[POWERPC] spufs: Write some SPU coredump values as ASCII
[linux-2.6/kvm.git] / arch / powerpc / platforms / cell / spufs / file.c
blob85edbecf506285db593ea45559a0139a71c46b90
1 /*
2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #undef DEBUG
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
33 #include <asm/io.h>
34 #include <asm/semaphore.h>
35 #include <asm/spu.h>
36 #include <asm/spu_info.h>
37 #include <asm/uaccess.h>
39 #include "spufs.h"
41 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 static int
45 spufs_mem_open(struct inode *inode, struct file *file)
47 struct spufs_inode_info *i = SPUFS_I(inode);
48 struct spu_context *ctx = i->i_ctx;
50 mutex_lock(&ctx->mapping_lock);
51 file->private_data = ctx;
52 if (!i->i_openers++)
53 ctx->local_store = inode->i_mapping;
54 mutex_unlock(&ctx->mapping_lock);
55 return 0;
58 static int
59 spufs_mem_release(struct inode *inode, struct file *file)
61 struct spufs_inode_info *i = SPUFS_I(inode);
62 struct spu_context *ctx = i->i_ctx;
64 mutex_lock(&ctx->mapping_lock);
65 if (!--i->i_openers)
66 ctx->local_store = NULL;
67 mutex_unlock(&ctx->mapping_lock);
68 return 0;
71 static ssize_t
72 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
73 size_t size, loff_t *pos)
75 char *local_store = ctx->ops->get_ls(ctx);
76 return simple_read_from_buffer(buffer, size, pos, local_store,
77 LS_SIZE);
80 static ssize_t
81 spufs_mem_read(struct file *file, char __user *buffer,
82 size_t size, loff_t *pos)
84 struct spu_context *ctx = file->private_data;
85 ssize_t ret;
87 spu_acquire(ctx);
88 ret = __spufs_mem_read(ctx, buffer, size, pos);
89 spu_release(ctx);
90 return ret;
93 static ssize_t
94 spufs_mem_write(struct file *file, const char __user *buffer,
95 size_t size, loff_t *ppos)
97 struct spu_context *ctx = file->private_data;
98 char *local_store;
99 loff_t pos = *ppos;
100 int ret;
102 if (pos < 0)
103 return -EINVAL;
104 if (pos > LS_SIZE)
105 return -EFBIG;
106 if (size > LS_SIZE - pos)
107 size = LS_SIZE - pos;
109 spu_acquire(ctx);
110 local_store = ctx->ops->get_ls(ctx);
111 ret = copy_from_user(local_store + pos, buffer, size);
112 spu_release(ctx);
114 if (ret)
115 return -EFAULT;
116 *ppos = pos + size;
117 return size;
120 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
121 unsigned long address)
123 struct spu_context *ctx = vma->vm_file->private_data;
124 unsigned long pfn, offset, addr0 = address;
125 #ifdef CONFIG_SPU_FS_64K_LS
126 struct spu_state *csa = &ctx->csa;
127 int psize;
129 /* Check what page size we are using */
130 psize = get_slice_psize(vma->vm_mm, address);
132 /* Some sanity checking */
133 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
135 /* Wow, 64K, cool, we need to align the address though */
136 if (csa->use_big_pages) {
137 BUG_ON(vma->vm_start & 0xffff);
138 address &= ~0xfffful;
140 #endif /* CONFIG_SPU_FS_64K_LS */
142 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
143 if (offset >= LS_SIZE)
144 return NOPFN_SIGBUS;
146 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
147 addr0, address, offset);
149 spu_acquire(ctx);
151 if (ctx->state == SPU_STATE_SAVED) {
152 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
153 & ~_PAGE_NO_CACHE);
154 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
155 } else {
156 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
157 | _PAGE_NO_CACHE);
158 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
160 vm_insert_pfn(vma, address, pfn);
162 spu_release(ctx);
164 return NOPFN_REFAULT;
168 static struct vm_operations_struct spufs_mem_mmap_vmops = {
169 .nopfn = spufs_mem_mmap_nopfn,
172 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
174 #ifdef CONFIG_SPU_FS_64K_LS
175 struct spu_context *ctx = file->private_data;
176 struct spu_state *csa = &ctx->csa;
178 /* Sanity check VMA alignment */
179 if (csa->use_big_pages) {
180 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
181 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
182 vma->vm_pgoff);
183 if (vma->vm_start & 0xffff)
184 return -EINVAL;
185 if (vma->vm_pgoff & 0xf)
186 return -EINVAL;
188 #endif /* CONFIG_SPU_FS_64K_LS */
190 if (!(vma->vm_flags & VM_SHARED))
191 return -EINVAL;
193 vma->vm_flags |= VM_IO | VM_PFNMAP;
194 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
195 | _PAGE_NO_CACHE);
197 vma->vm_ops = &spufs_mem_mmap_vmops;
198 return 0;
201 #ifdef CONFIG_SPU_FS_64K_LS
202 static unsigned long spufs_get_unmapped_area(struct file *file,
203 unsigned long addr, unsigned long len, unsigned long pgoff,
204 unsigned long flags)
206 struct spu_context *ctx = file->private_data;
207 struct spu_state *csa = &ctx->csa;
209 /* If not using big pages, fallback to normal MM g_u_a */
210 if (!csa->use_big_pages)
211 return current->mm->get_unmapped_area(file, addr, len,
212 pgoff, flags);
214 /* Else, try to obtain a 64K pages slice */
215 return slice_get_unmapped_area(addr, len, flags,
216 MMU_PAGE_64K, 1, 0);
218 #endif /* CONFIG_SPU_FS_64K_LS */
220 static const struct file_operations spufs_mem_fops = {
221 .open = spufs_mem_open,
222 .release = spufs_mem_release,
223 .read = spufs_mem_read,
224 .write = spufs_mem_write,
225 .llseek = generic_file_llseek,
226 .mmap = spufs_mem_mmap,
227 #ifdef CONFIG_SPU_FS_64K_LS
228 .get_unmapped_area = spufs_get_unmapped_area,
229 #endif
232 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
233 unsigned long address,
234 unsigned long ps_offs,
235 unsigned long ps_size)
237 struct spu_context *ctx = vma->vm_file->private_data;
238 unsigned long area, offset = address - vma->vm_start;
239 int ret;
241 offset += vma->vm_pgoff << PAGE_SHIFT;
242 if (offset >= ps_size)
243 return NOPFN_SIGBUS;
245 /* error here usually means a signal.. we might want to test
246 * the error code more precisely though
248 ret = spu_acquire_runnable(ctx, 0);
249 if (ret)
250 return NOPFN_REFAULT;
252 area = ctx->spu->problem_phys + ps_offs;
253 vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
254 spu_release(ctx);
256 return NOPFN_REFAULT;
259 #if SPUFS_MMAP_4K
260 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
261 unsigned long address)
263 return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
266 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
267 .nopfn = spufs_cntl_mmap_nopfn,
271 * mmap support for problem state control area [0x4000 - 0x4fff].
