } else
7457 tmp = tmp->parent;
7460 if (sd && sd_degenerate(sd)) {
7461 sd = sd->parent;
7462 if (sd)
7463 sd->child = NULL;
7466 sched_domain_debug(sd, cpu);
7468 rq_attach_root(rq, rd);
7469 rcu_assign_pointer(rq->sd, sd);
7472 /* cpus with isolated domains */
7473 static cpumask_var_t cpu_isolated_map;
7475 /* Setup the mask of cpus configured for isolated domains */
7476 static int __init isolated_cpu_setup(char *str)
7478 cpulist_parse(str, cpu_isolated_map);
7479 return 1;
7482 __setup("isolcpus=", isolated_cpu_setup);
7485 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7486 * to a function which identifies what group(along with sched group) a CPU
7487 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7488 * (due to the fact that we keep track of groups covered with a struct cpumask).
7490 * init_sched_build_groups will build a circular linked list of the groups
7491 * covered by the given span, and will set each group's ->cpumask correctly,
7492 * and ->cpu_power to 0.
7494 static void
7495 init_sched_build_groups(const struct cpumask *span,
7496 const struct cpumask *cpu_map,
7497 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7498 struct sched_group **sg,
7499 struct cpumask *tmpmask),
7500 struct cpumask *covered, struct cpumask *tmpmask)
7502 struct sched_group *first = NULL, *last = NULL;
7503 int i;
7505 cpumask_clear(covered);
7507 for_each_cpu(i, span) {
7508 struct sched_group *sg;
7509 int group = group_fn(i, cpu_map, &sg, tmpmask);
7510 int j;
7512 if (cpumask_test_cpu(i, covered))
7513 continue;
7515 cpumask_clear(sched_group_cpus(sg));
7516 sg->__cpu_power = 0;
7518 for_each_cpu(j, span) {
7519 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7520 continue;
7522 cpumask_set_cpu(j, covered);
7523 cpumask_set_cpu(j, sched_group_cpus(sg));
7525 if (!first)
7526 first = sg;
7527 if (last)
7528 last->next = sg;
7529 last = sg;
7531 last->next = first;
7534 #define SD_NODES_PER_DOMAIN 16
7536 #ifdef CONFIG_NUMA
7539 * find_next_best_node - find the next node to include in a sched_domain
7540 * @node: node whose sched_domain we're building
7541 * @used_nodes: nodes already in the sched_domain
7543 * Find the next node to include in a given scheduling domain. Simply
7544 * finds the closest node not already in the @used_nodes map.
7546 * Should use nodemask_t.
7548 static int find_next_best_node(int node, nodemask_t *used_nodes)
7550 int i, n, val, min_val, best_node = 0;
7552 min_val = INT_MAX;
7554 for (i = 0; i < nr_node_ids; i++) {
7555 /* Start at @node */
7556 n = (node + i) % nr_node_ids;
7558 if (!nr_cpus_node(n))
7559 continue;
7561 /* Skip already used nodes */
7562 if (node_isset(n, *used_nodes))
7563 continue;
7565 /* Simple min distance search */
7566 val = node_distance(node, n);
7568 if (val < min_val) {
7569 min_val = val;
7570 best_node = n;
7574 node_set(best_node, *used_nodes);
7575 return best_node;
7579 * sched_domain_node_span - get a cpumask for a node's sched_domain
7580 * @node: node whose cpumask we're constructing
7581 * @span: resulting cpumask
7583 * Given a node, construct a good cpumask for its sched_domain to span. It
7584 * should be one that prevents unnecessary balancing, but also spreads tasks
7585 * out optimally.
7587 static void sched_domain_node_span(int node, struct cpumask *span)
7589 nodemask_t used_nodes;
7590 int i;
7592 cpumask_clear(span);
7593 nodes_clear(used_nodes);
7595 cpumask_or(span, span, cpumask_of_node(node));
7596 node_set(node, used_nodes);
7598 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7599 int next_node = find_next_best_node(node, &used_nodes);
7601 cpumask_or(span, span, cpumask_of_node(next_node));
7604 #endif /* CONFIG_NUMA */
7606 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7609 * The cpus mask in sched_group and sched_domain hangs off the end.
7610 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7611 * for nr_cpu_ids < CONFIG_NR_CPUS.
7613 struct static_sched_group {
7614 struct sched_group sg;
7615 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7618 struct static_sched_domain {
7619 struct sched_domain sd;
7620 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7624 * SMT sched-domains:
7626 #ifdef CONFIG_SCHED_SMT
7627 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7628 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7630 static int
7631 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7632 struct sched_group **sg, struct cpumask *unused)
7634 if (sg)
7635 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7636 return cpu;
7638 #endif /* CONFIG_SCHED_SMT */
7641 * multi-core sched-domains:
7643 #ifdef CONFIG_SCHED_MC
7644 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7645 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7646 #endif /* CONFIG_SCHED_MC */
7648 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7649 static int
7650 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7651 struct sched_group **sg, struct cpumask *mask)
7653 int group;
7655 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7656 group = cpumask_first(mask);
7657 if (sg)
7658 *sg = &per_cpu(sched_group_core, group).sg;
7659 return group;
7661 #elif defined(CONFIG_SCHED_MC)
7662 static int
7663 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7664 struct sched_group **sg, struct cpumask *unused)
7666 if (sg)
7667 *sg = &per_cpu(sched_group_core, cpu).sg;
7668 return cpu;
7670 #endif
7672 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7673 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7675 static int
7676 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7677 struct sched_group **sg, struct cpumask *mask)
7679 int group;
7680 #ifdef CONFIG_SCHED_MC
7681 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7682 group = cpumask_first(mask);
7683 #elif defined(CONFIG_SCHED_SMT)
7684 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7685 group = cpumask_first(mask);
7686 #else
7687 group = cpu;
7688 #endif
7689 if (sg)
7690 *sg = &per_cpu(sched_group_phys, group).sg;
7691 return group;
7694 #ifdef CONFIG_NUMA
7696 * The init_sched_build_groups can't handle what we want to do with node
7697 * groups, so roll our own. Now each node has its own list of groups which
7698 * gets dynamically allocated.
7700 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7701 static struct sched_group ***sched_group_nodes_bycpu;
7703 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7704 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7706 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7707 struct sched_group **sg,
7708 struct cpumask *nodemask)
7710 int group;
7712 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7713 group = cpumask_first(nodemask);
7715 if (sg)
7716 *sg = &per_cpu(sched_group_allnodes, group).sg;
7717 return group;
7720 static void init_numa_sched_groups_power(struct sched_group *group_head)
7722 struct sched_group *sg = group_head;
7723 int j;
7725 if (!sg)
7726 return;
7727 do {
7728 for_each_cpu(j, sched_group_cpus(sg)) {
7729 struct sched_domain *sd;
7731 sd = &per_cpu(phys_domains, j).sd;
7732 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7734 * Only add "power" once for each
7735 * physical package.
7737 continue;
7740 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7742 sg = sg->next;
7743 } while (sg != group_head);
7745 #endif /* CONFIG_NUMA */
7747 #ifdef CONFIG_NUMA
7748 /* Free memory allocated for various sched_group structures */
7749 static void free_sched_groups(const struct cpumask *cpu_map,
7750 struct cpumask *nodemask)
7752 int cpu, i;
7754 for_each_cpu(cpu, cpu_map) {
7755 struct sched_group **sched_group_nodes
7756 = sched_group_nodes_bycpu[cpu];
7758 if (!sched_group_nodes)
7759 continue;
7761 for (i = 0; i < nr_node_ids; i++) {
7762 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7764 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7765 if (cpumask_empty(nodemask))
7766 continue;
7768 if (sg == NULL)
7769 continue;
7770 sg = sg->next;
7771 next_sg:
7772 oldsg = sg;
7773 sg = sg->next;
7774 kfree(oldsg);
7775 if (oldsg != sched_group_nodes[i])
7776 goto next_sg;
7778 kfree(sched_group_nodes);
7779 sched_group_nodes_bycpu[cpu] = NULL;
7782 #else /* !CONFIG_NUMA */
7783 static void free_sched_groups(const struct cpumask *cpu_map,
7784 struct cpumask *nodemask)
7787 #endif /* CONFIG_NUMA */
7790 * Initialize sched groups cpu_power.
7792 * cpu_power indicates the capacity of sched group, which is used while
7793 * distributing the load between different sched groups in a sched domain.
7794 * Typically cpu_power for all the groups in a sched domain will be same unless
7795 * there are asymmetries in the topology. If there are asymmetries, group
7796 * having more cpu_power will pickup more load compared to the group having
7797 * less cpu_power.
