[NET]: Make NAPI polling independent of struct net_device objects.
[linux-2.6/kvm.git] / drivers / net / chelsio / sge.c
blobffa7e649a6ef37514333cd225ab07c6e1fe61d12
1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
40 #include "common.h"
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
65 #define SGE_CMDQ_N 2
66 #define SGE_FREELQ_N 2
67 #define SGE_CMDQ0_E_N 1024
68 #define SGE_CMDQ1_E_N 128
69 #define SGE_FREEL_SIZE 4096
70 #define SGE_JUMBO_FREEL_SIZE 512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N 1024
73 #define SGE_INTRTIMER_NRES 1000
74 #define SGE_RX_SM_BUF_SIZE 1536
75 #define SGE_TX_DESC_MAX_PLEN 16384
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80 * Period of the TX buffer reclaim timer. This timer does not need to run
81 * frequently as TX buffers are usually reclaimed by new TX packets.
83 #define TX_RECLAIM_PERIOD (HZ / 4)
85 #define M_CMD_LEN 0x7fffffff
86 #define V_CMD_LEN(v) (v)
87 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v) ((v) << 31)
89 #define V_CMD_GEN2(v) (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP (1 << 2)
92 #define V_CMD_EOP(v) ((v) << 3)
95 * Command queue, receive buffer list, and response queue descriptors.
97 #if defined(__BIG_ENDIAN_BITFIELD)
98 struct cmdQ_e {
99 u32 addr_lo;
100 u32 len_gen;
101 u32 flags;
102 u32 addr_hi;
105 struct freelQ_e {
106 u32 addr_lo;
107 u32 len_gen;
108 u32 gen2;
109 u32 addr_hi;
112 struct respQ_e {
113 u32 Qsleeping : 4;
114 u32 Cmdq1CreditReturn : 5;
115 u32 Cmdq1DmaComplete : 5;
116 u32 Cmdq0CreditReturn : 5;
117 u32 Cmdq0DmaComplete : 5;
118 u32 FreelistQid : 2;
119 u32 CreditValid : 1;
120 u32 DataValid : 1;
121 u32 Offload : 1;
122 u32 Eop : 1;
123 u32 Sop : 1;
124 u32 GenerationBit : 1;
125 u32 BufferLength;
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
128 struct cmdQ_e {
129 u32 len_gen;
130 u32 addr_lo;
131 u32 addr_hi;
132 u32 flags;
135 struct freelQ_e {
136 u32 len_gen;
137 u32 addr_lo;
138 u32 addr_hi;
139 u32 gen2;
142 struct respQ_e {
143 u32 BufferLength;
144 u32 GenerationBit : 1;
145 u32 Sop : 1;
146 u32 Eop : 1;
147 u32 Offload : 1;
148 u32 DataValid : 1;
149 u32 CreditValid : 1;
150 u32 FreelistQid : 2;
151 u32 Cmdq0DmaComplete : 5;
152 u32 Cmdq0CreditReturn : 5;
153 u32 Cmdq1DmaComplete : 5;
154 u32 Cmdq1CreditReturn : 5;
155 u32 Qsleeping : 4;
157 #endif
160 * SW Context Command and Freelist Queue Descriptors
162 struct cmdQ_ce {
163 struct sk_buff *skb;
164 DECLARE_PCI_UNMAP_ADDR(dma_addr);
165 DECLARE_PCI_UNMAP_LEN(dma_len);
168 struct freelQ_ce {
169 struct sk_buff *skb;
170 DECLARE_PCI_UNMAP_ADDR(dma_addr);
171 DECLARE_PCI_UNMAP_LEN(dma_len);
175 * SW command, freelist and response rings
177 struct cmdQ {
178 unsigned long status; /* HW DMA fetch status */
179 unsigned int in_use; /* # of in-use command descriptors */
180 unsigned int size; /* # of descriptors */
181 unsigned int processed; /* total # of descs HW has processed */
182 unsigned int cleaned; /* total # of descs SW has reclaimed */
183 unsigned int stop_thres; /* SW TX queue suspend threshold */
184 u16 pidx; /* producer index (SW) */
185 u16 cidx; /* consumer index (HW) */
186 u8 genbit; /* current generation (=valid) bit */
187 u8 sop; /* is next entry start of packet? */
188 struct cmdQ_e *entries; /* HW command descriptor Q */
189 struct cmdQ_ce *centries; /* SW command context descriptor Q */
190 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
191 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
194 struct freelQ {
195 unsigned int credits; /* # of available RX buffers */
196 unsigned int size; /* free list capacity */
197 u16 pidx; /* producer index (SW) */
198 u16 cidx; /* consumer index (HW) */
199 u16 rx_buffer_size; /* Buffer size on this free list */
200 u16 dma_offset; /* DMA offset to align IP headers */
201 u16 recycleq_idx; /* skb recycle q to use */
202 u8 genbit; /* current generation (=valid) bit */
203 struct freelQ_e *entries; /* HW freelist descriptor Q */
204 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
205 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
208 struct respQ {
209 unsigned int credits; /* credits to be returned to SGE */
210 unsigned int size; /* # of response Q descriptors */
211 u16 cidx; /* consumer index (SW) */
212 u8 genbit; /* current generation(=valid) bit */
213 struct respQ_e *entries; /* HW response descriptor Q */
214 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
217 /* Bit flags for cmdQ.status */
218 enum {
219 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
220 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
223 /* T204 TX SW scheduler */
225 /* Per T204 TX port */
226 struct sched_port {
227 unsigned int avail; /* available bits - quota */
228 unsigned int drain_bits_per_1024ns; /* drain rate */
229 unsigned int speed; /* drain rate, mbps */
230 unsigned int mtu; /* mtu size */
231 struct sk_buff_head skbq; /* pending skbs */
234 /* Per T204 device */
235 struct sched {
236 ktime_t last_updated; /* last time quotas were computed */
237 unsigned int max_avail; /* max bits to be sent to any port */
238 unsigned int port; /* port index (round robin ports) */
239 unsigned int num; /* num skbs in per port queues */
240 struct sched_port p[MAX_NPORTS];
241 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
243 static void restart_sched(unsigned long);
247 * Main SGE data structure
249 * Interrupts are handled by a single CPU and it is likely that on a MP system
250 * the application is migrated to another CPU. In that scenario, we try to
251 * seperate the RX(in irq context) and TX state in order to decrease memory
252 * contention.
