ACPI: Battery: Add sysfs support
[linux-2.6/kvm.git] / drivers / ata / libata-core.c
blob772be09b468966277c7d1a41960d52b758cd7480
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 int libata_fua = 0;
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @pmp: Port multiplier port
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
121 * LOCKING:
122 * Inherited from caller.
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
162 * LOCKING:
163 * Inherited from caller.
166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
184 static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
207 ATA_CMD_WRITE_EXT,
211 ATA_CMD_WRITE_FUA_EXT
215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
219 * Examine the device configuration and tf->flags to calculate
220 * the proper read/write commands and protocol to use.
222 * LOCKING:
223 * caller.
225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
227 u8 cmd;
229 int index, fua, lba48, write;
231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
237 index = dev->multi_count ? 0 : 8;
238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
241 index = dev->multi_count ? 0 : 8;
242 } else {
243 tf->protocol = ATA_PROT_DMA;
244 index = 16;
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
252 return -1;
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
260 * LOCKING:
261 * None.
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
267 * RETURNS:
268 * Block address read from @tf.
270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
272 u64 block = 0;
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
295 return block;
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
307 * LOCKING:
308 * None.
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
313 * RETURNS:
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
365 tf->hob_nsect = (n_block >> 8) & 0xff;
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
377 tf->nsect = n_block & 0xff;
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
418 return 0;
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
430 * LOCKING:
431 * None.
433 * RETURNS:
434 * Packed xfer_mask.
436 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
455 static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
468 static const struct ata_xfer_ent {
469 int shift, bits;
470 u8 base;
471 } ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
485 * LOCKING:
486 * None.
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
506 * Return matching xfer_mask for @xfer_mode.
508 * LOCKING:
509 * None.
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
516 const struct ata_xfer_ent *ent;
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
528 * Return matching xfer_shift for @xfer_mode.
530 * LOCKING:
531 * None.
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
536 static int ata_xfer_mode2shift(unsigned int xfer_mode)
538 const struct ata_xfer_ent *ent;
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
550 * Determine string which represents the highest speed
551 * (highest bit in @modemask).
553 * LOCKING:
554 * None.
556 * RETURNS:
557 * Constant C string representing highest speed listed in
558 * @mode_mask, or the constant C string "<n/a>".
560 static const char *ata_mode_string(unsigned int xfer_mask)
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
568 "PIO5",
569 "PIO6",
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
573 "MWDMA3",
574 "MWDMA4",
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
584 int highbit;
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
589 return "<n/a>";
592 static const char *sata_spd_string(unsigned int spd)
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
604 void ata_dev_disable(struct ata_device *dev)
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
611 dev->class++;
616 * ata_devchk - PATA device presence detection
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
629 * LOCKING:
630 * caller.
633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
638 ap->ops->dev_select(ap, device);
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
655 return 0; /* nothing found */
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
666 * LOCKING:
667 * None.
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
674 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
701 * @r_err: Value of error register on completion
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
712 * LOCKING:
713 * caller.
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
719 unsigned int
720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
726 ap->ops->dev_select(ap, device);
728 memset(&tf, 0, sizeof(tf));
730 ap->ops->tf_read(ap, &tf);
731 err = tf.feature;
732 if (r_err)
733 *r_err = err;
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
744 return ATA_DEV_NONE;
746 /* determine if device is ATA or ATAPI */
747 class = ata_dev_classify(&tf);
749 if (class == ATA_DEV_UNKNOWN)
750 return ATA_DEV_NONE;
751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
752 return ATA_DEV_NONE;
753 return class;
757 * ata_id_string - Convert IDENTIFY DEVICE page into string
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
767 * LOCKING:
768 * caller.
771 void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
774 unsigned int c;
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
785 ofs++;
786 len -= 2;
791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
797 * This function is identical to ata_id_string except that it
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
801 * LOCKING:
802 * caller.
804 void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
807 unsigned char *p;
809 WARN_ON(!(len & 1));
811 ata_id_string(id, s, ofs, len - 1);
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
821 u64 sectors = 0;
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
830 return ++sectors;
833 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
835 u64 sectors = 0;
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
842 return ++sectors;
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
853 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
855 unsigned int err;
856 struct ata_taskfile tf;
858 ata_tf_init(dev, &tf);
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
869 return ata_tf_to_lba48(&tf);
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
880 static u64 ata_read_native_max_address(struct ata_device *dev)
882 unsigned int err;
883 struct ata_taskfile tf;
885 ata_tf_init(dev, &tf);
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
896 return ata_tf_to_lba(&tf);
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
902 * @new_sectors: new max sectors value to set for the device
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
910 unsigned int err;
911 struct ata_taskfile tf;
913 new_sectors--;
915 ata_tf_init(dev, &tf);
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
934 return ata_tf_to_lba48(&tf);
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
940 * @new_sectors: new max sectors value to set for the device
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
948 unsigned int err;
949 struct ata_taskfile tf;
951 new_sectors--;
953 ata_tf_init(dev, &tf);
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
968 return ata_tf_to_lba(&tf);
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
980 static u64 ata_hpa_resize(struct ata_device *dev)
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
995 (long long)sectors, (long long)hpa_sectors);
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1004 if (hpa_sectors) {
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1008 return hpa_sectors;
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1016 return sectors;
1019 static u64 ata_id_n_sectors(const u16 *id)
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
1037 * @unknown: mode to assume if we cannot tell
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1051 unsigned int mask;
1052 u8 mode;
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1081 * This function performs no actual function.
1083 * May be used as the dev_select() entry in ata_port_operations.
1085 * LOCKING:
1086 * caller.
1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
1100 * ATA channel. Works with both PIO and MMIO.
1102 * May be used as the dev_select() entry in ata_port_operations.
1104 * LOCKING:
1105 * caller.
1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1110 u8 tmp;
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1117 iowrite8(tmp, ap->ioaddr.device_addr);
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1136 * LOCKING:
1137 * caller.
1140 void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1143 if (ata_msg_probe(ap))
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1147 if (wait)
1148 ata_wait_idle(ap);
1150 ap->ops->dev_select(ap, device);
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
1161 * @id: IDENTIFY DEVICE page to dump
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1166 * LOCKING:
1167 * caller.
1170 static inline void ata_dump_id(const u16 *id)
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
1194 id[88],
1195 id[93]);
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1205 * FIXME: pre IDE drive timing (do we care ?).
1207 * LOCKING:
1208 * None.
1210 * RETURNS:
1211 * Computed xfermask
1213 static unsigned int ata_id_xfermask(const u16 *id)
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1243 if (ata_id_is_cfa(id)) {
1245 * Process compact flash extended modes
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
1270 * @fn: workqueue function to be scheduled
1271 * @data: data for @fn to use
1272 * @delay: delay time for workqueue function
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1283 * LOCKING:
1284 * Inherited from caller.
1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1287 unsigned long delay)
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1306 void ata_port_flush_task(struct ata_port *ap)
1308 DPRINTK("ENTER\n");
1310 cancel_rearming_delayed_work(&ap->port_task);
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1318 struct completion *waiting = qc->private_data;
1320 complete(waiting);
1324 * ata_exec_internal_sg - execute libata internal command
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
1327 * @cdb: CDB for packet command
1328 * @dma_dir: Data tranfer direction of the command
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
1344 unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
1349 struct ata_port *ap = dev->ap;
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
1352 unsigned int tag, preempted_tag;
1353 u32 preempted_sactive, preempted_qc_active;
1354 DECLARE_COMPLETION_ONSTACK(wait);
1355 unsigned long flags;
1356 unsigned int err_mask;
1357 int rc;
1359 spin_lock_irqsave(ap->lock, flags);
1361 /* no internal command while frozen */
1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
1363 spin_unlock_irqrestore(ap->lock, flags);
1364 return AC_ERR_SYSTEM;
1367 /* initialize internal qc */
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1379 if (test_and_set_bit(tag, &ap->qc_allocated))
1380 BUG();
1381 qc = __ata_qc_from_tag(ap, tag);
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1389 preempted_tag = ap->active_tag;
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
1392 ap->active_tag = ATA_TAG_POISON;
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
1396 /* prepare & issue qc */
1397 qc->tf = *tf;
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
1403 unsigned int i, buflen = 0;
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1408 ata_sg_init(qc, sg, n_elem);
1409 qc->nbytes = buflen;
1412 qc->private_data = &wait;
1413 qc->complete_fn = ata_qc_complete_internal;
1415 ata_qc_issue(qc);
1417 spin_unlock_irqrestore(ap->lock, flags);
1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1421 ata_port_flush_task(ap);
1423 if (!rc) {
1424 spin_lock_irqsave(ap->lock, flags);
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
1441 "qc timeout (cmd 0x%x)\n", command);
1444 spin_unlock_irqrestore(ap->lock, flags);
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
1463 /* finish up */
1464 spin_lock_irqsave(ap->lock, flags);
1466 *tf = qc->result_tf;
1467 err_mask = qc->err_mask;
1469 ata_qc_free(qc);
1470 ap->active_tag = preempted_tag;
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1483 * Kill the following code as soon as those drivers are fixed.
1485 if (ap->flags & ATA_FLAG_DISABLED) {
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1490 spin_unlock_irqrestore(ap->lock, flags);
1492 return err_mask;
1496 * ata_exec_internal - execute libata internal command
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1513 unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1544 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1546 struct ata_taskfile tf;
1548 ata_tf_init(dev, &tf);
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1565 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1570 return 0;
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1576 return 1;
1577 return 0;
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1588 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1601 return 3 << ATA_SHIFT_PIO;
1605 * ata_dev_read_id - Read ID data from the specified device
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
1608 * @flags: ATA_READID_* flags
1609 * @id: buffer to read IDENTIFY data into
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1616 * LOCKING:
1617 * Kernel thread context (may sleep)
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1622 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1623 unsigned int flags, u16 *id)
1625 struct ata_port *ap = dev->ap;
1626 unsigned int class = *p_class;
1627 struct ata_taskfile tf;
1628 unsigned int err_mask = 0;
1629 const char *reason;
1630 int may_fallback = 1, tried_spinup = 0;
1631 int rc;
1633 if (ata_msg_ctl(ap))
1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1637 retry:
1638 ata_tf_init(dev, &tf);
1640 switch (class) {
1641 case ATA_DEV_ATA:
1642 tf.command = ATA_CMD_ID_ATA;
1643 break;
1644 case ATA_DEV_ATAPI:
1645 tf.command = ATA_CMD_ID_ATAPI;
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1653 tf.protocol = ATA_PROT_PIO;
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1663 tf.flags |= ATA_TFLAG_POLLING;
1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1666 id, sizeof(id[0]) * ATA_ID_WORDS);
1667 if (err_mask) {
1668 if (err_mask & AC_ERR_NODEV_HINT) {
1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1670 ap->print_id, dev->devno);
1671 return -ENOENT;
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1689 rc = -EIO;
1690 reason = "I/O error";
1691 goto err_out;
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1697 may_fallback = 0;
1699 swap_buf_le16(id, ATA_ID_WORDS);
1701 /* sanity check */
1702 rc = -EINVAL;
1703 reason = "device reports invalid type";
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 if (err_mask && id[2] != 0x738c) {
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1735 if (id[2] == 0x37c8)
1736 goto retry;
1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1759 flags &= ~ATA_READID_POSTRESET;
1760 goto retry;
1764 *p_class = class;
1766 return 0;
1768 err_out:
1769 if (ata_msg_warn(ap))
1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
1772 return rc;
1775 static inline u8 ata_dev_knobble(struct ata_device *dev)
1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1780 static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1794 if (ap->flags & ATA_FLAG_NCQ) {
1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1796 dev->flags |= ATA_DFLAG_NCQ;
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
1807 * @dev: Target device to configure
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
1812 * LOCKING:
1813 * Kernel thread context (may sleep)
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
1818 int ata_dev_configure(struct ata_device *dev)
1820 struct ata_port *ap = dev->ap;
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1823 const u16 *id = dev->id;
1824 unsigned int xfer_mask;
1825 char revbuf[7]; /* XYZ-99\0 */
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
1828 int rc;
1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
1833 return 0;
1836 if (ata_msg_probe(ap))
1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
1847 /* print device capabilities */
1848 if (ata_msg_probe(ap))
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1852 __FUNCTION__,
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
1856 /* initialize to-be-configured parameters */
1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1866 * common ATA, ATAPI feature tests
1869 /* find max transfer mode; for printk only */
1870 xfer_mask = ata_id_xfermask(id);
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
1889 snprintf(revbuf, 7, "CFA");
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1894 dev->n_sectors = ata_id_n_sectors(id);
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1899 if (ata_id_has_lba(id)) {
1900 const char *lba_desc;
1901 char ncq_desc[20];
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1905 if (ata_id_has_lba48(id)) {
1906 dev->flags |= ATA_DFLAG_LBA48;
1907 lba_desc = "LBA48";
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1914 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1915 ata_id_hpa_enabled(dev->id))
1916 dev->n_sectors = ata_hpa_resize(dev);
1918 /* config NCQ */
1919 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1921 /* print device info to dmesg */
1922 if (ata_msg_drv(ap) && print_info) {
1923 ata_dev_printk(dev, KERN_INFO,
1924 "%s: %s, %s, max %s\n",
1925 revbuf, modelbuf, fwrevbuf,
1926 ata_mode_string(xfer_mask));
1927 ata_dev_printk(dev, KERN_INFO,
1928 "%Lu sectors, multi %u: %s %s\n",
1929 (unsigned long long)dev->n_sectors,
1930 dev->multi_count, lba_desc, ncq_desc);
1932 } else {
1933 /* CHS */
1935 /* Default translation */
1936 dev->cylinders = id[1];
1937 dev->heads = id[3];
1938 dev->sectors = id[6];
1940 if (ata_id_current_chs_valid(id)) {
1941 /* Current CHS translation is valid. */
1942 dev->cylinders = id[54];
1943 dev->heads = id[55];
1944 dev->sectors = id[56];
1947 /* print device info to dmesg */
1948 if (ata_msg_drv(ap) && print_info) {
1949 ata_dev_printk(dev, KERN_INFO,
1950 "%s: %s, %s, max %s\n",
1951 revbuf, modelbuf, fwrevbuf,
1952 ata_mode_string(xfer_mask));
1953 ata_dev_printk(dev, KERN_INFO,
1954 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1955 (unsigned long long)dev->n_sectors,
1956 dev->multi_count, dev->cylinders,
1957 dev->heads, dev->sectors);
1961 dev->cdb_len = 16;
1964 /* ATAPI-specific feature tests */
1965 else if (dev->class == ATA_DEV_ATAPI) {
1966 char *cdb_intr_string = "";
1968 rc = atapi_cdb_len(id);
1969 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1970 if (ata_msg_warn(ap))
1971 ata_dev_printk(dev, KERN_WARNING,
1972 "unsupported CDB len\n");
1973 rc = -EINVAL;
1974 goto err_out_nosup;
1976 dev->cdb_len = (unsigned int) rc;
1978 if (ata_id_cdb_intr(dev->id)) {
1979 dev->flags |= ATA_DFLAG_CDB_INTR;
1980 cdb_intr_string = ", CDB intr";
1983 /* print device info to dmesg */
1984 if (ata_msg_drv(ap) && print_info)
1985 ata_dev_printk(dev, KERN_INFO,
1986 "ATAPI: %s, %s, max %s%s\n",
1987 modelbuf, fwrevbuf,
1988 ata_mode_string(xfer_mask),
1989 cdb_intr_string);
1992 /* determine max_sectors */
1993 dev->max_sectors = ATA_MAX_SECTORS;
1994 if (dev->flags & ATA_DFLAG_LBA48)
1995 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1997 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1998 /* Let the user know. We don't want to disallow opens for
1999 rescue purposes, or in case the vendor is just a blithering
2000 idiot */
2001 if (print_info) {
2002 ata_dev_printk(dev, KERN_WARNING,
2003 "Drive reports diagnostics failure. This may indicate a drive\n");
2004 ata_dev_printk(dev, KERN_WARNING,
2005 "fault or invalid emulation. Contact drive vendor for information.\n");
2009 /* limit bridge transfers to udma5, 200 sectors */
2010 if (ata_dev_knobble(dev)) {
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO,
2013 "applying bridge limits\n");
2014 dev->udma_mask &= ATA_UDMA5;
2015 dev->max_sectors = ATA_MAX_SECTORS;
2018 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2019 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2020 dev->max_sectors);
2022 if (ap->ops->dev_config)
2023 ap->ops->dev_config(dev);
2025 if (ata_msg_probe(ap))
2026 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2027 __FUNCTION__, ata_chk_status(ap));
2028 return 0;
2030 err_out_nosup:
2031 if (ata_msg_probe(ap))
2032 ata_dev_printk(dev, KERN_DEBUG,
2033 "%s: EXIT, err\n", __FUNCTION__);
2034 return rc;
2038 * ata_cable_40wire - return 40 wire cable type
2039 * @ap: port
2041 * Helper method for drivers which want to hardwire 40 wire cable
2042 * detection.
2045 int ata_cable_40wire(struct ata_port *ap)
2047 return ATA_CBL_PATA40;
2051 * ata_cable_80wire - return 80 wire cable type
2052 * @ap: port
2054 * Helper method for drivers which want to hardwire 80 wire cable
2055 * detection.
2058 int ata_cable_80wire(struct ata_port *ap)
2060 return ATA_CBL_PATA80;
2064 * ata_cable_unknown - return unknown PATA cable.
2065 * @ap: port
2067 * Helper method for drivers which have no PATA cable detection.
2070 int ata_cable_unknown(struct ata_port *ap)
2072 return ATA_CBL_PATA_UNK;
2076 * ata_cable_sata - return SATA cable type
2077 * @ap: port
2079 * Helper method for drivers which have SATA cables
2082 int ata_cable_sata(struct ata_port *ap)
2084 return ATA_CBL_SATA;
2088 * ata_bus_probe - Reset and probe ATA bus
2089 * @ap: Bus to probe
2091 * Master ATA bus probing function. Initiates a hardware-dependent
2092 * bus reset, then attempts to identify any devices found on
2093 * the bus.
2095 * LOCKING:
2096 * PCI/etc. bus probe sem.
2098 * RETURNS:
2099 * Zero on success, negative errno otherwise.
