2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
46 #include "ext4_jbd2.h"
49 #include "ext4_extents.h"
51 #include <trace/events/ext4.h>
53 #define MPAGE_DA_EXTENT_TAIL 0x01
55 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
58 trace_ext4_begin_ordered_truncate(inode
, new_size
);
60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush.
65 if (!EXT4_I(inode
)->jinode
)
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
68 EXT4_I(inode
)->jinode
,
72 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
73 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
74 struct buffer_head
*bh_result
, int create
);
75 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
76 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
77 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
78 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
81 * Test whether an inode is a fast symlink.
83 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
85 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
86 (inode
->i_sb
->s_blocksize
>> 9) : 0;
88 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction.
95 static unsigned long blocks_for_truncate(struct inode
*inode
)
99 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough
104 * like a regular file for ext4 to try to delete it. Things
105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */
110 /* But we need to bound the transaction so we don't overflow the
112 if (needed
> EXT4_MAX_TRANS_DATA
)
113 needed
= EXT4_MAX_TRANS_DATA
;
115 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal.
123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct
128 static handle_t
*start_transaction(struct inode
*inode
)
132 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
136 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
141 * Try to extend this transaction for the purposes of truncation.
143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1.
146 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
148 if (!ext4_handle_valid(handle
))
150 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
152 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
162 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
173 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
174 jbd_debug(2, "restarting handle %p\n", handle
);
175 up_write(&EXT4_I(inode
)->i_data_sem
);
176 ret
= ext4_journal_restart(handle
, nblocks
);
177 down_write(&EXT4_I(inode
)->i_data_sem
);
178 ext4_discard_preallocations(inode
);
184 * Called at the last iput() if i_nlink is zero.
186 void ext4_evict_inode(struct inode
*inode
)
191 trace_ext4_evict_inode(inode
);
192 if (inode
->i_nlink
) {
193 truncate_inode_pages(&inode
->i_data
, 0);
197 if (!is_bad_inode(inode
))
198 dquot_initialize(inode
);
200 if (ext4_should_order_data(inode
))
201 ext4_begin_ordered_truncate(inode
, 0);
202 truncate_inode_pages(&inode
->i_data
, 0);
204 if (is_bad_inode(inode
))
207 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
208 if (IS_ERR(handle
)) {
209 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
211 * If we're going to skip the normal cleanup, we still need to
212 * make sure that the in-core orphan linked list is properly
215 ext4_orphan_del(NULL
, inode
);
220 ext4_handle_sync(handle
);
222 err
= ext4_mark_inode_dirty(handle
, inode
);
224 ext4_warning(inode
->i_sb
,
225 "couldn't mark inode dirty (err %d)", err
);
229 ext4_truncate(inode
);
232 * ext4_ext_truncate() doesn't reserve any slop when it
233 * restarts journal transactions; therefore there may not be
234 * enough credits left in the handle to remove the inode from
235 * the orphan list and set the dtime field.
237 if (!ext4_handle_has_enough_credits(handle
, 3)) {
238 err
= ext4_journal_extend(handle
, 3);
240 err
= ext4_journal_restart(handle
, 3);
242 ext4_warning(inode
->i_sb
,
243 "couldn't extend journal (err %d)", err
);
245 ext4_journal_stop(handle
);
246 ext4_orphan_del(NULL
, inode
);
252 * Kill off the orphan record which ext4_truncate created.
253 * AKPM: I think this can be inside the above `if'.
254 * Note that ext4_orphan_del() has to be able to cope with the
255 * deletion of a non-existent orphan - this is because we don't
256 * know if ext4_truncate() actually created an orphan record.
257 * (Well, we could do this if we need to, but heck - it works)
259 ext4_orphan_del(handle
, inode
);
260 EXT4_I(inode
)->i_dtime
= get_seconds();
263 * One subtle ordering requirement: if anything has gone wrong
264 * (transaction abort, IO errors, whatever), then we can still
265 * do these next steps (the fs will already have been marked as
266 * having errors), but we can't free the inode if the mark_dirty
269 if (ext4_mark_inode_dirty(handle
, inode
))
270 /* If that failed, just do the required in-core inode clear. */
271 ext4_clear_inode(inode
);
273 ext4_free_inode(handle
, inode
);
274 ext4_journal_stop(handle
);
277 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
283 struct buffer_head
*bh
;
286 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
288 p
->key
= *(p
->p
= v
);
293 * ext4_block_to_path - parse the block number into array of offsets
294 * @inode: inode in question (we are only interested in its superblock)
295 * @i_block: block number to be parsed
296 * @offsets: array to store the offsets in
297 * @boundary: set this non-zero if the referred-to block is likely to be
298 * followed (on disk) by an indirect block.
300 * To store the locations of file's data ext4 uses a data structure common
301 * for UNIX filesystems - tree of pointers anchored in the inode, with
302 * data blocks at leaves and indirect blocks in intermediate nodes.
303 * This function translates the block number into path in that tree -
304 * return value is the path length and @offsets[n] is the offset of
305 * pointer to (n+1)th node in the nth one. If @block is out of range
306 * (negative or too large) warning is printed and zero returned.
308 * Note: function doesn't find node addresses, so no IO is needed. All
309 * we need to know is the capacity of indirect blocks (taken from the
314 * Portability note: the last comparison (check that we fit into triple
315 * indirect block) is spelled differently, because otherwise on an
316 * architecture with 32-bit longs and 8Kb pages we might get into trouble
317 * if our filesystem had 8Kb blocks. We might use long long, but that would
318 * kill us on x86. Oh, well, at least the sign propagation does not matter -
319 * i_block would have to be negative in the very beginning, so we would not
323 static int ext4_block_to_path(struct inode
*inode
,
325 ext4_lblk_t offsets
[4], int *boundary
)
327 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
328 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
329 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
330 indirect_blocks
= ptrs
,
331 double_blocks
= (1 << (ptrs_bits
* 2));
335 if (i_block
< direct_blocks
) {
336 offsets
[n
++] = i_block
;
337 final
= direct_blocks
;
338 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
339 offsets
[n
++] = EXT4_IND_BLOCK
;
340 offsets
[n
++] = i_block
;
342 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
343 offsets
[n
++] = EXT4_DIND_BLOCK
;
344 offsets
[n
++] = i_block
>> ptrs_bits
;
345 offsets
[n
++] = i_block
& (ptrs
- 1);
347 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
348 offsets
[n
++] = EXT4_TIND_BLOCK
;
349 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
350 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
351 offsets
[n
++] = i_block
& (ptrs
- 1);
354 ext4_warning(inode
->i_sb
, "block %lu > max in inode %lu",
355 i_block
+ direct_blocks
+
356 indirect_blocks
+ double_blocks
, inode
->i_ino
);
359 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
363 static int __ext4_check_blockref(const char *function
, unsigned int line
,
365 __le32
*p
, unsigned int max
)
367 struct ext4_super_block
*es
= EXT4_SB(inode
->i_sb
)->s_es
;
371 while (bref
< p
+max
) {
372 blk
= le32_to_cpu(*bref
++);
374 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
376 es
->s_last_error_block
= cpu_to_le64(blk
);
377 ext4_error_inode(inode
, function
, line
, blk
,
386 #define ext4_check_indirect_blockref(inode, bh) \
387 __ext4_check_blockref(__func__, __LINE__, inode, \
388 (__le32 *)(bh)->b_data, \
389 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
391 #define ext4_check_inode_blockref(inode) \
392 __ext4_check_blockref(__func__, __LINE__, inode, \
393 EXT4_I(inode)->i_data, \
397 * ext4_get_branch - read the chain of indirect blocks leading to data
398 * @inode: inode in question
399 * @depth: depth of the chain (1 - direct pointer, etc.)
400 * @offsets: offsets of pointers in inode/indirect blocks
401 * @chain: place to store the result
402 * @err: here we store the error value
404 * Function fills the array of triples <key, p, bh> and returns %NULL
405 * if everything went OK or the pointer to the last filled triple
406 * (incomplete one) otherwise. Upon the return chain[i].key contains
407 * the number of (i+1)-th block in the chain (as it is stored in memory,
408 * i.e. little-endian 32-bit), chain[i].p contains the address of that
409 * number (it points into struct inode for i==0 and into the bh->b_data
410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411 * block for i>0 and NULL for i==0. In other words, it holds the block
412 * numbers of the chain, addresses they were taken from (and where we can
413 * verify that chain did not change) and buffer_heads hosting these
416 * Function stops when it stumbles upon zero pointer (absent block)
417 * (pointer to last triple returned, *@err == 0)
418 * or when it gets an IO error reading an indirect block
419 * (ditto, *@err == -EIO)
420 * or when it reads all @depth-1 indirect blocks successfully and finds
421 * the whole chain, all way to the data (returns %NULL, *err == 0).
423 * Need to be called with
424 * down_read(&EXT4_I(inode)->i_data_sem)
426 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
427 ext4_lblk_t
*offsets
,
428 Indirect chain
[4], int *err
)
430 struct super_block
*sb
= inode
->i_sb
;
432 struct buffer_head
*bh
;
435 /* i_data is not going away, no lock needed */
436 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
440 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
444 if (!bh_uptodate_or_lock(bh
)) {
445 if (bh_submit_read(bh
) < 0) {
449 /* validate block references */
450 if (ext4_check_indirect_blockref(inode
, bh
)) {
456 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
470 * ext4_find_near - find a place for allocation with sufficient locality
472 * @ind: descriptor of indirect block.
474 * This function returns the preferred place for block allocation.
475 * It is used when heuristic for sequential allocation fails.
477 * + if there is a block to the left of our position - allocate near it.
478 * + if pointer will live in indirect block - allocate near that block.
479 * + if pointer will live in inode - allocate in the same
482 * In the latter case we colour the starting block by the callers PID to
483 * prevent it from clashing with concurrent allocations for a different inode
484 * in the same block group. The PID is used here so that functionally related
485 * files will be close-by on-disk.
487 * Caller must make sure that @ind is valid and will stay that way.
489 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
491 struct ext4_inode_info
*ei
= EXT4_I(inode
);
492 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
494 ext4_fsblk_t bg_start
;
495 ext4_fsblk_t last_block
;
496 ext4_grpblk_t colour
;
497 ext4_group_t block_group
;
498 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
500 /* Try to find previous block */
501 for (p
= ind
->p
- 1; p
>= start
; p
--) {
503 return le32_to_cpu(*p
);
506 /* No such thing, so let's try location of indirect block */
508 return ind
->bh
->b_blocknr
;
511 * It is going to be referred to from the inode itself? OK, just put it
512 * into the same cylinder group then.
514 block_group
= ei
->i_block_group
;
515 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
516 block_group
&= ~(flex_size
-1);
517 if (S_ISREG(inode
->i_mode
))
520 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
521 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
524 * If we are doing delayed allocation, we don't need take
525 * colour into account.
527 if (test_opt(inode
->i_sb
, DELALLOC
))
530 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
531 colour
= (current
->pid
% 16) *
532 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
534 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
535 return bg_start
+ colour
;
539 * ext4_find_goal - find a preferred place for allocation.
541 * @block: block we want
542 * @partial: pointer to the last triple within a chain
544 * Normally this function find the preferred place for block allocation,
546 * Because this is only used for non-extent files, we limit the block nr
549 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
555 * XXX need to get goal block from mballoc's data structures
558 goal
= ext4_find_near(inode
, partial
);
559 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
564 * ext4_blks_to_allocate - Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
575 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
576 int blocks_to_boundary
)
578 unsigned int count
= 0;
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
585 /* right now we don't handle cross boundary allocation */
586 if (blks
< blocks_to_boundary
+ 1)
589 count
+= blocks_to_boundary
+ 1;
594 while (count
< blks
&& count
<= blocks_to_boundary
&&
595 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @handle: handle for this transaction
604 * @inode: inode which needs allocated blocks
605 * @iblock: the logical block to start allocated at
606 * @goal: preferred physical block of allocation
607 * @indirect_blks: the number of blocks need to allocate for indirect
609 * @blks: number of desired blocks
610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block,
612 * @err: on return it will store the error code
614 * This function will return the number of blocks allocated as
615 * requested by the passed-in parameters.
617 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
618 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
619 int indirect_blks
, int blks
,
620 ext4_fsblk_t new_blocks
[4], int *err
)
622 struct ext4_allocation_request ar
;
624 unsigned long count
= 0, blk_allocated
= 0;
626 ext4_fsblk_t current_block
= 0;
630 * Here we try to allocate the requested multiple blocks at once,
631 * on a best-effort basis.
632 * To build a branch, we should allocate blocks for
633 * the indirect blocks(if not allocated yet), and at least
634 * the first direct block of this branch. That's the
635 * minimum number of blocks need to allocate(required)
637 /* first we try to allocate the indirect blocks */
638 target
= indirect_blks
;
641 /* allocating blocks for indirect blocks and direct blocks */
642 current_block
= ext4_new_meta_blocks(handle
, inode
, goal
,
647 if (unlikely(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
648 EXT4_ERROR_INODE(inode
,
649 "current_block %llu + count %lu > %d!",
650 current_block
, count
,
651 EXT4_MAX_BLOCK_FILE_PHYS
);
657 /* allocate blocks for indirect blocks */
658 while (index
< indirect_blks
&& count
) {
659 new_blocks
[index
++] = current_block
++;
664 * save the new block number
665 * for the first direct block
667 new_blocks
[index
] = current_block
;
668 printk(KERN_INFO
"%s returned more blocks than "
669 "requested\n", __func__
);
675 target
= blks
- count
;
676 blk_allocated
= count
;
679 /* Now allocate data blocks */
680 memset(&ar
, 0, sizeof(ar
));
685 if (S_ISREG(inode
->i_mode
))
686 /* enable in-core preallocation only for regular files */
687 ar
.flags
= EXT4_MB_HINT_DATA
;
689 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
690 if (unlikely(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
691 EXT4_ERROR_INODE(inode
,
692 "current_block %llu + ar.len %d > %d!",
693 current_block
, ar
.len
,
694 EXT4_MAX_BLOCK_FILE_PHYS
);
699 if (*err
&& (target
== blks
)) {
701 * if the allocation failed and we didn't allocate
707 if (target
== blks
) {
709 * save the new block number
710 * for the first direct block
712 new_blocks
[index
] = current_block
;
714 blk_allocated
+= ar
.len
;
717 /* total number of blocks allocated for direct blocks */
722 for (i
= 0; i
< index
; i
++)
723 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[i
], 1, 0);
728 * ext4_alloc_branch - allocate and set up a chain of blocks.
729 * @handle: handle for this transaction
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @goal: preferred place for allocation
734 * @offsets: offsets (in the blocks) to store the pointers to next.
735 * @branch: place to store the chain in.
737 * This function allocates blocks, zeroes out all but the last one,
738 * links them into chain and (if we are synchronous) writes them to disk.
739 * In other words, it prepares a branch that can be spliced onto the
740 * inode. It stores the information about that chain in the branch[], in
741 * the same format as ext4_get_branch() would do. We are calling it after
742 * we had read the existing part of chain and partial points to the last
743 * triple of that (one with zero ->key). Upon the exit we have the same
744 * picture as after the successful ext4_get_block(), except that in one
745 * place chain is disconnected - *branch->p is still zero (we did not
746 * set the last link), but branch->key contains the number that should
747 * be placed into *branch->p to fill that gap.
749 * If allocation fails we free all blocks we've allocated (and forget
750 * their buffer_heads) and return the error value the from failed
751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 * as described above and return 0.
754 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
755 ext4_lblk_t iblock
, int indirect_blks
,
756 int *blks
, ext4_fsblk_t goal
,
757 ext4_lblk_t
*offsets
, Indirect
*branch
)
759 int blocksize
= inode
->i_sb
->s_blocksize
;
762 struct buffer_head
*bh
;
764 ext4_fsblk_t new_blocks
[4];
765 ext4_fsblk_t current_block
;
767 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
768 *blks
, new_blocks
, &err
);
772 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
774 * metadata blocks and data blocks are allocated.
776 for (n
= 1; n
<= indirect_blks
; n
++) {
778 * Get buffer_head for parent block, zero it out
779 * and set the pointer to new one, then send
782 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
790 BUFFER_TRACE(bh
, "call get_create_access");
791 err
= ext4_journal_get_create_access(handle
, bh
);
793 /* Don't brelse(bh) here; it's done in
794 * ext4_journal_forget() below */
799 memset(bh
->b_data
, 0, blocksize
);
800 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
801 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
802 *branch
[n
].p
= branch
[n
].key
;
803 if (n
== indirect_blks
) {
804 current_block
= new_blocks
[n
];
806 * End of chain, update the last new metablock of
807 * the chain to point to the new allocated
808 * data blocks numbers
810 for (i
= 1; i
< num
; i
++)
811 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
813 BUFFER_TRACE(bh
, "marking uptodate");
814 set_buffer_uptodate(bh
);
817 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
818 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
825 /* Allocation failed, free what we already allocated */
826 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[0], 1, 0);
827 for (i
= 1; i
<= n
; i
++) {
829 * branch[i].bh is newly allocated, so there is no
830 * need to revoke the block, which is why we don't
831 * need to set EXT4_FREE_BLOCKS_METADATA.
833 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[i
], 1,
834 EXT4_FREE_BLOCKS_FORGET
);
836 for (i
= n
+1; i
< indirect_blks
; i
++)
837 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[i
], 1, 0);
839 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[i
], num
, 0);
845 * ext4_splice_branch - splice the allocated branch onto inode.
846 * @handle: handle for this transaction
848 * @block: (logical) number of block we are adding
849 * @chain: chain of indirect blocks (with a missing link - see
851 * @where: location of missing link
852 * @num: number of indirect blocks we are adding
853 * @blks: number of direct blocks we are adding
855 * This function fills the missing link and does all housekeeping needed in
856 * inode (->i_blocks, etc.). In case of success we end up with the full
857 * chain to new block and return 0.