254 struct sge {
255 struct adapter *adapter; /* adapter backpointer */
256 struct net_device *netdev; /* netdevice backpointer */
257 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
258 struct respQ respQ; /* response Q */
259 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
260 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
261 unsigned int jumbo_fl; /* jumbo freelist Q index */
262 unsigned int intrtimer_nres; /* no-resource interrupt timer */
263 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
264 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
265 struct timer_list espibug_timer;
266 unsigned long espibug_timeout;
267 struct sk_buff *espibug_skb[MAX_NPORTS];
268 u32 sge_control; /* shadow value of sge control reg */
269 struct sge_intr_counts stats;
270 struct sge_port_stats *port_stats[MAX_NPORTS];
271 struct sched *tx_sched;
272 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
276 * stop tasklet and free all pending skb's
278 static void tx_sched_stop(struct sge *sge)
280 struct sched *s = sge->tx_sched;
281 int i;
283 tasklet_kill(&s->sched_tsk);
285 for (i = 0; i < MAX_NPORTS; i++)
286 __skb_queue_purge(&s->p[s->port].skbq);
290 * t1_sched_update_parms() is called when the MTU or link speed changes. It
291 * re-computes scheduler parameters to scope with the change.
293 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
294 unsigned int mtu, unsigned int speed)
296 struct sched *s = sge->tx_sched;
297 struct sched_port *p = &s->p[port];
298 unsigned int max_avail_segs;
300 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
301 if (speed)
302 p->speed = speed;
303 if (mtu)
304 p->mtu = mtu;
306 if (speed || mtu) {
307 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
308 do_div(drain, (p->mtu + 50) * 1000);
309 p->drain_bits_per_1024ns = (unsigned int) drain;
311 if (p->speed < 1000)
312 p->drain_bits_per_1024ns =
313 90 * p->drain_bits_per_1024ns / 100;
316 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
317 p->drain_bits_per_1024ns -= 16;
318 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
319 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
320 } else {
321 s->max_avail = 16384;
322 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
325 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
326 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
327 p->speed, s->max_avail, max_avail_segs,
328 p->drain_bits_per_1024ns);
330 return max_avail_segs * (p->mtu - 40);
334 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
335 * data that can be pushed per port.
337 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
339 struct sched *s = sge->tx_sched;
340 unsigned int i;
342 s->max_avail = val;
343 for (i = 0; i < MAX_NPORTS; i++)
344 t1_sched_update_parms(sge, i, 0, 0);
348 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
349 * is draining.
351 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
352 unsigned int val)
354 struct sched *s = sge->tx_sched;
355 struct sched_port *p = &s->p[port];
356 p->drain_bits_per_1024ns = val * 1024 / 1000;
357 t1_sched_update_parms(sge, port, 0, 0);
362 * get_clock() implements a ns clock (see ktime_get)
364 static inline ktime_t get_clock(void)
366 struct timespec ts;
368 ktime_get_ts(&ts);
369 return timespec_to_ktime(ts);
373 * tx_sched_init() allocates resources and does basic initialization.
375 static int tx_sched_init(struct sge *sge)
377 struct sched *s;
378 int i;
380 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
381 if (!s)
382 return -ENOMEM;
384 pr_debug("tx_sched_init\n");
385 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
386 sge->tx_sched = s;
388 for (i = 0; i < MAX_NPORTS; i++) {
389 skb_queue_head_init(&s->p[i].skbq);
390 t1_sched_update_parms(sge, i, 1500, 1000);
393 return 0;
397 * sched_update_avail() computes the delta since the last time it was called
398 * and updates the per port quota (number of bits that can be sent to the any
399 * port).
401 static inline int sched_update_avail(struct sge *sge)
403 struct sched *s = sge->tx_sched;
404 ktime_t now = get_clock();
405 unsigned int i;
406 long long delta_time_ns;
408 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
410 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
411 if (delta_time_ns < 15000)
412 return 0;
414 for (i = 0; i < MAX_NPORTS; i++) {
415 struct sched_port *p = &s->p[i];
416 unsigned int delta_avail;
418 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
419 p->avail = min(p->avail + delta_avail, s->max_avail);
422 s->last_updated = now;
424 return 1;
428 * sched_skb() is called from two different places. In the tx path, any
429 * packet generating load on an output port will call sched_skb()
430 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
431 * context (skb == NULL).
432 * The scheduler only returns a skb (which will then be sent) if the
433 * length of the skb is <= the current quota of the output port.
435 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
436 unsigned int credits)
438 struct sched *s = sge->tx_sched;
439 struct sk_buff_head *skbq;
440 unsigned int i, len, update = 1;
442 pr_debug("sched_skb %p\n", skb);
443 if (!skb) {
444 if (!s->num)
445 return NULL;
446 } else {
447 skbq = &s->p[skb->dev->if_port].skbq;
448 __skb_queue_tail(skbq, skb);
449 s->num++;
450 skb = NULL;
453 if (credits < MAX_SKB_FRAGS + 1)
454 goto out;
456 again:
457 for (i = 0; i < MAX_NPORTS; i++) {
458 s->port = ++s->port & (MAX_NPORTS - 1);
459 skbq = &s->p[s->port].skbq;
461 skb = skb_peek(skbq);
463 if (!skb)
464 continue;
466 len = skb->len;
467 if (len <= s->p[s->port].avail) {
468 s->p[s->port].avail -= len;
469 s->num--;
470 __skb_unlink(skb, skbq);
471 goto out;
473 skb = NULL;
476 if (update-- && sched_update_avail(sge))
477 goto again;
479 out:
480 /* If there are more pending skbs, we use the hardware to schedule us
481 * again.