2102 int ata_bus_probe(struct ata_port *ap)
2104 unsigned int classes[ATA_MAX_DEVICES];
2105 int tries[ATA_MAX_DEVICES];
2106 int i, rc;
2107 struct ata_device *dev;
2109 ata_port_probe(ap);
2111 for (i = 0; i < ATA_MAX_DEVICES; i++)
2112 tries[i] = ATA_PROBE_MAX_TRIES;
2114 retry:
2115 /* reset and determine device classes */
2116 ap->ops->phy_reset(ap);
2118 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2119 dev = &ap->device[i];
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2124 else
2125 classes[dev->devno] = ATA_DEV_NONE;
2127 dev->class = ATA_DEV_UNKNOWN;
2130 ata_port_probe(ap);
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2135 for (i = 0; i < ATA_MAX_DEVICES; i++)
2136 ap->device[i].pio_mode = XFER_PIO_0;
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2140 the slave device */
2142 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2143 dev = &ap->device[i];
2145 if (tries[i])
2146 dev->class = classes[i];
2148 if (!ata_dev_enabled(dev))
2149 continue;
2151 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2152 dev->id);
2153 if (rc)
2154 goto fail;
2157 /* Now ask for the cable type as PDIAG- should have been released */
2158 if (ap->ops->cable_detect)
2159 ap->cbl = ap->ops->cable_detect(ap);
2161 /* After the identify sequence we can now set up the devices. We do
2162 this in the normal order so that the user doesn't get confused */
2164 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2165 dev = &ap->device[i];
2166 if (!ata_dev_enabled(dev))
2167 continue;
2169 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2170 rc = ata_dev_configure(dev);
2171 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2172 if (rc)
2173 goto fail;
2176 /* configure transfer mode */
2177 rc = ata_set_mode(ap, &dev);
2178 if (rc)
2179 goto fail;
2181 for (i = 0; i < ATA_MAX_DEVICES; i++)
2182 if (ata_dev_enabled(&ap->device[i]))
2183 return 0;
2185 /* no device present, disable port */
2186 ata_port_disable(ap);
2187 ap->ops->port_disable(ap);
2188 return -ENODEV;
2190 fail:
2191 tries[dev->devno]--;
2193 switch (rc) {
2194 case -EINVAL:
2195 /* eeek, something went very wrong, give up */
2196 tries[dev->devno] = 0;
2197 break;
2199 case -ENODEV:
2200 /* give it just one more chance */
2201 tries[dev->devno] = min(tries[dev->devno], 1);
2202 case -EIO:
2203 if (tries[dev->devno] == 1) {
2204 /* This is the last chance, better to slow
2205 * down than lose it.
2207 sata_down_spd_limit(ap);
2208 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2212 if (!tries[dev->devno])
2213 ata_dev_disable(dev);
2215 goto retry;
2219 * ata_port_probe - Mark port as enabled
2220 * @ap: Port for which we indicate enablement
2222 * Modify @ap data structure such that the system
2223 * thinks that the entire port is enabled.
2225 * LOCKING: host lock, or some other form of
2226 * serialization.
2229 void ata_port_probe(struct ata_port *ap)
2231 ap->flags &= ~ATA_FLAG_DISABLED;
2235 * sata_print_link_status - Print SATA link status
2236 * @ap: SATA port to printk link status about
2238 * This function prints link speed and status of a SATA link.
2240 * LOCKING:
2241 * None.
2243 void sata_print_link_status(struct ata_port *ap)
2245 u32 sstatus, scontrol, tmp;
2247 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2248 return;
2249 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2251 if (ata_port_online(ap)) {
2252 tmp = (sstatus >> 4) & 0xf;
2253 ata_port_printk(ap, KERN_INFO,
2254 "SATA link up %s (SStatus %X SControl %X)\n",
2255 sata_spd_string(tmp), sstatus, scontrol);
2256 } else {
2257 ata_port_printk(ap, KERN_INFO,
2258 "SATA link down (SStatus %X SControl %X)\n",
2259 sstatus, scontrol);
2264 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2265 * @ap: SATA port associated with target SATA PHY.
2267 * This function issues commands to standard SATA Sxxx
2268 * PHY registers, to wake up the phy (and device), and
2269 * clear any reset condition.
2271 * LOCKING:
2272 * PCI/etc. bus probe sem.
2275 void __sata_phy_reset(struct ata_port *ap)
2277 u32 sstatus;
2278 unsigned long timeout = jiffies + (HZ * 5);
2280 if (ap->flags & ATA_FLAG_SATA_RESET) {
2281 /* issue phy wake/reset */
2282 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2283 /* Couldn't find anything in SATA I/II specs, but
2284 * AHCI-1.1 10.4.2 says at least 1 ms. */
2285 mdelay(1);
2287 /* phy wake/clear reset */
2288 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2290 /* wait for phy to become ready, if necessary */
2291 do {
2292 msleep(200);
2293 sata_scr_read(ap, SCR_STATUS, &sstatus);
2294 if ((sstatus & 0xf) != 1)
2295 break;
2296 } while (time_before(jiffies, timeout));
2298 /* print link status */
2299 sata_print_link_status(ap);
2301 /* TODO: phy layer with polling, timeouts, etc. */
2302 if (!ata_port_offline(ap))
2303 ata_port_probe(ap);
2304 else
2305 ata_port_disable(ap);
2307 if (ap->flags & ATA_FLAG_DISABLED)
2308 return;
2310 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2311 ata_port_disable(ap);
2312 return;
2315 ap->cbl = ATA_CBL_SATA;
2319 * sata_phy_reset - Reset SATA bus.
2320 * @ap: SATA port associated with target SATA PHY.
2322 * This function resets the SATA bus, and then probes
2323 * the bus for devices.
2325 * LOCKING:
2326 * PCI/etc. bus probe sem.
2329 void sata_phy_reset(struct ata_port *ap)
2331 __sata_phy_reset(ap);
2332 if (ap->flags & ATA_FLAG_DISABLED)
2333 return;
2334 ata_bus_reset(ap);
2338 * ata_dev_pair - return other device on cable
2339 * @adev: device
2341 * Obtain the other device on the same cable, or if none is
2342 * present NULL is returned
2345 struct ata_device *ata_dev_pair(struct ata_device *adev)
2347 struct ata_port *ap = adev->ap;
2348 struct ata_device *pair = &ap->device[1 - adev->devno];
2349 if (!ata_dev_enabled(pair))
2350 return NULL;
2351 return pair;
2355 * ata_port_disable - Disable port.
2356 * @ap: Port to be disabled.
2358 * Modify @ap data structure such that the system
2359 * thinks that the entire port is disabled, and should
2360 * never attempt to probe or communicate with devices
2361 * on this port.
2363 * LOCKING: host lock, or some other form of
2364 * serialization.
2367 void ata_port_disable(struct ata_port *ap)
2369 ap->device[0].class = ATA_DEV_NONE;
2370 ap->device[1].class = ATA_DEV_NONE;
2371 ap->flags |= ATA_FLAG_DISABLED;
2375 * sata_down_spd_limit - adjust SATA spd limit downward
2376 * @ap: Port to adjust SATA spd limit for
2378 * Adjust SATA spd limit of @ap downward. Note that this
2379 * function only adjusts the limit. The change must be applied
2380 * using sata_set_spd().
2382 * LOCKING:
2383 * Inherited from caller.
2385 * RETURNS:
2386 * 0 on success, negative errno on failure
2388 int sata_down_spd_limit(struct ata_port *ap)
2390 u32 sstatus, spd, mask;
2391 int rc, highbit;
2393 if (!sata_scr_valid(ap))
2394 return -EOPNOTSUPP;
2396 /* If SCR can be read, use it to determine the current SPD.
2397 * If not, use cached value in ap->sata_spd.
2399 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2400 if (rc == 0)
2401 spd = (sstatus >> 4) & 0xf;
2402 else
2403 spd = ap->sata_spd;
2405 mask = ap->sata_spd_limit;
2406 if (mask <= 1)
2407 return -EINVAL;
2409 /* unconditionally mask off the highest bit */
2410 highbit = fls(mask) - 1;
2411 mask &= ~(1 << highbit);
2413 /* Mask off all speeds higher than or equal to the current
2414 * one. Force 1.5Gbps if current SPD is not available.
2416 if (spd > 1)
2417 mask &= (1 << (spd - 1)) - 1;
2418 else
2419 mask &= 1;
2421 /* were we already at the bottom? */
2422 if (!mask)
2423 return -EINVAL;
2425 ap->sata_spd_limit = mask;
2427 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2428 sata_spd_string(fls(mask)));
2430 return 0;
2433 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2435 u32 spd, limit;
2437 if (ap->sata_spd_limit == UINT_MAX)
2438 limit = 0;
2439 else
2440 limit = fls(ap->sata_spd_limit);
2442 spd = (*scontrol >> 4) & 0xf;
2443 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2445 return spd != limit;
2449 * sata_set_spd_needed - is SATA spd configuration needed
2450 * @ap: Port in question
2452 * Test whether the spd limit in SControl matches
2453 * @ap->sata_spd_limit. This function is used to determine
2454 * whether hardreset is necessary to apply SATA spd
2455 * configuration.
2457 * LOCKING:
2458 * Inherited from caller.
2460 * RETURNS:
2461 * 1 if SATA spd configuration is needed, 0 otherwise.
2463 int sata_set_spd_needed(struct ata_port *ap)
2465 u32 scontrol;
2467 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2468 return 0;
2470 return __sata_set_spd_needed(ap, &scontrol);
2474 * sata_set_spd - set SATA spd according to spd limit
2475 * @ap: Port to set SATA spd for
2477 * Set SATA spd of @ap according to sata_spd_limit.
2479 * LOCKING:
2480 * Inherited from caller.
2482 * RETURNS:
2483 * 0 if spd doesn't need to be changed, 1 if spd has been
2484 * changed. Negative errno if SCR registers are inaccessible.
2486 int sata_set_spd(struct ata_port *ap)
2488 u32 scontrol;
2489 int rc;
2491 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2492 return rc;
2494 if (!__sata_set_spd_needed(ap, &scontrol))
2495 return 0;
2497 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2498 return rc;
2500 return 1;
2504 * This mode timing computation functionality is ported over from
2505 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2508 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2509 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2510 * for UDMA6, which is currently supported only by Maxtor drives.
2512 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2515 static const struct ata_timing ata_timing[] = {
2517 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2518 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2519 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2520 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2522 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2523 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2524 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2525 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2526 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2528 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2530 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2531 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2532 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2534 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2535 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2536 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2538 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2539 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2540 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2541 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2543 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2544 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2545 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2547 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2549 { 0xFF }
2552 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2553 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2555 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2557 q->setup = EZ(t->setup * 1000, T);
2558 q->act8b = EZ(t->act8b * 1000, T);
2559 q->rec8b = EZ(t->rec8b * 1000, T);
2560 q->cyc8b = EZ(t->cyc8b * 1000, T);
2561 q->active = EZ(t->active * 1000, T);
2562 q->recover = EZ(t->recover * 1000, T);
2563 q->cycle = EZ(t->cycle * 1000, T);
2564 q->udma = EZ(t->udma * 1000, UT);
2567 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2568 struct ata_timing *m, unsigned int what)
2570 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2571 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2572 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2573 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2574 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2575 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2576 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2577 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2580 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2582 const struct ata_timing *t;
2584 for (t = ata_timing; t->mode != speed; t++)
2585 if (t->mode == 0xFF)
2586 return NULL;
2587 return t;
2590 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2591 struct ata_timing *t, int T, int UT)
2593 const struct ata_timing *s;
2594 struct ata_timing p;
2597 * Find the mode.
2600 if (!(s = ata_timing_find_mode(speed)))
2601 return -EINVAL;
2603 memcpy(t, s, sizeof(*s));
2606 * If the drive is an EIDE drive, it can tell us it needs extended
2607 * PIO/MW_DMA cycle timing.
2610 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2611 memset(&p, 0, sizeof(p));
2612 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2613 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2614 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2615 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2616 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2618 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2622 * Convert the timing to bus clock counts.
2625 ata_timing_quantize(t, t, T, UT);
2628 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2629 * S.M.A.R.T * and some other commands. We have to ensure that the
2630 * DMA cycle timing is slower/equal than the fastest PIO timing.
2633 if (speed > XFER_PIO_6) {
2634 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2635 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2639 * Lengthen active & recovery time so that cycle time is correct.
2642 if (t->act8b + t->rec8b < t->cyc8b) {
2643 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2644 t->rec8b = t->cyc8b - t->act8b;
2647 if (t->active + t->recover < t->cycle) {
2648 t->active += (t->cycle - (t->active + t->recover)) / 2;
2649 t->recover = t->cycle - t->active;
2652 /* In a few cases quantisation may produce enough errors to
2653 leave t->cycle too low for the sum of active and recovery
2654 if so we must correct this */
2655 if (t->active + t->recover > t->cycle)
2656 t->cycle = t->active + t->recover;
2658 return 0;
2662 * ata_down_xfermask_limit - adjust dev xfer masks downward
2663 * @dev: Device to adjust xfer masks
2664 * @sel: ATA_DNXFER_* selector
2666 * Adjust xfer masks of @dev downward. Note that this function
2667 * does not apply the change. Invoking ata_set_mode() afterwards
2668 * will apply the limit.
2670 * LOCKING:
2671 * Inherited from caller.
2673 * RETURNS:
2674 * 0 on success, negative errno on failure
2676 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2678 char buf[32];
2679 unsigned int orig_mask, xfer_mask;
2680 unsigned int pio_mask, mwdma_mask, udma_mask;
2681 int quiet, highbit;
2683 quiet = !!(sel & ATA_DNXFER_QUIET);
2684 sel &= ~ATA_DNXFER_QUIET;
2686 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2687 dev->mwdma_mask,
2688 dev->udma_mask);
2689 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2691 switch (sel) {
2692 case ATA_DNXFER_PIO:
2693 highbit = fls(pio_mask) - 1;
2694 pio_mask &= ~(1 << highbit);
2695 break;
2697 case ATA_DNXFER_DMA:
2698 if (udma_mask) {
2699 highbit = fls(udma_mask) - 1;
2700 udma_mask &= ~(1 << highbit);
2701 if (!udma_mask)
2702 return -ENOENT;
2703 } else if (mwdma_mask) {
2704 highbit = fls(mwdma_mask) - 1;
2705 mwdma_mask &= ~(1 << highbit);
2706 if (!mwdma_mask)
2707 return -ENOENT;
2709 break;
2711 case ATA_DNXFER_40C:
2712 udma_mask &= ATA_UDMA_MASK_40C;
2713 break;
2715 case ATA_DNXFER_FORCE_PIO0:
2716 pio_mask &= 1;
2717 case ATA_DNXFER_FORCE_PIO:
2718 mwdma_mask = 0;
2719 udma_mask = 0;
2720 break;
2722 default:
2723 BUG();
2726 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2728 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2729 return -ENOENT;
2731 if (!quiet) {
2732 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2733 snprintf(buf, sizeof(buf), "%s:%s",
2734 ata_mode_string(xfer_mask),
2735 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2736 else
2737 snprintf(buf, sizeof(buf), "%s",
2738 ata_mode_string(xfer_mask));
2740 ata_dev_printk(dev, KERN_WARNING,
2741 "limiting speed to %s\n", buf);
2744 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2745 &dev->udma_mask);
2747 return 0;
2750 static int ata_dev_set_mode(struct ata_device *dev)
2752 struct ata_eh_context *ehc = &dev->ap->eh_context;
2753 unsigned int err_mask;
2754 int rc;
2756 dev->flags &= ~ATA_DFLAG_PIO;
2757 if (dev->xfer_shift == ATA_SHIFT_PIO)
2758 dev->flags |= ATA_DFLAG_PIO;
2760 err_mask = ata_dev_set_xfermode(dev);
2761 /* Old CFA may refuse this command, which is just fine */
2762 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2763 err_mask &= ~AC_ERR_DEV;
2765 if (err_mask) {
2766 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2767 "(err_mask=0x%x)\n", err_mask);
2768 return -EIO;
2771 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2772 rc = ata_dev_revalidate(dev, 0);
2773 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2774 if (rc)
2775 return rc;
2777 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2778 dev->xfer_shift, (int)dev->xfer_mode);
2780 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2781 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2782 return 0;
2786 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2787 * @ap: port on which timings will be programmed
2788 * @r_failed_dev: out paramter for failed device
2790 * Standard implementation of the function used to tune and set
2791 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2792 * ata_dev_set_mode() fails, pointer to the failing device is
2793 * returned in @r_failed_dev.
2795 * LOCKING:
2796 * PCI/etc. bus probe sem.
2798 * RETURNS:
2799 * 0 on success, negative errno otherwise
2802 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2804 struct ata_device *dev;
2805 int i, rc = 0, used_dma = 0, found = 0;
2808 /* step 1: calculate xfer_mask */
2809 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2810 unsigned int pio_mask, dma_mask;
2812 dev = &ap->device[i];
2814 if (!ata_dev_enabled(dev))
2815 continue;
2817 ata_dev_xfermask(dev);
2819 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2820 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2821 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2822 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2824 found = 1;
2825 if (dev->dma_mode)
2826 used_dma = 1;
2828 if (!found)
2829 goto out;
2831 /* step 2: always set host PIO timings */
2832 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2833 dev = &ap->device[i];
2834 if (!ata_dev_enabled(dev))
2835 continue;
2837 if (!dev->pio_mode) {
2838 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2839 rc = -EINVAL;
2840 goto out;
2843 dev->xfer_mode = dev->pio_mode;
2844 dev->xfer_shift = ATA_SHIFT_PIO;
2845 if (ap->ops->set_piomode)
2846 ap->ops->set_piomode(ap, dev);
2849 /* step 3: set host DMA timings */
2850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2851 dev = &ap->device[i];
2853 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2854 continue;
2856 dev->xfer_mode = dev->dma_mode;
2857 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2858 if (ap->ops->set_dmamode)
2859 ap->ops->set_dmamode(ap, dev);
2862 /* step 4: update devices' xfer mode */
2863 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2864 dev = &ap->device[i];
2866 /* don't update suspended devices' xfer mode */
2867 if (!ata_dev_enabled(dev))
2868 continue;
2870 rc = ata_dev_set_mode(dev);
2871 if (rc)
2872 goto out;
2875 /* Record simplex status. If we selected DMA then the other
2876 * host channels are not permitted to do so.
