[NETFILTER]: x_tables: switch hotdrop to bool
[linux-2.6/kvm.git] / fs / xfs / xfs_inode.c
blob3ca5d43b83456ccdf8ca4c61f13b363d13c9e76c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
53 kmem_zone_t *xfs_ifork_zone;
54 kmem_zone_t *xfs_inode_zone;
55 kmem_zone_t *xfs_chashlist_zone;
58 * Used in xfs_itruncate(). This is the maximum number of extents
59 * freed from a file in a single transaction.
61 #define XFS_ITRUNC_MAX_EXTENTS 2
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
65 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
66 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 int disk,
79 xfs_exntfmt_t fmt)
81 xfs_bmbt_rec_t *ep;
82 xfs_bmbt_irec_t irec;
83 xfs_bmbt_rec_t rec;
84 int i;
86 for (i = 0; i < nrecs; i++) {
87 ep = xfs_iext_get_ext(ifp, i);
88 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
89 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
90 if (disk)
91 xfs_bmbt_disk_get_all(&rec, &irec);
92 else
93 xfs_bmbt_get_all(&rec, &irec);
94 if (fmt == XFS_EXTFMT_NOSTATE)
95 ASSERT(irec.br_state == XFS_EXT_NORM);
98 #else /* DEBUG */
99 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
100 #endif /* DEBUG */
103 * Check that none of the inode's in the buffer have a next
104 * unlinked field of 0.
106 #if defined(DEBUG)
107 void
108 xfs_inobp_check(
109 xfs_mount_t *mp,
110 xfs_buf_t *bp)
112 int i;
113 int j;
114 xfs_dinode_t *dip;
116 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
118 for (i = 0; i < j; i++) {
119 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
120 i * mp->m_sb.sb_inodesize);
121 if (!dip->di_next_unlinked) {
122 xfs_fs_cmn_err(CE_ALERT, mp,
123 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
124 bp);
125 ASSERT(dip->di_next_unlinked);
129 #endif
132 * This routine is called to map an inode number within a file
133 * system to the buffer containing the on-disk version of the
134 * inode. It returns a pointer to the buffer containing the
135 * on-disk inode in the bpp parameter, and in the dip parameter
136 * it returns a pointer to the on-disk inode within that buffer.
138 * If a non-zero error is returned, then the contents of bpp and
139 * dipp are undefined.
141 * Use xfs_imap() to determine the size and location of the
142 * buffer to read from disk.
144 STATIC int
145 xfs_inotobp(
146 xfs_mount_t *mp,
147 xfs_trans_t *tp,
148 xfs_ino_t ino,
149 xfs_dinode_t **dipp,
150 xfs_buf_t **bpp,
151 int *offset)
153 int di_ok;
154 xfs_imap_t imap;
155 xfs_buf_t *bp;
156 int error;
157 xfs_dinode_t *dip;
160 * Call the space management code to find the location of the
161 * inode on disk.
163 imap.im_blkno = 0;
164 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
165 if (error != 0) {
166 cmn_err(CE_WARN,
167 "xfs_inotobp: xfs_imap() returned an "
168 "error %d on %s. Returning error.", error, mp->m_fsname);
169 return error;
173 * If the inode number maps to a block outside the bounds of the
174 * file system then return NULL rather than calling read_buf
175 * and panicing when we get an error from the driver.
177 if ((imap.im_blkno + imap.im_len) >
178 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
179 cmn_err(CE_WARN,
180 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
181 "of the file system %s. Returning EINVAL.",
182 (unsigned long long)imap.im_blkno,
183 imap.im_len, mp->m_fsname);
184 return XFS_ERROR(EINVAL);
188 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
189 * default to just a read_buf() call.
191 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
192 (int)imap.im_len, XFS_BUF_LOCK, &bp);
194 if (error) {
195 cmn_err(CE_WARN,
196 "xfs_inotobp: xfs_trans_read_buf() returned an "
197 "error %d on %s. Returning error.", error, mp->m_fsname);
198 return error;
200 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
201 di_ok =
202 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
203 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
204 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
205 XFS_RANDOM_ITOBP_INOTOBP))) {
206 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
207 xfs_trans_brelse(tp, bp);
208 cmn_err(CE_WARN,
209 "xfs_inotobp: XFS_TEST_ERROR() returned an "
210 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
211 return XFS_ERROR(EFSCORRUPTED);
214 xfs_inobp_check(mp, bp);
217 * Set *dipp to point to the on-disk inode in the buffer.
219 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
220 *bpp = bp;
221 *offset = imap.im_boffset;
222 return 0;
227 * This routine is called to map an inode to the buffer containing
228 * the on-disk version of the inode. It returns a pointer to the
229 * buffer containing the on-disk inode in the bpp parameter, and in
230 * the dip parameter it returns a pointer to the on-disk inode within
231 * that buffer.
233 * If a non-zero error is returned, then the contents of bpp and
234 * dipp are undefined.
236 * If the inode is new and has not yet been initialized, use xfs_imap()
237 * to determine the size and location of the buffer to read from disk.
238 * If the inode has already been mapped to its buffer and read in once,
239 * then use the mapping information stored in the inode rather than
240 * calling xfs_imap(). This allows us to avoid the overhead of looking
241 * at the inode btree for small block file systems (see xfs_dilocate()).
242 * We can tell whether the inode has been mapped in before by comparing
243 * its disk block address to 0. Only uninitialized inodes will have
244 * 0 for the disk block address.
247 xfs_itobp(
248 xfs_mount_t *mp,
249 xfs_trans_t *tp,
250 xfs_inode_t *ip,
251 xfs_dinode_t **dipp,
252 xfs_buf_t **bpp,
253 xfs_daddr_t bno,
254 uint imap_flags)
256 xfs_imap_t imap;
257 xfs_buf_t *bp;
258 int error;
259 int i;
260 int ni;
262 if (ip->i_blkno == (xfs_daddr_t)0) {
264 * Call the space management code to find the location of the
265 * inode on disk.
267 imap.im_blkno = bno;
268 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
269 XFS_IMAP_LOOKUP | imap_flags)))
270 return error;
273 * If the inode number maps to a block outside the bounds
274 * of the file system then return NULL rather than calling
275 * read_buf and panicing when we get an error from the
276 * driver.
278 if ((imap.im_blkno + imap.im_len) >
279 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
280 #ifdef DEBUG
281 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
282 "(imap.im_blkno (0x%llx) "
283 "+ imap.im_len (0x%llx)) > "
284 " XFS_FSB_TO_BB(mp, "
285 "mp->m_sb.sb_dblocks) (0x%llx)",
286 (unsigned long long) imap.im_blkno,
287 (unsigned long long) imap.im_len,
288 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
289 #endif /* DEBUG */
290 return XFS_ERROR(EINVAL);
294 * Fill in the fields in the inode that will be used to
295 * map the inode to its buffer from now on.
297 ip->i_blkno = imap.im_blkno;
298 ip->i_len = imap.im_len;
299 ip->i_boffset = imap.im_boffset;
300 } else {
302 * We've already mapped the inode once, so just use the
303 * mapping that we saved the first time.
305 imap.im_blkno = ip->i_blkno;
306 imap.im_len = ip->i_len;
307 imap.im_boffset = ip->i_boffset;
309 ASSERT(bno == 0 || bno == imap.im_blkno);
312 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
313 * default to just a read_buf() call.
315 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
316 (int)imap.im_len, XFS_BUF_LOCK, &bp);
317 if (error) {
318 #ifdef DEBUG
319 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
320 "xfs_trans_read_buf() returned error %d, "
321 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
322 error, (unsigned long long) imap.im_blkno,
323 (unsigned long long) imap.im_len);
324 #endif /* DEBUG */
325 return error;
329 * Validate the magic number and version of every inode in the buffer
330 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
331 * No validation is done here in userspace (xfs_repair).
333 #if !defined(__KERNEL__)
334 ni = 0;
335 #elif defined(DEBUG)
336 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
337 #else /* usual case */
338 ni = 1;
339 #endif
341 for (i = 0; i < ni; i++) {
342 int di_ok;
343 xfs_dinode_t *dip;
345 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
346 (i << mp->m_sb.sb_inodelog));
347 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
348 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
349 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
350 XFS_ERRTAG_ITOBP_INOTOBP,
351 XFS_RANDOM_ITOBP_INOTOBP))) {
352 if (imap_flags & XFS_IMAP_BULKSTAT) {
353 xfs_trans_brelse(tp, bp);
354 return XFS_ERROR(EINVAL);
356 #ifdef DEBUG
357 cmn_err(CE_ALERT,
358 "Device %s - bad inode magic/vsn "
359 "daddr %lld #%d (magic=%x)",
360 XFS_BUFTARG_NAME(mp->m_ddev_targp),
361 (unsigned long long)imap.im_blkno, i,
362 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
363 #endif
364 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
365 mp, dip);
366 xfs_trans_brelse(tp, bp);
367 return XFS_ERROR(EFSCORRUPTED);
371 xfs_inobp_check(mp, bp);
374 * Mark the buffer as an inode buffer now that it looks good
376 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
379 * Set *dipp to point to the on-disk inode in the buffer.
381 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
382 *bpp = bp;
383 return 0;
387 * Move inode type and inode format specific information from the
388 * on-disk inode to the in-core inode. For fifos, devs, and sockets
389 * this means set if_rdev to the proper value. For files, directories,
390 * and symlinks this means to bring in the in-line data or extent
391 * pointers. For a file in B-tree format, only the root is immediately
392 * brought in-core. The rest will be in-lined in if_extents when it
393 * is first referenced (see xfs_iread_extents()).
395 STATIC int
396 xfs_iformat(
397 xfs_inode_t *ip,
398 xfs_dinode_t *dip)
400 xfs_attr_shortform_t *atp;
401 int size;
402 int error;
403 xfs_fsize_t di_size;
404 ip->i_df.if_ext_max =
405 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
406 error = 0;
408 if (unlikely(
409 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
410 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
411 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
414 (unsigned long long)ip->i_ino,
415 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
416 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
417 (unsigned long long)
418 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
419 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
420 ip->i_mount, dip);
421 return XFS_ERROR(EFSCORRUPTED);
424 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
425 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
426 "corrupt dinode %Lu, forkoff = 0x%x.",
427 (unsigned long long)ip->i_ino,
428 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
429 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
430 ip->i_mount, dip);
431 return XFS_ERROR(EFSCORRUPTED);
434 switch (ip->i_d.di_mode & S_IFMT) {
435 case S_IFIFO:
436 case S_IFCHR:
437 case S_IFBLK:
438 case S_IFSOCK:
439 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
440 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
441 ip->i_mount, dip);
442 return XFS_ERROR(EFSCORRUPTED);
444 ip->i_d.di_size = 0;
445 ip->i_size = 0;
446 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
447 break;
449 case S_IFREG:
450 case S_IFLNK:
451 case S_IFDIR:
452 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
453 case XFS_DINODE_FMT_LOCAL:
455 * no local regular files yet
457 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
458 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
459 "corrupt inode %Lu "
460 "(local format for regular file).",
461 (unsigned long long) ip->i_ino);
462 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
463 XFS_ERRLEVEL_LOW,
464 ip->i_mount, dip);
465 return XFS_ERROR(EFSCORRUPTED);
468 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
469 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
470 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
471 "corrupt inode %Lu "
472 "(bad size %Ld for local inode).",
473 (unsigned long long) ip->i_ino,
474 (long long) di_size);
475 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
476 XFS_ERRLEVEL_LOW,
477 ip->i_mount, dip);
478 return XFS_ERROR(EFSCORRUPTED);
481 size = (int)di_size;
482 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
483 break;
484 case XFS_DINODE_FMT_EXTENTS:
485 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
486 break;
487 case XFS_DINODE_FMT_BTREE:
488 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
489 break;
490 default:
491 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
492 ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
495 break;
497 default:
498 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
499 return XFS_ERROR(EFSCORRUPTED);
501 if (error) {
502 return error;
504 if (!XFS_DFORK_Q(dip))
505 return 0;
506 ASSERT(ip->i_afp == NULL);
507 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
508 ip->i_afp->if_ext_max =
509 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
510 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
511 case XFS_DINODE_FMT_LOCAL:
512 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
513 size = be16_to_cpu(atp->hdr.totsize);
514 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
515 break;
516 case XFS_DINODE_FMT_EXTENTS:
517 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
518 break;
519 case XFS_DINODE_FMT_BTREE:
520 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
521 break;
522 default:
523 error = XFS_ERROR(EFSCORRUPTED);
524 break;
526 if (error) {
527 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
528 ip->i_afp = NULL;
529 xfs_idestroy_fork(ip, XFS_DATA_FORK);
531 return error;
535 * The file is in-lined in the on-disk inode.
536 * If it fits into if_inline_data, then copy
537 * it there, otherwise allocate a buffer for it
538 * and copy the data there. Either way, set
539 * if_data to point at the data.
540 * If we allocate a buffer for the data, make
541 * sure that its size is a multiple of 4 and
542 * record the real size in i_real_bytes.
544 STATIC int
545 xfs_iformat_local(
546 xfs_inode_t *ip,
547 xfs_dinode_t *dip,
548 int whichfork,
549 int size)
551 xfs_ifork_t *ifp;
552 int real_size;
555 * If the size is unreasonable, then something
556 * is wrong and we just bail out rather than crash in
557 * kmem_alloc() or memcpy() below.
559 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
560 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
561 "corrupt inode %Lu "
562 "(bad size %d for local fork, size = %d).",
563 (unsigned long long) ip->i_ino, size,
564 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
565 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
566 ip->i_mount, dip);
567 return XFS_ERROR(EFSCORRUPTED);
569 ifp = XFS_IFORK_PTR(ip, whichfork);
570 real_size = 0;
571 if (size == 0)
572 ifp->if_u1.if_data = NULL;
573 else if (size <= sizeof(ifp->if_u2.if_inline_data))
574 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
575 else {
576 real_size = roundup(size, 4);
577 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
579 ifp->if_bytes = size;
580 ifp->if_real_bytes = real_size;
581 if (size)
582 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
583 ifp->if_flags &= ~XFS_IFEXTENTS;
584 ifp->if_flags |= XFS_IFINLINE;
585 return 0;
589 * The file consists of a set of extents all
590 * of which fit into the on-disk inode.
591 * If there are few enough extents to fit into
592 * the if_inline_ext, then copy them there.
593 * Otherwise allocate a buffer for them and copy
594 * them into it. Either way, set if_extents
595 * to point at the extents.
597 STATIC int
598 xfs_iformat_extents(
599 xfs_inode_t *ip,
600 xfs_dinode_t *dip,
601 int whichfork)
603 xfs_bmbt_rec_t *ep, *dp;
604 xfs_ifork_t *ifp;
605 int nex;
606 int size;
607 int i;
609 ifp = XFS_IFORK_PTR(ip, whichfork);
610 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
611 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
614 * If the number of extents is unreasonable, then something
615 * is wrong and we just bail out rather than crash in
616 * kmem_alloc() or memcpy() below.
618 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
619 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
620 "corrupt inode %Lu ((a)extents = %d).",
621 (unsigned long long) ip->i_ino, nex);
622 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
623 ip->i_mount, dip);
624 return XFS_ERROR(EFSCORRUPTED);
627 ifp->if_real_bytes = 0;
628 if (nex == 0)
629 ifp->if_u1.if_extents = NULL;
630 else if (nex <= XFS_INLINE_EXTS)
631 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
632 else
633 xfs_iext_add(ifp, 0, nex);
635 ifp->if_bytes = size;
636 if (size) {
637 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
638 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
639 for (i = 0; i < nex; i++, dp++) {
640 ep = xfs_iext_get_ext(ifp, i);
641 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
642 ARCH_CONVERT);
643 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
644 ARCH_CONVERT);
646 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
647 whichfork);
648 if (whichfork != XFS_DATA_FORK ||
649 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
650 if (unlikely(xfs_check_nostate_extents(
651 ifp, 0, nex))) {
652 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
653 XFS_ERRLEVEL_LOW,
654 ip->i_mount);
655 return XFS_ERROR(EFSCORRUPTED);
658 ifp->if_flags |= XFS_IFEXTENTS;
659 return 0;
663 * The file has too many extents to fit into
664 * the inode, so they are in B-tree format.
665 * Allocate a buffer for the root of the B-tree
666 * and copy the root into it. The i_extents
667 * field will remain NULL until all of the
668 * extents are read in (when they are needed).