859 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
860 ext4_lblk_t block
, Indirect
*where
, int num
,
865 ext4_fsblk_t current_block
;
868 * If we're splicing into a [td]indirect block (as opposed to the
869 * inode) then we need to get write access to the [td]indirect block
873 BUFFER_TRACE(where
->bh
, "get_write_access");
874 err
= ext4_journal_get_write_access(handle
, where
->bh
);
880 *where
->p
= where
->key
;
883 * Update the host buffer_head or inode to point to more just allocated
884 * direct blocks blocks
886 if (num
== 0 && blks
> 1) {
887 current_block
= le32_to_cpu(where
->key
) + 1;
888 for (i
= 1; i
< blks
; i
++)
889 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
892 /* We are done with atomic stuff, now do the rest of housekeeping */
893 /* had we spliced it onto indirect block? */
896 * If we spliced it onto an indirect block, we haven't
897 * altered the inode. Note however that if it is being spliced
898 * onto an indirect block at the very end of the file (the
899 * file is growing) then we *will* alter the inode to reflect
900 * the new i_size. But that is not done here - it is done in
901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
903 jbd_debug(5, "splicing indirect only\n");
904 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
905 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
910 * OK, we spliced it into the inode itself on a direct block.
912 ext4_mark_inode_dirty(handle
, inode
);
913 jbd_debug(5, "splicing direct\n");
918 for (i
= 1; i
<= num
; i
++) {
920 * branch[i].bh is newly allocated, so there is no
921 * need to revoke the block, which is why we don't
922 * need to set EXT4_FREE_BLOCKS_METADATA.
924 ext4_free_blocks(handle
, inode
, where
[i
].bh
, 0, 1,
925 EXT4_FREE_BLOCKS_FORGET
);
927 ext4_free_blocks(handle
, inode
, NULL
, le32_to_cpu(where
[num
].key
),
934 * The ext4_ind_map_blocks() function handles non-extents inodes
935 * (i.e., using the traditional indirect/double-indirect i_blocks
936 * scheme) for ext4_map_blocks().
938 * Allocation strategy is simple: if we have to allocate something, we will
939 * have to go the whole way to leaf. So let's do it before attaching anything
940 * to tree, set linkage between the newborn blocks, write them if sync is
941 * required, recheck the path, free and repeat if check fails, otherwise
942 * set the last missing link (that will protect us from any truncate-generated
943 * removals - all blocks on the path are immune now) and possibly force the
944 * write on the parent block.
945 * That has a nice additional property: no special recovery from the failed
946 * allocations is needed - we simply release blocks and do not touch anything
947 * reachable from inode.
949 * `handle' can be NULL if create == 0.
951 * return > 0, # of blocks mapped or allocated.
952 * return = 0, if plain lookup failed.
953 * return < 0, error case.
955 * The ext4_ind_get_blocks() function should be called with
956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
961 static int ext4_ind_map_blocks(handle_t
*handle
, struct inode
*inode
,
962 struct ext4_map_blocks
*map
,
966 ext4_lblk_t offsets
[4];
971 int blocks_to_boundary
= 0;
974 ext4_fsblk_t first_block
= 0;
976 trace_ext4_ind_map_blocks_enter(inode
, map
->m_lblk
, map
->m_len
, flags
);
977 J_ASSERT(!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)));
978 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
979 depth
= ext4_block_to_path(inode
, map
->m_lblk
, offsets
,
980 &blocks_to_boundary
);
985 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
987 /* Simplest case - block found, no allocation needed */
989 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
992 while (count
< map
->m_len
&& count
<= blocks_to_boundary
) {
995 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
997 if (blk
== first_block
+ count
)
1005 /* Next simple case - plain lookup or failed read of indirect block */
1006 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
1010 * Okay, we need to do block allocation.
1012 goal
= ext4_find_goal(inode
, map
->m_lblk
, partial
);
1014 /* the number of blocks need to allocate for [d,t]indirect blocks */
1015 indirect_blks
= (chain
+ depth
) - partial
- 1;
1018 * Next look up the indirect map to count the totoal number of
1019 * direct blocks to allocate for this branch.
1021 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1022 map
->m_len
, blocks_to_boundary
);
1024 * Block out ext4_truncate while we alter the tree
1026 err
= ext4_alloc_branch(handle
, inode
, map
->m_lblk
, indirect_blks
,
1028 offsets
+ (partial
- chain
), partial
);
1031 * The ext4_splice_branch call will free and forget any buffers
1032 * on the new chain if there is a failure, but that risks using
1033 * up transaction credits, especially for bitmaps where the
1034 * credits cannot be returned. Can we handle this somehow? We
1035 * may need to return -EAGAIN upwards in the worst case. --sct
1038 err
= ext4_splice_branch(handle
, inode
, map
->m_lblk
,
1039 partial
, indirect_blks
, count
);
1043 map
->m_flags
|= EXT4_MAP_NEW
;
1045 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1047 map
->m_flags
|= EXT4_MAP_MAPPED
;
1048 map
->m_pblk
= le32_to_cpu(chain
[depth
-1].key
);
1050 if (count
> blocks_to_boundary
)
1051 map
->m_flags
|= EXT4_MAP_BOUNDARY
;
1053 /* Clean up and exit */
1054 partial
= chain
+ depth
- 1; /* the whole chain */
1056 while (partial
> chain
) {
1057 BUFFER_TRACE(partial
->bh
, "call brelse");
1058 brelse(partial
->bh
);
1062 trace_ext4_ind_map_blocks_exit(inode
, map
->m_lblk
,
1063 map
->m_pblk
, map
->m_len
, err
);
1068 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
1070 return &EXT4_I(inode
)->i_reserved_quota
;
1075 * Calculate the number of metadata blocks need to reserve
1076 * to allocate a new block at @lblocks for non extent file based file
1078 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
,
1081 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1082 sector_t dind_mask
= ~((sector_t
)EXT4_ADDR_PER_BLOCK(inode
->i_sb
) - 1);
1085 if (lblock
< EXT4_NDIR_BLOCKS
)
1088 lblock
-= EXT4_NDIR_BLOCKS
;
1090 if (ei
->i_da_metadata_calc_len
&&
1091 (lblock
& dind_mask
) == ei
->i_da_metadata_calc_last_lblock
) {
1092 ei
->i_da_metadata_calc_len
++;
1095 ei
->i_da_metadata_calc_last_lblock
= lblock
& dind_mask
;
1096 ei
->i_da_metadata_calc_len
= 1;
1097 blk_bits
= order_base_2(lblock
);
1098 return (blk_bits
/ EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
)) + 1;
1102 * Calculate the number of metadata blocks need to reserve
1103 * to allocate a block located at @lblock
1105 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
1107 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1108 return ext4_ext_calc_metadata_amount(inode
, lblock
);
1110 return ext4_indirect_calc_metadata_amount(inode
, lblock
);
1114 * Called with i_data_sem down, which is important since we can call
1115 * ext4_discard_preallocations() from here.
1117 void ext4_da_update_reserve_space(struct inode
*inode
,
1118 int used
, int quota_claim
)
1120 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1121 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1123 spin_lock(&ei
->i_block_reservation_lock
);
1124 trace_ext4_da_update_reserve_space(inode
, used
);
1125 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
1126 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
1127 "with only %d reserved data blocks\n",
1128 __func__
, inode
->i_ino
, used
,
1129 ei
->i_reserved_data_blocks
);
1131 used
= ei
->i_reserved_data_blocks
;
1134 /* Update per-inode reservations */
1135 ei
->i_reserved_data_blocks
-= used
;
1136 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
1137 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1138 used
+ ei
->i_allocated_meta_blocks
);
1139 ei
->i_allocated_meta_blocks
= 0;
1141 if (ei
->i_reserved_data_blocks
== 0) {
1143 * We can release all of the reserved metadata blocks
1144 * only when we have written all of the delayed
1145 * allocation blocks.
1147 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1148 ei
->i_reserved_meta_blocks
);
1149 ei
->i_reserved_meta_blocks
= 0;
1150 ei
->i_da_metadata_calc_len
= 0;
1152 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1154 /* Update quota subsystem for data blocks */
1156 dquot_claim_block(inode
, used
);
1159 * We did fallocate with an offset that is already delayed
1160 * allocated. So on delayed allocated writeback we should
1161 * not re-claim the quota for fallocated blocks.
1163 dquot_release_reservation_block(inode
, used
);
1167 * If we have done all the pending block allocations and if
1168 * there aren't any writers on the inode, we can discard the
1169 * inode's preallocations.
1171 if ((ei
->i_reserved_data_blocks
== 0) &&
1172 (atomic_read(&inode
->i_writecount
) == 0))
1173 ext4_discard_preallocations(inode
);
1176 static int __check_block_validity(struct inode
*inode
, const char *func
,
1178 struct ext4_map_blocks
*map
)
1180 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
1182 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
1183 "lblock %lu mapped to illegal pblock "
1184 "(length %d)", (unsigned long) map
->m_lblk
,
1191 #define check_block_validity(inode, map) \
1192 __check_block_validity((inode), __func__, __LINE__, (map))
1195 * Return the number of contiguous dirty pages in a given inode
1196 * starting at page frame idx.
1198 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1199 unsigned int max_pages
)
1201 struct address_space
*mapping
= inode
->i_mapping
;
1203 struct pagevec pvec
;
1205 int i
, nr_pages
, done
= 0;
1209 pagevec_init(&pvec
, 0);
1212 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1213 PAGECACHE_TAG_DIRTY
,
1214 (pgoff_t
)PAGEVEC_SIZE
);
1217 for (i
= 0; i
< nr_pages
; i
++) {
1218 struct page
*page
= pvec
.pages
[i
];
1219 struct buffer_head
*bh
, *head
;
1222 if (unlikely(page
->mapping
!= mapping
) ||
1224 PageWriteback(page
) ||
1225 page
->index
!= idx
) {
1230 if (page_has_buffers(page
)) {
1231 bh
= head
= page_buffers(page
);
1233 if (!buffer_delay(bh
) &&
1234 !buffer_unwritten(bh
))
1236 bh
= bh
->b_this_page
;
1237 } while (!done
&& (bh
!= head
));
1244 if (num
>= max_pages
) {
1249 pagevec_release(&pvec
);
1255 * The ext4_map_blocks() function tries to look up the requested blocks,
1256 * and returns if the blocks are already mapped.
1258 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1259 * and store the allocated blocks in the result buffer head and mark it
1262 * If file type is extents based, it will call ext4_ext_map_blocks(),
1263 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1266 * On success, it returns the number of blocks being mapped or allocate.
1267 * if create==0 and the blocks are pre-allocated and uninitialized block,
1268 * the result buffer head is unmapped. If the create ==1, it will make sure
1269 * the buffer head is mapped.
1271 * It returns 0 if plain look up failed (blocks have not been allocated), in
1272 * that casem, buffer head is unmapped
1274 * It returns the error in case of allocation failure.
1276 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
1277 struct ext4_map_blocks
*map
, int flags
)
1282 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1283 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
1284 (unsigned long) map
->m_lblk
);
1286 * Try to see if we can get the block without requesting a new
1287 * file system block.
1289 down_read((&EXT4_I(inode
)->i_data_sem
));
1290 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1291 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
1293 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
1295 up_read((&EXT4_I(inode
)->i_data_sem
));
1297 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
1298 int ret
= check_block_validity(inode
, map
);
1303 /* If it is only a block(s) look up */
1304 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1308 * Returns if the blocks have already allocated
1310 * Note that if blocks have been preallocated
1311 * ext4_ext_get_block() returns th create = 0
1312 * with buffer head unmapped.
1314 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
1318 * When we call get_blocks without the create flag, the
1319 * BH_Unwritten flag could have gotten set if the blocks
1320 * requested were part of a uninitialized extent. We need to
1321 * clear this flag now that we are committed to convert all or
1322 * part of the uninitialized extent to be an initialized
1323 * extent. This is because we need to avoid the combination
1324 * of BH_Unwritten and BH_Mapped flags being simultaneously
1325 * set on the buffer_head.
1327 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
1330 * New blocks allocate and/or writing to uninitialized extent
1331 * will possibly result in updating i_data, so we take
1332 * the write lock of i_data_sem, and call get_blocks()
1333 * with create == 1 flag.
1335 down_write((&EXT4_I(inode
)->i_data_sem
));
1338 * if the caller is from delayed allocation writeout path
1339 * we have already reserved fs blocks for allocation
1340 * let the underlying get_block() function know to
1341 * avoid double accounting
1343 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1344 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
1346 * We need to check for EXT4 here because migrate
1347 * could have changed the inode type in between
1349 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1350 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
1352 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
1354 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
1356 * We allocated new blocks which will result in
1357 * i_data's format changing. Force the migrate
1358 * to fail by clearing migrate flags
1360 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
1364 * Update reserved blocks/metadata blocks after successful
1365 * block allocation which had been deferred till now. We don't
1366 * support fallocate for non extent files. So we can update
1367 * reserve space here.
1370 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
1371 ext4_da_update_reserve_space(inode
, retval
, 1);
1373 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1374 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
1376 up_write((&EXT4_I(inode
)->i_data_sem
));
1377 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
1378 int ret
= check_block_validity(inode
, map
);
1385 /* Maximum number of blocks we map for direct IO at once. */
1386 #define DIO_MAX_BLOCKS 4096
1388 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
1389 struct buffer_head
*bh
, int flags
)
1391 handle_t
*handle
= ext4_journal_current_handle();
1392 struct ext4_map_blocks map
;
1393 int ret
= 0, started
= 0;
1396 map
.m_lblk
= iblock
;
1397 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
1399 if (flags
&& !handle
) {
1400 /* Direct IO write... */
1401 if (map
.m_len
> DIO_MAX_BLOCKS
)
1402 map
.m_len
= DIO_MAX_BLOCKS
;
1403 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
1404 handle
= ext4_journal_start(inode
, dio_credits
);
1405 if (IS_ERR(handle
)) {
1406 ret
= PTR_ERR(handle
);
1412 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
1414 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1415 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1416 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
1420 ext4_journal_stop(handle
);
1424 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1425 struct buffer_head
*bh
, int create
)
1427 return _ext4_get_block(inode
, iblock
, bh
,
1428 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1432 * `handle' can be NULL if create is zero
1434 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1435 ext4_lblk_t block
, int create
, int *errp
)
1437 struct ext4_map_blocks map
;
1438 struct buffer_head
*bh
;
1441 J_ASSERT(handle
!= NULL
|| create
== 0);
1445 err
= ext4_map_blocks(handle
, inode
, &map
,
1446 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1454 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
1459 if (map
.m_flags
& EXT4_MAP_NEW
) {
1460 J_ASSERT(create
!= 0);
1461 J_ASSERT(handle
!= NULL
);
1464 * Now that we do not always journal data, we should
1465 * keep in mind whether this should always journal the
1466 * new buffer as metadata. For now, regular file
1467 * writes use ext4_get_block instead, so it's not a
1471 BUFFER_TRACE(bh
, "call get_create_access");
1472 fatal
= ext4_journal_get_create_access(handle
, bh
);
1473 if (!fatal
&& !buffer_uptodate(bh
)) {
1474 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1475 set_buffer_uptodate(bh
);
1478 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1479 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1483 BUFFER_TRACE(bh
, "not a new buffer");
1493 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1494 ext4_lblk_t block
, int create
, int *err
)
1496 struct buffer_head
*bh
;
1498 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1501 if (buffer_uptodate(bh
))
1503 ll_rw_block(READ_META
, 1, &bh
);
1505 if (buffer_uptodate(bh
))
1512 static int walk_page_buffers(handle_t
*handle
,
1513 struct buffer_head
*head
,
1517 int (*fn
)(handle_t
*handle
,
1518 struct buffer_head
*bh
))
1520 struct buffer_head
*bh
;
1521 unsigned block_start
, block_end
;
1522 unsigned blocksize
= head
->b_size
;
1524 struct buffer_head
*next
;
1526 for (bh
= head
, block_start
= 0;
1527 ret
== 0 && (bh
!= head
|| !block_start
);
1528 block_start
= block_end
, bh
= next
) {
1529 next
= bh
->b_this_page
;
1530 block_end
= block_start
+ blocksize
;
1531 if (block_end
<= from
|| block_start
>= to
) {
1532 if (partial
&& !buffer_uptodate(bh
))
1536 err
= (*fn
)(handle
, bh
);
1544 * To preserve ordering, it is essential that the hole instantiation and
1545 * the data write be encapsulated in a single transaction. We cannot
1546 * close off a transaction and start a new one between the ext4_get_block()
1547 * and the commit_write(). So doing the jbd2_journal_start at the start of
1548 * prepare_write() is the right place.
1550 * Also, this function can nest inside ext4_writepage() ->
1551 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1552 * has generated enough buffer credits to do the whole page. So we won't
1553 * block on the journal in that case, which is good, because the caller may
1556 * By accident, ext4 can be reentered when a transaction is open via
1557 * quota file writes. If we were to commit the transaction while thus
1558 * reentered, there can be a deadlock - we would be holding a quota
1559 * lock, and the commit would never complete if another thread had a
1560 * transaction open and was blocking on the quota lock - a ranking
1563 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1564 * will _not_ run commit under these circumstances because handle->h_ref
1565 * is elevated. We'll still have enough credits for the tiny quotafile
1568 static int do_journal_get_write_access(handle_t
*handle
,
1569 struct buffer_head
*bh
)
1571 int dirty
= buffer_dirty(bh
);
1574 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1577 * __block_write_begin() could have dirtied some buffers. Clean
1578 * the dirty bit as jbd2_journal_get_write_access() could complain
1579 * otherwise about fs integrity issues. Setting of the dirty bit
1580 * by __block_write_begin() isn't a real problem here as we clear
1581 * the bit before releasing a page lock and thus writeback cannot
1582 * ever write the buffer.
1585 clear_buffer_dirty(bh
);
1586 ret
= ext4_journal_get_write_access(handle
, bh
);
1588 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1593 * Truncate blocks that were not used by write. We have to truncate the
1594 * pagecache as well so that corresponding buffers get properly unmapped.