273 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
275 if (!(vma->vm_flags & VM_SHARED))
276 return -EINVAL;
278 vma->vm_flags |= VM_IO | VM_PFNMAP;
279 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
280 | _PAGE_NO_CACHE | _PAGE_GUARDED);
282 vma->vm_ops = &spufs_cntl_mmap_vmops;
283 return 0;
285 #else /* SPUFS_MMAP_4K */
286 #define spufs_cntl_mmap NULL
287 #endif /* !SPUFS_MMAP_4K */
289 static u64 spufs_cntl_get(void *data)
291 struct spu_context *ctx = data;
292 u64 val;
294 spu_acquire(ctx);
295 val = ctx->ops->status_read(ctx);
296 spu_release(ctx);
298 return val;
301 static void spufs_cntl_set(void *data, u64 val)
303 struct spu_context *ctx = data;
305 spu_acquire(ctx);
306 ctx->ops->runcntl_write(ctx, val);
307 spu_release(ctx);
310 static int spufs_cntl_open(struct inode *inode, struct file *file)
312 struct spufs_inode_info *i = SPUFS_I(inode);
313 struct spu_context *ctx = i->i_ctx;
315 mutex_lock(&ctx->mapping_lock);
316 file->private_data = ctx;
317 if (!i->i_openers++)
318 ctx->cntl = inode->i_mapping;
319 mutex_unlock(&ctx->mapping_lock);
320 return simple_attr_open(inode, file, spufs_cntl_get,
321 spufs_cntl_set, "0x%08lx");
324 static int
325 spufs_cntl_release(struct inode *inode, struct file *file)
327 struct spufs_inode_info *i = SPUFS_I(inode);
328 struct spu_context *ctx = i->i_ctx;
330 simple_attr_close(inode, file);
332 mutex_lock(&ctx->mapping_lock);
333 if (!--i->i_openers)
334 ctx->cntl = NULL;
335 mutex_unlock(&ctx->mapping_lock);
336 return 0;
339 static const struct file_operations spufs_cntl_fops = {
340 .open = spufs_cntl_open,
341 .release = spufs_cntl_release,
342 .read = simple_attr_read,
343 .write = simple_attr_write,
344 .mmap = spufs_cntl_mmap,
347 static int
348 spufs_regs_open(struct inode *inode, struct file *file)
350 struct spufs_inode_info *i = SPUFS_I(inode);
351 file->private_data = i->i_ctx;
352 return 0;
355 static ssize_t
356 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
357 size_t size, loff_t *pos)
359 struct spu_lscsa *lscsa = ctx->csa.lscsa;
360 return simple_read_from_buffer(buffer, size, pos,
361 lscsa->gprs, sizeof lscsa->gprs);
364 static ssize_t
365 spufs_regs_read(struct file *file, char __user *buffer,
366 size_t size, loff_t *pos)
368 int ret;
369 struct spu_context *ctx = file->private_data;
371 spu_acquire_saved(ctx);
372 ret = __spufs_regs_read(ctx, buffer, size, pos);
373 spu_release_saved(ctx);
374 return ret;
377 static ssize_t
378 spufs_regs_write(struct file *file, const char __user *buffer,
379 size_t size, loff_t *pos)
381 struct spu_context *ctx = file->private_data;
382 struct spu_lscsa *lscsa = ctx->csa.lscsa;
383 int ret;
385 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
386 if (size <= 0)
387 return -EFBIG;
388 *pos += size;
390 spu_acquire_saved(ctx);
392 ret = copy_from_user(lscsa->gprs + *pos - size,
393 buffer, size) ? -EFAULT : size;
395 spu_release_saved(ctx);
396 return ret;
399 static const struct file_operations spufs_regs_fops = {
400 .open = spufs_regs_open,
401 .read = spufs_regs_read,
402 .write = spufs_regs_write,
403 .llseek = generic_file_llseek,
406 static ssize_t
407 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
408 size_t size, loff_t * pos)
410 struct spu_lscsa *lscsa = ctx->csa.lscsa;
411 return simple_read_from_buffer(buffer, size, pos,
412 &lscsa->fpcr, sizeof(lscsa->fpcr));
415 static ssize_t
416 spufs_fpcr_read(struct file *file, char __user * buffer,
417 size_t size, loff_t * pos)
419 int ret;
420 struct spu_context *ctx = file->private_data;
422 spu_acquire_saved(ctx);
423 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
424 spu_release_saved(ctx);
425 return ret;
428 static ssize_t
429 spufs_fpcr_write(struct file *file, const char __user * buffer,
430 size_t size, loff_t * pos)
432 struct spu_context *ctx = file->private_data;
433 struct spu_lscsa *lscsa = ctx->csa.lscsa;
434 int ret;
436 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
437 if (size <= 0)
438 return -EFBIG;
439 *pos += size;
441 spu_acquire_saved(ctx);
443 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
444 buffer, size) ? -EFAULT : size;
446 spu_release_saved(ctx);
447 return ret;
450 static const struct file_operations spufs_fpcr_fops = {
451 .open = spufs_regs_open,
452 .read = spufs_fpcr_read,
453 .write = spufs_fpcr_write,
454 .llseek = generic_file_llseek,
457 /* generic open function for all pipe-like files */
458 static int spufs_pipe_open(struct inode *inode, struct file *file)
460 struct spufs_inode_info *i = SPUFS_I(inode);
461 file->private_data = i->i_ctx;
463 return nonseekable_open(inode, file);
467 * Read as many bytes from the mailbox as possible, until
468 * one of the conditions becomes true:
470 * - no more data available in the mailbox
471 * - end of the user provided buffer
472 * - end of the mapped area
474 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
475 size_t len, loff_t *pos)
477 struct spu_context *ctx = file->private_data;
478 u32 mbox_data, __user *udata;
479 ssize_t count;
481 if (len < 4)
482 return -EINVAL;
484 if (!access_ok(VERIFY_WRITE, buf, len))
485 return -EFAULT;
487 udata = (void __user *)buf;
489 spu_acquire(ctx);
490 for (count = 0; (count + 4) <= len; count += 4, udata++) {
491 int ret;
492 ret = ctx->ops->mbox_read(ctx, &mbox_data);
493 if (ret == 0)
494 break;
497 * at the end of the mapped area, we can fault
498 * but still need to return the data we have
499 * read successfully so far.
501 ret = __put_user(mbox_data, udata);
502 if (ret) {
503 if (!count)
504 count = -EFAULT;
505 break;
508 spu_release(ctx);
510 if (!count)
511 count = -EAGAIN;
513 return count;
516 static const struct file_operations spufs_mbox_fops = {
517 .open = spufs_pipe_open,
518 .read = spufs_mbox_read,
521 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
522 size_t len, loff_t *pos)
524 struct spu_context *ctx = file->private_data;
525 u32 mbox_stat;
527 if (len < 4)
528 return -EINVAL;
530 spu_acquire(ctx);
532 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
534 spu_release(ctx);
536 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
537 return -EFAULT;
539 return 4;
542 static const struct file_operations spufs_mbox_stat_fops = {
543 .open = spufs_pipe_open,
544 .read = spufs_mbox_stat_read,
547 /* low-level ibox access function */
548 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
550 return ctx->ops->ibox_read(ctx, data);
553 static int spufs_ibox_fasync(int fd, struct file *file, int on)
555 struct spu_context *ctx = file->private_data;
557 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
560 /* interrupt-level ibox callback function. */
561 void spufs_ibox_callback(struct spu *spu)
563 struct spu_context *ctx = spu->ctx;
565 wake_up_all(&ctx->ibox_wq);
566 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
570 * Read as many bytes from the interrupt mailbox as possible, until
571 * one of the conditions becomes true:
573 * - no more data available in the mailbox
574 * - end of the user provided buffer
575 * - end of the mapped area
577 * If the file is opened without O_NONBLOCK, we wait here until
578 * any data is available, but return when we have been able to
579 * read something.