7799 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7800 * the maximum number of tasks a group can handle in the presence of other idle
7801 * or lightly loaded groups in the same sched domain.
7803 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7805 struct sched_domain *child;
7806 struct sched_group *group;
7808 WARN_ON(!sd || !sd->groups);
7810 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7811 return;
7813 child = sd->child;
7815 sd->groups->__cpu_power = 0;
7818 * For perf policy, if the groups in child domain share resources
7819 * (for example cores sharing some portions of the cache hierarchy
7820 * or SMT), then set this domain groups cpu_power such that each group
7821 * can handle only one task, when there are other idle groups in the
7822 * same sched domain.
7824 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7825 (child->flags &
7826 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7827 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7828 return;
7832 * add cpu_power of each child group to this groups cpu_power
7834 group = child->groups;
7835 do {
7836 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7837 group = group->next;
7838 } while (group != child->groups);
7842 * Initializers for schedule domains
7843 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7846 #ifdef CONFIG_SCHED_DEBUG
7847 # define SD_INIT_NAME(sd, type) sd->name = #type
7848 #else
7849 # define SD_INIT_NAME(sd, type) do { } while (0)
7850 #endif
7852 #define SD_INIT(sd, type) sd_init_##type(sd)
7854 #define SD_INIT_FUNC(type) \
7855 static noinline void sd_init_##type(struct sched_domain *sd) \
7857 memset(sd, 0, sizeof(*sd)); \
7858 *sd = SD_##type##_INIT; \
7859 sd->level = SD_LV_##type; \
7860 SD_INIT_NAME(sd, type); \
7863 SD_INIT_FUNC(CPU)
7864 #ifdef CONFIG_NUMA
7865 SD_INIT_FUNC(ALLNODES)
7866 SD_INIT_FUNC(NODE)
7867 #endif
7868 #ifdef CONFIG_SCHED_SMT
7869 SD_INIT_FUNC(SIBLING)
7870 #endif
7871 #ifdef CONFIG_SCHED_MC
7872 SD_INIT_FUNC(MC)
7873 #endif
7875 static int default_relax_domain_level = -1;
7877 static int __init setup_relax_domain_level(char *str)
7879 unsigned long val;
7881 val = simple_strtoul(str, NULL, 0);
7882 if (val < SD_LV_MAX)
7883 default_relax_domain_level = val;
7885 return 1;
7887 __setup("relax_domain_level=", setup_relax_domain_level);
7889 static void set_domain_attribute(struct sched_domain *sd,
7890 struct sched_domain_attr *attr)
7892 int request;
7894 if (!attr || attr->relax_domain_level < 0) {
7895 if (default_relax_domain_level < 0)
7896 return;
7897 else
7898 request = default_relax_domain_level;
7899 } else
7900 request = attr->relax_domain_level;
7901 if (request < sd->level) {
7902 /* turn off idle balance on this domain */
7903 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7904 } else {
7905 /* turn on idle balance on this domain */
7906 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7911 * Build sched domains for a given set of cpus and attach the sched domains
7912 * to the individual cpus
7914 static int __build_sched_domains(const struct cpumask *cpu_map,
7915 struct sched_domain_attr *attr)
7917 int i, err = -ENOMEM;
7918 struct root_domain *rd;
7919 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7920 tmpmask;
7921 #ifdef CONFIG_NUMA
7922 cpumask_var_t domainspan, covered, notcovered;
7923 struct sched_group **sched_group_nodes = NULL;
7924 int sd_allnodes = 0;
7926 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7927 goto out;
7928 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7929 goto free_domainspan;
7930 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7931 goto free_covered;
7932 #endif
7934 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7935 goto free_notcovered;
7936 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7937 goto free_nodemask;
7938 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7939 goto free_this_sibling_map;
7940 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7941 goto free_this_core_map;
7942 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7943 goto free_send_covered;
7945 #ifdef CONFIG_NUMA
7947 * Allocate the per-node list of sched groups
7949 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7950 GFP_KERNEL);
7951 if (!sched_group_nodes) {
7952 printk(KERN_WARNING "Can not alloc sched group node list\n");
7953 goto free_tmpmask;
7955 #endif
7957 rd = alloc_rootdomain();
7958 if (!rd) {
7959 printk(KERN_WARNING "Cannot alloc root domain\n");
7960 goto free_sched_groups;
7963 #ifdef CONFIG_NUMA
7964 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7965 #endif
7968 * Set up domains for cpus specified by the cpu_map.
7970 for_each_cpu(i, cpu_map) {
7971 struct sched_domain *sd = NULL, *p;
7973 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7975 #ifdef CONFIG_NUMA
7976 if (cpumask_weight(cpu_map) >
7977 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7978 sd = &per_cpu(allnodes_domains, i).sd;
7979 SD_INIT(sd, ALLNODES);
7980 set_domain_attribute(sd, attr);
7981 cpumask_copy(sched_domain_span(sd), cpu_map);
7982 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7983 p = sd;
7984 sd_allnodes = 1;
7985 } else
7986 p = NULL;
7988 sd = &per_cpu(node_domains, i).sd;
7989 SD_INIT(sd, NODE);
7990 set_domain_attribute(sd, attr);
7991 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7992 sd->parent = p;
7993 if (p)
7994 p->child = sd;
7995 cpumask_and(sched_domain_span(sd),
7996 sched_domain_span(sd), cpu_map);
7997 #endif
7999 p = sd;
8000 sd = &per_cpu(phys_domains, i).sd;
8001 SD_INIT(sd, CPU);
8002 set_domain_attribute(sd, attr);
8003 cpumask_copy(sched_domain_span(sd), nodemask);
8004 sd->parent = p;
8005 if (p)
8006 p->child = sd;
8007 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8009 #ifdef CONFIG_SCHED_MC
8010 p = sd;
8011 sd = &per_cpu(core_domains, i).sd;
8012 SD_INIT(sd, MC);
8013 set_domain_attribute(sd, attr);
8014 cpumask_and(sched_domain_span(sd), cpu_map,
8015 cpu_coregroup_mask(i));
8016 sd->parent = p;
8017 p->child = sd;
8018 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8019 #endif
8021 #ifdef CONFIG_SCHED_SMT
8022 p = sd;
8023 sd = &per_cpu(cpu_domains, i).sd;
8024 SD_INIT(sd, SIBLING);
8025 set_domain_attribute(sd, attr);
8026 cpumask_and(sched_domain_span(sd),
8027 &per_cpu(cpu_sibling_map, i), cpu_map);
8028 sd->parent = p;
8029 p->child = sd;
8030 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8031 #endif
8034 #ifdef CONFIG_SCHED_SMT
8035 /* Set up CPU (sibling) groups */
8036 for_each_cpu(i, cpu_map) {
8037 cpumask_and(this_sibling_map,
8038 &per_cpu(cpu_sibling_map, i), cpu_map);
8039 if (i != cpumask_first(this_sibling_map))
8040 continue;
8042 init_sched_build_groups(this_sibling_map, cpu_map,
8043 &cpu_to_cpu_group,
8044 send_covered, tmpmask);
8046 #endif
8048 #ifdef CONFIG_SCHED_MC
8049 /* Set up multi-core groups */
8050 for_each_cpu(i, cpu_map) {
8051 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8052 if (i != cpumask_first(this_core_map))
8053 continue;
8055 init_sched_build_groups(this_core_map, cpu_map,
8056 &cpu_to_core_group,
8057 send_covered, tmpmask);
8059 #endif
8061 /* Set up physical groups */
8062 for (i = 0; i < nr_node_ids; i++) {
8063 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8064 if (cpumask_empty(nodemask))
8065 continue;
8067 init_sched_build_groups(nodemask, cpu_map,
8068 &cpu_to_phys_group,
8069 send_covered, tmpmask);
8072 #ifdef CONFIG_NUMA
8073 /* Set up node groups */
8074 if (sd_allnodes) {
8075 init_sched_build_groups(cpu_map, cpu_map,
8076 &cpu_to_allnodes_group,
8077 send_covered, tmpmask);
8080 for (i = 0; i < nr_node_ids; i++) {
8081 /* Set up node groups */
8082 struct sched_group *sg, *prev;
8083 int j;
8085 cpumask_clear(covered);
8086 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8087 if (cpumask_empty(nodemask)) {
8088 sched_group_nodes[i] = NULL;
8089 continue;
8092 sched_domain_node_span(i, domainspan);
8093 cpumask_and(domainspan, domainspan, cpu_map);
8095 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8096 GFP_KERNEL, i);
8097 if (!sg) {
8098 printk(KERN_WARNING "Can not alloc domain group for "
8099 "node %d\n", i);
8100 goto error;
8102 sched_group_nodes[i] = sg;
8103 for_each_cpu(j, nodemask) {
8104 struct sched_domain *sd;
8106 sd = &per_cpu(node_domains, j).sd;
8107 sd->groups = sg;
8109 sg->__cpu_power = 0;
8110 cpumask_copy(sched_group_cpus(sg), nodemask);
8111 sg->next = sg;
8112 cpumask_or(covered, covered, nodemask);
8113 prev = sg;
8115 for (j = 0; j < nr_node_ids; j++) {
8116 int n = (i + j) % nr_node_ids;
