[PATCH] do shrink_submounts() for all fs types
[linux-2.6/kvm.git] / fs / namespace.c
blob7bd74b25930c98b7e1c597c270c4d02604632532
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include "pnode.h"
32 #include "internal.h"
34 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
35 #define HASH_SIZE (1UL << HASH_SHIFT)
37 /* spinlock for vfsmount related operations, inplace of dcache_lock */
38 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40 static int event;
42 static struct list_head *mount_hashtable __read_mostly;
43 static struct kmem_cache *mnt_cache __read_mostly;
44 static struct rw_semaphore namespace_sem;
46 /* /sys/fs */
47 struct kobject *fs_kobj;
48 EXPORT_SYMBOL_GPL(fs_kobj);
50 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
52 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
53 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
54 tmp = tmp + (tmp >> HASH_SHIFT);
55 return tmp & (HASH_SIZE - 1);
58 struct vfsmount *alloc_vfsmnt(const char *name)
60 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
61 if (mnt) {
62 atomic_set(&mnt->mnt_count, 1);
63 INIT_LIST_HEAD(&mnt->mnt_hash);
64 INIT_LIST_HEAD(&mnt->mnt_child);
65 INIT_LIST_HEAD(&mnt->mnt_mounts);
66 INIT_LIST_HEAD(&mnt->mnt_list);
67 INIT_LIST_HEAD(&mnt->mnt_expire);
68 INIT_LIST_HEAD(&mnt->mnt_share);
69 INIT_LIST_HEAD(&mnt->mnt_slave_list);
70 INIT_LIST_HEAD(&mnt->mnt_slave);
71 if (name) {
72 int size = strlen(name) + 1;
73 char *newname = kmalloc(size, GFP_KERNEL);
74 if (newname) {
75 memcpy(newname, name, size);
76 mnt->mnt_devname = newname;
80 return mnt;
83 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
85 mnt->mnt_sb = sb;
86 mnt->mnt_root = dget(sb->s_root);
87 return 0;
90 EXPORT_SYMBOL(simple_set_mnt);
92 void free_vfsmnt(struct vfsmount *mnt)
94 kfree(mnt->mnt_devname);
95 kmem_cache_free(mnt_cache, mnt);
99 * find the first or last mount at @dentry on vfsmount @mnt depending on
100 * @dir. If @dir is set return the first mount else return the last mount.
102 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
103 int dir)
105 struct list_head *head = mount_hashtable + hash(mnt, dentry);
106 struct list_head *tmp = head;
107 struct vfsmount *p, *found = NULL;
109 for (;;) {
110 tmp = dir ? tmp->next : tmp->prev;
111 p = NULL;
112 if (tmp == head)
113 break;
114 p = list_entry(tmp, struct vfsmount, mnt_hash);
115 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
116 found = p;
117 break;
120 return found;
124 * lookup_mnt increments the ref count before returning
125 * the vfsmount struct.
127 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
129 struct vfsmount *child_mnt;
130 spin_lock(&vfsmount_lock);
131 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
132 mntget(child_mnt);
133 spin_unlock(&vfsmount_lock);
134 return child_mnt;
137 static inline int check_mnt(struct vfsmount *mnt)
139 return mnt->mnt_ns == current->nsproxy->mnt_ns;
142 static void touch_mnt_namespace(struct mnt_namespace *ns)
144 if (ns) {
145 ns->event = ++event;
146 wake_up_interruptible(&ns->poll);
150 static void __touch_mnt_namespace(struct mnt_namespace *ns)
152 if (ns && ns->event != event) {
153 ns->event = event;
154 wake_up_interruptible(&ns->poll);
158 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
160 old_path->dentry = mnt->mnt_mountpoint;
161 old_path->mnt = mnt->mnt_parent;
162 mnt->mnt_parent = mnt;
163 mnt->mnt_mountpoint = mnt->mnt_root;
164 list_del_init(&mnt->mnt_child);
165 list_del_init(&mnt->mnt_hash);
166 old_path->dentry->d_mounted--;
169 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
170 struct vfsmount *child_mnt)
172 child_mnt->mnt_parent = mntget(mnt);
173 child_mnt->mnt_mountpoint = dget(dentry);
174 dentry->d_mounted++;
177 static void attach_mnt(struct vfsmount *mnt, struct path *path)
179 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
180 list_add_tail(&mnt->mnt_hash, mount_hashtable +
181 hash(path->mnt, path->dentry));
182 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
186 * the caller must hold vfsmount_lock
188 static void commit_tree(struct vfsmount *mnt)
190 struct vfsmount *parent = mnt->mnt_parent;
191 struct vfsmount *m;
192 LIST_HEAD(head);
193 struct mnt_namespace *n = parent->mnt_ns;
195 BUG_ON(parent == mnt);
197 list_add_tail(&head, &mnt->mnt_list);
198 list_for_each_entry(m, &head, mnt_list)
199 m->mnt_ns = n;
200 list_splice(&head, n->list.prev);
202 list_add_tail(&mnt->mnt_hash, mount_hashtable +
203 hash(parent, mnt->mnt_mountpoint));
204 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
205 touch_mnt_namespace(n);
208 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
210 struct list_head *next = p->mnt_mounts.next;
211 if (next == &p->mnt_mounts) {
212 while (1) {
213 if (p == root)
214 return NULL;
215 next = p->mnt_child.next;
216 if (next != &p->mnt_parent->mnt_mounts)
217 break;
218 p = p->mnt_parent;
221 return list_entry(next, struct vfsmount, mnt_child);
224 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
226 struct list_head *prev = p->mnt_mounts.prev;
227 while (prev != &p->mnt_mounts) {
228 p = list_entry(prev, struct vfsmount, mnt_child);
229 prev = p->mnt_mounts.prev;
231 return p;
234 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
235 int flag)
237 struct super_block *sb = old->mnt_sb;
238 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
240 if (mnt) {
241 mnt->mnt_flags = old->mnt_flags;
242 atomic_inc(&sb->s_active);
243 mnt->mnt_sb = sb;
244 mnt->mnt_root = dget(root);
245 mnt->mnt_mountpoint = mnt->mnt_root;
246 mnt->mnt_parent = mnt;
248 if (flag & CL_SLAVE) {
249 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
250 mnt->mnt_master = old;
251 CLEAR_MNT_SHARED(mnt);
252 } else if (!(flag & CL_PRIVATE)) {
253 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