581 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
582 size_t len, loff_t *pos)
584 struct spu_context *ctx = file->private_data;
585 u32 ibox_data, __user *udata;
586 ssize_t count;
588 if (len < 4)
589 return -EINVAL;
591 if (!access_ok(VERIFY_WRITE, buf, len))
592 return -EFAULT;
594 udata = (void __user *)buf;
596 spu_acquire(ctx);
598 /* wait only for the first element */
599 count = 0;
600 if (file->f_flags & O_NONBLOCK) {
601 if (!spu_ibox_read(ctx, &ibox_data))
602 count = -EAGAIN;
603 } else {
604 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
606 if (count)
607 goto out;
609 /* if we can't write at all, return -EFAULT */
610 count = __put_user(ibox_data, udata);
611 if (count)
612 goto out;
614 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
615 int ret;
616 ret = ctx->ops->ibox_read(ctx, &ibox_data);
617 if (ret == 0)
618 break;
620 * at the end of the mapped area, we can fault
621 * but still need to return the data we have
622 * read successfully so far.
624 ret = __put_user(ibox_data, udata);
625 if (ret)
626 break;
629 out:
630 spu_release(ctx);
632 return count;
635 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
637 struct spu_context *ctx = file->private_data;
638 unsigned int mask;
640 poll_wait(file, &ctx->ibox_wq, wait);
642 spu_acquire(ctx);
643 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
644 spu_release(ctx);
646 return mask;
649 static const struct file_operations spufs_ibox_fops = {
650 .open = spufs_pipe_open,
651 .read = spufs_ibox_read,
652 .poll = spufs_ibox_poll,
653 .fasync = spufs_ibox_fasync,
656 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
657 size_t len, loff_t *pos)
659 struct spu_context *ctx = file->private_data;
660 u32 ibox_stat;
662 if (len < 4)
663 return -EINVAL;
665 spu_acquire(ctx);
666 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
667 spu_release(ctx);
669 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
670 return -EFAULT;
672 return 4;
675 static const struct file_operations spufs_ibox_stat_fops = {
676 .open = spufs_pipe_open,
677 .read = spufs_ibox_stat_read,
680 /* low-level mailbox write */
681 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
683 return ctx->ops->wbox_write(ctx, data);
686 static int spufs_wbox_fasync(int fd, struct file *file, int on)
688 struct spu_context *ctx = file->private_data;
689 int ret;
691 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
693 return ret;
696 /* interrupt-level wbox callback function. */
697 void spufs_wbox_callback(struct spu *spu)
699 struct spu_context *ctx = spu->ctx;
701 wake_up_all(&ctx->wbox_wq);
702 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
706 * Write as many bytes to the interrupt mailbox as possible, until
707 * one of the conditions becomes true:
709 * - the mailbox is full
710 * - end of the user provided buffer
711 * - end of the mapped area
713 * If the file is opened without O_NONBLOCK, we wait here until
714 * space is availabyl, but return when we have been able to
715 * write something.
717 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
718 size_t len, loff_t *pos)
720 struct spu_context *ctx = file->private_data;
721 u32 wbox_data, __user *udata;
722 ssize_t count;
724 if (len < 4)
725 return -EINVAL;
727 udata = (void __user *)buf;
728 if (!access_ok(VERIFY_READ, buf, len))
729 return -EFAULT;
731 if (__get_user(wbox_data, udata))
732 return -EFAULT;
734 spu_acquire(ctx);
737 * make sure we can at least write one element, by waiting
738 * in case of !O_NONBLOCK
740 count = 0;
741 if (file->f_flags & O_NONBLOCK) {
742 if (!spu_wbox_write(ctx, wbox_data))
743 count = -EAGAIN;
744 } else {
745 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
748 if (count)
749 goto out;
751 /* write aѕ much as possible */
752 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
753 int ret;
754 ret = __get_user(wbox_data, udata);
755 if (ret)
756 break;
758 ret = spu_wbox_write(ctx, wbox_data);
759 if (ret == 0)
760 break;
763 out:
764 spu_release(ctx);
765 return count;
768 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
770 struct spu_context *ctx = file->private_data;
771 unsigned int mask;
773 poll_wait(file, &ctx->wbox_wq, wait);
775 spu_acquire(ctx);
776 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
777 spu_release(ctx);
779 return mask;
782 static const struct file_operations spufs_wbox_fops = {
783 .open = spufs_pipe_open,
784 .write = spufs_wbox_write,
785 .poll = spufs_wbox_poll,
786 .fasync = spufs_wbox_fasync,
789 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
790 size_t len, loff_t *pos)
792 struct spu_context *ctx = file->private_data;
793 u32 wbox_stat;
795 if (len < 4)
796 return -EINVAL;
798 spu_acquire(ctx);
799 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
800 spu_release(ctx);
802 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
803 return -EFAULT;
805 return 4;
808 static const struct file_operations spufs_wbox_stat_fops = {
809 .open = spufs_pipe_open,
810 .read = spufs_wbox_stat_read,
813 static int spufs_signal1_open(struct inode *inode, struct file *file)
815 struct spufs_inode_info *i = SPUFS_I(inode);
816 struct spu_context *ctx = i->i_ctx;
818 mutex_lock(&ctx->mapping_lock);
819 file->private_data = ctx;
820 if (!i->i_openers++)
821 ctx->signal1 = inode->i_mapping;
822 mutex_unlock(&ctx->mapping_lock);
823 return nonseekable_open(inode, file);
826 static int
827 spufs_signal1_release(struct inode *inode, struct file *file)
829 struct spufs_inode_info *i = SPUFS_I(inode);
830 struct spu_context *ctx = i->i_ctx;
832 mutex_lock(&ctx->mapping_lock);
833 if (!--i->i_openers)
834 ctx->signal1 = NULL;
835 mutex_unlock(&ctx->mapping_lock);
836 return 0;
839 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
840 size_t len, loff_t *pos)
842 int ret = 0;
843 u32 data;
845 if (len < 4)
846 return -EINVAL;
848 if (ctx->csa.spu_chnlcnt_RW[3]) {
849 data = ctx->csa.spu_chnldata_RW[3];
850 ret = 4;
853 if (!ret)
854 goto out;
856 if (copy_to_user(buf, &data, 4))
857 return -EFAULT;
859 out:
860 return ret;
863 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
864 size_t len, loff_t *pos)
866 int ret;
867 struct spu_context *ctx = file->private_data;
869 spu_acquire_saved(ctx);
870 ret = __spufs_signal1_read(ctx, buf, len, pos);
871 spu_release_saved(ctx);
873 return ret;
876 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
877 size_t len, loff_t *pos)
879 struct spu_context *ctx;
880 u32 data;
882 ctx = file->private_data;
884 if (len < 4)
885 return -EINVAL;
887 if (copy_from_user(&data, buf, 4))
888 return -EFAULT;
890 spu_acquire(ctx);
891 ctx->ops->signal1_write(ctx, data);
892 spu_release(ctx);
894 return 4;
897 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
898 unsigned long address)
900 #if PAGE_SIZE == 0x1000
901 return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
902 #elif PAGE_SIZE == 0x10000
903 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
904 * signal 1 and 2 area
906 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
907 #else
908 #error unsupported page size
909 #endif