8118 cpumask_complement(notcovered, covered);
8119 cpumask_and(tmpmask, notcovered, cpu_map);
8120 cpumask_and(tmpmask, tmpmask, domainspan);
8121 if (cpumask_empty(tmpmask))
8122 break;
8124 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8125 if (cpumask_empty(tmpmask))
8126 continue;
8128 sg = kmalloc_node(sizeof(struct sched_group) +
8129 cpumask_size(),
8130 GFP_KERNEL, i);
8131 if (!sg) {
8132 printk(KERN_WARNING
8133 "Can not alloc domain group for node %d\n", j);
8134 goto error;
8136 sg->__cpu_power = 0;
8137 cpumask_copy(sched_group_cpus(sg), tmpmask);
8138 sg->next = prev->next;
8139 cpumask_or(covered, covered, tmpmask);
8140 prev->next = sg;
8141 prev = sg;
8144 #endif
8146 /* Calculate CPU power for physical packages and nodes */
8147 #ifdef CONFIG_SCHED_SMT
8148 for_each_cpu(i, cpu_map) {
8149 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8151 init_sched_groups_power(i, sd);
8153 #endif
8154 #ifdef CONFIG_SCHED_MC
8155 for_each_cpu(i, cpu_map) {
8156 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8158 init_sched_groups_power(i, sd);
8160 #endif
8162 for_each_cpu(i, cpu_map) {
8163 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8165 init_sched_groups_power(i, sd);
8168 #ifdef CONFIG_NUMA
8169 for (i = 0; i < nr_node_ids; i++)
8170 init_numa_sched_groups_power(sched_group_nodes[i]);
8172 if (sd_allnodes) {
8173 struct sched_group *sg;
8175 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8176 tmpmask);
8177 init_numa_sched_groups_power(sg);
8179 #endif
8181 /* Attach the domains */
8182 for_each_cpu(i, cpu_map) {
8183 struct sched_domain *sd;
8184 #ifdef CONFIG_SCHED_SMT
8185 sd = &per_cpu(cpu_domains, i).sd;
8186 #elif defined(CONFIG_SCHED_MC)
8187 sd = &per_cpu(core_domains, i).sd;
8188 #else
8189 sd = &per_cpu(phys_domains, i).sd;
8190 #endif
8191 cpu_attach_domain(sd, rd, i);
8194 err = 0;
8196 free_tmpmask:
8197 free_cpumask_var(tmpmask);
8198 free_send_covered:
8199 free_cpumask_var(send_covered);
8200 free_this_core_map:
8201 free_cpumask_var(this_core_map);
8202 free_this_sibling_map:
8203 free_cpumask_var(this_sibling_map);
8204 free_nodemask:
8205 free_cpumask_var(nodemask);
8206 free_notcovered:
8207 #ifdef CONFIG_NUMA
8208 free_cpumask_var(notcovered);
8209 free_covered:
8210 free_cpumask_var(covered);
8211 free_domainspan:
8212 free_cpumask_var(domainspan);
8213 out:
8214 #endif
8215 return err;
8217 free_sched_groups:
8218 #ifdef CONFIG_NUMA
8219 kfree(sched_group_nodes);
8220 #endif
8221 goto free_tmpmask;
8223 #ifdef CONFIG_NUMA
8224 error:
8225 free_sched_groups(cpu_map, tmpmask);
8226 free_rootdomain(rd);
8227 goto free_tmpmask;
8228 #endif
8231 static int build_sched_domains(const struct cpumask *cpu_map)
8233 return __build_sched_domains(cpu_map, NULL);
8236 static struct cpumask *doms_cur; /* current sched domains */
8237 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8238 static struct sched_domain_attr *dattr_cur;
8239 /* attribues of custom domains in 'doms_cur' */
8242 * Special case: If a kmalloc of a doms_cur partition (array of
8243 * cpumask) fails, then fallback to a single sched domain,
8244 * as determined by the single cpumask fallback_doms.
8246 static cpumask_var_t fallback_doms;
8249 * arch_update_cpu_topology lets virtualized architectures update the
8250 * cpu core maps. It is supposed to return 1 if the topology changed
8251 * or 0 if it stayed the same.
8253 int __attribute__((weak)) arch_update_cpu_topology(void)
8255 return 0;
8259 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8260 * For now this just excludes isolated cpus, but could be used to
8261 * exclude other special cases in the future.
8263 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8265 int err;
8267 arch_update_cpu_topology();
8268 ndoms_cur = 1;
8269 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8270 if (!doms_cur)
8271 doms_cur = fallback_doms;
8272 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8273 dattr_cur = NULL;
8274 err = build_sched_domains(doms_cur);
8275 register_sched_domain_sysctl();
8277 return err;
8280 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8281 struct cpumask *tmpmask)
8283 free_sched_groups(cpu_map, tmpmask);
8287 * Detach sched domains from a group of cpus specified in cpu_map
8288 * These cpus will now be attached to the NULL domain
8290 static void detach_destroy_domains(const struct cpumask *cpu_map)
8292 /* Save because hotplug lock held. */
8293 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8294 int i;
8296 for_each_cpu(i, cpu_map)
8297 cpu_attach_domain(NULL, &def_root_domain, i);
8298 synchronize_sched();
8299 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8302 /* handle null as "default" */
8303 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8304 struct sched_domain_attr *new, int idx_new)
8306 struct sched_domain_attr tmp;
8308 /* fast path */
8309 if (!new && !cur)
8310 return 1;
8312 tmp = SD_ATTR_INIT;
8313 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8314 new ? (new + idx_new) : &tmp,
8315 sizeof(struct sched_domain_attr));
8319 * Partition sched domains as specified by the 'ndoms_new'
8320 * cpumasks in the array doms_new[] of cpumasks. This compares
8321 * doms_new[] to the current sched domain partitioning, doms_cur[].
8322 * It destroys each deleted domain and builds each new domain.
8324 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8325 * The masks don't intersect (don't overlap.) We should setup one
8326 * sched domain for each mask. CPUs not in any of the cpumasks will
8327 * not be load balanced. If the same cpumask appears both in the
8328 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8329 * it as it is.
8331 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8332 * ownership of it and will kfree it when done with it. If the caller
8333 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8334 * ndoms_new == 1, and partition_sched_domains() will fallback to
8335 * the single partition 'fallback_doms', it also forces the domains
8336 * to be rebuilt.
8338 * If doms_new == NULL it will be replaced with cpu_online_mask.
8339 * ndoms_new == 0 is a special case for destroying existing domains,
8340 * and it will not create the default domain.
8342 * Call with hotplug lock held
8344 /* FIXME: Change to struct cpumask *doms_new[] */
8345 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8346 struct sched_domain_attr *dattr_new)
8348 int i, j, n;
8349 int new_topology;
8351 mutex_lock(&sched_domains_mutex);
8353 /* always unregister in case we don't destroy any domains */
8354 unregister_sched_domain_sysctl();
8356 /* Let architecture update cpu core mappings. */
8357 new_topology = arch_update_cpu_topology();
8359 n = doms_new ? ndoms_new : 0;
8361 /* Destroy deleted domains */
8362 for (i = 0; i < ndoms_cur; i++) {
8363 for (j = 0; j < n && !new_topology; j++) {
8364 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8365 && dattrs_equal(dattr_cur, i, dattr_new, j))
8366 goto match1;
8368 /* no match - a current sched domain not in new doms_new[] */
8369 detach_destroy_domains(doms_cur + i);
8370 match1:
8374 if (doms_new == NULL) {
8375 ndoms_cur = 0;
8376 doms_new = fallback_doms;
8377 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8378 WARN_ON_ONCE(dattr_new);
8381 /* Build new domains */
8382 for (i = 0; i < ndoms_new; i++) {
8383 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8384 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8385 && dattrs_equal(dattr_new, i, dattr_cur, j))
8386 goto match2;
8388 /* no match - add a new doms_new */
8389 __build_sched_domains(doms_new + i,
8390 dattr_new ? dattr_new + i : NULL);
8391 match2:
8395 /* Remember the new sched domains */
8396 if (doms_cur != fallback_doms)
8397 kfree(doms_cur);
8398 kfree(dattr_cur); /* kfree(NULL) is safe */
8399 doms_cur = doms_new;
8400 dattr_cur = dattr_new;
8401 ndoms_cur = ndoms_new;
8403 register_sched_domain_sysctl();
8405 mutex_unlock(&sched_domains_mutex);
8408 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8409 static void arch_reinit_sched_domains(void)
8411 get_online_cpus();
8413 /* Destroy domains first to force the rebuild */
8414 partition_sched_domains(0, NULL, NULL);
8416 rebuild_sched_domains();
8417 put_online_cpus();
8420 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8422 unsigned int level = 0;
8424 if (sscanf(buf, "%u", &level) != 1)
8425 return -EINVAL;
8428 * level is always be positive so don't check for
8429 * level < POWERSAVINGS_BALANCE_NONE which is 0
8430 * What happens on 0 or 1 byte write,
8431 * need to check for count as well?