670 STATIC int
671 xfs_iformat_btree(
672 xfs_inode_t *ip,
673 xfs_dinode_t *dip,
674 int whichfork)
676 xfs_bmdr_block_t *dfp;
677 xfs_ifork_t *ifp;
678 /* REFERENCED */
679 int nrecs;
680 int size;
682 ifp = XFS_IFORK_PTR(ip, whichfork);
683 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
684 size = XFS_BMAP_BROOT_SPACE(dfp);
685 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
688 * blow out if -- fork has less extents than can fit in
689 * fork (fork shouldn't be a btree format), root btree
690 * block has more records than can fit into the fork,
691 * or the number of extents is greater than the number of
692 * blocks.
694 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
695 || XFS_BMDR_SPACE_CALC(nrecs) >
696 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
697 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
698 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
699 "corrupt inode %Lu (btree).",
700 (unsigned long long) ip->i_ino);
701 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
702 ip->i_mount);
703 return XFS_ERROR(EFSCORRUPTED);
706 ifp->if_broot_bytes = size;
707 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
708 ASSERT(ifp->if_broot != NULL);
710 * Copy and convert from the on-disk structure
711 * to the in-memory structure.
713 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
714 ifp->if_broot, size);
715 ifp->if_flags &= ~XFS_IFEXTENTS;
716 ifp->if_flags |= XFS_IFBROOT;
718 return 0;
722 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
723 * and native format
725 * buf = on-disk representation
726 * dip = native representation
727 * dir = direction - +ve -> disk to native
728 * -ve -> native to disk
730 void
731 xfs_xlate_dinode_core(
732 xfs_caddr_t buf,
733 xfs_dinode_core_t *dip,
734 int dir)
736 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
737 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
738 xfs_arch_t arch = ARCH_CONVERT;
740 ASSERT(dir);
742 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
743 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
744 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
745 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
746 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
747 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
748 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
749 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
750 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
752 if (dir > 0) {
753 memcpy(mem_core->di_pad, buf_core->di_pad,
754 sizeof(buf_core->di_pad));
755 } else {
756 memcpy(buf_core->di_pad, mem_core->di_pad,
757 sizeof(buf_core->di_pad));
760 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
762 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
763 dir, arch);
764 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
765 dir, arch);
766 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
767 dir, arch);
768 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
769 dir, arch);
770 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
771 dir, arch);
772 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
773 dir, arch);
774 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
775 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
776 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
777 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
778 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
779 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
780 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
781 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
782 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
783 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
784 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
787 STATIC uint
788 _xfs_dic2xflags(
789 __uint16_t di_flags)
791 uint flags = 0;
793 if (di_flags & XFS_DIFLAG_ANY) {
794 if (di_flags & XFS_DIFLAG_REALTIME)
795 flags |= XFS_XFLAG_REALTIME;
796 if (di_flags & XFS_DIFLAG_PREALLOC)
797 flags |= XFS_XFLAG_PREALLOC;
798 if (di_flags & XFS_DIFLAG_IMMUTABLE)
799 flags |= XFS_XFLAG_IMMUTABLE;
800 if (di_flags & XFS_DIFLAG_APPEND)
801 flags |= XFS_XFLAG_APPEND;
802 if (di_flags & XFS_DIFLAG_SYNC)
803 flags |= XFS_XFLAG_SYNC;
804 if (di_flags & XFS_DIFLAG_NOATIME)
805 flags |= XFS_XFLAG_NOATIME;
806 if (di_flags & XFS_DIFLAG_NODUMP)
807 flags |= XFS_XFLAG_NODUMP;
808 if (di_flags & XFS_DIFLAG_RTINHERIT)
809 flags |= XFS_XFLAG_RTINHERIT;
810 if (di_flags & XFS_DIFLAG_PROJINHERIT)
811 flags |= XFS_XFLAG_PROJINHERIT;
812 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
813 flags |= XFS_XFLAG_NOSYMLINKS;
814 if (di_flags & XFS_DIFLAG_EXTSIZE)
815 flags |= XFS_XFLAG_EXTSIZE;
816 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
817 flags |= XFS_XFLAG_EXTSZINHERIT;
818 if (di_flags & XFS_DIFLAG_NODEFRAG)
819 flags |= XFS_XFLAG_NODEFRAG;
822 return flags;
825 uint
826 xfs_ip2xflags(
827 xfs_inode_t *ip)
829 xfs_dinode_core_t *dic = &ip->i_d;
831 return _xfs_dic2xflags(dic->di_flags) |
832 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
835 uint
836 xfs_dic2xflags(
837 xfs_dinode_core_t *dic)
839 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
840 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
844 * Given a mount structure and an inode number, return a pointer
845 * to a newly allocated in-core inode corresponding to the given
846 * inode number.
848 * Initialize the inode's attributes and extent pointers if it
849 * already has them (it will not if the inode has no links).
852 xfs_iread(
853 xfs_mount_t *mp,
854 xfs_trans_t *tp,
855 xfs_ino_t ino,
856 xfs_inode_t **ipp,
857 xfs_daddr_t bno,
858 uint imap_flags)
860 xfs_buf_t *bp;
861 xfs_dinode_t *dip;
862 xfs_inode_t *ip;
863 int error;
865 ASSERT(xfs_inode_zone != NULL);
867 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
868 ip->i_ino = ino;
869 ip->i_mount = mp;
870 spin_lock_init(&ip->i_flags_lock);
873 * Get pointer's to the on-disk inode and the buffer containing it.
874 * If the inode number refers to a block outside the file system
875 * then xfs_itobp() will return NULL. In this case we should
876 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
877 * know that this is a new incore inode.
879 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
880 if (error) {
881 kmem_zone_free(xfs_inode_zone, ip);
882 return error;
886 * Initialize inode's trace buffers.
887 * Do this before xfs_iformat in case it adds entries.
889 #ifdef XFS_BMAP_TRACE
890 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
891 #endif
892 #ifdef XFS_BMBT_TRACE
893 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
894 #endif
895 #ifdef XFS_RW_TRACE
896 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
897 #endif
898 #ifdef XFS_ILOCK_TRACE
899 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
900 #endif
901 #ifdef XFS_DIR2_TRACE
902 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
903 #endif
906 * If we got something that isn't an inode it means someone
907 * (nfs or dmi) has a stale handle.
909 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
910 kmem_zone_free(xfs_inode_zone, ip);
911 xfs_trans_brelse(tp, bp);
912 #ifdef DEBUG
913 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
914 "dip->di_core.di_magic (0x%x) != "
915 "XFS_DINODE_MAGIC (0x%x)",
916 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
917 XFS_DINODE_MAGIC);
918 #endif /* DEBUG */
919 return XFS_ERROR(EINVAL);
923 * If the on-disk inode is already linked to a directory
924 * entry, copy all of the inode into the in-core inode.
925 * xfs_iformat() handles copying in the inode format
926 * specific information.
927 * Otherwise, just get the truly permanent information.
929 if (dip->di_core.di_mode) {
930 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
931 &(ip->i_d), 1);
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936 #ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940 #endif /* DEBUG */
941 return error;
943 } else {
944 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
945 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
946 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
947 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
955 ip->i_d.di_mode = 0;
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
964 INIT_LIST_HEAD(&ip->i_reclaim);
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
983 ip->i_delayed_blks = 0;
984 ip->i_size = ip->i_d.di_size;
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
991 XFS_BUF_SET_REF(bp, XFS_INO_REF);
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1004 * the buffer.
1006 xfs_trans_brelse(tp, bp);
1007 *ipp = ip;
1008 return 0;
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1016 xfs_iread_extents(
1017 xfs_trans_t *tp,
1018 xfs_inode_t *ip,
1019 int whichfork)
1021 int error;
1022 xfs_ifork_t *ifp;
1023 xfs_extnum_t nextents;
1024 size_t size;
1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 ip->i_mount);
1029 return XFS_ERROR(EFSCORRUPTED);
1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 size = nextents * sizeof(xfs_bmbt_rec_t);
1033 ifp = XFS_IFORK_PTR(ip, whichfork);
1036 * We know that the size is valid (it's checked in iformat_btree)
1038 ifp->if_lastex = NULLEXTNUM;
1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1040 ifp->if_flags |= XFS_IFEXTENTS;
1041 xfs_iext_add(ifp, 0, nextents);
1042 error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 if (error) {
1044 xfs_iext_destroy(ifp);
1045 ifp->if_flags &= ~XFS_IFEXTENTS;
1046 return error;
1048 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1049 return 0;
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
1079 xfs_ialloc(
1080 xfs_trans_t *tp,
1081 xfs_inode_t *pip,
1082 mode_t mode,
1083 xfs_nlink_t nlink,
1084 xfs_dev_t rdev,
1085 cred_t *cr,
1086 xfs_prid_t prid,
1087 int okalloc,
1088 xfs_buf_t **ialloc_context,
1089 boolean_t *call_again,
1090 xfs_inode_t **ipp)
1092 xfs_ino_t ino;
1093 xfs_inode_t *ip;
1094 bhv_vnode_t *vp;
1095 uint flags;
1096 int error;
1099 * Call the space management code to pick
1100 * the on-disk inode to be allocated.
1102 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1103 ialloc_context, call_again, &ino);
1104 if (error != 0) {
1105 return error;
1107 if (*call_again || ino == NULLFSINO) {
1108 *ipp = NULL;
1109 return 0;
1111 ASSERT(*ialloc_context == NULL);
1114 * Get the in-core inode with the lock held exclusively.
1115 * This is because we're setting fields here we need
1116 * to prevent others from looking at until we're done.
1118 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1119 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1120 if (error != 0) {
1121 return error;
1123 ASSERT(ip != NULL);
1125 vp = XFS_ITOV(ip);
1126 ip->i_d.di_mode = (__uint16_t)mode;
1127 ip->i_d.di_onlink = 0;
1128 ip->i_d.di_nlink = nlink;
1129 ASSERT(ip->i_d.di_nlink == nlink);
1130 ip->i_d.di_uid = current_fsuid(cr);
1131 ip->i_d.di_gid = current_fsgid(cr);
1132 ip->i_d.di_projid = prid;
1133 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1136 * If the superblock version is up to where we support new format
1137 * inodes and this is currently an old format inode, then change
1138 * the inode version number now. This way we only do the conversion
1139 * here rather than here and in the flush/logging code.
1141 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1142 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1143 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1145 * We've already zeroed the old link count, the projid field,
1146 * and the pad field.
1151 * Project ids won't be stored on disk if we are using a version 1 inode.
1153 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1154 xfs_bump_ino_vers2(tp, ip);
1156 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1157 ip->i_d.di_gid = pip->i_d.di_gid;
1158 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1159 ip->i_d.di_mode |= S_ISGID;
1164 * If the group ID of the new file does not match the effective group
1165 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1166 * (and only if the irix_sgid_inherit compatibility variable is set).
1168 if ((irix_sgid_inherit) &&
1169 (ip->i_d.di_mode & S_ISGID) &&
1170 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1171 ip->i_d.di_mode &= ~S_ISGID;
1174 ip->i_d.di_size = 0;
1175 ip->i_size = 0;
1176 ip->i_d.di_nextents = 0;
1177 ASSERT(ip->i_d.di_nblocks == 0);
1178 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1180 * di_gen will have been taken care of in xfs_iread.
1182 ip->i_d.di_extsize = 0;
1183 ip->i_d.di_dmevmask = 0;
1184 ip->i_d.di_dmstate = 0;
1185 ip->i_d.di_flags = 0;
1186 flags = XFS_ILOG_CORE;
1187 switch (mode & S_IFMT) {
1188 case S_IFIFO:
1189 case S_IFCHR:
1190 case S_IFBLK:
1191 case S_IFSOCK:
1192 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1193 ip->i_df.if_u2.if_rdev = rdev;
1194 ip->i_df.if_flags = 0;
1195 flags |= XFS_ILOG_DEV;
1196 break;
1197 case S_IFREG:
1198 case S_IFDIR:
1199 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1200 uint di_flags = 0;
1202 if ((mode & S_IFMT) == S_IFDIR) {
1203 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1204 di_flags |= XFS_DIFLAG_RTINHERIT;
1205 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1206 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1207 ip->i_d.di_extsize = pip->i_d.di_extsize;
1209 } else if ((mode & S_IFMT) == S_IFREG) {
1210 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1211 di_flags |= XFS_DIFLAG_REALTIME;
1212 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1214 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1215 di_flags |= XFS_DIFLAG_EXTSIZE;
1216 ip->i_d.di_extsize = pip->i_d.di_extsize;
1219 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1220 xfs_inherit_noatime)
1221 di_flags |= XFS_DIFLAG_NOATIME;
1222 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1223 xfs_inherit_nodump)
1224 di_flags |= XFS_DIFLAG_NODUMP;
1225 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1226 xfs_inherit_sync)
1227 di_flags |= XFS_DIFLAG_SYNC;
1228 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1229 xfs_inherit_nosymlinks)
1230 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1231 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1232 di_flags |= XFS_DIFLAG_PROJINHERIT;
1233 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1234 xfs_inherit_nodefrag)
1235 di_flags |= XFS_DIFLAG_NODEFRAG;
1236 ip->i_d.di_flags |= di_flags;
1238 /* FALLTHROUGH */
1239 case S_IFLNK:
1240 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1241 ip->i_df.if_flags = XFS_IFEXTENTS;
1242 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1243 ip->i_df.if_u1.if_extents = NULL;
1244 break;
1245 default:
1246 ASSERT(0);
1249 * Attribute fork settings for new inode.
1251 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1252 ip->i_d.di_anextents = 0;
1255 * Log the new values stuffed into the inode.
1257 xfs_trans_log_inode(tp, ip, flags);
1259 /* now that we have an i_mode we can setup inode ops and unlock */
1260 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1262 *ipp = ip;
1263 return 0;
1267 * Check to make sure that there are no blocks allocated to the
1268 * file beyond the size of the file. We don't check this for
1269 * files with fixed size extents or real time extents, but we
1270 * at least do it for regular files.
1272 #ifdef DEBUG
1273 void
1274 xfs_isize_check(
1275 xfs_mount_t *mp,
1276 xfs_inode_t *ip,
1277 xfs_fsize_t isize)
1279 xfs_fileoff_t map_first;
1280 int nimaps;
1281 xfs_bmbt_irec_t imaps[2];
1283 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1284 return;
1286 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1287 return;
1289 nimaps = 2;
1290 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1292 * The filesystem could be shutting down, so bmapi may return
1293 * an error.
1295 if (xfs_bmapi(NULL, ip, map_first,
1296 (XFS_B_TO_FSB(mp,
1297 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1298 map_first),
1299 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1300 NULL, NULL))
1301 return;
1302 ASSERT(nimaps == 1);
1303 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1305 #endif /* DEBUG */
1308 * Calculate the last possible buffered byte in a file. This must
1309 * include data that was buffered beyond the EOF by the write code.
1310 * This also needs to deal with overflowing the xfs_fsize_t type
1311 * which can happen for sizes near the limit.
1313 * We also need to take into account any blocks beyond the EOF. It
1314 * may be the case that they were buffered by a write which failed.
1315 * In that case the pages will still be in memory, but the inode size
1316 * will never have been updated.
1318 xfs_fsize_t
1319 xfs_file_last_byte(
1320 xfs_inode_t *ip)
1322 xfs_mount_t *mp;
1323 xfs_fsize_t last_byte;
1324 xfs_fileoff_t last_block;
1325 xfs_fileoff_t size_last_block;
1326 int error;
1328 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1330 mp = ip->i_mount;
1332 * Only check for blocks beyond the EOF if the extents have
1333 * been read in. This eliminates the need for the inode lock,
1334 * and it also saves us from looking when it really isn't
1335 * necessary.
