2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
22 #include <linux/sched.h>
24 #include <linux/file.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
40 #define dprintk printk
42 #define dprintk(x...) do { ; } while (0)
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock
);
47 unsigned long aio_nr
; /* current system wide number of aio requests */
48 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache
*kiocb_cachep
;
52 static struct kmem_cache
*kioctx_cachep
;
54 static struct workqueue_struct
*aio_wq
;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct
*);
58 static DECLARE_WORK(fput_work
, aio_fput_routine
);
60 static DEFINE_SPINLOCK(fput_lock
);
61 static LIST_HEAD(fput_head
);
63 static void aio_kick_handler(struct work_struct
*);
64 static void aio_queue_work(struct kioctx
*);
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init
aio_setup(void)
72 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
73 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
75 aio_wq
= create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
82 static void aio_free_ring(struct kioctx
*ctx
)
84 struct aio_ring_info
*info
= &ctx
->ring_info
;
87 for (i
=0; i
<info
->nr_pages
; i
++)
88 put_page(info
->ring_pages
[i
]);
90 if (info
->mmap_size
) {
91 down_write(&ctx
->mm
->mmap_sem
);
92 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
93 up_write(&ctx
->mm
->mmap_sem
);
96 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
97 kfree(info
->ring_pages
);
98 info
->ring_pages
= NULL
;
102 static int aio_setup_ring(struct kioctx
*ctx
)
104 struct aio_ring
*ring
;
105 struct aio_ring_info
*info
= &ctx
->ring_info
;
106 unsigned nr_events
= ctx
->max_reqs
;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events
+= 2; /* 1 is required, 2 for good luck */
113 size
= sizeof(struct aio_ring
);
114 size
+= sizeof(struct io_event
) * nr_events
;
115 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
120 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
123 info
->ring_pages
= info
->internal_pages
;
124 if (nr_pages
> AIO_RING_PAGES
) {
125 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
126 if (!info
->ring_pages
)
130 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
131 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
132 down_write(&ctx
->mm
->mmap_sem
);
133 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
134 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
136 if (IS_ERR((void *)info
->mmap_base
)) {
137 up_write(&ctx
->mm
->mmap_sem
);
143 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
144 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
145 info
->mmap_base
, nr_pages
,
146 1, 0, info
->ring_pages
, NULL
);
147 up_write(&ctx
->mm
->mmap_sem
);
149 if (unlikely(info
->nr_pages
!= nr_pages
)) {
154 ctx
->user_id
= info
->mmap_base
;
156 info
->nr
= nr_events
; /* trusted copy */
158 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
159 ring
->nr
= nr_events
; /* user copy */
160 ring
->id
= ctx
->user_id
;
161 ring
->head
= ring
->tail
= 0;
162 ring
->magic
= AIO_RING_MAGIC
;
163 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
164 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
165 ring
->header_length
= sizeof(struct aio_ring
);
166 kunmap_atomic(ring
, KM_USER0
);
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
195 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
197 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
199 struct mm_struct
*mm
;
202 /* Prevent overflows */
203 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
204 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
205 pr_debug("ENOMEM: nr_events too high\n");
206 return ERR_PTR(-EINVAL
);
209 if ((unsigned long)nr_events
> aio_max_nr
)
210 return ERR_PTR(-EAGAIN
);
212 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
214 return ERR_PTR(-ENOMEM
);
216 ctx
->max_reqs
= nr_events
;
217 mm
= ctx
->mm
= current
->mm
;
218 atomic_inc(&mm
->mm_count
);
220 atomic_set(&ctx
->users
, 1);
221 spin_lock_init(&ctx
->ctx_lock
);
222 spin_lock_init(&ctx
->ring_info
.ring_lock
);
223 init_waitqueue_head(&ctx
->wait
);
225 INIT_LIST_HEAD(&ctx
->active_reqs
);
226 INIT_LIST_HEAD(&ctx
->run_list
);
227 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
229 if (aio_setup_ring(ctx
) < 0)
232 /* limit the number of system wide aios */
233 spin_lock(&aio_nr_lock
);
234 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
235 aio_nr
+ ctx
->max_reqs
< aio_nr
)
238 aio_nr
+= ctx
->max_reqs
;
239 spin_unlock(&aio_nr_lock
);
240 if (ctx
->max_reqs
== 0)
243 /* now link into global list. kludge. FIXME */
244 write_lock(&mm
->ioctx_list_lock
);
245 ctx
->next
= mm
->ioctx_list
;
246 mm
->ioctx_list
= ctx
;
247 write_unlock(&mm
->ioctx_list_lock
);
249 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
250 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
255 return ERR_PTR(-EAGAIN
);
259 kmem_cache_free(kioctx_cachep
, ctx
);
260 ctx
= ERR_PTR(-ENOMEM
);
262 dprintk("aio: error allocating ioctx %p\n", ctx
);
267 * Cancels all outstanding aio requests on an aio context. Used
268 * when the processes owning a context have all exited to encourage
269 * the rapid destruction of the kioctx.