1596 static void ext4_truncate_failed_write(struct inode
*inode
)
1598 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1599 ext4_truncate(inode
);
1602 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
1603 struct buffer_head
*bh_result
, int create
);
1604 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1605 loff_t pos
, unsigned len
, unsigned flags
,
1606 struct page
**pagep
, void **fsdata
)
1608 struct inode
*inode
= mapping
->host
;
1609 int ret
, needed_blocks
;
1616 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1618 * Reserve one block more for addition to orphan list in case
1619 * we allocate blocks but write fails for some reason
1621 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1622 index
= pos
>> PAGE_CACHE_SHIFT
;
1623 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1627 handle
= ext4_journal_start(inode
, needed_blocks
);
1628 if (IS_ERR(handle
)) {
1629 ret
= PTR_ERR(handle
);
1633 /* We cannot recurse into the filesystem as the transaction is already
1635 flags
|= AOP_FLAG_NOFS
;
1637 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1639 ext4_journal_stop(handle
);
1645 if (ext4_should_dioread_nolock(inode
))
1646 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1648 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1650 if (!ret
&& ext4_should_journal_data(inode
)) {
1651 ret
= walk_page_buffers(handle
, page_buffers(page
),
1652 from
, to
, NULL
, do_journal_get_write_access
);
1657 page_cache_release(page
);
1659 * __block_write_begin may have instantiated a few blocks
1660 * outside i_size. Trim these off again. Don't need
1661 * i_size_read because we hold i_mutex.
1663 * Add inode to orphan list in case we crash before
1666 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1667 ext4_orphan_add(handle
, inode
);
1669 ext4_journal_stop(handle
);
1670 if (pos
+ len
> inode
->i_size
) {
1671 ext4_truncate_failed_write(inode
);
1673 * If truncate failed early the inode might
1674 * still be on the orphan list; we need to
1675 * make sure the inode is removed from the
1676 * orphan list in that case.
1679 ext4_orphan_del(NULL
, inode
);
1683 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1689 /* For write_end() in data=journal mode */
1690 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1692 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1694 set_buffer_uptodate(bh
);
1695 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1698 static int ext4_generic_write_end(struct file
*file
,
1699 struct address_space
*mapping
,
1700 loff_t pos
, unsigned len
, unsigned copied
,
1701 struct page
*page
, void *fsdata
)
1703 int i_size_changed
= 0;
1704 struct inode
*inode
= mapping
->host
;
1705 handle_t
*handle
= ext4_journal_current_handle();
1707 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1710 * No need to use i_size_read() here, the i_size
1711 * cannot change under us because we hold i_mutex.
1713 * But it's important to update i_size while still holding page lock:
1714 * page writeout could otherwise come in and zero beyond i_size.
1716 if (pos
+ copied
> inode
->i_size
) {
1717 i_size_write(inode
, pos
+ copied
);
1721 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1722 /* We need to mark inode dirty even if
1723 * new_i_size is less that inode->i_size
1724 * bu greater than i_disksize.(hint delalloc)
1726 ext4_update_i_disksize(inode
, (pos
+ copied
));
1730 page_cache_release(page
);
1733 * Don't mark the inode dirty under page lock. First, it unnecessarily
1734 * makes the holding time of page lock longer. Second, it forces lock
1735 * ordering of page lock and transaction start for journaling
1739 ext4_mark_inode_dirty(handle
, inode
);
1745 * We need to pick up the new inode size which generic_commit_write gave us
1746 * `file' can be NULL - eg, when called from page_symlink().
1748 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1749 * buffers are managed internally.
1751 static int ext4_ordered_write_end(struct file
*file
,
1752 struct address_space
*mapping
,
1753 loff_t pos
, unsigned len
, unsigned copied
,
1754 struct page
*page
, void *fsdata
)
1756 handle_t
*handle
= ext4_journal_current_handle();
1757 struct inode
*inode
= mapping
->host
;
1760 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1761 ret
= ext4_jbd2_file_inode(handle
, inode
);
1764 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1767 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1768 /* if we have allocated more blocks and copied
1769 * less. We will have blocks allocated outside
1770 * inode->i_size. So truncate them
1772 ext4_orphan_add(handle
, inode
);
1776 ret2
= ext4_journal_stop(handle
);
1780 if (pos
+ len
> inode
->i_size
) {
1781 ext4_truncate_failed_write(inode
);
1783 * If truncate failed early the inode might still be
1784 * on the orphan list; we need to make sure the inode
1785 * is removed from the orphan list in that case.
1788 ext4_orphan_del(NULL
, inode
);
1792 return ret
? ret
: copied
;
1795 static int ext4_writeback_write_end(struct file
*file
,
1796 struct address_space
*mapping
,
1797 loff_t pos
, unsigned len
, unsigned copied
,
1798 struct page
*page
, void *fsdata
)
1800 handle_t
*handle
= ext4_journal_current_handle();
1801 struct inode
*inode
= mapping
->host
;
1804 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1805 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1808 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1809 /* if we have allocated more blocks and copied
1810 * less. We will have blocks allocated outside
1811 * inode->i_size. So truncate them
1813 ext4_orphan_add(handle
, inode
);
1818 ret2
= ext4_journal_stop(handle
);
1822 if (pos
+ len
> inode
->i_size
) {
1823 ext4_truncate_failed_write(inode
);
1825 * If truncate failed early the inode might still be
1826 * on the orphan list; we need to make sure the inode
1827 * is removed from the orphan list in that case.
1830 ext4_orphan_del(NULL
, inode
);
1833 return ret
? ret
: copied
;
1836 static int ext4_journalled_write_end(struct file
*file
,
1837 struct address_space
*mapping
,
1838 loff_t pos
, unsigned len
, unsigned copied
,
1839 struct page
*page
, void *fsdata
)
1841 handle_t
*handle
= ext4_journal_current_handle();
1842 struct inode
*inode
= mapping
->host
;
1848 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1849 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1853 if (!PageUptodate(page
))
1855 page_zero_new_buffers(page
, from
+copied
, to
);
1858 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1859 to
, &partial
, write_end_fn
);
1861 SetPageUptodate(page
);
1862 new_i_size
= pos
+ copied
;
1863 if (new_i_size
> inode
->i_size
)
1864 i_size_write(inode
, pos
+copied
);
1865 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1866 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1867 ext4_update_i_disksize(inode
, new_i_size
);
1868 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1874 page_cache_release(page
);
1875 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1876 /* if we have allocated more blocks and copied
1877 * less. We will have blocks allocated outside
1878 * inode->i_size. So truncate them
1880 ext4_orphan_add(handle
, inode
);
1882 ret2
= ext4_journal_stop(handle
);
1885 if (pos
+ len
> inode
->i_size
) {
1886 ext4_truncate_failed_write(inode
);
1888 * If truncate failed early the inode might still be
1889 * on the orphan list; we need to make sure the inode
1890 * is removed from the orphan list in that case.
1893 ext4_orphan_del(NULL
, inode
);
1896 return ret
? ret
: copied
;
1900 * Reserve a single block located at lblock
1902 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1905 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1906 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1907 unsigned long md_needed
;
1911 * recalculate the amount of metadata blocks to reserve
1912 * in order to allocate nrblocks
1913 * worse case is one extent per block
1916 spin_lock(&ei
->i_block_reservation_lock
);
1917 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1918 trace_ext4_da_reserve_space(inode
, md_needed
);
1919 spin_unlock(&ei
->i_block_reservation_lock
);
1922 * We will charge metadata quota at writeout time; this saves
1923 * us from metadata over-estimation, though we may go over by
1924 * a small amount in the end. Here we just reserve for data.
1926 ret
= dquot_reserve_block(inode
, 1);
1930 * We do still charge estimated metadata to the sb though;
1931 * we cannot afford to run out of free blocks.
1933 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1, 0)) {
1934 dquot_release_reservation_block(inode
, 1);
1935 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1941 spin_lock(&ei
->i_block_reservation_lock
);
1942 ei
->i_reserved_data_blocks
++;
1943 ei
->i_reserved_meta_blocks
+= md_needed
;
1944 spin_unlock(&ei
->i_block_reservation_lock
);
1946 return 0; /* success */
1949 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1951 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1952 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1955 return; /* Nothing to release, exit */
1957 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1959 trace_ext4_da_release_space(inode
, to_free
);
1960 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1962 * if there aren't enough reserved blocks, then the
1963 * counter is messed up somewhere. Since this
1964 * function is called from invalidate page, it's
1965 * harmless to return without any action.
1967 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1968 "ino %lu, to_free %d with only %d reserved "
1969 "data blocks\n", inode
->i_ino
, to_free
,
1970 ei
->i_reserved_data_blocks
);
1972 to_free
= ei
->i_reserved_data_blocks
;
1974 ei
->i_reserved_data_blocks
-= to_free
;
1976 if (ei
->i_reserved_data_blocks
== 0) {
1978 * We can release all of the reserved metadata blocks
1979 * only when we have written all of the delayed
1980 * allocation blocks.
1982 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1983 ei
->i_reserved_meta_blocks
);
1984 ei
->i_reserved_meta_blocks
= 0;
1985 ei
->i_da_metadata_calc_len
= 0;
1988 /* update fs dirty data blocks counter */
1989 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1991 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1993 dquot_release_reservation_block(inode
, to_free
);
1996 static void ext4_da_page_release_reservation(struct page
*page
,
1997 unsigned long offset
)
2000 struct buffer_head
*head
, *bh
;
2001 unsigned int curr_off
= 0;
2003 head
= page_buffers(page
);
2006 unsigned int next_off
= curr_off
+ bh
->b_size
;
2008 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
2010 clear_buffer_delay(bh
);
2012 curr_off
= next_off
;
2013 } while ((bh
= bh
->b_this_page
) != head
);
2014 ext4_da_release_space(page
->mapping
->host
, to_release
);
2018 * Delayed allocation stuff
2022 * mpage_da_submit_io - walks through extent of pages and try to write
2023 * them with writepage() call back
2025 * @mpd->inode: inode
2026 * @mpd->first_page: first page of the extent
2027 * @mpd->next_page: page after the last page of the extent
2029 * By the time mpage_da_submit_io() is called we expect all blocks
2030 * to be allocated. this may be wrong if allocation failed.
2032 * As pages are already locked by write_cache_pages(), we can't use it
2034 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
2035 struct ext4_map_blocks
*map
)
2037 struct pagevec pvec
;
2038 unsigned long index
, end
;
2039 int ret
= 0, err
, nr_pages
, i
;
2040 struct inode
*inode
= mpd
->inode
;
2041 struct address_space
*mapping
= inode
->i_mapping
;
2042 loff_t size
= i_size_read(inode
);
2043 unsigned int len
, block_start
;
2044 struct buffer_head
*bh
, *page_bufs
= NULL
;
2045 int journal_data
= ext4_should_journal_data(inode
);
2046 sector_t pblock
= 0, cur_logical
= 0;
2047 struct ext4_io_submit io_submit
;
2049 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
2050 memset(&io_submit
, 0, sizeof(io_submit
));
2052 * We need to start from the first_page to the next_page - 1
2053 * to make sure we also write the mapped dirty buffer_heads.
2054 * If we look at mpd->b_blocknr we would only be looking
2055 * at the currently mapped buffer_heads.
2057 index
= mpd
->first_page
;
2058 end
= mpd
->next_page
- 1;
2060 pagevec_init(&pvec
, 0);
2061 while (index
<= end
) {
2062 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2065 for (i
= 0; i
< nr_pages
; i
++) {
2066 int commit_write
= 0, skip_page
= 0;
2067 struct page
*page
= pvec
.pages
[i
];
2069 index
= page
->index
;
2073 if (index
== size
>> PAGE_CACHE_SHIFT
)
2074 len
= size
& ~PAGE_CACHE_MASK
;
2076 len
= PAGE_CACHE_SIZE
;
2078 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
2080 pblock
= map
->m_pblk
+ (cur_logical
-
2085 BUG_ON(!PageLocked(page
));
2086 BUG_ON(PageWriteback(page
));
2089 * If the page does not have buffers (for
2090 * whatever reason), try to create them using
2091 * __block_write_begin. If this fails,
2092 * skip the page and move on.
2094 if (!page_has_buffers(page
)) {
2095 if (__block_write_begin(page
, 0, len
,
2096 noalloc_get_block_write
)) {
2104 bh
= page_bufs
= page_buffers(page
);
2109 if (map
&& (cur_logical
>= map
->m_lblk
) &&
2110 (cur_logical
<= (map
->m_lblk
+
2111 (map
->m_len
- 1)))) {
2112 if (buffer_delay(bh
)) {
2113 clear_buffer_delay(bh
);
2114 bh
->b_blocknr
= pblock
;
2116 if (buffer_unwritten(bh
) ||
2118 BUG_ON(bh
->b_blocknr
!= pblock
);
2119 if (map
->m_flags
& EXT4_MAP_UNINIT
)
2120 set_buffer_uninit(bh
);
2121 clear_buffer_unwritten(bh
);
2124 /* skip page if block allocation undone */
2125 if (buffer_delay(bh
) || buffer_unwritten(bh
))
2127 bh
= bh
->b_this_page
;
2128 block_start
+= bh
->b_size
;
2131 } while (bh
!= page_bufs
);
2137 /* mark the buffer_heads as dirty & uptodate */
2138 block_commit_write(page
, 0, len
);
2140 clear_page_dirty_for_io(page
);
2142 * Delalloc doesn't support data journalling,
2143 * but eventually maybe we'll lift this
2146 if (unlikely(journal_data
&& PageChecked(page
)))
2147 err
= __ext4_journalled_writepage(page
, len
);
2148 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
2149 err
= ext4_bio_write_page(&io_submit
, page
,
2152 err
= block_write_full_page(page
,
2153 noalloc_get_block_write
, mpd
->wbc
);
2156 mpd
->pages_written
++;
2158 * In error case, we have to continue because
2159 * remaining pages are still locked
2164 pagevec_release(&pvec
);
2166 ext4_io_submit(&io_submit
);
2170 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
2174 struct pagevec pvec
;
2175 struct inode
*inode
= mpd
->inode
;
2176 struct address_space
*mapping
= inode
->i_mapping
;
2178 index
= mpd
->first_page
;
2179 end
= mpd
->next_page
- 1;
2180 while (index
<= end
) {
2181 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2184 for (i
= 0; i
< nr_pages
; i
++) {
2185 struct page
*page
= pvec
.pages
[i
];
2186 if (page
->index
> end
)
2188 BUG_ON(!PageLocked(page
));
2189 BUG_ON(PageWriteback(page
));
2190 block_invalidatepage(page
, 0);
2191 ClearPageUptodate(page
);
2194 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
2195 pagevec_release(&pvec
);
2200 static void ext4_print_free_blocks(struct inode
*inode
)
2202 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2203 printk(KERN_CRIT
"Total free blocks count %lld\n",
2204 ext4_count_free_blocks(inode
->i_sb
));
2205 printk(KERN_CRIT
"Free/Dirty block details\n");
2206 printk(KERN_CRIT
"free_blocks=%lld\n",
2207 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2208 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2209 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2210 printk(KERN_CRIT
"Block reservation details\n");
2211 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2212 EXT4_I(inode
)->i_reserved_data_blocks
);
2213 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2214 EXT4_I(inode
)->i_reserved_meta_blocks
);
2219 * mpage_da_map_and_submit - go through given space, map them
2220 * if necessary, and then submit them for I/O
2222 * @mpd - bh describing space
2224 * The function skips space we know is already mapped to disk blocks.
2227 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
2229 int err
, blks
, get_blocks_flags
;
2230 struct ext4_map_blocks map
, *mapp
= NULL
;
2231 sector_t next
= mpd
->b_blocknr
;
2232 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2233 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2234 handle_t
*handle
= NULL
;
2237 * If the blocks are mapped already, or we couldn't accumulate
2238 * any blocks, then proceed immediately to the submission stage.
2240 if ((mpd
->b_size
== 0) ||
2241 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2242 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2243 !(mpd
->b_state
& (1 << BH_Unwritten
))))
2246 handle
= ext4_journal_current_handle();
2250 * Call ext4_map_blocks() to allocate any delayed allocation
2251 * blocks, or to convert an uninitialized extent to be
2252 * initialized (in the case where we have written into
2253 * one or more preallocated blocks).
2255 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256 * indicate that we are on the delayed allocation path. This
2257 * affects functions in many different parts of the allocation
2258 * call path. This flag exists primarily because we don't
2259 * want to change *many* call functions, so ext4_map_blocks()
2260 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 * inode's allocation semaphore is taken.
2263 * If the blocks in questions were delalloc blocks, set
2264 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265 * variables are updated after the blocks have been allocated.
2268 map
.m_len
= max_blocks
;
2269 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
2270 if (ext4_should_dioread_nolock(mpd
->inode
))
2271 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2272 if (mpd
->b_state
& (1 << BH_Delay
))
2273 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2275 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
2277 struct super_block
*sb
= mpd
->inode
->i_sb
;
2281 * If get block returns EAGAIN or ENOSPC and there
2282 * appears to be free blocks we will just let
2283 * mpage_da_submit_io() unlock all of the pages.
2288 if (err
== -ENOSPC
&&
2289 ext4_count_free_blocks(sb
)) {
2295 * get block failure will cause us to loop in
2296 * writepages, because a_ops->writepage won't be able
2297 * to make progress. The page will be redirtied by
2298 * writepage and writepages will again try to write
2301 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2302 ext4_msg(sb
, KERN_CRIT
,
2303 "delayed block allocation failed for inode %lu "
2304 "at logical offset %llu with max blocks %zd "
2305 "with error %d", mpd
->inode
->i_ino
,
2306 (unsigned long long) next
,
2307 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2308 ext4_msg(sb
, KERN_CRIT
,
2309 "This should not happen!! Data will be lost\n");
2311 ext4_print_free_blocks(mpd
->inode
);
2313 /* invalidate all the pages */
2314 ext4_da_block_invalidatepages(mpd
);
2316 /* Mark this page range as having been completed */
2323 if (map
.m_flags
& EXT4_MAP_NEW
) {
2324 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
2327 for (i
= 0; i
< map
.m_len
; i
++)
2328 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
2331 if (ext4_should_order_data(mpd
->inode
)) {
2332 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2334 /* This only happens if the journal is aborted */
2339 * Update on-disk size along with block allocation.