2878 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2879 ap->host->simplex_claimed = ap;
2881 out:
2882 if (rc)
2883 *r_failed_dev = dev;
2884 return rc;
2888 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2889 * @ap: port on which timings will be programmed
2890 * @r_failed_dev: out paramter for failed device
2892 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2893 * ata_set_mode() fails, pointer to the failing device is
2894 * returned in @r_failed_dev.
2896 * LOCKING:
2897 * PCI/etc. bus probe sem.
2899 * RETURNS:
2900 * 0 on success, negative errno otherwise
2902 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2904 /* has private set_mode? */
2905 if (ap->ops->set_mode)
2906 return ap->ops->set_mode(ap, r_failed_dev);
2907 return ata_do_set_mode(ap, r_failed_dev);
2911 * ata_tf_to_host - issue ATA taskfile to host controller
2912 * @ap: port to which command is being issued
2913 * @tf: ATA taskfile register set
2915 * Issues ATA taskfile register set to ATA host controller,
2916 * with proper synchronization with interrupt handler and
2917 * other threads.
2919 * LOCKING:
2920 * spin_lock_irqsave(host lock)
2923 static inline void ata_tf_to_host(struct ata_port *ap,
2924 const struct ata_taskfile *tf)
2926 ap->ops->tf_load(ap, tf);
2927 ap->ops->exec_command(ap, tf);
2931 * ata_busy_sleep - sleep until BSY clears, or timeout
2932 * @ap: port containing status register to be polled
2933 * @tmout_pat: impatience timeout
2934 * @tmout: overall timeout
2936 * Sleep until ATA Status register bit BSY clears,
2937 * or a timeout occurs.
2939 * LOCKING:
2940 * Kernel thread context (may sleep).
2942 * RETURNS:
2943 * 0 on success, -errno otherwise.
2945 int ata_busy_sleep(struct ata_port *ap,
2946 unsigned long tmout_pat, unsigned long tmout)
2948 unsigned long timer_start, timeout;
2949 u8 status;
2951 status = ata_busy_wait(ap, ATA_BUSY, 300);
2952 timer_start = jiffies;
2953 timeout = timer_start + tmout_pat;
2954 while (status != 0xff && (status & ATA_BUSY) &&
2955 time_before(jiffies, timeout)) {
2956 msleep(50);
2957 status = ata_busy_wait(ap, ATA_BUSY, 3);
2960 if (status != 0xff && (status & ATA_BUSY))
2961 ata_port_printk(ap, KERN_WARNING,
2962 "port is slow to respond, please be patient "
2963 "(Status 0x%x)\n", status);
2965 timeout = timer_start + tmout;
2966 while (status != 0xff && (status & ATA_BUSY) &&
2967 time_before(jiffies, timeout)) {
2968 msleep(50);
2969 status = ata_chk_status(ap);
2972 if (status == 0xff)
2973 return -ENODEV;
2975 if (status & ATA_BUSY) {
2976 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2977 "(%lu secs, Status 0x%x)\n",
2978 tmout / HZ, status);
2979 return -EBUSY;
2982 return 0;
2986 * ata_wait_ready - sleep until BSY clears, or timeout
2987 * @ap: port containing status register to be polled
2988 * @deadline: deadline jiffies for the operation
2990 * Sleep until ATA Status register bit BSY clears, or timeout
2991 * occurs.
2993 * LOCKING:
2994 * Kernel thread context (may sleep).
2996 * RETURNS:
2997 * 0 on success, -errno otherwise.
2999 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3001 unsigned long start = jiffies;
3002 int warned = 0;
3004 while (1) {
3005 u8 status = ata_chk_status(ap);
3006 unsigned long now = jiffies;
3008 if (!(status & ATA_BUSY))
3009 return 0;
3010 if (!ata_port_online(ap) && status == 0xff)
3011 return -ENODEV;
3012 if (time_after(now, deadline))
3013 return -EBUSY;
3015 if (!warned && time_after(now, start + 5 * HZ) &&
3016 (deadline - now > 3 * HZ)) {
3017 ata_port_printk(ap, KERN_WARNING,
3018 "port is slow to respond, please be patient "
3019 "(Status 0x%x)\n", status);
3020 warned = 1;
3023 msleep(50);
3027 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3028 unsigned long deadline)
3030 struct ata_ioports *ioaddr = &ap->ioaddr;
3031 unsigned int dev0 = devmask & (1 << 0);
3032 unsigned int dev1 = devmask & (1 << 1);
3033 int rc, ret = 0;
3035 /* if device 0 was found in ata_devchk, wait for its
3036 * BSY bit to clear
3038 if (dev0) {
3039 rc = ata_wait_ready(ap, deadline);
3040 if (rc) {
3041 if (rc != -ENODEV)
3042 return rc;
3043 ret = rc;
3047 /* if device 1 was found in ata_devchk, wait for register
3048 * access briefly, then wait for BSY to clear.
3050 if (dev1) {
3051 int i;
3053 ap->ops->dev_select(ap, 1);
3055 /* Wait for register access. Some ATAPI devices fail
3056 * to set nsect/lbal after reset, so don't waste too
3057 * much time on it. We're gonna wait for !BSY anyway.
3059 for (i = 0; i < 2; i++) {
3060 u8 nsect, lbal;
3062 nsect = ioread8(ioaddr->nsect_addr);
3063 lbal = ioread8(ioaddr->lbal_addr);
3064 if ((nsect == 1) && (lbal == 1))
3065 break;
3066 msleep(50); /* give drive a breather */
3069 rc = ata_wait_ready(ap, deadline);
3070 if (rc) {
3071 if (rc != -ENODEV)
3072 return rc;
3073 ret = rc;
3077 /* is all this really necessary? */
3078 ap->ops->dev_select(ap, 0);
3079 if (dev1)
3080 ap->ops->dev_select(ap, 1);
3081 if (dev0)
3082 ap->ops->dev_select(ap, 0);
3084 return ret;
3087 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3088 unsigned long deadline)
3090 struct ata_ioports *ioaddr = &ap->ioaddr;
3092 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3094 /* software reset. causes dev0 to be selected */
3095 iowrite8(ap->ctl, ioaddr->ctl_addr);
3096 udelay(20); /* FIXME: flush */
3097 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3098 udelay(20); /* FIXME: flush */
3099 iowrite8(ap->ctl, ioaddr->ctl_addr);
3101 /* spec mandates ">= 2ms" before checking status.
3102 * We wait 150ms, because that was the magic delay used for
3103 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3104 * between when the ATA command register is written, and then
3105 * status is checked. Because waiting for "a while" before
3106 * checking status is fine, post SRST, we perform this magic
3107 * delay here as well.
3109 * Old drivers/ide uses the 2mS rule and then waits for ready
3111 msleep(150);
3113 /* Before we perform post reset processing we want to see if
3114 * the bus shows 0xFF because the odd clown forgets the D7
3115 * pulldown resistor.
3117 if (ata_check_status(ap) == 0xFF)
3118 return -ENODEV;
3120 return ata_bus_post_reset(ap, devmask, deadline);
3124 * ata_bus_reset - reset host port and associated ATA channel
3125 * @ap: port to reset
3127 * This is typically the first time we actually start issuing
3128 * commands to the ATA channel. We wait for BSY to clear, then
3129 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3130 * result. Determine what devices, if any, are on the channel
3131 * by looking at the device 0/1 error register. Look at the signature
3132 * stored in each device's taskfile registers, to determine if
3133 * the device is ATA or ATAPI.
3135 * LOCKING:
3136 * PCI/etc. bus probe sem.
3137 * Obtains host lock.
3139 * SIDE EFFECTS:
3140 * Sets ATA_FLAG_DISABLED if bus reset fails.
3143 void ata_bus_reset(struct ata_port *ap)
3145 struct ata_ioports *ioaddr = &ap->ioaddr;
3146 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3147 u8 err;
3148 unsigned int dev0, dev1 = 0, devmask = 0;
3149 int rc;
3151 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3153 /* determine if device 0/1 are present */
3154 if (ap->flags & ATA_FLAG_SATA_RESET)
3155 dev0 = 1;
3156 else {
3157 dev0 = ata_devchk(ap, 0);
3158 if (slave_possible)
3159 dev1 = ata_devchk(ap, 1);
3162 if (dev0)
3163 devmask |= (1 << 0);
3164 if (dev1)
3165 devmask |= (1 << 1);
3167 /* select device 0 again */
3168 ap->ops->dev_select(ap, 0);
3170 /* issue bus reset */
3171 if (ap->flags & ATA_FLAG_SRST) {
3172 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3173 if (rc && rc != -ENODEV)
3174 goto err_out;
3178 * determine by signature whether we have ATA or ATAPI devices
3180 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3181 if ((slave_possible) && (err != 0x81))
3182 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3184 /* is double-select really necessary? */
3185 if (ap->device[1].class != ATA_DEV_NONE)
3186 ap->ops->dev_select(ap, 1);
3187 if (ap->device[0].class != ATA_DEV_NONE)
3188 ap->ops->dev_select(ap, 0);
3190 /* if no devices were detected, disable this port */
3191 if ((ap->device[0].class == ATA_DEV_NONE) &&
3192 (ap->device[1].class == ATA_DEV_NONE))
3193 goto err_out;
3195 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3196 /* set up device control for ATA_FLAG_SATA_RESET */
3197 iowrite8(ap->ctl, ioaddr->ctl_addr);
3200 DPRINTK("EXIT\n");
3201 return;
3203 err_out:
3204 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3205 ap->ops->port_disable(ap);
3207 DPRINTK("EXIT\n");
3211 * sata_phy_debounce - debounce SATA phy status
3212 * @ap: ATA port to debounce SATA phy status for
3213 * @params: timing parameters { interval, duratinon, timeout } in msec
3214 * @deadline: deadline jiffies for the operation
3216 * Make sure SStatus of @ap reaches stable state, determined by
3217 * holding the same value where DET is not 1 for @duration polled
3218 * every @interval, before @timeout. Timeout constraints the
3219 * beginning of the stable state. Because DET gets stuck at 1 on
3220 * some controllers after hot unplugging, this functions waits
3221 * until timeout then returns 0 if DET is stable at 1.
3223 * @timeout is further limited by @deadline. The sooner of the
3224 * two is used.
3226 * LOCKING:
3227 * Kernel thread context (may sleep)
3229 * RETURNS:
3230 * 0 on success, -errno on failure.
3232 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3233 unsigned long deadline)
3235 unsigned long interval_msec = params[0];
3236 unsigned long duration = msecs_to_jiffies(params[1]);
3237 unsigned long last_jiffies, t;
3238 u32 last, cur;
3239 int rc;
3241 t = jiffies + msecs_to_jiffies(params[2]);
3242 if (time_before(t, deadline))
3243 deadline = t;
3245 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3246 return rc;
3247 cur &= 0xf;
3249 last = cur;
3250 last_jiffies = jiffies;
3252 while (1) {
3253 msleep(interval_msec);
3254 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3255 return rc;
3256 cur &= 0xf;
3258 /* DET stable? */
3259 if (cur == last) {
3260 if (cur == 1 && time_before(jiffies, deadline))
3261 continue;
3262 if (time_after(jiffies, last_jiffies + duration))
3263 return 0;
3264 continue;
3267 /* unstable, start over */
3268 last = cur;
3269 last_jiffies = jiffies;
3271 /* Check deadline. If debouncing failed, return
3272 * -EPIPE to tell upper layer to lower link speed.
3274 if (time_after(jiffies, deadline))
3275 return -EPIPE;
3280 * sata_phy_resume - resume SATA phy
3281 * @ap: ATA port to resume SATA phy for
3282 * @params: timing parameters { interval, duratinon, timeout } in msec
3283 * @deadline: deadline jiffies for the operation
3285 * Resume SATA phy of @ap and debounce it.
3287 * LOCKING:
3288 * Kernel thread context (may sleep)
3290 * RETURNS:
3291 * 0 on success, -errno on failure.
3293 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3294 unsigned long deadline)
3296 u32 scontrol;
3297 int rc;
3299 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3300 return rc;
3302 scontrol = (scontrol & 0x0f0) | 0x300;
3304 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3305 return rc;
3307 /* Some PHYs react badly if SStatus is pounded immediately
3308 * after resuming. Delay 200ms before debouncing.
3310 msleep(200);
3312 return sata_phy_debounce(ap, params, deadline);
3316 * ata_std_prereset - prepare for reset
3317 * @ap: ATA port to be reset
3318 * @deadline: deadline jiffies for the operation
3320 * @ap is about to be reset. Initialize it. Failure from
3321 * prereset makes libata abort whole reset sequence and give up
3322 * that port, so prereset should be best-effort. It does its
3323 * best to prepare for reset sequence but if things go wrong, it
3324 * should just whine, not fail.
3326 * LOCKING:
3327 * Kernel thread context (may sleep)
3329 * RETURNS:
3330 * 0 on success, -errno otherwise.
3332 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3334 struct ata_eh_context *ehc = &ap->eh_context;
3335 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3336 int rc;
3338 /* handle link resume */
3339 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3340 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3341 ehc->i.action |= ATA_EH_HARDRESET;
3343 /* if we're about to do hardreset, nothing more to do */
3344 if (ehc->i.action & ATA_EH_HARDRESET)
3345 return 0;
3347 /* if SATA, resume phy */
3348 if (ap->flags & ATA_FLAG_SATA) {
3349 rc = sata_phy_resume(ap, timing, deadline);
3350 /* whine about phy resume failure but proceed */
3351 if (rc && rc != -EOPNOTSUPP)
3352 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3353 "link for reset (errno=%d)\n", rc);
3356 /* Wait for !BSY if the controller can wait for the first D2H
3357 * Reg FIS and we don't know that no device is attached.
3359 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3360 rc = ata_wait_ready(ap, deadline);
3361 if (rc && rc != -ENODEV) {
3362 ata_port_printk(ap, KERN_WARNING, "device not ready "
3363 "(errno=%d), forcing hardreset\n", rc);
3364 ehc->i.action |= ATA_EH_HARDRESET;
3368 return 0;
3372 * ata_std_softreset - reset host port via ATA SRST
3373 * @ap: port to reset
3374 * @classes: resulting classes of attached devices
3375 * @deadline: deadline jiffies for the operation
3377 * Reset host port using ATA SRST.
3379 * LOCKING:
3380 * Kernel thread context (may sleep)
3382 * RETURNS:
3383 * 0 on success, -errno otherwise.
3385 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3386 unsigned long deadline)
3388 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3389 unsigned int devmask = 0;
3390 int rc;
3391 u8 err;
3393 DPRINTK("ENTER\n");
3395 if (ata_port_offline(ap)) {
3396 classes[0] = ATA_DEV_NONE;
3397 goto out;
3400 /* determine if device 0/1 are present */
3401 if (ata_devchk(ap, 0))
3402 devmask |= (1 << 0);
3403 if (slave_possible && ata_devchk(ap, 1))
3404 devmask |= (1 << 1);
3406 /* select device 0 again */
3407 ap->ops->dev_select(ap, 0);
3409 /* issue bus reset */
3410 DPRINTK("about to softreset, devmask=%x\n", devmask);
3411 rc = ata_bus_softreset(ap, devmask, deadline);
3412 /* if link is occupied, -ENODEV too is an error */
3413 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3414 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3415 return rc;
3418 /* determine by signature whether we have ATA or ATAPI devices */
3419 classes[0] = ata_dev_try_classify(ap, 0, &err);
3420 if (slave_possible && err != 0x81)
3421 classes[1] = ata_dev_try_classify(ap, 1, &err);
3423 out:
3424 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3425 return 0;
3429 * sata_port_hardreset - reset port via SATA phy reset
3430 * @ap: port to reset
3431 * @timing: timing parameters { interval, duratinon, timeout } in msec
3432 * @deadline: deadline jiffies for the operation
3434 * SATA phy-reset host port using DET bits of SControl register.
3436 * LOCKING:
3437 * Kernel thread context (may sleep)
3439 * RETURNS:
3440 * 0 on success, -errno otherwise.
3442 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3443 unsigned long deadline)
3445 u32 scontrol;
3446 int rc;
3448 DPRINTK("ENTER\n");
3450 if (sata_set_spd_needed(ap)) {
3451 /* SATA spec says nothing about how to reconfigure
3452 * spd. To be on the safe side, turn off phy during
3453 * reconfiguration. This works for at least ICH7 AHCI
3454 * and Sil3124.
3456 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3457 goto out;
3459 scontrol = (scontrol & 0x0f0) | 0x304;
3461 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3462 goto out;
3464 sata_set_spd(ap);
3467 /* issue phy wake/reset */
3468 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3469 goto out;
3471 scontrol = (scontrol & 0x0f0) | 0x301;
3473 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3474 goto out;
3476 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3477 * 10.4.2 says at least 1 ms.
3479 msleep(1);
3481 /* bring phy back */
3482 rc = sata_phy_resume(ap, timing, deadline);
3483 out:
3484 DPRINTK("EXIT, rc=%d\n", rc);
3485 return rc;
3489 * sata_std_hardreset - reset host port via SATA phy reset
3490 * @ap: port to reset
3491 * @class: resulting class of attached device
3492 * @deadline: deadline jiffies for the operation
3494 * SATA phy-reset host port using DET bits of SControl register,
3495 * wait for !BSY and classify the attached device.
3497 * LOCKING:
3498 * Kernel thread context (may sleep)
3500 * RETURNS:
3501 * 0 on success, -errno otherwise.
3503 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3504 unsigned long deadline)
3506 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3507 int rc;
3509 DPRINTK("ENTER\n");
3511 /* do hardreset */
3512 rc = sata_port_hardreset(ap, timing, deadline);
3513 if (rc) {
3514 ata_port_printk(ap, KERN_ERR,
3515 "COMRESET failed (errno=%d)\n", rc);
3516 return rc;
3519 /* TODO: phy layer with polling, timeouts, etc. */
3520 if (ata_port_offline(ap)) {
3521 *class = ATA_DEV_NONE;
3522 DPRINTK("EXIT, link offline\n");
3523 return 0;
3526 /* wait a while before checking status, see SRST for more info */
3527 msleep(150);
3529 rc = ata_wait_ready(ap, deadline);
3530 /* link occupied, -ENODEV too is an error */
3531 if (rc) {
3532 ata_port_printk(ap, KERN_ERR,
3533 "COMRESET failed (errno=%d)\n", rc);
3534 return rc;
3537 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3539 *class = ata_dev_try_classify(ap, 0, NULL);
3541 DPRINTK("EXIT, class=%u\n", *class);
3542 return 0;
3546 * ata_std_postreset - standard postreset callback
3547 * @ap: the target ata_port
3548 * @classes: classes of attached devices
3550 * This function is invoked after a successful reset. Note that
3551 * the device might have been reset more than once using
3552 * different reset methods before postreset is invoked.