271 static void aio_cancel_all(struct kioctx
*ctx
)
273 int (*cancel
)(struct kiocb
*, struct io_event
*);
275 spin_lock_irq(&ctx
->ctx_lock
);
277 while (!list_empty(&ctx
->active_reqs
)) {
278 struct list_head
*pos
= ctx
->active_reqs
.next
;
279 struct kiocb
*iocb
= list_kiocb(pos
);
280 list_del_init(&iocb
->ki_list
);
281 cancel
= iocb
->ki_cancel
;
282 kiocbSetCancelled(iocb
);
285 spin_unlock_irq(&ctx
->ctx_lock
);
287 spin_lock_irq(&ctx
->ctx_lock
);
290 spin_unlock_irq(&ctx
->ctx_lock
);
293 static void wait_for_all_aios(struct kioctx
*ctx
)
295 struct task_struct
*tsk
= current
;
296 DECLARE_WAITQUEUE(wait
, tsk
);
298 spin_lock_irq(&ctx
->ctx_lock
);
299 if (!ctx
->reqs_active
)
302 add_wait_queue(&ctx
->wait
, &wait
);
303 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
304 while (ctx
->reqs_active
) {
305 spin_unlock_irq(&ctx
->ctx_lock
);
307 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
308 spin_lock_irq(&ctx
->ctx_lock
);
310 __set_task_state(tsk
, TASK_RUNNING
);
311 remove_wait_queue(&ctx
->wait
, &wait
);
314 spin_unlock_irq(&ctx
->ctx_lock
);
317 /* wait_on_sync_kiocb:
318 * Waits on the given sync kiocb to complete.
320 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
322 while (iocb
->ki_users
) {
323 set_current_state(TASK_UNINTERRUPTIBLE
);
328 __set_current_state(TASK_RUNNING
);
329 return iocb
->ki_user_data
;
332 /* exit_aio: called when the last user of mm goes away. At this point,
333 * there is no way for any new requests to be submited or any of the
334 * io_* syscalls to be called on the context. However, there may be
335 * outstanding requests which hold references to the context; as they
336 * go away, they will call put_ioctx and release any pinned memory
337 * associated with the request (held via struct page * references).
339 void fastcall
exit_aio(struct mm_struct
*mm
)
341 struct kioctx
*ctx
= mm
->ioctx_list
;
342 mm
->ioctx_list
= NULL
;
344 struct kioctx
*next
= ctx
->next
;
348 wait_for_all_aios(ctx
);
350 * Ensure we don't leave the ctx on the aio_wq
352 cancel_work_sync(&ctx
->wq
.work
);
354 if (1 != atomic_read(&ctx
->users
))
356 "exit_aio:ioctx still alive: %d %d %d\n",
357 atomic_read(&ctx
->users
), ctx
->dead
,
365 * Called when the last user of an aio context has gone away,
366 * and the struct needs to be freed.
368 void fastcall
__put_ioctx(struct kioctx
*ctx
)
370 unsigned nr_events
= ctx
->max_reqs
;
372 BUG_ON(ctx
->reqs_active
);
374 cancel_delayed_work(&ctx
->wq
);
375 cancel_work_sync(&ctx
->wq
.work
);
379 pr_debug("__put_ioctx: freeing %p\n", ctx
);
380 kmem_cache_free(kioctx_cachep
, ctx
);
383 spin_lock(&aio_nr_lock
);
384 BUG_ON(aio_nr
- nr_events
> aio_nr
);
386 spin_unlock(&aio_nr_lock
);
391 * Allocate a slot for an aio request. Increments the users count
392 * of the kioctx so that the kioctx stays around until all requests are
393 * complete. Returns NULL if no requests are free.
395 * Returns with kiocb->users set to 2. The io submit code path holds
396 * an extra reference while submitting the i/o.
397 * This prevents races between the aio code path referencing the
398 * req (after submitting it) and aio_complete() freeing the req.
400 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
401 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
403 struct kiocb
*req
= NULL
;
404 struct aio_ring
*ring
;
407 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
415 req
->ki_cancel
= NULL
;
416 req
->ki_retry
= NULL
;
419 req
->ki_iovec
= NULL
;
420 INIT_LIST_HEAD(&req
->ki_run_list
);
421 req
->ki_eventfd
= ERR_PTR(-EINVAL
);
423 /* Check if the completion queue has enough free space to
424 * accept an event from this io.
426 spin_lock_irq(&ctx
->ctx_lock
);
427 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
428 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
429 list_add(&req
->ki_list
, &ctx
->active_reqs
);
433 kunmap_atomic(ring
, KM_USER0
);
434 spin_unlock_irq(&ctx
->ctx_lock
);
437 kmem_cache_free(kiocb_cachep
, req
);
444 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
447 /* Handle a potential starvation case -- should be exceedingly rare as
448 * requests will be stuck on fput_head only if the aio_fput_routine is
449 * delayed and the requests were the last user of the struct file.