2341 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2342 if (disksize
> i_size_read(mpd
->inode
))
2343 disksize
= i_size_read(mpd
->inode
);
2344 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2345 ext4_update_i_disksize(mpd
->inode
, disksize
);
2346 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
2348 ext4_error(mpd
->inode
->i_sb
,
2349 "Failed to mark inode %lu dirty",
2354 mpage_da_submit_io(mpd
, mapp
);
2358 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2359 (1 << BH_Delay) | (1 << BH_Unwritten))
2362 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2364 * @mpd->lbh - extent of blocks
2365 * @logical - logical number of the block in the file
2366 * @bh - bh of the block (used to access block's state)
2368 * the function is used to collect contig. blocks in same state
2370 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2371 sector_t logical
, size_t b_size
,
2372 unsigned long b_state
)
2375 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2378 * XXX Don't go larger than mballoc is willing to allocate
2379 * This is a stopgap solution. We eventually need to fold
2380 * mpage_da_submit_io() into this function and then call
2381 * ext4_map_blocks() multiple times in a loop
2383 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
2386 /* check if thereserved journal credits might overflow */
2387 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
2388 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2390 * With non-extent format we are limited by the journal
2391 * credit available. Total credit needed to insert
2392 * nrblocks contiguous blocks is dependent on the
2393 * nrblocks. So limit nrblocks.
2396 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2397 EXT4_MAX_TRANS_DATA
) {
2399 * Adding the new buffer_head would make it cross the
2400 * allowed limit for which we have journal credit
2401 * reserved. So limit the new bh->b_size
2403 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2404 mpd
->inode
->i_blkbits
;
2405 /* we will do mpage_da_submit_io in the next loop */
2409 * First block in the extent
2411 if (mpd
->b_size
== 0) {
2412 mpd
->b_blocknr
= logical
;
2413 mpd
->b_size
= b_size
;
2414 mpd
->b_state
= b_state
& BH_FLAGS
;
2418 next
= mpd
->b_blocknr
+ nrblocks
;
2420 * Can we merge the block to our big extent?
2422 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2423 mpd
->b_size
+= b_size
;
2429 * We couldn't merge the block to our extent, so we
2430 * need to flush current extent and start new one
2432 mpage_da_map_and_submit(mpd
);
2436 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2438 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2442 * This is a special get_blocks_t callback which is used by
2443 * ext4_da_write_begin(). It will either return mapped block or
2444 * reserve space for a single block.
2446 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2447 * We also have b_blocknr = -1 and b_bdev initialized properly
2449 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2450 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2451 * initialized properly.
2453 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2454 struct buffer_head
*bh
, int create
)
2456 struct ext4_map_blocks map
;
2458 sector_t invalid_block
= ~((sector_t
) 0xffff);
2460 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2463 BUG_ON(create
== 0);
2464 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
2466 map
.m_lblk
= iblock
;
2470 * first, we need to know whether the block is allocated already
2471 * preallocated blocks are unmapped but should treated
2472 * the same as allocated blocks.
2474 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
2478 if (buffer_delay(bh
))
2479 return 0; /* Not sure this could or should happen */
2481 * XXX: __block_write_begin() unmaps passed block, is it OK?
2483 ret
= ext4_da_reserve_space(inode
, iblock
);
2485 /* not enough space to reserve */
2488 map_bh(bh
, inode
->i_sb
, invalid_block
);
2490 set_buffer_delay(bh
);
2494 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
2495 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
2497 if (buffer_unwritten(bh
)) {
2498 /* A delayed write to unwritten bh should be marked
2499 * new and mapped. Mapped ensures that we don't do
2500 * get_block multiple times when we write to the same
2501 * offset and new ensures that we do proper zero out
2502 * for partial write.
2505 set_buffer_mapped(bh
);
2511 * This function is used as a standard get_block_t calback function
2512 * when there is no desire to allocate any blocks. It is used as a
2513 * callback function for block_write_begin() and block_write_full_page().
2514 * These functions should only try to map a single block at a time.
2516 * Since this function doesn't do block allocations even if the caller
2517 * requests it by passing in create=1, it is critically important that
2518 * any caller checks to make sure that any buffer heads are returned
2519 * by this function are either all already mapped or marked for
2520 * delayed allocation before calling block_write_full_page(). Otherwise,
2521 * b_blocknr could be left unitialized, and the page write functions will
2522 * be taken by surprise.
2524 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2525 struct buffer_head
*bh_result
, int create
)
2527 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2528 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
2531 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2537 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2543 static int __ext4_journalled_writepage(struct page
*page
,
2546 struct address_space
*mapping
= page
->mapping
;
2547 struct inode
*inode
= mapping
->host
;
2548 struct buffer_head
*page_bufs
;
2549 handle_t
*handle
= NULL
;
2553 ClearPageChecked(page
);
2554 page_bufs
= page_buffers(page
);
2556 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2557 /* As soon as we unlock the page, it can go away, but we have
2558 * references to buffers so we are safe */
2561 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2562 if (IS_ERR(handle
)) {
2563 ret
= PTR_ERR(handle
);
2567 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2568 do_journal_get_write_access
);
2570 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2574 err
= ext4_journal_stop(handle
);
2578 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2579 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2584 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
2585 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
2588 * Note that we don't need to start a transaction unless we're journaling data
2589 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2590 * need to file the inode to the transaction's list in ordered mode because if
2591 * we are writing back data added by write(), the inode is already there and if
2592 * we are writing back data modified via mmap(), no one guarantees in which
2593 * transaction the data will hit the disk. In case we are journaling data, we
2594 * cannot start transaction directly because transaction start ranks above page
2595 * lock so we have to do some magic.
2597 * This function can get called via...
2598 * - ext4_da_writepages after taking page lock (have journal handle)
2599 * - journal_submit_inode_data_buffers (no journal handle)
2600 * - shrink_page_list via pdflush (no journal handle)
2601 * - grab_page_cache when doing write_begin (have journal handle)
2603 * We don't do any block allocation in this function. If we have page with
2604 * multiple blocks we need to write those buffer_heads that are mapped. This
2605 * is important for mmaped based write. So if we do with blocksize 1K
2606 * truncate(f, 1024);
2607 * a = mmap(f, 0, 4096);
2609 * truncate(f, 4096);
2610 * we have in the page first buffer_head mapped via page_mkwrite call back
2611 * but other bufer_heads would be unmapped but dirty(dirty done via the
2612 * do_wp_page). So writepage should write the first block. If we modify
2613 * the mmap area beyond 1024 we will again get a page_fault and the
2614 * page_mkwrite callback will do the block allocation and mark the
2615 * buffer_heads mapped.
2617 * We redirty the page if we have any buffer_heads that is either delay or
2618 * unwritten in the page.
2620 * We can get recursively called as show below.
2622 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2625 * But since we don't do any block allocation we should not deadlock.
2626 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2628 static int ext4_writepage(struct page
*page
,
2629 struct writeback_control
*wbc
)
2631 int ret
= 0, commit_write
= 0;
2634 struct buffer_head
*page_bufs
= NULL
;
2635 struct inode
*inode
= page
->mapping
->host
;
2637 trace_ext4_writepage(inode
, page
);
2638 size
= i_size_read(inode
);
2639 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2640 len
= size
& ~PAGE_CACHE_MASK
;
2642 len
= PAGE_CACHE_SIZE
;
2645 * If the page does not have buffers (for whatever reason),
2646 * try to create them using __block_write_begin. If this
2647 * fails, redirty the page and move on.
2649 if (!page_has_buffers(page
)) {
2650 if (__block_write_begin(page
, 0, len
,
2651 noalloc_get_block_write
)) {
2653 redirty_page_for_writepage(wbc
, page
);
2659 page_bufs
= page_buffers(page
);
2660 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2661 ext4_bh_delay_or_unwritten
)) {
2663 * We don't want to do block allocation, so redirty
2664 * the page and return. We may reach here when we do
2665 * a journal commit via journal_submit_inode_data_buffers.
2666 * We can also reach here via shrink_page_list
2671 /* now mark the buffer_heads as dirty and uptodate */
2672 block_commit_write(page
, 0, len
);
2674 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2676 * It's mmapped pagecache. Add buffers and journal it. There
2677 * doesn't seem much point in redirtying the page here.
2679 return __ext4_journalled_writepage(page
, len
);
2681 if (buffer_uninit(page_bufs
)) {
2682 ext4_set_bh_endio(page_bufs
, inode
);
2683 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
2684 wbc
, ext4_end_io_buffer_write
);
2686 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2693 * This is called via ext4_da_writepages() to
2694 * calculate the total number of credits to reserve to fit
2695 * a single extent allocation into a single transaction,
2696 * ext4_da_writpeages() will loop calling this before
2697 * the block allocation.
2700 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2702 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2705 * With non-extent format the journal credit needed to
2706 * insert nrblocks contiguous block is dependent on
2707 * number of contiguous block. So we will limit
2708 * number of contiguous block to a sane value
2710 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2711 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2712 max_blocks
= EXT4_MAX_TRANS_DATA
;
2714 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2718 * write_cache_pages_da - walk the list of dirty pages of the given
2719 * address space and accumulate pages that need writing, and call
2720 * mpage_da_map_and_submit to map a single contiguous memory region
2721 * and then write them.
2723 static int write_cache_pages_da(struct address_space
*mapping
,
2724 struct writeback_control
*wbc
,
2725 struct mpage_da_data
*mpd
,
2726 pgoff_t
*done_index
)
2728 struct buffer_head
*bh
, *head
;
2729 struct inode
*inode
= mapping
->host
;
2730 struct pagevec pvec
;
2731 unsigned int nr_pages
;
2734 long nr_to_write
= wbc
->nr_to_write
;
2735 int i
, tag
, ret
= 0;
2737 memset(mpd
, 0, sizeof(struct mpage_da_data
));
2740 pagevec_init(&pvec
, 0);
2741 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2742 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2744 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2745 tag
= PAGECACHE_TAG_TOWRITE
;
2747 tag
= PAGECACHE_TAG_DIRTY
;
2749 *done_index
= index
;
2750 while (index
<= end
) {
2751 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2752 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2756 for (i
= 0; i
< nr_pages
; i
++) {
2757 struct page
*page
= pvec
.pages
[i
];
2760 * At this point, the page may be truncated or
2761 * invalidated (changing page->mapping to NULL), or
2762 * even swizzled back from swapper_space to tmpfs file
2763 * mapping. However, page->index will not change
2764 * because we have a reference on the page.
2766 if (page
->index
> end
)
2769 *done_index
= page
->index
+ 1;
2772 * If we can't merge this page, and we have
2773 * accumulated an contiguous region, write it
2775 if ((mpd
->next_page
!= page
->index
) &&
2776 (mpd
->next_page
!= mpd
->first_page
)) {
2777 mpage_da_map_and_submit(mpd
);
2778 goto ret_extent_tail
;
2784 * If the page is no longer dirty, or its
2785 * mapping no longer corresponds to inode we
2786 * are writing (which means it has been
2787 * truncated or invalidated), or the page is
2788 * already under writeback and we are not
2789 * doing a data integrity writeback, skip the page
2791 if (!PageDirty(page
) ||
2792 (PageWriteback(page
) &&
2793 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2794 unlikely(page
->mapping
!= mapping
)) {
2799 wait_on_page_writeback(page
);
2800 BUG_ON(PageWriteback(page
));
2802 if (mpd
->next_page
!= page
->index
)
2803 mpd
->first_page
= page
->index
;
2804 mpd
->next_page
= page
->index
+ 1;
2805 logical
= (sector_t
) page
->index
<<
2806 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2808 if (!page_has_buffers(page
)) {
2809 mpage_add_bh_to_extent(mpd
, logical
,
2811 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2813 goto ret_extent_tail
;
2816 * Page with regular buffer heads,
2817 * just add all dirty ones
2819 head
= page_buffers(page
);
2822 BUG_ON(buffer_locked(bh
));
2824 * We need to try to allocate
2825 * unmapped blocks in the same page.
2826 * Otherwise we won't make progress
2827 * with the page in ext4_writepage
2829 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2830 mpage_add_bh_to_extent(mpd
, logical
,
2834 goto ret_extent_tail
;
2835 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2837 * mapped dirty buffer. We need
2838 * to update the b_state
2839 * because we look at b_state
2840 * in mpage_da_map_blocks. We
2841 * don't update b_size because
2842 * if we find an unmapped
2843 * buffer_head later we need to
2844 * use the b_state flag of that
2847 if (mpd
->b_size
== 0)
2848 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2851 } while ((bh
= bh
->b_this_page
) != head
);
2854 if (nr_to_write
> 0) {
2856 if (nr_to_write
== 0 &&
2857 wbc
->sync_mode
== WB_SYNC_NONE
)
2859 * We stop writing back only if we are
2860 * not doing integrity sync. In case of
2861 * integrity sync we have to keep going
2862 * because someone may be concurrently
2863 * dirtying pages, and we might have
2864 * synced a lot of newly appeared dirty
2865 * pages, but have not synced all of the
2871 pagevec_release(&pvec
);
2876 ret
= MPAGE_DA_EXTENT_TAIL
;
2878 pagevec_release(&pvec
);
2884 static int ext4_da_writepages(struct address_space
*mapping
,
2885 struct writeback_control
*wbc
)
2888 int range_whole
= 0;
2889 handle_t
*handle
= NULL
;
2890 struct mpage_da_data mpd
;
2891 struct inode
*inode
= mapping
->host
;
2892 int pages_written
= 0;
2893 unsigned int max_pages
;
2894 int range_cyclic
, cycled
= 1, io_done
= 0;
2895 int needed_blocks
, ret
= 0;
2896 long desired_nr_to_write
, nr_to_writebump
= 0;
2897 loff_t range_start
= wbc
->range_start
;
2898 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2899 pgoff_t done_index
= 0;
2902 trace_ext4_da_writepages(inode
, wbc
);
2905 * No pages to write? This is mainly a kludge to avoid starting
2906 * a transaction for special inodes like journal inode on last iput()
2907 * because that could violate lock ordering on umount
2909 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2913 * If the filesystem has aborted, it is read-only, so return
2914 * right away instead of dumping stack traces later on that
2915 * will obscure the real source of the problem. We test
2916 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2917 * the latter could be true if the filesystem is mounted
2918 * read-only, and in that case, ext4_da_writepages should
2919 * *never* be called, so if that ever happens, we would want
2922 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2925 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2928 range_cyclic
= wbc
->range_cyclic
;
2929 if (wbc
->range_cyclic
) {
2930 index
= mapping
->writeback_index
;
2933 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2934 wbc
->range_end
= LLONG_MAX
;
2935 wbc
->range_cyclic
= 0;
2938 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2939 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2943 * This works around two forms of stupidity. The first is in
2944 * the writeback code, which caps the maximum number of pages
2945 * written to be 1024 pages. This is wrong on multiple
2946 * levels; different architectues have a different page size,
2947 * which changes the maximum amount of data which gets
2948 * written. Secondly, 4 megabytes is way too small. XFS
2949 * forces this value to be 16 megabytes by multiplying
2950 * nr_to_write parameter by four, and then relies on its
2951 * allocator to allocate larger extents to make them
2952 * contiguous. Unfortunately this brings us to the second
2953 * stupidity, which is that ext4's mballoc code only allocates
2954 * at most 2048 blocks. So we force contiguous writes up to
2955 * the number of dirty blocks in the inode, or
2956 * sbi->max_writeback_mb_bump whichever is smaller.
2958 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2959 if (!range_cyclic
&& range_whole
) {
2960 if (wbc
->nr_to_write
== LONG_MAX
)
2961 desired_nr_to_write
= wbc
->nr_to_write
;
2963 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2965 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2967 if (desired_nr_to_write
> max_pages
)
2968 desired_nr_to_write
= max_pages
;
2970 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2971 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2972 wbc
->nr_to_write
= desired_nr_to_write
;
2976 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2977 tag_pages_for_writeback(mapping
, index
, end
);
2979 while (!ret
&& wbc
->nr_to_write
> 0) {
2982 * we insert one extent at a time. So we need
2983 * credit needed for single extent allocation.
2984 * journalled mode is currently not supported
2987 BUG_ON(ext4_should_journal_data(inode
));
2988 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2990 /* start a new transaction*/
2991 handle
= ext4_journal_start(inode
, needed_blocks
);
2992 if (IS_ERR(handle
)) {
2993 ret
= PTR_ERR(handle
);
2994 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2995 "%ld pages, ino %lu; err %d", __func__
,
2996 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2997 goto out_writepages
;
3001 * Now call write_cache_pages_da() to find the next
3002 * contiguous region of logical blocks that need
3003 * blocks to be allocated by ext4 and submit them.
3005 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
3007 * If we have a contiguous extent of pages and we
3008 * haven't done the I/O yet, map the blocks and submit
3011 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
3012 mpage_da_map_and_submit(&mpd
);
3013 ret
= MPAGE_DA_EXTENT_TAIL
;
3015 trace_ext4_da_write_pages(inode
, &mpd
);
3016 wbc
->nr_to_write
-= mpd
.pages_written
;
3018 ext4_journal_stop(handle
);
3020 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
3021 /* commit the transaction which would
3022 * free blocks released in the transaction
3025 jbd2_journal_force_commit_nested(sbi
->s_journal
);
3027 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
3029 * got one extent now try with
3032 pages_written
+= mpd
.pages_written
;
3035 } else if (wbc
->nr_to_write
)
3037 * There is no more writeout needed
3038 * or we requested for a noblocking writeout
3039 * and we found the device congested
3043 if (!io_done
&& !cycled
) {
3046 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
3047 wbc
->range_end
= mapping
->writeback_index
- 1;
3052 wbc
->range_cyclic
= range_cyclic
;
3053 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3055 * set the writeback_index so that range_cyclic
3056 * mode will write it back later
3058 mapping
->writeback_index
= done_index
;
3061 wbc
->nr_to_write
-= nr_to_writebump
;
3062 wbc
->range_start
= range_start
;
3063 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3067 #define FALL_BACK_TO_NONDELALLOC 1
3068 static int ext4_nonda_switch(struct super_block
*sb
)
3070 s64 free_blocks
, dirty_blocks
;
3071 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3074 * switch to non delalloc mode if we are running low
3075 * on free block. The free block accounting via percpu
3076 * counters can get slightly wrong with percpu_counter_batch getting
3077 * accumulated on each CPU without updating global counters
3078 * Delalloc need an accurate free block accounting. So switch
3079 * to non delalloc when we are near to error range.