8434 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8435 return -EINVAL;
8437 if (smt)
8438 sched_smt_power_savings = level;
8439 else
8440 sched_mc_power_savings = level;
8442 arch_reinit_sched_domains();
8444 return count;
8447 #ifdef CONFIG_SCHED_MC
8448 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8449 char *page)
8451 return sprintf(page, "%u\n", sched_mc_power_savings);
8453 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8454 const char *buf, size_t count)
8456 return sched_power_savings_store(buf, count, 0);
8458 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8459 sched_mc_power_savings_show,
8460 sched_mc_power_savings_store);
8461 #endif
8463 #ifdef CONFIG_SCHED_SMT
8464 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8465 char *page)
8467 return sprintf(page, "%u\n", sched_smt_power_savings);
8469 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8470 const char *buf, size_t count)
8472 return sched_power_savings_store(buf, count, 1);
8474 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8475 sched_smt_power_savings_show,
8476 sched_smt_power_savings_store);
8477 #endif
8479 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8481 int err = 0;
8483 #ifdef CONFIG_SCHED_SMT
8484 if (smt_capable())
8485 err = sysfs_create_file(&cls->kset.kobj,
8486 &attr_sched_smt_power_savings.attr);
8487 #endif
8488 #ifdef CONFIG_SCHED_MC
8489 if (!err && mc_capable())
8490 err = sysfs_create_file(&cls->kset.kobj,
8491 &attr_sched_mc_power_savings.attr);
8492 #endif
8493 return err;
8495 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8497 #ifndef CONFIG_CPUSETS
8499 * Add online and remove offline CPUs from the scheduler domains.
8500 * When cpusets are enabled they take over this function.
8502 static int update_sched_domains(struct notifier_block *nfb,
8503 unsigned long action, void *hcpu)
8505 switch (action) {
8506 case CPU_ONLINE:
8507 case CPU_ONLINE_FROZEN:
8508 case CPU_DEAD:
8509 case CPU_DEAD_FROZEN:
8510 partition_sched_domains(1, NULL, NULL);
8511 return NOTIFY_OK;
8513 default:
8514 return NOTIFY_DONE;
8517 #endif
8519 static int update_runtime(struct notifier_block *nfb,
8520 unsigned long action, void *hcpu)
8522 int cpu = (int)(long)hcpu;
8524 switch (action) {
8525 case CPU_DOWN_PREPARE:
8526 case CPU_DOWN_PREPARE_FROZEN:
8527 disable_runtime(cpu_rq(cpu));
8528 return NOTIFY_OK;
8530 case CPU_DOWN_FAILED:
8531 case CPU_DOWN_FAILED_FROZEN:
8532 case CPU_ONLINE:
8533 case CPU_ONLINE_FROZEN:
8534 enable_runtime(cpu_rq(cpu));
8535 return NOTIFY_OK;
8537 default:
8538 return NOTIFY_DONE;
8542 void __init sched_init_smp(void)
8544 cpumask_var_t non_isolated_cpus;
8546 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8548 #if defined(CONFIG_NUMA)
8549 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8550 GFP_KERNEL);
8551 BUG_ON(sched_group_nodes_bycpu == NULL);
8552 #endif
8553 get_online_cpus();
8554 mutex_lock(&sched_domains_mutex);
8555 arch_init_sched_domains(cpu_online_mask);
8556 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8557 if (cpumask_empty(non_isolated_cpus))
8558 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8559 mutex_unlock(&sched_domains_mutex);
8560 put_online_cpus();
8562 #ifndef CONFIG_CPUSETS
8563 /* XXX: Theoretical race here - CPU may be hotplugged now */
8564 hotcpu_notifier(update_sched_domains, 0);
8565 #endif
8567 /* RT runtime code needs to handle some hotplug events */
8568 hotcpu_notifier(update_runtime, 0);
8570 init_hrtick();
8572 /* Move init over to a non-isolated CPU */
8573 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8574 BUG();
8575 sched_init_granularity();
8576 free_cpumask_var(non_isolated_cpus);
8578 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8579 init_sched_rt_class();
8581 #else
8582 void __init sched_init_smp(void)
8584 sched_init_granularity();
8586 #endif /* CONFIG_SMP */
8588 int in_sched_functions(unsigned long addr)
8590 return in_lock_functions(addr) ||
8591 (addr >= (unsigned long)__sched_text_start
8592 && addr < (unsigned long)__sched_text_end);
8595 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8597 cfs_rq->tasks_timeline = RB_ROOT;
8598 INIT_LIST_HEAD(&cfs_rq->tasks);
8599 #ifdef CONFIG_FAIR_GROUP_SCHED
8600 cfs_rq->rq = rq;
8601 #endif
8602 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8605 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8607 struct rt_prio_array *array;
8608 int i;
8610 array = &rt_rq->active;
8611 for (i = 0; i < MAX_RT_PRIO; i++) {
8612 INIT_LIST_HEAD(array->queue + i);
8613 __clear_bit(i, array->bitmap);
8615 /* delimiter for bitsearch: */
8616 __set_bit(MAX_RT_PRIO, array->bitmap);
8618 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8619 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8620 #ifdef CONFIG_SMP
8621 rt_rq->highest_prio.next = MAX_RT_PRIO;
8622 #endif
8623 #endif
8624 #ifdef CONFIG_SMP
8625 rt_rq->rt_nr_migratory = 0;
8626 rt_rq->overloaded = 0;
8627 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8628 #endif
8630 rt_rq->rt_time = 0;
8631 rt_rq->rt_throttled = 0;
8632 rt_rq->rt_runtime = 0;
8633 spin_lock_init(&rt_rq->rt_runtime_lock);
8635 #ifdef CONFIG_RT_GROUP_SCHED
8636 rt_rq->rt_nr_boosted = 0;
8637 rt_rq->rq = rq;
8638 #endif
8641 #ifdef CONFIG_FAIR_GROUP_SCHED
8642 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8643 struct sched_entity *se, int cpu, int add,
8644 struct sched_entity *parent)
8646 struct rq *rq = cpu_rq(cpu);
8647 tg->cfs_rq[cpu] = cfs_rq;
8648 init_cfs_rq(cfs_rq, rq);
8649 cfs_rq->tg = tg;
8650 if (add)
8651 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8653 tg->se[cpu] = se;
8654 /* se could be NULL for init_task_group */
8655 if (!se)
8656 return;
8658 if (!parent)
8659 se->cfs_rq = &rq->cfs;
8660 else
8661 se->cfs_rq = parent->my_q;
8663 se->my_q = cfs_rq;
8664 se->load.weight = tg->shares;
8665 se->load.inv_weight = 0;
8666 se->parent = parent;
8668 #endif
8670 #ifdef CONFIG_RT_GROUP_SCHED
8671 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8672 struct sched_rt_entity *rt_se, int cpu, int add,
8673 struct sched_rt_entity *parent)
8675 struct rq *rq = cpu_rq(cpu);
8677 tg->rt_rq[cpu] = rt_rq;
8678 init_rt_rq(rt_rq, rq);
8679 rt_rq->tg = tg;
8680 rt_rq->rt_se = rt_se;
8681 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8682 if (add)
8683 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8685 tg->rt_se[cpu] = rt_se;
8686 if (!rt_se)
8687 return;
8689 if (!parent)
8690 rt_se->rt_rq = &rq->rt;
8691 else
8692 rt_se->rt_rq = parent->my_q;
8694 rt_se->my_q = rt_rq;
8695 rt_se->parent = parent;
8696 INIT_LIST_HEAD(&rt_se->run_list);
8698 #endif
8700 void __init sched_init(void)
8702 int i, j;
8703 unsigned long alloc_size = 0, ptr;
8705 #ifdef CONFIG_FAIR_GROUP_SCHED
8706 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8707 #endif
8708 #ifdef CONFIG_RT_GROUP_SCHED
8709 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8710 #endif
8711 #ifdef CONFIG_USER_SCHED
8712 alloc_size *= 2;
8713 #endif
8715 * As sched_init() is called before page_alloc is setup,
8716 * we use alloc_bootmem().