451 req
= __aio_get_req(ctx
);
452 if (unlikely(NULL
== req
)) {
453 aio_fput_routine(NULL
);
454 req
= __aio_get_req(ctx
);
459 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
461 assert_spin_locked(&ctx
->ctx_lock
);
463 if (!IS_ERR(req
->ki_eventfd
))
464 fput(req
->ki_eventfd
);
467 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
468 kfree(req
->ki_iovec
);
469 kmem_cache_free(kiocb_cachep
, req
);
472 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
476 static void aio_fput_routine(struct work_struct
*data
)
478 spin_lock_irq(&fput_lock
);
479 while (likely(!list_empty(&fput_head
))) {
480 struct kiocb
*req
= list_kiocb(fput_head
.next
);
481 struct kioctx
*ctx
= req
->ki_ctx
;
483 list_del(&req
->ki_list
);
484 spin_unlock_irq(&fput_lock
);
486 /* Complete the fput */
487 __fput(req
->ki_filp
);
489 /* Link the iocb into the context's free list */
490 spin_lock_irq(&ctx
->ctx_lock
);
491 really_put_req(ctx
, req
);
492 spin_unlock_irq(&ctx
->ctx_lock
);
495 spin_lock_irq(&fput_lock
);
497 spin_unlock_irq(&fput_lock
);
501 * Returns true if this put was the last user of the request.
503 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
505 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
506 req
, atomic_read(&req
->ki_filp
->f_count
));
508 assert_spin_locked(&ctx
->ctx_lock
);
511 BUG_ON(req
->ki_users
< 0);
512 if (likely(req
->ki_users
))
514 list_del(&req
->ki_list
); /* remove from active_reqs */
515 req
->ki_cancel
= NULL
;
516 req
->ki_retry
= NULL
;
518 /* Must be done under the lock to serialise against cancellation.
519 * Call this aio_fput as it duplicates fput via the fput_work.
521 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
523 spin_lock(&fput_lock
);
524 list_add(&req
->ki_list
, &fput_head
);
525 spin_unlock(&fput_lock
);
526 queue_work(aio_wq
, &fput_work
);
528 really_put_req(ctx
, req
);
533 * Returns true if this put was the last user of the kiocb,
534 * false if the request is still in use.
536 int fastcall
aio_put_req(struct kiocb
*req
)
538 struct kioctx
*ctx
= req
->ki_ctx
;
540 spin_lock_irq(&ctx
->ctx_lock
);
541 ret
= __aio_put_req(ctx
, req
);
542 spin_unlock_irq(&ctx
->ctx_lock
);
546 /* Lookup an ioctx id. ioctx_list is lockless for reads.
547 * FIXME: this is O(n) and is only suitable for development.
549 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
551 struct kioctx
*ioctx
;
552 struct mm_struct
*mm
;
555 read_lock(&mm
->ioctx_list_lock
);
556 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
557 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
561 read_unlock(&mm
->ioctx_list_lock
);
568 * Makes the calling kernel thread take on the specified
570 * Called by the retry thread execute retries within the
571 * iocb issuer's mm context, so that copy_from/to_user
572 * operations work seamlessly for aio.
573 * (Note: this routine is intended to be called only
574 * from a kernel thread context)
576 static void use_mm(struct mm_struct
*mm
)
578 struct mm_struct
*active_mm
;
579 struct task_struct
*tsk
= current
;
582 tsk
->flags
|= PF_BORROWED_MM
;
583 active_mm
= tsk
->active_mm
;
584 atomic_inc(&mm
->mm_count
);
588 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
589 * it won't work. Update it accordingly if you change it here
591 switch_mm(active_mm
, mm
, tsk
);
599 * Reverses the effect of use_mm, i.e. releases the
600 * specified mm context which was earlier taken on
601 * by the calling kernel thread
602 * (Note: this routine is intended to be called only
603 * from a kernel thread context)
605 static void unuse_mm(struct mm_struct
*mm
)
607 struct task_struct
*tsk
= current
;
610 tsk
->flags
&= ~PF_BORROWED_MM
;
612 /* active_mm is still 'mm' */
613 enter_lazy_tlb(mm
, tsk
);
618 * Queue up a kiocb to be retried. Assumes that the kiocb
619 * has already been marked as kicked, and places it on
620 * the retry run list for the corresponding ioctx, if it
621 * isn't already queued. Returns 1 if it actually queued
622 * the kiocb (to tell the caller to activate the work
623 * queue to process it), or 0, if it found that it was
626 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
628 struct kioctx
*ctx
= iocb
->ki_ctx
;
630 assert_spin_locked(&ctx
->ctx_lock
);
632 if (list_empty(&iocb
->ki_run_list
)) {
633 list_add_tail(&iocb
->ki_run_list
,
641 * This is the core aio execution routine. It is
642 * invoked both for initial i/o submission and
643 * subsequent retries via the aio_kick_handler.
644 * Expects to be invoked with iocb->ki_ctx->lock
645 * already held. The lock is released and reacquired
646 * as needed during processing.