1337 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1338 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1339 XFS_DATA_FORK);
1340 if (error) {
1341 last_block = 0;
1343 } else {
1344 last_block = 0;
1346 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1347 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1349 last_byte = XFS_FSB_TO_B(mp, last_block);
1350 if (last_byte < 0) {
1351 return XFS_MAXIOFFSET(mp);
1353 last_byte += (1 << mp->m_writeio_log);
1354 if (last_byte < 0) {
1355 return XFS_MAXIOFFSET(mp);
1357 return last_byte;
1360 #if defined(XFS_RW_TRACE)
1361 STATIC void
1362 xfs_itrunc_trace(
1363 int tag,
1364 xfs_inode_t *ip,
1365 int flag,
1366 xfs_fsize_t new_size,
1367 xfs_off_t toss_start,
1368 xfs_off_t toss_finish)
1370 if (ip->i_rwtrace == NULL) {
1371 return;
1374 ktrace_enter(ip->i_rwtrace,
1375 (void*)((long)tag),
1376 (void*)ip,
1377 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1378 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1379 (void*)((long)flag),
1380 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1381 (void*)(unsigned long)(new_size & 0xffffffff),
1382 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1383 (void*)(unsigned long)(toss_start & 0xffffffff),
1384 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1385 (void*)(unsigned long)(toss_finish & 0xffffffff),
1386 (void*)(unsigned long)current_cpu(),
1387 (void*)(unsigned long)current_pid(),
1388 (void*)NULL,
1389 (void*)NULL,
1390 (void*)NULL);
1392 #else
1393 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1394 #endif
1397 * Start the truncation of the file to new_size. The new size
1398 * must be smaller than the current size. This routine will
1399 * clear the buffer and page caches of file data in the removed
1400 * range, and xfs_itruncate_finish() will remove the underlying
1401 * disk blocks.
1403 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1404 * must NOT have the inode lock held at all. This is because we're
1405 * calling into the buffer/page cache code and we can't hold the
1406 * inode lock when we do so.
1408 * We need to wait for any direct I/Os in flight to complete before we
1409 * proceed with the truncate. This is needed to prevent the extents
1410 * being read or written by the direct I/Os from being removed while the
1411 * I/O is in flight as there is no other method of synchronising
1412 * direct I/O with the truncate operation. Also, because we hold
1413 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1414 * started until the truncate completes and drops the lock. Essentially,
1415 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1416 * between direct I/Os and the truncate operation.
1418 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1419 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1420 * in the case that the caller is locking things out of order and
1421 * may not be able to call xfs_itruncate_finish() with the inode lock
1422 * held without dropping the I/O lock. If the caller must drop the
1423 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1424 * must be called again with all the same restrictions as the initial
1425 * call.
1428 xfs_itruncate_start(
1429 xfs_inode_t *ip,
1430 uint flags,
1431 xfs_fsize_t new_size)
1433 xfs_fsize_t last_byte;
1434 xfs_off_t toss_start;
1435 xfs_mount_t *mp;
1436 bhv_vnode_t *vp;
1437 int error = 0;
1439 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1440 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1441 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1442 (flags == XFS_ITRUNC_MAYBE));
1444 mp = ip->i_mount;
1445 vp = XFS_ITOV(ip);
1447 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1450 * Call toss_pages or flushinval_pages to get rid of pages
1451 * overlapping the region being removed. We have to use
1452 * the less efficient flushinval_pages in the case that the
1453 * caller may not be able to finish the truncate without
1454 * dropping the inode's I/O lock. Make sure
1455 * to catch any pages brought in by buffers overlapping
1456 * the EOF by searching out beyond the isize by our
1457 * block size. We round new_size up to a block boundary
1458 * so that we don't toss things on the same block as
1459 * new_size but before it.
1461 * Before calling toss_page or flushinval_pages, make sure to
1462 * call remapf() over the same region if the file is mapped.
1463 * This frees up mapped file references to the pages in the
1464 * given range and for the flushinval_pages case it ensures
1465 * that we get the latest mapped changes flushed out.
1467 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1468 toss_start = XFS_FSB_TO_B(mp, toss_start);
1469 if (toss_start < 0) {
1471 * The place to start tossing is beyond our maximum
1472 * file size, so there is no way that the data extended
1473 * out there.
1475 return 0;
1477 last_byte = xfs_file_last_byte(ip);
1478 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1479 last_byte);
1480 if (last_byte > toss_start) {
1481 if (flags & XFS_ITRUNC_DEFINITE) {
1482 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1483 } else {
1484 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1488 #ifdef DEBUG
1489 if (new_size == 0) {
1490 ASSERT(VN_CACHED(vp) == 0);
1492 #endif
1493 return error;
1497 * Shrink the file to the given new_size. The new
1498 * size must be smaller than the current size.
1499 * This will free up the underlying blocks
1500 * in the removed range after a call to xfs_itruncate_start()
1501 * or xfs_atruncate_start().
1503 * The transaction passed to this routine must have made
1504 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1505 * This routine may commit the given transaction and
1506 * start new ones, so make sure everything involved in
1507 * the transaction is tidy before calling here.
1508 * Some transaction will be returned to the caller to be
1509 * committed. The incoming transaction must already include
1510 * the inode, and both inode locks must be held exclusively.
1511 * The inode must also be "held" within the transaction. On
1512 * return the inode will be "held" within the returned transaction.
1513 * This routine does NOT require any disk space to be reserved
1514 * for it within the transaction.
1516 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1517 * and it indicates the fork which is to be truncated. For the
1518 * attribute fork we only support truncation to size 0.
1520 * We use the sync parameter to indicate whether or not the first
1521 * transaction we perform might have to be synchronous. For the attr fork,
1522 * it needs to be so if the unlink of the inode is not yet known to be
1523 * permanent in the log. This keeps us from freeing and reusing the
1524 * blocks of the attribute fork before the unlink of the inode becomes
1525 * permanent.
1527 * For the data fork, we normally have to run synchronously if we're
1528 * being called out of the inactive path or we're being called
1529 * out of the create path where we're truncating an existing file.
1530 * Either way, the truncate needs to be sync so blocks don't reappear
1531 * in the file with altered data in case of a crash. wsync filesystems
1532 * can run the first case async because anything that shrinks the inode
1533 * has to run sync so by the time we're called here from inactive, the
1534 * inode size is permanently set to 0.
1536 * Calls from the truncate path always need to be sync unless we're
1537 * in a wsync filesystem and the file has already been unlinked.
1539 * The caller is responsible for correctly setting the sync parameter.
1540 * It gets too hard for us to guess here which path we're being called
1541 * out of just based on inode state.
1544 xfs_itruncate_finish(
1545 xfs_trans_t **tp,
1546 xfs_inode_t *ip,
1547 xfs_fsize_t new_size,
1548 int fork,
1549 int sync)
1551 xfs_fsblock_t first_block;
1552 xfs_fileoff_t first_unmap_block;
1553 xfs_fileoff_t last_block;
1554 xfs_filblks_t unmap_len=0;
1555 xfs_mount_t *mp;
1556 xfs_trans_t *ntp;
1557 int done;
1558 int committed;
1559 xfs_bmap_free_t free_list;
1560 int error;
1562 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1563 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1564 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1565 ASSERT(*tp != NULL);
1566 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1567 ASSERT(ip->i_transp == *tp);
1568 ASSERT(ip->i_itemp != NULL);
1569 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1572 ntp = *tp;
1573 mp = (ntp)->t_mountp;
1574 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1577 * We only support truncating the entire attribute fork.
1579 if (fork == XFS_ATTR_FORK) {
1580 new_size = 0LL;
1582 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1583 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1585 * The first thing we do is set the size to new_size permanently
1586 * on disk. This way we don't have to worry about anyone ever
1587 * being able to look at the data being freed even in the face
1588 * of a crash. What we're getting around here is the case where
1589 * we free a block, it is allocated to another file, it is written
1590 * to, and then we crash. If the new data gets written to the
1591 * file but the log buffers containing the free and reallocation
1592 * don't, then we'd end up with garbage in the blocks being freed.
1593 * As long as we make the new_size permanent before actually
1594 * freeing any blocks it doesn't matter if they get writtten to.
1596 * The callers must signal into us whether or not the size
1597 * setting here must be synchronous. There are a few cases
1598 * where it doesn't have to be synchronous. Those cases
1599 * occur if the file is unlinked and we know the unlink is
1600 * permanent or if the blocks being truncated are guaranteed
1601 * to be beyond the inode eof (regardless of the link count)
1602 * and the eof value is permanent. Both of these cases occur
1603 * only on wsync-mounted filesystems. In those cases, we're
1604 * guaranteed that no user will ever see the data in the blocks
1605 * that are being truncated so the truncate can run async.
1606 * In the free beyond eof case, the file may wind up with
1607 * more blocks allocated to it than it needs if we crash
1608 * and that won't get fixed until the next time the file
1609 * is re-opened and closed but that's ok as that shouldn't
1610 * be too many blocks.
1612 * However, we can't just make all wsync xactions run async
1613 * because there's one call out of the create path that needs
1614 * to run sync where it's truncating an existing file to size
1615 * 0 whose size is > 0.
1617 * It's probably possible to come up with a test in this
1618 * routine that would correctly distinguish all the above
1619 * cases from the values of the function parameters and the
1620 * inode state but for sanity's sake, I've decided to let the
1621 * layers above just tell us. It's simpler to correctly figure
1622 * out in the layer above exactly under what conditions we
1623 * can run async and I think it's easier for others read and
1624 * follow the logic in case something has to be changed.
1625 * cscope is your friend -- rcc.
1627 * The attribute fork is much simpler.
1629 * For the attribute fork we allow the caller to tell us whether
1630 * the unlink of the inode that led to this call is yet permanent
1631 * in the on disk log. If it is not and we will be freeing extents
1632 * in this inode then we make the first transaction synchronous
1633 * to make sure that the unlink is permanent by the time we free
1634 * the blocks.
1636 if (fork == XFS_DATA_FORK) {
1637 if (ip->i_d.di_nextents > 0) {
1639 * If we are not changing the file size then do
1640 * not update the on-disk file size - we may be
1641 * called from xfs_inactive_free_eofblocks(). If we
1642 * update the on-disk file size and then the system
1643 * crashes before the contents of the file are
1644 * flushed to disk then the files may be full of
1645 * holes (ie NULL files bug).
1647 if (ip->i_size != new_size) {
1648 ip->i_d.di_size = new_size;
1649 ip->i_size = new_size;
1650 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1653 } else if (sync) {
1654 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1655 if (ip->i_d.di_anextents > 0)
1656 xfs_trans_set_sync(ntp);
1658 ASSERT(fork == XFS_DATA_FORK ||
1659 (fork == XFS_ATTR_FORK &&
1660 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1661 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1664 * Since it is possible for space to become allocated beyond
1665 * the end of the file (in a crash where the space is allocated
1666 * but the inode size is not yet updated), simply remove any
1667 * blocks which show up between the new EOF and the maximum
1668 * possible file size. If the first block to be removed is
1669 * beyond the maximum file size (ie it is the same as last_block),
1670 * then there is nothing to do.
1672 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1673 ASSERT(first_unmap_block <= last_block);
1674 done = 0;
1675 if (last_block == first_unmap_block) {
1676 done = 1;
1677 } else {
1678 unmap_len = last_block - first_unmap_block + 1;
1680 while (!done) {
1682 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1683 * will tell us whether it freed the entire range or
1684 * not. If this is a synchronous mount (wsync),
1685 * then we can tell bunmapi to keep all the
1686 * transactions asynchronous since the unlink
1687 * transaction that made this inode inactive has
1688 * already hit the disk. There's no danger of
1689 * the freed blocks being reused, there being a
1690 * crash, and the reused blocks suddenly reappearing
1691 * in this file with garbage in them once recovery
1692 * runs.
1694 XFS_BMAP_INIT(&free_list, &first_block);
1695 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1696 first_unmap_block, unmap_len,
1697 XFS_BMAPI_AFLAG(fork) |
1698 (sync ? 0 : XFS_BMAPI_ASYNC),
1699 XFS_ITRUNC_MAX_EXTENTS,
1700 &first_block, &free_list,
1701 NULL, &done);
1702 if (error) {
1704 * If the bunmapi call encounters an error,
1705 * return to the caller where the transaction
1706 * can be properly aborted. We just need to
1707 * make sure we're not holding any resources
1708 * that we were not when we came in.
1710 xfs_bmap_cancel(&free_list);
1711 return error;
1715 * Duplicate the transaction that has the permanent
1716 * reservation and commit the old transaction.
1718 error = xfs_bmap_finish(tp, &free_list, &committed);
1719 ntp = *tp;
1720 if (error) {
1722 * If the bmap finish call encounters an error,
1723 * return to the caller where the transaction
1724 * can be properly aborted. We just need to
1725 * make sure we're not holding any resources
1726 * that we were not when we came in.
1728 * Aborting from this point might lose some
1729 * blocks in the file system, but oh well.
1731 xfs_bmap_cancel(&free_list);
1732 if (committed) {
1734 * If the passed in transaction committed
1735 * in xfs_bmap_finish(), then we want to
1736 * add the inode to this one before returning.
1737 * This keeps things simple for the higher
1738 * level code, because it always knows that
1739 * the inode is locked and held in the
1740 * transaction that returns to it whether
1741 * errors occur or not. We don't mark the
1742 * inode dirty so that this transaction can
1743 * be easily aborted if possible.
1745 xfs_trans_ijoin(ntp, ip,
1746 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1747 xfs_trans_ihold(ntp, ip);
1749 return error;
1752 if (committed) {
1754 * The first xact was committed,
1755 * so add the inode to the new one.
1756 * Mark it dirty so it will be logged
1757 * and moved forward in the log as
1758 * part of every commit.
1760 xfs_trans_ijoin(ntp, ip,
1761 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1762 xfs_trans_ihold(ntp, ip);
1763 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1765 ntp = xfs_trans_dup(ntp);
1766 (void) xfs_trans_commit(*tp, 0);
1767 *tp = ntp;
1768 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1769 XFS_TRANS_PERM_LOG_RES,
1770 XFS_ITRUNCATE_LOG_COUNT);
1772 * Add the inode being truncated to the next chained
1773 * transaction.
1775 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1776 xfs_trans_ihold(ntp, ip);
1777 if (error)
1778 return (error);
1781 * Only update the size in the case of the data fork, but
1782 * always re-log the inode so that our permanent transaction
1783 * can keep on rolling it forward in the log.
1785 if (fork == XFS_DATA_FORK) {
1786 xfs_isize_check(mp, ip, new_size);
1788 * If we are not changing the file size then do
1789 * not update the on-disk file size - we may be
1790 * called from xfs_inactive_free_eofblocks(). If we
1791 * update the on-disk file size and then the system
1792 * crashes before the contents of the file are
1793 * flushed to disk then the files may be full of
1794 * holes (ie NULL files bug).
1796 if (ip->i_size != new_size) {
1797 ip->i_d.di_size = new_size;
1798 ip->i_size = new_size;
1801 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1802 ASSERT((new_size != 0) ||
1803 (fork == XFS_ATTR_FORK) ||
1804 (ip->i_delayed_blks == 0));
1805 ASSERT((new_size != 0) ||
1806 (fork == XFS_ATTR_FORK) ||
1807 (ip->i_d.di_nextents == 0));
1808 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1809 return 0;
1814 * xfs_igrow_start
1816 * Do the first part of growing a file: zero any data in the last
1817 * block that is beyond the old EOF. We need to do this before
1818 * the inode is joined to the transaction to modify the i_size.
1819 * That way we can drop the inode lock and call into the buffer
1820 * cache to get the buffer mapping the EOF.
1823 xfs_igrow_start(
1824 xfs_inode_t *ip,
1825 xfs_fsize_t new_size,
1826 cred_t *credp)
1828 int error;
1830 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1831 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1832 ASSERT(new_size > ip->i_size);
1835 * Zero any pages that may have been created by
1836 * xfs_write_file() beyond the end of the file
1837 * and any blocks between the old and new file sizes.
1839 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1840 ip->i_size);
1841 return error;
1845 * xfs_igrow_finish
1847 * This routine is called to extend the size of a file.
1848 * The inode must have both the iolock and the ilock locked
1849 * for update and it must be a part of the current transaction.
1850 * The xfs_igrow_start() function must have been called previously.
1851 * If the change_flag is not zero, the inode change timestamp will
1852 * be updated.
1854 void
1855 xfs_igrow_finish(
1856 xfs_trans_t *tp,
1857 xfs_inode_t *ip,
1858 xfs_fsize_t new_size,
1859 int change_flag)
1861 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1862 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1863 ASSERT(ip->i_transp == tp);
1864 ASSERT(new_size > ip->i_size);
1867 * Update the file size. Update the inode change timestamp
1868 * if change_flag set.