483 if (s->num && !skb) {
484 struct cmdQ *q = &sge->cmdQ[0];
485 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
486 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
487 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
488 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
491 pr_debug("sched_skb ret %p\n", skb);
493 return skb;
497 * PIO to indicate that memory mapped Q contains valid descriptor(s).
499 static inline void doorbell_pio(struct adapter *adapter, u32 val)
501 wmb();
502 writel(val, adapter->regs + A_SG_DOORBELL);
506 * Frees all RX buffers on the freelist Q. The caller must make sure that
507 * the SGE is turned off before calling this function.
509 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
511 unsigned int cidx = q->cidx;
513 while (q->credits--) {
514 struct freelQ_ce *ce = &q->centries[cidx];
516 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
517 pci_unmap_len(ce, dma_len),
518 PCI_DMA_FROMDEVICE);
519 dev_kfree_skb(ce->skb);
520 ce->skb = NULL;
521 if (++cidx == q->size)
522 cidx = 0;
527 * Free RX free list and response queue resources.
529 static void free_rx_resources(struct sge *sge)
531 struct pci_dev *pdev = sge->adapter->pdev;
532 unsigned int size, i;
534 if (sge->respQ.entries) {
535 size = sizeof(struct respQ_e) * sge->respQ.size;
536 pci_free_consistent(pdev, size, sge->respQ.entries,
537 sge->respQ.dma_addr);
540 for (i = 0; i < SGE_FREELQ_N; i++) {
541 struct freelQ *q = &sge->freelQ[i];
543 if (q->centries) {
544 free_freelQ_buffers(pdev, q);
545 kfree(q->centries);
547 if (q->entries) {
548 size = sizeof(struct freelQ_e) * q->size;
549 pci_free_consistent(pdev, size, q->entries,
550 q->dma_addr);
556 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
557 * response queue.
559 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
561 struct pci_dev *pdev = sge->adapter->pdev;
562 unsigned int size, i;
564 for (i = 0; i < SGE_FREELQ_N; i++) {
565 struct freelQ *q = &sge->freelQ[i];
567 q->genbit = 1;
568 q->size = p->freelQ_size[i];
569 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
570 size = sizeof(struct freelQ_e) * q->size;
571 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
572 if (!q->entries)
573 goto err_no_mem;
575 size = sizeof(struct freelQ_ce) * q->size;
576 q->centries = kzalloc(size, GFP_KERNEL);
577 if (!q->centries)
578 goto err_no_mem;
582 * Calculate the buffer sizes for the two free lists. FL0 accommodates
583 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
584 * including all the sk_buff overhead.
586 * Note: For T2 FL0 and FL1 are reversed.
588 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
589 sizeof(struct cpl_rx_data) +
590 sge->freelQ[!sge->jumbo_fl].dma_offset;
592 size = (16 * 1024) -
593 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
595 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
598 * Setup which skb recycle Q should be used when recycling buffers from
599 * each free list.
601 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
602 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
604 sge->respQ.genbit = 1;
605 sge->respQ.size = SGE_RESPQ_E_N;
606 sge->respQ.credits = 0;
607 size = sizeof(struct respQ_e) * sge->respQ.size;
608 sge->respQ.entries =
609 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
610 if (!sge->respQ.entries)
611 goto err_no_mem;
612 return 0;
614 err_no_mem:
615 free_rx_resources(sge);
616 return -ENOMEM;
620 * Reclaims n TX descriptors and frees the buffers associated with them.
622 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
624 struct cmdQ_ce *ce;
625 struct pci_dev *pdev = sge->adapter->pdev;
626 unsigned int cidx = q->cidx;
628 q->in_use -= n;
629 ce = &q->centries[cidx];
630 while (n--) {
631 if (likely(pci_unmap_len(ce, dma_len))) {
632 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
633 pci_unmap_len(ce, dma_len),
634 PCI_DMA_TODEVICE);
635 if (q->sop)
636 q->sop = 0;
638 if (ce->skb) {
639 dev_kfree_skb_any(ce->skb);
640 q->sop = 1;
642 ce++;
643 if (++cidx == q->size) {
644 cidx = 0;
645 ce = q->centries;
648 q->cidx = cidx;
652 * Free TX resources.
654 * Assumes that SGE is stopped and all interrupts are disabled.
656 static void free_tx_resources(struct sge *sge)
658 struct pci_dev *pdev = sge->adapter->pdev;
659 unsigned int size, i;
661 for (i = 0; i < SGE_CMDQ_N; i++) {
662 struct cmdQ *q = &sge->cmdQ[i];
664 if (q->centries) {
665 if (q->in_use)
666 free_cmdQ_buffers(sge, q, q->in_use);
667 kfree(q->centries);
669 if (q->entries) {
670 size = sizeof(struct cmdQ_e) * q->size;
671 pci_free_consistent(pdev, size, q->entries,
672 q->dma_addr);
678 * Allocates basic TX resources, consisting of memory mapped command Qs.
