regulator: Support voltage offsets to compensate for drops in system
[linux-2.6/kvm.git] / drivers / regulator / core.c
blob58452ac0f165fa0b54025252d34eb8c206e68719
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #define pr_fmt(fmt) "%s: " fmt, __func__
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
34 #include "dummy.h"
36 #define rdev_err(rdev, fmt, ...) \
37 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...) \
39 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...) \
41 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...) \
43 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
56 * struct regulator_map
58 * Used to provide symbolic supply names to devices.
60 struct regulator_map {
61 struct list_head list;
62 const char *dev_name; /* The dev_name() for the consumer */
63 const char *supply;
64 struct regulator_dev *regulator;
68 * struct regulator
70 * One for each consumer device.
72 struct regulator {
73 struct device *dev;
74 struct list_head list;
75 int uA_load;
76 int min_uV;
77 int max_uV;
78 char *supply_name;
79 struct device_attribute dev_attr;
80 struct regulator_dev *rdev;
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85 struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
94 static const char *rdev_get_name(struct regulator_dev *rdev)
96 if (rdev->constraints && rdev->constraints->name)
97 return rdev->constraints->name;
98 else if (rdev->desc->name)
99 return rdev->desc->name;
100 else
101 return "";
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
107 struct regulator *regulator = NULL;
108 struct regulator_dev *rdev;
110 mutex_lock(&regulator_list_mutex);
111 list_for_each_entry(rdev, &regulator_list, list) {
112 mutex_lock(&rdev->mutex);
113 list_for_each_entry(regulator, &rdev->consumer_list, list) {
114 if (regulator->dev == dev) {
115 mutex_unlock(&rdev->mutex);
116 mutex_unlock(&regulator_list_mutex);
117 return regulator;
120 mutex_unlock(&rdev->mutex);
122 mutex_unlock(&regulator_list_mutex);
123 return NULL;
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128 int *min_uV, int *max_uV)
130 BUG_ON(*min_uV > *max_uV);
132 if (!rdev->constraints) {
133 rdev_err(rdev, "no constraints\n");
134 return -ENODEV;
136 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137 rdev_err(rdev, "operation not allowed\n");
138 return -EPERM;
141 if (*max_uV > rdev->constraints->max_uV)
142 *max_uV = rdev->constraints->max_uV;
143 if (*min_uV < rdev->constraints->min_uV)
144 *min_uV = rdev->constraints->min_uV;
146 if (*min_uV > *max_uV)
147 return -EINVAL;
149 return 0;
152 /* Make sure we select a voltage that suits the needs of all
153 * regulator consumers
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156 int *min_uV, int *max_uV)
158 struct regulator *regulator;
160 list_for_each_entry(regulator, &rdev->consumer_list, list) {
161 if (*max_uV > regulator->max_uV)
162 *max_uV = regulator->max_uV;
163 if (*min_uV < regulator->min_uV)
164 *min_uV = regulator->min_uV;
167 if (*min_uV > *max_uV)
168 return -EINVAL;
170 return 0;
173 /* current constraint check */
174 static int regulator_check_current_limit(struct regulator_dev *rdev,
175 int *min_uA, int *max_uA)
177 BUG_ON(*min_uA > *max_uA);
179 if (!rdev->constraints) {
180 rdev_err(rdev, "no constraints\n");
181 return -ENODEV;
183 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184 rdev_err(rdev, "operation not allowed\n");
185 return -EPERM;
188 if (*max_uA > rdev->constraints->max_uA)
189 *max_uA = rdev->constraints->max_uA;
190 if (*min_uA < rdev->constraints->min_uA)
191 *min_uA = rdev->constraints->min_uA;
193 if (*min_uA > *max_uA)
194 return -EINVAL;
196 return 0;
199 /* operating mode constraint check */
200 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
202 switch (*mode) {
203 case REGULATOR_MODE_FAST:
204 case REGULATOR_MODE_NORMAL:
205 case REGULATOR_MODE_IDLE:
206 case REGULATOR_MODE_STANDBY:
207 break;
208 default:
209 return -EINVAL;
212 if (!rdev->constraints) {
213 rdev_err(rdev, "no constraints\n");
214 return -ENODEV;
216 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217 rdev_err(rdev, "operation not allowed\n");
218 return -EPERM;
221 /* The modes are bitmasks, the most power hungry modes having
222 * the lowest values. If the requested mode isn't supported
223 * try higher modes. */
224 while (*mode) {
225 if (rdev->constraints->valid_modes_mask & *mode)
226 return 0;
227 *mode /= 2;
230 return -EINVAL;
233 /* dynamic regulator mode switching constraint check */
234 static int regulator_check_drms(struct regulator_dev *rdev)
236 if (!rdev->constraints) {
237 rdev_err(rdev, "no constraints\n");
238 return -ENODEV;
240 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
241 rdev_err(rdev, "operation not allowed\n");
242 return -EPERM;
244 return 0;
247 static ssize_t device_requested_uA_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
250 struct regulator *regulator;
252 regulator = get_device_regulator(dev);
253 if (regulator == NULL)
254 return 0;
256 return sprintf(buf, "%d\n", regulator->uA_load);
259 static ssize_t regulator_uV_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
262 struct regulator_dev *rdev = dev_get_drvdata(dev);
263 ssize_t ret;
265 mutex_lock(&rdev->mutex);
266 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
267 mutex_unlock(&rdev->mutex);
269 return ret;
271 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
273 static ssize_t regulator_uA_show(struct device *dev,
274 struct device_attribute *attr, char *buf)
276 struct regulator_dev *rdev = dev_get_drvdata(dev);
278 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
280 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
282 static ssize_t regulator_name_show(struct device *dev,
283 struct device_attribute *attr, char *buf)
285 struct regulator_dev *rdev = dev_get_drvdata(dev);
287 return sprintf(buf, "%s\n", rdev_get_name(rdev));
290 static ssize_t regulator_print_opmode(char *buf, int mode)
292 switch (mode) {
293 case REGULATOR_MODE_FAST:
294 return sprintf(buf, "fast\n");
295 case REGULATOR_MODE_NORMAL:
296 return sprintf(buf, "normal\n");
297 case REGULATOR_MODE_IDLE:
298 return sprintf(buf, "idle\n");
299 case REGULATOR_MODE_STANDBY:
300 return sprintf(buf, "standby\n");
302 return sprintf(buf, "unknown\n");
305 static ssize_t regulator_opmode_show(struct device *dev,
306 struct device_attribute *attr, char *buf)
308 struct regulator_dev *rdev = dev_get_drvdata(dev);
310 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
312 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
314 static ssize_t regulator_print_state(char *buf, int state)
316 if (state > 0)
317 return sprintf(buf, "enabled\n");
318 else if (state == 0)
319 return sprintf(buf, "disabled\n");
320 else
321 return sprintf(buf, "unknown\n");
324 static ssize_t regulator_state_show(struct device *dev,
325 struct device_attribute *attr, char *buf)
327 struct regulator_dev *rdev = dev_get_drvdata(dev);
328 ssize_t ret;
330 mutex_lock(&rdev->mutex);
331 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
332 mutex_unlock(&rdev->mutex);
334 return ret;
336 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
338 static ssize_t regulator_status_show(struct device *dev,
339 struct device_attribute *attr, char *buf)
341 struct regulator_dev *rdev = dev_get_drvdata(dev);
342 int status;
343 char *label;
345 status = rdev->desc->ops->get_status(rdev);
346 if (status < 0)
347 return status;
349 switch (status) {
350 case REGULATOR_STATUS_OFF:
351 label = "off";
352 break;
353 case REGULATOR_STATUS_ON:
354 label = "on";
355 break;
356 case REGULATOR_STATUS_ERROR:
357 label = "error";
358 break;
359 case REGULATOR_STATUS_FAST:
360 label = "fast";
361 break;
362 case REGULATOR_STATUS_NORMAL:
363 label = "normal";
364 break;
365 case REGULATOR_STATUS_IDLE:
366 label = "idle";
367 break;
368 case REGULATOR_STATUS_STANDBY:
369 label = "standby";
370 break;
371 default:
372 return -ERANGE;
375 return sprintf(buf, "%s\n", label);
377 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
379 static ssize_t regulator_min_uA_show(struct device *dev,
380 struct device_attribute *attr, char *buf)
382 struct regulator_dev *rdev = dev_get_drvdata(dev);
384 if (!rdev->constraints)
385 return sprintf(buf, "constraint not defined\n");
387 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
389 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
391 static ssize_t regulator_max_uA_show(struct device *dev,
392 struct device_attribute *attr, char *buf)
394 struct regulator_dev *rdev = dev_get_drvdata(dev);
396 if (!rdev->constraints)
397 return sprintf(buf, "constraint not defined\n");
399 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
401 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
403 static ssize_t regulator_min_uV_show(struct device *dev,
404 struct device_attribute *attr, char *buf)
406 struct regulator_dev *rdev = dev_get_drvdata(dev);
408 if (!rdev->constraints)
409 return sprintf(buf, "constraint not defined\n");
411 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
413 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
415 static ssize_t regulator_max_uV_show(struct device *dev,
416 struct device_attribute *attr, char *buf)
418 struct regulator_dev *rdev = dev_get_drvdata(dev);
420 if (!rdev->constraints)
421 return sprintf(buf, "constraint not defined\n");
423 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
425 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
427 static ssize_t regulator_total_uA_show(struct device *dev,
428 struct device_attribute *attr, char *buf)
430 struct regulator_dev *rdev = dev_get_drvdata(dev);
431 struct regulator *regulator;
432 int uA = 0;
434 mutex_lock(&rdev->mutex);
435 list_for_each_entry(regulator, &rdev->consumer_list, list)
436 uA += regulator->uA_load;
437 mutex_unlock(&rdev->mutex);
438 return sprintf(buf, "%d\n", uA);
440 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
442 static ssize_t regulator_num_users_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
446 return sprintf(buf, "%d\n", rdev->use_count);
449 static ssize_t regulator_type_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
452 struct regulator_dev *rdev = dev_get_drvdata(dev);
454 switch (rdev->desc->type) {
455 case REGULATOR_VOLTAGE:
456 return sprintf(buf, "voltage\n");
457 case REGULATOR_CURRENT:
458 return sprintf(buf, "current\n");
460 return sprintf(buf, "unknown\n");
463 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
466 struct regulator_dev *rdev = dev_get_drvdata(dev);
468 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
470 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
471 regulator_suspend_mem_uV_show, NULL);
473 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
476 struct regulator_dev *rdev = dev_get_drvdata(dev);
478 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
480 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
481 regulator_suspend_disk_uV_show, NULL);
483 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
486 struct regulator_dev *rdev = dev_get_drvdata(dev);
488 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
490 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
491 regulator_suspend_standby_uV_show, NULL);
493 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
494 struct device_attribute *attr, char *buf)
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return regulator_print_opmode(buf,
499 rdev->constraints->state_mem.mode);
501 static DEVICE_ATTR(suspend_mem_mode, 0444,
502 regulator_suspend_mem_mode_show, NULL);
504 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
505 struct device_attribute *attr, char *buf)
507 struct regulator_dev *rdev = dev_get_drvdata(dev);
509 return regulator_print_opmode(buf,
510 rdev->constraints->state_disk.mode);
512 static DEVICE_ATTR(suspend_disk_mode, 0444,
513 regulator_suspend_disk_mode_show, NULL);
515 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
518 struct regulator_dev *rdev = dev_get_drvdata(dev);
520 return regulator_print_opmode(buf,
521 rdev->constraints->state_standby.mode);
523 static DEVICE_ATTR(suspend_standby_mode, 0444,
524 regulator_suspend_standby_mode_show, NULL);
526 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
531 return regulator_print_state(buf,
532 rdev->constraints->state_mem.enabled);
534 static DEVICE_ATTR(suspend_mem_state, 0444,
535 regulator_suspend_mem_state_show, NULL);
537 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
542 return regulator_print_state(buf,
543 rdev->constraints->state_disk.enabled);
545 static DEVICE_ATTR(suspend_disk_state, 0444,
546 regulator_suspend_disk_state_show, NULL);
548 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
553 return regulator_print_state(buf,
554 rdev->constraints->state_standby.enabled);
556 static DEVICE_ATTR(suspend_standby_state, 0444,
557 regulator_suspend_standby_state_show, NULL);
561 * These are the only attributes are present for all regulators.