1870 ip->i_d.di_size = new_size;
1871 ip->i_size = new_size;
1872 if (change_flag)
1873 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1874 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1880 * This is called when the inode's link count goes to 0.
1881 * We place the on-disk inode on a list in the AGI. It
1882 * will be pulled from this list when the inode is freed.
1885 xfs_iunlink(
1886 xfs_trans_t *tp,
1887 xfs_inode_t *ip)
1889 xfs_mount_t *mp;
1890 xfs_agi_t *agi;
1891 xfs_dinode_t *dip;
1892 xfs_buf_t *agibp;
1893 xfs_buf_t *ibp;
1894 xfs_agnumber_t agno;
1895 xfs_daddr_t agdaddr;
1896 xfs_agino_t agino;
1897 short bucket_index;
1898 int offset;
1899 int error;
1900 int agi_ok;
1902 ASSERT(ip->i_d.di_nlink == 0);
1903 ASSERT(ip->i_d.di_mode != 0);
1904 ASSERT(ip->i_transp == tp);
1906 mp = tp->t_mountp;
1908 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1909 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1912 * Get the agi buffer first. It ensures lock ordering
1913 * on the list.
1915 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1916 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1917 if (error) {
1918 return error;
1921 * Validate the magic number of the agi block.
1923 agi = XFS_BUF_TO_AGI(agibp);
1924 agi_ok =
1925 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1926 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1927 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1928 XFS_RANDOM_IUNLINK))) {
1929 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1930 xfs_trans_brelse(tp, agibp);
1931 return XFS_ERROR(EFSCORRUPTED);
1934 * Get the index into the agi hash table for the
1935 * list this inode will go on.
1937 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1938 ASSERT(agino != 0);
1939 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1940 ASSERT(agi->agi_unlinked[bucket_index]);
1941 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1943 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1945 * There is already another inode in the bucket we need
1946 * to add ourselves to. Add us at the front of the list.
1947 * Here we put the head pointer into our next pointer,
1948 * and then we fall through to point the head at us.
1950 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1951 if (error) {
1952 return error;
1954 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1955 ASSERT(dip->di_next_unlinked);
1956 /* both on-disk, don't endian flip twice */
1957 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1958 offset = ip->i_boffset +
1959 offsetof(xfs_dinode_t, di_next_unlinked);
1960 xfs_trans_inode_buf(tp, ibp);
1961 xfs_trans_log_buf(tp, ibp, offset,
1962 (offset + sizeof(xfs_agino_t) - 1));
1963 xfs_inobp_check(mp, ibp);
1967 * Point the bucket head pointer at the inode being inserted.
1969 ASSERT(agino != 0);
1970 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1971 offset = offsetof(xfs_agi_t, agi_unlinked) +
1972 (sizeof(xfs_agino_t) * bucket_index);
1973 xfs_trans_log_buf(tp, agibp, offset,
1974 (offset + sizeof(xfs_agino_t) - 1));
1975 return 0;
1979 * Pull the on-disk inode from the AGI unlinked list.
1981 STATIC int
1982 xfs_iunlink_remove(
1983 xfs_trans_t *tp,
1984 xfs_inode_t *ip)
1986 xfs_ino_t next_ino;
1987 xfs_mount_t *mp;
1988 xfs_agi_t *agi;
1989 xfs_dinode_t *dip;
1990 xfs_buf_t *agibp;
1991 xfs_buf_t *ibp;
1992 xfs_agnumber_t agno;
1993 xfs_daddr_t agdaddr;
1994 xfs_agino_t agino;
1995 xfs_agino_t next_agino;
1996 xfs_buf_t *last_ibp;
1997 xfs_dinode_t *last_dip = NULL;
1998 short bucket_index;
1999 int offset, last_offset = 0;
2000 int error;
2001 int agi_ok;
2004 * First pull the on-disk inode from the AGI unlinked list.
2006 mp = tp->t_mountp;
2008 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2009 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2012 * Get the agi buffer first. It ensures lock ordering
2013 * on the list.
2015 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2016 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2017 if (error) {
2018 cmn_err(CE_WARN,
2019 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2020 error, mp->m_fsname);
2021 return error;
2024 * Validate the magic number of the agi block.
2026 agi = XFS_BUF_TO_AGI(agibp);
2027 agi_ok =
2028 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2029 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2030 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2031 XFS_RANDOM_IUNLINK_REMOVE))) {
2032 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2033 mp, agi);
2034 xfs_trans_brelse(tp, agibp);
2035 cmn_err(CE_WARN,
2036 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2037 mp->m_fsname);
2038 return XFS_ERROR(EFSCORRUPTED);
2041 * Get the index into the agi hash table for the
2042 * list this inode will go on.
2044 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2045 ASSERT(agino != 0);
2046 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2047 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2048 ASSERT(agi->agi_unlinked[bucket_index]);
2050 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2052 * We're at the head of the list. Get the inode's
2053 * on-disk buffer to see if there is anyone after us
2054 * on the list. Only modify our next pointer if it
2055 * is not already NULLAGINO. This saves us the overhead
2056 * of dealing with the buffer when there is no need to
2057 * change it.
2059 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2060 if (error) {
2061 cmn_err(CE_WARN,
2062 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2063 error, mp->m_fsname);
2064 return error;
2066 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2067 ASSERT(next_agino != 0);
2068 if (next_agino != NULLAGINO) {
2069 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2070 offset = ip->i_boffset +
2071 offsetof(xfs_dinode_t, di_next_unlinked);
2072 xfs_trans_inode_buf(tp, ibp);
2073 xfs_trans_log_buf(tp, ibp, offset,
2074 (offset + sizeof(xfs_agino_t) - 1));
2075 xfs_inobp_check(mp, ibp);
2076 } else {
2077 xfs_trans_brelse(tp, ibp);
2080 * Point the bucket head pointer at the next inode.
2082 ASSERT(next_agino != 0);
2083 ASSERT(next_agino != agino);
2084 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2085 offset = offsetof(xfs_agi_t, agi_unlinked) +
2086 (sizeof(xfs_agino_t) * bucket_index);
2087 xfs_trans_log_buf(tp, agibp, offset,
2088 (offset + sizeof(xfs_agino_t) - 1));
2089 } else {
2091 * We need to search the list for the inode being freed.
2093 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2094 last_ibp = NULL;
2095 while (next_agino != agino) {
2097 * If the last inode wasn't the one pointing to
2098 * us, then release its buffer since we're not
2099 * going to do anything with it.
2101 if (last_ibp != NULL) {
2102 xfs_trans_brelse(tp, last_ibp);
2104 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2105 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2106 &last_ibp, &last_offset);
2107 if (error) {
2108 cmn_err(CE_WARN,
2109 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2110 error, mp->m_fsname);
2111 return error;
2113 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2114 ASSERT(next_agino != NULLAGINO);
2115 ASSERT(next_agino != 0);
2118 * Now last_ibp points to the buffer previous to us on
2119 * the unlinked list. Pull us from the list.
2121 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2122 if (error) {
2123 cmn_err(CE_WARN,
2124 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2125 error, mp->m_fsname);
2126 return error;
2128 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2129 ASSERT(next_agino != 0);
2130 ASSERT(next_agino != agino);
2131 if (next_agino != NULLAGINO) {
2132 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2133 offset = ip->i_boffset +
2134 offsetof(xfs_dinode_t, di_next_unlinked);
2135 xfs_trans_inode_buf(tp, ibp);
2136 xfs_trans_log_buf(tp, ibp, offset,
2137 (offset + sizeof(xfs_agino_t) - 1));
2138 xfs_inobp_check(mp, ibp);
2139 } else {
2140 xfs_trans_brelse(tp, ibp);
2143 * Point the previous inode on the list to the next inode.
2145 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2146 ASSERT(next_agino != 0);
2147 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2148 xfs_trans_inode_buf(tp, last_ibp);
2149 xfs_trans_log_buf(tp, last_ibp, offset,
2150 (offset + sizeof(xfs_agino_t) - 1));
2151 xfs_inobp_check(mp, last_ibp);
2153 return 0;
2156 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2158 return (((ip->i_itemp == NULL) ||
2159 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2160 (ip->i_update_core == 0));
2163 STATIC void
2164 xfs_ifree_cluster(
2165 xfs_inode_t *free_ip,
2166 xfs_trans_t *tp,
2167 xfs_ino_t inum)
2169 xfs_mount_t *mp = free_ip->i_mount;
2170 int blks_per_cluster;
2171 int nbufs;
2172 int ninodes;
2173 int i, j, found, pre_flushed;
2174 xfs_daddr_t blkno;
2175 xfs_buf_t *bp;
2176 xfs_ihash_t *ih;
2177 xfs_inode_t *ip, **ip_found;
2178 xfs_inode_log_item_t *iip;
2179 xfs_log_item_t *lip;
2180 SPLDECL(s);
2182 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2183 blks_per_cluster = 1;
2184 ninodes = mp->m_sb.sb_inopblock;
2185 nbufs = XFS_IALLOC_BLOCKS(mp);
2186 } else {
2187 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2188 mp->m_sb.sb_blocksize;
2189 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2190 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2193 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2195 for (j = 0; j < nbufs; j++, inum += ninodes) {
2196 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2197 XFS_INO_TO_AGBNO(mp, inum));
2201 * Look for each inode in memory and attempt to lock it,
2202 * we can be racing with flush and tail pushing here.
2203 * any inode we get the locks on, add to an array of
2204 * inode items to process later.
2206 * The get the buffer lock, we could beat a flush
2207 * or tail pushing thread to the lock here, in which
2208 * case they will go looking for the inode buffer
2209 * and fail, we need some other form of interlock
2210 * here.
2212 found = 0;
2213 for (i = 0; i < ninodes; i++) {
2214 ih = XFS_IHASH(mp, inum + i);
2215 read_lock(&ih->ih_lock);
2216 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2217 if (ip->i_ino == inum + i)
2218 break;
2221 /* Inode not in memory or we found it already,
2222 * nothing to do
2224 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2225 read_unlock(&ih->ih_lock);
2226 continue;
2229 if (xfs_inode_clean(ip)) {
2230 read_unlock(&ih->ih_lock);
2231 continue;
2234 /* If we can get the locks then add it to the
2235 * list, otherwise by the time we get the bp lock
2236 * below it will already be attached to the
2237 * inode buffer.
2240 /* This inode will already be locked - by us, lets
2241 * keep it that way.
2244 if (ip == free_ip) {
2245 if (xfs_iflock_nowait(ip)) {
2246 xfs_iflags_set(ip, XFS_ISTALE);
2247 if (xfs_inode_clean(ip)) {
2248 xfs_ifunlock(ip);
2249 } else {
2250 ip_found[found++] = ip;
2253 read_unlock(&ih->ih_lock);
2254 continue;
2257 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2258 if (xfs_iflock_nowait(ip)) {
2259 xfs_iflags_set(ip, XFS_ISTALE);
2261 if (xfs_inode_clean(ip)) {
2262 xfs_ifunlock(ip);
2263 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2264 } else {
2265 ip_found[found++] = ip;
2267 } else {
2268 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2272 read_unlock(&ih->ih_lock);
2275 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2276 mp->m_bsize * blks_per_cluster,
2277 XFS_BUF_LOCK);
2279 pre_flushed = 0;
2280 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2281 while (lip) {
2282 if (lip->li_type == XFS_LI_INODE) {
2283 iip = (xfs_inode_log_item_t *)lip;
2284 ASSERT(iip->ili_logged == 1);
2285 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2286 AIL_LOCK(mp,s);
2287 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2288 AIL_UNLOCK(mp, s);
2289 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2290 pre_flushed++;
2292 lip = lip->li_bio_list;
2295 for (i = 0; i < found; i++) {
2296 ip = ip_found[i];
2297 iip = ip->i_itemp;
2299 if (!iip) {
2300 ip->i_update_core = 0;
2301 xfs_ifunlock(ip);
2302 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2303 continue;
2306 iip->ili_last_fields = iip->ili_format.ilf_fields;
2307 iip->ili_format.ilf_fields = 0;
2308 iip->ili_logged = 1;
2309 AIL_LOCK(mp,s);
2310 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2311 AIL_UNLOCK(mp, s);
2313 xfs_buf_attach_iodone(bp,
2314 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2315 xfs_istale_done, (xfs_log_item_t *)iip);
2316 if (ip != free_ip) {
2317 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2321 if (found || pre_flushed)
2322 xfs_trans_stale_inode_buf(tp, bp);
2323 xfs_trans_binval(tp, bp);
2326 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2330 * This is called to return an inode to the inode free list.
2331 * The inode should already be truncated to 0 length and have
2332 * no pages associated with it. This routine also assumes that
2333 * the inode is already a part of the transaction.
2335 * The on-disk copy of the inode will have been added to the list
2336 * of unlinked inodes in the AGI. We need to remove the inode from
2337 * that list atomically with respect to freeing it here.
2340 xfs_ifree(
2341 xfs_trans_t *tp,
2342 xfs_inode_t *ip,
2343 xfs_bmap_free_t *flist)
2345 int error;
2346 int delete;
2347 xfs_ino_t first_ino;
2349 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2350 ASSERT(ip->i_transp == tp);
2351 ASSERT(ip->i_d.di_nlink == 0);
2352 ASSERT(ip->i_d.di_nextents == 0);
2353 ASSERT(ip->i_d.di_anextents == 0);
2354 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2355 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2356 ASSERT(ip->i_d.di_nblocks == 0);
2359 * Pull the on-disk inode from the AGI unlinked list.
2361 error = xfs_iunlink_remove(tp, ip);
2362 if (error != 0) {
2363 return error;
2366 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2367 if (error != 0) {
2368 return error;
2370 ip->i_d.di_mode = 0; /* mark incore inode as free */
2371 ip->i_d.di_flags = 0;
2372 ip->i_d.di_dmevmask = 0;
2373 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2374 ip->i_df.if_ext_max =
2375 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2376 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2377 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2379 * Bump the generation count so no one will be confused
2380 * by reincarnations of this inode.
2382 ip->i_d.di_gen++;
2383 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2385 if (delete) {
2386 xfs_ifree_cluster(ip, tp, first_ino);
2389 return 0;
2393 * Reallocate the space for if_broot based on the number of records
2394 * being added or deleted as indicated in rec_diff. Move the records
2395 * and pointers in if_broot to fit the new size. When shrinking this
2396 * will eliminate holes between the records and pointers created by
2397 * the caller. When growing this will create holes to be filled in
2398 * by the caller.
2400 * The caller must not request to add more records than would fit in
2401 * the on-disk inode root. If the if_broot is currently NULL, then
2402 * if we adding records one will be allocated. The caller must also
2403 * not request that the number of records go below zero, although
2404 * it can go to zero.
2406 * ip -- the inode whose if_broot area is changing
2407 * ext_diff -- the change in the number of records, positive or negative,
2408 * requested for the if_broot array.
2410 void
2411 xfs_iroot_realloc(
2412 xfs_inode_t *ip,
2413 int rec_diff,
2414 int whichfork)
2416 int cur_max;
2417 xfs_ifork_t *ifp;
2418 xfs_bmbt_block_t *new_broot;
2419 int new_max;
2420 size_t new_size;
2421 char *np;
2422 char *op;
2425 * Handle the degenerate case quietly.
2427 if (rec_diff == 0) {
2428 return;
2431 ifp = XFS_IFORK_PTR(ip, whichfork);
2432 if (rec_diff > 0) {
2434 * If there wasn't any memory allocated before, just
2435 * allocate it now and get out.
2437 if (ifp->if_broot_bytes == 0) {
2438 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2439 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2440 KM_SLEEP);
2441 ifp->if_broot_bytes = (int)new_size;
2442 return;
2446 * If there is already an existing if_broot, then we need
2447 * to realloc() it and shift the pointers to their new
2448 * location. The records don't change location because
2449 * they are kept butted up against the btree block header.
2451 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2452 new_max = cur_max + rec_diff;
2453 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2454 ifp->if_broot = (xfs_bmbt_block_t *)
2455 kmem_realloc(ifp->if_broot,
2456 new_size,
2457 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2458 KM_SLEEP);
2459 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2460 ifp->if_broot_bytes);
2461 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2462 (int)new_size);
2463 ifp->if_broot_bytes = (int)new_size;
2464 ASSERT(ifp->if_broot_bytes <=
2465 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2466 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2467 return;
2471 * rec_diff is less than 0. In this case, we are shrinking the
2472 * if_broot buffer. It must already exist. If we go to zero
2473 * records, just get rid of the root and clear the status bit.