680 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
682 struct pci_dev *pdev = sge->adapter->pdev;
683 unsigned int size, i;
685 for (i = 0; i < SGE_CMDQ_N; i++) {
686 struct cmdQ *q = &sge->cmdQ[i];
688 q->genbit = 1;
689 q->sop = 1;
690 q->size = p->cmdQ_size[i];
691 q->in_use = 0;
692 q->status = 0;
693 q->processed = q->cleaned = 0;
694 q->stop_thres = 0;
695 spin_lock_init(&q->lock);
696 size = sizeof(struct cmdQ_e) * q->size;
697 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
698 if (!q->entries)
699 goto err_no_mem;
701 size = sizeof(struct cmdQ_ce) * q->size;
702 q->centries = kzalloc(size, GFP_KERNEL);
703 if (!q->centries)
704 goto err_no_mem;
708 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
709 * only. For queue 0 set the stop threshold so we can handle one more
710 * packet from each port, plus reserve an additional 24 entries for
711 * Ethernet packets only. Queue 1 never suspends nor do we reserve
712 * space for Ethernet packets.
714 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
715 (MAX_SKB_FRAGS + 1);
716 return 0;
718 err_no_mem:
719 free_tx_resources(sge);
720 return -ENOMEM;
723 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
724 u32 size, int base_reg_lo,
725 int base_reg_hi, int size_reg)
727 writel((u32)addr, adapter->regs + base_reg_lo);
728 writel(addr >> 32, adapter->regs + base_reg_hi);
729 writel(size, adapter->regs + size_reg);
733 * Enable/disable VLAN acceleration.
735 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
737 struct sge *sge = adapter->sge;
739 sge->sge_control &= ~F_VLAN_XTRACT;
740 if (on_off)
741 sge->sge_control |= F_VLAN_XTRACT;
742 if (adapter->open_device_map) {
743 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
744 readl(adapter->regs + A_SG_CONTROL); /* flush */
749 * Programs the various SGE registers. However, the engine is not yet enabled,
750 * but sge->sge_control is setup and ready to go.
752 static void configure_sge(struct sge *sge, struct sge_params *p)
754 struct adapter *ap = sge->adapter;
756 writel(0, ap->regs + A_SG_CONTROL);
757 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
758 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
759 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
760 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
761 setup_ring_params(ap, sge->freelQ[0].dma_addr,
762 sge->freelQ[0].size, A_SG_FL0BASELWR,
763 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
764 setup_ring_params(ap, sge->freelQ[1].dma_addr,
765 sge->freelQ[1].size, A_SG_FL1BASELWR,
766 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
768 /* The threshold comparison uses <. */
769 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
771 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
772 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
773 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
775 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
776 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
777 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
778 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
780 #if defined(__BIG_ENDIAN_BITFIELD)
781 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
782 #endif
784 /* Initialize no-resource timer */
785 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
787 t1_sge_set_coalesce_params(sge, p);
791 * Return the payload capacity of the jumbo free-list buffers.
793 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
795 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
796 sge->freelQ[sge->jumbo_fl].dma_offset -
797 sizeof(struct cpl_rx_data);
801 * Frees all SGE related resources and the sge structure itself
803 void t1_sge_destroy(struct sge *sge)
805 int i;
807 for_each_port(sge->adapter, i)
808 free_percpu(sge->port_stats[i]);
810 kfree(sge->tx_sched);
811 free_tx_resources(sge);
812 free_rx_resources(sge);
813 kfree(sge);
817 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
818 * context Q) until the Q is full or alloc_skb fails.
820 * It is possible that the generation bits already match, indicating that the
821 * buffer is already valid and nothing needs to be done. This happens when we
822 * copied a received buffer into a new sk_buff during the interrupt processing.
824 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
825 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
826 * aligned.
828 static void refill_free_list(struct sge *sge, struct freelQ *q)
830 struct pci_dev *pdev = sge->adapter->pdev;
831 struct freelQ_ce *ce = &q->centries[q->pidx];
832 struct freelQ_e *e = &q->entries[q->pidx];
833 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
835 while (q->credits < q->size) {
836 struct sk_buff *skb;
837 dma_addr_t mapping;
839 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
840 if (!skb)
841 break;
843 skb_reserve(skb, q->dma_offset);
844 mapping = pci_map_single(pdev, skb->data, dma_len,
845 PCI_DMA_FROMDEVICE);
846 skb_reserve(skb, sge->rx_pkt_pad);
848 ce->skb = skb;
849 pci_unmap_addr_set(ce, dma_addr, mapping);
850 pci_unmap_len_set(ce, dma_len, dma_len);
851 e->addr_lo = (u32)mapping;
852 e->addr_hi = (u64)mapping >> 32;
853 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
854 wmb();
855 e->gen2 = V_CMD_GEN2(q->genbit);
857 e++;
858 ce++;
859 if (++q->pidx == q->size) {
860 q->pidx = 0;
861 q->genbit ^= 1;
862 ce = q->centries;
863 e = q->entries;
865 q->credits++;
870 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
871 * of both rings, we go into 'few interrupt mode' in order to give the system
872 * time to free up resources.
874 static void freelQs_empty(struct sge *sge)
876 struct adapter *adapter = sge->adapter;
877 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
878 u32 irqholdoff_reg;
880 refill_free_list(sge, &sge->freelQ[0]);
881 refill_free_list(sge, &sge->freelQ[1]);
883 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
884 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
885 irq_reg |= F_FL_EXHAUSTED;
886 irqholdoff_reg = sge->fixed_intrtimer;
887 } else {
888 /* Clear the F_FL_EXHAUSTED interrupts for now */
889 irq_reg &= ~F_FL_EXHAUSTED;
890 irqholdoff_reg = sge->intrtimer_nres;
892 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
893 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
895 /* We reenable the Qs to force a freelist GTS interrupt later */
896 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
899 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
900 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
901 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
902 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
905 * Disable SGE Interrupts
907 void t1_sge_intr_disable(struct sge *sge)
909 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
911 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
912 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
916 * Enable SGE interrupts.
918 void t1_sge_intr_enable(struct sge *sge)
920 u32 en = SGE_INT_ENABLE;
921 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
923 if (sge->adapter->flags & TSO_CAPABLE)
924 en &= ~F_PACKET_TOO_BIG;
925 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
926 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
930 * Clear SGE interrupts.