648 * Calls the iocb retry method (already setup for the
649 * iocb on initial submission) for operation specific
650 * handling, but takes care of most of common retry
651 * execution details for a given iocb. The retry method
652 * needs to be non-blocking as far as possible, to avoid
653 * holding up other iocbs waiting to be serviced by the
654 * retry kernel thread.
656 * The trickier parts in this code have to do with
657 * ensuring that only one retry instance is in progress
658 * for a given iocb at any time. Providing that guarantee
659 * simplifies the coding of individual aio operations as
660 * it avoids various potential races.
662 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
664 struct kioctx
*ctx
= iocb
->ki_ctx
;
665 ssize_t (*retry
)(struct kiocb
*);
668 if (!(retry
= iocb
->ki_retry
)) {
669 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
674 * We don't want the next retry iteration for this
675 * operation to start until this one has returned and
676 * updated the iocb state. However, wait_queue functions
677 * can trigger a kick_iocb from interrupt context in the
678 * meantime, indicating that data is available for the next
679 * iteration. We want to remember that and enable the
680 * next retry iteration _after_ we are through with
683 * So, in order to be able to register a "kick", but
684 * prevent it from being queued now, we clear the kick
685 * flag, but make the kick code *think* that the iocb is
686 * still on the run list until we are actually done.
687 * When we are done with this iteration, we check if
688 * the iocb was kicked in the meantime and if so, queue
692 kiocbClearKicked(iocb
);
695 * This is so that aio_complete knows it doesn't need to
696 * pull the iocb off the run list (We can't just call
697 * INIT_LIST_HEAD because we don't want a kick_iocb to
698 * queue this on the run list yet)
700 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
701 spin_unlock_irq(&ctx
->ctx_lock
);
703 /* Quit retrying if the i/o has been cancelled */
704 if (kiocbIsCancelled(iocb
)) {
706 aio_complete(iocb
, ret
, 0);
707 /* must not access the iocb after this */
712 * Now we are all set to call the retry method in async
717 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
718 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
719 aio_complete(iocb
, ret
, 0);
722 spin_lock_irq(&ctx
->ctx_lock
);
724 if (-EIOCBRETRY
== ret
) {
726 * OK, now that we are done with this iteration
727 * and know that there is more left to go,
728 * this is where we let go so that a subsequent
729 * "kick" can start the next iteration
732 /* will make __queue_kicked_iocb succeed from here on */
733 INIT_LIST_HEAD(&iocb
->ki_run_list
);
734 /* we must queue the next iteration ourselves, if it
735 * has already been kicked */
736 if (kiocbIsKicked(iocb
)) {
737 __queue_kicked_iocb(iocb
);
740 * __queue_kicked_iocb will always return 1 here, because
741 * iocb->ki_run_list is empty at this point so it should
742 * be safe to unconditionally queue the context into the
753 * Process all pending retries queued on the ioctx
755 * Assumes it is operating within the aio issuer's mm
758 static int __aio_run_iocbs(struct kioctx
*ctx
)
761 struct list_head run_list
;
763 assert_spin_locked(&ctx
->ctx_lock
);
765 list_replace_init(&ctx
->run_list
, &run_list
);
766 while (!list_empty(&run_list
)) {
767 iocb
= list_entry(run_list
.next
, struct kiocb
,
769 list_del(&iocb
->ki_run_list
);
771 * Hold an extra reference while retrying i/o.
773 iocb
->ki_users
++; /* grab extra reference */
775 __aio_put_req(ctx
, iocb
);
777 if (!list_empty(&ctx
->run_list
))
782 static void aio_queue_work(struct kioctx
* ctx
)
784 unsigned long timeout
;
786 * if someone is waiting, get the work started right
787 * away, otherwise, use a longer delay
790 if (waitqueue_active(&ctx
->wait
))
794 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
800 * Process all pending retries queued on the ioctx
802 * Assumes it is operating within the aio issuer's mm
805 static inline void aio_run_iocbs(struct kioctx
*ctx
)
809 spin_lock_irq(&ctx
->ctx_lock
);
811 requeue
= __aio_run_iocbs(ctx
);
812 spin_unlock_irq(&ctx
->ctx_lock
);
818 * just like aio_run_iocbs, but keeps running them until
819 * the list stays empty
821 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
823 spin_lock_irq(&ctx
->ctx_lock
);
824 while (__aio_run_iocbs(ctx
))
826 spin_unlock_irq(&ctx
->ctx_lock
);
831 * Work queue handler triggered to process pending
832 * retries on an ioctx. Takes on the aio issuer's
833 * mm context before running the iocbs, so that
834 * copy_xxx_user operates on the issuer's address
836 * Run on aiod's context.