2475 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2476 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2477 new_max = cur_max + rec_diff;
2478 ASSERT(new_max >= 0);
2479 if (new_max > 0)
2480 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2481 else
2482 new_size = 0;
2483 if (new_size > 0) {
2484 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2486 * First copy over the btree block header.
2488 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2489 } else {
2490 new_broot = NULL;
2491 ifp->if_flags &= ~XFS_IFBROOT;
2495 * Only copy the records and pointers if there are any.
2497 if (new_max > 0) {
2499 * First copy the records.
2501 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2502 ifp->if_broot_bytes);
2503 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2504 (int)new_size);
2505 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2508 * Then copy the pointers.
2510 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2511 ifp->if_broot_bytes);
2512 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2513 (int)new_size);
2514 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2516 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2517 ifp->if_broot = new_broot;
2518 ifp->if_broot_bytes = (int)new_size;
2519 ASSERT(ifp->if_broot_bytes <=
2520 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2521 return;
2526 * This is called when the amount of space needed for if_data
2527 * is increased or decreased. The change in size is indicated by
2528 * the number of bytes that need to be added or deleted in the
2529 * byte_diff parameter.
2531 * If the amount of space needed has decreased below the size of the
2532 * inline buffer, then switch to using the inline buffer. Otherwise,
2533 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2534 * to what is needed.
2536 * ip -- the inode whose if_data area is changing
2537 * byte_diff -- the change in the number of bytes, positive or negative,
2538 * requested for the if_data array.
2540 void
2541 xfs_idata_realloc(
2542 xfs_inode_t *ip,
2543 int byte_diff,
2544 int whichfork)
2546 xfs_ifork_t *ifp;
2547 int new_size;
2548 int real_size;
2550 if (byte_diff == 0) {
2551 return;
2554 ifp = XFS_IFORK_PTR(ip, whichfork);
2555 new_size = (int)ifp->if_bytes + byte_diff;
2556 ASSERT(new_size >= 0);
2558 if (new_size == 0) {
2559 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2560 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2562 ifp->if_u1.if_data = NULL;
2563 real_size = 0;
2564 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2566 * If the valid extents/data can fit in if_inline_ext/data,
2567 * copy them from the malloc'd vector and free it.
2569 if (ifp->if_u1.if_data == NULL) {
2570 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2571 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2572 ASSERT(ifp->if_real_bytes != 0);
2573 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2574 new_size);
2575 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2576 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2578 real_size = 0;
2579 } else {
2581 * Stuck with malloc/realloc.
2582 * For inline data, the underlying buffer must be
2583 * a multiple of 4 bytes in size so that it can be
2584 * logged and stay on word boundaries. We enforce
2585 * that here.
2587 real_size = roundup(new_size, 4);
2588 if (ifp->if_u1.if_data == NULL) {
2589 ASSERT(ifp->if_real_bytes == 0);
2590 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2591 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2593 * Only do the realloc if the underlying size
2594 * is really changing.
2596 if (ifp->if_real_bytes != real_size) {
2597 ifp->if_u1.if_data =
2598 kmem_realloc(ifp->if_u1.if_data,
2599 real_size,
2600 ifp->if_real_bytes,
2601 KM_SLEEP);
2603 } else {
2604 ASSERT(ifp->if_real_bytes == 0);
2605 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2606 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2607 ifp->if_bytes);
2610 ifp->if_real_bytes = real_size;
2611 ifp->if_bytes = new_size;
2612 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2619 * Map inode to disk block and offset.
2621 * mp -- the mount point structure for the current file system
2622 * tp -- the current transaction
2623 * ino -- the inode number of the inode to be located
2624 * imap -- this structure is filled in with the information necessary
2625 * to retrieve the given inode from disk
2626 * flags -- flags to pass to xfs_dilocate indicating whether or not
2627 * lookups in the inode btree were OK or not
2630 xfs_imap(
2631 xfs_mount_t *mp,
2632 xfs_trans_t *tp,
2633 xfs_ino_t ino,
2634 xfs_imap_t *imap,
2635 uint flags)
2637 xfs_fsblock_t fsbno;
2638 int len;
2639 int off;
2640 int error;
2642 fsbno = imap->im_blkno ?
2643 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2644 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2645 if (error != 0) {
2646 return error;
2648 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2649 imap->im_len = XFS_FSB_TO_BB(mp, len);
2650 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2651 imap->im_ioffset = (ushort)off;
2652 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2653 return 0;
2656 void
2657 xfs_idestroy_fork(
2658 xfs_inode_t *ip,
2659 int whichfork)
2661 xfs_ifork_t *ifp;
2663 ifp = XFS_IFORK_PTR(ip, whichfork);
2664 if (ifp->if_broot != NULL) {
2665 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2666 ifp->if_broot = NULL;
2670 * If the format is local, then we can't have an extents
2671 * array so just look for an inline data array. If we're
2672 * not local then we may or may not have an extents list,
2673 * so check and free it up if we do.
2675 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2676 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2677 (ifp->if_u1.if_data != NULL)) {
2678 ASSERT(ifp->if_real_bytes != 0);
2679 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2680 ifp->if_u1.if_data = NULL;
2681 ifp->if_real_bytes = 0;
2683 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2684 ((ifp->if_flags & XFS_IFEXTIREC) ||
2685 ((ifp->if_u1.if_extents != NULL) &&
2686 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2687 ASSERT(ifp->if_real_bytes != 0);
2688 xfs_iext_destroy(ifp);
2690 ASSERT(ifp->if_u1.if_extents == NULL ||
2691 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2692 ASSERT(ifp->if_real_bytes == 0);
2693 if (whichfork == XFS_ATTR_FORK) {
2694 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2695 ip->i_afp = NULL;
2700 * This is called free all the memory associated with an inode.
2701 * It must free the inode itself and any buffers allocated for
2702 * if_extents/if_data and if_broot. It must also free the lock
2703 * associated with the inode.
2705 void
2706 xfs_idestroy(
2707 xfs_inode_t *ip)
2710 switch (ip->i_d.di_mode & S_IFMT) {
2711 case S_IFREG:
2712 case S_IFDIR:
2713 case S_IFLNK:
2714 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2715 break;
2717 if (ip->i_afp)
2718 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2719 mrfree(&ip->i_lock);
2720 mrfree(&ip->i_iolock);
2721 freesema(&ip->i_flock);
2722 #ifdef XFS_BMAP_TRACE
2723 ktrace_free(ip->i_xtrace);
2724 #endif
2725 #ifdef XFS_BMBT_TRACE
2726 ktrace_free(ip->i_btrace);
2727 #endif
2728 #ifdef XFS_RW_TRACE
2729 ktrace_free(ip->i_rwtrace);
2730 #endif
2731 #ifdef XFS_ILOCK_TRACE
2732 ktrace_free(ip->i_lock_trace);
2733 #endif
2734 #ifdef XFS_DIR2_TRACE
2735 ktrace_free(ip->i_dir_trace);
2736 #endif
2737 if (ip->i_itemp) {
2739 * Only if we are shutting down the fs will we see an
2740 * inode still in the AIL. If it is there, we should remove
2741 * it to prevent a use-after-free from occurring.
2743 xfs_mount_t *mp = ip->i_mount;
2744 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2745 int s;
2747 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2748 XFS_FORCED_SHUTDOWN(ip->i_mount));
2749 if (lip->li_flags & XFS_LI_IN_AIL) {
2750 AIL_LOCK(mp, s);
2751 if (lip->li_flags & XFS_LI_IN_AIL)
2752 xfs_trans_delete_ail(mp, lip, s);
2753 else
2754 AIL_UNLOCK(mp, s);
2756 xfs_inode_item_destroy(ip);
2758 kmem_zone_free(xfs_inode_zone, ip);
2763 * Increment the pin count of the given buffer.
2764 * This value is protected by ipinlock spinlock in the mount structure.
2766 void
2767 xfs_ipin(
2768 xfs_inode_t *ip)
2770 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2772 atomic_inc(&ip->i_pincount);
2776 * Decrement the pin count of the given inode, and wake up
2777 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2778 * inode must have been previously pinned with a call to xfs_ipin().
2780 void
2781 xfs_iunpin(
2782 xfs_inode_t *ip)
2784 ASSERT(atomic_read(&ip->i_pincount) > 0);
2786 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2789 * If the inode is currently being reclaimed, the link between
2790 * the bhv_vnode and the xfs_inode will be broken after the
2791 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2792 * set, then we can move forward and mark the linux inode dirty
2793 * knowing that it is still valid as it won't freed until after
2794 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2795 * i_flags_lock is used to synchronise the setting of the
2796 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2797 * can execute atomically w.r.t to reclaim by holding this lock
2798 * here.
2800 * However, we still need to issue the unpin wakeup call as the
2801 * inode reclaim may be blocked waiting for the inode to become
2802 * unpinned.
2805 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2806 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2807 struct inode *inode = NULL;
2809 BUG_ON(vp == NULL);
2810 inode = vn_to_inode(vp);
2811 BUG_ON(inode->i_state & I_CLEAR);
2813 /* make sync come back and flush this inode */
2814 if (!(inode->i_state & (I_NEW|I_FREEING)))
2815 mark_inode_dirty_sync(inode);
2817 spin_unlock(&ip->i_flags_lock);
2818 wake_up(&ip->i_ipin_wait);
2823 * This is called to wait for the given inode to be unpinned.
2824 * It will sleep until this happens. The caller must have the
2825 * inode locked in at least shared mode so that the buffer cannot
2826 * be subsequently pinned once someone is waiting for it to be
2827 * unpinned.
2829 STATIC void
2830 xfs_iunpin_wait(
2831 xfs_inode_t *ip)
2833 xfs_inode_log_item_t *iip;
2834 xfs_lsn_t lsn;
2836 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2838 if (atomic_read(&ip->i_pincount) == 0) {
2839 return;
2842 iip = ip->i_itemp;
2843 if (iip && iip->ili_last_lsn) {
2844 lsn = iip->ili_last_lsn;
2845 } else {
2846 lsn = (xfs_lsn_t)0;
2850 * Give the log a push so we don't wait here too long.
2852 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2854 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2859 * xfs_iextents_copy()
2861 * This is called to copy the REAL extents (as opposed to the delayed
2862 * allocation extents) from the inode into the given buffer. It
2863 * returns the number of bytes copied into the buffer.
2865 * If there are no delayed allocation extents, then we can just
2866 * memcpy() the extents into the buffer. Otherwise, we need to
2867 * examine each extent in turn and skip those which are delayed.
2870 xfs_iextents_copy(
2871 xfs_inode_t *ip,
2872 xfs_bmbt_rec_t *buffer,
2873 int whichfork)
2875 int copied;
2876 xfs_bmbt_rec_t *dest_ep;
2877 xfs_bmbt_rec_t *ep;
2878 #ifdef XFS_BMAP_TRACE
2879 static char fname[] = "xfs_iextents_copy";
2880 #endif
2881 int i;
2882 xfs_ifork_t *ifp;
2883 int nrecs;
2884 xfs_fsblock_t start_block;
2886 ifp = XFS_IFORK_PTR(ip, whichfork);
2887 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2888 ASSERT(ifp->if_bytes > 0);
2890 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2891 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2892 ASSERT(nrecs > 0);
2895 * There are some delayed allocation extents in the
2896 * inode, so copy the extents one at a time and skip
2897 * the delayed ones. There must be at least one
2898 * non-delayed extent.
2900 dest_ep = buffer;
2901 copied = 0;
2902 for (i = 0; i < nrecs; i++) {
2903 ep = xfs_iext_get_ext(ifp, i);
2904 start_block = xfs_bmbt_get_startblock(ep);
2905 if (ISNULLSTARTBLOCK(start_block)) {
2907 * It's a delayed allocation extent, so skip it.
2909 continue;
2912 /* Translate to on disk format */
2913 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2914 (__uint64_t*)&dest_ep->l0);
2915 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2916 (__uint64_t*)&dest_ep->l1);
2917 dest_ep++;
2918 copied++;
2920 ASSERT(copied != 0);
2921 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
2923 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2927 * Each of the following cases stores data into the same region
2928 * of the on-disk inode, so only one of them can be valid at
2929 * any given time. While it is possible to have conflicting formats
2930 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2931 * in EXTENTS format, this can only happen when the fork has
2932 * changed formats after being modified but before being flushed.
2933 * In these cases, the format always takes precedence, because the
2934 * format indicates the current state of the fork.
2936 /*ARGSUSED*/
2937 STATIC int
2938 xfs_iflush_fork(
2939 xfs_inode_t *ip,
2940 xfs_dinode_t *dip,
2941 xfs_inode_log_item_t *iip,
2942 int whichfork,
2943 xfs_buf_t *bp)
2945 char *cp;
2946 xfs_ifork_t *ifp;
2947 xfs_mount_t *mp;
2948 #ifdef XFS_TRANS_DEBUG
2949 int first;
2950 #endif
2951 static const short brootflag[2] =
2952 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2953 static const short dataflag[2] =
2954 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2955 static const short extflag[2] =
2956 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2958 if (iip == NULL)
2959 return 0;
2960 ifp = XFS_IFORK_PTR(ip, whichfork);
2962 * This can happen if we gave up in iformat in an error path,
2963 * for the attribute fork.
2965 if (ifp == NULL) {
2966 ASSERT(whichfork == XFS_ATTR_FORK);
2967 return 0;
2969 cp = XFS_DFORK_PTR(dip, whichfork);
2970 mp = ip->i_mount;
2971 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2972 case XFS_DINODE_FMT_LOCAL:
2973 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2974 (ifp->if_bytes > 0)) {
2975 ASSERT(ifp->if_u1.if_data != NULL);
2976 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2977 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2979 break;
2981 case XFS_DINODE_FMT_EXTENTS:
2982 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2983 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2984 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2985 (ifp->if_bytes == 0));
2986 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2987 (ifp->if_bytes > 0));
2988 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2989 (ifp->if_bytes > 0)) {
2990 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2991 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2992 whichfork);
2994 break;
2996 case XFS_DINODE_FMT_BTREE:
2997 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2998 (ifp->if_broot_bytes > 0)) {
2999 ASSERT(ifp->if_broot != NULL);
3000 ASSERT(ifp->if_broot_bytes <=
3001 (XFS_IFORK_SIZE(ip, whichfork) +
3002 XFS_BROOT_SIZE_ADJ));
3003 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3004 (xfs_bmdr_block_t *)cp,
3005 XFS_DFORK_SIZE(dip, mp, whichfork));
3007 break;
3009 case XFS_DINODE_FMT_DEV:
3010 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3011 ASSERT(whichfork == XFS_DATA_FORK);
3012 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3014 break;
3016 case XFS_DINODE_FMT_UUID:
3017 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3018 ASSERT(whichfork == XFS_DATA_FORK);
3019 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3020 sizeof(uuid_t));
3022 break;
3024 default:
3025 ASSERT(0);
3026 break;
3029 return 0;
3033 * xfs_iflush() will write a modified inode's changes out to the
3034 * inode's on disk home. The caller must have the inode lock held
3035 * in at least shared mode and the inode flush semaphore must be
3036 * held as well. The inode lock will still be held upon return from
3037 * the call and the caller is free to unlock it.
3038 * The inode flush lock will be unlocked when the inode reaches the disk.
3039 * The flags indicate how the inode's buffer should be written out.
3042 xfs_iflush(
3043 xfs_inode_t *ip,
3044 uint flags)
3046 xfs_inode_log_item_t *iip;
3047 xfs_buf_t *bp;
3048 xfs_dinode_t *dip;
3049 xfs_mount_t *mp;
3050 int error;
3051 /* REFERENCED */
3052 xfs_chash_t *ch;
3053 xfs_inode_t *iq;
3054 int clcount; /* count of inodes clustered */
3055 int bufwasdelwri;
3056 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3057 SPLDECL(s);
3059 XFS_STATS_INC(xs_iflush_count);
3061 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3062 ASSERT(issemalocked(&(ip->i_flock)));
3063 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3064 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3066 iip = ip->i_itemp;
3067 mp = ip->i_mount;
3070 * If the inode isn't dirty, then just release the inode
3071 * flush lock and do nothing.
3073 if ((ip->i_update_core == 0) &&
3074 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3075 ASSERT((iip != NULL) ?