932 void t1_sge_intr_clear(struct sge *sge)
934 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
935 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
939 * SGE 'Error' interrupt handler
941 int t1_sge_intr_error_handler(struct sge *sge)
943 struct adapter *adapter = sge->adapter;
944 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
946 if (adapter->flags & TSO_CAPABLE)
947 cause &= ~F_PACKET_TOO_BIG;
948 if (cause & F_RESPQ_EXHAUSTED)
949 sge->stats.respQ_empty++;
950 if (cause & F_RESPQ_OVERFLOW) {
951 sge->stats.respQ_overflow++;
952 CH_ALERT("%s: SGE response queue overflow\n",
953 adapter->name);
955 if (cause & F_FL_EXHAUSTED) {
956 sge->stats.freelistQ_empty++;
957 freelQs_empty(sge);
959 if (cause & F_PACKET_TOO_BIG) {
960 sge->stats.pkt_too_big++;
961 CH_ALERT("%s: SGE max packet size exceeded\n",
962 adapter->name);
964 if (cause & F_PACKET_MISMATCH) {
965 sge->stats.pkt_mismatch++;
966 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
968 if (cause & SGE_INT_FATAL)
969 t1_fatal_err(adapter);
971 writel(cause, adapter->regs + A_SG_INT_CAUSE);
972 return 0;
975 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
977 return &sge->stats;
980 void t1_sge_get_port_stats(const struct sge *sge, int port,
981 struct sge_port_stats *ss)
983 int cpu;
985 memset(ss, 0, sizeof(*ss));
986 for_each_possible_cpu(cpu) {
987 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
989 ss->rx_packets += st->rx_packets;
990 ss->rx_cso_good += st->rx_cso_good;
991 ss->tx_packets += st->tx_packets;
992 ss->tx_cso += st->tx_cso;
993 ss->tx_tso += st->tx_tso;
994 ss->vlan_xtract += st->vlan_xtract;
995 ss->vlan_insert += st->vlan_insert;
1000 * recycle_fl_buf - recycle a free list buffer
1001 * @fl: the free list
1002 * @idx: index of buffer to recycle
1004 * Recycles the specified buffer on the given free list by adding it at
1005 * the next available slot on the list.
1007 static void recycle_fl_buf(struct freelQ *fl, int idx)
1009 struct freelQ_e *from = &fl->entries[idx];
1010 struct freelQ_e *to = &fl->entries[fl->pidx];
1012 fl->centries[fl->pidx] = fl->centries[idx];
1013 to->addr_lo = from->addr_lo;
1014 to->addr_hi = from->addr_hi;
1015 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1016 wmb();
1017 to->gen2 = V_CMD_GEN2(fl->genbit);
1018 fl->credits++;
1020 if (++fl->pidx == fl->size) {
1021 fl->pidx = 0;
1022 fl->genbit ^= 1;
1026 static int copybreak __read_mostly = 256;
1027 module_param(copybreak, int, 0);
1028 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1031 * get_packet - return the next ingress packet buffer
1032 * @pdev: the PCI device that received the packet
1033 * @fl: the SGE free list holding the packet
1034 * @len: the actual packet length, excluding any SGE padding
1035 * @dma_pad: padding at beginning of buffer left by SGE DMA
1036 * @skb_pad: padding to be used if the packet is copied
1037 * @copy_thres: length threshold under which a packet should be copied
1038 * @drop_thres: # of remaining buffers before we start dropping packets
1040 * Get the next packet from a free list and complete setup of the
1041 * sk_buff. If the packet is small we make a copy and recycle the
1042 * original buffer, otherwise we use the original buffer itself. If a
1043 * positive drop threshold is supplied packets are dropped and their
1044 * buffers recycled if (a) the number of remaining buffers is under the
1045 * threshold and the packet is too big to copy, or (b) the packet should
1046 * be copied but there is no memory for the copy.
1048 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1049 struct freelQ *fl, unsigned int len)
1051 struct sk_buff *skb;
1052 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1054 if (len < copybreak) {
1055 skb = alloc_skb(len + 2, GFP_ATOMIC);
1056 if (!skb)
1057 goto use_orig_buf;
1059 skb_reserve(skb, 2); /* align IP header */
1060 skb_put(skb, len);
1061 pci_dma_sync_single_for_cpu(pdev,
1062 pci_unmap_addr(ce, dma_addr),
1063 pci_unmap_len(ce, dma_len),
1064 PCI_DMA_FROMDEVICE);
1065 skb_copy_from_linear_data(ce->skb, skb->data, len);
1066 pci_dma_sync_single_for_device(pdev,
1067 pci_unmap_addr(ce, dma_addr),
1068 pci_unmap_len(ce, dma_len),
1069 PCI_DMA_FROMDEVICE);
1070 recycle_fl_buf(fl, fl->cidx);
1071 return skb;
1074 use_orig_buf:
1075 if (fl->credits < 2) {
1076 recycle_fl_buf(fl, fl->cidx);
1077 return NULL;
1080 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1081 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1082 skb = ce->skb;
1083 prefetch(skb->data);
1085 skb_put(skb, len);
1086 return skb;
1090 * unexpected_offload - handle an unexpected offload packet
1091 * @adapter: the adapter
1092 * @fl: the free list that received the packet
1094 * Called when we receive an unexpected offload packet (e.g., the TOE
1095 * function is disabled or the card is a NIC). Prints a message and
1096 * recycles the buffer.
1098 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1100 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1101 struct sk_buff *skb = ce->skb;
1103 pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1104 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1105 CH_ERR("%s: unexpected offload packet, cmd %u\n",
1106 adapter->name, *skb->data);
1107 recycle_fl_buf(fl, fl->cidx);
1111 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1112 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1113 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1114 * Note that the *_large_page_tx_descs stuff will be optimized out when
1115 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1117 * compute_large_page_descs() computes how many additional descriptors are
1118 * required to break down the stack's request.