562 * Other attributes are a function of regulator functionality.
564 static struct device_attribute regulator_dev_attrs[] = {
565 __ATTR(name, 0444, regulator_name_show, NULL),
566 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
567 __ATTR(type, 0444, regulator_type_show, NULL),
568 __ATTR_NULL,
571 static void regulator_dev_release(struct device *dev)
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574 kfree(rdev);
577 static struct class regulator_class = {
578 .name = "regulator",
579 .dev_release = regulator_dev_release,
580 .dev_attrs = regulator_dev_attrs,
583 /* Calculate the new optimum regulator operating mode based on the new total
584 * consumer load. All locks held by caller */
585 static void drms_uA_update(struct regulator_dev *rdev)
587 struct regulator *sibling;
588 int current_uA = 0, output_uV, input_uV, err;
589 unsigned int mode;
591 err = regulator_check_drms(rdev);
592 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
593 (!rdev->desc->ops->get_voltage &&
594 !rdev->desc->ops->get_voltage_sel) ||
595 !rdev->desc->ops->set_mode)
596 return;
598 /* get output voltage */
599 output_uV = _regulator_get_voltage(rdev);
600 if (output_uV <= 0)
601 return;
603 /* get input voltage */
604 input_uV = 0;
605 if (rdev->supply)
606 input_uV = _regulator_get_voltage(rdev);
607 if (input_uV <= 0)
608 input_uV = rdev->constraints->input_uV;
609 if (input_uV <= 0)
610 return;
612 /* calc total requested load */
613 list_for_each_entry(sibling, &rdev->consumer_list, list)
614 current_uA += sibling->uA_load;
616 /* now get the optimum mode for our new total regulator load */
617 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
618 output_uV, current_uA);
620 /* check the new mode is allowed */
621 err = regulator_mode_constrain(rdev, &mode);
622 if (err == 0)
623 rdev->desc->ops->set_mode(rdev, mode);
626 static int suspend_set_state(struct regulator_dev *rdev,
627 struct regulator_state *rstate)
629 int ret = 0;
630 bool can_set_state;
632 can_set_state = rdev->desc->ops->set_suspend_enable &&
633 rdev->desc->ops->set_suspend_disable;
635 /* If we have no suspend mode configration don't set anything;
636 * only warn if the driver actually makes the suspend mode
637 * configurable.
639 if (!rstate->enabled && !rstate->disabled) {
640 if (can_set_state)
641 rdev_warn(rdev, "No configuration\n");
642 return 0;
645 if (rstate->enabled && rstate->disabled) {
646 rdev_err(rdev, "invalid configuration\n");
647 return -EINVAL;
650 if (!can_set_state) {
651 rdev_err(rdev, "no way to set suspend state\n");
652 return -EINVAL;
655 if (rstate->enabled)
656 ret = rdev->desc->ops->set_suspend_enable(rdev);
657 else
658 ret = rdev->desc->ops->set_suspend_disable(rdev);
659 if (ret < 0) {
660 rdev_err(rdev, "failed to enabled/disable\n");
661 return ret;
664 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
665 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
666 if (ret < 0) {
667 rdev_err(rdev, "failed to set voltage\n");
668 return ret;
672 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
673 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
674 if (ret < 0) {
675 rdev_err(rdev, "failed to set mode\n");
676 return ret;
679 return ret;
682 /* locks held by caller */
683 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
685 if (!rdev->constraints)
686 return -EINVAL;
688 switch (state) {
689 case PM_SUSPEND_STANDBY:
690 return suspend_set_state(rdev,
691 &rdev->constraints->state_standby);
692 case PM_SUSPEND_MEM:
693 return suspend_set_state(rdev,
694 &rdev->constraints->state_mem);
695 case PM_SUSPEND_MAX:
696 return suspend_set_state(rdev,
697 &rdev->constraints->state_disk);
698 default:
699 return -EINVAL;
703 static void print_constraints(struct regulator_dev *rdev)
705 struct regulation_constraints *constraints = rdev->constraints;
706 char buf[80] = "";
707 int count = 0;
708 int ret;
710 if (constraints->min_uV && constraints->max_uV) {
711 if (constraints->min_uV == constraints->max_uV)
712 count += sprintf(buf + count, "%d mV ",
713 constraints->min_uV / 1000);
714 else
715 count += sprintf(buf + count, "%d <--> %d mV ",
716 constraints->min_uV / 1000,
717 constraints->max_uV / 1000);
720 if (!constraints->min_uV ||
721 constraints->min_uV != constraints->max_uV) {
722 ret = _regulator_get_voltage(rdev);
723 if (ret > 0)
724 count += sprintf(buf + count, "at %d mV ", ret / 1000);
727 if (constraints->uV_offset)
728 count += sprintf(buf, "%dmV offset ",
729 constraints->uV_offset / 1000);
731 if (constraints->min_uA && constraints->max_uA) {
732 if (constraints->min_uA == constraints->max_uA)
733 count += sprintf(buf + count, "%d mA ",
734 constraints->min_uA / 1000);
735 else
736 count += sprintf(buf + count, "%d <--> %d mA ",
737 constraints->min_uA / 1000,
738 constraints->max_uA / 1000);
741 if (!constraints->min_uA ||
742 constraints->min_uA != constraints->max_uA) {
743 ret = _regulator_get_current_limit(rdev);
744 if (ret > 0)
745 count += sprintf(buf + count, "at %d mA ", ret / 1000);
748 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
749 count += sprintf(buf + count, "fast ");
750 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
751 count += sprintf(buf + count, "normal ");
752 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
753 count += sprintf(buf + count, "idle ");
754 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
755 count += sprintf(buf + count, "standby");
757 rdev_info(rdev, "%s\n", buf);
760 static int machine_constraints_voltage(struct regulator_dev *rdev,
761 struct regulation_constraints *constraints)
763 struct regulator_ops *ops = rdev->desc->ops;
764 int ret;
766 /* do we need to apply the constraint voltage */
767 if (rdev->constraints->apply_uV &&
768 rdev->constraints->min_uV == rdev->constraints->max_uV) {
769 ret = _regulator_do_set_voltage(rdev,
770 rdev->constraints->min_uV,
771 rdev->constraints->max_uV);
772 if (ret < 0) {
773 rdev_err(rdev, "failed to apply %duV constraint\n",
774 rdev->constraints->min_uV);
775 rdev->constraints = NULL;
776 return ret;
780 /* constrain machine-level voltage specs to fit
781 * the actual range supported by this regulator.