3076 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3077 xfs_ifunlock(ip);
3078 return 0;
3082 * We can't flush the inode until it is unpinned, so
3083 * wait for it. We know noone new can pin it, because
3084 * we are holding the inode lock shared and you need
3085 * to hold it exclusively to pin the inode.
3087 xfs_iunpin_wait(ip);
3090 * This may have been unpinned because the filesystem is shutting
3091 * down forcibly. If that's the case we must not write this inode
3092 * to disk, because the log record didn't make it to disk!
3094 if (XFS_FORCED_SHUTDOWN(mp)) {
3095 ip->i_update_core = 0;
3096 if (iip)
3097 iip->ili_format.ilf_fields = 0;
3098 xfs_ifunlock(ip);
3099 return XFS_ERROR(EIO);
3103 * Get the buffer containing the on-disk inode.
3105 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3106 if (error) {
3107 xfs_ifunlock(ip);
3108 return error;
3112 * Decide how buffer will be flushed out. This is done before
3113 * the call to xfs_iflush_int because this field is zeroed by it.
3115 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3117 * Flush out the inode buffer according to the directions
3118 * of the caller. In the cases where the caller has given
3119 * us a choice choose the non-delwri case. This is because
3120 * the inode is in the AIL and we need to get it out soon.
3122 switch (flags) {
3123 case XFS_IFLUSH_SYNC:
3124 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3125 flags = 0;
3126 break;
3127 case XFS_IFLUSH_ASYNC:
3128 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3129 flags = INT_ASYNC;
3130 break;
3131 case XFS_IFLUSH_DELWRI:
3132 flags = INT_DELWRI;
3133 break;
3134 default:
3135 ASSERT(0);
3136 flags = 0;
3137 break;
3139 } else {
3140 switch (flags) {
3141 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3142 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3143 case XFS_IFLUSH_DELWRI:
3144 flags = INT_DELWRI;
3145 break;
3146 case XFS_IFLUSH_ASYNC:
3147 flags = INT_ASYNC;
3148 break;
3149 case XFS_IFLUSH_SYNC:
3150 flags = 0;
3151 break;
3152 default:
3153 ASSERT(0);
3154 flags = 0;
3155 break;
3160 * First flush out the inode that xfs_iflush was called with.
3162 error = xfs_iflush_int(ip, bp);
3163 if (error) {
3164 goto corrupt_out;
3168 * inode clustering:
3169 * see if other inodes can be gathered into this write
3172 ip->i_chash->chl_buf = bp;
3174 ch = XFS_CHASH(mp, ip->i_blkno);
3175 s = mutex_spinlock(&ch->ch_lock);
3177 clcount = 0;
3178 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3180 * Do an un-protected check to see if the inode is dirty and
3181 * is a candidate for flushing. These checks will be repeated
3182 * later after the appropriate locks are acquired.
3184 iip = iq->i_itemp;
3185 if ((iq->i_update_core == 0) &&
3186 ((iip == NULL) ||
3187 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3188 xfs_ipincount(iq) == 0) {
3189 continue;
3193 * Try to get locks. If any are unavailable,
3194 * then this inode cannot be flushed and is skipped.
3197 /* get inode locks (just i_lock) */
3198 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3199 /* get inode flush lock */
3200 if (xfs_iflock_nowait(iq)) {
3201 /* check if pinned */
3202 if (xfs_ipincount(iq) == 0) {
3203 /* arriving here means that
3204 * this inode can be flushed.
3205 * first re-check that it's
3206 * dirty
3208 iip = iq->i_itemp;
3209 if ((iq->i_update_core != 0)||
3210 ((iip != NULL) &&
3211 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3212 clcount++;
3213 error = xfs_iflush_int(iq, bp);
3214 if (error) {
3215 xfs_iunlock(iq,
3216 XFS_ILOCK_SHARED);
3217 goto cluster_corrupt_out;
3219 } else {
3220 xfs_ifunlock(iq);
3222 } else {
3223 xfs_ifunlock(iq);
3226 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3229 mutex_spinunlock(&ch->ch_lock, s);
3231 if (clcount) {
3232 XFS_STATS_INC(xs_icluster_flushcnt);
3233 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3237 * If the buffer is pinned then push on the log so we won't
3238 * get stuck waiting in the write for too long.
3240 if (XFS_BUF_ISPINNED(bp)){
3241 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3244 if (flags & INT_DELWRI) {
3245 xfs_bdwrite(mp, bp);
3246 } else if (flags & INT_ASYNC) {
3247 xfs_bawrite(mp, bp);
3248 } else {
3249 error = xfs_bwrite(mp, bp);
3251 return error;
3253 corrupt_out:
3254 xfs_buf_relse(bp);
3255 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3256 xfs_iflush_abort(ip);
3258 * Unlocks the flush lock
3260 return XFS_ERROR(EFSCORRUPTED);
3262 cluster_corrupt_out:
3263 /* Corruption detected in the clustering loop. Invalidate the
3264 * inode buffer and shut down the filesystem.
3266 mutex_spinunlock(&ch->ch_lock, s);
3269 * Clean up the buffer. If it was B_DELWRI, just release it --
3270 * brelse can handle it with no problems. If not, shut down the
3271 * filesystem before releasing the buffer.
3273 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3274 xfs_buf_relse(bp);
3277 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3279 if(!bufwasdelwri) {
3281 * Just like incore_relse: if we have b_iodone functions,
3282 * mark the buffer as an error and call them. Otherwise
3283 * mark it as stale and brelse.
3285 if (XFS_BUF_IODONE_FUNC(bp)) {
3286 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3287 XFS_BUF_UNDONE(bp);
3288 XFS_BUF_STALE(bp);
3289 XFS_BUF_SHUT(bp);
3290 XFS_BUF_ERROR(bp,EIO);
3291 xfs_biodone(bp);
3292 } else {
3293 XFS_BUF_STALE(bp);
3294 xfs_buf_relse(bp);
3298 xfs_iflush_abort(iq);
3300 * Unlocks the flush lock
3302 return XFS_ERROR(EFSCORRUPTED);
3306 STATIC int
3307 xfs_iflush_int(
3308 xfs_inode_t *ip,
3309 xfs_buf_t *bp)
3311 xfs_inode_log_item_t *iip;
3312 xfs_dinode_t *dip;
3313 xfs_mount_t *mp;
3314 #ifdef XFS_TRANS_DEBUG
3315 int first;
3316 #endif
3317 SPLDECL(s);
3319 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3320 ASSERT(issemalocked(&(ip->i_flock)));
3321 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3322 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3324 iip = ip->i_itemp;
3325 mp = ip->i_mount;
3329 * If the inode isn't dirty, then just release the inode
3330 * flush lock and do nothing.
3332 if ((ip->i_update_core == 0) &&
3333 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3334 xfs_ifunlock(ip);
3335 return 0;
3338 /* set *dip = inode's place in the buffer */
3339 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3342 * Clear i_update_core before copying out the data.
3343 * This is for coordination with our timestamp updates
3344 * that don't hold the inode lock. They will always
3345 * update the timestamps BEFORE setting i_update_core,
3346 * so if we clear i_update_core after they set it we
3347 * are guaranteed to see their updates to the timestamps.
3348 * I believe that this depends on strongly ordered memory
3349 * semantics, but we have that. We use the SYNCHRONIZE
3350 * macro to make sure that the compiler does not reorder
3351 * the i_update_core access below the data copy below.
3353 ip->i_update_core = 0;
3354 SYNCHRONIZE();
3357 * Make sure to get the latest atime from the Linux inode.
3359 xfs_synchronize_atime(ip);
3361 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3362 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3363 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3364 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3365 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3366 goto corrupt_out;
3368 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3369 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3370 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3371 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3372 ip->i_ino, ip, ip->i_d.di_magic);
3373 goto corrupt_out;
3375 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3376 if (XFS_TEST_ERROR(
3377 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3378 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3379 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3380 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3382 ip->i_ino, ip);
3383 goto corrupt_out;
3385 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3386 if (XFS_TEST_ERROR(
3387 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3388 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3389 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3390 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3391 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3392 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3393 ip->i_ino, ip);
3394 goto corrupt_out;
3397 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3398 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3399 XFS_RANDOM_IFLUSH_5)) {
3400 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3401 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3402 ip->i_ino,
3403 ip->i_d.di_nextents + ip->i_d.di_anextents,
3404 ip->i_d.di_nblocks,
3405 ip);
3406 goto corrupt_out;
3408 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3409 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3410 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3411 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3412 ip->i_ino, ip->i_d.di_forkoff, ip);
3413 goto corrupt_out;
3416 * bump the flush iteration count, used to detect flushes which
3417 * postdate a log record during recovery.
3420 ip->i_d.di_flushiter++;
3423 * Copy the dirty parts of the inode into the on-disk
3424 * inode. We always copy out the core of the inode,
3425 * because if the inode is dirty at all the core must
3426 * be.
3428 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3430 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3431 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3432 ip->i_d.di_flushiter = 0;
3435 * If this is really an old format inode and the superblock version
3436 * has not been updated to support only new format inodes, then
3437 * convert back to the old inode format. If the superblock version
3438 * has been updated, then make the conversion permanent.
3440 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3441 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3442 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3443 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3445 * Convert it back.
3447 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3448 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3449 } else {
3451 * The superblock version has already been bumped,
3452 * so just make the conversion to the new inode
3453 * format permanent.
3455 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3456 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3457 ip->i_d.di_onlink = 0;
3458 dip->di_core.di_onlink = 0;
3459 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3460 memset(&(dip->di_core.di_pad[0]), 0,
3461 sizeof(dip->di_core.di_pad));
3462 ASSERT(ip->i_d.di_projid == 0);
3466 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3467 goto corrupt_out;
3470 if (XFS_IFORK_Q(ip)) {
3472 * The only error from xfs_iflush_fork is on the data fork.
3474 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3476 xfs_inobp_check(mp, bp);
3479 * We've recorded everything logged in the inode, so we'd
3480 * like to clear the ilf_fields bits so we don't log and
3481 * flush things unnecessarily. However, we can't stop
3482 * logging all this information until the data we've copied
3483 * into the disk buffer is written to disk. If we did we might
3484 * overwrite the copy of the inode in the log with all the
3485 * data after re-logging only part of it, and in the face of
3486 * a crash we wouldn't have all the data we need to recover.
3488 * What we do is move the bits to the ili_last_fields field.
3489 * When logging the inode, these bits are moved back to the
3490 * ilf_fields field. In the xfs_iflush_done() routine we
3491 * clear ili_last_fields, since we know that the information
3492 * those bits represent is permanently on disk. As long as
3493 * the flush completes before the inode is logged again, then
3494 * both ilf_fields and ili_last_fields will be cleared.
3496 * We can play with the ilf_fields bits here, because the inode
3497 * lock must be held exclusively in order to set bits there
3498 * and the flush lock protects the ili_last_fields bits.
3499 * Set ili_logged so the flush done
3500 * routine can tell whether or not to look in the AIL.
3501 * Also, store the current LSN of the inode so that we can tell
3502 * whether the item has moved in the AIL from xfs_iflush_done().
3503 * In order to read the lsn we need the AIL lock, because
3504 * it is a 64 bit value that cannot be read atomically.
3506 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3507 iip->ili_last_fields = iip->ili_format.ilf_fields;
3508 iip->ili_format.ilf_fields = 0;
3509 iip->ili_logged = 1;
3511 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3512 AIL_LOCK(mp,s);
3513 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3514 AIL_UNLOCK(mp, s);
3517 * Attach the function xfs_iflush_done to the inode's
3518 * buffer. This will remove the inode from the AIL
3519 * and unlock the inode's flush lock when the inode is
3520 * completely written to disk.
3522 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3523 xfs_iflush_done, (xfs_log_item_t *)iip);
3525 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3526 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3527 } else {
3529 * We're flushing an inode which is not in the AIL and has
3530 * not been logged but has i_update_core set. For this
3531 * case we can use a B_DELWRI flush and immediately drop
3532 * the inode flush lock because we can avoid the whole
3533 * AIL state thing. It's OK to drop the flush lock now,
3534 * because we've already locked the buffer and to do anything
3535 * you really need both.
3537 if (iip != NULL) {
3538 ASSERT(iip->ili_logged == 0);
3539 ASSERT(iip->ili_last_fields == 0);
3540 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3542 xfs_ifunlock(ip);
3545 return 0;
3547 corrupt_out:
3548 return XFS_ERROR(EFSCORRUPTED);
3553 * Flush all inactive inodes in mp.
3555 void
3556 xfs_iflush_all(
3557 xfs_mount_t *mp)
3559 xfs_inode_t *ip;
3560 bhv_vnode_t *vp;
3562 again:
3563 XFS_MOUNT_ILOCK(mp);
3564 ip = mp->m_inodes;
3565 if (ip == NULL)
3566 goto out;
3568 do {
3569 /* Make sure we skip markers inserted by sync */
3570 if (ip->i_mount == NULL) {
3571 ip = ip->i_mnext;
3572 continue;
3575 vp = XFS_ITOV_NULL(ip);
3576 if (!vp) {
3577 XFS_MOUNT_IUNLOCK(mp);
3578 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3579 goto again;
3582 ASSERT(vn_count(vp) == 0);
3584 ip = ip->i_mnext;
3585 } while (ip != mp->m_inodes);
3586 out:
3587 XFS_MOUNT_IUNLOCK(mp);
3591 * xfs_iaccess: check accessibility of inode for mode.
3594 xfs_iaccess(
3595 xfs_inode_t *ip,
3596 mode_t mode,
3597 cred_t *cr)
3599 int error;
3600 mode_t orgmode = mode;
3601 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3603 if (mode & S_IWUSR) {
3604 umode_t imode = inode->i_mode;
3606 if (IS_RDONLY(inode) &&
3607 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3608 return XFS_ERROR(EROFS);
3610 if (IS_IMMUTABLE(inode))
3611 return XFS_ERROR(EACCES);
3615 * If there's an Access Control List it's used instead of
3616 * the mode bits.
3618 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3619 return error ? XFS_ERROR(error) : 0;
3621 if (current_fsuid(cr) != ip->i_d.di_uid) {
3622 mode >>= 3;
3623 if (!in_group_p((gid_t)ip->i_d.di_gid))
3624 mode >>= 3;
3628 * If the DACs are ok we don't need any capability check.
3630 if ((ip->i_d.di_mode & mode) == mode)
3631 return 0;
3633 * Read/write DACs are always overridable.
3634 * Executable DACs are overridable if at least one exec bit is set.
3636 if (!(orgmode & S_IXUSR) ||
3637 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3638 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3639 return 0;
3641 if ((orgmode == S_IRUSR) ||
3642 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3643 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3644 return 0;
3645 #ifdef NOISE
3646 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3647 #endif /* NOISE */
3648 return XFS_ERROR(EACCES);
3650 return XFS_ERROR(EACCES);
3654 * xfs_iroundup: round up argument to next power of two
3656 uint
3657 xfs_iroundup(
3658 uint v)
3660 int i;
3661 uint m;
3663 if ((v & (v - 1)) == 0)
3664 return v;
3665 ASSERT((v & 0x80000000) == 0);
3666 if ((v & (v + 1)) == 0)
3667 return v + 1;
3668 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3669 if (v & m)
3670 continue;
3671 v |= m;
3672 if ((v & (v + 1)) == 0)
3673 return v + 1;
3675 ASSERT(0);
3676 return( 0 );
3679 #ifdef XFS_ILOCK_TRACE
3680 ktrace_t *xfs_ilock_trace_buf;
3682 void
3683 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3685 ktrace_enter(ip->i_lock_trace,
3686 (void *)ip,
3687 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3688 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3689 (void *)ra, /* caller of ilock */
3690 (void *)(unsigned long)current_cpu(),
3691 (void *)(unsigned long)current_pid(),
3692 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3694 #endif
3697 * Return a pointer to the extent record at file index idx.