912 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
913 .nopfn = spufs_signal1_mmap_nopfn,
916 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
918 if (!(vma->vm_flags & VM_SHARED))
919 return -EINVAL;
921 vma->vm_flags |= VM_IO | VM_PFNMAP;
922 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
923 | _PAGE_NO_CACHE | _PAGE_GUARDED);
925 vma->vm_ops = &spufs_signal1_mmap_vmops;
926 return 0;
929 static const struct file_operations spufs_signal1_fops = {
930 .open = spufs_signal1_open,
931 .release = spufs_signal1_release,
932 .read = spufs_signal1_read,
933 .write = spufs_signal1_write,
934 .mmap = spufs_signal1_mmap,
937 static const struct file_operations spufs_signal1_nosched_fops = {
938 .open = spufs_signal1_open,
939 .release = spufs_signal1_release,
940 .write = spufs_signal1_write,
941 .mmap = spufs_signal1_mmap,
944 static int spufs_signal2_open(struct inode *inode, struct file *file)
946 struct spufs_inode_info *i = SPUFS_I(inode);
947 struct spu_context *ctx = i->i_ctx;
949 mutex_lock(&ctx->mapping_lock);
950 file->private_data = ctx;
951 if (!i->i_openers++)
952 ctx->signal2 = inode->i_mapping;
953 mutex_unlock(&ctx->mapping_lock);
954 return nonseekable_open(inode, file);
957 static int
958 spufs_signal2_release(struct inode *inode, struct file *file)
960 struct spufs_inode_info *i = SPUFS_I(inode);
961 struct spu_context *ctx = i->i_ctx;
963 mutex_lock(&ctx->mapping_lock);
964 if (!--i->i_openers)
965 ctx->signal2 = NULL;
966 mutex_unlock(&ctx->mapping_lock);
967 return 0;
970 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
971 size_t len, loff_t *pos)
973 int ret = 0;
974 u32 data;
976 if (len < 4)
977 return -EINVAL;
979 if (ctx->csa.spu_chnlcnt_RW[4]) {
980 data = ctx->csa.spu_chnldata_RW[4];
981 ret = 4;
984 if (!ret)
985 goto out;
987 if (copy_to_user(buf, &data, 4))
988 return -EFAULT;
990 out:
991 return ret;
994 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
995 size_t len, loff_t *pos)
997 struct spu_context *ctx = file->private_data;
998 int ret;
1000 spu_acquire_saved(ctx);
1001 ret = __spufs_signal2_read(ctx, buf, len, pos);
1002 spu_release_saved(ctx);
1004 return ret;
1007 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1008 size_t len, loff_t *pos)
1010 struct spu_context *ctx;
1011 u32 data;
1013 ctx = file->private_data;
1015 if (len < 4)
1016 return -EINVAL;
1018 if (copy_from_user(&data, buf, 4))
1019 return -EFAULT;
1021 spu_acquire(ctx);
1022 ctx->ops->signal2_write(ctx, data);
1023 spu_release(ctx);
1025 return 4;
1028 #if SPUFS_MMAP_4K
1029 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1030 unsigned long address)
1032 #if PAGE_SIZE == 0x1000
1033 return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1034 #elif PAGE_SIZE == 0x10000
1035 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1036 * signal 1 and 2 area
1038 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1039 #else
1040 #error unsupported page size
1041 #endif
1044 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1045 .nopfn = spufs_signal2_mmap_nopfn,
1048 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1050 if (!(vma->vm_flags & VM_SHARED))
1051 return -EINVAL;
1053 vma->vm_flags |= VM_IO | VM_PFNMAP;
1054 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1055 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1057 vma->vm_ops = &spufs_signal2_mmap_vmops;
1058 return 0;
1060 #else /* SPUFS_MMAP_4K */
1061 #define spufs_signal2_mmap NULL
1062 #endif /* !SPUFS_MMAP_4K */
1064 static const struct file_operations spufs_signal2_fops = {
1065 .open = spufs_signal2_open,
1066 .release = spufs_signal2_release,
1067 .read = spufs_signal2_read,
1068 .write = spufs_signal2_write,
1069 .mmap = spufs_signal2_mmap,
1072 static const struct file_operations spufs_signal2_nosched_fops = {
1073 .open = spufs_signal2_open,
1074 .release = spufs_signal2_release,
1075 .write = spufs_signal2_write,
1076 .mmap = spufs_signal2_mmap,
1079 static void spufs_signal1_type_set(void *data, u64 val)
1081 struct spu_context *ctx = data;
1083 spu_acquire(ctx);
1084 ctx->ops->signal1_type_set(ctx, val);
1085 spu_release(ctx);
1088 static u64 __spufs_signal1_type_get(void *data)
1090 struct spu_context *ctx = data;
1091 return ctx->ops->signal1_type_get(ctx);
1094 static u64 spufs_signal1_type_get(void *data)
1096 struct spu_context *ctx = data;
1097 u64 ret;
1099 spu_acquire(ctx);
1100 ret = __spufs_signal1_type_get(data);
1101 spu_release(ctx);
1103 return ret;
1105 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1106 spufs_signal1_type_set, "%llu");
1108 static void spufs_signal2_type_set(void *data, u64 val)
1110 struct spu_context *ctx = data;
1112 spu_acquire(ctx);
1113 ctx->ops->signal2_type_set(ctx, val);
1114 spu_release(ctx);
1117 static u64 __spufs_signal2_type_get(void *data)
1119 struct spu_context *ctx = data;
1120 return ctx->ops->signal2_type_get(ctx);
1123 static u64 spufs_signal2_type_get(void *data)
1125 struct spu_context *ctx = data;
1126 u64 ret;
1128 spu_acquire(ctx);
1129 ret = __spufs_signal2_type_get(data);
1130 spu_release(ctx);
1132 return ret;
1134 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1135 spufs_signal2_type_set, "%llu");
1137 #if SPUFS_MMAP_4K
1138 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1139 unsigned long address)
1141 return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1144 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1145 .nopfn = spufs_mss_mmap_nopfn,
1149 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1151 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1153 if (!(vma->vm_flags & VM_SHARED))
1154 return -EINVAL;
1156 vma->vm_flags |= VM_IO | VM_PFNMAP;
1157 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1158 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1160 vma->vm_ops = &spufs_mss_mmap_vmops;
1161 return 0;
1163 #else /* SPUFS_MMAP_4K */
1164 #define spufs_mss_mmap NULL
1165 #endif /* !SPUFS_MMAP_4K */
1167 static int spufs_mss_open(struct inode *inode, struct file *file)
1169 struct spufs_inode_info *i = SPUFS_I(inode);
1170 struct spu_context *ctx = i->i_ctx;
1172 file->private_data = i->i_ctx;
1174 mutex_lock(&ctx->mapping_lock);
1175 if (!i->i_openers++)
1176 ctx->mss = inode->i_mapping;
1177 mutex_unlock(&ctx->mapping_lock);
1178 return nonseekable_open(inode, file);
1181 static int
1182 spufs_mss_release(struct inode *inode, struct file *file)
1184 struct spufs_inode_info *i = SPUFS_I(inode);
1185 struct spu_context *ctx = i->i_ctx;
1187 mutex_lock(&ctx->mapping_lock);
1188 if (!--i->i_openers)
1189 ctx->mss = NULL;
1190 mutex_unlock(&ctx->mapping_lock);
1191 return 0;
1194 static const struct file_operations spufs_mss_fops = {
1195 .open = spufs_mss_open,
1196 .release = spufs_mss_release,
1197 .mmap = spufs_mss_mmap,
1200 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1201 unsigned long address)
1203 return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1206 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1207 .nopfn = spufs_psmap_mmap_nopfn,
1211 * mmap support for full problem state area [0x00000 - 0x1ffff].