8718 if (alloc_size) {
8719 ptr = (unsigned long)alloc_bootmem(alloc_size);
8721 #ifdef CONFIG_FAIR_GROUP_SCHED
8722 init_task_group.se = (struct sched_entity **)ptr;
8723 ptr += nr_cpu_ids * sizeof(void **);
8725 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8726 ptr += nr_cpu_ids * sizeof(void **);
8728 #ifdef CONFIG_USER_SCHED
8729 root_task_group.se = (struct sched_entity **)ptr;
8730 ptr += nr_cpu_ids * sizeof(void **);
8732 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8733 ptr += nr_cpu_ids * sizeof(void **);
8734 #endif /* CONFIG_USER_SCHED */
8735 #endif /* CONFIG_FAIR_GROUP_SCHED */
8736 #ifdef CONFIG_RT_GROUP_SCHED
8737 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8738 ptr += nr_cpu_ids * sizeof(void **);
8740 init_task_group.rt_rq = (struct rt_rq **)ptr;
8741 ptr += nr_cpu_ids * sizeof(void **);
8743 #ifdef CONFIG_USER_SCHED
8744 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8745 ptr += nr_cpu_ids * sizeof(void **);
8747 root_task_group.rt_rq = (struct rt_rq **)ptr;
8748 ptr += nr_cpu_ids * sizeof(void **);
8749 #endif /* CONFIG_USER_SCHED */
8750 #endif /* CONFIG_RT_GROUP_SCHED */
8753 #ifdef CONFIG_SMP
8754 init_defrootdomain();
8755 #endif
8757 init_rt_bandwidth(&def_rt_bandwidth,
8758 global_rt_period(), global_rt_runtime());
8760 #ifdef CONFIG_RT_GROUP_SCHED
8761 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8762 global_rt_period(), global_rt_runtime());
8763 #ifdef CONFIG_USER_SCHED
8764 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8765 global_rt_period(), RUNTIME_INF);
8766 #endif /* CONFIG_USER_SCHED */
8767 #endif /* CONFIG_RT_GROUP_SCHED */
8769 #ifdef CONFIG_GROUP_SCHED
8770 list_add(&init_task_group.list, &task_groups);
8771 INIT_LIST_HEAD(&init_task_group.children);
8773 #ifdef CONFIG_USER_SCHED
8774 INIT_LIST_HEAD(&root_task_group.children);
8775 init_task_group.parent = &root_task_group;
8776 list_add(&init_task_group.siblings, &root_task_group.children);
8777 #endif /* CONFIG_USER_SCHED */
8778 #endif /* CONFIG_GROUP_SCHED */
8780 for_each_possible_cpu(i) {
8781 struct rq *rq;
8783 rq = cpu_rq(i);
8784 spin_lock_init(&rq->lock);
8785 rq->nr_running = 0;
8786 init_cfs_rq(&rq->cfs, rq);
8787 init_rt_rq(&rq->rt, rq);
8788 #ifdef CONFIG_FAIR_GROUP_SCHED
8789 init_task_group.shares = init_task_group_load;
8790 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8791 #ifdef CONFIG_CGROUP_SCHED
8793 * How much cpu bandwidth does init_task_group get?
8795 * In case of task-groups formed thr' the cgroup filesystem, it
8796 * gets 100% of the cpu resources in the system. This overall
8797 * system cpu resource is divided among the tasks of
8798 * init_task_group and its child task-groups in a fair manner,
8799 * based on each entity's (task or task-group's) weight
8800 * (se->load.weight).
8802 * In other words, if init_task_group has 10 tasks of weight
8803 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8804 * then A0's share of the cpu resource is:
8806 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8808 * We achieve this by letting init_task_group's tasks sit
8809 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8811 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8812 #elif defined CONFIG_USER_SCHED
8813 root_task_group.shares = NICE_0_LOAD;
8814 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8816 * In case of task-groups formed thr' the user id of tasks,
8817 * init_task_group represents tasks belonging to root user.
8818 * Hence it forms a sibling of all subsequent groups formed.
8819 * In this case, init_task_group gets only a fraction of overall
8820 * system cpu resource, based on the weight assigned to root
8821 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8822 * by letting tasks of init_task_group sit in a separate cfs_rq
8823 * (init_cfs_rq) and having one entity represent this group of
8824 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8826 init_tg_cfs_entry(&init_task_group,
8827 &per_cpu(init_cfs_rq, i),
8828 &per_cpu(init_sched_entity, i), i, 1,
8829 root_task_group.se[i]);
8831 #endif
8832 #endif /* CONFIG_FAIR_GROUP_SCHED */
8834 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8835 #ifdef CONFIG_RT_GROUP_SCHED
8836 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8837 #ifdef CONFIG_CGROUP_SCHED
8838 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8839 #elif defined CONFIG_USER_SCHED
8840 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8841 init_tg_rt_entry(&init_task_group,
8842 &per_cpu(init_rt_rq, i),
8843 &per_cpu(init_sched_rt_entity, i), i, 1,
8844 root_task_group.rt_se[i]);
8845 #endif
8846 #endif
8848 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8849 rq->cpu_load[j] = 0;
8850 #ifdef CONFIG_SMP
8851 rq->sd = NULL;
8852 rq->rd = NULL;
8853 rq->active_balance = 0;
8854 rq->next_balance = jiffies;
8855 rq->push_cpu = 0;
8856 rq->cpu = i;
8857 rq->online = 0;
8858 rq->migration_thread = NULL;
8859 INIT_LIST_HEAD(&rq->migration_queue);
8860 rq_attach_root(rq, &def_root_domain);
8861 #endif
8862 init_rq_hrtick(rq);
8863 atomic_set(&rq->nr_iowait, 0);
8866 set_load_weight(&init_task);
8868 #ifdef CONFIG_PREEMPT_NOTIFIERS
8869 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8870 #endif
8872 #ifdef CONFIG_SMP
8873 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8874 #endif
8876 #ifdef CONFIG_RT_MUTEXES
8877 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8878 #endif
8881 * The boot idle thread does lazy MMU switching as well:
8883 atomic_inc(&init_mm.mm_count);
8884 enter_lazy_tlb(&init_mm, current);
8887 * Make us the idle thread. Technically, schedule() should not be
8888 * called from this thread, however somewhere below it might be,
8889 * but because we are the idle thread, we just pick up running again
8890 * when this runqueue becomes "idle".
8892 init_idle(current, smp_processor_id());
8894 * During early bootup we pretend to be a normal task:
8896 current->sched_class = &fair_sched_class;
8898 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8899 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8900 #ifdef CONFIG_SMP
8901 #ifdef CONFIG_NO_HZ
8902 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8903 #endif
8904 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8905 #endif /* SMP */
8907 scheduler_running = 1;
8910 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8911 void __might_sleep(char *file, int line)
8913 #ifdef in_atomic
8914 static unsigned long prev_jiffy; /* ratelimiting */
8916 if ((!in_atomic() && !irqs_disabled()) ||
8917 system_state != SYSTEM_RUNNING || oops_in_progress)
8918 return;
8919 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8920 return;
8921 prev_jiffy = jiffies;
8923 printk(KERN_ERR
8924 "BUG: sleeping function called from invalid context at %s:%d\n",
8925 file, line);
8926 printk(KERN_ERR
8927 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8928 in_atomic(), irqs_disabled(),
8929 current->pid, current->comm);
8931 debug_show_held_locks(current);
8932 if (irqs_disabled())
8933 print_irqtrace_events(current);
8934 dump_stack();
8935 #endif
8937 EXPORT_SYMBOL(__might_sleep);
8938 #endif
8940 #ifdef CONFIG_MAGIC_SYSRQ
8941 static void normalize_task(struct rq *rq, struct task_struct *p)
8943 int on_rq;
8945 update_rq_clock(rq);
8946 on_rq = p->se.on_rq;
8947 if (on_rq)
8948 deactivate_task(rq, p, 0);
8949 __setscheduler(rq, p, SCHED_NORMAL, 0);
8950 if (on_rq) {
8951 activate_task(rq, p, 0);
8952 resched_task(rq->curr);
8956 void normalize_rt_tasks(void)
8958 struct task_struct *g, *p;
8959 unsigned long flags;
8960 struct rq *rq;
8962 read_lock_irqsave(&tasklist_lock, flags);
8963 do_each_thread(g, p) {
8965 * Only normalize user tasks:
8967 if (!p->mm)
8968 continue;
8970 p->se.exec_start = 0;
8971 #ifdef CONFIG_SCHEDSTATS
8972 p->se.wait_start = 0;
8973 p->se.sleep_start = 0;
8974 p->se.block_start = 0;
8975 #endif
8977 if (!rt_task(p)) {
8979 * Renice negative nice level userspace
8980 * tasks back to 0:
8982 if (TASK_NICE(p) < 0 && p->mm)
8983 set_user_nice(p, 0);
8984 continue;
8987 spin_lock(&p->pi_lock);
8988 rq = __task_rq_lock(p);
8990 normalize_task(rq, p);
8992 __task_rq_unlock(rq);
8993 spin_unlock(&p->pi_lock);
8994 } while_each_thread(g, p);
8996 read_unlock_irqrestore(&tasklist_lock, flags);
8999 #endif /* CONFIG_MAGIC_SYSRQ */
9001 #ifdef CONFIG_IA64
9003 * These functions are only useful for the IA64 MCA handling.