838 static void aio_kick_handler(struct work_struct
*work
)
840 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
841 mm_segment_t oldfs
= get_fs();
842 struct mm_struct
*mm
;
847 spin_lock_irq(&ctx
->ctx_lock
);
848 requeue
=__aio_run_iocbs(ctx
);
850 spin_unlock_irq(&ctx
->ctx_lock
);
854 * we're in a worker thread already, don't use queue_delayed_work,
857 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
862 * Called by kick_iocb to queue the kiocb for retry
863 * and if required activate the aio work queue to process
866 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
868 struct kioctx
*ctx
= iocb
->ki_ctx
;
872 /* We're supposed to be the only path putting the iocb back on the run
873 * list. If we find that the iocb is *back* on a wait queue already
874 * than retry has happened before we could queue the iocb. This also
875 * means that the retry could have completed and freed our iocb, no
877 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
879 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
880 /* set this inside the lock so that we can't race with aio_run_iocb()
881 * testing it and putting the iocb on the run list under the lock */
882 if (!kiocbTryKick(iocb
))
883 run
= __queue_kicked_iocb(iocb
);
884 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
891 * Called typically from a wait queue callback context
892 * (aio_wake_function) to trigger a retry of the iocb.
893 * The retry is usually executed by aio workqueue
894 * threads (See aio_kick_handler).
896 void fastcall
kick_iocb(struct kiocb
*iocb
)
898 /* sync iocbs are easy: they can only ever be executing from a
900 if (is_sync_kiocb(iocb
)) {
901 kiocbSetKicked(iocb
);
902 wake_up_process(iocb
->ki_obj
.tsk
);
906 try_queue_kicked_iocb(iocb
);
908 EXPORT_SYMBOL(kick_iocb
);
911 * Called when the io request on the given iocb is complete.
912 * Returns true if this is the last user of the request. The
913 * only other user of the request can be the cancellation code.
915 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
917 struct kioctx
*ctx
= iocb
->ki_ctx
;
918 struct aio_ring_info
*info
;
919 struct aio_ring
*ring
;
920 struct io_event
*event
;
926 * Special case handling for sync iocbs:
927 * - events go directly into the iocb for fast handling
928 * - the sync task with the iocb in its stack holds the single iocb
929 * ref, no other paths have a way to get another ref
930 * - the sync task helpfully left a reference to itself in the iocb
932 if (is_sync_kiocb(iocb
)) {
933 BUG_ON(iocb
->ki_users
!= 1);
934 iocb
->ki_user_data
= res
;
936 wake_up_process(iocb
->ki_obj
.tsk
);
941 * Check if the user asked us to deliver the result through an
942 * eventfd. The eventfd_signal() function is safe to be called
945 if (!IS_ERR(iocb
->ki_eventfd
))
946 eventfd_signal(iocb
->ki_eventfd
, 1);
948 info
= &ctx
->ring_info
;
950 /* add a completion event to the ring buffer.
951 * must be done holding ctx->ctx_lock to prevent
952 * other code from messing with the tail
953 * pointer since we might be called from irq
956 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
958 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
959 list_del_init(&iocb
->ki_run_list
);
962 * cancelled requests don't get events, userland was given one
963 * when the event got cancelled.
965 if (kiocbIsCancelled(iocb
))
968 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
971 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
972 if (++tail
>= info
->nr
)
975 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
976 event
->data
= iocb
->ki_user_data
;
980 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
981 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
984 /* after flagging the request as done, we
985 * must never even look at it again
987 smp_wmb(); /* make event visible before updating tail */
992 put_aio_ring_event(event
, KM_IRQ0
);
993 kunmap_atomic(ring
, KM_IRQ1
);
995 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
997 /* everything turned out well, dispose of the aiocb. */
998 ret
= __aio_put_req(ctx
, iocb
);
1000 if (waitqueue_active(&ctx
->wait
))
1001 wake_up(&ctx
->wait
);
1003 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1008 * Pull an event off of the ioctx's event ring. Returns the number of
1009 * events fetched (0 or 1 ;-)
1010 * FIXME: make this use cmpxchg.
1011 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1013 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1015 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1016 struct aio_ring
*ring
;
1020 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1021 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1022 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1023 (unsigned long)ring
->nr
);
1025 if (ring
->head
== ring
->tail
)
1028 spin_lock(&info
->ring_lock
);
1030 head
= ring
->head
% info
->nr
;
1031 if (head
!= ring
->tail
) {
1032 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1034 head
= (head
+ 1) % info
->nr
;
1035 smp_mb(); /* finish reading the event before updatng the head */
1038 put_aio_ring_event(evp
, KM_USER1
);
1040 spin_unlock(&info
->ring_lock
);
1043 kunmap_atomic(ring
, KM_USER0
);
1044 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1045 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1049 struct aio_timeout
{
1050 struct timer_list timer
;
1052 struct task_struct
*p
;
1055 static void timeout_func(unsigned long data
)
1057 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1060 wake_up_process(to
->p
);
1063 static inline void init_timeout(struct aio_timeout
*to
)
1065 init_timer(&to
->timer
);
1066 to
->timer
.data
= (unsigned long)to
;
1067 to
->timer
.function
= timeout_func
;
1072 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1073 const struct timespec
*ts
)
1075 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1076 if (time_after(to
->timer
.expires
, jiffies
))
1077 add_timer(&to
->timer
);
1082 static inline void clear_timeout(struct aio_timeout
*to
)
1084 del_singleshot_timer_sync(&to
->timer
);
1087 static int read_events(struct kioctx
*ctx
,
1088 long min_nr
, long nr
,
1089 struct io_event __user
*event
,
1090 struct timespec __user
*timeout
)
1092 long start_jiffies
= jiffies
;
1093 struct task_struct
*tsk
= current
;
1094 DECLARE_WAITQUEUE(wait
, tsk
);
1097 struct io_event ent
;
1098 struct aio_timeout to
;
1101 /* needed to zero any padding within an entry (there shouldn't be
1102 * any, but C is fun!