783 if (ops->list_voltage && rdev->desc->n_voltages) {
784 int count = rdev->desc->n_voltages;
785 int i;
786 int min_uV = INT_MAX;
787 int max_uV = INT_MIN;
788 int cmin = constraints->min_uV;
789 int cmax = constraints->max_uV;
791 /* it's safe to autoconfigure fixed-voltage supplies
792 and the constraints are used by list_voltage. */
793 if (count == 1 && !cmin) {
794 cmin = 1;
795 cmax = INT_MAX;
796 constraints->min_uV = cmin;
797 constraints->max_uV = cmax;
800 /* voltage constraints are optional */
801 if ((cmin == 0) && (cmax == 0))
802 return 0;
804 /* else require explicit machine-level constraints */
805 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
806 rdev_err(rdev, "invalid voltage constraints\n");
807 return -EINVAL;
810 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
811 for (i = 0; i < count; i++) {
812 int value;
814 value = ops->list_voltage(rdev, i);
815 if (value <= 0)
816 continue;
818 /* maybe adjust [min_uV..max_uV] */
819 if (value >= cmin && value < min_uV)
820 min_uV = value;
821 if (value <= cmax && value > max_uV)
822 max_uV = value;
825 /* final: [min_uV..max_uV] valid iff constraints valid */
826 if (max_uV < min_uV) {
827 rdev_err(rdev, "unsupportable voltage constraints\n");
828 return -EINVAL;
831 /* use regulator's subset of machine constraints */
832 if (constraints->min_uV < min_uV) {
833 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
834 constraints->min_uV, min_uV);
835 constraints->min_uV = min_uV;
837 if (constraints->max_uV > max_uV) {
838 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
839 constraints->max_uV, max_uV);
840 constraints->max_uV = max_uV;
844 return 0;
848 * set_machine_constraints - sets regulator constraints
849 * @rdev: regulator source
850 * @constraints: constraints to apply
852 * Allows platform initialisation code to define and constrain
853 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
854 * Constraints *must* be set by platform code in order for some
855 * regulator operations to proceed i.e. set_voltage, set_current_limit,
856 * set_mode.
858 static int set_machine_constraints(struct regulator_dev *rdev,
859 const struct regulation_constraints *constraints)
861 int ret = 0;
862 struct regulator_ops *ops = rdev->desc->ops;
864 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
865 GFP_KERNEL);
866 if (!rdev->constraints)
867 return -ENOMEM;
869 ret = machine_constraints_voltage(rdev, rdev->constraints);
870 if (ret != 0)
871 goto out;
873 /* do we need to setup our suspend state */
874 if (constraints->initial_state) {
875 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
876 if (ret < 0) {
877 rdev_err(rdev, "failed to set suspend state\n");
878 rdev->constraints = NULL;
879 goto out;
883 if (constraints->initial_mode) {
884 if (!ops->set_mode) {
885 rdev_err(rdev, "no set_mode operation\n");
886 ret = -EINVAL;
887 goto out;
890 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
891 if (ret < 0) {
892 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
893 goto out;
897 /* If the constraints say the regulator should be on at this point
898 * and we have control then make sure it is enabled.
900 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
901 ops->enable) {
902 ret = ops->enable(rdev);
903 if (ret < 0) {
904 rdev_err(rdev, "failed to enable\n");
905 rdev->constraints = NULL;
906 goto out;
910 print_constraints(rdev);
911 out:
912 return ret;
916 * set_supply - set regulator supply regulator
917 * @rdev: regulator name
918 * @supply_rdev: supply regulator name
920 * Called by platform initialisation code to set the supply regulator for this
921 * regulator. This ensures that a regulators supply will also be enabled by the
922 * core if it's child is enabled.
924 static int set_supply(struct regulator_dev *rdev,
925 struct regulator_dev *supply_rdev)
927 int err;
929 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
930 "supply");
931 if (err) {
932 rdev_err(rdev, "could not add device link %s err %d\n",
933 supply_rdev->dev.kobj.name, err);
934 goto out;
936 rdev->supply = supply_rdev;
937 list_add(&rdev->slist, &supply_rdev->supply_list);
938 out:
939 return err;
943 * set_consumer_device_supply - Bind a regulator to a symbolic supply
944 * @rdev: regulator source
945 * @consumer_dev: device the supply applies to
946 * @consumer_dev_name: dev_name() string for device supply applies to
947 * @supply: symbolic name for supply
949 * Allows platform initialisation code to map physical regulator
950 * sources to symbolic names for supplies for use by devices. Devices
951 * should use these symbolic names to request regulators, avoiding the
952 * need to provide board-specific regulator names as platform data.
954 * Only one of consumer_dev and consumer_dev_name may be specified.
956 static int set_consumer_device_supply(struct regulator_dev *rdev,
957 struct device *consumer_dev, const char *consumer_dev_name,
958 const char *supply)
960 struct regulator_map *node;
961 int has_dev;
963 if (consumer_dev && consumer_dev_name)
964 return -EINVAL;
966 if (!consumer_dev_name && consumer_dev)
967 consumer_dev_name = dev_name(consumer_dev);
969 if (supply == NULL)
970 return -EINVAL;
972 if (consumer_dev_name != NULL)
973 has_dev = 1;
974 else
975 has_dev = 0;
977 list_for_each_entry(node, &regulator_map_list, list) {
978 if (node->dev_name && consumer_dev_name) {
979 if (strcmp(node->dev_name, consumer_dev_name) != 0)
980 continue;
981 } else if (node->dev_name || consumer_dev_name) {
982 continue;
985 if (strcmp(node->supply, supply) != 0)
986 continue;
988 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
989 dev_name(&node->regulator->dev),
990 node->regulator->desc->name,
991 supply,
992 dev_name(&rdev->dev), rdev_get_name(rdev));
993 return -EBUSY;
996 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
997 if (node == NULL)
998 return -ENOMEM;
1000 node->regulator = rdev;
1001 node->supply = supply;
1003 if (has_dev) {
1004 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1005 if (node->dev_name == NULL) {
1006 kfree(node);
1007 return -ENOMEM;
1011 list_add(&node->list, &regulator_map_list);
1012 return 0;
1015 static void unset_regulator_supplies(struct regulator_dev *rdev)
1017 struct regulator_map *node, *n;
1019 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1020 if (rdev == node->regulator) {
1021 list_del(&node->list);
1022 kfree(node->dev_name);
1023 kfree(node);
1028 #define REG_STR_SIZE 32
1030 static struct regulator *create_regulator(struct regulator_dev *rdev,
1031 struct device *dev,
1032 const char *supply_name)
1034 struct regulator *regulator;
1035 char buf[REG_STR_SIZE];
1036 int err, size;
1038 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1039 if (regulator == NULL)
1040 return NULL;
1042 mutex_lock(&rdev->mutex);
1043 regulator->rdev = rdev;
1044 list_add(&regulator->list, &rdev->consumer_list);
1046 if (dev) {
1047 /* create a 'requested_microamps_name' sysfs entry */
1048 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1049 supply_name);
1050 if (size >= REG_STR_SIZE)
1051 goto overflow_err;
1053 regulator->dev = dev;
1054 sysfs_attr_init(&regulator->dev_attr.attr);
1055 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1056 if (regulator->dev_attr.attr.name == NULL)
1057 goto attr_name_err;
1059 regulator->dev_attr.attr.mode = 0444;
1060 regulator->dev_attr.show = device_requested_uA_show;
1061 err = device_create_file(dev, &regulator->dev_attr);
1062 if (err < 0) {
1063 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1064 goto attr_name_err;
1067 /* also add a link to the device sysfs entry */
1068 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1069 dev->kobj.name, supply_name);
1070 if (size >= REG_STR_SIZE)
1071 goto attr_err;
1073 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1074 if (regulator->supply_name == NULL)
1075 goto attr_err;
1077 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1078 buf);
1079 if (err) {
1080 rdev_warn(rdev, "could not add device link %s err %d\n",
1081 dev->kobj.name, err);
1082 goto link_name_err;
1085 mutex_unlock(&rdev->mutex);
1086 return regulator;
1087 link_name_err:
1088 kfree(regulator->supply_name);
1089 attr_err:
1090 device_remove_file(regulator->dev, &regulator->dev_attr);
1091 attr_name_err:
1092 kfree(regulator->dev_attr.attr.name);
1093 overflow_err:
1094 list_del(&regulator->list);
1095 kfree(regulator);
1096 mutex_unlock(&rdev->mutex);
1097 return NULL;
1100 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1102 if (!rdev->desc->ops->enable_time)
1103 return 0;
1104 return rdev->desc->ops->enable_time(rdev);
1107 /* Internal regulator request function */
1108 static struct regulator *_regulator_get(struct device *dev, const char *id,
1109 int exclusive)
1111 struct regulator_dev *rdev;
1112 struct regulator_map *map;
1113 struct regulator *regulator = ERR_PTR(-ENODEV);
1114 const char *devname = NULL;
1115 int ret;
1117 if (id == NULL) {
1118 pr_err("get() with no identifier\n");
1119 return regulator;
1122 if (dev)
1123 devname = dev_name(dev);
1125 mutex_lock(&regulator_list_mutex);
1127 list_for_each_entry(map, &regulator_map_list, list) {
1128 /* If the mapping has a device set up it must match */
1129 if (map->dev_name &&
1130 (!devname || strcmp(map->dev_name, devname)))
1131 continue;
1133 if (strcmp(map->supply, id) == 0) {
1134 rdev = map->regulator;
1135 goto found;
1139 if (board_wants_dummy_regulator) {
1140 rdev = dummy_regulator_rdev;
1141 goto found;
1144 #ifdef CONFIG_REGULATOR_DUMMY
1145 if (!devname)
1146 devname = "deviceless";
1148 /* If the board didn't flag that it was fully constrained then
1149 * substitute in a dummy regulator so consumers can continue.
1151 if (!has_full_constraints) {
1152 pr_warn("%s supply %s not found, using dummy regulator\n",
1153 devname, id);
1154 rdev = dummy_regulator_rdev;
1155 goto found;
1157 #endif
1159 mutex_unlock(&regulator_list_mutex);
1160 return regulator;
1162 found:
1163 if (rdev->exclusive) {
1164 regulator = ERR_PTR(-EPERM);
1165 goto out;
1168 if (exclusive && rdev->open_count) {
1169 regulator = ERR_PTR(-EBUSY);
1170 goto out;
1173 if (!try_module_get(rdev->owner))
1174 goto out;
1176 regulator = create_regulator(rdev, dev, id);
1177 if (regulator == NULL) {
1178 regulator = ERR_PTR(-ENOMEM);
1179 module_put(rdev->owner);
1182 rdev->open_count++;
1183 if (exclusive) {
1184 rdev->exclusive = 1;
1186 ret = _regulator_is_enabled(rdev);
1187 if (ret > 0)
1188 rdev->use_count = 1;
1189 else
1190 rdev->use_count = 0;
1193 out:
1194 mutex_unlock(&regulator_list_mutex);
1196 return regulator;
1200 * regulator_get - lookup and obtain a reference to a regulator.