3081 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3082 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3083 if (2 * free_blocks
< 3 * dirty_blocks
||
3084 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3086 * free block count is less than 150% of dirty blocks
3087 * or free blocks is less than watermark
3092 * Even if we don't switch but are nearing capacity,
3093 * start pushing delalloc when 1/2 of free blocks are dirty.
3095 if (free_blocks
< 2 * dirty_blocks
)
3096 writeback_inodes_sb_if_idle(sb
);
3101 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3102 loff_t pos
, unsigned len
, unsigned flags
,
3103 struct page
**pagep
, void **fsdata
)
3105 int ret
, retries
= 0;
3108 struct inode
*inode
= mapping
->host
;
3111 index
= pos
>> PAGE_CACHE_SHIFT
;
3113 if (ext4_nonda_switch(inode
->i_sb
)) {
3114 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3115 return ext4_write_begin(file
, mapping
, pos
,
3116 len
, flags
, pagep
, fsdata
);
3118 *fsdata
= (void *)0;
3119 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3122 * With delayed allocation, we don't log the i_disksize update
3123 * if there is delayed block allocation. But we still need
3124 * to journalling the i_disksize update if writes to the end
3125 * of file which has an already mapped buffer.
3127 handle
= ext4_journal_start(inode
, 1);
3128 if (IS_ERR(handle
)) {
3129 ret
= PTR_ERR(handle
);
3132 /* We cannot recurse into the filesystem as the transaction is already
3134 flags
|= AOP_FLAG_NOFS
;
3136 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3138 ext4_journal_stop(handle
);
3144 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
3147 ext4_journal_stop(handle
);
3148 page_cache_release(page
);
3150 * block_write_begin may have instantiated a few blocks
3151 * outside i_size. Trim these off again. Don't need
3152 * i_size_read because we hold i_mutex.
3154 if (pos
+ len
> inode
->i_size
)
3155 ext4_truncate_failed_write(inode
);
3158 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3165 * Check if we should update i_disksize
3166 * when write to the end of file but not require block allocation
3168 static int ext4_da_should_update_i_disksize(struct page
*page
,
3169 unsigned long offset
)
3171 struct buffer_head
*bh
;
3172 struct inode
*inode
= page
->mapping
->host
;
3176 bh
= page_buffers(page
);
3177 idx
= offset
>> inode
->i_blkbits
;
3179 for (i
= 0; i
< idx
; i
++)
3180 bh
= bh
->b_this_page
;
3182 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3187 static int ext4_da_write_end(struct file
*file
,
3188 struct address_space
*mapping
,
3189 loff_t pos
, unsigned len
, unsigned copied
,
3190 struct page
*page
, void *fsdata
)
3192 struct inode
*inode
= mapping
->host
;
3194 handle_t
*handle
= ext4_journal_current_handle();
3196 unsigned long start
, end
;
3197 int write_mode
= (int)(unsigned long)fsdata
;
3199 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3200 if (ext4_should_order_data(inode
)) {
3201 return ext4_ordered_write_end(file
, mapping
, pos
,
3202 len
, copied
, page
, fsdata
);
3203 } else if (ext4_should_writeback_data(inode
)) {
3204 return ext4_writeback_write_end(file
, mapping
, pos
,
3205 len
, copied
, page
, fsdata
);
3211 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3212 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3213 end
= start
+ copied
- 1;
3216 * generic_write_end() will run mark_inode_dirty() if i_size
3217 * changes. So let's piggyback the i_disksize mark_inode_dirty
3221 new_i_size
= pos
+ copied
;
3222 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3223 if (ext4_da_should_update_i_disksize(page
, end
)) {
3224 down_write(&EXT4_I(inode
)->i_data_sem
);
3225 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3227 * Updating i_disksize when extending file
3228 * without needing block allocation
3230 if (ext4_should_order_data(inode
))
3231 ret
= ext4_jbd2_file_inode(handle
,
3234 EXT4_I(inode
)->i_disksize
= new_i_size
;
3236 up_write(&EXT4_I(inode
)->i_data_sem
);
3237 /* We need to mark inode dirty even if
3238 * new_i_size is less that inode->i_size
3239 * bu greater than i_disksize.(hint delalloc)
3241 ext4_mark_inode_dirty(handle
, inode
);
3244 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3249 ret2
= ext4_journal_stop(handle
);
3253 return ret
? ret
: copied
;
3256 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3259 * Drop reserved blocks
3261 BUG_ON(!PageLocked(page
));
3262 if (!page_has_buffers(page
))
3265 ext4_da_page_release_reservation(page
, offset
);
3268 ext4_invalidatepage(page
, offset
);
3274 * Force all delayed allocation blocks to be allocated for a given inode.
3276 int ext4_alloc_da_blocks(struct inode
*inode
)
3278 trace_ext4_alloc_da_blocks(inode
);
3280 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3281 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3285 * We do something simple for now. The filemap_flush() will
3286 * also start triggering a write of the data blocks, which is
3287 * not strictly speaking necessary (and for users of
3288 * laptop_mode, not even desirable). However, to do otherwise
3289 * would require replicating code paths in:
3291 * ext4_da_writepages() ->
3292 * write_cache_pages() ---> (via passed in callback function)
3293 * __mpage_da_writepage() -->
3294 * mpage_add_bh_to_extent()
3295 * mpage_da_map_blocks()
3297 * The problem is that write_cache_pages(), located in
3298 * mm/page-writeback.c, marks pages clean in preparation for
3299 * doing I/O, which is not desirable if we're not planning on
3302 * We could call write_cache_pages(), and then redirty all of
3303 * the pages by calling redirty_page_for_writepage() but that
3304 * would be ugly in the extreme. So instead we would need to
3305 * replicate parts of the code in the above functions,
3306 * simplifying them because we wouldn't actually intend to
3307 * write out the pages, but rather only collect contiguous
3308 * logical block extents, call the multi-block allocator, and
3309 * then update the buffer heads with the block allocations.
3311 * For now, though, we'll cheat by calling filemap_flush(),
3312 * which will map the blocks, and start the I/O, but not
3313 * actually wait for the I/O to complete.
3315 return filemap_flush(inode
->i_mapping
);
3319 * bmap() is special. It gets used by applications such as lilo and by
3320 * the swapper to find the on-disk block of a specific piece of data.
3322 * Naturally, this is dangerous if the block concerned is still in the
3323 * journal. If somebody makes a swapfile on an ext4 data-journaling
3324 * filesystem and enables swap, then they may get a nasty shock when the
3325 * data getting swapped to that swapfile suddenly gets overwritten by
3326 * the original zero's written out previously to the journal and
3327 * awaiting writeback in the kernel's buffer cache.
3329 * So, if we see any bmap calls here on a modified, data-journaled file,
3330 * take extra steps to flush any blocks which might be in the cache.
3332 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3334 struct inode
*inode
= mapping
->host
;
3338 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3339 test_opt(inode
->i_sb
, DELALLOC
)) {
3341 * With delalloc we want to sync the file
3342 * so that we can make sure we allocate
3345 filemap_write_and_wait(mapping
);
3348 if (EXT4_JOURNAL(inode
) &&
3349 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3351 * This is a REALLY heavyweight approach, but the use of
3352 * bmap on dirty files is expected to be extremely rare:
3353 * only if we run lilo or swapon on a freshly made file
3354 * do we expect this to happen.
3356 * (bmap requires CAP_SYS_RAWIO so this does not
3357 * represent an unprivileged user DOS attack --- we'd be
3358 * in trouble if mortal users could trigger this path at
3361 * NB. EXT4_STATE_JDATA is not set on files other than
3362 * regular files. If somebody wants to bmap a directory
3363 * or symlink and gets confused because the buffer
3364 * hasn't yet been flushed to disk, they deserve
3365 * everything they get.
3368 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3369 journal
= EXT4_JOURNAL(inode
);
3370 jbd2_journal_lock_updates(journal
);
3371 err
= jbd2_journal_flush(journal
);
3372 jbd2_journal_unlock_updates(journal
);
3378 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3381 static int ext4_readpage(struct file
*file
, struct page
*page
)
3383 trace_ext4_readpage(page
);
3384 return mpage_readpage(page
, ext4_get_block
);
3388 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3389 struct list_head
*pages
, unsigned nr_pages
)
3391 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3394 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
3396 struct buffer_head
*head
, *bh
;
3397 unsigned int curr_off
= 0;
3399 if (!page_has_buffers(page
))
3401 head
= bh
= page_buffers(page
);
3403 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
3405 ext4_free_io_end(bh
->b_private
);
3406 bh
->b_private
= NULL
;
3407 bh
->b_end_io
= NULL
;
3409 curr_off
= curr_off
+ bh
->b_size
;
3410 bh
= bh
->b_this_page
;
3411 } while (bh
!= head
);
3414 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3416 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3418 trace_ext4_invalidatepage(page
, offset
);
3421 * free any io_end structure allocated for buffers to be discarded
3423 if (ext4_should_dioread_nolock(page
->mapping
->host
))
3424 ext4_invalidatepage_free_endio(page
, offset
);
3426 * If it's a full truncate we just forget about the pending dirtying
3429 ClearPageChecked(page
);
3432 jbd2_journal_invalidatepage(journal
, page
, offset
);
3434 block_invalidatepage(page
, offset
);
3437 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3439 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3441 trace_ext4_releasepage(page
);
3443 WARN_ON(PageChecked(page
));
3444 if (!page_has_buffers(page
))
3447 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3449 return try_to_free_buffers(page
);
3453 * O_DIRECT for ext3 (or indirect map) based files
3455 * If the O_DIRECT write will extend the file then add this inode to the
3456 * orphan list. So recovery will truncate it back to the original size
3457 * if the machine crashes during the write.
3459 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3460 * crashes then stale disk data _may_ be exposed inside the file. But current
3461 * VFS code falls back into buffered path in that case so we are safe.
3463 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3464 const struct iovec
*iov
, loff_t offset
,
3465 unsigned long nr_segs
)
3467 struct file
*file
= iocb
->ki_filp
;
3468 struct inode
*inode
= file
->f_mapping
->host
;
3469 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3473 size_t count
= iov_length(iov
, nr_segs
);
3477 loff_t final_size
= offset
+ count
;
3479 if (final_size
> inode
->i_size
) {
3480 /* Credits for sb + inode write */
3481 handle
= ext4_journal_start(inode
, 2);
3482 if (IS_ERR(handle
)) {
3483 ret
= PTR_ERR(handle
);
3486 ret
= ext4_orphan_add(handle
, inode
);
3488 ext4_journal_stop(handle
);
3492 ei
->i_disksize
= inode
->i_size
;
3493 ext4_journal_stop(handle
);
3498 if (rw
== READ
&& ext4_should_dioread_nolock(inode
))
3499 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3500 inode
->i_sb
->s_bdev
, iov
,
3502 ext4_get_block
, NULL
, NULL
, 0);
3504 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3505 inode
->i_sb
->s_bdev
, iov
,
3507 ext4_get_block
, NULL
);
3509 if (unlikely((rw
& WRITE
) && ret
< 0)) {
3510 loff_t isize
= i_size_read(inode
);
3511 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
3514 ext4_truncate_failed_write(inode
);
3517 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3523 /* Credits for sb + inode write */
3524 handle
= ext4_journal_start(inode
, 2);
3525 if (IS_ERR(handle
)) {
3526 /* This is really bad luck. We've written the data
3527 * but cannot extend i_size. Bail out and pretend
3528 * the write failed... */
3529 ret
= PTR_ERR(handle
);
3531 ext4_orphan_del(NULL
, inode
);
3536 ext4_orphan_del(handle
, inode
);
3538 loff_t end
= offset
+ ret
;
3539 if (end
> inode
->i_size
) {
3540 ei
->i_disksize
= end
;
3541 i_size_write(inode
, end
);
3543 * We're going to return a positive `ret'
3544 * here due to non-zero-length I/O, so there's
3545 * no way of reporting error returns from
3546 * ext4_mark_inode_dirty() to userspace. So
3549 ext4_mark_inode_dirty(handle
, inode
);
3552 err
= ext4_journal_stop(handle
);
3561 * ext4_get_block used when preparing for a DIO write or buffer write.
3562 * We allocate an uinitialized extent if blocks haven't been allocated.
3563 * The extent will be converted to initialized after the IO is complete.
3565 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3566 struct buffer_head
*bh_result
, int create
)
3568 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3569 inode
->i_ino
, create
);
3570 return _ext4_get_block(inode
, iblock
, bh_result
,
3571 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3574 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3575 ssize_t size
, void *private, int ret
,
3578 ext4_io_end_t
*io_end
= iocb
->private;
3579 struct workqueue_struct
*wq
;
3580 unsigned long flags
;
3581 struct ext4_inode_info
*ei
;
3583 /* if not async direct IO or dio with 0 bytes write, just return */
3584 if (!io_end
|| !size
)
3587 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3588 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3589 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3592 /* if not aio dio with unwritten extents, just free io and return */
3593 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
3594 ext4_free_io_end(io_end
);
3595 iocb
->private = NULL
;
3598 aio_complete(iocb
, ret
, 0);
3602 io_end
->offset
= offset
;
3603 io_end
->size
= size
;
3605 io_end
->iocb
= iocb
;
3606 io_end
->result
= ret
;
3608 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3610 /* Add the io_end to per-inode completed aio dio list*/
3611 ei
= EXT4_I(io_end
->inode
);
3612 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3613 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
3614 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3616 /* queue the work to convert unwritten extents to written */
3617 queue_work(wq
, &io_end
->work
);
3618 iocb
->private = NULL
;
3621 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
3623 ext4_io_end_t
*io_end
= bh
->b_private
;
3624 struct workqueue_struct
*wq
;
3625 struct inode
*inode
;
3626 unsigned long flags
;
3628 if (!test_clear_buffer_uninit(bh
) || !io_end
)
3631 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
3632 printk("sb umounted, discard end_io request for inode %lu\n",
3633 io_end
->inode
->i_ino
);
3634 ext4_free_io_end(io_end
);
3638 io_end
->flag
= EXT4_IO_END_UNWRITTEN
;
3639 inode
= io_end
->inode
;
3641 /* Add the io_end to per-inode completed io list*/
3642 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3643 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
3644 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3646 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
3647 /* queue the work to convert unwritten extents to written */
3648 queue_work(wq
, &io_end
->work
);
3650 bh
->b_private
= NULL
;
3651 bh
->b_end_io
= NULL
;
3652 clear_buffer_uninit(bh
);
3653 end_buffer_async_write(bh
, uptodate
);
3656 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
3658 ext4_io_end_t
*io_end
;
3659 struct page
*page
= bh
->b_page
;
3660 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
3661 size_t size
= bh
->b_size
;
3664 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
3666 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
3670 io_end
->offset
= offset
;
3671 io_end
->size
= size
;
3673 * We need to hold a reference to the page to make sure it
3674 * doesn't get evicted before ext4_end_io_work() has a chance
3675 * to convert the extent from written to unwritten.
3677 io_end
->page
= page
;
3678 get_page(io_end
->page
);
3680 bh
->b_private
= io_end
;
3681 bh
->b_end_io
= ext4_end_io_buffer_write
;
3686 * For ext4 extent files, ext4 will do direct-io write to holes,
3687 * preallocated extents, and those write extend the file, no need to
3688 * fall back to buffered IO.
3690 * For holes, we fallocate those blocks, mark them as uninitialized
3691 * If those blocks were preallocated, we mark sure they are splited, but
3692 * still keep the range to write as uninitialized.
3694 * The unwrritten extents will be converted to written when DIO is completed.
3695 * For async direct IO, since the IO may still pending when return, we
3696 * set up an end_io call back function, which will do the conversion
3697 * when async direct IO completed.
3699 * If the O_DIRECT write will extend the file then add this inode to the
3700 * orphan list. So recovery will truncate it back to the original size
3701 * if the machine crashes during the write.
3704 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3705 const struct iovec
*iov
, loff_t offset
,
3706 unsigned long nr_segs
)
3708 struct file
*file
= iocb
->ki_filp
;
3709 struct inode
*inode
= file
->f_mapping
->host
;
3711 size_t count
= iov_length(iov
, nr_segs
);
3713 loff_t final_size
= offset
+ count
;
3714 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3716 * We could direct write to holes and fallocate.
3718 * Allocated blocks to fill the hole are marked as uninitialized
3719 * to prevent parallel buffered read to expose the stale data
3720 * before DIO complete the data IO.
3722 * As to previously fallocated extents, ext4 get_block
3723 * will just simply mark the buffer mapped but still
3724 * keep the extents uninitialized.
3726 * for non AIO case, we will convert those unwritten extents
3727 * to written after return back from blockdev_direct_IO.
3729 * for async DIO, the conversion needs to be defered when
3730 * the IO is completed. The ext4 end_io callback function
3731 * will be called to take care of the conversion work.
3732 * Here for async case, we allocate an io_end structure to
3735 iocb
->private = NULL
;
3736 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3737 if (!is_sync_kiocb(iocb
)) {
3738 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
3742 * we save the io structure for current async
3743 * direct IO, so that later ext4_map_blocks()
3744 * could flag the io structure whether there
3745 * is a unwritten extents needs to be converted
3746 * when IO is completed.