1120 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1122 unsigned int count = 0;
1124 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1125 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1126 unsigned int i, len = skb->len - skb->data_len;
1127 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 count++;
1129 len -= SGE_TX_DESC_MAX_PLEN;
1131 for (i = 0; nfrags--; i++) {
1132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133 len = frag->size;
1134 while (len > SGE_TX_DESC_MAX_PLEN) {
1135 count++;
1136 len -= SGE_TX_DESC_MAX_PLEN;
1140 return count;
1144 * Write a cmdQ entry.
1146 * Since this function writes the 'flags' field, it must not be used to
1147 * write the first cmdQ entry.
1149 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1150 unsigned int len, unsigned int gen,
1151 unsigned int eop)
1153 if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1154 BUG();
1155 e->addr_lo = (u32)mapping;
1156 e->addr_hi = (u64)mapping >> 32;
1157 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1158 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1162 * See comment for previous function.
1164 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1165 * *desc_len exceeds HW's capability.
1167 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1168 struct cmdQ_e **e,
1169 struct cmdQ_ce **ce,
1170 unsigned int *gen,
1171 dma_addr_t *desc_mapping,
1172 unsigned int *desc_len,
1173 unsigned int nfrags,
1174 struct cmdQ *q)
1176 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1177 struct cmdQ_e *e1 = *e;
1178 struct cmdQ_ce *ce1 = *ce;
1180 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1181 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1182 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1183 *gen, nfrags == 0 && *desc_len == 0);
1184 ce1->skb = NULL;
1185 pci_unmap_len_set(ce1, dma_len, 0);
1186 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1187 if (*desc_len) {
1188 ce1++;
1189 e1++;
1190 if (++pidx == q->size) {
1191 pidx = 0;
1192 *gen ^= 1;
1193 ce1 = q->centries;
1194 e1 = q->entries;
1198 *e = e1;
1199 *ce = ce1;
1201 return pidx;
1205 * Write the command descriptors to transmit the given skb starting at
1206 * descriptor pidx with the given generation.
1208 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1209 unsigned int pidx, unsigned int gen,
1210 struct cmdQ *q)
1212 dma_addr_t mapping, desc_mapping;
1213 struct cmdQ_e *e, *e1;
1214 struct cmdQ_ce *ce;
1215 unsigned int i, flags, first_desc_len, desc_len,
1216 nfrags = skb_shinfo(skb)->nr_frags;
1218 e = e1 = &q->entries[pidx];
1219 ce = &q->centries[pidx];
1221 mapping = pci_map_single(adapter->pdev, skb->data,
1222 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1224 desc_mapping = mapping;
1225 desc_len = skb->len - skb->data_len;
1227 flags = F_CMD_DATAVALID | F_CMD_SOP |
1228 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1229 V_CMD_GEN2(gen);
1230 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1231 desc_len : SGE_TX_DESC_MAX_PLEN;
1232 e->addr_lo = (u32)desc_mapping;
1233 e->addr_hi = (u64)desc_mapping >> 32;
1234 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1235 ce->skb = NULL;
1236 pci_unmap_len_set(ce, dma_len, 0);
1238 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1239 desc_len > SGE_TX_DESC_MAX_PLEN) {
1240 desc_mapping += first_desc_len;
1241 desc_len -= first_desc_len;
1242 e1++;
1243 ce++;
1244 if (++pidx == q->size) {
1245 pidx = 0;
1246 gen ^= 1;
1247 e1 = q->entries;
1248 ce = q->centries;
1250 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1251 &desc_mapping, &desc_len,
1252 nfrags, q);
1254 if (likely(desc_len))
1255 write_tx_desc(e1, desc_mapping, desc_len, gen,
1256 nfrags == 0);
1259 ce->skb = NULL;
1260 pci_unmap_addr_set(ce, dma_addr, mapping);
1261 pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1263 for (i = 0; nfrags--; i++) {
1264 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1265 e1++;
1266 ce++;
1267 if (++pidx == q->size) {
1268 pidx = 0;
1269 gen ^= 1;
1270 e1 = q->entries;
1271 ce = q->centries;
1274 mapping = pci_map_page(adapter->pdev, frag->page,
1275 frag->page_offset, frag->size,
1276 PCI_DMA_TODEVICE);
1277 desc_mapping = mapping;
1278 desc_len = frag->size;
1280 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1281 &desc_mapping, &desc_len,
1282 nfrags, q);
1283 if (likely(desc_len))
1284 write_tx_desc(e1, desc_mapping, desc_len, gen,
1285 nfrags == 0);
1286 ce->skb = NULL;
1287 pci_unmap_addr_set(ce, dma_addr, mapping);
1288 pci_unmap_len_set(ce, dma_len, frag->size);
1290 ce->skb = skb;
1291 wmb();
1292 e->flags = flags;
1296 * Clean up completed Tx buffers.
1298 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1300 unsigned int reclaim = q->processed - q->cleaned;
1302 if (reclaim) {
1303 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1304 q->processed, q->cleaned);
1305 free_cmdQ_buffers(sge, q, reclaim);
1306 q->cleaned += reclaim;
1311 * Called from tasklet. Checks the scheduler for any
1312 * pending skbs that can be sent.