1213 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1215 if (!(vma->vm_flags & VM_SHARED))
1216 return -EINVAL;
1218 vma->vm_flags |= VM_IO | VM_PFNMAP;
1219 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1220 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1222 vma->vm_ops = &spufs_psmap_mmap_vmops;
1223 return 0;
1226 static int spufs_psmap_open(struct inode *inode, struct file *file)
1228 struct spufs_inode_info *i = SPUFS_I(inode);
1229 struct spu_context *ctx = i->i_ctx;
1231 mutex_lock(&ctx->mapping_lock);
1232 file->private_data = i->i_ctx;
1233 if (!i->i_openers++)
1234 ctx->psmap = inode->i_mapping;
1235 mutex_unlock(&ctx->mapping_lock);
1236 return nonseekable_open(inode, file);
1239 static int
1240 spufs_psmap_release(struct inode *inode, struct file *file)
1242 struct spufs_inode_info *i = SPUFS_I(inode);
1243 struct spu_context *ctx = i->i_ctx;
1245 mutex_lock(&ctx->mapping_lock);
1246 if (!--i->i_openers)
1247 ctx->psmap = NULL;
1248 mutex_unlock(&ctx->mapping_lock);
1249 return 0;
1252 static const struct file_operations spufs_psmap_fops = {
1253 .open = spufs_psmap_open,
1254 .release = spufs_psmap_release,
1255 .mmap = spufs_psmap_mmap,
1259 #if SPUFS_MMAP_4K
1260 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1261 unsigned long address)
1263 return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1266 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1267 .nopfn = spufs_mfc_mmap_nopfn,
1271 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1273 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1275 if (!(vma->vm_flags & VM_SHARED))
1276 return -EINVAL;
1278 vma->vm_flags |= VM_IO | VM_PFNMAP;
1279 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1280 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1282 vma->vm_ops = &spufs_mfc_mmap_vmops;
1283 return 0;
1285 #else /* SPUFS_MMAP_4K */
1286 #define spufs_mfc_mmap NULL
1287 #endif /* !SPUFS_MMAP_4K */
1289 static int spufs_mfc_open(struct inode *inode, struct file *file)
1291 struct spufs_inode_info *i = SPUFS_I(inode);
1292 struct spu_context *ctx = i->i_ctx;
1294 /* we don't want to deal with DMA into other processes */
1295 if (ctx->owner != current->mm)
1296 return -EINVAL;
1298 if (atomic_read(&inode->i_count) != 1)
1299 return -EBUSY;
1301 mutex_lock(&ctx->mapping_lock);
1302 file->private_data = ctx;
1303 if (!i->i_openers++)
1304 ctx->mfc = inode->i_mapping;
1305 mutex_unlock(&ctx->mapping_lock);
1306 return nonseekable_open(inode, file);
1309 static int
1310 spufs_mfc_release(struct inode *inode, struct file *file)
1312 struct spufs_inode_info *i = SPUFS_I(inode);
1313 struct spu_context *ctx = i->i_ctx;
1315 mutex_lock(&ctx->mapping_lock);
1316 if (!--i->i_openers)
1317 ctx->mfc = NULL;
1318 mutex_unlock(&ctx->mapping_lock);
1319 return 0;
1322 /* interrupt-level mfc callback function. */
1323 void spufs_mfc_callback(struct spu *spu)
1325 struct spu_context *ctx = spu->ctx;
1327 wake_up_all(&ctx->mfc_wq);
1329 pr_debug("%s %s\n", __FUNCTION__, spu->name);
1330 if (ctx->mfc_fasync) {
1331 u32 free_elements, tagstatus;
1332 unsigned int mask;
1334 /* no need for spu_acquire in interrupt context */
1335 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1336 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1338 mask = 0;
1339 if (free_elements & 0xffff)
1340 mask |= POLLOUT;
1341 if (tagstatus & ctx->tagwait)
1342 mask |= POLLIN;
1344 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1348 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1350 /* See if there is one tag group is complete */
1351 /* FIXME we need locking around tagwait */
1352 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1353 ctx->tagwait &= ~*status;
1354 if (*status)
1355 return 1;
1357 /* enable interrupt waiting for any tag group,
1358 may silently fail if interrupts are already enabled */
1359 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1360 return 0;
1363 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1364 size_t size, loff_t *pos)
1366 struct spu_context *ctx = file->private_data;
1367 int ret = -EINVAL;
1368 u32 status;
1370 if (size != 4)
1371 goto out;
1373 spu_acquire(ctx);
1374 if (file->f_flags & O_NONBLOCK) {
1375 status = ctx->ops->read_mfc_tagstatus(ctx);
1376 if (!(status & ctx->tagwait))
1377 ret = -EAGAIN;
1378 else
1379 ctx->tagwait &= ~status;
1380 } else {
1381 ret = spufs_wait(ctx->mfc_wq,
1382 spufs_read_mfc_tagstatus(ctx, &status));
1384 spu_release(ctx);
1386 if (ret)
1387 goto out;
1389 ret = 4;
1390 if (copy_to_user(buffer, &status, 4))
1391 ret = -EFAULT;
1393 out:
1394 return ret;
1397 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1399 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1400 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1402 switch (cmd->cmd) {
1403 case MFC_PUT_CMD:
1404 case MFC_PUTF_CMD:
1405 case MFC_PUTB_CMD:
1406 case MFC_GET_CMD:
1407 case MFC_GETF_CMD:
1408 case MFC_GETB_CMD:
1409 break;
1410 default:
1411 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1412 return -EIO;
1415 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1416 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1417 cmd->ea, cmd->lsa);
1418 return -EIO;
1421 switch (cmd->size & 0xf) {
1422 case 1:
1423 break;
1424 case 2:
1425 if (cmd->lsa & 1)
1426 goto error;
1427 break;
1428 case 4:
1429 if (cmd->lsa & 3)
1430 goto error;
1431 break;
1432 case 8:
1433 if (cmd->lsa & 7)
1434 goto error;
1435 break;
1436 case 0:
1437 if (cmd->lsa & 15)
1438 goto error;
1439 break;
1440 error:
1441 default:
1442 pr_debug("invalid DMA alignment %x for size %x\n",
1443 cmd->lsa & 0xf, cmd->size);
1444 return -EIO;
1447 if (cmd->size > 16 * 1024) {
1448 pr_debug("invalid DMA size %x\n", cmd->size);
1449 return -EIO;
1452 if (cmd->tag & 0xfff0) {
1453 /* we reserve the higher tag numbers for kernel use */
1454 pr_debug("invalid DMA tag\n");
1455 return -EIO;
1458 if (cmd->class) {
1459 /* not supported in this version */
1460 pr_debug("invalid DMA class\n");
1461 return -EIO;
1464 return 0;
1467 static int spu_send_mfc_command(struct spu_context *ctx,
1468 struct mfc_dma_command cmd,
1469 int *error)
1471 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1472 if (*error == -EAGAIN) {
1473 /* wait for any tag group to complete
1474 so we have space for the new command */
1475 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1476 /* try again, because the queue might be
1477 empty again */
1478 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1479 if (*error == -EAGAIN)
1480 return 0;
1482 return 1;
1485 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1486 size_t size, loff_t *pos)
1488 struct spu_context *ctx = file->private_data;
1489 struct mfc_dma_command cmd;
1490 int ret = -EINVAL;
1492 if (size != sizeof cmd)
1493 goto out;
1495 ret = -EFAULT;
1496 if (copy_from_user(&cmd, buffer, sizeof cmd))
1497 goto out;
1499 ret = spufs_check_valid_dma(&cmd);
1500 if (ret)
1501 goto out;
1503 ret = spu_acquire_runnable(ctx, 0);
1504 if (ret)
1505 goto out;
1507 if (file->f_flags & O_NONBLOCK) {
1508 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1509 } else {
1510 int status;
1511 ret = spufs_wait(ctx->mfc_wq,
1512 spu_send_mfc_command(ctx, cmd, &status));
1513 if (status)
1514 ret = status;
1517 if (ret)
1518 goto out_unlock;