3554 * LOCKING:
3555 * Kernel thread context (may sleep)
3557 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3559 u32 serror;
3561 DPRINTK("ENTER\n");
3563 /* print link status */
3564 sata_print_link_status(ap);
3566 /* clear SError */
3567 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3568 sata_scr_write(ap, SCR_ERROR, serror);
3570 /* is double-select really necessary? */
3571 if (classes[0] != ATA_DEV_NONE)
3572 ap->ops->dev_select(ap, 1);
3573 if (classes[1] != ATA_DEV_NONE)
3574 ap->ops->dev_select(ap, 0);
3576 /* bail out if no device is present */
3577 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3578 DPRINTK("EXIT, no device\n");
3579 return;
3582 /* set up device control */
3583 if (ap->ioaddr.ctl_addr)
3584 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3586 DPRINTK("EXIT\n");
3590 * ata_dev_same_device - Determine whether new ID matches configured device
3591 * @dev: device to compare against
3592 * @new_class: class of the new device
3593 * @new_id: IDENTIFY page of the new device
3595 * Compare @new_class and @new_id against @dev and determine
3596 * whether @dev is the device indicated by @new_class and
3597 * @new_id.
3599 * LOCKING:
3600 * None.
3602 * RETURNS:
3603 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3605 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3606 const u16 *new_id)
3608 const u16 *old_id = dev->id;
3609 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3610 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3612 if (dev->class != new_class) {
3613 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3614 dev->class, new_class);
3615 return 0;
3618 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3619 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3620 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3621 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3623 if (strcmp(model[0], model[1])) {
3624 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3625 "'%s' != '%s'\n", model[0], model[1]);
3626 return 0;
3629 if (strcmp(serial[0], serial[1])) {
3630 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3631 "'%s' != '%s'\n", serial[0], serial[1]);
3632 return 0;
3635 return 1;
3639 * ata_dev_reread_id - Re-read IDENTIFY data
3640 * @dev: target ATA device
3641 * @readid_flags: read ID flags
3643 * Re-read IDENTIFY page and make sure @dev is still attached to
3644 * the port.
3646 * LOCKING:
3647 * Kernel thread context (may sleep)
3649 * RETURNS:
3650 * 0 on success, negative errno otherwise
3652 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3654 unsigned int class = dev->class;
3655 u16 *id = (void *)dev->ap->sector_buf;
3656 int rc;
3658 /* read ID data */
3659 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3660 if (rc)
3661 return rc;
3663 /* is the device still there? */
3664 if (!ata_dev_same_device(dev, class, id))
3665 return -ENODEV;
3667 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3668 return 0;
3672 * ata_dev_revalidate - Revalidate ATA device
3673 * @dev: device to revalidate
3674 * @readid_flags: read ID flags
3676 * Re-read IDENTIFY page, make sure @dev is still attached to the
3677 * port and reconfigure it according to the new IDENTIFY page.
3679 * LOCKING:
3680 * Kernel thread context (may sleep)
3682 * RETURNS:
3683 * 0 on success, negative errno otherwise
3685 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3687 u64 n_sectors = dev->n_sectors;
3688 int rc;
3690 if (!ata_dev_enabled(dev))
3691 return -ENODEV;
3693 /* re-read ID */
3694 rc = ata_dev_reread_id(dev, readid_flags);
3695 if (rc)
3696 goto fail;
3698 /* configure device according to the new ID */
3699 rc = ata_dev_configure(dev);
3700 if (rc)
3701 goto fail;
3703 /* verify n_sectors hasn't changed */
3704 if (dev->class == ATA_DEV_ATA && n_sectors &&
3705 dev->n_sectors != n_sectors) {
3706 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3707 "%llu != %llu\n",
3708 (unsigned long long)n_sectors,
3709 (unsigned long long)dev->n_sectors);
3711 /* restore original n_sectors */
3712 dev->n_sectors = n_sectors;
3714 rc = -ENODEV;
3715 goto fail;
3718 return 0;
3720 fail:
3721 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3722 return rc;
3725 struct ata_blacklist_entry {
3726 const char *model_num;
3727 const char *model_rev;
3728 unsigned long horkage;
3731 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3732 /* Devices with DMA related problems under Linux */
3733 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3737 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3738 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3739 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3740 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3742 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3743 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3744 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3745 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3746 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3747 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3748 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3749 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3750 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3751 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3752 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3753 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3754 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3755 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3756 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3757 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3758 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3759 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3760 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3761 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3762 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3763 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3764 { "IOMEGA ZIP 250 ATAPI Floppy",
3765 NULL, ATA_HORKAGE_NODMA },
3767 /* Weird ATAPI devices */
3768 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3770 /* Devices we expect to fail diagnostics */
3772 /* Devices where NCQ should be avoided */
3773 /* NCQ is slow */
3774 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3775 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3776 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3777 /* NCQ is broken */
3778 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3779 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3780 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3781 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, },
3782 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3783 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3784 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3785 ATA_HORKAGE_NONCQ },
3786 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3787 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3788 /* Blacklist entries taken from Silicon Image 3124/3132
3789 Windows driver .inf file - also several Linux problem reports */
3790 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3791 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3792 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3793 /* Drives which do spurious command completion */
3794 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3795 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3796 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3797 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3798 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3799 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3800 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
3801 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3803 /* devices which puke on READ_NATIVE_MAX */
3804 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3805 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3806 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3807 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3809 /* End Marker */
3813 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3815 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3816 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3817 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3819 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3820 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3822 while (ad->model_num) {
3823 if (!strcmp(ad->model_num, model_num)) {
3824 if (ad->model_rev == NULL)
3825 return ad->horkage;
3826 if (!strcmp(ad->model_rev, model_rev))
3827 return ad->horkage;
3829 ad++;
3831 return 0;
3834 static int ata_dma_blacklisted(const struct ata_device *dev)
3836 /* We don't support polling DMA.
3837 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3838 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3840 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3841 (dev->flags & ATA_DFLAG_CDB_INTR))
3842 return 1;
3843 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3847 * ata_dev_xfermask - Compute supported xfermask of the given device
3848 * @dev: Device to compute xfermask for
3850 * Compute supported xfermask of @dev and store it in
3851 * dev->*_mask. This function is responsible for applying all
3852 * known limits including host controller limits, device
3853 * blacklist, etc...
3855 * LOCKING:
3856 * None.
3858 static void ata_dev_xfermask(struct ata_device *dev)
3860 struct ata_port *ap = dev->ap;
3861 struct ata_host *host = ap->host;
3862 unsigned long xfer_mask;
3864 /* controller modes available */
3865 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3866 ap->mwdma_mask, ap->udma_mask);
3868 /* drive modes available */
3869 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3870 dev->mwdma_mask, dev->udma_mask);
3871 xfer_mask &= ata_id_xfermask(dev->id);
3874 * CFA Advanced TrueIDE timings are not allowed on a shared
3875 * cable
3877 if (ata_dev_pair(dev)) {
3878 /* No PIO5 or PIO6 */
3879 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3880 /* No MWDMA3 or MWDMA 4 */
3881 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3884 if (ata_dma_blacklisted(dev)) {
3885 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3886 ata_dev_printk(dev, KERN_WARNING,
3887 "device is on DMA blacklist, disabling DMA\n");
3890 if ((host->flags & ATA_HOST_SIMPLEX) &&
3891 host->simplex_claimed && host->simplex_claimed != ap) {
3892 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3893 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3894 "other device, disabling DMA\n");
3897 if (ap->flags & ATA_FLAG_NO_IORDY)
3898 xfer_mask &= ata_pio_mask_no_iordy(dev);
3900 if (ap->ops->mode_filter)
3901 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3903 /* Apply cable rule here. Don't apply it early because when
3904 * we handle hot plug the cable type can itself change.
3905 * Check this last so that we know if the transfer rate was
3906 * solely limited by the cable.
3907 * Unknown or 80 wire cables reported host side are checked
3908 * drive side as well. Cases where we know a 40wire cable
3909 * is used safely for 80 are not checked here.
3911 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3912 /* UDMA/44 or higher would be available */
3913 if((ap->cbl == ATA_CBL_PATA40) ||
3914 (ata_drive_40wire(dev->id) &&
3915 (ap->cbl == ATA_CBL_PATA_UNK ||
3916 ap->cbl == ATA_CBL_PATA80))) {
3917 ata_dev_printk(dev, KERN_WARNING,
3918 "limited to UDMA/33 due to 40-wire cable\n");
3919 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3922 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3923 &dev->mwdma_mask, &dev->udma_mask);
3927 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3928 * @dev: Device to which command will be sent
3930 * Issue SET FEATURES - XFER MODE command to device @dev
3931 * on port @ap.
3933 * LOCKING:
3934 * PCI/etc. bus probe sem.
3936 * RETURNS:
3937 * 0 on success, AC_ERR_* mask otherwise.
3940 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3942 struct ata_taskfile tf;
3943 unsigned int err_mask;
3945 /* set up set-features taskfile */
3946 DPRINTK("set features - xfer mode\n");
3948 /* Some controllers and ATAPI devices show flaky interrupt
3949 * behavior after setting xfer mode. Use polling instead.
3951 ata_tf_init(dev, &tf);
3952 tf.command = ATA_CMD_SET_FEATURES;
3953 tf.feature = SETFEATURES_XFER;
3954 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3955 tf.protocol = ATA_PROT_NODATA;
3956 tf.nsect = dev->xfer_mode;
3958 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3960 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3961 return err_mask;
3965 * ata_dev_init_params - Issue INIT DEV PARAMS command
3966 * @dev: Device to which command will be sent
3967 * @heads: Number of heads (taskfile parameter)
3968 * @sectors: Number of sectors (taskfile parameter)
3970 * LOCKING:
3971 * Kernel thread context (may sleep)
3973 * RETURNS:
3974 * 0 on success, AC_ERR_* mask otherwise.
3976 static unsigned int ata_dev_init_params(struct ata_device *dev,
3977 u16 heads, u16 sectors)
3979 struct ata_taskfile tf;
3980 unsigned int err_mask;
3982 /* Number of sectors per track 1-255. Number of heads 1-16 */
3983 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3984 return AC_ERR_INVALID;
3986 /* set up init dev params taskfile */
3987 DPRINTK("init dev params \n");
3989 ata_tf_init(dev, &tf);
3990 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3991 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3992 tf.protocol = ATA_PROT_NODATA;
3993 tf.nsect = sectors;
3994 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3996 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3997 /* A clean abort indicates an original or just out of spec drive
3998 and we should continue as we issue the setup based on the
3999 drive reported working geometry */
4000 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4001 err_mask = 0;
4003 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4004 return err_mask;
4008 * ata_sg_clean - Unmap DMA memory associated with command
4009 * @qc: Command containing DMA memory to be released
4011 * Unmap all mapped DMA memory associated with this command.
4013 * LOCKING:
4014 * spin_lock_irqsave(host lock)
4016 void ata_sg_clean(struct ata_queued_cmd *qc)
4018 struct ata_port *ap = qc->ap;
4019 struct scatterlist *sg = qc->__sg;
4020 int dir = qc->dma_dir;
4021 void *pad_buf = NULL;
4023 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4024 WARN_ON(sg == NULL);
4026 if (qc->flags & ATA_QCFLAG_SINGLE)
4027 WARN_ON(qc->n_elem > 1);
4029 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4031 /* if we padded the buffer out to 32-bit bound, and data
4032 * xfer direction is from-device, we must copy from the
4033 * pad buffer back into the supplied buffer
4035 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4036 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4038 if (qc->flags & ATA_QCFLAG_SG) {
4039 if (qc->n_elem)
4040 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4041 /* restore last sg */
4042 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4043 if (pad_buf) {
4044 struct scatterlist *psg = &qc->pad_sgent;
4045 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4046 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4047 kunmap_atomic(addr, KM_IRQ0);
4049 } else {
4050 if (qc->n_elem)
4051 dma_unmap_single(ap->dev,
4052 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4053 dir);
4054 /* restore sg */
4055 sg->length += qc->pad_len;
4056 if (pad_buf)
4057 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4058 pad_buf, qc->pad_len);
4061 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4062 qc->__sg = NULL;
4066 * ata_fill_sg - Fill PCI IDE PRD table
4067 * @qc: Metadata associated with taskfile to be transferred
4069 * Fill PCI IDE PRD (scatter-gather) table with segments
4070 * associated with the current disk command.
4072 * LOCKING:
4073 * spin_lock_irqsave(host lock)
4076 static void ata_fill_sg(struct ata_queued_cmd *qc)
4078 struct ata_port *ap = qc->ap;
4079 struct scatterlist *sg;
4080 unsigned int idx;
4082 WARN_ON(qc->__sg == NULL);
4083 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4085 idx = 0;
4086 ata_for_each_sg(sg, qc) {
4087 u32 addr, offset;
4088 u32 sg_len, len;
4090 /* determine if physical DMA addr spans 64K boundary.
4091 * Note h/w doesn't support 64-bit, so we unconditionally
4092 * truncate dma_addr_t to u32.
4094 addr = (u32) sg_dma_address(sg);
4095 sg_len = sg_dma_len(sg);
4097 while (sg_len) {
4098 offset = addr & 0xffff;
4099 len = sg_len;
4100 if ((offset + sg_len) > 0x10000)
4101 len = 0x10000 - offset;
4103 ap->prd[idx].addr = cpu_to_le32(addr);
4104 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4105 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4107 idx++;
4108 sg_len -= len;
4109 addr += len;
4113 if (idx)
4114 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4118 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4119 * @qc: Metadata associated with taskfile to be transferred
4121 * Fill PCI IDE PRD (scatter-gather) table with segments
4122 * associated with the current disk command. Perform the fill
4123 * so that we avoid writing any length 64K records for
4124 * controllers that don't follow the spec.
4126 * LOCKING:
4127 * spin_lock_irqsave(host lock)
4130 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4132 struct ata_port *ap = qc->ap;
4133 struct scatterlist *sg;
4134 unsigned int idx;
4136 WARN_ON(qc->__sg == NULL);
4137 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4139 idx = 0;
4140 ata_for_each_sg(sg, qc) {
4141 u32 addr, offset;
4142 u32 sg_len, len, blen;
4144 /* determine if physical DMA addr spans 64K boundary.
4145 * Note h/w doesn't support 64-bit, so we unconditionally
4146 * truncate dma_addr_t to u32.
4148 addr = (u32) sg_dma_address(sg);
4149 sg_len = sg_dma_len(sg);
4151 while (sg_len) {
4152 offset = addr & 0xffff;
4153 len = sg_len;
4154 if ((offset + sg_len) > 0x10000)
4155 len = 0x10000 - offset;
4157 blen = len & 0xffff;
4158 ap->prd[idx].addr = cpu_to_le32(addr);
4159 if (blen == 0) {
4160 /* Some PATA chipsets like the CS5530 can't
4161 cope with 0x0000 meaning 64K as the spec says */
4162 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4163 blen = 0x8000;
4164 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4166 ap->prd[idx].flags_len = cpu_to_le32(blen);
4167 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4169 idx++;
4170 sg_len -= len;
4171 addr += len;
4175 if (idx)
4176 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4180 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4181 * @qc: Metadata associated with taskfile to check
4183 * Allow low-level driver to filter ATA PACKET commands, returning
4184 * a status indicating whether or not it is OK to use DMA for the
4185 * supplied PACKET command.
4187 * LOCKING:
4188 * spin_lock_irqsave(host lock)
4190 * RETURNS: 0 when ATAPI DMA can be used
4191 * nonzero otherwise
4193 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4195 struct ata_port *ap = qc->ap;
4197 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4198 * few ATAPI devices choke on such DMA requests.
4200 if (unlikely(qc->nbytes & 15))
4201 return 1;
4203 if (ap->ops->check_atapi_dma)
4204 return ap->ops->check_atapi_dma(qc);
4206 return 0;
4210 * ata_qc_prep - Prepare taskfile for submission
4211 * @qc: Metadata associated with taskfile to be prepared
4213 * Prepare ATA taskfile for submission.
4215 * LOCKING:
4216 * spin_lock_irqsave(host lock)
4218 void ata_qc_prep(struct ata_queued_cmd *qc)
4220 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4221 return;
4223 ata_fill_sg(qc);
4227 * ata_dumb_qc_prep - Prepare taskfile for submission
4228 * @qc: Metadata associated with taskfile to be prepared
4230 * Prepare ATA taskfile for submission.
4232 * LOCKING:
4233 * spin_lock_irqsave(host lock)
4235 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4237 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4238 return;
4240 ata_fill_sg_dumb(qc);
4243 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4246 * ata_sg_init_one - Associate command with memory buffer
4247 * @qc: Command to be associated
4248 * @buf: Memory buffer
4249 * @buflen: Length of memory buffer, in bytes.
4251 * Initialize the data-related elements of queued_cmd @qc
4252 * to point to a single memory buffer, @buf of byte length @buflen.
4254 * LOCKING:
4255 * spin_lock_irqsave(host lock)
4258 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4260 qc->flags |= ATA_QCFLAG_SINGLE;
4262 qc->__sg = &qc->sgent;
4263 qc->n_elem = 1;
4264 qc->orig_n_elem = 1;
4265 qc->buf_virt = buf;
4266 qc->nbytes = buflen;
4268 sg_init_one(&qc->sgent, buf, buflen);
4272 * ata_sg_init - Associate command with scatter-gather table.
4273 * @qc: Command to be associated
4274 * @sg: Scatter-gather table.
4275 * @n_elem: Number of elements in s/g table.
4277 * Initialize the data-related elements of queued_cmd @qc
4278 * to point to a scatter-gather table @sg, containing @n_elem
4279 * elements.