3748 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3751 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3752 inode
->i_sb
->s_bdev
, iov
,
3754 ext4_get_block_write
,
3757 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3759 * The io_end structure takes a reference to the inode,
3760 * that structure needs to be destroyed and the
3761 * reference to the inode need to be dropped, when IO is
3762 * complete, even with 0 byte write, or failed.
3764 * In the successful AIO DIO case, the io_end structure will be
3765 * desctroyed and the reference to the inode will be dropped
3766 * after the end_io call back function is called.
3768 * In the case there is 0 byte write, or error case, since
3769 * VFS direct IO won't invoke the end_io call back function,
3770 * we need to free the end_io structure here.
3772 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3773 ext4_free_io_end(iocb
->private);
3774 iocb
->private = NULL
;
3775 } else if (ret
> 0 && ext4_test_inode_state(inode
,
3776 EXT4_STATE_DIO_UNWRITTEN
)) {
3779 * for non AIO case, since the IO is already
3780 * completed, we could do the conversion right here
3782 err
= ext4_convert_unwritten_extents(inode
,
3786 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3791 /* for write the the end of file case, we fall back to old way */
3792 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3795 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3796 const struct iovec
*iov
, loff_t offset
,
3797 unsigned long nr_segs
)
3799 struct file
*file
= iocb
->ki_filp
;
3800 struct inode
*inode
= file
->f_mapping
->host
;
3803 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3804 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3805 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3807 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3808 trace_ext4_direct_IO_exit(inode
, offset
,
3809 iov_length(iov
, nr_segs
), rw
, ret
);
3814 * Pages can be marked dirty completely asynchronously from ext4's journalling
3815 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3816 * much here because ->set_page_dirty is called under VFS locks. The page is
3817 * not necessarily locked.
3819 * We cannot just dirty the page and leave attached buffers clean, because the
3820 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3821 * or jbddirty because all the journalling code will explode.
3823 * So what we do is to mark the page "pending dirty" and next time writepage
3824 * is called, propagate that into the buffers appropriately.
3826 static int ext4_journalled_set_page_dirty(struct page
*page
)
3828 SetPageChecked(page
);
3829 return __set_page_dirty_nobuffers(page
);
3832 static const struct address_space_operations ext4_ordered_aops
= {
3833 .readpage
= ext4_readpage
,
3834 .readpages
= ext4_readpages
,
3835 .writepage
= ext4_writepage
,
3836 .write_begin
= ext4_write_begin
,
3837 .write_end
= ext4_ordered_write_end
,
3839 .invalidatepage
= ext4_invalidatepage
,
3840 .releasepage
= ext4_releasepage
,
3841 .direct_IO
= ext4_direct_IO
,
3842 .migratepage
= buffer_migrate_page
,
3843 .is_partially_uptodate
= block_is_partially_uptodate
,
3844 .error_remove_page
= generic_error_remove_page
,
3847 static const struct address_space_operations ext4_writeback_aops
= {
3848 .readpage
= ext4_readpage
,
3849 .readpages
= ext4_readpages
,
3850 .writepage
= ext4_writepage
,
3851 .write_begin
= ext4_write_begin
,
3852 .write_end
= ext4_writeback_write_end
,
3854 .invalidatepage
= ext4_invalidatepage
,
3855 .releasepage
= ext4_releasepage
,
3856 .direct_IO
= ext4_direct_IO
,
3857 .migratepage
= buffer_migrate_page
,
3858 .is_partially_uptodate
= block_is_partially_uptodate
,
3859 .error_remove_page
= generic_error_remove_page
,
3862 static const struct address_space_operations ext4_journalled_aops
= {
3863 .readpage
= ext4_readpage
,
3864 .readpages
= ext4_readpages
,
3865 .writepage
= ext4_writepage
,
3866 .write_begin
= ext4_write_begin
,
3867 .write_end
= ext4_journalled_write_end
,
3868 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3870 .invalidatepage
= ext4_invalidatepage
,
3871 .releasepage
= ext4_releasepage
,
3872 .is_partially_uptodate
= block_is_partially_uptodate
,
3873 .error_remove_page
= generic_error_remove_page
,
3876 static const struct address_space_operations ext4_da_aops
= {
3877 .readpage
= ext4_readpage
,
3878 .readpages
= ext4_readpages
,
3879 .writepage
= ext4_writepage
,
3880 .writepages
= ext4_da_writepages
,
3881 .write_begin
= ext4_da_write_begin
,
3882 .write_end
= ext4_da_write_end
,
3884 .invalidatepage
= ext4_da_invalidatepage
,
3885 .releasepage
= ext4_releasepage
,
3886 .direct_IO
= ext4_direct_IO
,
3887 .migratepage
= buffer_migrate_page
,
3888 .is_partially_uptodate
= block_is_partially_uptodate
,
3889 .error_remove_page
= generic_error_remove_page
,
3892 void ext4_set_aops(struct inode
*inode
)
3894 if (ext4_should_order_data(inode
) &&
3895 test_opt(inode
->i_sb
, DELALLOC
))
3896 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3897 else if (ext4_should_order_data(inode
))
3898 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3899 else if (ext4_should_writeback_data(inode
) &&
3900 test_opt(inode
->i_sb
, DELALLOC
))
3901 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3902 else if (ext4_should_writeback_data(inode
))
3903 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3905 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3909 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3910 * up to the end of the block which corresponds to `from'.
3911 * This required during truncate. We need to physically zero the tail end
3912 * of that block so it doesn't yield old data if the file is later grown.
3914 int ext4_block_truncate_page(handle_t
*handle
,
3915 struct address_space
*mapping
, loff_t from
)
3917 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3920 struct inode
*inode
= mapping
->host
;
3922 blocksize
= inode
->i_sb
->s_blocksize
;
3923 length
= blocksize
- (offset
& (blocksize
- 1));
3925 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3929 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3930 * starting from file offset 'from'. The range to be zero'd must
3931 * be contained with in one block. If the specified range exceeds
3932 * the end of the block it will be shortened to end of the block
3933 * that cooresponds to 'from'
3935 int ext4_block_zero_page_range(handle_t
*handle
,
3936 struct address_space
*mapping
, loff_t from
, loff_t length
)
3938 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3939 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3940 unsigned blocksize
, max
, pos
;
3942 struct inode
*inode
= mapping
->host
;
3943 struct buffer_head
*bh
;
3947 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3948 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3952 blocksize
= inode
->i_sb
->s_blocksize
;
3953 max
= blocksize
- (offset
& (blocksize
- 1));
3956 * correct length if it does not fall between
3957 * 'from' and the end of the block
3959 if (length
> max
|| length
< 0)
3962 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3964 if (!page_has_buffers(page
))
3965 create_empty_buffers(page
, blocksize
, 0);
3967 /* Find the buffer that contains "offset" */
3968 bh
= page_buffers(page
);
3970 while (offset
>= pos
) {
3971 bh
= bh
->b_this_page
;
3977 if (buffer_freed(bh
)) {
3978 BUFFER_TRACE(bh
, "freed: skip");
3982 if (!buffer_mapped(bh
)) {
3983 BUFFER_TRACE(bh
, "unmapped");
3984 ext4_get_block(inode
, iblock
, bh
, 0);
3985 /* unmapped? It's a hole - nothing to do */
3986 if (!buffer_mapped(bh
)) {
3987 BUFFER_TRACE(bh
, "still unmapped");
3992 /* Ok, it's mapped. Make sure it's up-to-date */
3993 if (PageUptodate(page
))
3994 set_buffer_uptodate(bh
);
3996 if (!buffer_uptodate(bh
)) {
3998 ll_rw_block(READ
, 1, &bh
);
4000 /* Uhhuh. Read error. Complain and punt. */
4001 if (!buffer_uptodate(bh
))
4005 if (ext4_should_journal_data(inode
)) {
4006 BUFFER_TRACE(bh
, "get write access");
4007 err
= ext4_journal_get_write_access(handle
, bh
);
4012 zero_user(page
, offset
, length
);
4014 BUFFER_TRACE(bh
, "zeroed end of block");
4017 if (ext4_should_journal_data(inode
)) {
4018 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4020 if (ext4_should_order_data(inode
) && EXT4_I(inode
)->jinode
)
4021 err
= ext4_jbd2_file_inode(handle
, inode
);
4022 mark_buffer_dirty(bh
);
4027 page_cache_release(page
);
4032 * Probably it should be a library function... search for first non-zero word
4033 * or memcmp with zero_page, whatever is better for particular architecture.
4036 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4045 * ext4_find_shared - find the indirect blocks for partial truncation.
4046 * @inode: inode in question
4047 * @depth: depth of the affected branch
4048 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4049 * @chain: place to store the pointers to partial indirect blocks
4050 * @top: place to the (detached) top of branch
4052 * This is a helper function used by ext4_truncate().
4054 * When we do truncate() we may have to clean the ends of several
4055 * indirect blocks but leave the blocks themselves alive. Block is
4056 * partially truncated if some data below the new i_size is referred
4057 * from it (and it is on the path to the first completely truncated
4058 * data block, indeed). We have to free the top of that path along
4059 * with everything to the right of the path. Since no allocation
4060 * past the truncation point is possible until ext4_truncate()
4061 * finishes, we may safely do the latter, but top of branch may
4062 * require special attention - pageout below the truncation point
4063 * might try to populate it.
4065 * We atomically detach the top of branch from the tree, store the
4066 * block number of its root in *@top, pointers to buffer_heads of
4067 * partially truncated blocks - in @chain[].bh and pointers to
4068 * their last elements that should not be removed - in
4069 * @chain[].p. Return value is the pointer to last filled element
4072 * The work left to caller to do the actual freeing of subtrees:
4073 * a) free the subtree starting from *@top
4074 * b) free the subtrees whose roots are stored in
4075 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4076 * c) free the subtrees growing from the inode past the @chain[0].
4077 * (no partially truncated stuff there). */
4079 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4080 ext4_lblk_t offsets
[4], Indirect chain
[4],
4083 Indirect
*partial
, *p
;
4087 /* Make k index the deepest non-null offset + 1 */
4088 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4090 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4091 /* Writer: pointers */
4093 partial
= chain
+ k
-1;
4095 * If the branch acquired continuation since we've looked at it -
4096 * fine, it should all survive and (new) top doesn't belong to us.
4098 if (!partial
->key
&& *partial
->p
)
4101 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4104 * OK, we've found the last block that must survive. The rest of our
4105 * branch should be detached before unlocking. However, if that rest
4106 * of branch is all ours and does not grow immediately from the inode
4107 * it's easier to cheat and just decrement partial->p.
4109 if (p
== chain
+ k
- 1 && p
> chain
) {
4113 /* Nope, don't do this in ext4. Must leave the tree intact */
4120 while (partial
> p
) {
4121 brelse(partial
->bh
);
4129 * Zero a number of block pointers in either an inode or an indirect block.
4130 * If we restart the transaction we must again get write access to the
4131 * indirect block for further modification.
4133 * We release `count' blocks on disk, but (last - first) may be greater
4134 * than `count' because there can be holes in there.
4136 * Return 0 on success, 1 on invalid block range
4137 * and < 0 on fatal error.
4139 static int ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4140 struct buffer_head
*bh
,
4141 ext4_fsblk_t block_to_free
,
4142 unsigned long count
, __le32
*first
,
4146 int flags
= EXT4_FREE_BLOCKS_FORGET
| EXT4_FREE_BLOCKS_VALIDATED
;
4149 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
4150 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4152 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block_to_free
,
4154 EXT4_ERROR_INODE(inode
, "attempt to clear invalid "
4155 "blocks %llu len %lu",
4156 (unsigned long long) block_to_free
, count
);
4160 if (try_to_extend_transaction(handle
, inode
)) {
4162 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4163 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4167 err
= ext4_mark_inode_dirty(handle
, inode
);
4170 err
= ext4_truncate_restart_trans(handle
, inode
,
4171 blocks_for_truncate(inode
));
4175 BUFFER_TRACE(bh
, "retaking write access");
4176 err
= ext4_journal_get_write_access(handle
, bh
);
4182 for (p
= first
; p
< last
; p
++)
4185 ext4_free_blocks(handle
, inode
, NULL
, block_to_free
, count
, flags
);
4188 ext4_std_error(inode
->i_sb
, err
);
4193 * ext4_free_data - free a list of data blocks
4194 * @handle: handle for this transaction
4195 * @inode: inode we are dealing with
4196 * @this_bh: indirect buffer_head which contains *@first and *@last
4197 * @first: array of block numbers
4198 * @last: points immediately past the end of array
4200 * We are freeing all blocks referred from that array (numbers are stored as
4201 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4203 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4204 * blocks are contiguous then releasing them at one time will only affect one
4205 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4206 * actually use a lot of journal space.
4208 * @this_bh will be %NULL if @first and @last point into the inode's direct
4211 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4212 struct buffer_head
*this_bh
,
4213 __le32
*first
, __le32
*last
)
4215 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4216 unsigned long count
= 0; /* Number of blocks in the run */
4217 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4220 ext4_fsblk_t nr
; /* Current block # */
4221 __le32
*p
; /* Pointer into inode/ind
4222 for current block */
4225 if (this_bh
) { /* For indirect block */
4226 BUFFER_TRACE(this_bh
, "get_write_access");
4227 err
= ext4_journal_get_write_access(handle
, this_bh
);
4228 /* Important: if we can't update the indirect pointers
4229 * to the blocks, we can't free them. */
4234 for (p
= first
; p
< last
; p
++) {
4235 nr
= le32_to_cpu(*p
);
4237 /* accumulate blocks to free if they're contiguous */
4240 block_to_free_p
= p
;
4242 } else if (nr
== block_to_free
+ count
) {
4245 err
= ext4_clear_blocks(handle
, inode
, this_bh
,
4246 block_to_free
, count
,
4247 block_to_free_p
, p
);
4251 block_to_free_p
= p
;
4257 if (!err
&& count
> 0)
4258 err
= ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4259 count
, block_to_free_p
, p
);
4265 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4268 * The buffer head should have an attached journal head at this
4269 * point. However, if the data is corrupted and an indirect
4270 * block pointed to itself, it would have been detached when
4271 * the block was cleared. Check for this instead of OOPSing.
4273 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4274 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4276 EXT4_ERROR_INODE(inode
,
4277 "circular indirect block detected at "
4279 (unsigned long long) this_bh
->b_blocknr
);
4284 * ext4_free_branches - free an array of branches
4285 * @handle: JBD handle for this transaction
4286 * @inode: inode we are dealing with
4287 * @parent_bh: the buffer_head which contains *@first and *@last
4288 * @first: array of block numbers
4289 * @last: pointer immediately past the end of array
4290 * @depth: depth of the branches to free
4292 * We are freeing all blocks referred from these branches (numbers are
4293 * stored as little-endian 32-bit) and updating @inode->i_blocks
4296 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4297 struct buffer_head
*parent_bh
,
4298 __le32
*first
, __le32
*last
, int depth
)
4303 if (ext4_handle_is_aborted(handle
))
4307 struct buffer_head
*bh
;
4308 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4310 while (--p
>= first
) {
4311 nr
= le32_to_cpu(*p
);
4313 continue; /* A hole */
4315 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
4317 EXT4_ERROR_INODE(inode
,
4318 "invalid indirect mapped "
4319 "block %lu (level %d)",
4320 (unsigned long) nr
, depth
);
4324 /* Go read the buffer for the next level down */
4325 bh
= sb_bread(inode
->i_sb
, nr
);
4328 * A read failure? Report error and clear slot
4332 EXT4_ERROR_INODE_BLOCK(inode
, nr
,
4337 /* This zaps the entire block. Bottom up. */
4338 BUFFER_TRACE(bh
, "free child branches");
4339 ext4_free_branches(handle
, inode
, bh
,
4340 (__le32
*) bh
->b_data
,
4341 (__le32
*) bh
->b_data
+ addr_per_block
,
4346 * Everything below this this pointer has been
4347 * released. Now let this top-of-subtree go.
4349 * We want the freeing of this indirect block to be
4350 * atomic in the journal with the updating of the
4351 * bitmap block which owns it. So make some room in
4354 * We zero the parent pointer *after* freeing its
4355 * pointee in the bitmaps, so if extend_transaction()
4356 * for some reason fails to put the bitmap changes and
4357 * the release into the same transaction, recovery
4358 * will merely complain about releasing a free block,
4359 * rather than leaking blocks.
4361 if (ext4_handle_is_aborted(handle
))
4363 if (try_to_extend_transaction(handle
, inode
)) {
4364 ext4_mark_inode_dirty(handle
, inode
);
4365 ext4_truncate_restart_trans(handle
, inode
,
4366 blocks_for_truncate(inode
));
4370 * The forget flag here is critical because if
4371 * we are journaling (and not doing data
4372 * journaling), we have to make sure a revoke
4373 * record is written to prevent the journal
4374 * replay from overwriting the (former)
4375 * indirect block if it gets reallocated as a
4376 * data block. This must happen in the same
4377 * transaction where the data blocks are
4380 ext4_free_blocks(handle
, inode
, NULL
, nr
, 1,
4381 EXT4_FREE_BLOCKS_METADATA
|
4382 EXT4_FREE_BLOCKS_FORGET
);
4386 * The block which we have just freed is
4387 * pointed to by an indirect block: journal it
4389 BUFFER_TRACE(parent_bh
, "get_write_access");
4390 if (!ext4_journal_get_write_access(handle
,
4393 BUFFER_TRACE(parent_bh
,
4394 "call ext4_handle_dirty_metadata");
4395 ext4_handle_dirty_metadata(handle
,
4402 /* We have reached the bottom of the tree. */
4403 BUFFER_TRACE(parent_bh
, "free data blocks");
4404 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4408 int ext4_can_truncate(struct inode
*inode
)
4410 if (S_ISREG(inode
->i_mode
))
4412 if (S_ISDIR(inode
->i_mode
))
4414 if (S_ISLNK(inode
->i_mode
))
4415 return !ext4_inode_is_fast_symlink(inode
);
4420 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4421 * associated with the given offset and length
4423 * @inode: File inode
4424 * @offset: The offset where the hole will begin
4425 * @len: The length of the hole
4427 * Returns: 0 on sucess or negative on failure
4430 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
4432 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4433 if (!S_ISREG(inode
->i_mode
))
4436 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4437 /* TODO: Add support for non extent hole punching */
4441 return ext4_ext_punch_hole(file
, offset
, length
);
4447 * We block out ext4_get_block() block instantiations across the entire
4448 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4449 * simultaneously on behalf of the same inode.