9005 * They can only be called when the whole system has been
9006 * stopped - every CPU needs to be quiescent, and no scheduling
9007 * activity can take place. Using them for anything else would
9008 * be a serious bug, and as a result, they aren't even visible
9009 * under any other configuration.
9013 * curr_task - return the current task for a given cpu.
9014 * @cpu: the processor in question.
9016 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9018 struct task_struct *curr_task(int cpu)
9020 return cpu_curr(cpu);
9024 * set_curr_task - set the current task for a given cpu.
9025 * @cpu: the processor in question.
9026 * @p: the task pointer to set.
9028 * Description: This function must only be used when non-maskable interrupts
9029 * are serviced on a separate stack. It allows the architecture to switch the
9030 * notion of the current task on a cpu in a non-blocking manner. This function
9031 * must be called with all CPU's synchronized, and interrupts disabled, the
9032 * and caller must save the original value of the current task (see
9033 * curr_task() above) and restore that value before reenabling interrupts and
9034 * re-starting the system.
9036 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9038 void set_curr_task(int cpu, struct task_struct *p)
9040 cpu_curr(cpu) = p;
9043 #endif
9045 #ifdef CONFIG_FAIR_GROUP_SCHED
9046 static void free_fair_sched_group(struct task_group *tg)
9048 int i;
9050 for_each_possible_cpu(i) {
9051 if (tg->cfs_rq)
9052 kfree(tg->cfs_rq[i]);
9053 if (tg->se)
9054 kfree(tg->se[i]);
9057 kfree(tg->cfs_rq);
9058 kfree(tg->se);
9061 static
9062 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9064 struct cfs_rq *cfs_rq;
9065 struct sched_entity *se;
9066 struct rq *rq;
9067 int i;
9069 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9070 if (!tg->cfs_rq)
9071 goto err;
9072 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9073 if (!tg->se)
9074 goto err;
9076 tg->shares = NICE_0_LOAD;
9078 for_each_possible_cpu(i) {
9079 rq = cpu_rq(i);
9081 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9082 GFP_KERNEL, cpu_to_node(i));
9083 if (!cfs_rq)
9084 goto err;
9086 se = kzalloc_node(sizeof(struct sched_entity),
9087 GFP_KERNEL, cpu_to_node(i));
9088 if (!se)
9089 goto err;
9091 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9094 return 1;
9096 err:
9097 return 0;
9100 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9102 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9103 &cpu_rq(cpu)->leaf_cfs_rq_list);
9106 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9108 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9110 #else /* !CONFG_FAIR_GROUP_SCHED */
9111 static inline void free_fair_sched_group(struct task_group *tg)
9115 static inline
9116 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9118 return 1;
9121 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9125 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9128 #endif /* CONFIG_FAIR_GROUP_SCHED */
9130 #ifdef CONFIG_RT_GROUP_SCHED
9131 static void free_rt_sched_group(struct task_group *tg)
9133 int i;
9135 destroy_rt_bandwidth(&tg->rt_bandwidth);
9137 for_each_possible_cpu(i) {
9138 if (tg->rt_rq)
9139 kfree(tg->rt_rq[i]);
9140 if (tg->rt_se)
9141 kfree(tg->rt_se[i]);
9144 kfree(tg->rt_rq);
9145 kfree(tg->rt_se);
9148 static
9149 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9151 struct rt_rq *rt_rq;
9152 struct sched_rt_entity *rt_se;
9153 struct rq *rq;
9154 int i;
9156 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9157 if (!tg->rt_rq)
9158 goto err;
9159 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9160 if (!tg->rt_se)
9161 goto err;
9163 init_rt_bandwidth(&tg->rt_bandwidth,
9164 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9166 for_each_possible_cpu(i) {
9167 rq = cpu_rq(i);
9169 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9170 GFP_KERNEL, cpu_to_node(i));
9171 if (!rt_rq)
9172 goto err;
9174 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9175 GFP_KERNEL, cpu_to_node(i));
9176 if (!rt_se)
9177 goto err;
9179 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9182 return 1;
9184 err:
9185 return 0;
9188 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9190 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9191 &cpu_rq(cpu)->leaf_rt_rq_list);
9194 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9196 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9198 #else /* !CONFIG_RT_GROUP_SCHED */
9199 static inline void free_rt_sched_group(struct task_group *tg)
9203 static inline
9204 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9206 return 1;
9209 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9213 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9216 #endif /* CONFIG_RT_GROUP_SCHED */
9218 #ifdef CONFIG_GROUP_SCHED
9219 static void free_sched_group(struct task_group *tg)
9221 free_fair_sched_group(tg);
9222 free_rt_sched_group(tg);
9223 kfree(tg);
9226 /* allocate runqueue etc for a new task group */
9227 struct task_group *sched_create_group(struct task_group *parent)
9229 struct task_group *tg;
9230 unsigned long flags;
9231 int i;
9233 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9234 if (!tg)
9235 return ERR_PTR(-ENOMEM);
9237 if (!alloc_fair_sched_group(tg, parent))
9238 goto err;
9240 if (!alloc_rt_sched_group(tg, parent))
9241 goto err;
9243 spin_lock_irqsave(&task_group_lock, flags);
9244 for_each_possible_cpu(i) {
9245 register_fair_sched_group(tg, i);
9246 register_rt_sched_group(tg, i);
9248 list_add_rcu(&tg->list, &task_groups);
9250 WARN_ON(!parent); /* root should already exist */
9252 tg->parent = parent;
9253 INIT_LIST_HEAD(&tg->children);
9254 list_add_rcu(&tg->siblings, &parent->children);
9255 spin_unlock_irqrestore(&task_group_lock, flags);
9257 return tg;
9259 err:
9260 free_sched_group(tg);
9261 return ERR_PTR(-ENOMEM);
9264 /* rcu callback to free various structures associated with a task group */
9265 static void free_sched_group_rcu(struct rcu_head *rhp)
9267 /* now it should be safe to free those cfs_rqs */
9268 free_sched_group(container_of(rhp, struct task_group, rcu));
9271 /* Destroy runqueue etc associated with a task group */
9272 void sched_destroy_group(struct task_group *tg)
9274 unsigned long flags;
9275 int i;
9277 spin_lock_irqsave(&task_group_lock, flags);
9278 for_each_possible_cpu(i) {
9279 unregister_fair_sched_group(tg, i);
9280 unregister_rt_sched_group(tg, i);
9282 list_del_rcu(&tg->list);
9283 list_del_rcu(&tg->siblings);
9284 spin_unlock_irqrestore(&task_group_lock, flags);
9286 /* wait for possible concurrent references to cfs_rqs complete */
9287 call_rcu(&tg->rcu, free_sched_group_rcu);
9290 /* change task's runqueue when it moves between groups.
9291 * The caller of this function should have put the task in its new group
9292 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9293 * reflect its new group.