1104 memset(&ent
, 0, sizeof(ent
));
1107 while (likely(i
< nr
)) {
1108 ret
= aio_read_evt(ctx
, &ent
);
1109 if (unlikely(ret
<= 0))
1112 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1113 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1115 /* Could we split the check in two? */
1117 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1118 dprintk("aio: lost an event due to EFAULT.\n");
1123 /* Good, event copied to userland, update counts. */
1135 /* racey check, but it gets redone */
1136 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1138 aio_run_all_iocbs(ctx
);
1146 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1149 set_timeout(start_jiffies
, &to
, &ts
);
1152 while (likely(i
< nr
)) {
1153 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1155 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1156 ret
= aio_read_evt(ctx
, &ent
);
1162 if (to
.timed_out
) /* Only check after read evt */
1165 if (signal_pending(tsk
)) {
1169 /*ret = aio_read_evt(ctx, &ent);*/
1172 set_task_state(tsk
, TASK_RUNNING
);
1173 remove_wait_queue(&ctx
->wait
, &wait
);
1175 if (unlikely(ret
<= 0))
1179 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1180 dprintk("aio: lost an event due to EFAULT.\n");
1184 /* Good, event copied to userland, update counts. */
1195 /* Take an ioctx and remove it from the list of ioctx's. Protects
1196 * against races with itself via ->dead.
1198 static void io_destroy(struct kioctx
*ioctx
)
1200 struct mm_struct
*mm
= current
->mm
;
1201 struct kioctx
**tmp
;
1204 /* delete the entry from the list is someone else hasn't already */
1205 write_lock(&mm
->ioctx_list_lock
);
1206 was_dead
= ioctx
->dead
;
1208 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1209 tmp
= &(*tmp
)->next
)
1213 write_unlock(&mm
->ioctx_list_lock
);
1215 dprintk("aio_release(%p)\n", ioctx
);
1216 if (likely(!was_dead
))
1217 put_ioctx(ioctx
); /* twice for the list */
1219 aio_cancel_all(ioctx
);
1220 wait_for_all_aios(ioctx
);
1221 put_ioctx(ioctx
); /* once for the lookup */
1225 * Create an aio_context capable of receiving at least nr_events.
1226 * ctxp must not point to an aio_context that already exists, and
1227 * must be initialized to 0 prior to the call. On successful
1228 * creation of the aio_context, *ctxp is filled in with the resulting
1229 * handle. May fail with -EINVAL if *ctxp is not initialized,
1230 * if the specified nr_events exceeds internal limits. May fail
1231 * with -EAGAIN if the specified nr_events exceeds the user's limit
1232 * of available events. May fail with -ENOMEM if insufficient kernel
1233 * resources are available. May fail with -EFAULT if an invalid
1234 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1237 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1239 struct kioctx
*ioctx
= NULL
;
1243 ret
= get_user(ctx
, ctxp
);
1248 if (unlikely(ctx
|| nr_events
== 0)) {
1249 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1254 ioctx
= ioctx_alloc(nr_events
);
1255 ret
= PTR_ERR(ioctx
);
1256 if (!IS_ERR(ioctx
)) {
1257 ret
= put_user(ioctx
->user_id
, ctxp
);
1261 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1270 * Destroy the aio_context specified. May cancel any outstanding
1271 * AIOs and block on completion. Will fail with -ENOSYS if not
1272 * implemented. May fail with -EFAULT if the context pointed to
1275 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1277 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1278 if (likely(NULL
!= ioctx
)) {
1282 pr_debug("EINVAL: io_destroy: invalid context id\n");
1286 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1288 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1292 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1293 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1294 iov
->iov_base
+= this;
1295 iov
->iov_len
-= this;
1296 iocb
->ki_left
-= this;
1298 if (iov
->iov_len
== 0) {
1304 /* the caller should not have done more io than what fit in
1305 * the remaining iovecs */
1306 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1309 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1311 struct file
*file
= iocb
->ki_filp
;
1312 struct address_space
*mapping
= file
->f_mapping
;
1313 struct inode
*inode
= mapping
->host
;
1314 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1315 unsigned long, loff_t
);
1317 unsigned short opcode
;
1319 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1320 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1321 rw_op
= file
->f_op
->aio_read
;
1322 opcode
= IOCB_CMD_PREADV
;
1324 rw_op
= file
->f_op
->aio_write
;
1325 opcode
= IOCB_CMD_PWRITEV
;
1329 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1330 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1333 aio_advance_iovec(iocb
, ret
);
1335 /* retry all partial writes. retry partial reads as long as its a