4451 * As we work through the truncate and commmit bits of it to the journal there
4452 * is one core, guiding principle: the file's tree must always be consistent on
4453 * disk. We must be able to restart the truncate after a crash.
4455 * The file's tree may be transiently inconsistent in memory (although it
4456 * probably isn't), but whenever we close off and commit a journal transaction,
4457 * the contents of (the filesystem + the journal) must be consistent and
4458 * restartable. It's pretty simple, really: bottom up, right to left (although
4459 * left-to-right works OK too).
4461 * Note that at recovery time, journal replay occurs *before* the restart of
4462 * truncate against the orphan inode list.
4464 * The committed inode has the new, desired i_size (which is the same as
4465 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4466 * that this inode's truncate did not complete and it will again call
4467 * ext4_truncate() to have another go. So there will be instantiated blocks
4468 * to the right of the truncation point in a crashed ext4 filesystem. But
4469 * that's fine - as long as they are linked from the inode, the post-crash
4470 * ext4_truncate() run will find them and release them.
4472 void ext4_truncate(struct inode
*inode
)
4475 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4476 __le32
*i_data
= ei
->i_data
;
4477 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4478 struct address_space
*mapping
= inode
->i_mapping
;
4479 ext4_lblk_t offsets
[4];
4484 ext4_lblk_t last_block
, max_block
;
4485 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4487 trace_ext4_truncate_enter(inode
);
4489 if (!ext4_can_truncate(inode
))
4492 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4494 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4495 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4497 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4498 ext4_ext_truncate(inode
);
4499 trace_ext4_truncate_exit(inode
);
4503 handle
= start_transaction(inode
);
4505 return; /* AKPM: return what? */
4507 last_block
= (inode
->i_size
+ blocksize
-1)
4508 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4509 max_block
= (EXT4_SB(inode
->i_sb
)->s_bitmap_maxbytes
+ blocksize
-1)
4510 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4512 if (inode
->i_size
& (blocksize
- 1))
4513 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4516 if (last_block
!= max_block
) {
4517 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4519 goto out_stop
; /* error */
4523 * OK. This truncate is going to happen. We add the inode to the
4524 * orphan list, so that if this truncate spans multiple transactions,
4525 * and we crash, we will resume the truncate when the filesystem
4526 * recovers. It also marks the inode dirty, to catch the new size.
4528 * Implication: the file must always be in a sane, consistent
4529 * truncatable state while each transaction commits.
4531 if (ext4_orphan_add(handle
, inode
))
4535 * From here we block out all ext4_get_block() callers who want to
4536 * modify the block allocation tree.
4538 down_write(&ei
->i_data_sem
);
4540 ext4_discard_preallocations(inode
);
4543 * The orphan list entry will now protect us from any crash which
4544 * occurs before the truncate completes, so it is now safe to propagate
4545 * the new, shorter inode size (held for now in i_size) into the
4546 * on-disk inode. We do this via i_disksize, which is the value which
4547 * ext4 *really* writes onto the disk inode.
4549 ei
->i_disksize
= inode
->i_size
;
4551 if (last_block
== max_block
) {
4553 * It is unnecessary to free any data blocks if last_block is
4554 * equal to the indirect block limit.
4557 } else if (n
== 1) { /* direct blocks */
4558 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4559 i_data
+ EXT4_NDIR_BLOCKS
);
4563 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4564 /* Kill the top of shared branch (not detached) */
4566 if (partial
== chain
) {
4567 /* Shared branch grows from the inode */
4568 ext4_free_branches(handle
, inode
, NULL
,
4569 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4572 * We mark the inode dirty prior to restart,
4573 * and prior to stop. No need for it here.
4576 /* Shared branch grows from an indirect block */
4577 BUFFER_TRACE(partial
->bh
, "get_write_access");
4578 ext4_free_branches(handle
, inode
, partial
->bh
,
4580 partial
->p
+1, (chain
+n
-1) - partial
);
4583 /* Clear the ends of indirect blocks on the shared branch */
4584 while (partial
> chain
) {
4585 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4586 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4587 (chain
+n
-1) - partial
);
4588 BUFFER_TRACE(partial
->bh
, "call brelse");
4589 brelse(partial
->bh
);
4593 /* Kill the remaining (whole) subtrees */
4594 switch (offsets
[0]) {
4596 nr
= i_data
[EXT4_IND_BLOCK
];
4598 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4599 i_data
[EXT4_IND_BLOCK
] = 0;
4601 case EXT4_IND_BLOCK
:
4602 nr
= i_data
[EXT4_DIND_BLOCK
];
4604 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4605 i_data
[EXT4_DIND_BLOCK
] = 0;
4607 case EXT4_DIND_BLOCK
:
4608 nr
= i_data
[EXT4_TIND_BLOCK
];
4610 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4611 i_data
[EXT4_TIND_BLOCK
] = 0;
4613 case EXT4_TIND_BLOCK
:
4618 up_write(&ei
->i_data_sem
);
4619 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4620 ext4_mark_inode_dirty(handle
, inode
);
4623 * In a multi-transaction truncate, we only make the final transaction
4627 ext4_handle_sync(handle
);
4630 * If this was a simple ftruncate(), and the file will remain alive
4631 * then we need to clear up the orphan record which we created above.
4632 * However, if this was a real unlink then we were called by
4633 * ext4_delete_inode(), and we allow that function to clean up the
4634 * orphan info for us.
4637 ext4_orphan_del(handle
, inode
);
4639 ext4_journal_stop(handle
);
4640 trace_ext4_truncate_exit(inode
);
4644 * ext4_get_inode_loc returns with an extra refcount against the inode's
4645 * underlying buffer_head on success. If 'in_mem' is true, we have all
4646 * data in memory that is needed to recreate the on-disk version of this
4649 static int __ext4_get_inode_loc(struct inode
*inode
,
4650 struct ext4_iloc
*iloc
, int in_mem
)
4652 struct ext4_group_desc
*gdp
;
4653 struct buffer_head
*bh
;
4654 struct super_block
*sb
= inode
->i_sb
;
4656 int inodes_per_block
, inode_offset
;
4659 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4662 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4663 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4668 * Figure out the offset within the block group inode table
4670 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4671 inode_offset
= ((inode
->i_ino
- 1) %
4672 EXT4_INODES_PER_GROUP(sb
));
4673 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4674 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4676 bh
= sb_getblk(sb
, block
);
4678 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4679 "unable to read itable block");
4682 if (!buffer_uptodate(bh
)) {
4686 * If the buffer has the write error flag, we have failed
4687 * to write out another inode in the same block. In this
4688 * case, we don't have to read the block because we may
4689 * read the old inode data successfully.
4691 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4692 set_buffer_uptodate(bh
);
4694 if (buffer_uptodate(bh
)) {
4695 /* someone brought it uptodate while we waited */
4701 * If we have all information of the inode in memory and this
4702 * is the only valid inode in the block, we need not read the
4706 struct buffer_head
*bitmap_bh
;
4709 start
= inode_offset
& ~(inodes_per_block
- 1);
4711 /* Is the inode bitmap in cache? */
4712 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4717 * If the inode bitmap isn't in cache then the
4718 * optimisation may end up performing two reads instead
4719 * of one, so skip it.
4721 if (!buffer_uptodate(bitmap_bh
)) {
4725 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4726 if (i
== inode_offset
)
4728 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4732 if (i
== start
+ inodes_per_block
) {
4733 /* all other inodes are free, so skip I/O */
4734 memset(bh
->b_data
, 0, bh
->b_size
);
4735 set_buffer_uptodate(bh
);
4743 * If we need to do any I/O, try to pre-readahead extra
4744 * blocks from the inode table.
4746 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4747 ext4_fsblk_t b
, end
, table
;
4750 table
= ext4_inode_table(sb
, gdp
);
4751 /* s_inode_readahead_blks is always a power of 2 */
4752 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4755 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4756 num
= EXT4_INODES_PER_GROUP(sb
);
4757 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4758 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4759 num
-= ext4_itable_unused_count(sb
, gdp
);
4760 table
+= num
/ inodes_per_block
;
4764 sb_breadahead(sb
, b
++);
4768 * There are other valid inodes in the buffer, this inode
4769 * has in-inode xattrs, or we don't have this inode in memory.
4770 * Read the block from disk.
4772 trace_ext4_load_inode(inode
);
4774 bh
->b_end_io
= end_buffer_read_sync
;
4775 submit_bh(READ_META
, bh
);
4777 if (!buffer_uptodate(bh
)) {
4778 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4779 "unable to read itable block");
4789 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4791 /* We have all inode data except xattrs in memory here. */
4792 return __ext4_get_inode_loc(inode
, iloc
,
4793 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4796 void ext4_set_inode_flags(struct inode
*inode
)
4798 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4800 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4801 if (flags
& EXT4_SYNC_FL
)
4802 inode
->i_flags
|= S_SYNC
;
4803 if (flags
& EXT4_APPEND_FL
)
4804 inode
->i_flags
|= S_APPEND
;
4805 if (flags
& EXT4_IMMUTABLE_FL
)
4806 inode
->i_flags
|= S_IMMUTABLE
;
4807 if (flags
& EXT4_NOATIME_FL
)
4808 inode
->i_flags
|= S_NOATIME
;
4809 if (flags
& EXT4_DIRSYNC_FL
)
4810 inode
->i_flags
|= S_DIRSYNC
;
4813 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4814 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4816 unsigned int vfs_fl
;
4817 unsigned long old_fl
, new_fl
;
4820 vfs_fl
= ei
->vfs_inode
.i_flags
;
4821 old_fl
= ei
->i_flags
;
4822 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4823 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4825 if (vfs_fl
& S_SYNC
)
4826 new_fl
|= EXT4_SYNC_FL
;
4827 if (vfs_fl
& S_APPEND
)
4828 new_fl
|= EXT4_APPEND_FL
;
4829 if (vfs_fl
& S_IMMUTABLE
)
4830 new_fl
|= EXT4_IMMUTABLE_FL
;
4831 if (vfs_fl
& S_NOATIME
)
4832 new_fl
|= EXT4_NOATIME_FL
;
4833 if (vfs_fl
& S_DIRSYNC
)
4834 new_fl
|= EXT4_DIRSYNC_FL
;
4835 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4838 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4839 struct ext4_inode_info
*ei
)
4842 struct inode
*inode
= &(ei
->vfs_inode
);
4843 struct super_block
*sb
= inode
->i_sb
;
4845 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4846 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4847 /* we are using combined 48 bit field */
4848 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4849 le32_to_cpu(raw_inode
->i_blocks_lo
);
4850 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4851 /* i_blocks represent file system block size */
4852 return i_blocks
<< (inode
->i_blkbits
- 9);
4857 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4861 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4863 struct ext4_iloc iloc
;
4864 struct ext4_inode
*raw_inode
;
4865 struct ext4_inode_info
*ei
;
4866 struct inode
*inode
;
4867 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4871 inode
= iget_locked(sb
, ino
);
4873 return ERR_PTR(-ENOMEM
);
4874 if (!(inode
->i_state
& I_NEW
))
4880 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4883 raw_inode
= ext4_raw_inode(&iloc
);
4884 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4885 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4886 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4887 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4888 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4889 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4891 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4893 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4894 ei
->i_dir_start_lookup
= 0;
4895 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4896 /* We now have enough fields to check if the inode was active or not.
4897 * This is needed because nfsd might try to access dead inodes
4898 * the test is that same one that e2fsck uses
4899 * NeilBrown 1999oct15
4901 if (inode
->i_nlink
== 0) {
4902 if (inode
->i_mode
== 0 ||
4903 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4904 /* this inode is deleted */
4908 /* The only unlinked inodes we let through here have
4909 * valid i_mode and are being read by the orphan
4910 * recovery code: that's fine, we're about to complete
4911 * the process of deleting those. */
4913 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4914 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4915 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4916 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4918 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4919 inode
->i_size
= ext4_isize(raw_inode
);
4920 ei
->i_disksize
= inode
->i_size
;
4922 ei
->i_reserved_quota
= 0;
4924 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4925 ei
->i_block_group
= iloc
.block_group
;
4926 ei
->i_last_alloc_group
= ~0;
4928 * NOTE! The in-memory inode i_data array is in little-endian order
4929 * even on big-endian machines: we do NOT byteswap the block numbers!
4931 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4932 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4933 INIT_LIST_HEAD(&ei
->i_orphan
);
4936 * Set transaction id's of transactions that have to be committed
4937 * to finish f[data]sync. We set them to currently running transaction
4938 * as we cannot be sure that the inode or some of its metadata isn't
4939 * part of the transaction - the inode could have been reclaimed and
4940 * now it is reread from disk.
4943 transaction_t
*transaction
;
4946 read_lock(&journal
->j_state_lock
);
4947 if (journal
->j_running_transaction
)
4948 transaction
= journal
->j_running_transaction
;
4950 transaction
= journal
->j_committing_transaction
;
4952 tid
= transaction
->t_tid
;
4954 tid
= journal
->j_commit_sequence
;
4955 read_unlock(&journal
->j_state_lock
);
4956 ei
->i_sync_tid
= tid
;
4957 ei
->i_datasync_tid
= tid
;
4960 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4961 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4962 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4963 EXT4_INODE_SIZE(inode
->i_sb
)) {
4967 if (ei
->i_extra_isize
== 0) {
4968 /* The extra space is currently unused. Use it. */
4969 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4970 EXT4_GOOD_OLD_INODE_SIZE
;
4972 __le32
*magic
= (void *)raw_inode
+
4973 EXT4_GOOD_OLD_INODE_SIZE
+
4975 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4976 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4979 ei
->i_extra_isize
= 0;
4981 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4982 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4983 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4984 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4986 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4987 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4988 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4990 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4994 if (ei
->i_file_acl
&&
4995 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4996 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
5000 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
5001 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5002 (S_ISLNK(inode
->i_mode
) &&
5003 !ext4_inode_is_fast_symlink(inode
)))
5004 /* Validate extent which is part of inode */
5005 ret
= ext4_ext_check_inode(inode
);
5006 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5007 (S_ISLNK(inode
->i_mode
) &&
5008 !ext4_inode_is_fast_symlink(inode
))) {
5009 /* Validate block references which are part of inode */
5010 ret
= ext4_check_inode_blockref(inode
);
5015 if (S_ISREG(inode
->i_mode
)) {
5016 inode
->i_op
= &ext4_file_inode_operations
;
5017 inode
->i_fop
= &ext4_file_operations
;
5018 ext4_set_aops(inode
);
5019 } else if (S_ISDIR(inode
->i_mode
)) {
5020 inode
->i_op
= &ext4_dir_inode_operations
;
5021 inode
->i_fop
= &ext4_dir_operations
;
5022 } else if (S_ISLNK(inode
->i_mode
)) {
5023 if (ext4_inode_is_fast_symlink(inode
)) {
5024 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
5025 nd_terminate_link(ei
->i_data
, inode
->i_size
,
5026 sizeof(ei
->i_data
) - 1);
5028 inode
->i_op
= &ext4_symlink_inode_operations
;
5029 ext4_set_aops(inode
);
5031 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
5032 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
5033 inode
->i_op
= &ext4_special_inode_operations
;
5034 if (raw_inode
->i_block
[0])
5035 init_special_inode(inode
, inode
->i_mode
,
5036 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
5038 init_special_inode(inode
, inode
->i_mode
,
5039 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
5042 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
5046 ext4_set_inode_flags(inode
);
5047 unlock_new_inode(inode
);
5053 return ERR_PTR(ret
);
5056 static int ext4_inode_blocks_set(handle_t
*handle
,
5057 struct ext4_inode
*raw_inode
,
5058 struct ext4_inode_info
*ei
)
5060 struct inode
*inode
= &(ei
->vfs_inode
);
5061 u64 i_blocks
= inode
->i_blocks
;
5062 struct super_block
*sb
= inode
->i_sb
;
5064 if (i_blocks
<= ~0U) {
5066 * i_blocks can be represnted in a 32 bit variable
5067 * as multiple of 512 bytes
5069 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5070 raw_inode
->i_blocks_high
= 0;
5071 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5074 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
5077 if (i_blocks
<= 0xffffffffffffULL
) {
5079 * i_blocks can be represented in a 48 bit variable
5080 * as multiple of 512 bytes
5082 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5083 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5084 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5086 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5087 /* i_block is stored in file system block size */
5088 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5089 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5090 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5096 * Post the struct inode info into an on-disk inode location in the
5097 * buffer-cache. This gobbles the caller's reference to the
5098 * buffer_head in the inode location struct.
5100 * The caller must have write access to iloc->bh.