9295 void sched_move_task(struct task_struct *tsk)
9297 int on_rq, running;
9298 unsigned long flags;
9299 struct rq *rq;
9301 rq = task_rq_lock(tsk, &flags);
9303 update_rq_clock(rq);
9305 running = task_current(rq, tsk);
9306 on_rq = tsk->se.on_rq;
9308 if (on_rq)
9309 dequeue_task(rq, tsk, 0);
9310 if (unlikely(running))
9311 tsk->sched_class->put_prev_task(rq, tsk);
9313 set_task_rq(tsk, task_cpu(tsk));
9315 #ifdef CONFIG_FAIR_GROUP_SCHED
9316 if (tsk->sched_class->moved_group)
9317 tsk->sched_class->moved_group(tsk);
9318 #endif
9320 if (unlikely(running))
9321 tsk->sched_class->set_curr_task(rq);
9322 if (on_rq)
9323 enqueue_task(rq, tsk, 0);
9325 task_rq_unlock(rq, &flags);
9327 #endif /* CONFIG_GROUP_SCHED */
9329 #ifdef CONFIG_FAIR_GROUP_SCHED
9330 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9332 struct cfs_rq *cfs_rq = se->cfs_rq;
9333 int on_rq;
9335 on_rq = se->on_rq;
9336 if (on_rq)
9337 dequeue_entity(cfs_rq, se, 0);
9339 se->load.weight = shares;
9340 se->load.inv_weight = 0;
9342 if (on_rq)
9343 enqueue_entity(cfs_rq, se, 0);
9346 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9348 struct cfs_rq *cfs_rq = se->cfs_rq;
9349 struct rq *rq = cfs_rq->rq;
9350 unsigned long flags;
9352 spin_lock_irqsave(&rq->lock, flags);
9353 __set_se_shares(se, shares);
9354 spin_unlock_irqrestore(&rq->lock, flags);
9357 static DEFINE_MUTEX(shares_mutex);
9359 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9361 int i;
9362 unsigned long flags;
9365 * We can't change the weight of the root cgroup.
9367 if (!tg->se[0])
9368 return -EINVAL;
9370 if (shares < MIN_SHARES)
9371 shares = MIN_SHARES;
9372 else if (shares > MAX_SHARES)
9373 shares = MAX_SHARES;
9375 mutex_lock(&shares_mutex);
9376 if (tg->shares == shares)
9377 goto done;
9379 spin_lock_irqsave(&task_group_lock, flags);
9380 for_each_possible_cpu(i)
9381 unregister_fair_sched_group(tg, i);
9382 list_del_rcu(&tg->siblings);
9383 spin_unlock_irqrestore(&task_group_lock, flags);
9385 /* wait for any ongoing reference to this group to finish */
9386 synchronize_sched();
9389 * Now we are free to modify the group's share on each cpu
9390 * w/o tripping rebalance_share or load_balance_fair.
9392 tg->shares = shares;
9393 for_each_possible_cpu(i) {
9395 * force a rebalance
9397 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9398 set_se_shares(tg->se[i], shares);
9402 * Enable load balance activity on this group, by inserting it back on
9403 * each cpu's rq->leaf_cfs_rq_list.
9405 spin_lock_irqsave(&task_group_lock, flags);
9406 for_each_possible_cpu(i)
9407 register_fair_sched_group(tg, i);
9408 list_add_rcu(&tg->siblings, &tg->parent->children);
9409 spin_unlock_irqrestore(&task_group_lock, flags);
9410 done:
9411 mutex_unlock(&shares_mutex);
9412 return 0;
9415 unsigned long sched_group_shares(struct task_group *tg)
9417 return tg->shares;
9419 #endif
9421 #ifdef CONFIG_RT_GROUP_SCHED
9423 * Ensure that the real time constraints are schedulable.
9425 static DEFINE_MUTEX(rt_constraints_mutex);
9427 static unsigned long to_ratio(u64 period, u64 runtime)
9429 if (runtime == RUNTIME_INF)
9430 return 1ULL << 20;
9432 return div64_u64(runtime << 20, period);
9435 /* Must be called with tasklist_lock held */
9436 static inline int tg_has_rt_tasks(struct task_group *tg)
9438 struct task_struct *g, *p;
9440 do_each_thread(g, p) {
9441 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9442 return 1;
9443 } while_each_thread(g, p);
9445 return 0;
9448 struct rt_schedulable_data {
9449 struct task_group *tg;
9450 u64 rt_period;
9451 u64 rt_runtime;
9454 static int tg_schedulable(struct task_group *tg, void *data)
9456 struct rt_schedulable_data *d = data;
9457 struct task_group *child;
9458 unsigned long total, sum = 0;
9459 u64 period, runtime;
9461 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9462 runtime = tg->rt_bandwidth.rt_runtime;
9464 if (tg == d->tg) {
9465 period = d->rt_period;
9466 runtime = d->rt_runtime;
9469 #ifdef CONFIG_USER_SCHED
9470 if (tg == &root_task_group) {
9471 period = global_rt_period();
9472 runtime = global_rt_runtime();
9474 #endif
9477 * Cannot have more runtime than the period.
9479 if (runtime > period && runtime != RUNTIME_INF)
9480 return -EINVAL;
9483 * Ensure we don't starve existing RT tasks.
9485 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9486 return -EBUSY;
9488 total = to_ratio(period, runtime);
9491 * Nobody can have more than the global setting allows.
9493 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9494 return -EINVAL;
9497 * The sum of our children's runtime should not exceed our own.
9499 list_for_each_entry_rcu(child, &tg->children, siblings) {
9500 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9501 runtime = child->rt_bandwidth.rt_runtime;
9503 if (child == d->tg) {
9504 period = d->rt_period;
9505 runtime = d->rt_runtime;
9508 sum += to_ratio(period, runtime);
9511 if (sum > total)
9512 return -EINVAL;
9514 return 0;
9517 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9519 struct rt_schedulable_data data = {
9520 .tg = tg,
9521 .rt_period = period,
9522 .rt_runtime = runtime,
9525 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9528 static int tg_set_bandwidth(struct task_group *tg,
9529 u64 rt_period, u64 rt_runtime)
9531 int i, err = 0;
9533 mutex_lock(&rt_constraints_mutex);
9534 read_lock(&tasklist_lock);
9535 err = __rt_schedulable(tg, rt_period, rt_runtime);
9536 if (err)
9537 goto unlock;
9539 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9540 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9541 tg->rt_bandwidth.rt_runtime = rt_runtime;
9543 for_each_possible_cpu(i) {
9544 struct rt_rq *rt_rq = tg->rt_rq[i];
9546 spin_lock(&rt_rq->rt_runtime_lock);
9547 rt_rq->rt_runtime = rt_runtime;
9548 spin_unlock(&rt_rq->rt_runtime_lock);
9550 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9551 unlock:
9552 read_unlock(&tasklist_lock);
9553 mutex_unlock(&rt_constraints_mutex);
9555 return err;
9558 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9560 u64 rt_runtime, rt_period;
9562 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9563 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9564 if (rt_runtime_us < 0)
9565 rt_runtime = RUNTIME_INF;
9567 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9570 long sched_group_rt_runtime(struct task_group *tg)
9572 u64 rt_runtime_us;
9574 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9575 return -1;
9577 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9578 do_div(rt_runtime_us, NSEC_PER_USEC);
9579 return rt_runtime_us;
9582 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9584 u64 rt_runtime, rt_period;
9586 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9587 rt_runtime = tg->rt_bandwidth.rt_runtime;
9589 if (rt_period == 0)
9590 return -EINVAL;
9592 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9595 long sched_group_rt_period(struct task_group *tg)
9597 u64 rt_period_us;
9599 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9600 do_div(rt_period_us, NSEC_PER_USEC);
9601 return rt_period_us;
9604 static int sched_rt_global_constraints(void)
9606 u64 runtime, period;
9607 int ret = 0;
9609 if (sysctl_sched_rt_period <= 0)
9610 return -EINVAL;
9612 runtime = global_rt_runtime();
9613 period = global_rt_period();
9616 * Sanity check on the sysctl variables.