254 list_add(&mnt->mnt_share, &old->mnt_share);
255 if (IS_MNT_SLAVE(old))
256 list_add(&mnt->mnt_slave, &old->mnt_slave);
257 mnt->mnt_master = old->mnt_master;
259 if (flag & CL_MAKE_SHARED)
260 set_mnt_shared(mnt);
262 /* stick the duplicate mount on the same expiry list
263 * as the original if that was on one */
264 if (flag & CL_EXPIRE) {
265 spin_lock(&vfsmount_lock);
266 if (!list_empty(&old->mnt_expire))
267 list_add(&mnt->mnt_expire, &old->mnt_expire);
268 spin_unlock(&vfsmount_lock);
271 return mnt;
274 static inline void __mntput(struct vfsmount *mnt)
276 struct super_block *sb = mnt->mnt_sb;
277 dput(mnt->mnt_root);
278 free_vfsmnt(mnt);
279 deactivate_super(sb);
282 void mntput_no_expire(struct vfsmount *mnt)
284 repeat:
285 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
286 if (likely(!mnt->mnt_pinned)) {
287 spin_unlock(&vfsmount_lock);
288 __mntput(mnt);
289 return;
291 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
292 mnt->mnt_pinned = 0;
293 spin_unlock(&vfsmount_lock);
294 acct_auto_close_mnt(mnt);
295 security_sb_umount_close(mnt);
296 goto repeat;
300 EXPORT_SYMBOL(mntput_no_expire);
302 void mnt_pin(struct vfsmount *mnt)
304 spin_lock(&vfsmount_lock);
305 mnt->mnt_pinned++;
306 spin_unlock(&vfsmount_lock);
309 EXPORT_SYMBOL(mnt_pin);
311 void mnt_unpin(struct vfsmount *mnt)
313 spin_lock(&vfsmount_lock);
314 if (mnt->mnt_pinned) {
315 atomic_inc(&mnt->mnt_count);
316 mnt->mnt_pinned--;
318 spin_unlock(&vfsmount_lock);
321 EXPORT_SYMBOL(mnt_unpin);
323 static inline void mangle(struct seq_file *m, const char *s)
325 seq_escape(m, s, " \t\n\\");
329 * Simple .show_options callback for filesystems which don't want to
330 * implement more complex mount option showing.
332 * See also save_mount_options().
334 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
336 const char *options = mnt->mnt_sb->s_options;
338 if (options != NULL && options[0]) {
339 seq_putc(m, ',');
340 mangle(m, options);
343 return 0;
345 EXPORT_SYMBOL(generic_show_options);
348 * If filesystem uses generic_show_options(), this function should be
349 * called from the fill_super() callback.
351 * The .remount_fs callback usually needs to be handled in a special
352 * way, to make sure, that previous options are not overwritten if the
353 * remount fails.
355 * Also note, that if the filesystem's .remount_fs function doesn't
356 * reset all options to their default value, but changes only newly
357 * given options, then the displayed options will not reflect reality
358 * any more.
360 void save_mount_options(struct super_block *sb, char *options)
362 kfree(sb->s_options);
363 sb->s_options = kstrdup(options, GFP_KERNEL);
365 EXPORT_SYMBOL(save_mount_options);
367 /* iterator */
368 static void *m_start(struct seq_file *m, loff_t *pos)
370 struct mnt_namespace *n = m->private;
372 down_read(&namespace_sem);
373 return seq_list_start(&n->list, *pos);
376 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
378 struct mnt_namespace *n = m->private;
380 return seq_list_next(v, &n->list, pos);
383 static void m_stop(struct seq_file *m, void *v)
385 up_read(&namespace_sem);
388 static int show_vfsmnt(struct seq_file *m, void *v)
390 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
391 int err = 0;
392 static struct proc_fs_info {
393 int flag;
394 char *str;
395 } fs_info[] = {
396 { MS_SYNCHRONOUS, ",sync" },
397 { MS_DIRSYNC, ",dirsync" },
398 { MS_MANDLOCK, ",mand" },
399 { 0, NULL }
401 static struct proc_fs_info mnt_info[] = {
402 { MNT_NOSUID, ",nosuid" },
403 { MNT_NODEV, ",nodev" },
404 { MNT_NOEXEC, ",noexec" },
405 { MNT_NOATIME, ",noatime" },
406 { MNT_NODIRATIME, ",nodiratime" },
407 { MNT_RELATIME, ",relatime" },
408 { 0, NULL }
410 struct proc_fs_info *fs_infop;
411 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
413 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
414 seq_putc(m, ' ');
415 seq_path(m, &mnt_path, " \t\n\\");
416 seq_putc(m, ' ');
417 mangle(m, mnt->mnt_sb->s_type->name);
418 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
419 seq_putc(m, '.');
420 mangle(m, mnt->mnt_sb->s_subtype);
422 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
423 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
424 if (mnt->mnt_sb->s_flags & fs_infop->flag)
425 seq_puts(m, fs_infop->str);
427 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
428 if (mnt->mnt_flags & fs_infop->flag)
429 seq_puts(m, fs_infop->str);
431 if (mnt->mnt_sb->s_op->show_options)
432 err = mnt->mnt_sb->s_op->show_options(m, mnt);
433 seq_puts(m, " 0 0\n");
434 return err;
437 struct seq_operations mounts_op = {
438 .start = m_start,
439 .next = m_next,
440 .stop = m_stop,
441 .show = show_vfsmnt
444 static int show_vfsstat(struct seq_file *m, void *v)
446 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
447 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
448 int err = 0;
450 /* device */
451 if (mnt->mnt_devname) {
452 seq_puts(m, "device ");
453 mangle(m, mnt->mnt_devname);
454 } else
455 seq_puts(m, "no device");
457 /* mount point */
458 seq_puts(m, " mounted on ");
459 seq_path(m, &mnt_path, " \t\n\\");
460 seq_putc(m, ' ');
462 /* file system type */
463 seq_puts(m, "with fstype ");
464 mangle(m, mnt->mnt_sb->s_type->name);
466 /* optional statistics */
467 if (mnt->mnt_sb->s_op->show_stats) {
468 seq_putc(m, ' ');
469 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
472 seq_putc(m, '\n');
473 return err;
476 struct seq_operations mountstats_op = {
477 .start = m_start,
478 .next = m_next,
479 .stop = m_stop,
480 .show = show_vfsstat,
484 * may_umount_tree - check if a mount tree is busy
485 * @mnt: root of mount tree
487 * This is called to check if a tree of mounts has any
488 * open files, pwds, chroots or sub mounts that are
489 * busy.