4281 * LOCKING:
4282 * spin_lock_irqsave(host lock)
4285 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4286 unsigned int n_elem)
4288 qc->flags |= ATA_QCFLAG_SG;
4289 qc->__sg = sg;
4290 qc->n_elem = n_elem;
4291 qc->orig_n_elem = n_elem;
4295 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4296 * @qc: Command with memory buffer to be mapped.
4298 * DMA-map the memory buffer associated with queued_cmd @qc.
4300 * LOCKING:
4301 * spin_lock_irqsave(host lock)
4303 * RETURNS:
4304 * Zero on success, negative on error.
4307 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4309 struct ata_port *ap = qc->ap;
4310 int dir = qc->dma_dir;
4311 struct scatterlist *sg = qc->__sg;
4312 dma_addr_t dma_address;
4313 int trim_sg = 0;
4315 /* we must lengthen transfers to end on a 32-bit boundary */
4316 qc->pad_len = sg->length & 3;
4317 if (qc->pad_len) {
4318 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4319 struct scatterlist *psg = &qc->pad_sgent;
4321 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4323 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4325 if (qc->tf.flags & ATA_TFLAG_WRITE)
4326 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4327 qc->pad_len);
4329 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4330 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4331 /* trim sg */
4332 sg->length -= qc->pad_len;
4333 if (sg->length == 0)
4334 trim_sg = 1;
4336 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4337 sg->length, qc->pad_len);
4340 if (trim_sg) {
4341 qc->n_elem--;
4342 goto skip_map;
4345 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4346 sg->length, dir);
4347 if (dma_mapping_error(dma_address)) {
4348 /* restore sg */
4349 sg->length += qc->pad_len;
4350 return -1;
4353 sg_dma_address(sg) = dma_address;
4354 sg_dma_len(sg) = sg->length;
4356 skip_map:
4357 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4358 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4360 return 0;
4364 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4365 * @qc: Command with scatter-gather table to be mapped.
4367 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4369 * LOCKING:
4370 * spin_lock_irqsave(host lock)
4372 * RETURNS:
4373 * Zero on success, negative on error.
4377 static int ata_sg_setup(struct ata_queued_cmd *qc)
4379 struct ata_port *ap = qc->ap;
4380 struct scatterlist *sg = qc->__sg;
4381 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4382 int n_elem, pre_n_elem, dir, trim_sg = 0;
4384 VPRINTK("ENTER, ata%u\n", ap->print_id);
4385 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4387 /* we must lengthen transfers to end on a 32-bit boundary */
4388 qc->pad_len = lsg->length & 3;
4389 if (qc->pad_len) {
4390 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4391 struct scatterlist *psg = &qc->pad_sgent;
4392 unsigned int offset;
4394 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4396 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4399 * psg->page/offset are used to copy to-be-written
4400 * data in this function or read data in ata_sg_clean.
4402 offset = lsg->offset + lsg->length - qc->pad_len;
4403 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4404 psg->offset = offset_in_page(offset);
4406 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4407 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4408 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4409 kunmap_atomic(addr, KM_IRQ0);
4412 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4413 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4414 /* trim last sg */
4415 lsg->length -= qc->pad_len;
4416 if (lsg->length == 0)
4417 trim_sg = 1;
4419 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4420 qc->n_elem - 1, lsg->length, qc->pad_len);
4423 pre_n_elem = qc->n_elem;
4424 if (trim_sg && pre_n_elem)
4425 pre_n_elem--;
4427 if (!pre_n_elem) {
4428 n_elem = 0;
4429 goto skip_map;
4432 dir = qc->dma_dir;
4433 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4434 if (n_elem < 1) {
4435 /* restore last sg */
4436 lsg->length += qc->pad_len;
4437 return -1;
4440 DPRINTK("%d sg elements mapped\n", n_elem);
4442 skip_map:
4443 qc->n_elem = n_elem;
4445 return 0;
4449 * swap_buf_le16 - swap halves of 16-bit words in place
4450 * @buf: Buffer to swap
4451 * @buf_words: Number of 16-bit words in buffer.
4453 * Swap halves of 16-bit words if needed to convert from
4454 * little-endian byte order to native cpu byte order, or
4455 * vice-versa.
4457 * LOCKING:
4458 * Inherited from caller.
4460 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4462 #ifdef __BIG_ENDIAN
4463 unsigned int i;
4465 for (i = 0; i < buf_words; i++)
4466 buf[i] = le16_to_cpu(buf[i]);
4467 #endif /* __BIG_ENDIAN */
4471 * ata_data_xfer - Transfer data by PIO
4472 * @adev: device to target
4473 * @buf: data buffer
4474 * @buflen: buffer length
4475 * @write_data: read/write
4477 * Transfer data from/to the device data register by PIO.
4479 * LOCKING:
4480 * Inherited from caller.
4482 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4483 unsigned int buflen, int write_data)
4485 struct ata_port *ap = adev->ap;
4486 unsigned int words = buflen >> 1;
4488 /* Transfer multiple of 2 bytes */
4489 if (write_data)
4490 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4491 else
4492 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4494 /* Transfer trailing 1 byte, if any. */
4495 if (unlikely(buflen & 0x01)) {
4496 u16 align_buf[1] = { 0 };
4497 unsigned char *trailing_buf = buf + buflen - 1;
4499 if (write_data) {
4500 memcpy(align_buf, trailing_buf, 1);
4501 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4502 } else {
4503 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4504 memcpy(trailing_buf, align_buf, 1);
4510 * ata_data_xfer_noirq - Transfer data by PIO
4511 * @adev: device to target
4512 * @buf: data buffer
4513 * @buflen: buffer length
4514 * @write_data: read/write
4516 * Transfer data from/to the device data register by PIO. Do the
4517 * transfer with interrupts disabled.
4519 * LOCKING:
4520 * Inherited from caller.
4522 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4523 unsigned int buflen, int write_data)
4525 unsigned long flags;
4526 local_irq_save(flags);
4527 ata_data_xfer(adev, buf, buflen, write_data);
4528 local_irq_restore(flags);
4533 * ata_pio_sector - Transfer a sector of data.
4534 * @qc: Command on going
4536 * Transfer qc->sect_size bytes of data from/to the ATA device.
4538 * LOCKING:
4539 * Inherited from caller.
4542 static void ata_pio_sector(struct ata_queued_cmd *qc)
4544 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4545 struct scatterlist *sg = qc->__sg;
4546 struct ata_port *ap = qc->ap;
4547 struct page *page;
4548 unsigned int offset;
4549 unsigned char *buf;
4551 if (qc->curbytes == qc->nbytes - qc->sect_size)
4552 ap->hsm_task_state = HSM_ST_LAST;
4554 page = sg[qc->cursg].page;
4555 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4557 /* get the current page and offset */
4558 page = nth_page(page, (offset >> PAGE_SHIFT));
4559 offset %= PAGE_SIZE;
4561 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4563 if (PageHighMem(page)) {
4564 unsigned long flags;
4566 /* FIXME: use a bounce buffer */
4567 local_irq_save(flags);
4568 buf = kmap_atomic(page, KM_IRQ0);
4570 /* do the actual data transfer */
4571 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4573 kunmap_atomic(buf, KM_IRQ0);
4574 local_irq_restore(flags);
4575 } else {
4576 buf = page_address(page);
4577 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4580 qc->curbytes += qc->sect_size;
4581 qc->cursg_ofs += qc->sect_size;
4583 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4584 qc->cursg++;
4585 qc->cursg_ofs = 0;
4590 * ata_pio_sectors - Transfer one or many sectors.
4591 * @qc: Command on going
4593 * Transfer one or many sectors of data from/to the
4594 * ATA device for the DRQ request.
4596 * LOCKING:
4597 * Inherited from caller.
4600 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4602 if (is_multi_taskfile(&qc->tf)) {
4603 /* READ/WRITE MULTIPLE */
4604 unsigned int nsect;
4606 WARN_ON(qc->dev->multi_count == 0);
4608 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4609 qc->dev->multi_count);
4610 while (nsect--)
4611 ata_pio_sector(qc);
4612 } else
4613 ata_pio_sector(qc);
4617 * atapi_send_cdb - Write CDB bytes to hardware
4618 * @ap: Port to which ATAPI device is attached.
4619 * @qc: Taskfile currently active
4621 * When device has indicated its readiness to accept
4622 * a CDB, this function is called. Send the CDB.
4624 * LOCKING:
4625 * caller.
4628 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4630 /* send SCSI cdb */
4631 DPRINTK("send cdb\n");
4632 WARN_ON(qc->dev->cdb_len < 12);
4634 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4635 ata_altstatus(ap); /* flush */
4637 switch (qc->tf.protocol) {
4638 case ATA_PROT_ATAPI:
4639 ap->hsm_task_state = HSM_ST;
4640 break;
4641 case ATA_PROT_ATAPI_NODATA:
4642 ap->hsm_task_state = HSM_ST_LAST;
4643 break;
4644 case ATA_PROT_ATAPI_DMA:
4645 ap->hsm_task_state = HSM_ST_LAST;
4646 /* initiate bmdma */
4647 ap->ops->bmdma_start(qc);
4648 break;
4653 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4654 * @qc: Command on going
4655 * @bytes: number of bytes
4657 * Transfer Transfer data from/to the ATAPI device.
4659 * LOCKING:
4660 * Inherited from caller.
4664 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4666 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4667 struct scatterlist *sg = qc->__sg;
4668 struct ata_port *ap = qc->ap;
4669 struct page *page;
4670 unsigned char *buf;
4671 unsigned int offset, count;
4673 if (qc->curbytes + bytes >= qc->nbytes)
4674 ap->hsm_task_state = HSM_ST_LAST;
4676 next_sg:
4677 if (unlikely(qc->cursg >= qc->n_elem)) {
4679 * The end of qc->sg is reached and the device expects
4680 * more data to transfer. In order not to overrun qc->sg
4681 * and fulfill length specified in the byte count register,
4682 * - for read case, discard trailing data from the device
4683 * - for write case, padding zero data to the device
4685 u16 pad_buf[1] = { 0 };
4686 unsigned int words = bytes >> 1;
4687 unsigned int i;
4689 if (words) /* warning if bytes > 1 */
4690 ata_dev_printk(qc->dev, KERN_WARNING,
4691 "%u bytes trailing data\n", bytes);
4693 for (i = 0; i < words; i++)
4694 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4696 ap->hsm_task_state = HSM_ST_LAST;
4697 return;
4700 sg = &qc->__sg[qc->cursg];
4702 page = sg->page;
4703 offset = sg->offset + qc->cursg_ofs;
4705 /* get the current page and offset */
4706 page = nth_page(page, (offset >> PAGE_SHIFT));
4707 offset %= PAGE_SIZE;
4709 /* don't overrun current sg */
4710 count = min(sg->length - qc->cursg_ofs, bytes);
4712 /* don't cross page boundaries */
4713 count = min(count, (unsigned int)PAGE_SIZE - offset);
4715 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4717 if (PageHighMem(page)) {
4718 unsigned long flags;
4720 /* FIXME: use bounce buffer */
4721 local_irq_save(flags);
4722 buf = kmap_atomic(page, KM_IRQ0);
4724 /* do the actual data transfer */
4725 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4727 kunmap_atomic(buf, KM_IRQ0);
4728 local_irq_restore(flags);
4729 } else {
4730 buf = page_address(page);
4731 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4734 bytes -= count;
4735 qc->curbytes += count;
4736 qc->cursg_ofs += count;
4738 if (qc->cursg_ofs == sg->length) {
4739 qc->cursg++;
4740 qc->cursg_ofs = 0;
4743 if (bytes)
4744 goto next_sg;
4748 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4749 * @qc: Command on going
4751 * Transfer Transfer data from/to the ATAPI device.
4753 * LOCKING:
4754 * Inherited from caller.
4757 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4759 struct ata_port *ap = qc->ap;
4760 struct ata_device *dev = qc->dev;
4761 unsigned int ireason, bc_lo, bc_hi, bytes;
4762 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4764 /* Abuse qc->result_tf for temp storage of intermediate TF
4765 * here to save some kernel stack usage.
4766 * For normal completion, qc->result_tf is not relevant. For
4767 * error, qc->result_tf is later overwritten by ata_qc_complete().
4768 * So, the correctness of qc->result_tf is not affected.
4770 ap->ops->tf_read(ap, &qc->result_tf);
4771 ireason = qc->result_tf.nsect;
4772 bc_lo = qc->result_tf.lbam;
4773 bc_hi = qc->result_tf.lbah;
4774 bytes = (bc_hi << 8) | bc_lo;
4776 /* shall be cleared to zero, indicating xfer of data */
4777 if (ireason & (1 << 0))
4778 goto err_out;
4780 /* make sure transfer direction matches expected */
4781 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4782 if (do_write != i_write)
4783 goto err_out;
4785 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4787 __atapi_pio_bytes(qc, bytes);
4789 return;
4791 err_out:
4792 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4793 qc->err_mask |= AC_ERR_HSM;
4794 ap->hsm_task_state = HSM_ST_ERR;
4798 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4799 * @ap: the target ata_port
4800 * @qc: qc on going
4802 * RETURNS:
4803 * 1 if ok in workqueue, 0 otherwise.
4806 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4808 if (qc->tf.flags & ATA_TFLAG_POLLING)
4809 return 1;
4811 if (ap->hsm_task_state == HSM_ST_FIRST) {
4812 if (qc->tf.protocol == ATA_PROT_PIO &&
4813 (qc->tf.flags & ATA_TFLAG_WRITE))
4814 return 1;
4816 if (is_atapi_taskfile(&qc->tf) &&
4817 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4818 return 1;
4821 return 0;
4825 * ata_hsm_qc_complete - finish a qc running on standard HSM
4826 * @qc: Command to complete
4827 * @in_wq: 1 if called from workqueue, 0 otherwise
4829 * Finish @qc which is running on standard HSM.
4831 * LOCKING:
4832 * If @in_wq is zero, spin_lock_irqsave(host lock).
4833 * Otherwise, none on entry and grabs host lock.
4835 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4837 struct ata_port *ap = qc->ap;
4838 unsigned long flags;
4840 if (ap->ops->error_handler) {
4841 if (in_wq) {
4842 spin_lock_irqsave(ap->lock, flags);
4844 /* EH might have kicked in while host lock is
4845 * released.
4847 qc = ata_qc_from_tag(ap, qc->tag);
4848 if (qc) {
4849 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4850 ap->ops->irq_on(ap);
4851 ata_qc_complete(qc);
4852 } else
4853 ata_port_freeze(ap);
4856 spin_unlock_irqrestore(ap->lock, flags);
4857 } else {
4858 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4859 ata_qc_complete(qc);
4860 else
4861 ata_port_freeze(ap);
4863 } else {
4864 if (in_wq) {
4865 spin_lock_irqsave(ap->lock, flags);
4866 ap->ops->irq_on(ap);
4867 ata_qc_complete(qc);
4868 spin_unlock_irqrestore(ap->lock, flags);
4869 } else
4870 ata_qc_complete(qc);
4875 * ata_hsm_move - move the HSM to the next state.
4876 * @ap: the target ata_port
4877 * @qc: qc on going
4878 * @status: current device status
4879 * @in_wq: 1 if called from workqueue, 0 otherwise
4881 * RETURNS:
4882 * 1 when poll next status needed, 0 otherwise.
4884 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4885 u8 status, int in_wq)
4887 unsigned long flags = 0;
4888 int poll_next;
4890 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4892 /* Make sure ata_qc_issue_prot() does not throw things
4893 * like DMA polling into the workqueue. Notice that
4894 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4896 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4898 fsm_start:
4899 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4900 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4902 switch (ap->hsm_task_state) {
4903 case HSM_ST_FIRST:
4904 /* Send first data block or PACKET CDB */
4906 /* If polling, we will stay in the work queue after
4907 * sending the data. Otherwise, interrupt handler
4908 * takes over after sending the data.
4910 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4912 /* check device status */
4913 if (unlikely((status & ATA_DRQ) == 0)) {
4914 /* handle BSY=0, DRQ=0 as error */
4915 if (likely(status & (ATA_ERR | ATA_DF)))
4916 /* device stops HSM for abort/error */
4917 qc->err_mask |= AC_ERR_DEV;
4918 else
4919 /* HSM violation. Let EH handle this */
4920 qc->err_mask |= AC_ERR_HSM;
4922 ap->hsm_task_state = HSM_ST_ERR;
4923 goto fsm_start;
4926 /* Device should not ask for data transfer (DRQ=1)
4927 * when it finds something wrong.
4928 * We ignore DRQ here and stop the HSM by
4929 * changing hsm_task_state to HSM_ST_ERR and
4930 * let the EH abort the command or reset the device.
4932 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4933 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4934 "error, dev_stat 0x%X\n", status);
4935 qc->err_mask |= AC_ERR_HSM;
4936 ap->hsm_task_state = HSM_ST_ERR;
4937 goto fsm_start;
4940 /* Send the CDB (atapi) or the first data block (ata pio out).
4941 * During the state transition, interrupt handler shouldn't
4942 * be invoked before the data transfer is complete and
4943 * hsm_task_state is changed. Hence, the following locking.
4945 if (in_wq)
4946 spin_lock_irqsave(ap->lock, flags);
4948 if (qc->tf.protocol == ATA_PROT_PIO) {
4949 /* PIO data out protocol.
4950 * send first data block.
4953 /* ata_pio_sectors() might change the state
4954 * to HSM_ST_LAST. so, the state is changed here
4955 * before ata_pio_sectors().
4957 ap->hsm_task_state = HSM_ST;
4958 ata_pio_sectors(qc);
4959 ata_altstatus(ap); /* flush */
4960 } else
4961 /* send CDB */
4962 atapi_send_cdb(ap, qc);
4964 if (in_wq)
4965 spin_unlock_irqrestore(ap->lock, flags);
4967 /* if polling, ata_pio_task() handles the rest.
4968 * otherwise, interrupt handler takes over from here.
4970 break;
4972 case HSM_ST:
4973 /* complete command or read/write the data register */
4974 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4975 /* ATAPI PIO protocol */
4976 if ((status & ATA_DRQ) == 0) {
4977 /* No more data to transfer or device error.
4978 * Device error will be tagged in HSM_ST_LAST.
4980 ap->hsm_task_state = HSM_ST_LAST;
4981 goto fsm_start;
4984 /* Device should not ask for data transfer (DRQ=1)
4985 * when it finds something wrong.