1201 * @dev: device for regulator "consumer"
1202 * @id: Supply name or regulator ID.
1204 * Returns a struct regulator corresponding to the regulator producer,
1205 * or IS_ERR() condition containing errno.
1207 * Use of supply names configured via regulator_set_device_supply() is
1208 * strongly encouraged. It is recommended that the supply name used
1209 * should match the name used for the supply and/or the relevant
1210 * device pins in the datasheet.
1212 struct regulator *regulator_get(struct device *dev, const char *id)
1214 return _regulator_get(dev, id, 0);
1216 EXPORT_SYMBOL_GPL(regulator_get);
1219 * regulator_get_exclusive - obtain exclusive access to a regulator.
1220 * @dev: device for regulator "consumer"
1221 * @id: Supply name or regulator ID.
1223 * Returns a struct regulator corresponding to the regulator producer,
1224 * or IS_ERR() condition containing errno. Other consumers will be
1225 * unable to obtain this reference is held and the use count for the
1226 * regulator will be initialised to reflect the current state of the
1227 * regulator.
1229 * This is intended for use by consumers which cannot tolerate shared
1230 * use of the regulator such as those which need to force the
1231 * regulator off for correct operation of the hardware they are
1232 * controlling.
1234 * Use of supply names configured via regulator_set_device_supply() is
1235 * strongly encouraged. It is recommended that the supply name used
1236 * should match the name used for the supply and/or the relevant
1237 * device pins in the datasheet.
1239 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1241 return _regulator_get(dev, id, 1);
1243 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1246 * regulator_put - "free" the regulator source
1247 * @regulator: regulator source
1249 * Note: drivers must ensure that all regulator_enable calls made on this
1250 * regulator source are balanced by regulator_disable calls prior to calling
1251 * this function.
1253 void regulator_put(struct regulator *regulator)
1255 struct regulator_dev *rdev;
1257 if (regulator == NULL || IS_ERR(regulator))
1258 return;
1260 mutex_lock(&regulator_list_mutex);
1261 rdev = regulator->rdev;
1263 /* remove any sysfs entries */
1264 if (regulator->dev) {
1265 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1266 kfree(regulator->supply_name);
1267 device_remove_file(regulator->dev, &regulator->dev_attr);
1268 kfree(regulator->dev_attr.attr.name);
1270 list_del(&regulator->list);
1271 kfree(regulator);
1273 rdev->open_count--;
1274 rdev->exclusive = 0;
1276 module_put(rdev->owner);
1277 mutex_unlock(&regulator_list_mutex);
1279 EXPORT_SYMBOL_GPL(regulator_put);
1281 static int _regulator_can_change_status(struct regulator_dev *rdev)
1283 if (!rdev->constraints)
1284 return 0;
1286 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1287 return 1;
1288 else
1289 return 0;
1292 /* locks held by regulator_enable() */
1293 static int _regulator_enable(struct regulator_dev *rdev)
1295 int ret, delay;
1297 if (rdev->use_count == 0) {
1298 /* do we need to enable the supply regulator first */
1299 if (rdev->supply) {
1300 mutex_lock(&rdev->supply->mutex);
1301 ret = _regulator_enable(rdev->supply);
1302 mutex_unlock(&rdev->supply->mutex);
1303 if (ret < 0) {
1304 rdev_err(rdev, "failed to enable: %d\n", ret);
1305 return ret;
1310 /* check voltage and requested load before enabling */
1311 if (rdev->constraints &&
1312 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1313 drms_uA_update(rdev);
1315 if (rdev->use_count == 0) {
1316 /* The regulator may on if it's not switchable or left on */
1317 ret = _regulator_is_enabled(rdev);
1318 if (ret == -EINVAL || ret == 0) {
1319 if (!_regulator_can_change_status(rdev))
1320 return -EPERM;
1322 if (!rdev->desc->ops->enable)
1323 return -EINVAL;
1325 /* Query before enabling in case configuration
1326 * dependent. */
1327 ret = _regulator_get_enable_time(rdev);
1328 if (ret >= 0) {
1329 delay = ret;
1330 } else {
1331 rdev_warn(rdev, "enable_time() failed: %d\n",
1332 ret);
1333 delay = 0;
1336 trace_regulator_enable(rdev_get_name(rdev));
1338 /* Allow the regulator to ramp; it would be useful
1339 * to extend this for bulk operations so that the
1340 * regulators can ramp together. */
1341 ret = rdev->desc->ops->enable(rdev);
1342 if (ret < 0)
1343 return ret;
1345 trace_regulator_enable_delay(rdev_get_name(rdev));
1347 if (delay >= 1000) {
1348 mdelay(delay / 1000);
1349 udelay(delay % 1000);
1350 } else if (delay) {
1351 udelay(delay);
1354 trace_regulator_enable_complete(rdev_get_name(rdev));
1356 } else if (ret < 0) {
1357 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1358 return ret;
1360 /* Fallthrough on positive return values - already enabled */
1363 rdev->use_count++;
1365 return 0;
1369 * regulator_enable - enable regulator output
1370 * @regulator: regulator source
1372 * Request that the regulator be enabled with the regulator output at
1373 * the predefined voltage or current value. Calls to regulator_enable()
1374 * must be balanced with calls to regulator_disable().
1376 * NOTE: the output value can be set by other drivers, boot loader or may be
1377 * hardwired in the regulator.
1379 int regulator_enable(struct regulator *regulator)
1381 struct regulator_dev *rdev = regulator->rdev;
1382 int ret = 0;
1384 mutex_lock(&rdev->mutex);
1385 ret = _regulator_enable(rdev);
1386 mutex_unlock(&rdev->mutex);
1387 return ret;
1389 EXPORT_SYMBOL_GPL(regulator_enable);
1391 /* locks held by regulator_disable() */
1392 static int _regulator_disable(struct regulator_dev *rdev,
1393 struct regulator_dev **supply_rdev_ptr)
1395 int ret = 0;
1396 *supply_rdev_ptr = NULL;
1398 if (WARN(rdev->use_count <= 0,
1399 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1400 return -EIO;
1402 /* are we the last user and permitted to disable ? */
1403 if (rdev->use_count == 1 &&
1404 (rdev->constraints && !rdev->constraints->always_on)) {
1406 /* we are last user */
1407 if (_regulator_can_change_status(rdev) &&
1408 rdev->desc->ops->disable) {
1409 trace_regulator_disable(rdev_get_name(rdev));
1411 ret = rdev->desc->ops->disable(rdev);
1412 if (ret < 0) {
1413 rdev_err(rdev, "failed to disable\n");
1414 return ret;
1417 trace_regulator_disable_complete(rdev_get_name(rdev));
1419 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1420 NULL);
1423 /* decrease our supplies ref count and disable if required */
1424 *supply_rdev_ptr = rdev->supply;
1426 rdev->use_count = 0;
1427 } else if (rdev->use_count > 1) {
1429 if (rdev->constraints &&
1430 (rdev->constraints->valid_ops_mask &
1431 REGULATOR_CHANGE_DRMS))
1432 drms_uA_update(rdev);
1434 rdev->use_count--;
1436 return ret;
1440 * regulator_disable - disable regulator output
1441 * @regulator: regulator source
1443 * Disable the regulator output voltage or current. Calls to
1444 * regulator_enable() must be balanced with calls to
1445 * regulator_disable().
1447 * NOTE: this will only disable the regulator output if no other consumer
1448 * devices have it enabled, the regulator device supports disabling and
1449 * machine constraints permit this operation.
1451 int regulator_disable(struct regulator *regulator)
1453 struct regulator_dev *rdev = regulator->rdev;
1454 struct regulator_dev *supply_rdev = NULL;
1455 int ret = 0;
1457 mutex_lock(&rdev->mutex);
1458 ret = _regulator_disable(rdev, &supply_rdev);
1459 mutex_unlock(&rdev->mutex);
1461 /* decrease our supplies ref count and disable if required */
1462 while (supply_rdev != NULL) {
1463 rdev = supply_rdev;
1465 mutex_lock(&rdev->mutex);
1466 _regulator_disable(rdev, &supply_rdev);
1467 mutex_unlock(&rdev->mutex);
1470 return ret;
1472 EXPORT_SYMBOL_GPL(regulator_disable);
1474 /* locks held by regulator_force_disable() */
1475 static int _regulator_force_disable(struct regulator_dev *rdev,
1476 struct regulator_dev **supply_rdev_ptr)
1478 int ret = 0;
1480 /* force disable */
1481 if (rdev->desc->ops->disable) {
1482 /* ah well, who wants to live forever... */
1483 ret = rdev->desc->ops->disable(rdev);
1484 if (ret < 0) {
1485 rdev_err(rdev, "failed to force disable\n");
1486 return ret;
1488 /* notify other consumers that power has been forced off */
1489 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1490 REGULATOR_EVENT_DISABLE, NULL);
1493 /* decrease our supplies ref count and disable if required */
1494 *supply_rdev_ptr = rdev->supply;
1496 rdev->use_count = 0;
1497 return ret;
1501 * regulator_force_disable - force disable regulator output
1502 * @regulator: regulator source
1504 * Forcibly disable the regulator output voltage or current.