491 int may_umount_tree(struct vfsmount *mnt)
493 int actual_refs = 0;
494 int minimum_refs = 0;
495 struct vfsmount *p;
497 spin_lock(&vfsmount_lock);
498 for (p = mnt; p; p = next_mnt(p, mnt)) {
499 actual_refs += atomic_read(&p->mnt_count);
500 minimum_refs += 2;
502 spin_unlock(&vfsmount_lock);
504 if (actual_refs > minimum_refs)
505 return 0;
507 return 1;
510 EXPORT_SYMBOL(may_umount_tree);
513 * may_umount - check if a mount point is busy
514 * @mnt: root of mount
516 * This is called to check if a mount point has any
517 * open files, pwds, chroots or sub mounts. If the
518 * mount has sub mounts this will return busy
519 * regardless of whether the sub mounts are busy.
521 * Doesn't take quota and stuff into account. IOW, in some cases it will
522 * give false negatives. The main reason why it's here is that we need
523 * a non-destructive way to look for easily umountable filesystems.
525 int may_umount(struct vfsmount *mnt)
527 int ret = 1;
528 spin_lock(&vfsmount_lock);
529 if (propagate_mount_busy(mnt, 2))
530 ret = 0;
531 spin_unlock(&vfsmount_lock);
532 return ret;
535 EXPORT_SYMBOL(may_umount);
537 void release_mounts(struct list_head *head)
539 struct vfsmount *mnt;
540 while (!list_empty(head)) {
541 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
542 list_del_init(&mnt->mnt_hash);
543 if (mnt->mnt_parent != mnt) {
544 struct dentry *dentry;
545 struct vfsmount *m;
546 spin_lock(&vfsmount_lock);
547 dentry = mnt->mnt_mountpoint;
548 m = mnt->mnt_parent;
549 mnt->mnt_mountpoint = mnt->mnt_root;
550 mnt->mnt_parent = mnt;
551 m->mnt_ghosts--;
552 spin_unlock(&vfsmount_lock);
553 dput(dentry);
554 mntput(m);
556 mntput(mnt);
560 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
562 struct vfsmount *p;
564 for (p = mnt; p; p = next_mnt(p, mnt))
565 list_move(&p->mnt_hash, kill);
567 if (propagate)
568 propagate_umount(kill);
570 list_for_each_entry(p, kill, mnt_hash) {
571 list_del_init(&p->mnt_expire);
572 list_del_init(&p->mnt_list);
573 __touch_mnt_namespace(p->mnt_ns);
574 p->mnt_ns = NULL;
575 list_del_init(&p->mnt_child);
576 if (p->mnt_parent != p) {
577 p->mnt_parent->mnt_ghosts++;
578 p->mnt_mountpoint->d_mounted--;
580 change_mnt_propagation(p, MS_PRIVATE);
584 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
586 static int do_umount(struct vfsmount *mnt, int flags)
588 struct super_block *sb = mnt->mnt_sb;
589 int retval;
590 LIST_HEAD(umount_list);
592 retval = security_sb_umount(mnt, flags);
593 if (retval)
594 return retval;
597 * Allow userspace to request a mountpoint be expired rather than
598 * unmounting unconditionally. Unmount only happens if:
599 * (1) the mark is already set (the mark is cleared by mntput())
600 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
602 if (flags & MNT_EXPIRE) {
603 if (mnt == current->fs->root.mnt ||
604 flags & (MNT_FORCE | MNT_DETACH))
605 return -EINVAL;
607 if (atomic_read(&mnt->mnt_count) != 2)
608 return -EBUSY;
610 if (!xchg(&mnt->mnt_expiry_mark, 1))
611 return -EAGAIN;
615 * If we may have to abort operations to get out of this
616 * mount, and they will themselves hold resources we must
617 * allow the fs to do things. In the Unix tradition of
618 * 'Gee thats tricky lets do it in userspace' the umount_begin
619 * might fail to complete on the first run through as other tasks
620 * must return, and the like. Thats for the mount program to worry
621 * about for the moment.
624 lock_kernel();
625 if (sb->s_op->umount_begin)
626 sb->s_op->umount_begin(mnt, flags);
627 unlock_kernel();
630 * No sense to grab the lock for this test, but test itself looks
631 * somewhat bogus. Suggestions for better replacement?
632 * Ho-hum... In principle, we might treat that as umount + switch
633 * to rootfs. GC would eventually take care of the old vfsmount.
634 * Actually it makes sense, especially if rootfs would contain a
635 * /reboot - static binary that would close all descriptors and
636 * call reboot(9). Then init(8) could umount root and exec /reboot.
638 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
640 * Special case for "unmounting" root ...
641 * we just try to remount it readonly.
643 down_write(&sb->s_umount);
644 if (!(sb->s_flags & MS_RDONLY)) {
645 lock_kernel();
646 DQUOT_OFF(sb);
647 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
648 unlock_kernel();
650 up_write(&sb->s_umount);
651 return retval;
654 down_write(&namespace_sem);
655 spin_lock(&vfsmount_lock);
656 event++;
658 if (!(flags & MNT_DETACH))
659 shrink_submounts(mnt, &umount_list);
661 retval = -EBUSY;
662 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
663 if (!list_empty(&mnt->mnt_list))
664 umount_tree(mnt, 1, &umount_list);
665 retval = 0;
667 spin_unlock(&vfsmount_lock);
668 if (retval)
669 security_sb_umount_busy(mnt);
670 up_write(&namespace_sem);
671 release_mounts(&umount_list);
672 return retval;
676 * Now umount can handle mount points as well as block devices.
677 * This is important for filesystems which use unnamed block devices.
679 * We now support a flag for forced unmount like the other 'big iron'
680 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
683 asmlinkage long sys_umount(char __user * name, int flags)
685 struct nameidata nd;
686 int retval;
688 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
689 if (retval)
690 goto out;
691 retval = -EINVAL;
692 if (nd.path.dentry != nd.path.mnt->mnt_root)
693 goto dput_and_out;
694 if (!check_mnt(nd.path.mnt))
695 goto dput_and_out;
697 retval = -EPERM;
698 if (!capable(CAP_SYS_ADMIN))
699 goto dput_and_out;
701 retval = do_umount(nd.path.mnt, flags);
702 dput_and_out:
703 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
704 dput(nd.path.dentry);
705 mntput_no_expire(nd.path.mnt);
706 out:
707 return retval;
710 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
713 * The 2.0 compatible umount. No flags.