1337 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1338 (opcode
== IOCB_CMD_PWRITEV
||
1339 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1341 /* This means we must have transferred all that we could */
1342 /* No need to retry anymore */
1343 if ((ret
== 0) || (iocb
->ki_left
== 0))
1344 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1349 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1351 struct file
*file
= iocb
->ki_filp
;
1352 ssize_t ret
= -EINVAL
;
1354 if (file
->f_op
->aio_fsync
)
1355 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1359 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1361 struct file
*file
= iocb
->ki_filp
;
1362 ssize_t ret
= -EINVAL
;
1364 if (file
->f_op
->aio_fsync
)
1365 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1369 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
)
1373 ret
= rw_copy_check_uvector(type
, (struct iovec __user
*)kiocb
->ki_buf
,
1374 kiocb
->ki_nbytes
, 1,
1375 &kiocb
->ki_inline_vec
, &kiocb
->ki_iovec
);
1379 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1380 kiocb
->ki_cur_seg
= 0;
1381 /* ki_nbytes/left now reflect bytes instead of segs */
1382 kiocb
->ki_nbytes
= ret
;
1383 kiocb
->ki_left
= ret
;
1390 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1392 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1393 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1394 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1395 kiocb
->ki_nr_segs
= 1;
1396 kiocb
->ki_cur_seg
= 0;
1402 * Performs the initial checks and aio retry method
1403 * setup for the kiocb at the time of io submission.
1405 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1407 struct file
*file
= kiocb
->ki_filp
;
1410 switch (kiocb
->ki_opcode
) {
1411 case IOCB_CMD_PREAD
:
1413 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1416 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1419 ret
= security_file_permission(file
, MAY_READ
);
1422 ret
= aio_setup_single_vector(kiocb
);
1426 if (file
->f_op
->aio_read
)
1427 kiocb
->ki_retry
= aio_rw_vect_retry
;
1429 case IOCB_CMD_PWRITE
:
1431 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1434 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1437 ret
= security_file_permission(file
, MAY_WRITE
);
1440 ret
= aio_setup_single_vector(kiocb
);
1444 if (file
->f_op
->aio_write
)
1445 kiocb
->ki_retry
= aio_rw_vect_retry
;
1447 case IOCB_CMD_PREADV
:
1449 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1451 ret
= security_file_permission(file
, MAY_READ
);
1454 ret
= aio_setup_vectored_rw(READ
, kiocb
);
1458 if (file
->f_op
->aio_read
)
1459 kiocb
->ki_retry
= aio_rw_vect_retry
;
1461 case IOCB_CMD_PWRITEV
:
1463 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1465 ret
= security_file_permission(file
, MAY_WRITE
);
1468 ret
= aio_setup_vectored_rw(WRITE
, kiocb
);
1472 if (file
->f_op
->aio_write
)
1473 kiocb
->ki_retry
= aio_rw_vect_retry
;
1475 case IOCB_CMD_FDSYNC
:
1477 if (file
->f_op
->aio_fsync
)
1478 kiocb
->ki_retry
= aio_fdsync
;
1480 case IOCB_CMD_FSYNC
:
1482 if (file
->f_op
->aio_fsync
)
1483 kiocb
->ki_retry
= aio_fsync
;
1486 dprintk("EINVAL: io_submit: no operation provided\n");
1490 if (!kiocb
->ki_retry
)
1497 * aio_wake_function:
1498 * wait queue callback function for aio notification,
1499 * Simply triggers a retry of the operation via kick_iocb.
1501 * This callback is specified in the wait queue entry in
1505 * This routine is executed with the wait queue lock held.
1506 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1507 * the ioctx lock inside the wait queue lock. This is safe
1508 * because this callback isn't used for wait queues which
1509 * are nested inside ioctx lock (i.e. ctx->wait)
1511 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1512 int sync
, void *key
)
1514 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1516 list_del_init(&wait
->task_list
);
1521 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1528 /* enforce forwards compatibility on users */
1529 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1530 pr_debug("EINVAL: io_submit: reserve field set\n");
1534 /* prevent overflows */
1536 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1537 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1538 ((ssize_t
)iocb
->aio_nbytes
< 0)
1540 pr_debug("EINVAL: io_submit: overflow check\n");
1544 file
= fget(iocb
->aio_fildes
);
1545 if (unlikely(!file
))
1548 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1549 if (unlikely(!req
)) {
1553 req
->ki_filp
= file
;
1554 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1556 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1557 * instance of the file* now. The file descriptor must be
1558 * an eventfd() fd, and will be signaled for each completed
1559 * event using the eventfd_signal() function.