1505 * NOTE: this *will* disable the regulator output even if other consumer
1506 * devices have it enabled. This should be used for situations when device
1507 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1509 int regulator_force_disable(struct regulator *regulator)
1511 struct regulator_dev *rdev = regulator->rdev;
1512 struct regulator_dev *supply_rdev = NULL;
1513 int ret;
1515 mutex_lock(&rdev->mutex);
1516 regulator->uA_load = 0;
1517 ret = _regulator_force_disable(rdev, &supply_rdev);
1518 mutex_unlock(&rdev->mutex);
1520 if (supply_rdev)
1521 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1523 return ret;
1525 EXPORT_SYMBOL_GPL(regulator_force_disable);
1527 static int _regulator_is_enabled(struct regulator_dev *rdev)
1529 /* If we don't know then assume that the regulator is always on */
1530 if (!rdev->desc->ops->is_enabled)
1531 return 1;
1533 return rdev->desc->ops->is_enabled(rdev);
1537 * regulator_is_enabled - is the regulator output enabled
1538 * @regulator: regulator source
1540 * Returns positive if the regulator driver backing the source/client
1541 * has requested that the device be enabled, zero if it hasn't, else a
1542 * negative errno code.
1544 * Note that the device backing this regulator handle can have multiple
1545 * users, so it might be enabled even if regulator_enable() was never
1546 * called for this particular source.
1548 int regulator_is_enabled(struct regulator *regulator)
1550 int ret;
1552 mutex_lock(&regulator->rdev->mutex);
1553 ret = _regulator_is_enabled(regulator->rdev);
1554 mutex_unlock(&regulator->rdev->mutex);
1556 return ret;
1558 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1561 * regulator_count_voltages - count regulator_list_voltage() selectors
1562 * @regulator: regulator source
1564 * Returns number of selectors, or negative errno. Selectors are
1565 * numbered starting at zero, and typically correspond to bitfields
1566 * in hardware registers.
1568 int regulator_count_voltages(struct regulator *regulator)
1570 struct regulator_dev *rdev = regulator->rdev;
1572 return rdev->desc->n_voltages ? : -EINVAL;
1574 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1577 * regulator_list_voltage - enumerate supported voltages
1578 * @regulator: regulator source
1579 * @selector: identify voltage to list
1580 * Context: can sleep
1582 * Returns a voltage that can be passed to @regulator_set_voltage(),
1583 * zero if this selector code can't be used on this system, or a
1584 * negative errno.
1586 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1588 struct regulator_dev *rdev = regulator->rdev;
1589 struct regulator_ops *ops = rdev->desc->ops;
1590 int ret;
1592 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1593 return -EINVAL;
1595 mutex_lock(&rdev->mutex);
1596 ret = ops->list_voltage(rdev, selector);
1597 mutex_unlock(&rdev->mutex);
1599 if (ret > 0) {
1600 if (ret < rdev->constraints->min_uV)
1601 ret = 0;
1602 else if (ret > rdev->constraints->max_uV)
1603 ret = 0;
1606 return ret;
1608 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1611 * regulator_is_supported_voltage - check if a voltage range can be supported
1613 * @regulator: Regulator to check.
1614 * @min_uV: Minimum required voltage in uV.
1615 * @max_uV: Maximum required voltage in uV.
1617 * Returns a boolean or a negative error code.
1619 int regulator_is_supported_voltage(struct regulator *regulator,
1620 int min_uV, int max_uV)
1622 int i, voltages, ret;
1624 ret = regulator_count_voltages(regulator);
1625 if (ret < 0)
1626 return ret;
1627 voltages = ret;
1629 for (i = 0; i < voltages; i++) {
1630 ret = regulator_list_voltage(regulator, i);
1632 if (ret >= min_uV && ret <= max_uV)
1633 return 1;
1636 return 0;
1639 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1640 int min_uV, int max_uV)
1642 int ret;
1643 int delay = 0;
1644 unsigned int selector;
1646 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1648 min_uV += rdev->constraints->uV_offset;
1649 max_uV += rdev->constraints->uV_offset;
1651 if (rdev->desc->ops->set_voltage) {
1652 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1653 &selector);
1655 if (rdev->desc->ops->list_voltage)
1656 selector = rdev->desc->ops->list_voltage(rdev,
1657 selector);
1658 else
1659 selector = -1;
1660 } else if (rdev->desc->ops->set_voltage_sel) {
1661 int best_val = INT_MAX;
1662 int i;
1664 selector = 0;
1666 /* Find the smallest voltage that falls within the specified
1667 * range.
1669 for (i = 0; i < rdev->desc->n_voltages; i++) {
1670 ret = rdev->desc->ops->list_voltage(rdev, i);
1671 if (ret < 0)
1672 continue;
1674 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1675 best_val = ret;
1676 selector = i;
1681 * If we can't obtain the old selector there is not enough
1682 * info to call set_voltage_time_sel().
1684 if (rdev->desc->ops->set_voltage_time_sel &&
1685 rdev->desc->ops->get_voltage_sel) {
1686 unsigned int old_selector = 0;
1688 ret = rdev->desc->ops->get_voltage_sel(rdev);
1689 if (ret < 0)
1690 return ret;
1691 old_selector = ret;
1692 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1693 old_selector, selector);
1696 if (best_val != INT_MAX) {
1697 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1698 selector = best_val;
1699 } else {
1700 ret = -EINVAL;
1702 } else {
1703 ret = -EINVAL;
1706 /* Insert any necessary delays */
1707 if (delay >= 1000) {
1708 mdelay(delay / 1000);
1709 udelay(delay % 1000);
1710 } else if (delay) {
1711 udelay(delay);
1714 if (ret == 0)
1715 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1716 NULL);
1718 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1720 return ret;
1724 * regulator_set_voltage - set regulator output voltage
1725 * @regulator: regulator source
1726 * @min_uV: Minimum required voltage in uV
1727 * @max_uV: Maximum acceptable voltage in uV
1729 * Sets a voltage regulator to the desired output voltage. This can be set
1730 * during any regulator state. IOW, regulator can be disabled or enabled.
1732 * If the regulator is enabled then the voltage will change to the new value
1733 * immediately otherwise if the regulator is disabled the regulator will
1734 * output at the new voltage when enabled.
1736 * NOTE: If the regulator is shared between several devices then the lowest
1737 * request voltage that meets the system constraints will be used.
1738 * Regulator system constraints must be set for this regulator before
1739 * calling this function otherwise this call will fail.
1741 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1743 struct regulator_dev *rdev = regulator->rdev;
1744 int ret = 0;
1746 mutex_lock(&rdev->mutex);
1748 /* If we're setting the same range as last time the change
1749 * should be a noop (some cpufreq implementations use the same
1750 * voltage for multiple frequencies, for example).
1752 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1753 goto out;
1755 /* sanity check */
1756 if (!rdev->desc->ops->set_voltage &&
1757 !rdev->desc->ops->set_voltage_sel) {
1758 ret = -EINVAL;
1759 goto out;
1762 /* constraints check */
1763 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1764 if (ret < 0)
1765 goto out;
1766 regulator->min_uV = min_uV;
1767 regulator->max_uV = max_uV;
1769 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1770 if (ret < 0)
1771 goto out;
1773 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1775 out:
1776 mutex_unlock(&rdev->mutex);
1777 return ret;
1779 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1782 * regulator_set_voltage_time - get raise/fall time
1783 * @regulator: regulator source
1784 * @old_uV: starting voltage in microvolts
1785 * @new_uV: target voltage in microvolts
1787 * Provided with the starting and ending voltage, this function attempts to
1788 * calculate the time in microseconds required to rise or fall to this new
1789 * voltage.
1791 int regulator_set_voltage_time(struct regulator *regulator,
1792 int old_uV, int new_uV)
1794 struct regulator_dev *rdev = regulator->rdev;
1795 struct regulator_ops *ops = rdev->desc->ops;
1796 int old_sel = -1;
1797 int new_sel = -1;
1798 int voltage;
1799 int i;
1801 /* Currently requires operations to do this */
1802 if (!ops->list_voltage || !ops->set_voltage_time_sel
1803 || !rdev->desc->n_voltages)
1804 return -EINVAL;
1806 for (i = 0; i < rdev->desc->n_voltages; i++) {
1807 /* We only look for exact voltage matches here */
1808 voltage = regulator_list_voltage(regulator, i);
1809 if (voltage < 0)
1810 return -EINVAL;
1811 if (voltage == 0)
1812 continue;
1813 if (voltage == old_uV)
1814 old_sel = i;
1815 if (voltage == new_uV)
1816 new_sel = i;
1819 if (old_sel < 0 || new_sel < 0)
1820 return -EINVAL;
1822 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1824 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1827 * regulator_sync_voltage - re-apply last regulator output voltage
1828 * @regulator: regulator source
1830 * Re-apply the last configured voltage. This is intended to be used
1831 * where some external control source the consumer is cooperating with
1832 * has caused the configured voltage to change.
1834 int regulator_sync_voltage(struct regulator *regulator)
1836 struct regulator_dev *rdev = regulator->rdev;
1837 int ret, min_uV, max_uV;
1839 mutex_lock(&rdev->mutex);
1841 if (!rdev->desc->ops->set_voltage &&
1842 !rdev->desc->ops->set_voltage_sel) {
1843 ret = -EINVAL;
1844 goto out;
1847 /* This is only going to work if we've had a voltage configured. */
1848 if (!regulator->min_uV && !regulator->max_uV) {
1849 ret = -EINVAL;
1850 goto out;
1853 min_uV = regulator->min_uV;
1854 max_uV = regulator->max_uV;
1856 /* This should be a paranoia check... */
1857 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1858 if (ret < 0)
1859 goto out;
1861 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1862 if (ret < 0)
1863 goto out;
1865 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1867 out:
1868 mutex_unlock(&rdev->mutex);
1869 return ret;
1871 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1873 static int _regulator_get_voltage(struct regulator_dev *rdev)
1875 int sel, ret;
1877 if (rdev->desc->ops->get_voltage_sel) {
1878 sel = rdev->desc->ops->get_voltage_sel(rdev);
1879 if (sel < 0)
1880 return sel;
1881 ret = rdev->desc->ops->list_voltage(rdev, sel);
1883 if (rdev->desc->ops->get_voltage)
1884 ret = rdev->desc->ops->get_voltage(rdev);
1885 else
1886 return -EINVAL;
1888 return ret - rdev->constraints->uV_offset;
1892 * regulator_get_voltage - get regulator output voltage
1893 * @regulator: regulator source
1895 * This returns the current regulator voltage in uV.