715 asmlinkage long sys_oldumount(char __user * name)
717 return sys_umount(name, 0);
720 #endif
722 static int mount_is_safe(struct nameidata *nd)
724 if (capable(CAP_SYS_ADMIN))
725 return 0;
726 return -EPERM;
727 #ifdef notyet
728 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
729 return -EPERM;
730 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
731 if (current->uid != nd->path.dentry->d_inode->i_uid)
732 return -EPERM;
734 if (vfs_permission(nd, MAY_WRITE))
735 return -EPERM;
736 return 0;
737 #endif
740 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
742 while (1) {
743 if (d == dentry)
744 return 1;
745 if (d == NULL || d == d->d_parent)
746 return 0;
747 d = d->d_parent;
751 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
752 int flag)
754 struct vfsmount *res, *p, *q, *r, *s;
755 struct path path;
757 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
758 return NULL;
760 res = q = clone_mnt(mnt, dentry, flag);
761 if (!q)
762 goto Enomem;
763 q->mnt_mountpoint = mnt->mnt_mountpoint;
765 p = mnt;
766 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
767 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
768 continue;
770 for (s = r; s; s = next_mnt(s, r)) {
771 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
772 s = skip_mnt_tree(s);
773 continue;
775 while (p != s->mnt_parent) {
776 p = p->mnt_parent;
777 q = q->mnt_parent;
779 p = s;
780 path.mnt = q;
781 path.dentry = p->mnt_mountpoint;
782 q = clone_mnt(p, p->mnt_root, flag);
783 if (!q)
784 goto Enomem;
785 spin_lock(&vfsmount_lock);
786 list_add_tail(&q->mnt_list, &res->mnt_list);
787 attach_mnt(q, &path);
788 spin_unlock(&vfsmount_lock);
791 return res;
792 Enomem:
793 if (res) {
794 LIST_HEAD(umount_list);
795 spin_lock(&vfsmount_lock);
796 umount_tree(res, 0, &umount_list);
797 spin_unlock(&vfsmount_lock);
798 release_mounts(&umount_list);
800 return NULL;
803 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
805 struct vfsmount *tree;
806 down_read(&namespace_sem);
807 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
808 up_read(&namespace_sem);
809 return tree;
812 void drop_collected_mounts(struct vfsmount *mnt)
814 LIST_HEAD(umount_list);
815 down_read(&namespace_sem);
816 spin_lock(&vfsmount_lock);
817 umount_tree(mnt, 0, &umount_list);
818 spin_unlock(&vfsmount_lock);
819 up_read(&namespace_sem);
820 release_mounts(&umount_list);
824 * @source_mnt : mount tree to be attached
825 * @nd : place the mount tree @source_mnt is attached
826 * @parent_nd : if non-null, detach the source_mnt from its parent and
827 * store the parent mount and mountpoint dentry.
828 * (done when source_mnt is moved)
830 * NOTE: in the table below explains the semantics when a source mount
831 * of a given type is attached to a destination mount of a given type.
832 * ---------------------------------------------------------------------------
833 * | BIND MOUNT OPERATION |
834 * |**************************************************************************
835 * | source-->| shared | private | slave | unbindable |
836 * | dest | | | | |
837 * | | | | | | |
838 * | v | | | | |
839 * |**************************************************************************
840 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
841 * | | | | | |
842 * |non-shared| shared (+) | private | slave (*) | invalid |
843 * ***************************************************************************
844 * A bind operation clones the source mount and mounts the clone on the
845 * destination mount.
847 * (++) the cloned mount is propagated to all the mounts in the propagation
848 * tree of the destination mount and the cloned mount is added to
849 * the peer group of the source mount.
850 * (+) the cloned mount is created under the destination mount and is marked
851 * as shared. The cloned mount is added to the peer group of the source
852 * mount.
853 * (+++) the mount is propagated to all the mounts in the propagation tree
854 * of the destination mount and the cloned mount is made slave
855 * of the same master as that of the source mount. The cloned mount
856 * is marked as 'shared and slave'.
857 * (*) the cloned mount is made a slave of the same master as that of the
858 * source mount.
860 * ---------------------------------------------------------------------------
861 * | MOVE MOUNT OPERATION |
862 * |**************************************************************************
863 * | source-->| shared | private | slave | unbindable |
864 * | dest | | | | |
865 * | | | | | | |
866 * | v | | | | |
867 * |**************************************************************************
868 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
869 * | | | | | |
870 * |non-shared| shared (+*) | private | slave (*) | unbindable |
871 * ***************************************************************************
873 * (+) the mount is moved to the destination. And is then propagated to
874 * all the mounts in the propagation tree of the destination mount.
875 * (+*) the mount is moved to the destination.
876 * (+++) the mount is moved to the destination and is then propagated to
877 * all the mounts belonging to the destination mount's propagation tree.
878 * the mount is marked as 'shared and slave'.
879 * (*) the mount continues to be a slave at the new location.
881 * if the source mount is a tree, the operations explained above is
882 * applied to each mount in the tree.
883 * Must be called without spinlocks held, since this function can sleep
884 * in allocations.
886 static int attach_recursive_mnt(struct vfsmount *source_mnt,
887 struct path *path, struct path *parent_path)
889 LIST_HEAD(tree_list);
890 struct vfsmount *dest_mnt = path->mnt;
891 struct dentry *dest_dentry = path->dentry;
892 struct vfsmount *child, *p;
894 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
895 return -EINVAL;
897 if (IS_MNT_SHARED(dest_mnt)) {
898 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
899 set_mnt_shared(p);
902 spin_lock(&vfsmount_lock);
903 if (parent_path) {
904 detach_mnt(source_mnt, parent_path);
905 attach_mnt(source_mnt, path);
906 touch_mnt_namespace(current->nsproxy->mnt_ns);
907 } else {
908 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
909 commit_tree(source_mnt);
912 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
913 list_del_init(&child->mnt_hash);
914 commit_tree(child);
916 spin_unlock(&vfsmount_lock);
917 return 0;
920 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
922 int err;
923 if (mnt->mnt_sb->s_flags & MS_NOUSER)
924 return -EINVAL;
926 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
927 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
928 return -ENOTDIR;
930 err = -ENOENT;
931 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
932 if (IS_DEADDIR(nd->path.dentry->d_inode))
933 goto out_unlock;
935 err = security_sb_check_sb(mnt, nd);
936 if (err)
937 goto out_unlock;
939 err = -ENOENT;
940 if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
941 err = attach_recursive_mnt(mnt, &nd->path, NULL);
942 out_unlock:
943 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
944 if (!err)
945 security_sb_post_addmount(mnt, nd);
946 return err;
950 * recursively change the type of the mountpoint.