3699 xfs_bmbt_rec_t *
3700 xfs_iext_get_ext(
3701 xfs_ifork_t *ifp, /* inode fork pointer */
3702 xfs_extnum_t idx) /* index of target extent */
3704 ASSERT(idx >= 0);
3705 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3706 return ifp->if_u1.if_ext_irec->er_extbuf;
3707 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3708 xfs_ext_irec_t *erp; /* irec pointer */
3709 int erp_idx = 0; /* irec index */
3710 xfs_extnum_t page_idx = idx; /* ext index in target list */
3712 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3713 return &erp->er_extbuf[page_idx];
3714 } else if (ifp->if_bytes) {
3715 return &ifp->if_u1.if_extents[idx];
3716 } else {
3717 return NULL;
3722 * Insert new item(s) into the extent records for incore inode
3723 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3725 void
3726 xfs_iext_insert(
3727 xfs_ifork_t *ifp, /* inode fork pointer */
3728 xfs_extnum_t idx, /* starting index of new items */
3729 xfs_extnum_t count, /* number of inserted items */
3730 xfs_bmbt_irec_t *new) /* items to insert */
3732 xfs_bmbt_rec_t *ep; /* extent record pointer */
3733 xfs_extnum_t i; /* extent record index */
3735 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3736 xfs_iext_add(ifp, idx, count);
3737 for (i = idx; i < idx + count; i++, new++) {
3738 ep = xfs_iext_get_ext(ifp, i);
3739 xfs_bmbt_set_all(ep, new);
3744 * This is called when the amount of space required for incore file
3745 * extents needs to be increased. The ext_diff parameter stores the
3746 * number of new extents being added and the idx parameter contains
3747 * the extent index where the new extents will be added. If the new
3748 * extents are being appended, then we just need to (re)allocate and
3749 * initialize the space. Otherwise, if the new extents are being
3750 * inserted into the middle of the existing entries, a bit more work
3751 * is required to make room for the new extents to be inserted. The
3752 * caller is responsible for filling in the new extent entries upon
3753 * return.
3755 void
3756 xfs_iext_add(
3757 xfs_ifork_t *ifp, /* inode fork pointer */
3758 xfs_extnum_t idx, /* index to begin adding exts */
3759 int ext_diff) /* number of extents to add */
3761 int byte_diff; /* new bytes being added */
3762 int new_size; /* size of extents after adding */
3763 xfs_extnum_t nextents; /* number of extents in file */
3765 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3766 ASSERT((idx >= 0) && (idx <= nextents));
3767 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3768 new_size = ifp->if_bytes + byte_diff;
3770 * If the new number of extents (nextents + ext_diff)
3771 * fits inside the inode, then continue to use the inline
3772 * extent buffer.
3774 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3775 if (idx < nextents) {
3776 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3777 &ifp->if_u2.if_inline_ext[idx],
3778 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3779 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3781 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3782 ifp->if_real_bytes = 0;
3783 ifp->if_lastex = nextents + ext_diff;
3786 * Otherwise use a linear (direct) extent list.
3787 * If the extents are currently inside the inode,
3788 * xfs_iext_realloc_direct will switch us from
3789 * inline to direct extent allocation mode.
3791 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3792 xfs_iext_realloc_direct(ifp, new_size);
3793 if (idx < nextents) {
3794 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3795 &ifp->if_u1.if_extents[idx],
3796 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3797 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3800 /* Indirection array */
3801 else {
3802 xfs_ext_irec_t *erp;
3803 int erp_idx = 0;
3804 int page_idx = idx;
3806 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3807 if (ifp->if_flags & XFS_IFEXTIREC) {
3808 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3809 } else {
3810 xfs_iext_irec_init(ifp);
3811 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3812 erp = ifp->if_u1.if_ext_irec;
3814 /* Extents fit in target extent page */
3815 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3816 if (page_idx < erp->er_extcount) {
3817 memmove(&erp->er_extbuf[page_idx + ext_diff],
3818 &erp->er_extbuf[page_idx],
3819 (erp->er_extcount - page_idx) *
3820 sizeof(xfs_bmbt_rec_t));
3821 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3823 erp->er_extcount += ext_diff;
3824 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3826 /* Insert a new extent page */
3827 else if (erp) {
3828 xfs_iext_add_indirect_multi(ifp,
3829 erp_idx, page_idx, ext_diff);
3832 * If extent(s) are being appended to the last page in
3833 * the indirection array and the new extent(s) don't fit
3834 * in the page, then erp is NULL and erp_idx is set to
3835 * the next index needed in the indirection array.
3837 else {
3838 int count = ext_diff;
3840 while (count) {
3841 erp = xfs_iext_irec_new(ifp, erp_idx);
3842 erp->er_extcount = count;
3843 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3844 if (count) {
3845 erp_idx++;
3850 ifp->if_bytes = new_size;
3854 * This is called when incore extents are being added to the indirection
3855 * array and the new extents do not fit in the target extent list. The
3856 * erp_idx parameter contains the irec index for the target extent list
3857 * in the indirection array, and the idx parameter contains the extent
3858 * index within the list. The number of extents being added is stored
3859 * in the count parameter.
3861 * |-------| |-------|
3862 * | | | | idx - number of extents before idx
3863 * | idx | | count |
3864 * | | | | count - number of extents being inserted at idx
3865 * |-------| |-------|
3866 * | count | | nex2 | nex2 - number of extents after idx + count
3867 * |-------| |-------|
3869 void
3870 xfs_iext_add_indirect_multi(
3871 xfs_ifork_t *ifp, /* inode fork pointer */
3872 int erp_idx, /* target extent irec index */
3873 xfs_extnum_t idx, /* index within target list */
3874 int count) /* new extents being added */
3876 int byte_diff; /* new bytes being added */
3877 xfs_ext_irec_t *erp; /* pointer to irec entry */
3878 xfs_extnum_t ext_diff; /* number of extents to add */
3879 xfs_extnum_t ext_cnt; /* new extents still needed */
3880 xfs_extnum_t nex2; /* extents after idx + count */
3881 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3882 int nlists; /* number of irec's (lists) */
3884 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3885 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3886 nex2 = erp->er_extcount - idx;
3887 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3890 * Save second part of target extent list
3891 * (all extents past */
3892 if (nex2) {
3893 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3894 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3895 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3896 erp->er_extcount -= nex2;
3897 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3898 memset(&erp->er_extbuf[idx], 0, byte_diff);
3902 * Add the new extents to the end of the target
3903 * list, then allocate new irec record(s) and
3904 * extent buffer(s) as needed to store the rest
3905 * of the new extents.
3907 ext_cnt = count;
3908 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3909 if (ext_diff) {
3910 erp->er_extcount += ext_diff;
3911 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3912 ext_cnt -= ext_diff;
3914 while (ext_cnt) {
3915 erp_idx++;
3916 erp = xfs_iext_irec_new(ifp, erp_idx);
3917 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3918 erp->er_extcount = ext_diff;
3919 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3920 ext_cnt -= ext_diff;
3923 /* Add nex2 extents back to indirection array */
3924 if (nex2) {
3925 xfs_extnum_t ext_avail;
3926 int i;
3928 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3929 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3930 i = 0;
3932 * If nex2 extents fit in the current page, append
3933 * nex2_ep after the new extents.
3935 if (nex2 <= ext_avail) {
3936 i = erp->er_extcount;
3939 * Otherwise, check if space is available in the
3940 * next page.
3942 else if ((erp_idx < nlists - 1) &&
3943 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3944 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3945 erp_idx++;
3946 erp++;
3947 /* Create a hole for nex2 extents */
3948 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3949 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3952 * Final choice, create a new extent page for
3953 * nex2 extents.
3955 else {
3956 erp_idx++;
3957 erp = xfs_iext_irec_new(ifp, erp_idx);
3959 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3960 kmem_free(nex2_ep, byte_diff);
3961 erp->er_extcount += nex2;
3962 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3967 * This is called when the amount of space required for incore file
3968 * extents needs to be decreased. The ext_diff parameter stores the
3969 * number of extents to be removed and the idx parameter contains
3970 * the extent index where the extents will be removed from.
3972 * If the amount of space needed has decreased below the linear
3973 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3974 * extent array. Otherwise, use kmem_realloc() to adjust the
3975 * size to what is needed.
3977 void
3978 xfs_iext_remove(
3979 xfs_ifork_t *ifp, /* inode fork pointer */
3980 xfs_extnum_t idx, /* index to begin removing exts */
3981 int ext_diff) /* number of extents to remove */
3983 xfs_extnum_t nextents; /* number of extents in file */
3984 int new_size; /* size of extents after removal */
3986 ASSERT(ext_diff > 0);
3987 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3988 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3990 if (new_size == 0) {
3991 xfs_iext_destroy(ifp);
3992 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3993 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3994 } else if (ifp->if_real_bytes) {
3995 xfs_iext_remove_direct(ifp, idx, ext_diff);
3996 } else {
3997 xfs_iext_remove_inline(ifp, idx, ext_diff);
3999 ifp->if_bytes = new_size;
4003 * This removes ext_diff extents from the inline buffer, beginning
4004 * at extent index idx.
4006 void
4007 xfs_iext_remove_inline(
4008 xfs_ifork_t *ifp, /* inode fork pointer */
4009 xfs_extnum_t idx, /* index to begin removing exts */
4010 int ext_diff) /* number of extents to remove */
4012 int nextents; /* number of extents in file */
4014 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4015 ASSERT(idx < XFS_INLINE_EXTS);
4016 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4017 ASSERT(((nextents - ext_diff) > 0) &&
4018 (nextents - ext_diff) < XFS_INLINE_EXTS);
4020 if (idx + ext_diff < nextents) {
4021 memmove(&ifp->if_u2.if_inline_ext[idx],
4022 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4023 (nextents - (idx + ext_diff)) *
4024 sizeof(xfs_bmbt_rec_t));
4025 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4026 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4027 } else {
4028 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4029 ext_diff * sizeof(xfs_bmbt_rec_t));
4034 * This removes ext_diff extents from a linear (direct) extent list,
4035 * beginning at extent index idx. If the extents are being removed
4036 * from the end of the list (ie. truncate) then we just need to re-
4037 * allocate the list to remove the extra space. Otherwise, if the
4038 * extents are being removed from the middle of the existing extent
4039 * entries, then we first need to move the extent records beginning
4040 * at idx + ext_diff up in the list to overwrite the records being
4041 * removed, then remove the extra space via kmem_realloc.
4043 void
4044 xfs_iext_remove_direct(
4045 xfs_ifork_t *ifp, /* inode fork pointer */
4046 xfs_extnum_t idx, /* index to begin removing exts */
4047 int ext_diff) /* number of extents to remove */
4049 xfs_extnum_t nextents; /* number of extents in file */
4050 int new_size; /* size of extents after removal */
4052 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4053 new_size = ifp->if_bytes -
4054 (ext_diff * sizeof(xfs_bmbt_rec_t));
4055 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4057 if (new_size == 0) {
4058 xfs_iext_destroy(ifp);
4059 return;
4061 /* Move extents up in the list (if needed) */
4062 if (idx + ext_diff < nextents) {
4063 memmove(&ifp->if_u1.if_extents[idx],
4064 &ifp->if_u1.if_extents[idx + ext_diff],
4065 (nextents - (idx + ext_diff)) *
4066 sizeof(xfs_bmbt_rec_t));
4068 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4069 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4071 * Reallocate the direct extent list. If the extents
4072 * will fit inside the inode then xfs_iext_realloc_direct
4073 * will switch from direct to inline extent allocation
4074 * mode for us.
4076 xfs_iext_realloc_direct(ifp, new_size);
4077 ifp->if_bytes = new_size;
4081 * This is called when incore extents are being removed from the
4082 * indirection array and the extents being removed span multiple extent
4083 * buffers. The idx parameter contains the file extent index where we
4084 * want to begin removing extents, and the count parameter contains
4085 * how many extents need to be removed.
4087 * |-------| |-------|
4088 * | nex1 | | | nex1 - number of extents before idx
4089 * |-------| | count |
4090 * | | | | count - number of extents being removed at idx
4091 * | count | |-------|
4092 * | | | nex2 | nex2 - number of extents after idx + count
4093 * |-------| |-------|
4095 void
4096 xfs_iext_remove_indirect(
4097 xfs_ifork_t *ifp, /* inode fork pointer */
4098 xfs_extnum_t idx, /* index to begin removing extents */
4099 int count) /* number of extents to remove */
4101 xfs_ext_irec_t *erp; /* indirection array pointer */
4102 int erp_idx = 0; /* indirection array index */
4103 xfs_extnum_t ext_cnt; /* extents left to remove */
4104 xfs_extnum_t ext_diff; /* extents to remove in current list */
4105 xfs_extnum_t nex1; /* number of extents before idx */
4106 xfs_extnum_t nex2; /* extents after idx + count */
4107 int nlists; /* entries in indirection array */
4108 int page_idx = idx; /* index in target extent list */
4110 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4111 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4112 ASSERT(erp != NULL);
4113 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4114 nex1 = page_idx;
4115 ext_cnt = count;
4116 while (ext_cnt) {
4117 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4118 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4120 * Check for deletion of entire list;
4121 * xfs_iext_irec_remove() updates extent offsets.
4123 if (ext_diff == erp->er_extcount) {
4124 xfs_iext_irec_remove(ifp, erp_idx);
4125 ext_cnt -= ext_diff;
4126 nex1 = 0;
4127 if (ext_cnt) {
4128 ASSERT(erp_idx < ifp->if_real_bytes /
4129 XFS_IEXT_BUFSZ);
4130 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4131 nex1 = 0;
4132 continue;
4133 } else {
4134 break;
4137 /* Move extents up (if needed) */
4138 if (nex2) {
4139 memmove(&erp->er_extbuf[nex1],
4140 &erp->er_extbuf[nex1 + ext_diff],
4141 nex2 * sizeof(xfs_bmbt_rec_t));
4143 /* Zero out rest of page */
4144 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4145 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4146 /* Update remaining counters */
4147 erp->er_extcount -= ext_diff;
4148 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4149 ext_cnt -= ext_diff;
4150 nex1 = 0;
4151 erp_idx++;
4152 erp++;
4154 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4155 xfs_iext_irec_compact(ifp);
4159 * Create, destroy, or resize a linear (direct) block of extents.
4161 void
4162 xfs_iext_realloc_direct(
4163 xfs_ifork_t *ifp, /* inode fork pointer */
4164 int new_size) /* new size of extents */
4166 int rnew_size; /* real new size of extents */
4168 rnew_size = new_size;
4170 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4171 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4172 (new_size != ifp->if_real_bytes)));
4174 /* Free extent records */
4175 if (new_size == 0) {
4176 xfs_iext_destroy(ifp);
4178 /* Resize direct extent list and zero any new bytes */
4179 else if (ifp->if_real_bytes) {
4180 /* Check if extents will fit inside the inode */
4181 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4182 xfs_iext_direct_to_inline(ifp, new_size /
4183 (uint)sizeof(xfs_bmbt_rec_t));
4184 ifp->if_bytes = new_size;
4185 return;
4187 if ((new_size & (new_size - 1)) != 0) {
4188 rnew_size = xfs_iroundup(new_size);
4190 if (rnew_size != ifp->if_real_bytes) {
4191 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4192 kmem_realloc(ifp->if_u1.if_extents,
4193 rnew_size,
4194 ifp->if_real_bytes,
4195 KM_SLEEP);
4197 if (rnew_size > ifp->if_real_bytes) {
4198 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4199 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4200 rnew_size - ifp->if_real_bytes);
4204 * Switch from the inline extent buffer to a direct
4205 * extent list. Be sure to include the inline extent
4206 * bytes in new_size.
4208 else {
4209 new_size += ifp->if_bytes;
4210 if ((new_size & (new_size - 1)) != 0) {
4211 rnew_size = xfs_iroundup(new_size);
4213 xfs_iext_inline_to_direct(ifp, rnew_size);
4215 ifp->if_real_bytes = rnew_size;
4216 ifp->if_bytes = new_size;
4220 * Switch from linear (direct) extent records to inline buffer.
4222 void
4223 xfs_iext_direct_to_inline(
4224 xfs_ifork_t *ifp, /* inode fork pointer */
4225 xfs_extnum_t nextents) /* number of extents in file */
4227 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4228 ASSERT(nextents <= XFS_INLINE_EXTS);
4230 * The inline buffer was zeroed when we switched
4231 * from inline to direct extent allocation mode,
4232 * so we don't need to clear it here.
4234 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4235 nextents * sizeof(xfs_bmbt_rec_t));
4236 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4237 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4238 ifp->if_real_bytes = 0;
4242 * Switch from inline buffer to linear (direct) extent records.
4243 * new_size should already be rounded up to the next power of 2
4244 * by the caller (when appropriate), so use new_size as it is.