4986 * We ignore DRQ here and stop the HSM by
4987 * changing hsm_task_state to HSM_ST_ERR and
4988 * let the EH abort the command or reset the device.
4990 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4991 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4992 "device error, dev_stat 0x%X\n",
4993 status);
4994 qc->err_mask |= AC_ERR_HSM;
4995 ap->hsm_task_state = HSM_ST_ERR;
4996 goto fsm_start;
4999 atapi_pio_bytes(qc);
5001 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5002 /* bad ireason reported by device */
5003 goto fsm_start;
5005 } else {
5006 /* ATA PIO protocol */
5007 if (unlikely((status & ATA_DRQ) == 0)) {
5008 /* handle BSY=0, DRQ=0 as error */
5009 if (likely(status & (ATA_ERR | ATA_DF)))
5010 /* device stops HSM for abort/error */
5011 qc->err_mask |= AC_ERR_DEV;
5012 else
5013 /* HSM violation. Let EH handle this.
5014 * Phantom devices also trigger this
5015 * condition. Mark hint.
5017 qc->err_mask |= AC_ERR_HSM |
5018 AC_ERR_NODEV_HINT;
5020 ap->hsm_task_state = HSM_ST_ERR;
5021 goto fsm_start;
5024 /* For PIO reads, some devices may ask for
5025 * data transfer (DRQ=1) alone with ERR=1.
5026 * We respect DRQ here and transfer one
5027 * block of junk data before changing the
5028 * hsm_task_state to HSM_ST_ERR.
5030 * For PIO writes, ERR=1 DRQ=1 doesn't make
5031 * sense since the data block has been
5032 * transferred to the device.
5034 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5035 /* data might be corrputed */
5036 qc->err_mask |= AC_ERR_DEV;
5038 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5039 ata_pio_sectors(qc);
5040 ata_altstatus(ap);
5041 status = ata_wait_idle(ap);
5044 if (status & (ATA_BUSY | ATA_DRQ))
5045 qc->err_mask |= AC_ERR_HSM;
5047 /* ata_pio_sectors() might change the
5048 * state to HSM_ST_LAST. so, the state
5049 * is changed after ata_pio_sectors().
5051 ap->hsm_task_state = HSM_ST_ERR;
5052 goto fsm_start;
5055 ata_pio_sectors(qc);
5057 if (ap->hsm_task_state == HSM_ST_LAST &&
5058 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5059 /* all data read */
5060 ata_altstatus(ap);
5061 status = ata_wait_idle(ap);
5062 goto fsm_start;
5066 ata_altstatus(ap); /* flush */
5067 poll_next = 1;
5068 break;
5070 case HSM_ST_LAST:
5071 if (unlikely(!ata_ok(status))) {
5072 qc->err_mask |= __ac_err_mask(status);
5073 ap->hsm_task_state = HSM_ST_ERR;
5074 goto fsm_start;
5077 /* no more data to transfer */
5078 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5079 ap->print_id, qc->dev->devno, status);
5081 WARN_ON(qc->err_mask);
5083 ap->hsm_task_state = HSM_ST_IDLE;
5085 /* complete taskfile transaction */
5086 ata_hsm_qc_complete(qc, in_wq);
5088 poll_next = 0;
5089 break;
5091 case HSM_ST_ERR:
5092 /* make sure qc->err_mask is available to
5093 * know what's wrong and recover
5095 WARN_ON(qc->err_mask == 0);
5097 ap->hsm_task_state = HSM_ST_IDLE;
5099 /* complete taskfile transaction */
5100 ata_hsm_qc_complete(qc, in_wq);
5102 poll_next = 0;
5103 break;
5104 default:
5105 poll_next = 0;
5106 BUG();
5109 return poll_next;
5112 static void ata_pio_task(struct work_struct *work)
5114 struct ata_port *ap =
5115 container_of(work, struct ata_port, port_task.work);
5116 struct ata_queued_cmd *qc = ap->port_task_data;
5117 u8 status;
5118 int poll_next;
5120 fsm_start:
5121 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5124 * This is purely heuristic. This is a fast path.
5125 * Sometimes when we enter, BSY will be cleared in
5126 * a chk-status or two. If not, the drive is probably seeking
5127 * or something. Snooze for a couple msecs, then
5128 * chk-status again. If still busy, queue delayed work.
5130 status = ata_busy_wait(ap, ATA_BUSY, 5);
5131 if (status & ATA_BUSY) {
5132 msleep(2);
5133 status = ata_busy_wait(ap, ATA_BUSY, 10);
5134 if (status & ATA_BUSY) {
5135 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5136 return;
5140 /* move the HSM */
5141 poll_next = ata_hsm_move(ap, qc, status, 1);
5143 /* another command or interrupt handler
5144 * may be running at this point.
5146 if (poll_next)
5147 goto fsm_start;
5151 * ata_qc_new - Request an available ATA command, for queueing
5152 * @ap: Port associated with device @dev
5153 * @dev: Device from whom we request an available command structure
5155 * LOCKING:
5156 * None.
5159 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5161 struct ata_queued_cmd *qc = NULL;
5162 unsigned int i;
5164 /* no command while frozen */
5165 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5166 return NULL;
5168 /* the last tag is reserved for internal command. */
5169 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5170 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5171 qc = __ata_qc_from_tag(ap, i);
5172 break;
5175 if (qc)
5176 qc->tag = i;
5178 return qc;
5182 * ata_qc_new_init - Request an available ATA command, and initialize it
5183 * @dev: Device from whom we request an available command structure
5185 * LOCKING:
5186 * None.
5189 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5191 struct ata_port *ap = dev->ap;
5192 struct ata_queued_cmd *qc;
5194 qc = ata_qc_new(ap);
5195 if (qc) {
5196 qc->scsicmd = NULL;
5197 qc->ap = ap;
5198 qc->dev = dev;
5200 ata_qc_reinit(qc);
5203 return qc;
5207 * ata_qc_free - free unused ata_queued_cmd
5208 * @qc: Command to complete
5210 * Designed to free unused ata_queued_cmd object
5211 * in case something prevents using it.
5213 * LOCKING:
5214 * spin_lock_irqsave(host lock)
5216 void ata_qc_free(struct ata_queued_cmd *qc)
5218 struct ata_port *ap = qc->ap;
5219 unsigned int tag;
5221 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5223 qc->flags = 0;
5224 tag = qc->tag;
5225 if (likely(ata_tag_valid(tag))) {
5226 qc->tag = ATA_TAG_POISON;
5227 clear_bit(tag, &ap->qc_allocated);
5231 void __ata_qc_complete(struct ata_queued_cmd *qc)
5233 struct ata_port *ap = qc->ap;
5235 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5236 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5238 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5239 ata_sg_clean(qc);
5241 /* command should be marked inactive atomically with qc completion */
5242 if (qc->tf.protocol == ATA_PROT_NCQ)
5243 ap->sactive &= ~(1 << qc->tag);
5244 else
5245 ap->active_tag = ATA_TAG_POISON;
5247 /* atapi: mark qc as inactive to prevent the interrupt handler
5248 * from completing the command twice later, before the error handler
5249 * is called. (when rc != 0 and atapi request sense is needed)
5251 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5252 ap->qc_active &= ~(1 << qc->tag);
5254 /* call completion callback */
5255 qc->complete_fn(qc);
5258 static void fill_result_tf(struct ata_queued_cmd *qc)
5260 struct ata_port *ap = qc->ap;
5262 qc->result_tf.flags = qc->tf.flags;
5263 ap->ops->tf_read(ap, &qc->result_tf);
5267 * ata_qc_complete - Complete an active ATA command
5268 * @qc: Command to complete
5269 * @err_mask: ATA Status register contents
5271 * Indicate to the mid and upper layers that an ATA
5272 * command has completed, with either an ok or not-ok status.
5274 * LOCKING:
5275 * spin_lock_irqsave(host lock)
5277 void ata_qc_complete(struct ata_queued_cmd *qc)
5279 struct ata_port *ap = qc->ap;
5281 /* XXX: New EH and old EH use different mechanisms to
5282 * synchronize EH with regular execution path.
5284 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5285 * Normal execution path is responsible for not accessing a
5286 * failed qc. libata core enforces the rule by returning NULL
5287 * from ata_qc_from_tag() for failed qcs.
5289 * Old EH depends on ata_qc_complete() nullifying completion
5290 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5291 * not synchronize with interrupt handler. Only PIO task is
5292 * taken care of.
5294 if (ap->ops->error_handler) {
5295 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5297 if (unlikely(qc->err_mask))
5298 qc->flags |= ATA_QCFLAG_FAILED;
5300 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5301 if (!ata_tag_internal(qc->tag)) {
5302 /* always fill result TF for failed qc */
5303 fill_result_tf(qc);
5304 ata_qc_schedule_eh(qc);
5305 return;
5309 /* read result TF if requested */
5310 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5311 fill_result_tf(qc);
5313 __ata_qc_complete(qc);
5314 } else {
5315 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5316 return;
5318 /* read result TF if failed or requested */
5319 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5320 fill_result_tf(qc);
5322 __ata_qc_complete(qc);
5327 * ata_qc_complete_multiple - Complete multiple qcs successfully
5328 * @ap: port in question
5329 * @qc_active: new qc_active mask
5330 * @finish_qc: LLDD callback invoked before completing a qc
5332 * Complete in-flight commands. This functions is meant to be
5333 * called from low-level driver's interrupt routine to complete
5334 * requests normally. ap->qc_active and @qc_active is compared
5335 * and commands are completed accordingly.
5337 * LOCKING:
5338 * spin_lock_irqsave(host lock)
5340 * RETURNS:
5341 * Number of completed commands on success, -errno otherwise.
5343 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5344 void (*finish_qc)(struct ata_queued_cmd *))
5346 int nr_done = 0;
5347 u32 done_mask;
5348 int i;
5350 done_mask = ap->qc_active ^ qc_active;
5352 if (unlikely(done_mask & qc_active)) {
5353 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5354 "(%08x->%08x)\n", ap->qc_active, qc_active);
5355 return -EINVAL;
5358 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5359 struct ata_queued_cmd *qc;
5361 if (!(done_mask & (1 << i)))
5362 continue;
5364 if ((qc = ata_qc_from_tag(ap, i))) {
5365 if (finish_qc)
5366 finish_qc(qc);
5367 ata_qc_complete(qc);
5368 nr_done++;
5372 return nr_done;
5375 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5377 struct ata_port *ap = qc->ap;
5379 switch (qc->tf.protocol) {
5380 case ATA_PROT_NCQ:
5381 case ATA_PROT_DMA:
5382 case ATA_PROT_ATAPI_DMA:
5383 return 1;
5385 case ATA_PROT_ATAPI:
5386 case ATA_PROT_PIO:
5387 if (ap->flags & ATA_FLAG_PIO_DMA)
5388 return 1;
5390 /* fall through */
5392 default:
5393 return 0;
5396 /* never reached */
5400 * ata_qc_issue - issue taskfile to device
5401 * @qc: command to issue to device
5403 * Prepare an ATA command to submission to device.
5404 * This includes mapping the data into a DMA-able
5405 * area, filling in the S/G table, and finally
5406 * writing the taskfile to hardware, starting the command.
5408 * LOCKING:
5409 * spin_lock_irqsave(host lock)
5411 void ata_qc_issue(struct ata_queued_cmd *qc)
5413 struct ata_port *ap = qc->ap;
5415 /* Make sure only one non-NCQ command is outstanding. The
5416 * check is skipped for old EH because it reuses active qc to
5417 * request ATAPI sense.
5419 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5421 if (qc->tf.protocol == ATA_PROT_NCQ) {
5422 WARN_ON(ap->sactive & (1 << qc->tag));
5423 ap->sactive |= 1 << qc->tag;
5424 } else {
5425 WARN_ON(ap->sactive);
5426 ap->active_tag = qc->tag;
5429 qc->flags |= ATA_QCFLAG_ACTIVE;
5430 ap->qc_active |= 1 << qc->tag;
5432 if (ata_should_dma_map(qc)) {
5433 if (qc->flags & ATA_QCFLAG_SG) {
5434 if (ata_sg_setup(qc))
5435 goto sg_err;
5436 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5437 if (ata_sg_setup_one(qc))
5438 goto sg_err;
5440 } else {
5441 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5444 ap->ops->qc_prep(qc);
5446 qc->err_mask |= ap->ops->qc_issue(qc);
5447 if (unlikely(qc->err_mask))
5448 goto err;
5449 return;
5451 sg_err:
5452 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5453 qc->err_mask |= AC_ERR_SYSTEM;
5454 err:
5455 ata_qc_complete(qc);
5459 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5460 * @qc: command to issue to device
5462 * Using various libata functions and hooks, this function
5463 * starts an ATA command. ATA commands are grouped into
5464 * classes called "protocols", and issuing each type of protocol
5465 * is slightly different.
5467 * May be used as the qc_issue() entry in ata_port_operations.
5469 * LOCKING:
5470 * spin_lock_irqsave(host lock)
5472 * RETURNS:
5473 * Zero on success, AC_ERR_* mask on failure
5476 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5478 struct ata_port *ap = qc->ap;
5480 /* Use polling pio if the LLD doesn't handle
5481 * interrupt driven pio and atapi CDB interrupt.
5483 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5484 switch (qc->tf.protocol) {
5485 case ATA_PROT_PIO:
5486 case ATA_PROT_NODATA:
5487 case ATA_PROT_ATAPI:
5488 case ATA_PROT_ATAPI_NODATA:
5489 qc->tf.flags |= ATA_TFLAG_POLLING;
5490 break;
5491 case ATA_PROT_ATAPI_DMA:
5492 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5493 /* see ata_dma_blacklisted() */
5494 BUG();
5495 break;
5496 default:
5497 break;
5501 /* select the device */
5502 ata_dev_select(ap, qc->dev->devno, 1, 0);
5504 /* start the command */
5505 switch (qc->tf.protocol) {
5506 case ATA_PROT_NODATA:
5507 if (qc->tf.flags & ATA_TFLAG_POLLING)
5508 ata_qc_set_polling(qc);
5510 ata_tf_to_host(ap, &qc->tf);
5511 ap->hsm_task_state = HSM_ST_LAST;
5513 if (qc->tf.flags & ATA_TFLAG_POLLING)
5514 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5516 break;
5518 case ATA_PROT_DMA:
5519 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5521 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5522 ap->ops->bmdma_setup(qc); /* set up bmdma */
5523 ap->ops->bmdma_start(qc); /* initiate bmdma */
5524 ap->hsm_task_state = HSM_ST_LAST;
5525 break;
5527 case ATA_PROT_PIO:
5528 if (qc->tf.flags & ATA_TFLAG_POLLING)
5529 ata_qc_set_polling(qc);
5531 ata_tf_to_host(ap, &qc->tf);
5533 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5534 /* PIO data out protocol */
5535 ap->hsm_task_state = HSM_ST_FIRST;
5536 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5538 /* always send first data block using
5539 * the ata_pio_task() codepath.
5541 } else {
5542 /* PIO data in protocol */
5543 ap->hsm_task_state = HSM_ST;
5545 if (qc->tf.flags & ATA_TFLAG_POLLING)
5546 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5548 /* if polling, ata_pio_task() handles the rest.
5549 * otherwise, interrupt handler takes over from here.
5553 break;
5555 case ATA_PROT_ATAPI:
5556 case ATA_PROT_ATAPI_NODATA:
5557 if (qc->tf.flags & ATA_TFLAG_POLLING)
5558 ata_qc_set_polling(qc);
5560 ata_tf_to_host(ap, &qc->tf);
5562 ap->hsm_task_state = HSM_ST_FIRST;
5564 /* send cdb by polling if no cdb interrupt */
5565 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5566 (qc->tf.flags & ATA_TFLAG_POLLING))
5567 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5568 break;
5570 case ATA_PROT_ATAPI_DMA:
5571 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5573 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5574 ap->ops->bmdma_setup(qc); /* set up bmdma */
5575 ap->hsm_task_state = HSM_ST_FIRST;
5577 /* send cdb by polling if no cdb interrupt */
5578 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5579 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5580 break;
5582 default:
5583 WARN_ON(1);
5584 return AC_ERR_SYSTEM;
5587 return 0;
5591 * ata_host_intr - Handle host interrupt for given (port, task)
5592 * @ap: Port on which interrupt arrived (possibly...)
5593 * @qc: Taskfile currently active in engine
5595 * Handle host interrupt for given queued command. Currently,
5596 * only DMA interrupts are handled. All other commands are
5597 * handled via polling with interrupts disabled (nIEN bit).
5599 * LOCKING:
5600 * spin_lock_irqsave(host lock)
5602 * RETURNS:
5603 * One if interrupt was handled, zero if not (shared irq).
5606 inline unsigned int ata_host_intr (struct ata_port *ap,
5607 struct ata_queued_cmd *qc)
5609 struct ata_eh_info *ehi = &ap->eh_info;
5610 u8 status, host_stat = 0;
5612 VPRINTK("ata%u: protocol %d task_state %d\n",
5613 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5615 /* Check whether we are expecting interrupt in this state */
5616 switch (ap->hsm_task_state) {
5617 case HSM_ST_FIRST:
5618 /* Some pre-ATAPI-4 devices assert INTRQ
5619 * at this state when ready to receive CDB.
5622 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5623 * The flag was turned on only for atapi devices.
5624 * No need to check is_atapi_taskfile(&qc->tf) again.