951 * noinline this do_mount helper to save do_mount stack space.
953 static noinline int do_change_type(struct nameidata *nd, int flag)
955 struct vfsmount *m, *mnt = nd->path.mnt;
956 int recurse = flag & MS_REC;
957 int type = flag & ~MS_REC;
959 if (!capable(CAP_SYS_ADMIN))
960 return -EPERM;
962 if (nd->path.dentry != nd->path.mnt->mnt_root)
963 return -EINVAL;
965 down_write(&namespace_sem);
966 spin_lock(&vfsmount_lock);
967 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
968 change_mnt_propagation(m, type);
969 spin_unlock(&vfsmount_lock);
970 up_write(&namespace_sem);
971 return 0;
975 * do loopback mount.
976 * noinline this do_mount helper to save do_mount stack space.
978 static noinline int do_loopback(struct nameidata *nd, char *old_name,
979 int recurse)
981 struct nameidata old_nd;
982 struct vfsmount *mnt = NULL;
983 int err = mount_is_safe(nd);
984 if (err)
985 return err;
986 if (!old_name || !*old_name)
987 return -EINVAL;
988 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
989 if (err)
990 return err;
992 down_write(&namespace_sem);
993 err = -EINVAL;
994 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
995 goto out;
997 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
998 goto out;
1000 err = -ENOMEM;
1001 if (recurse)
1002 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1003 else
1004 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1006 if (!mnt)
1007 goto out;
1009 err = graft_tree(mnt, nd);
1010 if (err) {
1011 LIST_HEAD(umount_list);
1012 spin_lock(&vfsmount_lock);
1013 umount_tree(mnt, 0, &umount_list);
1014 spin_unlock(&vfsmount_lock);
1015 release_mounts(&umount_list);
1018 out:
1019 up_write(&namespace_sem);
1020 path_put(&old_nd.path);
1021 return err;
1025 * change filesystem flags. dir should be a physical root of filesystem.
1026 * If you've mounted a non-root directory somewhere and want to do remount
1027 * on it - tough luck.
1028 * noinline this do_mount helper to save do_mount stack space.
1030 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1031 void *data)
1033 int err;
1034 struct super_block *sb = nd->path.mnt->mnt_sb;
1036 if (!capable(CAP_SYS_ADMIN))
1037 return -EPERM;
1039 if (!check_mnt(nd->path.mnt))
1040 return -EINVAL;
1042 if (nd->path.dentry != nd->path.mnt->mnt_root)
1043 return -EINVAL;
1045 down_write(&sb->s_umount);
1046 err = do_remount_sb(sb, flags, data, 0);
1047 if (!err)
1048 nd->path.mnt->mnt_flags = mnt_flags;
1049 up_write(&sb->s_umount);
1050 if (!err)
1051 security_sb_post_remount(nd->path.mnt, flags, data);
1052 return err;
1055 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1057 struct vfsmount *p;
1058 for (p = mnt; p; p = next_mnt(p, mnt)) {
1059 if (IS_MNT_UNBINDABLE(p))
1060 return 1;
1062 return 0;
1066 * noinline this do_mount helper to save do_mount stack space.
1068 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1070 struct nameidata old_nd;
1071 struct path parent_path;
1072 struct vfsmount *p;
1073 int err = 0;
1074 if (!capable(CAP_SYS_ADMIN))
1075 return -EPERM;
1076 if (!old_name || !*old_name)
1077 return -EINVAL;
1078 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1079 if (err)
1080 return err;
1082 down_write(&namespace_sem);
1083 while (d_mountpoint(nd->path.dentry) &&
1084 follow_down(&nd->path.mnt, &nd->path.dentry))
1086 err = -EINVAL;
1087 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1088 goto out;
1090 err = -ENOENT;
1091 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1092 if (IS_DEADDIR(nd->path.dentry->d_inode))
1093 goto out1;
1095 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1096 goto out1;
1098 err = -EINVAL;
1099 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1100 goto out1;
1102 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1103 goto out1;
1105 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1106 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1107 goto out1;
1109 * Don't move a mount residing in a shared parent.
1111 if (old_nd.path.mnt->mnt_parent &&
1112 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1113 goto out1;
1115 * Don't move a mount tree containing unbindable mounts to a destination
1116 * mount which is shared.
1118 if (IS_MNT_SHARED(nd->path.mnt) &&
1119 tree_contains_unbindable(old_nd.path.mnt))
1120 goto out1;
1121 err = -ELOOP;
1122 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1123 if (p == old_nd.path.mnt)
1124 goto out1;
1126 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1127 if (err)
1128 goto out1;
1130 spin_lock(&vfsmount_lock);
1131 /* if the mount is moved, it should no longer be expire
1132 * automatically */
1133 list_del_init(&old_nd.path.mnt->mnt_expire);
1134 spin_unlock(&vfsmount_lock);
1135 out1:
1136 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1137 out:
1138 up_write(&namespace_sem);
1139 if (!err)
1140 path_put(&parent_path);
1141 path_put(&old_nd.path);
1142 return err;
1146 * create a new mount for userspace and request it to be added into the
1147 * namespace's tree
1148 * noinline this do_mount helper to save do_mount stack space.