1520 ctx->tagwait |= 1 << cmd.tag;
1521 ret = size;
1523 out_unlock:
1524 spu_release(ctx);
1525 out:
1526 return ret;
1529 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1531 struct spu_context *ctx = file->private_data;
1532 u32 free_elements, tagstatus;
1533 unsigned int mask;
1535 poll_wait(file, &ctx->mfc_wq, wait);
1537 spu_acquire(ctx);
1538 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1539 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1540 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1541 spu_release(ctx);
1543 mask = 0;
1544 if (free_elements & 0xffff)
1545 mask |= POLLOUT | POLLWRNORM;
1546 if (tagstatus & ctx->tagwait)
1547 mask |= POLLIN | POLLRDNORM;
1549 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1550 free_elements, tagstatus, ctx->tagwait);
1552 return mask;
1555 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1557 struct spu_context *ctx = file->private_data;
1558 int ret;
1560 spu_acquire(ctx);
1561 #if 0
1562 /* this currently hangs */
1563 ret = spufs_wait(ctx->mfc_wq,
1564 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1565 if (ret)
1566 goto out;
1567 ret = spufs_wait(ctx->mfc_wq,
1568 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1569 out:
1570 #else
1571 ret = 0;
1572 #endif
1573 spu_release(ctx);
1575 return ret;
1578 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1579 int datasync)
1581 return spufs_mfc_flush(file, NULL);
1584 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1586 struct spu_context *ctx = file->private_data;
1588 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1591 static const struct file_operations spufs_mfc_fops = {
1592 .open = spufs_mfc_open,
1593 .release = spufs_mfc_release,
1594 .read = spufs_mfc_read,
1595 .write = spufs_mfc_write,
1596 .poll = spufs_mfc_poll,
1597 .flush = spufs_mfc_flush,
1598 .fsync = spufs_mfc_fsync,
1599 .fasync = spufs_mfc_fasync,
1600 .mmap = spufs_mfc_mmap,
1603 static void spufs_npc_set(void *data, u64 val)
1605 struct spu_context *ctx = data;
1606 spu_acquire(ctx);
1607 ctx->ops->npc_write(ctx, val);
1608 spu_release(ctx);
1611 static u64 spufs_npc_get(void *data)
1613 struct spu_context *ctx = data;
1614 u64 ret;
1615 spu_acquire(ctx);
1616 ret = ctx->ops->npc_read(ctx);
1617 spu_release(ctx);
1618 return ret;
1620 DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1621 "0x%llx\n")
1623 static void spufs_decr_set(void *data, u64 val)
1625 struct spu_context *ctx = data;
1626 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1627 spu_acquire_saved(ctx);
1628 lscsa->decr.slot[0] = (u32) val;
1629 spu_release_saved(ctx);
1632 static u64 __spufs_decr_get(void *data)
1634 struct spu_context *ctx = data;
1635 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1636 return lscsa->decr.slot[0];
1639 static u64 spufs_decr_get(void *data)
1641 struct spu_context *ctx = data;
1642 u64 ret;
1643 spu_acquire_saved(ctx);
1644 ret = __spufs_decr_get(data);
1645 spu_release_saved(ctx);
1646 return ret;
1648 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1649 "0x%llx\n")
1651 static void spufs_decr_status_set(void *data, u64 val)
1653 struct spu_context *ctx = data;
1654 spu_acquire_saved(ctx);
1655 if (val)
1656 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1657 else
1658 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1659 spu_release_saved(ctx);
1662 static u64 __spufs_decr_status_get(void *data)
1664 struct spu_context *ctx = data;
1665 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1666 return SPU_DECR_STATUS_RUNNING;
1667 else
1668 return 0;
1671 static u64 spufs_decr_status_get(void *data)
1673 struct spu_context *ctx = data;
1674 u64 ret;
1675 spu_acquire_saved(ctx);
1676 ret = __spufs_decr_status_get(data);
1677 spu_release_saved(ctx);
1678 return ret;
1680 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1681 spufs_decr_status_set, "0x%llx\n")
1683 static void spufs_event_mask_set(void *data, u64 val)
1685 struct spu_context *ctx = data;
1686 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1687 spu_acquire_saved(ctx);
1688 lscsa->event_mask.slot[0] = (u32) val;
1689 spu_release_saved(ctx);
1692 static u64 __spufs_event_mask_get(void *data)
1694 struct spu_context *ctx = data;
1695 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1696 return lscsa->event_mask.slot[0];
1699 static u64 spufs_event_mask_get(void *data)
1701 struct spu_context *ctx = data;
1702 u64 ret;
1703 spu_acquire_saved(ctx);
1704 ret = __spufs_event_mask_get(data);
1705 spu_release_saved(ctx);
1706 return ret;
1708 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1709 spufs_event_mask_set, "0x%llx\n")
1711 static u64 __spufs_event_status_get(void *data)
1713 struct spu_context *ctx = data;
1714 struct spu_state *state = &ctx->csa;
1715 u64 stat;
1716 stat = state->spu_chnlcnt_RW[0];
1717 if (stat)
1718 return state->spu_chnldata_RW[0];
1719 return 0;
1722 static u64 spufs_event_status_get(void *data)
1724 struct spu_context *ctx = data;
1725 u64 ret = 0;
1727 spu_acquire_saved(ctx);
1728 ret = __spufs_event_status_get(data);
1729 spu_release_saved(ctx);
1730 return ret;
1732 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1733 NULL, "0x%llx\n")
1735 static void spufs_srr0_set(void *data, u64 val)
1737 struct spu_context *ctx = data;
1738 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1739 spu_acquire_saved(ctx);
1740 lscsa->srr0.slot[0] = (u32) val;
1741 spu_release_saved(ctx);
1744 static u64 spufs_srr0_get(void *data)
1746 struct spu_context *ctx = data;
1747 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1748 u64 ret;
1749 spu_acquire_saved(ctx);
1750 ret = lscsa->srr0.slot[0];
1751 spu_release_saved(ctx);
1752 return ret;
1754 DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1755 "0x%llx\n")
1757 static u64 spufs_id_get(void *data)
1759 struct spu_context *ctx = data;
1760 u64 num;
1762 spu_acquire(ctx);
1763 if (ctx->state == SPU_STATE_RUNNABLE)
1764 num = ctx->spu->number;
1765 else
1766 num = (unsigned int)-1;
1767 spu_release(ctx);
1769 return num;
1771 DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1773 static u64 __spufs_object_id_get(void *data)
1775 struct spu_context *ctx = data;
1776 return ctx->object_id;
1779 static u64 spufs_object_id_get(void *data)
1781 /* FIXME: Should there really be no locking here? */
1782 return __spufs_object_id_get(data);
1785 static void spufs_object_id_set(void *data, u64 id)
1787 struct spu_context *ctx = data;
1788 ctx->object_id = id;
1791 DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1792 spufs_object_id_set, "0x%llx\n");
1794 static u64 __spufs_lslr_get(void *data)
1796 struct spu_context *ctx = data;
1797 return ctx->csa.priv2.spu_lslr_RW;
1800 static u64 spufs_lslr_get(void *data)
1802 struct spu_context *ctx = data;
1803 u64 ret;
1805 spu_acquire_saved(ctx);
1806 ret = __spufs_lslr_get(data);
1807 spu_release_saved(ctx);
1809 return ret;
1811 DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")
1813 static int spufs_info_open(struct inode *inode, struct file *file)
1815 struct spufs_inode_info *i = SPUFS_I(inode);
1816 struct spu_context *ctx = i->i_ctx;
1817 file->private_data = ctx;
1818 return 0;
1821 static int spufs_caps_show(struct seq_file *s, void *private)
1823 struct spu_context *ctx = s->private;
1825 if (!(ctx->flags & SPU_CREATE_NOSCHED))