5626 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5627 goto idle_irq;
5628 break;
5629 case HSM_ST_LAST:
5630 if (qc->tf.protocol == ATA_PROT_DMA ||
5631 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5632 /* check status of DMA engine */
5633 host_stat = ap->ops->bmdma_status(ap);
5634 VPRINTK("ata%u: host_stat 0x%X\n",
5635 ap->print_id, host_stat);
5637 /* if it's not our irq... */
5638 if (!(host_stat & ATA_DMA_INTR))
5639 goto idle_irq;
5641 /* before we do anything else, clear DMA-Start bit */
5642 ap->ops->bmdma_stop(qc);
5644 if (unlikely(host_stat & ATA_DMA_ERR)) {
5645 /* error when transfering data to/from memory */
5646 qc->err_mask |= AC_ERR_HOST_BUS;
5647 ap->hsm_task_state = HSM_ST_ERR;
5650 break;
5651 case HSM_ST:
5652 break;
5653 default:
5654 goto idle_irq;
5657 /* check altstatus */
5658 status = ata_altstatus(ap);
5659 if (status & ATA_BUSY)
5660 goto idle_irq;
5662 /* check main status, clearing INTRQ */
5663 status = ata_chk_status(ap);
5664 if (unlikely(status & ATA_BUSY))
5665 goto idle_irq;
5667 /* ack bmdma irq events */
5668 ap->ops->irq_clear(ap);
5670 ata_hsm_move(ap, qc, status, 0);
5672 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5673 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5674 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5676 return 1; /* irq handled */
5678 idle_irq:
5679 ap->stats.idle_irq++;
5681 #ifdef ATA_IRQ_TRAP
5682 if ((ap->stats.idle_irq % 1000) == 0) {
5683 ap->ops->irq_ack(ap, 0); /* debug trap */
5684 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5685 return 1;
5687 #endif
5688 return 0; /* irq not handled */
5692 * ata_interrupt - Default ATA host interrupt handler
5693 * @irq: irq line (unused)
5694 * @dev_instance: pointer to our ata_host information structure
5696 * Default interrupt handler for PCI IDE devices. Calls
5697 * ata_host_intr() for each port that is not disabled.
5699 * LOCKING:
5700 * Obtains host lock during operation.
5702 * RETURNS:
5703 * IRQ_NONE or IRQ_HANDLED.
5706 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5708 struct ata_host *host = dev_instance;
5709 unsigned int i;
5710 unsigned int handled = 0;
5711 unsigned long flags;
5713 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5714 spin_lock_irqsave(&host->lock, flags);
5716 for (i = 0; i < host->n_ports; i++) {
5717 struct ata_port *ap;
5719 ap = host->ports[i];
5720 if (ap &&
5721 !(ap->flags & ATA_FLAG_DISABLED)) {
5722 struct ata_queued_cmd *qc;
5724 qc = ata_qc_from_tag(ap, ap->active_tag);
5725 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5726 (qc->flags & ATA_QCFLAG_ACTIVE))
5727 handled |= ata_host_intr(ap, qc);
5731 spin_unlock_irqrestore(&host->lock, flags);
5733 return IRQ_RETVAL(handled);
5737 * sata_scr_valid - test whether SCRs are accessible
5738 * @ap: ATA port to test SCR accessibility for
5740 * Test whether SCRs are accessible for @ap.
5742 * LOCKING:
5743 * None.
5745 * RETURNS:
5746 * 1 if SCRs are accessible, 0 otherwise.
5748 int sata_scr_valid(struct ata_port *ap)
5750 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5754 * sata_scr_read - read SCR register of the specified port
5755 * @ap: ATA port to read SCR for
5756 * @reg: SCR to read
5757 * @val: Place to store read value
5759 * Read SCR register @reg of @ap into *@val. This function is
5760 * guaranteed to succeed if the cable type of the port is SATA
5761 * and the port implements ->scr_read.
5763 * LOCKING:
5764 * None.
5766 * RETURNS:
5767 * 0 on success, negative errno on failure.
5769 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5771 if (sata_scr_valid(ap))
5772 return ap->ops->scr_read(ap, reg, val);
5773 return -EOPNOTSUPP;
5777 * sata_scr_write - write SCR register of the specified port
5778 * @ap: ATA port to write SCR for
5779 * @reg: SCR to write
5780 * @val: value to write
5782 * Write @val to SCR register @reg of @ap. This function is
5783 * guaranteed to succeed if the cable type of the port is SATA
5784 * and the port implements ->scr_read.
5786 * LOCKING:
5787 * None.
5789 * RETURNS:
5790 * 0 on success, negative errno on failure.
5792 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5794 if (sata_scr_valid(ap))
5795 return ap->ops->scr_write(ap, reg, val);
5796 return -EOPNOTSUPP;
5800 * sata_scr_write_flush - write SCR register of the specified port and flush
5801 * @ap: ATA port to write SCR for
5802 * @reg: SCR to write
5803 * @val: value to write
5805 * This function is identical to sata_scr_write() except that this
5806 * function performs flush after writing to the register.
5808 * LOCKING:
5809 * None.
5811 * RETURNS:
5812 * 0 on success, negative errno on failure.
5814 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5816 int rc;
5818 if (sata_scr_valid(ap)) {
5819 rc = ap->ops->scr_write(ap, reg, val);
5820 if (rc == 0)
5821 rc = ap->ops->scr_read(ap, reg, &val);
5822 return rc;
5824 return -EOPNOTSUPP;
5828 * ata_port_online - test whether the given port is online
5829 * @ap: ATA port to test
5831 * Test whether @ap is online. Note that this function returns 0
5832 * if online status of @ap cannot be obtained, so
5833 * ata_port_online(ap) != !ata_port_offline(ap).
5835 * LOCKING:
5836 * None.
5838 * RETURNS:
5839 * 1 if the port online status is available and online.
5841 int ata_port_online(struct ata_port *ap)
5843 u32 sstatus;
5845 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5846 return 1;
5847 return 0;
5851 * ata_port_offline - test whether the given port is offline
5852 * @ap: ATA port to test
5854 * Test whether @ap is offline. Note that this function returns
5855 * 0 if offline status of @ap cannot be obtained, so
5856 * ata_port_online(ap) != !ata_port_offline(ap).
5858 * LOCKING:
5859 * None.
5861 * RETURNS:
5862 * 1 if the port offline status is available and offline.
5864 int ata_port_offline(struct ata_port *ap)
5866 u32 sstatus;
5868 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5869 return 1;
5870 return 0;
5873 int ata_flush_cache(struct ata_device *dev)
5875 unsigned int err_mask;
5876 u8 cmd;
5878 if (!ata_try_flush_cache(dev))
5879 return 0;
5881 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5882 cmd = ATA_CMD_FLUSH_EXT;
5883 else
5884 cmd = ATA_CMD_FLUSH;
5886 err_mask = ata_do_simple_cmd(dev, cmd);
5887 if (err_mask) {
5888 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5889 return -EIO;
5892 return 0;
5895 #ifdef CONFIG_PM
5896 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5897 unsigned int action, unsigned int ehi_flags,
5898 int wait)
5900 unsigned long flags;
5901 int i, rc;
5903 for (i = 0; i < host->n_ports; i++) {
5904 struct ata_port *ap = host->ports[i];
5906 /* Previous resume operation might still be in
5907 * progress. Wait for PM_PENDING to clear.
5909 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5910 ata_port_wait_eh(ap);
5911 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5914 /* request PM ops to EH */
5915 spin_lock_irqsave(ap->lock, flags);
5917 ap->pm_mesg = mesg;
5918 if (wait) {
5919 rc = 0;
5920 ap->pm_result = &rc;
5923 ap->pflags |= ATA_PFLAG_PM_PENDING;
5924 ap->eh_info.action |= action;
5925 ap->eh_info.flags |= ehi_flags;
5927 ata_port_schedule_eh(ap);
5929 spin_unlock_irqrestore(ap->lock, flags);
5931 /* wait and check result */
5932 if (wait) {
5933 ata_port_wait_eh(ap);
5934 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5935 if (rc)
5936 return rc;
5940 return 0;
5944 * ata_host_suspend - suspend host
5945 * @host: host to suspend
5946 * @mesg: PM message
5948 * Suspend @host. Actual operation is performed by EH. This
5949 * function requests EH to perform PM operations and waits for EH
5950 * to finish.
5952 * LOCKING:
5953 * Kernel thread context (may sleep).
5955 * RETURNS:
5956 * 0 on success, -errno on failure.
5958 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5960 int rc;
5962 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5963 if (rc == 0)
5964 host->dev->power.power_state = mesg;
5965 return rc;
5969 * ata_host_resume - resume host
5970 * @host: host to resume
5972 * Resume @host. Actual operation is performed by EH. This
5973 * function requests EH to perform PM operations and returns.
5974 * Note that all resume operations are performed parallely.
5976 * LOCKING:
5977 * Kernel thread context (may sleep).
5979 void ata_host_resume(struct ata_host *host)
5981 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5982 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5983 host->dev->power.power_state = PMSG_ON;
5985 #endif
5988 * ata_port_start - Set port up for dma.
5989 * @ap: Port to initialize
5991 * Called just after data structures for each port are
5992 * initialized. Allocates space for PRD table.
5994 * May be used as the port_start() entry in ata_port_operations.
5996 * LOCKING:
5997 * Inherited from caller.
5999 int ata_port_start(struct ata_port *ap)
6001 struct device *dev = ap->dev;
6002 int rc;
6004 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6005 GFP_KERNEL);
6006 if (!ap->prd)
6007 return -ENOMEM;
6009 rc = ata_pad_alloc(ap, dev);
6010 if (rc)
6011 return rc;
6013 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6014 (unsigned long long)ap->prd_dma);
6015 return 0;
6019 * ata_dev_init - Initialize an ata_device structure
6020 * @dev: Device structure to initialize
6022 * Initialize @dev in preparation for probing.
6024 * LOCKING:
6025 * Inherited from caller.
6027 void ata_dev_init(struct ata_device *dev)
6029 struct ata_port *ap = dev->ap;
6030 unsigned long flags;
6032 /* SATA spd limit is bound to the first device */
6033 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6034 ap->sata_spd = 0;
6036 /* High bits of dev->flags are used to record warm plug
6037 * requests which occur asynchronously. Synchronize using
6038 * host lock.
6040 spin_lock_irqsave(ap->lock, flags);
6041 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6042 dev->horkage = 0;
6043 spin_unlock_irqrestore(ap->lock, flags);
6045 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6046 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6047 dev->pio_mask = UINT_MAX;
6048 dev->mwdma_mask = UINT_MAX;
6049 dev->udma_mask = UINT_MAX;
6053 * ata_port_alloc - allocate and initialize basic ATA port resources
6054 * @host: ATA host this allocated port belongs to
6056 * Allocate and initialize basic ATA port resources.
6058 * RETURNS:
6059 * Allocate ATA port on success, NULL on failure.
6061 * LOCKING:
6062 * Inherited from calling layer (may sleep).
6064 struct ata_port *ata_port_alloc(struct ata_host *host)
6066 struct ata_port *ap;
6067 unsigned int i;
6069 DPRINTK("ENTER\n");
6071 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6072 if (!ap)
6073 return NULL;
6075 ap->pflags |= ATA_PFLAG_INITIALIZING;
6076 ap->lock = &host->lock;
6077 ap->flags = ATA_FLAG_DISABLED;
6078 ap->print_id = -1;
6079 ap->ctl = ATA_DEVCTL_OBS;
6080 ap->host = host;
6081 ap->dev = host->dev;
6083 ap->hw_sata_spd_limit = UINT_MAX;
6084 ap->active_tag = ATA_TAG_POISON;
6085 ap->last_ctl = 0xFF;
6087 #if defined(ATA_VERBOSE_DEBUG)
6088 /* turn on all debugging levels */
6089 ap->msg_enable = 0x00FF;
6090 #elif defined(ATA_DEBUG)
6091 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6092 #else
6093 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6094 #endif
6096 INIT_DELAYED_WORK(&ap->port_task, NULL);
6097 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6098 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6099 INIT_LIST_HEAD(&ap->eh_done_q);
6100 init_waitqueue_head(&ap->eh_wait_q);
6101 init_timer_deferrable(&ap->fastdrain_timer);
6102 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6103 ap->fastdrain_timer.data = (unsigned long)ap;
6105 ap->cbl = ATA_CBL_NONE;
6107 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6108 struct ata_device *dev = &ap->device[i];
6109 dev->ap = ap;
6110 dev->devno = i;
6111 ata_dev_init(dev);
6114 #ifdef ATA_IRQ_TRAP
6115 ap->stats.unhandled_irq = 1;
6116 ap->stats.idle_irq = 1;
6117 #endif
6118 return ap;
6121 static void ata_host_release(struct device *gendev, void *res)
6123 struct ata_host *host = dev_get_drvdata(gendev);
6124 int i;
6126 for (i = 0; i < host->n_ports; i++) {
6127 struct ata_port *ap = host->ports[i];
6129 if (!ap)
6130 continue;
6132 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6133 ap->ops->port_stop(ap);
6136 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6137 host->ops->host_stop(host);
6139 for (i = 0; i < host->n_ports; i++) {
6140 struct ata_port *ap = host->ports[i];
6142 if (!ap)
6143 continue;
6145 if (ap->scsi_host)
6146 scsi_host_put(ap->scsi_host);
6148 kfree(ap);
6149 host->ports[i] = NULL;
6152 dev_set_drvdata(gendev, NULL);
6156 * ata_host_alloc - allocate and init basic ATA host resources
6157 * @dev: generic device this host is associated with
6158 * @max_ports: maximum number of ATA ports associated with this host
6160 * Allocate and initialize basic ATA host resources. LLD calls
6161 * this function to allocate a host, initializes it fully and
6162 * attaches it using ata_host_register().
6164 * @max_ports ports are allocated and host->n_ports is
6165 * initialized to @max_ports. The caller is allowed to decrease
6166 * host->n_ports before calling ata_host_register(). The unused
6167 * ports will be automatically freed on registration.
6169 * RETURNS:
6170 * Allocate ATA host on success, NULL on failure.
6172 * LOCKING:
6173 * Inherited from calling layer (may sleep).
6175 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6177 struct ata_host *host;
6178 size_t sz;
6179 int i;
6181 DPRINTK("ENTER\n");
6183 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6184 return NULL;
6186 /* alloc a container for our list of ATA ports (buses) */
6187 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6188 /* alloc a container for our list of ATA ports (buses) */
6189 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6190 if (!host)
6191 goto err_out;
6193 devres_add(dev, host);
6194 dev_set_drvdata(dev, host);
6196 spin_lock_init(&host->lock);
6197 host->dev = dev;
6198 host->n_ports = max_ports;
6200 /* allocate ports bound to this host */
6201 for (i = 0; i < max_ports; i++) {
6202 struct ata_port *ap;
6204 ap = ata_port_alloc(host);
6205 if (!ap)
6206 goto err_out;
6208 ap->port_no = i;
6209 host->ports[i] = ap;
6212 devres_remove_group(dev, NULL);
6213 return host;
6215 err_out:
6216 devres_release_group(dev, NULL);
6217 return NULL;
6221 * ata_host_alloc_pinfo - alloc host and init with port_info array
6222 * @dev: generic device this host is associated with
6223 * @ppi: array of ATA port_info to initialize host with
6224 * @n_ports: number of ATA ports attached to this host
6226 * Allocate ATA host and initialize with info from @ppi. If NULL
6227 * terminated, @ppi may contain fewer entries than @n_ports. The
6228 * last entry will be used for the remaining ports.
6230 * RETURNS:
6231 * Allocate ATA host on success, NULL on failure.
6233 * LOCKING:
6234 * Inherited from calling layer (may sleep).
6236 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6237 const struct ata_port_info * const * ppi,
6238 int n_ports)
6240 const struct ata_port_info *pi;
6241 struct ata_host *host;
6242 int i, j;
6244 host = ata_host_alloc(dev, n_ports);
6245 if (!host)
6246 return NULL;
6248 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6249 struct ata_port *ap = host->ports[i];
6251 if (ppi[j])
6252 pi = ppi[j++];
6254 ap->pio_mask = pi->pio_mask;
6255 ap->mwdma_mask = pi->mwdma_mask;
6256 ap->udma_mask = pi->udma_mask;
6257 ap->flags |= pi->flags;
6258 ap->ops = pi->port_ops;
6260 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6261 host->ops = pi->port_ops;
6262 if (!host->private_data && pi->private_data)
6263 host->private_data = pi->private_data;
6266 return host;
6270 * ata_host_start - start and freeze ports of an ATA host
6271 * @host: ATA host to start ports for
6273 * Start and then freeze ports of @host. Started status is
6274 * recorded in host->flags, so this function can be called
6275 * multiple times. Ports are guaranteed to get started only
6276 * once. If host->ops isn't initialized yet, its set to the
6277 * first non-dummy port ops.
6279 * LOCKING:
6280 * Inherited from calling layer (may sleep).
6282 * RETURNS:
6283 * 0 if all ports are started successfully, -errno otherwise.
6285 int ata_host_start(struct ata_host *host)
6287 int i, rc;
6289 if (host->flags & ATA_HOST_STARTED)
6290 return 0;
6292 for (i = 0; i < host->n_ports; i++) {
6293 struct ata_port *ap = host->ports[i];
6295 if (!host->ops && !ata_port_is_dummy(ap))
6296 host->ops = ap->ops;
6298 if (ap->ops->port_start) {
6299 rc = ap->ops->port_start(ap);
6300 if (rc) {
6301 ata_port_printk(ap, KERN_ERR, "failed to "
6302 "start port (errno=%d)\n", rc);
6303 goto err_out;
6307 ata_eh_freeze_port(ap);
6310 host->flags |= ATA_HOST_STARTED;
6311 return 0;
6313 err_out:
6314 while (--i >= 0) {
6315 struct ata_port *ap = host->ports[i];
6317 if (ap->ops->port_stop)
6318 ap->ops->port_stop(ap);
6320 return rc;
6324 * ata_sas_host_init - Initialize a host struct
6325 * @host: host to initialize
6326 * @dev: device host is attached to
6327 * @flags: host flags
6328 * @ops: port_ops
6330 * LOCKING:
6331 * PCI/etc. bus probe sem.
6334 /* KILLME - the only user left is ipr */
6335 void ata_host_init(struct ata_host *host, struct device *dev,
6336 unsigned long flags, const struct ata_port_operations *ops)
6338 spin_lock_init(&host->lock);
6339 host->dev = dev;
6340 host->flags = flags;
6341 host->ops = ops;
6345 * ata_host_register - register initialized ATA host
6346 * @host: ATA host to register
6347 * @sht: template for SCSI host
6349 * Register initialized ATA host. @host is allocated using
6350 * ata_host_alloc() and fully initialized by LLD. This function
6351 * starts ports, registers @host with ATA and SCSI layers and
6352 * probe registered devices.
6354 * LOCKING:
6355 * Inherited from calling layer (may sleep).
6357 * RETURNS:
6358 * 0 on success, -errno otherwise.