9618 if (runtime > period && runtime != RUNTIME_INF)
9619 return -EINVAL;
9621 mutex_lock(&rt_constraints_mutex);
9622 read_lock(&tasklist_lock);
9623 ret = __rt_schedulable(NULL, 0, 0);
9624 read_unlock(&tasklist_lock);
9625 mutex_unlock(&rt_constraints_mutex);
9627 return ret;
9630 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9632 /* Don't accept realtime tasks when there is no way for them to run */
9633 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9634 return 0;
9636 return 1;
9639 #else /* !CONFIG_RT_GROUP_SCHED */
9640 static int sched_rt_global_constraints(void)
9642 unsigned long flags;
9643 int i;
9645 if (sysctl_sched_rt_period <= 0)
9646 return -EINVAL;
9648 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9649 for_each_possible_cpu(i) {
9650 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9652 spin_lock(&rt_rq->rt_runtime_lock);
9653 rt_rq->rt_runtime = global_rt_runtime();
9654 spin_unlock(&rt_rq->rt_runtime_lock);
9656 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9658 return 0;
9660 #endif /* CONFIG_RT_GROUP_SCHED */
9662 int sched_rt_handler(struct ctl_table *table, int write,
9663 struct file *filp, void __user *buffer, size_t *lenp,
9664 loff_t *ppos)
9666 int ret;
9667 int old_period, old_runtime;
9668 static DEFINE_MUTEX(mutex);
9670 mutex_lock(&mutex);
9671 old_period = sysctl_sched_rt_period;
9672 old_runtime = sysctl_sched_rt_runtime;
9674 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9676 if (!ret && write) {
9677 ret = sched_rt_global_constraints();
9678 if (ret) {
9679 sysctl_sched_rt_period = old_period;
9680 sysctl_sched_rt_runtime = old_runtime;
9681 } else {
9682 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9683 def_rt_bandwidth.rt_period =
9684 ns_to_ktime(global_rt_period());
9687 mutex_unlock(&mutex);
9689 return ret;
9692 #ifdef CONFIG_CGROUP_SCHED
9694 /* return corresponding task_group object of a cgroup */
9695 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9697 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9698 struct task_group, css);
9701 static struct cgroup_subsys_state *
9702 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9704 struct task_group *tg, *parent;
9706 if (!cgrp->parent) {
9707 /* This is early initialization for the top cgroup */
9708 return &init_task_group.css;
9711 parent = cgroup_tg(cgrp->parent);
9712 tg = sched_create_group(parent);
9713 if (IS_ERR(tg))
9714 return ERR_PTR(-ENOMEM);
9716 return &tg->css;
9719 static void
9720 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9722 struct task_group *tg = cgroup_tg(cgrp);
9724 sched_destroy_group(tg);
9727 static int
9728 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9729 struct task_struct *tsk)
9731 #ifdef CONFIG_RT_GROUP_SCHED
9732 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9733 return -EINVAL;
9734 #else
9735 /* We don't support RT-tasks being in separate groups */
9736 if (tsk->sched_class != &fair_sched_class)
9737 return -EINVAL;
9738 #endif
9740 return 0;
9743 static void
9744 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9745 struct cgroup *old_cont, struct task_struct *tsk)
9747 sched_move_task(tsk);
9750 #ifdef CONFIG_FAIR_GROUP_SCHED
9751 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9752 u64 shareval)
9754 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9757 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9759 struct task_group *tg = cgroup_tg(cgrp);
9761 return (u64) tg->shares;
9763 #endif /* CONFIG_FAIR_GROUP_SCHED */
9765 #ifdef CONFIG_RT_GROUP_SCHED
9766 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9767 s64 val)
9769 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9772 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9774 return sched_group_rt_runtime(cgroup_tg(cgrp));
9777 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9778 u64 rt_period_us)
9780 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9783 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9785 return sched_group_rt_period(cgroup_tg(cgrp));
9787 #endif /* CONFIG_RT_GROUP_SCHED */
9789 static struct cftype cpu_files[] = {
9790 #ifdef CONFIG_FAIR_GROUP_SCHED
9792 .name = "shares",
9793 .read_u64 = cpu_shares_read_u64,
9794 .write_u64 = cpu_shares_write_u64,
9796 #endif
9797 #ifdef CONFIG_RT_GROUP_SCHED
9799 .name = "rt_runtime_us",
9800 .read_s64 = cpu_rt_runtime_read,
9801 .write_s64 = cpu_rt_runtime_write,
9804 .name = "rt_period_us",
9805 .read_u64 = cpu_rt_period_read_uint,
9806 .write_u64 = cpu_rt_period_write_uint,
9808 #endif
9811 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9813 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9816 struct cgroup_subsys cpu_cgroup_subsys = {
9817 .name = "cpu",
9818 .create = cpu_cgroup_create,
9819 .destroy = cpu_cgroup_destroy,
9820 .can_attach = cpu_cgroup_can_attach,
9821 .attach = cpu_cgroup_attach,
9822 .populate = cpu_cgroup_populate,
9823 .subsys_id = cpu_cgroup_subsys_id,
9824 .early_init = 1,
9827 #endif /* CONFIG_CGROUP_SCHED */
9829 #ifdef CONFIG_CGROUP_CPUACCT
9832 * CPU accounting code for task groups.
9834 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9835 * (balbir@in.ibm.com).
9838 /* track cpu usage of a group of tasks and its child groups */
9839 struct cpuacct {
9840 struct cgroup_subsys_state css;
9841 /* cpuusage holds pointer to a u64-type object on every cpu */
9842 u64 *cpuusage;
9843 struct cpuacct *parent;
9846 struct cgroup_subsys cpuacct_subsys;
9848 /* return cpu accounting group corresponding to this container */
9849 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9851 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9852 struct cpuacct, css);
9855 /* return cpu accounting group to which this task belongs */
9856 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9858 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9859 struct cpuacct, css);
9862 /* create a new cpu accounting group */
9863 static struct cgroup_subsys_state *cpuacct_create(
9864 struct cgroup_subsys *ss, struct cgroup *cgrp)
9866 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9868 if (!ca)
9869 return ERR_PTR(-ENOMEM);
9871 ca->cpuusage = alloc_percpu(u64);
9872 if (!ca->cpuusage) {
9873 kfree(ca);
9874 return ERR_PTR(-ENOMEM);
9877 if (cgrp->parent)
9878 ca->parent = cgroup_ca(cgrp->parent);
9880 return &ca->css;
9883 /* destroy an existing cpu accounting group */
9884 static void
9885 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9887 struct cpuacct *ca = cgroup_ca(cgrp);
9889 free_percpu(ca->cpuusage);
9890 kfree(ca);
9893 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9895 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9896 u64 data;
9898 #ifndef CONFIG_64BIT
9900 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9902 spin_lock_irq(&cpu_rq(cpu)->lock);
9903 data = *cpuusage;
9904 spin_unlock_irq(&cpu_rq(cpu)->lock);
9905 #else
9906 data = *cpuusage;
9907 #endif
9909 return data;
9912 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9914 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9916 #ifndef CONFIG_64BIT
9918 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9920 spin_lock_irq(&cpu_rq(cpu)->lock);
9921 *cpuusage = val;
9922 spin_unlock_irq(&cpu_rq(cpu)->lock);
9923 #else
9924 *cpuusage = val;
9925 #endif
9928 /* return total cpu usage (in nanoseconds) of a group */
9929 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9931 struct cpuacct *ca = cgroup_ca(cgrp);
9932 u64 totalcpuusage = 0;
9933 int i;
9935 for_each_present_cpu(i)
9936 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9938 return totalcpuusage;
9941 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9942 u64 reset)
9944 struct cpuacct *ca = cgroup_ca(cgrp);
9945 int err = 0;
9946 int i;
9948 if (reset) {
9949 err = -EINVAL;
9950 goto out;
9953 for_each_present_cpu(i)
9954 cpuacct_cpuusage_write(ca, i, 0);
9956 out:
9957 return err;
9960 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9961 struct seq_file *m)
9963 struct cpuacct *ca = cgroup_ca(cgroup);
9964 u64 percpu;
9965 int i;
9967 for_each_present_cpu(i) {
9968 percpu = cpuacct_cpuusage_read(ca, i);
9969 seq_printf(m, "%llu ", (unsigned long long) percpu);
9971 seq_printf(m, "\n");
9972 return 0;
9975 static struct cftype files[] = {
9977 .name = "usage",
9978 .read_u64 = cpuusage_read,
9979 .write_u64 = cpuusage_write,
9982 .name = "usage_percpu",
9983 .read_seq_string = cpuacct_percpu_seq_read,
9988 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9990 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9994 * charge this task's execution time to its accounting group.
9996 * called with rq->lock held.
9998 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10000 struct cpuacct *ca;
10001 int cpu;
10003 if (unlikely(!cpuacct_subsys.active))
10004 return;
10006 cpu = task_cpu(tsk);
10007 ca = task_ca(tsk);
10009 for (; ca; ca = ca->parent) {
10010 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
10011 *cpuusage += cputime;
10015 struct cgroup_subsys cpuacct_subsys = {
10016 .name = "cpuacct",
10017 .create = cpuacct_create,
10018 .destroy = cpuacct_destroy,
10019 .populate = cpuacct_populate,
10020 .subsys_id = cpuacct_subsys_id,
10022 #endif /* CONFIG_CGROUP_CPUACCT */