1897 * NOTE: If the regulator is disabled it will return the voltage value. This
1898 * function should not be used to determine regulator state.
1900 int regulator_get_voltage(struct regulator *regulator)
1902 int ret;
1904 mutex_lock(&regulator->rdev->mutex);
1906 ret = _regulator_get_voltage(regulator->rdev);
1908 mutex_unlock(&regulator->rdev->mutex);
1910 return ret;
1912 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1915 * regulator_set_current_limit - set regulator output current limit
1916 * @regulator: regulator source
1917 * @min_uA: Minimuum supported current in uA
1918 * @max_uA: Maximum supported current in uA
1920 * Sets current sink to the desired output current. This can be set during
1921 * any regulator state. IOW, regulator can be disabled or enabled.
1923 * If the regulator is enabled then the current will change to the new value
1924 * immediately otherwise if the regulator is disabled the regulator will
1925 * output at the new current when enabled.
1927 * NOTE: Regulator system constraints must be set for this regulator before
1928 * calling this function otherwise this call will fail.
1930 int regulator_set_current_limit(struct regulator *regulator,
1931 int min_uA, int max_uA)
1933 struct regulator_dev *rdev = regulator->rdev;
1934 int ret;
1936 mutex_lock(&rdev->mutex);
1938 /* sanity check */
1939 if (!rdev->desc->ops->set_current_limit) {
1940 ret = -EINVAL;
1941 goto out;
1944 /* constraints check */
1945 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1946 if (ret < 0)
1947 goto out;
1949 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1950 out:
1951 mutex_unlock(&rdev->mutex);
1952 return ret;
1954 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1956 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1958 int ret;
1960 mutex_lock(&rdev->mutex);
1962 /* sanity check */
1963 if (!rdev->desc->ops->get_current_limit) {
1964 ret = -EINVAL;
1965 goto out;
1968 ret = rdev->desc->ops->get_current_limit(rdev);
1969 out:
1970 mutex_unlock(&rdev->mutex);
1971 return ret;
1975 * regulator_get_current_limit - get regulator output current
1976 * @regulator: regulator source
1978 * This returns the current supplied by the specified current sink in uA.
1980 * NOTE: If the regulator is disabled it will return the current value. This
1981 * function should not be used to determine regulator state.
1983 int regulator_get_current_limit(struct regulator *regulator)
1985 return _regulator_get_current_limit(regulator->rdev);
1987 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1990 * regulator_set_mode - set regulator operating mode
1991 * @regulator: regulator source
1992 * @mode: operating mode - one of the REGULATOR_MODE constants
1994 * Set regulator operating mode to increase regulator efficiency or improve
1995 * regulation performance.
1997 * NOTE: Regulator system constraints must be set for this regulator before
1998 * calling this function otherwise this call will fail.
2000 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2002 struct regulator_dev *rdev = regulator->rdev;
2003 int ret;
2004 int regulator_curr_mode;
2006 mutex_lock(&rdev->mutex);
2008 /* sanity check */
2009 if (!rdev->desc->ops->set_mode) {
2010 ret = -EINVAL;
2011 goto out;
2014 /* return if the same mode is requested */
2015 if (rdev->desc->ops->get_mode) {
2016 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2017 if (regulator_curr_mode == mode) {
2018 ret = 0;
2019 goto out;
2023 /* constraints check */
2024 ret = regulator_mode_constrain(rdev, &mode);
2025 if (ret < 0)
2026 goto out;
2028 ret = rdev->desc->ops->set_mode(rdev, mode);
2029 out:
2030 mutex_unlock(&rdev->mutex);
2031 return ret;
2033 EXPORT_SYMBOL_GPL(regulator_set_mode);
2035 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2037 int ret;
2039 mutex_lock(&rdev->mutex);
2041 /* sanity check */
2042 if (!rdev->desc->ops->get_mode) {
2043 ret = -EINVAL;
2044 goto out;
2047 ret = rdev->desc->ops->get_mode(rdev);
2048 out:
2049 mutex_unlock(&rdev->mutex);
2050 return ret;
2054 * regulator_get_mode - get regulator operating mode
2055 * @regulator: regulator source
2057 * Get the current regulator operating mode.
2059 unsigned int regulator_get_mode(struct regulator *regulator)
2061 return _regulator_get_mode(regulator->rdev);
2063 EXPORT_SYMBOL_GPL(regulator_get_mode);
2066 * regulator_set_optimum_mode - set regulator optimum operating mode
2067 * @regulator: regulator source
2068 * @uA_load: load current
2070 * Notifies the regulator core of a new device load. This is then used by
2071 * DRMS (if enabled by constraints) to set the most efficient regulator
2072 * operating mode for the new regulator loading.
2074 * Consumer devices notify their supply regulator of the maximum power
2075 * they will require (can be taken from device datasheet in the power
2076 * consumption tables) when they change operational status and hence power
2077 * state. Examples of operational state changes that can affect power
2078 * consumption are :-
2080 * o Device is opened / closed.
2081 * o Device I/O is about to begin or has just finished.
2082 * o Device is idling in between work.
2084 * This information is also exported via sysfs to userspace.
2086 * DRMS will sum the total requested load on the regulator and change
2087 * to the most efficient operating mode if platform constraints allow.
2089 * Returns the new regulator mode or error.
2091 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2093 struct regulator_dev *rdev = regulator->rdev;
2094 struct regulator *consumer;
2095 int ret, output_uV, input_uV, total_uA_load = 0;
2096 unsigned int mode;
2098 mutex_lock(&rdev->mutex);
2100 regulator->uA_load = uA_load;
2101 ret = regulator_check_drms(rdev);
2102 if (ret < 0)
2103 goto out;
2104 ret = -EINVAL;
2106 /* sanity check */
2107 if (!rdev->desc->ops->get_optimum_mode)
2108 goto out;
2110 /* get output voltage */
2111 output_uV = _regulator_get_voltage(rdev);
2112 if (output_uV <= 0) {
2113 rdev_err(rdev, "invalid output voltage found\n");
2114 goto out;
2117 /* get input voltage */
2118 input_uV = 0;
2119 if (rdev->supply)
2120 input_uV = _regulator_get_voltage(rdev->supply);
2121 if (input_uV <= 0)
2122 input_uV = rdev->constraints->input_uV;
2123 if (input_uV <= 0) {
2124 rdev_err(rdev, "invalid input voltage found\n");
2125 goto out;
2128 /* calc total requested load for this regulator */
2129 list_for_each_entry(consumer, &rdev->consumer_list, list)
2130 total_uA_load += consumer->uA_load;
2132 mode = rdev->desc->ops->get_optimum_mode(rdev,
2133 input_uV, output_uV,
2134 total_uA_load);
2135 ret = regulator_mode_constrain(rdev, &mode);
2136 if (ret < 0) {
2137 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2138 total_uA_load, input_uV, output_uV);
2139 goto out;
2142 ret = rdev->desc->ops->set_mode(rdev, mode);
2143 if (ret < 0) {
2144 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2145 goto out;
2147 ret = mode;
2148 out:
2149 mutex_unlock(&rdev->mutex);
2150 return ret;
2152 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2155 * regulator_register_notifier - register regulator event notifier
2156 * @regulator: regulator source
2157 * @nb: notifier block
2159 * Register notifier block to receive regulator events.
2161 int regulator_register_notifier(struct regulator *regulator,
2162 struct notifier_block *nb)
2164 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2165 nb);
2167 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2170 * regulator_unregister_notifier - unregister regulator event notifier
2171 * @regulator: regulator source
2172 * @nb: notifier block
2174 * Unregister regulator event notifier block.
2176 int regulator_unregister_notifier(struct regulator *regulator,
2177 struct notifier_block *nb)
2179 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2180 nb);
2182 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2184 /* notify regulator consumers and downstream regulator consumers.
2185 * Note mutex must be held by caller.
2187 static void _notifier_call_chain(struct regulator_dev *rdev,
2188 unsigned long event, void *data)
2190 struct regulator_dev *_rdev;
2192 /* call rdev chain first */
2193 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2195 /* now notify regulator we supply */
2196 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2197 mutex_lock(&_rdev->mutex);
2198 _notifier_call_chain(_rdev, event, data);
2199 mutex_unlock(&_rdev->mutex);
2204 * regulator_bulk_get - get multiple regulator consumers
2206 * @dev: Device to supply
2207 * @num_consumers: Number of consumers to register
2208 * @consumers: Configuration of consumers; clients are stored here.
2210 * @return 0 on success, an errno on failure.
2212 * This helper function allows drivers to get several regulator
2213 * consumers in one operation. If any of the regulators cannot be
2214 * acquired then any regulators that were allocated will be freed
2215 * before returning to the caller.
2217 int regulator_bulk_get(struct device *dev, int num_consumers,
2218 struct regulator_bulk_data *consumers)
2220 int i;
2221 int ret;
2223 for (i = 0; i < num_consumers; i++)
2224 consumers[i].consumer = NULL;
2226 for (i = 0; i < num_consumers; i++) {
2227 consumers[i].consumer = regulator_get(dev,
2228 consumers[i].supply);
2229 if (IS_ERR(consumers[i].consumer)) {
2230 ret = PTR_ERR(consumers[i].consumer);
2231 dev_err(dev, "Failed to get supply '%s': %d\n",
2232 consumers[i].supply, ret);
2233 consumers[i].consumer = NULL;
2234 goto err;
2238 return 0;
2240 err:
2241 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2242 regulator_put(consumers[i].consumer);
2244 return ret;
2246 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2249 * regulator_bulk_enable - enable multiple regulator consumers
2251 * @num_consumers: Number of consumers
2252 * @consumers: Consumer data; clients are stored here.