1150 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1151 int mnt_flags, char *name, void *data)
1153 struct vfsmount *mnt;
1155 if (!type || !memchr(type, 0, PAGE_SIZE))
1156 return -EINVAL;
1158 /* we need capabilities... */
1159 if (!capable(CAP_SYS_ADMIN))
1160 return -EPERM;
1162 mnt = do_kern_mount(type, flags, name, data);
1163 if (IS_ERR(mnt))
1164 return PTR_ERR(mnt);
1166 return do_add_mount(mnt, nd, mnt_flags, NULL);
1170 * add a mount into a namespace's mount tree
1171 * - provide the option of adding the new mount to an expiration list
1173 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1174 int mnt_flags, struct list_head *fslist)
1176 int err;
1178 down_write(&namespace_sem);
1179 /* Something was mounted here while we slept */
1180 while (d_mountpoint(nd->path.dentry) &&
1181 follow_down(&nd->path.mnt, &nd->path.dentry))
1183 err = -EINVAL;
1184 if (!check_mnt(nd->path.mnt))
1185 goto unlock;
1187 /* Refuse the same filesystem on the same mount point */
1188 err = -EBUSY;
1189 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1190 nd->path.mnt->mnt_root == nd->path.dentry)
1191 goto unlock;
1193 err = -EINVAL;
1194 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1195 goto unlock;
1197 newmnt->mnt_flags = mnt_flags;
1198 if ((err = graft_tree(newmnt, nd)))
1199 goto unlock;
1201 if (fslist) {
1202 /* add to the specified expiration list */
1203 spin_lock(&vfsmount_lock);
1204 list_add_tail(&newmnt->mnt_expire, fslist);
1205 spin_unlock(&vfsmount_lock);
1207 up_write(&namespace_sem);
1208 return 0;
1210 unlock:
1211 up_write(&namespace_sem);
1212 mntput(newmnt);
1213 return err;
1216 EXPORT_SYMBOL_GPL(do_add_mount);
1219 * process a list of expirable mountpoints with the intent of discarding any
1220 * mountpoints that aren't in use and haven't been touched since last we came
1221 * here
1223 void mark_mounts_for_expiry(struct list_head *mounts)
1225 struct vfsmount *mnt, *next;
1226 LIST_HEAD(graveyard);
1227 LIST_HEAD(umounts);
1229 if (list_empty(mounts))
1230 return;
1232 down_write(&namespace_sem);
1233 spin_lock(&vfsmount_lock);
1235 /* extract from the expiration list every vfsmount that matches the
1236 * following criteria:
1237 * - only referenced by its parent vfsmount
1238 * - still marked for expiry (marked on the last call here; marks are
1239 * cleared by mntput())
1241 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1242 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1243 propagate_mount_busy(mnt, 1))
1244 continue;
1245 list_move(&mnt->mnt_expire, &graveyard);
1247 while (!list_empty(&graveyard)) {
1248 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1249 touch_mnt_namespace(mnt->mnt_ns);
1250 umount_tree(mnt, 1, &umounts);
1252 spin_unlock(&vfsmount_lock);
1253 up_write(&namespace_sem);
1255 release_mounts(&umounts);
1258 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1261 * Ripoff of 'select_parent()'
1263 * search the list of submounts for a given mountpoint, and move any
1264 * shrinkable submounts to the 'graveyard' list.
1266 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1268 struct vfsmount *this_parent = parent;
1269 struct list_head *next;
1270 int found = 0;
1272 repeat:
1273 next = this_parent->mnt_mounts.next;
1274 resume:
1275 while (next != &this_parent->mnt_mounts) {
1276 struct list_head *tmp = next;
1277 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1279 next = tmp->next;
1280 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1281 continue;
1283 * Descend a level if the d_mounts list is non-empty.
1285 if (!list_empty(&mnt->mnt_mounts)) {
1286 this_parent = mnt;
1287 goto repeat;
1290 if (!propagate_mount_busy(mnt, 1)) {
1291 list_move_tail(&mnt->mnt_expire, graveyard);
1292 found++;
1296 * All done at this level ... ascend and resume the search
1298 if (this_parent != parent) {
1299 next = this_parent->mnt_child.next;
1300 this_parent = this_parent->mnt_parent;
1301 goto resume;
1303 return found;
1307 * process a list of expirable mountpoints with the intent of discarding any
1308 * submounts of a specific parent mountpoint
1310 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1312 LIST_HEAD(graveyard);
1313 struct vfsmount *m;
1315 /* extract submounts of 'mountpoint' from the expiration list */
1316 while (select_submounts(mnt, &graveyard)) {
1317 while (!list_empty(&graveyard)) {
1318 m = list_first_entry(&graveyard, struct vfsmount,
1319 mnt_expire);
1320 touch_mnt_namespace(mnt->mnt_ns);
1321 umount_tree(mnt, 1, umounts);
1327 * Some copy_from_user() implementations do not return the exact number of
1328 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1329 * Note that this function differs from copy_from_user() in that it will oops
1330 * on bad values of `to', rather than returning a short copy.
1332 static long exact_copy_from_user(void *to, const void __user * from,
1333 unsigned long n)
1335 char *t = to;
1336 const char __user *f = from;
1337 char c;
1339 if (!access_ok(VERIFY_READ, from, n))
1340 return n;
1342 while (n) {
1343 if (__get_user(c, f)) {
1344 memset(t, 0, n);
1345 break;
1347 *t++ = c;
1348 f++;
1349 n--;
1351 return n;
1354 int copy_mount_options(const void __user * data, unsigned long *where)
1356 int i;
1357 unsigned long page;
1358 unsigned long size;
1360 *where = 0;
1361 if (!data)
1362 return 0;
1364 if (!(page = __get_free_page(GFP_KERNEL)))
1365 return -ENOMEM;
1367 /* We only care that *some* data at the address the user
1368 * gave us is valid. Just in case, we'll zero
1369 * the remainder of the page.
1371 /* copy_from_user cannot cross TASK_SIZE ! */
1372 size = TASK_SIZE - (unsigned long)data;
1373 if (size > PAGE_SIZE)
1374 size = PAGE_SIZE;
1376 i = size - exact_copy_from_user((void *)page, data, size);
1377 if (!i) {
1378 free_page(page);
1379 return -EFAULT;
1381 if (i != PAGE_SIZE)
1382 memset((char *)page + i, 0, PAGE_SIZE - i);
1383 *where = page;
1384 return 0;
1388 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1389 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1391 * data is a (void *) that can point to any structure up to
1392 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1393 * information (or be NULL).
1395 * Pre-0.97 versions of mount() didn't have a flags word.
1396 * When the flags word was introduced its top half was required
1397 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1398 * Therefore, if this magic number is present, it carries no information
1399 * and must be discarded.