1314 static void restart_sched(unsigned long arg)
1316 struct sge *sge = (struct sge *) arg;
1317 struct adapter *adapter = sge->adapter;
1318 struct cmdQ *q = &sge->cmdQ[0];
1319 struct sk_buff *skb;
1320 unsigned int credits, queued_skb = 0;
1322 spin_lock(&q->lock);
1323 reclaim_completed_tx(sge, q);
1325 credits = q->size - q->in_use;
1326 pr_debug("restart_sched credits=%d\n", credits);
1327 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1328 unsigned int genbit, pidx, count;
1329 count = 1 + skb_shinfo(skb)->nr_frags;
1330 count += compute_large_page_tx_descs(skb);
1331 q->in_use += count;
1332 genbit = q->genbit;
1333 pidx = q->pidx;
1334 q->pidx += count;
1335 if (q->pidx >= q->size) {
1336 q->pidx -= q->size;
1337 q->genbit ^= 1;
1339 write_tx_descs(adapter, skb, pidx, genbit, q);
1340 credits = q->size - q->in_use;
1341 queued_skb = 1;
1344 if (queued_skb) {
1345 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1347 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1351 spin_unlock(&q->lock);
1355 * sge_rx - process an ingress ethernet packet
1356 * @sge: the sge structure
1357 * @fl: the free list that contains the packet buffer
1358 * @len: the packet length
1360 * Process an ingress ethernet pakcet and deliver it to the stack.
1362 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1364 struct sk_buff *skb;
1365 const struct cpl_rx_pkt *p;
1366 struct adapter *adapter = sge->adapter;
1367 struct sge_port_stats *st;
1369 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1370 if (unlikely(!skb)) {
1371 sge->stats.rx_drops++;
1372 return;
1375 p = (const struct cpl_rx_pkt *) skb->data;
1376 if (p->iff >= adapter->params.nports) {
1377 kfree_skb(skb);
1378 return;
1380 __skb_pull(skb, sizeof(*p));
1382 skb->dev->last_rx = jiffies;
1383 st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1384 st->rx_packets++;
1386 skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
1387 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1388 skb->protocol == htons(ETH_P_IP) &&
1389 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1390 ++st->rx_cso_good;
1391 skb->ip_summed = CHECKSUM_UNNECESSARY;
1392 } else
1393 skb->ip_summed = CHECKSUM_NONE;
1395 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1396 st->vlan_xtract++;
1397 #ifdef CONFIG_CHELSIO_T1_NAPI
1398 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1399 ntohs(p->vlan));
1400 #else
1401 vlan_hwaccel_rx(skb, adapter->vlan_grp,
1402 ntohs(p->vlan));
1403 #endif
1404 } else {
1405 #ifdef CONFIG_CHELSIO_T1_NAPI
1406 netif_receive_skb(skb);
1407 #else
1408 netif_rx(skb);
1409 #endif
1414 * Returns true if a command queue has enough available descriptors that
1415 * we can resume Tx operation after temporarily disabling its packet queue.
1417 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1419 unsigned int r = q->processed - q->cleaned;
1421 return q->in_use - r < (q->size >> 1);
1425 * Called when sufficient space has become available in the SGE command queues
1426 * after the Tx packet schedulers have been suspended to restart the Tx path.
1428 static void restart_tx_queues(struct sge *sge)
1430 struct adapter *adap = sge->adapter;
1431 int i;
1433 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1434 return;
1436 for_each_port(adap, i) {
1437 struct net_device *nd = adap->port[i].dev;
1439 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1440 netif_running(nd)) {
1441 sge->stats.cmdQ_restarted[2]++;
1442 netif_wake_queue(nd);
1448 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1449 * information.
1451 static unsigned int update_tx_info(struct adapter *adapter,
1452 unsigned int flags,
1453 unsigned int pr0)
1455 struct sge *sge = adapter->sge;
1456 struct cmdQ *cmdq = &sge->cmdQ[0];
1458 cmdq->processed += pr0;
1459 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1460 freelQs_empty(sge);
1461 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1463 if (flags & F_CMDQ0_ENABLE) {
1464 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1466 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1467 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1468 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1469 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1471 if (sge->tx_sched)
1472 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1474 flags &= ~F_CMDQ0_ENABLE;
1477 if (unlikely(sge->stopped_tx_queues != 0))
1478 restart_tx_queues(sge);
1480 return flags;
1484 * Process SGE responses, up to the supplied budget. Returns the number of
1485 * responses processed. A negative budget is effectively unlimited.
1487 static int process_responses(struct adapter *adapter, int budget)
1489 struct sge *sge = adapter->sge;
1490 struct respQ *q = &sge->respQ;
1491 struct respQ_e *e = &q->entries[q->cidx];
1492 int done = 0;
1493 unsigned int flags = 0;
1494 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1496 while (done < budget && e->GenerationBit == q->genbit) {
1497 flags |= e->Qsleeping;
1499 cmdq_processed[0] += e->Cmdq0CreditReturn;
1500 cmdq_processed[1] += e->Cmdq1CreditReturn;
1502 /* We batch updates to the TX side to avoid cacheline
1503 * ping-pong of TX state information on MP where the sender
1504 * might run on a different CPU than this function...
1506 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1507 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1508 cmdq_processed[0] = 0;
1511 if (unlikely(cmdq_processed[1] > 16)) {
1512 sge->cmdQ[1].processed += cmdq_processed[1];
1513 cmdq_processed[1] = 0;
1516 if (likely(e->DataValid)) {
1517 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1519 BUG_ON(!e->Sop || !e->Eop);
1520 if (unlikely(e->Offload))
1521 unexpected_offload(adapter, fl);
1522 else
1523 sge_rx(sge, fl, e->BufferLength);
1525 ++done;
1528 * Note: this depends on each packet consuming a
1529 * single free-list buffer; cf. the BUG above.