5102 static int ext4_do_update_inode(handle_t
*handle
,
5103 struct inode
*inode
,
5104 struct ext4_iloc
*iloc
)
5106 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5107 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5108 struct buffer_head
*bh
= iloc
->bh
;
5109 int err
= 0, rc
, block
;
5111 /* For fields not not tracking in the in-memory inode,
5112 * initialise them to zero for new inodes. */
5113 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
5114 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5116 ext4_get_inode_flags(ei
);
5117 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5118 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5119 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5120 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5122 * Fix up interoperability with old kernels. Otherwise, old inodes get
5123 * re-used with the upper 16 bits of the uid/gid intact
5126 raw_inode
->i_uid_high
=
5127 cpu_to_le16(high_16_bits(inode
->i_uid
));
5128 raw_inode
->i_gid_high
=
5129 cpu_to_le16(high_16_bits(inode
->i_gid
));
5131 raw_inode
->i_uid_high
= 0;
5132 raw_inode
->i_gid_high
= 0;
5135 raw_inode
->i_uid_low
=
5136 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5137 raw_inode
->i_gid_low
=
5138 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5139 raw_inode
->i_uid_high
= 0;
5140 raw_inode
->i_gid_high
= 0;
5142 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5144 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5145 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5146 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5147 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5149 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5151 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5152 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
5153 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5154 cpu_to_le32(EXT4_OS_HURD
))
5155 raw_inode
->i_file_acl_high
=
5156 cpu_to_le16(ei
->i_file_acl
>> 32);
5157 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5158 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5159 if (ei
->i_disksize
> 0x7fffffffULL
) {
5160 struct super_block
*sb
= inode
->i_sb
;
5161 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5162 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5163 EXT4_SB(sb
)->s_es
->s_rev_level
==
5164 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5165 /* If this is the first large file
5166 * created, add a flag to the superblock.
5168 err
= ext4_journal_get_write_access(handle
,
5169 EXT4_SB(sb
)->s_sbh
);
5172 ext4_update_dynamic_rev(sb
);
5173 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5174 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5176 ext4_handle_sync(handle
);
5177 err
= ext4_handle_dirty_metadata(handle
, NULL
,
5178 EXT4_SB(sb
)->s_sbh
);
5181 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5182 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5183 if (old_valid_dev(inode
->i_rdev
)) {
5184 raw_inode
->i_block
[0] =
5185 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5186 raw_inode
->i_block
[1] = 0;
5188 raw_inode
->i_block
[0] = 0;
5189 raw_inode
->i_block
[1] =
5190 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5191 raw_inode
->i_block
[2] = 0;
5194 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5195 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5197 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5198 if (ei
->i_extra_isize
) {
5199 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5200 raw_inode
->i_version_hi
=
5201 cpu_to_le32(inode
->i_version
>> 32);
5202 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5205 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5206 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5209 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5211 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5214 ext4_std_error(inode
->i_sb
, err
);
5219 * ext4_write_inode()
5221 * We are called from a few places:
5223 * - Within generic_file_write() for O_SYNC files.
5224 * Here, there will be no transaction running. We wait for any running
5225 * trasnaction to commit.
5227 * - Within sys_sync(), kupdate and such.
5228 * We wait on commit, if tol to.
5230 * - Within prune_icache() (PF_MEMALLOC == true)
5231 * Here we simply return. We can't afford to block kswapd on the
5234 * In all cases it is actually safe for us to return without doing anything,
5235 * because the inode has been copied into a raw inode buffer in
5236 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5239 * Note that we are absolutely dependent upon all inode dirtiers doing the
5240 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5241 * which we are interested.
5243 * It would be a bug for them to not do this. The code:
5245 * mark_inode_dirty(inode)
5247 * inode->i_size = expr;
5249 * is in error because a kswapd-driven write_inode() could occur while
5250 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5251 * will no longer be on the superblock's dirty inode list.
5253 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5257 if (current
->flags
& PF_MEMALLOC
)
5260 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5261 if (ext4_journal_current_handle()) {
5262 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5267 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
5270 err
= ext4_force_commit(inode
->i_sb
);
5272 struct ext4_iloc iloc
;
5274 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
5277 if (wbc
->sync_mode
== WB_SYNC_ALL
)
5278 sync_dirty_buffer(iloc
.bh
);
5279 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5280 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
5281 "IO error syncing inode");
5292 * Called from notify_change.
5294 * We want to trap VFS attempts to truncate the file as soon as
5295 * possible. In particular, we want to make sure that when the VFS
5296 * shrinks i_size, we put the inode on the orphan list and modify
5297 * i_disksize immediately, so that during the subsequent flushing of
5298 * dirty pages and freeing of disk blocks, we can guarantee that any
5299 * commit will leave the blocks being flushed in an unused state on
5300 * disk. (On recovery, the inode will get truncated and the blocks will
5301 * be freed, so we have a strong guarantee that no future commit will
5302 * leave these blocks visible to the user.)
5304 * Another thing we have to assure is that if we are in ordered mode
5305 * and inode is still attached to the committing transaction, we must
5306 * we start writeout of all the dirty pages which are being truncated.
5307 * This way we are sure that all the data written in the previous
5308 * transaction are already on disk (truncate waits for pages under
5311 * Called with inode->i_mutex down.
5313 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5315 struct inode
*inode
= dentry
->d_inode
;
5318 const unsigned int ia_valid
= attr
->ia_valid
;
5320 error
= inode_change_ok(inode
, attr
);
5324 if (is_quota_modification(inode
, attr
))
5325 dquot_initialize(inode
);
5326 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5327 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5330 /* (user+group)*(old+new) structure, inode write (sb,
5331 * inode block, ? - but truncate inode update has it) */
5332 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5333 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5334 if (IS_ERR(handle
)) {
5335 error
= PTR_ERR(handle
);
5338 error
= dquot_transfer(inode
, attr
);
5340 ext4_journal_stop(handle
);
5343 /* Update corresponding info in inode so that everything is in
5344 * one transaction */
5345 if (attr
->ia_valid
& ATTR_UID
)
5346 inode
->i_uid
= attr
->ia_uid
;
5347 if (attr
->ia_valid
& ATTR_GID
)
5348 inode
->i_gid
= attr
->ia_gid
;
5349 error
= ext4_mark_inode_dirty(handle
, inode
);
5350 ext4_journal_stop(handle
);
5353 if (attr
->ia_valid
& ATTR_SIZE
) {
5354 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
5355 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5357 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
5362 if (S_ISREG(inode
->i_mode
) &&
5363 attr
->ia_valid
& ATTR_SIZE
&&
5364 (attr
->ia_size
< inode
->i_size
)) {
5367 handle
= ext4_journal_start(inode
, 3);
5368 if (IS_ERR(handle
)) {
5369 error
= PTR_ERR(handle
);
5372 if (ext4_handle_valid(handle
)) {
5373 error
= ext4_orphan_add(handle
, inode
);
5376 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5377 rc
= ext4_mark_inode_dirty(handle
, inode
);
5380 ext4_journal_stop(handle
);
5382 if (ext4_should_order_data(inode
)) {
5383 error
= ext4_begin_ordered_truncate(inode
,
5386 /* Do as much error cleanup as possible */
5387 handle
= ext4_journal_start(inode
, 3);
5388 if (IS_ERR(handle
)) {
5389 ext4_orphan_del(NULL
, inode
);
5392 ext4_orphan_del(handle
, inode
);
5394 ext4_journal_stop(handle
);
5400 if (attr
->ia_valid
& ATTR_SIZE
) {
5401 if (attr
->ia_size
!= i_size_read(inode
)) {
5402 truncate_setsize(inode
, attr
->ia_size
);
5403 ext4_truncate(inode
);
5404 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
5405 ext4_truncate(inode
);
5409 setattr_copy(inode
, attr
);
5410 mark_inode_dirty(inode
);
5414 * If the call to ext4_truncate failed to get a transaction handle at
5415 * all, we need to clean up the in-core orphan list manually.
5417 if (orphan
&& inode
->i_nlink
)
5418 ext4_orphan_del(NULL
, inode
);
5420 if (!rc
&& (ia_valid
& ATTR_MODE
))
5421 rc
= ext4_acl_chmod(inode
);
5424 ext4_std_error(inode
->i_sb
, error
);
5430 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5433 struct inode
*inode
;
5434 unsigned long delalloc_blocks
;
5436 inode
= dentry
->d_inode
;
5437 generic_fillattr(inode
, stat
);
5440 * We can't update i_blocks if the block allocation is delayed
5441 * otherwise in the case of system crash before the real block
5442 * allocation is done, we will have i_blocks inconsistent with
5443 * on-disk file blocks.
5444 * We always keep i_blocks updated together with real
5445 * allocation. But to not confuse with user, stat
5446 * will return the blocks that include the delayed allocation
5447 * blocks for this file.
5449 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5451 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5455 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5460 /* if nrblocks are contiguous */
5463 * With N contiguous data blocks, we need at most
5464 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5465 * 2 dindirect blocks, and 1 tindirect block
5467 return DIV_ROUND_UP(nrblocks
,
5468 EXT4_ADDR_PER_BLOCK(inode
->i_sb
)) + 4;
5471 * if nrblocks are not contiguous, worse case, each block touch
5472 * a indirect block, and each indirect block touch a double indirect
5473 * block, plus a triple indirect block
5475 indirects
= nrblocks
* 2 + 1;
5479 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5481 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5482 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5483 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5487 * Account for index blocks, block groups bitmaps and block group
5488 * descriptor blocks if modify datablocks and index blocks
5489 * worse case, the indexs blocks spread over different block groups
5491 * If datablocks are discontiguous, they are possible to spread over
5492 * different block groups too. If they are contiuguous, with flexbg,
5493 * they could still across block group boundary.
5495 * Also account for superblock, inode, quota and xattr blocks
5497 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5499 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5505 * How many index blocks need to touch to modify nrblocks?
5506 * The "Chunk" flag indicating whether the nrblocks is
5507 * physically contiguous on disk
5509 * For Direct IO and fallocate, they calls get_block to allocate
5510 * one single extent at a time, so they could set the "Chunk" flag
5512 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5517 * Now let's see how many group bitmaps and group descriptors need
5527 if (groups
> ngroups
)
5529 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5530 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5532 /* bitmaps and block group descriptor blocks */
5533 ret
+= groups
+ gdpblocks
;
5535 /* Blocks for super block, inode, quota and xattr blocks */
5536 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5542 * Calculate the total number of credits to reserve to fit
5543 * the modification of a single pages into a single transaction,
5544 * which may include multiple chunks of block allocations.
5546 * This could be called via ext4_write_begin()
5548 * We need to consider the worse case, when
5549 * one new block per extent.
5551 int ext4_writepage_trans_blocks(struct inode
*inode
)
5553 int bpp
= ext4_journal_blocks_per_page(inode
);
5556 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5558 /* Account for data blocks for journalled mode */
5559 if (ext4_should_journal_data(inode
))
5565 * Calculate the journal credits for a chunk of data modification.
5567 * This is called from DIO, fallocate or whoever calling
5568 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5570 * journal buffers for data blocks are not included here, as DIO
5571 * and fallocate do no need to journal data buffers.
5573 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5575 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5579 * The caller must have previously called ext4_reserve_inode_write().
5580 * Give this, we know that the caller already has write access to iloc->bh.
5582 int ext4_mark_iloc_dirty(handle_t
*handle
,
5583 struct inode
*inode
, struct ext4_iloc
*iloc
)
5587 if (test_opt(inode
->i_sb
, I_VERSION
))
5588 inode_inc_iversion(inode
);
5590 /* the do_update_inode consumes one bh->b_count */
5593 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5594 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5600 * On success, We end up with an outstanding reference count against
5601 * iloc->bh. This _must_ be cleaned up later.
5605 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5606 struct ext4_iloc
*iloc
)
5610 err
= ext4_get_inode_loc(inode
, iloc
);
5612 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5613 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5619 ext4_std_error(inode
->i_sb
, err
);
5624 * Expand an inode by new_extra_isize bytes.
5625 * Returns 0 on success or negative error number on failure.
5627 static int ext4_expand_extra_isize(struct inode
*inode
,
5628 unsigned int new_extra_isize
,
5629 struct ext4_iloc iloc
,
5632 struct ext4_inode
*raw_inode
;
5633 struct ext4_xattr_ibody_header
*header
;
5635 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5638 raw_inode
= ext4_raw_inode(&iloc
);
5640 header
= IHDR(inode
, raw_inode
);
5642 /* No extended attributes present */
5643 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5644 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5645 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5647 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5651 /* try to expand with EAs present */
5652 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5657 * What we do here is to mark the in-core inode as clean with respect to inode
5658 * dirtiness (it may still be data-dirty).
5659 * This means that the in-core inode may be reaped by prune_icache
5660 * without having to perform any I/O. This is a very good thing,
5661 * because *any* task may call prune_icache - even ones which
5662 * have a transaction open against a different journal.
5664 * Is this cheating? Not really. Sure, we haven't written the
5665 * inode out, but prune_icache isn't a user-visible syncing function.
5666 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5667 * we start and wait on commits.
5669 * Is this efficient/effective? Well, we're being nice to the system
5670 * by cleaning up our inodes proactively so they can be reaped
5671 * without I/O. But we are potentially leaving up to five seconds'
5672 * worth of inodes floating about which prune_icache wants us to
5673 * write out. One way to fix that would be to get prune_icache()
5674 * to do a write_super() to free up some memory. It has the desired
5677 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5679 struct ext4_iloc iloc
;
5680 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5681 static unsigned int mnt_count
;
5685 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5686 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5687 if (ext4_handle_valid(handle
) &&
5688 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5689 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5691 * We need extra buffer credits since we may write into EA block
5692 * with this same handle. If journal_extend fails, then it will
5693 * only result in a minor loss of functionality for that inode.
5694 * If this is felt to be critical, then e2fsck should be run to
5695 * force a large enough s_min_extra_isize.
5697 if ((jbd2_journal_extend(handle
,
5698 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5699 ret
= ext4_expand_extra_isize(inode
,
5700 sbi
->s_want_extra_isize
,
5703 ext4_set_inode_state(inode
,
5704 EXT4_STATE_NO_EXPAND
);
5706 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5707 ext4_warning(inode
->i_sb
,
5708 "Unable to expand inode %lu. Delete"
5709 " some EAs or run e2fsck.",
5712 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5718 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5723 * ext4_dirty_inode() is called from __mark_inode_dirty()
5725 * We're really interested in the case where a file is being extended.
5726 * i_size has been changed by generic_commit_write() and we thus need
5727 * to include the updated inode in the current transaction.
5729 * Also, dquot_alloc_block() will always dirty the inode when blocks
5730 * are allocated to the file.
5732 * If the inode is marked synchronous, we don't honour that here - doing
5733 * so would cause a commit on atime updates, which we don't bother doing.
5734 * We handle synchronous inodes at the highest possible level.
5736 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5740 handle
= ext4_journal_start(inode
, 2);
5744 ext4_mark_inode_dirty(handle
, inode
);
5746 ext4_journal_stop(handle
);
5753 * Bind an inode's backing buffer_head into this transaction, to prevent
5754 * it from being flushed to disk early. Unlike
5755 * ext4_reserve_inode_write, this leaves behind no bh reference and
5756 * returns no iloc structure, so the caller needs to repeat the iloc
5757 * lookup to mark the inode dirty later.
5759 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5761 struct ext4_iloc iloc
;
5765 err
= ext4_get_inode_loc(inode
, &iloc
);
5767 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5768 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5770 err
= ext4_handle_dirty_metadata(handle
,
5776 ext4_std_error(inode
->i_sb
, err
);
5781 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5788 * We have to be very careful here: changing a data block's
5789 * journaling status dynamically is dangerous. If we write a
5790 * data block to the journal, change the status and then delete
5791 * that block, we risk forgetting to revoke the old log record
5792 * from the journal and so a subsequent replay can corrupt data.
5793 * So, first we make sure that the journal is empty and that
5794 * nobody is changing anything.
5797 journal
= EXT4_JOURNAL(inode
);
5800 if (is_journal_aborted(journal
))
5803 jbd2_journal_lock_updates(journal
);
5804 jbd2_journal_flush(journal
);
5807 * OK, there are no updates running now, and all cached data is
5808 * synced to disk. We are now in a completely consistent state
5809 * which doesn't have anything in the journal, and we know that
5810 * no filesystem updates are running, so it is safe to modify
5811 * the inode's in-core data-journaling state flag now.
5815 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5817 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5818 ext4_set_aops(inode
);
5820 jbd2_journal_unlock_updates(journal
);
5822 /* Finally we can mark the inode as dirty. */
5824 handle
= ext4_journal_start(inode
, 1);
5826 return PTR_ERR(handle
);
5828 err
= ext4_mark_inode_dirty(handle
, inode
);
5829 ext4_handle_sync(handle
);
5830 ext4_journal_stop(handle
);
5831 ext4_std_error(inode
->i_sb
, err
);
5836 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5838 return !buffer_mapped(bh
);
5841 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5843 struct page
*page
= vmf
->page
;
5848 struct file
*file
= vma
->vm_file
;
5849 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5850 struct address_space
*mapping
= inode
->i_mapping
;
5853 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5854 * get i_mutex because we are already holding mmap_sem.
5856 down_read(&inode
->i_alloc_sem
);
5857 size
= i_size_read(inode
);
5858 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5859 || !PageUptodate(page
)) {
5860 /* page got truncated from under us? */
5866 wait_on_page_writeback(page
);
5867 if (PageMappedToDisk(page
)) {
5868 up_read(&inode
->i_alloc_sem
);
5869 return VM_FAULT_LOCKED
;
5872 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5873 len
= size
& ~PAGE_CACHE_MASK
;
5875 len
= PAGE_CACHE_SIZE
;
5878 * return if we have all the buffers mapped. This avoid
5879 * the need to call write_begin/write_end which does a
5880 * journal_start/journal_stop which can block and take
5883 if (page_has_buffers(page
)) {
5884 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5885 ext4_bh_unmapped
)) {
5886 up_read(&inode
->i_alloc_sem
);
5887 return VM_FAULT_LOCKED
;
5892 * OK, we need to fill the hole... Do write_begin write_end
5893 * to do block allocation/reservation.We are not holding
5894 * inode.i__mutex here. That allow * parallel write_begin,
5895 * write_end call. lock_page prevent this from happening
5896 * on the same page though
5898 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5899 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5902 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5903 len
, len
, page
, fsdata
);
5909 * write_begin/end might have created a dirty page and someone
5910 * could wander in and start the IO. Make sure that hasn't
5914 wait_on_page_writeback(page
);
5915 up_read(&inode
->i_alloc_sem
);
5916 return VM_FAULT_LOCKED
;
5919 ret
= VM_FAULT_SIGBUS
;
5920 up_read(&inode
->i_alloc_sem
);