1826 seq_puts(s, "sched\n");
1827 if (!(ctx->flags & SPU_CREATE_ISOLATE))
1828 seq_puts(s, "step\n");
1829 return 0;
1832 static int spufs_caps_open(struct inode *inode, struct file *file)
1834 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1837 static const struct file_operations spufs_caps_fops = {
1838 .open = spufs_caps_open,
1839 .read = seq_read,
1840 .llseek = seq_lseek,
1841 .release = single_release,
1844 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1845 char __user *buf, size_t len, loff_t *pos)
1847 u32 mbox_stat;
1848 u32 data;
1850 mbox_stat = ctx->csa.prob.mb_stat_R;
1851 if (mbox_stat & 0x0000ff) {
1852 data = ctx->csa.prob.pu_mb_R;
1855 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1858 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1859 size_t len, loff_t *pos)
1861 int ret;
1862 struct spu_context *ctx = file->private_data;
1864 if (!access_ok(VERIFY_WRITE, buf, len))
1865 return -EFAULT;
1867 spu_acquire_saved(ctx);
1868 spin_lock(&ctx->csa.register_lock);
1869 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1870 spin_unlock(&ctx->csa.register_lock);
1871 spu_release_saved(ctx);
1873 return ret;
1876 static const struct file_operations spufs_mbox_info_fops = {
1877 .open = spufs_info_open,
1878 .read = spufs_mbox_info_read,
1879 .llseek = generic_file_llseek,
1882 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
1883 char __user *buf, size_t len, loff_t *pos)
1885 u32 ibox_stat;
1886 u32 data;
1888 ibox_stat = ctx->csa.prob.mb_stat_R;
1889 if (ibox_stat & 0xff0000) {
1890 data = ctx->csa.priv2.puint_mb_R;
1893 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1896 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1897 size_t len, loff_t *pos)
1899 struct spu_context *ctx = file->private_data;
1900 int ret;
1902 if (!access_ok(VERIFY_WRITE, buf, len))
1903 return -EFAULT;
1905 spu_acquire_saved(ctx);
1906 spin_lock(&ctx->csa.register_lock);
1907 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1908 spin_unlock(&ctx->csa.register_lock);
1909 spu_release_saved(ctx);
1911 return ret;
1914 static const struct file_operations spufs_ibox_info_fops = {
1915 .open = spufs_info_open,
1916 .read = spufs_ibox_info_read,
1917 .llseek = generic_file_llseek,
1920 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
1921 char __user *buf, size_t len, loff_t *pos)
1923 int i, cnt;
1924 u32 data[4];
1925 u32 wbox_stat;
1927 wbox_stat = ctx->csa.prob.mb_stat_R;
1928 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
1929 for (i = 0; i < cnt; i++) {
1930 data[i] = ctx->csa.spu_mailbox_data[i];
1933 return simple_read_from_buffer(buf, len, pos, &data,
1934 cnt * sizeof(u32));
1937 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
1938 size_t len, loff_t *pos)
1940 struct spu_context *ctx = file->private_data;
1941 int ret;
1943 if (!access_ok(VERIFY_WRITE, buf, len))
1944 return -EFAULT;
1946 spu_acquire_saved(ctx);
1947 spin_lock(&ctx->csa.register_lock);
1948 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1949 spin_unlock(&ctx->csa.register_lock);
1950 spu_release_saved(ctx);
1952 return ret;
1955 static const struct file_operations spufs_wbox_info_fops = {
1956 .open = spufs_info_open,
1957 .read = spufs_wbox_info_read,
1958 .llseek = generic_file_llseek,
1961 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
1962 char __user *buf, size_t len, loff_t *pos)
1964 struct spu_dma_info info;
1965 struct mfc_cq_sr *qp, *spuqp;
1966 int i;
1968 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
1969 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
1970 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
1971 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
1972 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
1973 for (i = 0; i < 16; i++) {
1974 qp = &info.dma_info_command_data[i];
1975 spuqp = &ctx->csa.priv2.spuq[i];
1977 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
1978 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
1979 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
1980 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
1983 return simple_read_from_buffer(buf, len, pos, &info,
1984 sizeof info);
1987 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
1988 size_t len, loff_t *pos)
1990 struct spu_context *ctx = file->private_data;
1991 int ret;
1993 if (!access_ok(VERIFY_WRITE, buf, len))
1994 return -EFAULT;
1996 spu_acquire_saved(ctx);
1997 spin_lock(&ctx->csa.register_lock);
1998 ret = __spufs_dma_info_read(ctx, buf, len, pos);
1999 spin_unlock(&ctx->csa.register_lock);
2000 spu_release_saved(ctx);
2002 return ret;
2005 static const struct file_operations spufs_dma_info_fops = {
2006 .open = spufs_info_open,
2007 .read = spufs_dma_info_read,
2010 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2011 char __user *buf, size_t len, loff_t *pos)
2013 struct spu_proxydma_info info;
2014 struct mfc_cq_sr *qp, *puqp;
2015 int ret = sizeof info;
2016 int i;
2018 if (len < ret)
2019 return -EINVAL;
2021 if (!access_ok(VERIFY_WRITE, buf, len))
2022 return -EFAULT;
2024 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2025 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2026 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2027 for (i = 0; i < 8; i++) {
2028 qp = &info.proxydma_info_command_data[i];
2029 puqp = &ctx->csa.priv2.puq[i];
2031 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2032 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2033 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2034 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2037 return simple_read_from_buffer(buf, len, pos, &info,
2038 sizeof info);
2041 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2042 size_t len, loff_t *pos)
2044 struct spu_context *ctx = file->private_data;
2045 int ret;
2047 spu_acquire_saved(ctx);
2048 spin_lock(&ctx->csa.register_lock);
2049 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2050 spin_unlock(&ctx->csa.register_lock);
2051 spu_release_saved(ctx);
2053 return ret;
2056 static const struct file_operations spufs_proxydma_info_fops = {
2057 .open = spufs_info_open,
2058 .read = spufs_proxydma_info_read,
2061 static int spufs_show_tid(struct seq_file *s, void *private)
2063 struct spu_context *ctx = s->private;
2065 seq_printf(s, "%d\n", ctx->tid);
2066 return 0;
2069 static int spufs_tid_open(struct inode *inode, struct file *file)
2071 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2074 static const struct file_operations spufs_tid_fops = {
2075 .open = spufs_tid_open,
2076 .read = seq_read,
2077 .llseek = seq_lseek,
2078 .release = single_release,
2081 static const char *ctx_state_names[] = {
2082 "user", "system", "iowait", "loaded"
2085 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2086 enum spu_utilization_state state)
2088 struct timespec ts;
2089 unsigned long long time = ctx->stats.times[state];
2092 * In general, utilization statistics are updated by the controlling
2093 * thread as the spu context moves through various well defined
2094 * state transitions, but if the context is lazily loaded its
2095 * utilization statistics are not updated as the controlling thread
2096 * is not tightly coupled with the execution of the spu context. We
2097 * calculate and apply the time delta from the last recorded state
2098 * of the spu context.