2253 * @return 0 on success, an errno on failure
2255 * This convenience API allows consumers to enable multiple regulator
2256 * clients in a single API call. If any consumers cannot be enabled
2257 * then any others that were enabled will be disabled again prior to
2258 * return.
2260 int regulator_bulk_enable(int num_consumers,
2261 struct regulator_bulk_data *consumers)
2263 int i;
2264 int ret;
2266 for (i = 0; i < num_consumers; i++) {
2267 ret = regulator_enable(consumers[i].consumer);
2268 if (ret != 0)
2269 goto err;
2272 return 0;
2274 err:
2275 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2276 for (--i; i >= 0; --i)
2277 regulator_disable(consumers[i].consumer);
2279 return ret;
2281 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2284 * regulator_bulk_disable - disable multiple regulator consumers
2286 * @num_consumers: Number of consumers
2287 * @consumers: Consumer data; clients are stored here.
2288 * @return 0 on success, an errno on failure
2290 * This convenience API allows consumers to disable multiple regulator
2291 * clients in a single API call. If any consumers cannot be enabled
2292 * then any others that were disabled will be disabled again prior to
2293 * return.
2295 int regulator_bulk_disable(int num_consumers,
2296 struct regulator_bulk_data *consumers)
2298 int i;
2299 int ret;
2301 for (i = 0; i < num_consumers; i++) {
2302 ret = regulator_disable(consumers[i].consumer);
2303 if (ret != 0)
2304 goto err;
2307 return 0;
2309 err:
2310 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2311 for (--i; i >= 0; --i)
2312 regulator_enable(consumers[i].consumer);
2314 return ret;
2316 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2319 * regulator_bulk_free - free multiple regulator consumers
2321 * @num_consumers: Number of consumers
2322 * @consumers: Consumer data; clients are stored here.
2324 * This convenience API allows consumers to free multiple regulator
2325 * clients in a single API call.
2327 void regulator_bulk_free(int num_consumers,
2328 struct regulator_bulk_data *consumers)
2330 int i;
2332 for (i = 0; i < num_consumers; i++) {
2333 regulator_put(consumers[i].consumer);
2334 consumers[i].consumer = NULL;
2337 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2340 * regulator_notifier_call_chain - call regulator event notifier
2341 * @rdev: regulator source
2342 * @event: notifier block
2343 * @data: callback-specific data.
2345 * Called by regulator drivers to notify clients a regulator event has
2346 * occurred. We also notify regulator clients downstream.
2347 * Note lock must be held by caller.
2349 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2350 unsigned long event, void *data)
2352 _notifier_call_chain(rdev, event, data);
2353 return NOTIFY_DONE;
2356 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2359 * regulator_mode_to_status - convert a regulator mode into a status
2361 * @mode: Mode to convert
2363 * Convert a regulator mode into a status.
2365 int regulator_mode_to_status(unsigned int mode)
2367 switch (mode) {
2368 case REGULATOR_MODE_FAST:
2369 return REGULATOR_STATUS_FAST;
2370 case REGULATOR_MODE_NORMAL:
2371 return REGULATOR_STATUS_NORMAL;
2372 case REGULATOR_MODE_IDLE:
2373 return REGULATOR_STATUS_IDLE;
2374 case REGULATOR_STATUS_STANDBY:
2375 return REGULATOR_STATUS_STANDBY;
2376 default:
2377 return 0;
2380 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2383 * To avoid cluttering sysfs (and memory) with useless state, only
2384 * create attributes that can be meaningfully displayed.
2386 static int add_regulator_attributes(struct regulator_dev *rdev)
2388 struct device *dev = &rdev->dev;
2389 struct regulator_ops *ops = rdev->desc->ops;
2390 int status = 0;
2392 /* some attributes need specific methods to be displayed */
2393 if (ops->get_voltage || ops->get_voltage_sel) {
2394 status = device_create_file(dev, &dev_attr_microvolts);
2395 if (status < 0)
2396 return status;
2398 if (ops->get_current_limit) {
2399 status = device_create_file(dev, &dev_attr_microamps);
2400 if (status < 0)
2401 return status;
2403 if (ops->get_mode) {
2404 status = device_create_file(dev, &dev_attr_opmode);
2405 if (status < 0)
2406 return status;
2408 if (ops->is_enabled) {
2409 status = device_create_file(dev, &dev_attr_state);
2410 if (status < 0)
2411 return status;
2413 if (ops->get_status) {
2414 status = device_create_file(dev, &dev_attr_status);
2415 if (status < 0)
2416 return status;
2419 /* some attributes are type-specific */
2420 if (rdev->desc->type == REGULATOR_CURRENT) {
2421 status = device_create_file(dev, &dev_attr_requested_microamps);
2422 if (status < 0)
2423 return status;
2426 /* all the other attributes exist to support constraints;
2427 * don't show them if there are no constraints, or if the
2428 * relevant supporting methods are missing.
2430 if (!rdev->constraints)
2431 return status;
2433 /* constraints need specific supporting methods */
2434 if (ops->set_voltage || ops->set_voltage_sel) {
2435 status = device_create_file(dev, &dev_attr_min_microvolts);
2436 if (status < 0)
2437 return status;
2438 status = device_create_file(dev, &dev_attr_max_microvolts);
2439 if (status < 0)
2440 return status;
2442 if (ops->set_current_limit) {
2443 status = device_create_file(dev, &dev_attr_min_microamps);
2444 if (status < 0)
2445 return status;
2446 status = device_create_file(dev, &dev_attr_max_microamps);
2447 if (status < 0)
2448 return status;
2451 /* suspend mode constraints need multiple supporting methods */
2452 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2453 return status;
2455 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2456 if (status < 0)
2457 return status;
2458 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2459 if (status < 0)
2460 return status;
2461 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2462 if (status < 0)
2463 return status;
2465 if (ops->set_suspend_voltage) {
2466 status = device_create_file(dev,
2467 &dev_attr_suspend_standby_microvolts);
2468 if (status < 0)
2469 return status;
2470 status = device_create_file(dev,
2471 &dev_attr_suspend_mem_microvolts);
2472 if (status < 0)
2473 return status;
2474 status = device_create_file(dev,
2475 &dev_attr_suspend_disk_microvolts);
2476 if (status < 0)
2477 return status;
2480 if (ops->set_suspend_mode) {
2481 status = device_create_file(dev,
2482 &dev_attr_suspend_standby_mode);
2483 if (status < 0)
2484 return status;
2485 status = device_create_file(dev,
2486 &dev_attr_suspend_mem_mode);
2487 if (status < 0)
2488 return status;
2489 status = device_create_file(dev,
2490 &dev_attr_suspend_disk_mode);
2491 if (status < 0)
2492 return status;
2495 return status;
2498 static void rdev_init_debugfs(struct regulator_dev *rdev)
2500 #ifdef CONFIG_DEBUG_FS
2501 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2502 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2503 rdev_warn(rdev, "Failed to create debugfs directory\n");
2504 rdev->debugfs = NULL;
2505 return;
2508 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2509 &rdev->use_count);
2510 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2511 &rdev->open_count);
2512 #endif
2516 * regulator_register - register regulator
2517 * @regulator_desc: regulator to register
2518 * @dev: struct device for the regulator
2519 * @init_data: platform provided init data, passed through by driver
2520 * @driver_data: private regulator data
2522 * Called by regulator drivers to register a regulator.
2523 * Returns 0 on success.