1401 long do_mount(char *dev_name, char *dir_name, char *type_page,
1402 unsigned long flags, void *data_page)
1404 struct nameidata nd;
1405 int retval = 0;
1406 int mnt_flags = 0;
1408 /* Discard magic */
1409 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1410 flags &= ~MS_MGC_MSK;
1412 /* Basic sanity checks */
1414 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1415 return -EINVAL;
1416 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1417 return -EINVAL;
1419 if (data_page)
1420 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1422 /* Separate the per-mountpoint flags */
1423 if (flags & MS_NOSUID)
1424 mnt_flags |= MNT_NOSUID;
1425 if (flags & MS_NODEV)
1426 mnt_flags |= MNT_NODEV;
1427 if (flags & MS_NOEXEC)
1428 mnt_flags |= MNT_NOEXEC;
1429 if (flags & MS_NOATIME)
1430 mnt_flags |= MNT_NOATIME;
1431 if (flags & MS_NODIRATIME)
1432 mnt_flags |= MNT_NODIRATIME;
1433 if (flags & MS_RELATIME)
1434 mnt_flags |= MNT_RELATIME;
1436 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1437 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1439 /* ... and get the mountpoint */
1440 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1441 if (retval)
1442 return retval;
1444 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1445 if (retval)
1446 goto dput_out;
1448 if (flags & MS_REMOUNT)
1449 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1450 data_page);
1451 else if (flags & MS_BIND)
1452 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1453 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1454 retval = do_change_type(&nd, flags);
1455 else if (flags & MS_MOVE)
1456 retval = do_move_mount(&nd, dev_name);
1457 else
1458 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1459 dev_name, data_page);
1460 dput_out:
1461 path_put(&nd.path);
1462 return retval;
1466 * Allocate a new namespace structure and populate it with contents
1467 * copied from the namespace of the passed in task structure.
1469 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1470 struct fs_struct *fs)
1472 struct mnt_namespace *new_ns;
1473 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1474 struct vfsmount *p, *q;
1476 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1477 if (!new_ns)
1478 return ERR_PTR(-ENOMEM);
1480 atomic_set(&new_ns->count, 1);
1481 INIT_LIST_HEAD(&new_ns->list);
1482 init_waitqueue_head(&new_ns->poll);
1483 new_ns->event = 0;
1485 down_write(&namespace_sem);
1486 /* First pass: copy the tree topology */
1487 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1488 CL_COPY_ALL | CL_EXPIRE);
1489 if (!new_ns->root) {
1490 up_write(&namespace_sem);
1491 kfree(new_ns);
1492 return ERR_PTR(-ENOMEM);;
1494 spin_lock(&vfsmount_lock);
1495 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1496 spin_unlock(&vfsmount_lock);
1499 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1500 * as belonging to new namespace. We have already acquired a private
1501 * fs_struct, so tsk->fs->lock is not needed.
1503 p = mnt_ns->root;
1504 q = new_ns->root;
1505 while (p) {
1506 q->mnt_ns = new_ns;
1507 if (fs) {
1508 if (p == fs->root.mnt) {
1509 rootmnt = p;
1510 fs->root.mnt = mntget(q);
1512 if (p == fs->pwd.mnt) {
1513 pwdmnt = p;
1514 fs->pwd.mnt = mntget(q);
1516 if (p == fs->altroot.mnt) {
1517 altrootmnt = p;
1518 fs->altroot.mnt = mntget(q);
1521 p = next_mnt(p, mnt_ns->root);
1522 q = next_mnt(q, new_ns->root);
1524 up_write(&namespace_sem);
1526 if (rootmnt)
1527 mntput(rootmnt);
1528 if (pwdmnt)
1529 mntput(pwdmnt);
1530 if (altrootmnt)
1531 mntput(altrootmnt);
1533 return new_ns;
1536 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1537 struct fs_struct *new_fs)
1539 struct mnt_namespace *new_ns;
1541 BUG_ON(!ns);
1542 get_mnt_ns(ns);
1544 if (!(flags & CLONE_NEWNS))
1545 return ns;
1547 new_ns = dup_mnt_ns(ns, new_fs);
1549 put_mnt_ns(ns);
1550 return new_ns;
1553 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1554 char __user * type, unsigned long flags,
1555 void __user * data)
1557 int retval;
1558 unsigned long data_page;
1559 unsigned long type_page;
1560 unsigned long dev_page;
1561 char *dir_page;
1563 retval = copy_mount_options(type, &type_page);
1564 if (retval < 0)
1565 return retval;
1567 dir_page = getname(dir_name);
1568 retval = PTR_ERR(dir_page);
1569 if (IS_ERR(dir_page))
1570 goto out1;
1572 retval = copy_mount_options(dev_name, &dev_page);
1573 if (retval < 0)
1574 goto out2;
1576 retval = copy_mount_options(data, &data_page);
1577 if (retval < 0)
1578 goto out3;
1580 lock_kernel();
1581 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1582 flags, (void *)data_page);
1583 unlock_kernel();
1584 free_page(data_page);
1586 out3:
1587 free_page(dev_page);
1588 out2:
1589 putname(dir_page);
1590 out1:
1591 free_page(type_page);
1592 return retval;
1596 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1597 * It can block. Requires the big lock held.
1599 void set_fs_root(struct fs_struct *fs, struct path *path)
1601 struct path old_root;
1603 write_lock(&fs->lock);
1604 old_root = fs->root;
1605 fs->root = *path;
1606 path_get(path);
1607 write_unlock(&fs->lock);
1608 if (old_root.dentry)
1609 path_put(&old_root);
1613 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1614 * It can block. Requires the big lock held.
1616 void set_fs_pwd(struct fs_struct *fs, struct path *path)
1618 struct path old_pwd;
1620 write_lock(&fs->lock);
1621 old_pwd = fs->pwd;
1622 fs->pwd = *path;
1623 path_get(path);
1624 write_unlock(&fs->lock);
1626 if (old_pwd.dentry)
1627 path_put(&old_pwd);
1630 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1632 struct task_struct *g, *p;
1633 struct fs_struct *fs;
1635 read_lock(&tasklist_lock);
1636 do_each_thread(g, p) {
1637 task_lock(p);
1638 fs = p->fs;
1639 if (fs) {
1640 atomic_inc(&fs->count);
1641 task_unlock(p);
1642 if (fs->root.dentry == old_root->dentry
1643 && fs->root.mnt == old_root->mnt)
1644 set_fs_root(fs, new_root);
1645 if (fs->pwd.dentry == old_root->dentry
1646 && fs->pwd.mnt == old_root->mnt)
1647 set_fs_pwd(fs, new_root);
1648 put_fs_struct(fs);
1649 } else
1650 task_unlock(p);
1651 } while_each_thread(g, p);
1652 read_unlock(&tasklist_lock);
1656 * pivot_root Semantics:
1657 * Moves the root file system of the current process to the directory put_old,
1658 * makes new_root as the new root file system of the current process, and sets
1659 * root/cwd of all processes which had them on the current root to new_root.