2100 if (ctx->spu && ctx->stats.util_state == state) {
2101 ktime_get_ts(&ts);
2102 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2105 return time / NSEC_PER_MSEC;
2108 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2110 unsigned long long slb_flts = ctx->stats.slb_flt;
2112 if (ctx->state == SPU_STATE_RUNNABLE) {
2113 slb_flts += (ctx->spu->stats.slb_flt -
2114 ctx->stats.slb_flt_base);
2117 return slb_flts;
2120 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2122 unsigned long long class2_intrs = ctx->stats.class2_intr;
2124 if (ctx->state == SPU_STATE_RUNNABLE) {
2125 class2_intrs += (ctx->spu->stats.class2_intr -
2126 ctx->stats.class2_intr_base);
2129 return class2_intrs;
2133 static int spufs_show_stat(struct seq_file *s, void *private)
2135 struct spu_context *ctx = s->private;
2137 spu_acquire(ctx);
2138 seq_printf(s, "%s %llu %llu %llu %llu "
2139 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2140 ctx_state_names[ctx->stats.util_state],
2141 spufs_acct_time(ctx, SPU_UTIL_USER),
2142 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2143 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2144 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2145 ctx->stats.vol_ctx_switch,
2146 ctx->stats.invol_ctx_switch,
2147 spufs_slb_flts(ctx),
2148 ctx->stats.hash_flt,
2149 ctx->stats.min_flt,
2150 ctx->stats.maj_flt,
2151 spufs_class2_intrs(ctx),
2152 ctx->stats.libassist);
2153 spu_release(ctx);
2154 return 0;
2157 static int spufs_stat_open(struct inode *inode, struct file *file)
2159 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2162 static const struct file_operations spufs_stat_fops = {
2163 .open = spufs_stat_open,
2164 .read = seq_read,
2165 .llseek = seq_lseek,
2166 .release = single_release,
2170 struct tree_descr spufs_dir_contents[] = {
2171 { "capabilities", &spufs_caps_fops, 0444, },
2172 { "mem", &spufs_mem_fops, 0666, },
2173 { "regs", &spufs_regs_fops, 0666, },
2174 { "mbox", &spufs_mbox_fops, 0444, },
2175 { "ibox", &spufs_ibox_fops, 0444, },
2176 { "wbox", &spufs_wbox_fops, 0222, },
2177 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2178 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2179 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2180 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2181 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2182 { "signal1_type", &spufs_signal1_type, 0666, },
2183 { "signal2_type", &spufs_signal2_type, 0666, },
2184 { "cntl", &spufs_cntl_fops, 0666, },
2185 { "fpcr", &spufs_fpcr_fops, 0666, },
2186 { "lslr", &spufs_lslr_ops, 0444, },
2187 { "mfc", &spufs_mfc_fops, 0666, },
2188 { "mss", &spufs_mss_fops, 0666, },
2189 { "npc", &spufs_npc_ops, 0666, },
2190 { "srr0", &spufs_srr0_ops, 0666, },
2191 { "decr", &spufs_decr_ops, 0666, },
2192 { "decr_status", &spufs_decr_status_ops, 0666, },
2193 { "event_mask", &spufs_event_mask_ops, 0666, },
2194 { "event_status", &spufs_event_status_ops, 0444, },
2195 { "psmap", &spufs_psmap_fops, 0666, },
2196 { "phys-id", &spufs_id_ops, 0666, },
2197 { "object-id", &spufs_object_id_ops, 0666, },
2198 { "mbox_info", &spufs_mbox_info_fops, 0444, },
2199 { "ibox_info", &spufs_ibox_info_fops, 0444, },
2200 { "wbox_info", &spufs_wbox_info_fops, 0444, },
2201 { "dma_info", &spufs_dma_info_fops, 0444, },
2202 { "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2203 { "tid", &spufs_tid_fops, 0444, },
2204 { "stat", &spufs_stat_fops, 0444, },
2208 struct tree_descr spufs_dir_nosched_contents[] = {
2209 { "capabilities", &spufs_caps_fops, 0444, },
2210 { "mem", &spufs_mem_fops, 0666, },
2211 { "mbox", &spufs_mbox_fops, 0444, },
2212 { "ibox", &spufs_ibox_fops, 0444, },
2213 { "wbox", &spufs_wbox_fops, 0222, },
2214 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2215 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2216 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2217 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2218 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2219 { "signal1_type", &spufs_signal1_type, 0666, },
2220 { "signal2_type", &spufs_signal2_type, 0666, },
2221 { "mss", &spufs_mss_fops, 0666, },
2222 { "mfc", &spufs_mfc_fops, 0666, },
2223 { "cntl", &spufs_cntl_fops, 0666, },
2224 { "npc", &spufs_npc_ops, 0666, },
2225 { "psmap", &spufs_psmap_fops, 0666, },
2226 { "phys-id", &spufs_id_ops, 0666, },
2227 { "object-id", &spufs_object_id_ops, 0666, },
2228 { "tid", &spufs_tid_fops, 0444, },
2229 { "stat", &spufs_stat_fops, 0444, },
2233 struct spufs_coredump_reader spufs_coredump_read[] = {
2234 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2235 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2236 { "lslr", NULL, __spufs_lslr_get, 19 },
2237 { "decr", NULL, __spufs_decr_get, 19 },
2238 { "decr_status", NULL, __spufs_decr_status_get, 19 },
2239 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2240 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2241 { "signal1_type", NULL, __spufs_signal1_type_get, 19 },
2242 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2243 { "signal2_type", NULL, __spufs_signal2_type_get, 19 },
2244 { "event_mask", NULL, __spufs_event_mask_get, 19 },
2245 { "event_status", NULL, __spufs_event_status_get, 19 },
2246 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2247 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2248 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2249 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2250 { "proxydma_info", __spufs_proxydma_info_read,
2251 NULL, sizeof(struct spu_proxydma_info)},
2252 { "object-id", NULL, __spufs_object_id_get, 19 },
2253 { },
2255 int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;