2525 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2526 struct device *dev, const struct regulator_init_data *init_data,
2527 void *driver_data)
2529 static atomic_t regulator_no = ATOMIC_INIT(0);
2530 struct regulator_dev *rdev;
2531 int ret, i;
2533 if (regulator_desc == NULL)
2534 return ERR_PTR(-EINVAL);
2536 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2537 return ERR_PTR(-EINVAL);
2539 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2540 regulator_desc->type != REGULATOR_CURRENT)
2541 return ERR_PTR(-EINVAL);
2543 if (!init_data)
2544 return ERR_PTR(-EINVAL);
2546 /* Only one of each should be implemented */
2547 WARN_ON(regulator_desc->ops->get_voltage &&
2548 regulator_desc->ops->get_voltage_sel);
2549 WARN_ON(regulator_desc->ops->set_voltage &&
2550 regulator_desc->ops->set_voltage_sel);
2552 /* If we're using selectors we must implement list_voltage. */
2553 if (regulator_desc->ops->get_voltage_sel &&
2554 !regulator_desc->ops->list_voltage) {
2555 return ERR_PTR(-EINVAL);
2557 if (regulator_desc->ops->set_voltage_sel &&
2558 !regulator_desc->ops->list_voltage) {
2559 return ERR_PTR(-EINVAL);
2562 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2563 if (rdev == NULL)
2564 return ERR_PTR(-ENOMEM);
2566 mutex_lock(&regulator_list_mutex);
2568 mutex_init(&rdev->mutex);
2569 rdev->reg_data = driver_data;
2570 rdev->owner = regulator_desc->owner;
2571 rdev->desc = regulator_desc;
2572 INIT_LIST_HEAD(&rdev->consumer_list);
2573 INIT_LIST_HEAD(&rdev->supply_list);
2574 INIT_LIST_HEAD(&rdev->list);
2575 INIT_LIST_HEAD(&rdev->slist);
2576 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2578 /* preform any regulator specific init */
2579 if (init_data->regulator_init) {
2580 ret = init_data->regulator_init(rdev->reg_data);
2581 if (ret < 0)
2582 goto clean;
2585 /* register with sysfs */
2586 rdev->dev.class = &regulator_class;
2587 rdev->dev.parent = dev;
2588 dev_set_name(&rdev->dev, "regulator.%d",
2589 atomic_inc_return(&regulator_no) - 1);
2590 ret = device_register(&rdev->dev);
2591 if (ret != 0) {
2592 put_device(&rdev->dev);
2593 goto clean;
2596 dev_set_drvdata(&rdev->dev, rdev);
2598 /* set regulator constraints */
2599 ret = set_machine_constraints(rdev, &init_data->constraints);
2600 if (ret < 0)
2601 goto scrub;
2603 /* add attributes supported by this regulator */
2604 ret = add_regulator_attributes(rdev);
2605 if (ret < 0)
2606 goto scrub;
2608 if (init_data->supply_regulator) {
2609 struct regulator_dev *r;
2610 int found = 0;
2612 list_for_each_entry(r, &regulator_list, list) {
2613 if (strcmp(rdev_get_name(r),
2614 init_data->supply_regulator) == 0) {
2615 found = 1;
2616 break;
2620 if (!found) {
2621 dev_err(dev, "Failed to find supply %s\n",
2622 init_data->supply_regulator);
2623 ret = -ENODEV;
2624 goto scrub;
2627 ret = set_supply(rdev, r);
2628 if (ret < 0)
2629 goto scrub;
2632 /* add consumers devices */
2633 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2634 ret = set_consumer_device_supply(rdev,
2635 init_data->consumer_supplies[i].dev,
2636 init_data->consumer_supplies[i].dev_name,
2637 init_data->consumer_supplies[i].supply);
2638 if (ret < 0) {
2639 dev_err(dev, "Failed to set supply %s\n",
2640 init_data->consumer_supplies[i].supply);
2641 goto unset_supplies;
2645 list_add(&rdev->list, &regulator_list);
2647 rdev_init_debugfs(rdev);
2648 out:
2649 mutex_unlock(&regulator_list_mutex);
2650 return rdev;
2652 unset_supplies:
2653 unset_regulator_supplies(rdev);
2655 scrub:
2656 device_unregister(&rdev->dev);
2657 /* device core frees rdev */
2658 rdev = ERR_PTR(ret);
2659 goto out;
2661 clean:
2662 kfree(rdev);
2663 rdev = ERR_PTR(ret);
2664 goto out;
2666 EXPORT_SYMBOL_GPL(regulator_register);
2669 * regulator_unregister - unregister regulator
2670 * @rdev: regulator to unregister
2672 * Called by regulator drivers to unregister a regulator.
2674 void regulator_unregister(struct regulator_dev *rdev)
2676 if (rdev == NULL)
2677 return;
2679 mutex_lock(&regulator_list_mutex);
2680 #ifdef CONFIG_DEBUG_FS
2681 debugfs_remove_recursive(rdev->debugfs);
2682 #endif
2683 WARN_ON(rdev->open_count);
2684 unset_regulator_supplies(rdev);
2685 list_del(&rdev->list);
2686 if (rdev->supply)
2687 sysfs_remove_link(&rdev->dev.kobj, "supply");
2688 device_unregister(&rdev->dev);
2689 kfree(rdev->constraints);
2690 mutex_unlock(&regulator_list_mutex);
2692 EXPORT_SYMBOL_GPL(regulator_unregister);
2695 * regulator_suspend_prepare - prepare regulators for system wide suspend
2696 * @state: system suspend state
2698 * Configure each regulator with it's suspend operating parameters for state.
2699 * This will usually be called by machine suspend code prior to supending.
2701 int regulator_suspend_prepare(suspend_state_t state)
2703 struct regulator_dev *rdev;
2704 int ret = 0;
2706 /* ON is handled by regulator active state */
2707 if (state == PM_SUSPEND_ON)
2708 return -EINVAL;
2710 mutex_lock(&regulator_list_mutex);
2711 list_for_each_entry(rdev, &regulator_list, list) {
2713 mutex_lock(&rdev->mutex);
2714 ret = suspend_prepare(rdev, state);
2715 mutex_unlock(&rdev->mutex);
2717 if (ret < 0) {
2718 rdev_err(rdev, "failed to prepare\n");
2719 goto out;
2722 out:
2723 mutex_unlock(&regulator_list_mutex);
2724 return ret;
2726 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2729 * regulator_suspend_finish - resume regulators from system wide suspend
2731 * Turn on regulators that might be turned off by regulator_suspend_prepare
2732 * and that should be turned on according to the regulators properties.
2734 int regulator_suspend_finish(void)
2736 struct regulator_dev *rdev;
2737 int ret = 0, error;
2739 mutex_lock(&regulator_list_mutex);
2740 list_for_each_entry(rdev, &regulator_list, list) {
2741 struct regulator_ops *ops = rdev->desc->ops;
2743 mutex_lock(&rdev->mutex);
2744 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2745 ops->enable) {
2746 error = ops->enable(rdev);
2747 if (error)
2748 ret = error;
2749 } else {
2750 if (!has_full_constraints)
2751 goto unlock;
2752 if (!ops->disable)
2753 goto unlock;
2754 if (ops->is_enabled && !ops->is_enabled(rdev))
2755 goto unlock;
2757 error = ops->disable(rdev);
2758 if (error)
2759 ret = error;
2761 unlock:
2762 mutex_unlock(&rdev->mutex);
2764 mutex_unlock(&regulator_list_mutex);
2765 return ret;
2767 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2770 * regulator_has_full_constraints - the system has fully specified constraints
2772 * Calling this function will cause the regulator API to disable all
2773 * regulators which have a zero use count and don't have an always_on
2774 * constraint in a late_initcall.
2776 * The intention is that this will become the default behaviour in a
2777 * future kernel release so users are encouraged to use this facility
2778 * now.
2780 void regulator_has_full_constraints(void)
2782 has_full_constraints = 1;
2784 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2787 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2789 * Calling this function will cause the regulator API to provide a
2790 * dummy regulator to consumers if no physical regulator is found,
2791 * allowing most consumers to proceed as though a regulator were
2792 * configured. This allows systems such as those with software
2793 * controllable regulators for the CPU core only to be brought up more
2794 * readily.
2796 void regulator_use_dummy_regulator(void)
2798 board_wants_dummy_regulator = true;
2800 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2803 * rdev_get_drvdata - get rdev regulator driver data
2804 * @rdev: regulator
2806 * Get rdev regulator driver private data. This call can be used in the
2807 * regulator driver context.
2809 void *rdev_get_drvdata(struct regulator_dev *rdev)
2811 return rdev->reg_data;
2813 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2816 * regulator_get_drvdata - get regulator driver data
2817 * @regulator: regulator
2819 * Get regulator driver private data. This call can be used in the consumer
2820 * driver context when non API regulator specific functions need to be called.
2822 void *regulator_get_drvdata(struct regulator *regulator)
2824 return regulator->rdev->reg_data;
2826 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2829 * regulator_set_drvdata - set regulator driver data
2830 * @regulator: regulator
2831 * @data: data
2833 void regulator_set_drvdata(struct regulator *regulator, void *data)
2835 regulator->rdev->reg_data = data;
2837 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2840 * regulator_get_id - get regulator ID
2841 * @rdev: regulator
2843 int rdev_get_id(struct regulator_dev *rdev)
2845 return rdev->desc->id;
2847 EXPORT_SYMBOL_GPL(rdev_get_id);
2849 struct device *rdev_get_dev(struct regulator_dev *rdev)
2851 return &rdev->dev;
2853 EXPORT_SYMBOL_GPL(rdev_get_dev);
2855 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2857 return reg_init_data->driver_data;
2859 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2861 static int __init regulator_init(void)
2863 int ret;
2865 ret = class_register(&regulator_class);
2867 #ifdef CONFIG_DEBUG_FS
2868 debugfs_root = debugfs_create_dir("regulator", NULL);
2869 if (IS_ERR(debugfs_root) || !debugfs_root) {
2870 pr_warn("regulator: Failed to create debugfs directory\n");
2871 debugfs_root = NULL;
2873 #endif
2875 regulator_dummy_init();
2877 return ret;
2880 /* init early to allow our consumers to complete system booting */
2881 core_initcall(regulator_init);
2883 static int __init regulator_init_complete(void)
2885 struct regulator_dev *rdev;
2886 struct regulator_ops *ops;
2887 struct regulation_constraints *c;
2888 int enabled, ret;
2890 mutex_lock(&regulator_list_mutex);
2892 /* If we have a full configuration then disable any regulators
2893 * which are not in use or always_on. This will become the
2894 * default behaviour in the future.
2896 list_for_each_entry(rdev, &regulator_list, list) {
2897 ops = rdev->desc->ops;
2898 c = rdev->constraints;
2900 if (!ops->disable || (c && c->always_on))
2901 continue;
2903 mutex_lock(&rdev->mutex);
2905 if (rdev->use_count)
2906 goto unlock;
2908 /* If we can't read the status assume it's on. */
2909 if (ops->is_enabled)
2910 enabled = ops->is_enabled(rdev);
2911 else
2912 enabled = 1;
2914 if (!enabled)
2915 goto unlock;
2917 if (has_full_constraints) {
2918 /* We log since this may kill the system if it
2919 * goes wrong. */
2920 rdev_info(rdev, "disabling\n");
2921 ret = ops->disable(rdev);
2922 if (ret != 0) {
2923 rdev_err(rdev, "couldn't disable: %d\n", ret);
2925 } else {
2926 /* The intention is that in future we will
2927 * assume that full constraints are provided
2928 * so warn even if we aren't going to do
2929 * anything here.
2931 rdev_warn(rdev, "incomplete constraints, leaving on\n");
2934 unlock:
2935 mutex_unlock(&rdev->mutex);
2938 mutex_unlock(&regulator_list_mutex);
2940 return 0;
2942 late_initcall(regulator_init_complete);