1561 req
->ki_eventfd
= eventfd_fget((int) iocb
->aio_resfd
);
1562 if (unlikely(IS_ERR(req
->ki_eventfd
))) {
1563 ret
= PTR_ERR(req
->ki_eventfd
);
1568 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1569 if (unlikely(ret
)) {
1570 dprintk("EFAULT: aio_key\n");
1574 req
->ki_obj
.user
= user_iocb
;
1575 req
->ki_user_data
= iocb
->aio_data
;
1576 req
->ki_pos
= iocb
->aio_offset
;
1578 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1579 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1580 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1581 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1582 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1584 ret
= aio_setup_iocb(req
);
1589 spin_lock_irq(&ctx
->ctx_lock
);
1591 if (!list_empty(&ctx
->run_list
)) {
1592 /* drain the run list */
1593 while (__aio_run_iocbs(ctx
))
1596 spin_unlock_irq(&ctx
->ctx_lock
);
1597 aio_put_req(req
); /* drop extra ref to req */
1601 aio_put_req(req
); /* drop extra ref to req */
1602 aio_put_req(req
); /* drop i/o ref to req */
1607 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1608 * the number of iocbs queued. May return -EINVAL if the aio_context
1609 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1610 * *iocbpp[0] is not properly initialized, if the operation specified
1611 * is invalid for the file descriptor in the iocb. May fail with
1612 * -EFAULT if any of the data structures point to invalid data. May
1613 * fail with -EBADF if the file descriptor specified in the first
1614 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1615 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1616 * fail with -ENOSYS if not implemented.
1618 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1619 struct iocb __user
* __user
*iocbpp
)
1625 if (unlikely(nr
< 0))
1628 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1631 ctx
= lookup_ioctx(ctx_id
);
1632 if (unlikely(!ctx
)) {
1633 pr_debug("EINVAL: io_submit: invalid context id\n");
1638 * AKPM: should this return a partial result if some of the IOs were
1639 * successfully submitted?
1641 for (i
=0; i
<nr
; i
++) {
1642 struct iocb __user
*user_iocb
;
1645 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1650 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1655 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1665 * Finds a given iocb for cancellation.
1667 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1670 struct list_head
*pos
;
1672 assert_spin_locked(&ctx
->ctx_lock
);
1674 /* TODO: use a hash or array, this sucks. */
1675 list_for_each(pos
, &ctx
->active_reqs
) {
1676 struct kiocb
*kiocb
= list_kiocb(pos
);
1677 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1684 * Attempts to cancel an iocb previously passed to io_submit. If
1685 * the operation is successfully cancelled, the resulting event is
1686 * copied into the memory pointed to by result without being placed
1687 * into the completion queue and 0 is returned. May fail with
1688 * -EFAULT if any of the data structures pointed to are invalid.
1689 * May fail with -EINVAL if aio_context specified by ctx_id is
1690 * invalid. May fail with -EAGAIN if the iocb specified was not
1691 * cancelled. Will fail with -ENOSYS if not implemented.
1693 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1694 struct io_event __user
*result
)
1696 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1698 struct kiocb
*kiocb
;
1702 ret
= get_user(key
, &iocb
->aio_key
);
1706 ctx
= lookup_ioctx(ctx_id
);
1710 spin_lock_irq(&ctx
->ctx_lock
);
1712 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1713 if (kiocb
&& kiocb
->ki_cancel
) {
1714 cancel
= kiocb
->ki_cancel
;
1716 kiocbSetCancelled(kiocb
);
1719 spin_unlock_irq(&ctx
->ctx_lock
);
1721 if (NULL
!= cancel
) {
1722 struct io_event tmp
;
1723 pr_debug("calling cancel\n");
1724 memset(&tmp
, 0, sizeof(tmp
));
1725 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1726 tmp
.data
= kiocb
->ki_user_data
;
1727 ret
= cancel(kiocb
, &tmp
);
1729 /* Cancellation succeeded -- copy the result
1730 * into the user's buffer.
1732 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1744 * Attempts to read at least min_nr events and up to nr events from
1745 * the completion queue for the aio_context specified by ctx_id. May
1746 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1747 * if nr is out of range, if when is out of range. May fail with
1748 * -EFAULT if any of the memory specified to is invalid. May return
1749 * 0 or < min_nr if no events are available and the timeout specified
1750 * by when has elapsed, where when == NULL specifies an infinite
1751 * timeout. Note that the timeout pointed to by when is relative and
1752 * will be updated if not NULL and the operation blocks. Will fail
1753 * with -ENOSYS if not implemented.
1755 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1758 struct io_event __user
*events
,
1759 struct timespec __user
*timeout
)
1761 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1764 if (likely(ioctx
)) {
1765 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1766 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1773 __initcall(aio_setup
);
1775 EXPORT_SYMBOL(aio_complete
);
1776 EXPORT_SYMBOL(aio_put_req
);
1777 EXPORT_SYMBOL(wait_on_sync_kiocb
);