6360 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6362 int i, rc;
6364 /* host must have been started */
6365 if (!(host->flags & ATA_HOST_STARTED)) {
6366 dev_printk(KERN_ERR, host->dev,
6367 "BUG: trying to register unstarted host\n");
6368 WARN_ON(1);
6369 return -EINVAL;
6372 /* Blow away unused ports. This happens when LLD can't
6373 * determine the exact number of ports to allocate at
6374 * allocation time.
6376 for (i = host->n_ports; host->ports[i]; i++)
6377 kfree(host->ports[i]);
6379 /* give ports names and add SCSI hosts */
6380 for (i = 0; i < host->n_ports; i++)
6381 host->ports[i]->print_id = ata_print_id++;
6383 rc = ata_scsi_add_hosts(host, sht);
6384 if (rc)
6385 return rc;
6387 /* associate with ACPI nodes */
6388 ata_acpi_associate(host);
6390 /* set cable, sata_spd_limit and report */
6391 for (i = 0; i < host->n_ports; i++) {
6392 struct ata_port *ap = host->ports[i];
6393 int irq_line;
6394 u32 scontrol;
6395 unsigned long xfer_mask;
6397 /* set SATA cable type if still unset */
6398 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6399 ap->cbl = ATA_CBL_SATA;
6401 /* init sata_spd_limit to the current value */
6402 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6403 int spd = (scontrol >> 4) & 0xf;
6404 if (spd)
6405 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6407 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6409 /* report the secondary IRQ for second channel legacy */
6410 irq_line = host->irq;
6411 if (i == 1 && host->irq2)
6412 irq_line = host->irq2;
6414 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6415 ap->udma_mask);
6417 /* print per-port info to dmesg */
6418 if (!ata_port_is_dummy(ap))
6419 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6420 "ctl 0x%p bmdma 0x%p irq %d\n",
6421 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6422 ata_mode_string(xfer_mask),
6423 ap->ioaddr.cmd_addr,
6424 ap->ioaddr.ctl_addr,
6425 ap->ioaddr.bmdma_addr,
6426 irq_line);
6427 else
6428 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6431 /* perform each probe synchronously */
6432 DPRINTK("probe begin\n");
6433 for (i = 0; i < host->n_ports; i++) {
6434 struct ata_port *ap = host->ports[i];
6435 int rc;
6437 /* probe */
6438 if (ap->ops->error_handler) {
6439 struct ata_eh_info *ehi = &ap->eh_info;
6440 unsigned long flags;
6442 ata_port_probe(ap);
6444 /* kick EH for boot probing */
6445 spin_lock_irqsave(ap->lock, flags);
6447 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6448 ehi->action |= ATA_EH_SOFTRESET;
6449 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6451 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6452 ap->pflags |= ATA_PFLAG_LOADING;
6453 ata_port_schedule_eh(ap);
6455 spin_unlock_irqrestore(ap->lock, flags);
6457 /* wait for EH to finish */
6458 ata_port_wait_eh(ap);
6459 } else {
6460 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6461 rc = ata_bus_probe(ap);
6462 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6464 if (rc) {
6465 /* FIXME: do something useful here?
6466 * Current libata behavior will
6467 * tear down everything when
6468 * the module is removed
6469 * or the h/w is unplugged.
6475 /* probes are done, now scan each port's disk(s) */
6476 DPRINTK("host probe begin\n");
6477 for (i = 0; i < host->n_ports; i++) {
6478 struct ata_port *ap = host->ports[i];
6480 ata_scsi_scan_host(ap, 1);
6483 return 0;
6487 * ata_host_activate - start host, request IRQ and register it
6488 * @host: target ATA host
6489 * @irq: IRQ to request
6490 * @irq_handler: irq_handler used when requesting IRQ
6491 * @irq_flags: irq_flags used when requesting IRQ
6492 * @sht: scsi_host_template to use when registering the host
6494 * After allocating an ATA host and initializing it, most libata
6495 * LLDs perform three steps to activate the host - start host,
6496 * request IRQ and register it. This helper takes necessasry
6497 * arguments and performs the three steps in one go.
6499 * LOCKING:
6500 * Inherited from calling layer (may sleep).
6502 * RETURNS:
6503 * 0 on success, -errno otherwise.
6505 int ata_host_activate(struct ata_host *host, int irq,
6506 irq_handler_t irq_handler, unsigned long irq_flags,
6507 struct scsi_host_template *sht)
6509 int rc;
6511 rc = ata_host_start(host);
6512 if (rc)
6513 return rc;
6515 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6516 dev_driver_string(host->dev), host);
6517 if (rc)
6518 return rc;
6520 /* Used to print device info at probe */
6521 host->irq = irq;
6523 rc = ata_host_register(host, sht);
6524 /* if failed, just free the IRQ and leave ports alone */
6525 if (rc)
6526 devm_free_irq(host->dev, irq, host);
6528 return rc;
6532 * ata_port_detach - Detach ATA port in prepration of device removal
6533 * @ap: ATA port to be detached
6535 * Detach all ATA devices and the associated SCSI devices of @ap;
6536 * then, remove the associated SCSI host. @ap is guaranteed to
6537 * be quiescent on return from this function.
6539 * LOCKING:
6540 * Kernel thread context (may sleep).
6542 void ata_port_detach(struct ata_port *ap)
6544 unsigned long flags;
6545 int i;
6547 if (!ap->ops->error_handler)
6548 goto skip_eh;
6550 /* tell EH we're leaving & flush EH */
6551 spin_lock_irqsave(ap->lock, flags);
6552 ap->pflags |= ATA_PFLAG_UNLOADING;
6553 spin_unlock_irqrestore(ap->lock, flags);
6555 ata_port_wait_eh(ap);
6557 /* EH is now guaranteed to see UNLOADING, so no new device
6558 * will be attached. Disable all existing devices.
6560 spin_lock_irqsave(ap->lock, flags);
6562 for (i = 0; i < ATA_MAX_DEVICES; i++)
6563 ata_dev_disable(&ap->device[i]);
6565 spin_unlock_irqrestore(ap->lock, flags);
6567 /* Final freeze & EH. All in-flight commands are aborted. EH
6568 * will be skipped and retrials will be terminated with bad
6569 * target.
6571 spin_lock_irqsave(ap->lock, flags);
6572 ata_port_freeze(ap); /* won't be thawed */
6573 spin_unlock_irqrestore(ap->lock, flags);
6575 ata_port_wait_eh(ap);
6576 cancel_rearming_delayed_work(&ap->hotplug_task);
6578 skip_eh:
6579 /* remove the associated SCSI host */
6580 scsi_remove_host(ap->scsi_host);
6584 * ata_host_detach - Detach all ports of an ATA host
6585 * @host: Host to detach
6587 * Detach all ports of @host.
6589 * LOCKING:
6590 * Kernel thread context (may sleep).
6592 void ata_host_detach(struct ata_host *host)
6594 int i;
6596 for (i = 0; i < host->n_ports; i++)
6597 ata_port_detach(host->ports[i]);
6601 * ata_std_ports - initialize ioaddr with standard port offsets.
6602 * @ioaddr: IO address structure to be initialized
6604 * Utility function which initializes data_addr, error_addr,
6605 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6606 * device_addr, status_addr, and command_addr to standard offsets
6607 * relative to cmd_addr.
6609 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6612 void ata_std_ports(struct ata_ioports *ioaddr)
6614 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6615 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6616 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6617 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6618 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6619 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6620 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6621 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6622 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6623 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6627 #ifdef CONFIG_PCI
6630 * ata_pci_remove_one - PCI layer callback for device removal
6631 * @pdev: PCI device that was removed
6633 * PCI layer indicates to libata via this hook that hot-unplug or
6634 * module unload event has occurred. Detach all ports. Resource
6635 * release is handled via devres.
6637 * LOCKING:
6638 * Inherited from PCI layer (may sleep).
6640 void ata_pci_remove_one(struct pci_dev *pdev)
6642 struct device *dev = pci_dev_to_dev(pdev);
6643 struct ata_host *host = dev_get_drvdata(dev);
6645 ata_host_detach(host);
6648 /* move to PCI subsystem */
6649 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6651 unsigned long tmp = 0;
6653 switch (bits->width) {
6654 case 1: {
6655 u8 tmp8 = 0;
6656 pci_read_config_byte(pdev, bits->reg, &tmp8);
6657 tmp = tmp8;
6658 break;
6660 case 2: {
6661 u16 tmp16 = 0;
6662 pci_read_config_word(pdev, bits->reg, &tmp16);
6663 tmp = tmp16;
6664 break;
6666 case 4: {
6667 u32 tmp32 = 0;
6668 pci_read_config_dword(pdev, bits->reg, &tmp32);
6669 tmp = tmp32;
6670 break;
6673 default:
6674 return -EINVAL;
6677 tmp &= bits->mask;
6679 return (tmp == bits->val) ? 1 : 0;
6682 #ifdef CONFIG_PM
6683 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6685 pci_save_state(pdev);
6686 pci_disable_device(pdev);
6688 if (mesg.event == PM_EVENT_SUSPEND)
6689 pci_set_power_state(pdev, PCI_D3hot);
6692 int ata_pci_device_do_resume(struct pci_dev *pdev)
6694 int rc;
6696 pci_set_power_state(pdev, PCI_D0);
6697 pci_restore_state(pdev);
6699 rc = pcim_enable_device(pdev);
6700 if (rc) {
6701 dev_printk(KERN_ERR, &pdev->dev,
6702 "failed to enable device after resume (%d)\n", rc);
6703 return rc;
6706 pci_set_master(pdev);
6707 return 0;
6710 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6712 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6713 int rc = 0;
6715 rc = ata_host_suspend(host, mesg);
6716 if (rc)
6717 return rc;
6719 ata_pci_device_do_suspend(pdev, mesg);
6721 return 0;
6724 int ata_pci_device_resume(struct pci_dev *pdev)
6726 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6727 int rc;
6729 rc = ata_pci_device_do_resume(pdev);
6730 if (rc == 0)
6731 ata_host_resume(host);
6732 return rc;
6734 #endif /* CONFIG_PM */
6736 #endif /* CONFIG_PCI */
6739 static int __init ata_init(void)
6741 ata_probe_timeout *= HZ;
6742 ata_wq = create_workqueue("ata");
6743 if (!ata_wq)
6744 return -ENOMEM;
6746 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6747 if (!ata_aux_wq) {
6748 destroy_workqueue(ata_wq);
6749 return -ENOMEM;
6752 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6753 return 0;
6756 static void __exit ata_exit(void)
6758 destroy_workqueue(ata_wq);
6759 destroy_workqueue(ata_aux_wq);
6762 subsys_initcall(ata_init);
6763 module_exit(ata_exit);
6765 static unsigned long ratelimit_time;
6766 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6768 int ata_ratelimit(void)
6770 int rc;
6771 unsigned long flags;
6773 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6775 if (time_after(jiffies, ratelimit_time)) {
6776 rc = 1;
6777 ratelimit_time = jiffies + (HZ/5);
6778 } else
6779 rc = 0;
6781 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6783 return rc;
6787 * ata_wait_register - wait until register value changes
6788 * @reg: IO-mapped register
6789 * @mask: Mask to apply to read register value
6790 * @val: Wait condition
6791 * @interval_msec: polling interval in milliseconds
6792 * @timeout_msec: timeout in milliseconds
6794 * Waiting for some bits of register to change is a common
6795 * operation for ATA controllers. This function reads 32bit LE
6796 * IO-mapped register @reg and tests for the following condition.
6798 * (*@reg & mask) != val
6800 * If the condition is met, it returns; otherwise, the process is
6801 * repeated after @interval_msec until timeout.
6803 * LOCKING:
6804 * Kernel thread context (may sleep)
6806 * RETURNS:
6807 * The final register value.
6809 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6810 unsigned long interval_msec,
6811 unsigned long timeout_msec)
6813 unsigned long timeout;
6814 u32 tmp;
6816 tmp = ioread32(reg);
6818 /* Calculate timeout _after_ the first read to make sure
6819 * preceding writes reach the controller before starting to
6820 * eat away the timeout.
6822 timeout = jiffies + (timeout_msec * HZ) / 1000;
6824 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6825 msleep(interval_msec);
6826 tmp = ioread32(reg);
6829 return tmp;
6833 * Dummy port_ops
6835 static void ata_dummy_noret(struct ata_port *ap) { }
6836 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6837 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6839 static u8 ata_dummy_check_status(struct ata_port *ap)
6841 return ATA_DRDY;
6844 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6846 return AC_ERR_SYSTEM;
6849 const struct ata_port_operations ata_dummy_port_ops = {
6850 .port_disable = ata_port_disable,
6851 .check_status = ata_dummy_check_status,
6852 .check_altstatus = ata_dummy_check_status,
6853 .dev_select = ata_noop_dev_select,
6854 .qc_prep = ata_noop_qc_prep,
6855 .qc_issue = ata_dummy_qc_issue,
6856 .freeze = ata_dummy_noret,
6857 .thaw = ata_dummy_noret,
6858 .error_handler = ata_dummy_noret,
6859 .post_internal_cmd = ata_dummy_qc_noret,
6860 .irq_clear = ata_dummy_noret,
6861 .port_start = ata_dummy_ret0,
6862 .port_stop = ata_dummy_noret,
6865 const struct ata_port_info ata_dummy_port_info = {
6866 .port_ops = &ata_dummy_port_ops,
6870 * libata is essentially a library of internal helper functions for
6871 * low-level ATA host controller drivers. As such, the API/ABI is
6872 * likely to change as new drivers are added and updated.
6873 * Do not depend on ABI/API stability.
6876 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6877 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6878 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6879 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6880 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6881 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6882 EXPORT_SYMBOL_GPL(ata_std_ports);
6883 EXPORT_SYMBOL_GPL(ata_host_init);
6884 EXPORT_SYMBOL_GPL(ata_host_alloc);
6885 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6886 EXPORT_SYMBOL_GPL(ata_host_start);
6887 EXPORT_SYMBOL_GPL(ata_host_register);
6888 EXPORT_SYMBOL_GPL(ata_host_activate);
6889 EXPORT_SYMBOL_GPL(ata_host_detach);
6890 EXPORT_SYMBOL_GPL(ata_sg_init);
6891 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6892 EXPORT_SYMBOL_GPL(ata_hsm_move);
6893 EXPORT_SYMBOL_GPL(ata_qc_complete);
6894 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6895 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6896 EXPORT_SYMBOL_GPL(ata_tf_load);
6897 EXPORT_SYMBOL_GPL(ata_tf_read);
6898 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6899 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6900 EXPORT_SYMBOL_GPL(sata_print_link_status);
6901 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6902 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6903 EXPORT_SYMBOL_GPL(ata_check_status);
6904 EXPORT_SYMBOL_GPL(ata_altstatus);
6905 EXPORT_SYMBOL_GPL(ata_exec_command);
6906 EXPORT_SYMBOL_GPL(ata_port_start);
6907 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6908 EXPORT_SYMBOL_GPL(ata_interrupt);
6909 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6910 EXPORT_SYMBOL_GPL(ata_data_xfer);
6911 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6912 EXPORT_SYMBOL_GPL(ata_qc_prep);
6913 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6914 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6915 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6916 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6917 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6918 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6919 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6920 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6921 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6922 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6923 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6924 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6925 EXPORT_SYMBOL_GPL(ata_port_probe);
6926 EXPORT_SYMBOL_GPL(ata_dev_disable);
6927 EXPORT_SYMBOL_GPL(sata_set_spd);
6928 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6929 EXPORT_SYMBOL_GPL(sata_phy_resume);
6930 EXPORT_SYMBOL_GPL(sata_phy_reset);
6931 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6932 EXPORT_SYMBOL_GPL(ata_bus_reset);
6933 EXPORT_SYMBOL_GPL(ata_std_prereset);
6934 EXPORT_SYMBOL_GPL(ata_std_softreset);
6935 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6936 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6937 EXPORT_SYMBOL_GPL(ata_std_postreset);
6938 EXPORT_SYMBOL_GPL(ata_dev_classify);
6939 EXPORT_SYMBOL_GPL(ata_dev_pair);
6940 EXPORT_SYMBOL_GPL(ata_port_disable);
6941 EXPORT_SYMBOL_GPL(ata_ratelimit);
6942 EXPORT_SYMBOL_GPL(ata_wait_register);
6943 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6944 EXPORT_SYMBOL_GPL(ata_wait_ready);
6945 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6946 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6947 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6948 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6949 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6950 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6951 EXPORT_SYMBOL_GPL(ata_host_intr);
6952 EXPORT_SYMBOL_GPL(sata_scr_valid);
6953 EXPORT_SYMBOL_GPL(sata_scr_read);
6954 EXPORT_SYMBOL_GPL(sata_scr_write);
6955 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6956 EXPORT_SYMBOL_GPL(ata_port_online);
6957 EXPORT_SYMBOL_GPL(ata_port_offline);
6958 #ifdef CONFIG_PM
6959 EXPORT_SYMBOL_GPL(ata_host_suspend);
6960 EXPORT_SYMBOL_GPL(ata_host_resume);
6961 #endif /* CONFIG_PM */
6962 EXPORT_SYMBOL_GPL(ata_id_string);
6963 EXPORT_SYMBOL_GPL(ata_id_c_string);
6964 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6965 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6967 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6968 EXPORT_SYMBOL_GPL(ata_timing_compute);
6969 EXPORT_SYMBOL_GPL(ata_timing_merge);
6971 #ifdef CONFIG_PCI
6972 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6973 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6974 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6975 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6976 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6977 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6978 #ifdef CONFIG_PM
6979 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6980 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6981 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6982 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6983 #endif /* CONFIG_PM */
6984 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6985 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6986 #endif /* CONFIG_PCI */
6988 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6989 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6990 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6991 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6992 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6993 EXPORT_SYMBOL_GPL(ata_port_abort);
6994 EXPORT_SYMBOL_GPL(ata_port_freeze);
6995 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6996 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6997 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6998 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6999 EXPORT_SYMBOL_GPL(ata_do_eh);
7000 EXPORT_SYMBOL_GPL(ata_irq_on);
7001 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
7002 EXPORT_SYMBOL_GPL(ata_irq_ack);
7003 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
7004 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7006 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7007 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7008 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7009 EXPORT_SYMBOL_GPL(ata_cable_sata);