1661 * Restrictions:
1662 * The new_root and put_old must be directories, and must not be on the
1663 * same file system as the current process root. The put_old must be
1664 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1665 * pointed to by put_old must yield the same directory as new_root. No other
1666 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1668 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1669 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1670 * in this situation.
1672 * Notes:
1673 * - we don't move root/cwd if they are not at the root (reason: if something
1674 * cared enough to change them, it's probably wrong to force them elsewhere)
1675 * - it's okay to pick a root that isn't the root of a file system, e.g.
1676 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1677 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1678 * first.
1680 asmlinkage long sys_pivot_root(const char __user * new_root,
1681 const char __user * put_old)
1683 struct vfsmount *tmp;
1684 struct nameidata new_nd, old_nd, user_nd;
1685 struct path parent_path, root_parent;
1686 int error;
1688 if (!capable(CAP_SYS_ADMIN))
1689 return -EPERM;
1691 lock_kernel();
1693 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1694 &new_nd);
1695 if (error)
1696 goto out0;
1697 error = -EINVAL;
1698 if (!check_mnt(new_nd.path.mnt))
1699 goto out1;
1701 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1702 if (error)
1703 goto out1;
1705 error = security_sb_pivotroot(&old_nd, &new_nd);
1706 if (error) {
1707 path_put(&old_nd.path);
1708 goto out1;
1711 read_lock(&current->fs->lock);
1712 user_nd.path = current->fs->root;
1713 path_get(&current->fs->root);
1714 read_unlock(&current->fs->lock);
1715 down_write(&namespace_sem);
1716 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1717 error = -EINVAL;
1718 if (IS_MNT_SHARED(old_nd.path.mnt) ||
1719 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1720 IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
1721 goto out2;
1722 if (!check_mnt(user_nd.path.mnt))
1723 goto out2;
1724 error = -ENOENT;
1725 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1726 goto out2;
1727 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1728 goto out2;
1729 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1730 goto out2;
1731 error = -EBUSY;
1732 if (new_nd.path.mnt == user_nd.path.mnt ||
1733 old_nd.path.mnt == user_nd.path.mnt)
1734 goto out2; /* loop, on the same file system */
1735 error = -EINVAL;
1736 if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
1737 goto out2; /* not a mountpoint */
1738 if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
1739 goto out2; /* not attached */
1740 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1741 goto out2; /* not a mountpoint */
1742 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
1743 goto out2; /* not attached */
1744 /* make sure we can reach put_old from new_root */
1745 tmp = old_nd.path.mnt;
1746 spin_lock(&vfsmount_lock);
1747 if (tmp != new_nd.path.mnt) {
1748 for (;;) {
1749 if (tmp->mnt_parent == tmp)
1750 goto out3; /* already mounted on put_old */
1751 if (tmp->mnt_parent == new_nd.path.mnt)
1752 break;
1753 tmp = tmp->mnt_parent;
1755 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1756 goto out3;
1757 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1758 goto out3;
1759 detach_mnt(new_nd.path.mnt, &parent_path);
1760 detach_mnt(user_nd.path.mnt, &root_parent);
1761 /* mount old root on put_old */
1762 attach_mnt(user_nd.path.mnt, &old_nd.path);
1763 /* mount new_root on / */
1764 attach_mnt(new_nd.path.mnt, &root_parent);
1765 touch_mnt_namespace(current->nsproxy->mnt_ns);
1766 spin_unlock(&vfsmount_lock);
1767 chroot_fs_refs(&user_nd.path, &new_nd.path);
1768 security_sb_post_pivotroot(&user_nd, &new_nd);
1769 error = 0;
1770 path_put(&root_parent);
1771 path_put(&parent_path);
1772 out2:
1773 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
1774 up_write(&namespace_sem);
1775 path_put(&user_nd.path);
1776 path_put(&old_nd.path);
1777 out1:
1778 path_put(&new_nd.path);
1779 out0:
1780 unlock_kernel();
1781 return error;
1782 out3:
1783 spin_unlock(&vfsmount_lock);
1784 goto out2;
1787 static void __init init_mount_tree(void)
1789 struct vfsmount *mnt;
1790 struct mnt_namespace *ns;
1791 struct path root;
1793 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1794 if (IS_ERR(mnt))
1795 panic("Can't create rootfs");
1796 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1797 if (!ns)
1798 panic("Can't allocate initial namespace");
1799 atomic_set(&ns->count, 1);
1800 INIT_LIST_HEAD(&ns->list);
1801 init_waitqueue_head(&ns->poll);
1802 ns->event = 0;
1803 list_add(&mnt->mnt_list, &ns->list);
1804 ns->root = mnt;
1805 mnt->mnt_ns = ns;
1807 init_task.nsproxy->mnt_ns = ns;
1808 get_mnt_ns(ns);
1810 root.mnt = ns->root;
1811 root.dentry = ns->root->mnt_root;
1813 set_fs_pwd(current->fs, &root);
1814 set_fs_root(current->fs, &root);
1817 void __init mnt_init(void)
1819 unsigned u;
1820 int err;
1822 init_rwsem(&namespace_sem);
1824 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1825 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1827 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1829 if (!mount_hashtable)
1830 panic("Failed to allocate mount hash table\n");
1832 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
1834 for (u = 0; u < HASH_SIZE; u++)
1835 INIT_LIST_HEAD(&mount_hashtable[u]);
1837 err = sysfs_init();
1838 if (err)
1839 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1840 __FUNCTION__, err);
1841 fs_kobj = kobject_create_and_add("fs", NULL);
1842 if (!fs_kobj)
1843 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1844 init_rootfs();
1845 init_mount_tree();
1848 void __put_mnt_ns(struct mnt_namespace *ns)
1850 struct vfsmount *root = ns->root;
1851 LIST_HEAD(umount_list);
1852 ns->root = NULL;
1853 spin_unlock(&vfsmount_lock);
1854 down_write(&namespace_sem);
1855 spin_lock(&vfsmount_lock);
1856 umount_tree(root, 0, &umount_list);
1857 spin_unlock(&vfsmount_lock);
1858 up_write(&namespace_sem);
1859 release_mounts(&umount_list);
1860 kfree(ns);