4245 * However, since new_size may be rounded up, we can't update
4246 * if_bytes here. It is the caller's responsibility to update
4247 * if_bytes upon return.
4249 void
4250 xfs_iext_inline_to_direct(
4251 xfs_ifork_t *ifp, /* inode fork pointer */
4252 int new_size) /* number of extents in file */
4254 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4255 kmem_alloc(new_size, KM_SLEEP);
4256 memset(ifp->if_u1.if_extents, 0, new_size);
4257 if (ifp->if_bytes) {
4258 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4259 ifp->if_bytes);
4260 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4261 sizeof(xfs_bmbt_rec_t));
4263 ifp->if_real_bytes = new_size;
4267 * Resize an extent indirection array to new_size bytes.
4269 void
4270 xfs_iext_realloc_indirect(
4271 xfs_ifork_t *ifp, /* inode fork pointer */
4272 int new_size) /* new indirection array size */
4274 int nlists; /* number of irec's (ex lists) */
4275 int size; /* current indirection array size */
4277 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4278 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4279 size = nlists * sizeof(xfs_ext_irec_t);
4280 ASSERT(ifp->if_real_bytes);
4281 ASSERT((new_size >= 0) && (new_size != size));
4282 if (new_size == 0) {
4283 xfs_iext_destroy(ifp);
4284 } else {
4285 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4286 kmem_realloc(ifp->if_u1.if_ext_irec,
4287 new_size, size, KM_SLEEP);
4292 * Switch from indirection array to linear (direct) extent allocations.
4294 void
4295 xfs_iext_indirect_to_direct(
4296 xfs_ifork_t *ifp) /* inode fork pointer */
4298 xfs_bmbt_rec_t *ep; /* extent record pointer */
4299 xfs_extnum_t nextents; /* number of extents in file */
4300 int size; /* size of file extents */
4302 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4303 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4304 ASSERT(nextents <= XFS_LINEAR_EXTS);
4305 size = nextents * sizeof(xfs_bmbt_rec_t);
4307 xfs_iext_irec_compact_full(ifp);
4308 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4310 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4311 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4312 ifp->if_flags &= ~XFS_IFEXTIREC;
4313 ifp->if_u1.if_extents = ep;
4314 ifp->if_bytes = size;
4315 if (nextents < XFS_LINEAR_EXTS) {
4316 xfs_iext_realloc_direct(ifp, size);
4321 * Free incore file extents.
4323 void
4324 xfs_iext_destroy(
4325 xfs_ifork_t *ifp) /* inode fork pointer */
4327 if (ifp->if_flags & XFS_IFEXTIREC) {
4328 int erp_idx;
4329 int nlists;
4331 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4332 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4333 xfs_iext_irec_remove(ifp, erp_idx);
4335 ifp->if_flags &= ~XFS_IFEXTIREC;
4336 } else if (ifp->if_real_bytes) {
4337 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4338 } else if (ifp->if_bytes) {
4339 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4340 sizeof(xfs_bmbt_rec_t));
4342 ifp->if_u1.if_extents = NULL;
4343 ifp->if_real_bytes = 0;
4344 ifp->if_bytes = 0;
4348 * Return a pointer to the extent record for file system block bno.
4350 xfs_bmbt_rec_t * /* pointer to found extent record */
4351 xfs_iext_bno_to_ext(
4352 xfs_ifork_t *ifp, /* inode fork pointer */
4353 xfs_fileoff_t bno, /* block number to search for */
4354 xfs_extnum_t *idxp) /* index of target extent */
4356 xfs_bmbt_rec_t *base; /* pointer to first extent */
4357 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4358 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4359 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4360 int high; /* upper boundary in search */
4361 xfs_extnum_t idx = 0; /* index of target extent */
4362 int low; /* lower boundary in search */
4363 xfs_extnum_t nextents; /* number of file extents */
4364 xfs_fileoff_t startoff = 0; /* start offset of extent */
4366 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4367 if (nextents == 0) {
4368 *idxp = 0;
4369 return NULL;
4371 low = 0;
4372 if (ifp->if_flags & XFS_IFEXTIREC) {
4373 /* Find target extent list */
4374 int erp_idx = 0;
4375 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4376 base = erp->er_extbuf;
4377 high = erp->er_extcount - 1;
4378 } else {
4379 base = ifp->if_u1.if_extents;
4380 high = nextents - 1;
4382 /* Binary search extent records */
4383 while (low <= high) {
4384 idx = (low + high) >> 1;
4385 ep = base + idx;
4386 startoff = xfs_bmbt_get_startoff(ep);
4387 blockcount = xfs_bmbt_get_blockcount(ep);
4388 if (bno < startoff) {
4389 high = idx - 1;
4390 } else if (bno >= startoff + blockcount) {
4391 low = idx + 1;
4392 } else {
4393 /* Convert back to file-based extent index */
4394 if (ifp->if_flags & XFS_IFEXTIREC) {
4395 idx += erp->er_extoff;
4397 *idxp = idx;
4398 return ep;
4401 /* Convert back to file-based extent index */
4402 if (ifp->if_flags & XFS_IFEXTIREC) {
4403 idx += erp->er_extoff;
4405 if (bno >= startoff + blockcount) {
4406 if (++idx == nextents) {
4407 ep = NULL;
4408 } else {
4409 ep = xfs_iext_get_ext(ifp, idx);
4412 *idxp = idx;
4413 return ep;
4417 * Return a pointer to the indirection array entry containing the
4418 * extent record for filesystem block bno. Store the index of the
4419 * target irec in *erp_idxp.
4421 xfs_ext_irec_t * /* pointer to found extent record */
4422 xfs_iext_bno_to_irec(
4423 xfs_ifork_t *ifp, /* inode fork pointer */
4424 xfs_fileoff_t bno, /* block number to search for */
4425 int *erp_idxp) /* irec index of target ext list */
4427 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4428 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4429 int erp_idx; /* indirection array index */
4430 int nlists; /* number of extent irec's (lists) */
4431 int high; /* binary search upper limit */
4432 int low; /* binary search lower limit */
4434 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4435 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4436 erp_idx = 0;
4437 low = 0;
4438 high = nlists - 1;
4439 while (low <= high) {
4440 erp_idx = (low + high) >> 1;
4441 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4442 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4443 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4444 high = erp_idx - 1;
4445 } else if (erp_next && bno >=
4446 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4447 low = erp_idx + 1;
4448 } else {
4449 break;
4452 *erp_idxp = erp_idx;
4453 return erp;
4457 * Return a pointer to the indirection array entry containing the
4458 * extent record at file extent index *idxp. Store the index of the
4459 * target irec in *erp_idxp and store the page index of the target
4460 * extent record in *idxp.
4462 xfs_ext_irec_t *
4463 xfs_iext_idx_to_irec(
4464 xfs_ifork_t *ifp, /* inode fork pointer */
4465 xfs_extnum_t *idxp, /* extent index (file -> page) */
4466 int *erp_idxp, /* pointer to target irec */
4467 int realloc) /* new bytes were just added */
4469 xfs_ext_irec_t *prev; /* pointer to previous irec */
4470 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4471 int erp_idx; /* indirection array index */
4472 int nlists; /* number of irec's (ex lists) */
4473 int high; /* binary search upper limit */
4474 int low; /* binary search lower limit */
4475 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4477 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4478 ASSERT(page_idx >= 0 && page_idx <=
4479 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4480 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4481 erp_idx = 0;
4482 low = 0;
4483 high = nlists - 1;
4485 /* Binary search extent irec's */
4486 while (low <= high) {
4487 erp_idx = (low + high) >> 1;
4488 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4489 prev = erp_idx > 0 ? erp - 1 : NULL;
4490 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4491 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4492 high = erp_idx - 1;
4493 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4494 (page_idx == erp->er_extoff + erp->er_extcount &&
4495 !realloc)) {
4496 low = erp_idx + 1;
4497 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4498 erp->er_extcount == XFS_LINEAR_EXTS) {
4499 ASSERT(realloc);
4500 page_idx = 0;
4501 erp_idx++;
4502 erp = erp_idx < nlists ? erp + 1 : NULL;
4503 break;
4504 } else {
4505 page_idx -= erp->er_extoff;
4506 break;
4509 *idxp = page_idx;
4510 *erp_idxp = erp_idx;
4511 return(erp);
4515 * Allocate and initialize an indirection array once the space needed
4516 * for incore extents increases above XFS_IEXT_BUFSZ.
4518 void
4519 xfs_iext_irec_init(
4520 xfs_ifork_t *ifp) /* inode fork pointer */
4522 xfs_ext_irec_t *erp; /* indirection array pointer */
4523 xfs_extnum_t nextents; /* number of extents in file */
4525 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4526 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4527 ASSERT(nextents <= XFS_LINEAR_EXTS);
4529 erp = (xfs_ext_irec_t *)
4530 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4532 if (nextents == 0) {
4533 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4534 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4535 } else if (!ifp->if_real_bytes) {
4536 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4537 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4538 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4540 erp->er_extbuf = ifp->if_u1.if_extents;
4541 erp->er_extcount = nextents;
4542 erp->er_extoff = 0;
4544 ifp->if_flags |= XFS_IFEXTIREC;
4545 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4546 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4547 ifp->if_u1.if_ext_irec = erp;
4549 return;
4553 * Allocate and initialize a new entry in the indirection array.
4555 xfs_ext_irec_t *
4556 xfs_iext_irec_new(
4557 xfs_ifork_t *ifp, /* inode fork pointer */
4558 int erp_idx) /* index for new irec */
4560 xfs_ext_irec_t *erp; /* indirection array pointer */
4561 int i; /* loop counter */
4562 int nlists; /* number of irec's (ex lists) */
4564 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4565 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4567 /* Resize indirection array */
4568 xfs_iext_realloc_indirect(ifp, ++nlists *
4569 sizeof(xfs_ext_irec_t));
4571 * Move records down in the array so the
4572 * new page can use erp_idx.
4574 erp = ifp->if_u1.if_ext_irec;
4575 for (i = nlists - 1; i > erp_idx; i--) {
4576 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4578 ASSERT(i == erp_idx);
4580 /* Initialize new extent record */
4581 erp = ifp->if_u1.if_ext_irec;
4582 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4583 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4584 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4585 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4586 erp[erp_idx].er_extcount = 0;
4587 erp[erp_idx].er_extoff = erp_idx > 0 ?
4588 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4589 return (&erp[erp_idx]);
4593 * Remove a record from the indirection array.
4595 void
4596 xfs_iext_irec_remove(
4597 xfs_ifork_t *ifp, /* inode fork pointer */
4598 int erp_idx) /* irec index to remove */
4600 xfs_ext_irec_t *erp; /* indirection array pointer */
4601 int i; /* loop counter */
4602 int nlists; /* number of irec's (ex lists) */
4604 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4605 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4606 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4607 if (erp->er_extbuf) {
4608 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4609 -erp->er_extcount);
4610 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4612 /* Compact extent records */
4613 erp = ifp->if_u1.if_ext_irec;
4614 for (i = erp_idx; i < nlists - 1; i++) {
4615 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4618 * Manually free the last extent record from the indirection
4619 * array. A call to xfs_iext_realloc_indirect() with a size
4620 * of zero would result in a call to xfs_iext_destroy() which
4621 * would in turn call this function again, creating a nasty
4622 * infinite loop.
4624 if (--nlists) {
4625 xfs_iext_realloc_indirect(ifp,
4626 nlists * sizeof(xfs_ext_irec_t));
4627 } else {
4628 kmem_free(ifp->if_u1.if_ext_irec,
4629 sizeof(xfs_ext_irec_t));
4631 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4635 * This is called to clean up large amounts of unused memory allocated
4636 * by the indirection array. Before compacting anything though, verify
4637 * that the indirection array is still needed and switch back to the
4638 * linear extent list (or even the inline buffer) if possible. The
4639 * compaction policy is as follows:
4641 * Full Compaction: Extents fit into a single page (or inline buffer)
4642 * Full Compaction: Extents occupy less than 10% of allocated space
4643 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4644 * No Compaction: Extents occupy at least 50% of allocated space
4646 void
4647 xfs_iext_irec_compact(
4648 xfs_ifork_t *ifp) /* inode fork pointer */
4650 xfs_extnum_t nextents; /* number of extents in file */
4651 int nlists; /* number of irec's (ex lists) */
4653 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4654 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4655 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4657 if (nextents == 0) {
4658 xfs_iext_destroy(ifp);
4659 } else if (nextents <= XFS_INLINE_EXTS) {
4660 xfs_iext_indirect_to_direct(ifp);
4661 xfs_iext_direct_to_inline(ifp, nextents);
4662 } else if (nextents <= XFS_LINEAR_EXTS) {
4663 xfs_iext_indirect_to_direct(ifp);
4664 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4665 xfs_iext_irec_compact_full(ifp);
4666 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4667 xfs_iext_irec_compact_pages(ifp);
4672 * Combine extents from neighboring extent pages.
4674 void
4675 xfs_iext_irec_compact_pages(
4676 xfs_ifork_t *ifp) /* inode fork pointer */
4678 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4679 int erp_idx = 0; /* indirection array index */
4680 int nlists; /* number of irec's (ex lists) */
4682 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4683 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4684 while (erp_idx < nlists - 1) {
4685 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4686 erp_next = erp + 1;
4687 if (erp_next->er_extcount <=
4688 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4689 memmove(&erp->er_extbuf[erp->er_extcount],
4690 erp_next->er_extbuf, erp_next->er_extcount *
4691 sizeof(xfs_bmbt_rec_t));
4692 erp->er_extcount += erp_next->er_extcount;
4694 * Free page before removing extent record
4695 * so er_extoffs don't get modified in
4696 * xfs_iext_irec_remove.
4698 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4699 erp_next->er_extbuf = NULL;
4700 xfs_iext_irec_remove(ifp, erp_idx + 1);
4701 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4702 } else {
4703 erp_idx++;
4709 * Fully compact the extent records managed by the indirection array.
4711 void
4712 xfs_iext_irec_compact_full(
4713 xfs_ifork_t *ifp) /* inode fork pointer */
4715 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4716 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4717 int erp_idx = 0; /* extent irec index */
4718 int ext_avail; /* empty entries in ex list */
4719 int ext_diff; /* number of exts to add */
4720 int nlists; /* number of irec's (ex lists) */
4722 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4723 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4724 erp = ifp->if_u1.if_ext_irec;
4725 ep = &erp->er_extbuf[erp->er_extcount];
4726 erp_next = erp + 1;
4727 ep_next = erp_next->er_extbuf;
4728 while (erp_idx < nlists - 1) {
4729 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4730 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4731 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4732 erp->er_extcount += ext_diff;
4733 erp_next->er_extcount -= ext_diff;
4734 /* Remove next page */
4735 if (erp_next->er_extcount == 0) {
4737 * Free page before removing extent record
4738 * so er_extoffs don't get modified in
4739 * xfs_iext_irec_remove.
4741 kmem_free(erp_next->er_extbuf,
4742 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4743 erp_next->er_extbuf = NULL;
4744 xfs_iext_irec_remove(ifp, erp_idx + 1);
4745 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4746 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4747 /* Update next page */
4748 } else {
4749 /* Move rest of page up to become next new page */
4750 memmove(erp_next->er_extbuf, ep_next,
4751 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4752 ep_next = erp_next->er_extbuf;
4753 memset(&ep_next[erp_next->er_extcount], 0,
4754 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4755 sizeof(xfs_bmbt_rec_t));
4757 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4758 erp_idx++;
4759 if (erp_idx < nlists)
4760 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4761 else
4762 break;
4764 ep = &erp->er_extbuf[erp->er_extcount];
4765 erp_next = erp + 1;
4766 ep_next = erp_next->er_extbuf;
4771 * This is called to update the er_extoff field in the indirection
4772 * array when extents have been added or removed from one of the
4773 * extent lists. erp_idx contains the irec index to begin updating
4774 * at and ext_diff contains the number of extents that were added
4775 * or removed.
4777 void
4778 xfs_iext_irec_update_extoffs(
4779 xfs_ifork_t *ifp, /* inode fork pointer */
4780 int erp_idx, /* irec index to update */
4781 int ext_diff) /* number of new extents */
4783 int i; /* loop counter */
4784 int nlists; /* number of irec's (ex lists */
4786 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4787 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4788 for (i = erp_idx; i < nlists; i++) {
4789 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;