1531 if (++fl->cidx == fl->size)
1532 fl->cidx = 0;
1533 prefetch(fl->centries[fl->cidx].skb);
1535 if (unlikely(--fl->credits <
1536 fl->size - SGE_FREEL_REFILL_THRESH))
1537 refill_free_list(sge, fl);
1538 } else
1539 sge->stats.pure_rsps++;
1541 e++;
1542 if (unlikely(++q->cidx == q->size)) {
1543 q->cidx = 0;
1544 q->genbit ^= 1;
1545 e = q->entries;
1547 prefetch(e);
1549 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1550 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1551 q->credits = 0;
1555 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1556 sge->cmdQ[1].processed += cmdq_processed[1];
1558 return done;
1561 static inline int responses_pending(const struct adapter *adapter)
1563 const struct respQ *Q = &adapter->sge->respQ;
1564 const struct respQ_e *e = &Q->entries[Q->cidx];
1566 return (e->GenerationBit == Q->genbit);
1569 #ifdef CONFIG_CHELSIO_T1_NAPI
1571 * A simpler version of process_responses() that handles only pure (i.e.,
1572 * non data-carrying) responses. Such respones are too light-weight to justify
1573 * calling a softirq when using NAPI, so we handle them specially in hard
1574 * interrupt context. The function is called with a pointer to a response,
1575 * which the caller must ensure is a valid pure response. Returns 1 if it
1576 * encounters a valid data-carrying response, 0 otherwise.
1578 static int process_pure_responses(struct adapter *adapter)
1580 struct sge *sge = adapter->sge;
1581 struct respQ *q = &sge->respQ;
1582 struct respQ_e *e = &q->entries[q->cidx];
1583 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1584 unsigned int flags = 0;
1585 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1587 prefetch(fl->centries[fl->cidx].skb);
1588 if (e->DataValid)
1589 return 1;
1591 do {
1592 flags |= e->Qsleeping;
1594 cmdq_processed[0] += e->Cmdq0CreditReturn;
1595 cmdq_processed[1] += e->Cmdq1CreditReturn;
1597 e++;
1598 if (unlikely(++q->cidx == q->size)) {
1599 q->cidx = 0;
1600 q->genbit ^= 1;
1601 e = q->entries;
1603 prefetch(e);
1605 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1606 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1607 q->credits = 0;
1609 sge->stats.pure_rsps++;
1610 } while (e->GenerationBit == q->genbit && !e->DataValid);
1612 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1613 sge->cmdQ[1].processed += cmdq_processed[1];
1615 return e->GenerationBit == q->genbit;
1619 * Handler for new data events when using NAPI. This does not need any locking
1620 * or protection from interrupts as data interrupts are off at this point and
1621 * other adapter interrupts do not interfere.
1623 int t1_poll(struct napi_struct *napi, int budget)
1625 struct adapter *adapter = container_of(napi, struct adapter, napi);
1626 struct net_device *dev = adapter->port[0].dev;
1627 int work_done;
1629 work_done = process_responses(adapter, budget);
1631 if (likely(!responses_pending(adapter))) {
1632 netif_rx_complete(dev, napi);
1633 writel(adapter->sge->respQ.cidx,
1634 adapter->regs + A_SG_SLEEPING);
1636 return work_done;
1640 * NAPI version of the main interrupt handler.
1642 irqreturn_t t1_interrupt(int irq, void *data)
1644 struct adapter *adapter = data;
1645 struct sge *sge = adapter->sge;
1646 int handled;
1648 if (likely(responses_pending(adapter))) {
1649 struct net_device *dev = sge->netdev;
1651 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1653 if (napi_schedule_prep(&adapter->napi)) {
1654 if (process_pure_responses(adapter))
1655 __netif_rx_schedule(dev, &adapter->napi);
1656 else {
1657 /* no data, no NAPI needed */
1658 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1659 napi_enable(&adapter->napi); /* undo schedule_prep */
1662 return IRQ_HANDLED;
1665 spin_lock(&adapter->async_lock);
1666 handled = t1_slow_intr_handler(adapter);
1667 spin_unlock(&adapter->async_lock);
1669 if (!handled)
1670 sge->stats.unhandled_irqs++;
1672 return IRQ_RETVAL(handled != 0);
1675 #else
1677 * Main interrupt handler, optimized assuming that we took a 'DATA'
1678 * interrupt.
1680 * 1. Clear the interrupt
1681 * 2. Loop while we find valid descriptors and process them; accumulate
1682 * information that can be processed after the loop
1683 * 3. Tell the SGE at which index we stopped processing descriptors
1684 * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1685 * outstanding TX buffers waiting, replenish RX buffers, potentially
1686 * reenable upper layers if they were turned off due to lack of TX
1687 * resources which are available again.
1688 * 5. If we took an interrupt, but no valid respQ descriptors was found we
1689 * let the slow_intr_handler run and do error handling.
1691 irqreturn_t t1_interrupt(int irq, void *cookie)
1693 int work_done;
1694 struct adapter *adapter = cookie;
1695 struct respQ *Q = &adapter->sge->respQ;
1697 spin_lock(&adapter->async_lock);
1699 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1701 if (likely(responses_pending(adapter)))
1702 work_done = process_responses(adapter, -1);
1703 else
1704 work_done = t1_slow_intr_handler(adapter);
1707 * The unconditional clearing of the PL_CAUSE above may have raced
1708 * with DMA completion and the corresponding generation of a response
1709 * to cause us to miss the resulting data interrupt. The next write
1710 * is also unconditional to recover the missed interrupt and render
1711 * this race harmless.
1713 writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1715 if (!work_done)
1716 adapter->sge->stats.unhandled_irqs++;
1717 spin_unlock(&adapter->async_lock);
1718 return IRQ_RETVAL(work_done != 0);
1720 #endif
1723 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1725 * The code figures out how many entries the sk_buff will require in the
1726 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1727 * has complete. Then, it doesn't access the global structure anymore, but
1728 * uses the corresponding fields on the stack. In conjuction with a spinlock
1729 * around that code, we can make the function reentrant without holding the
1730 * lock when we actually enqueue (which might be expensive, especially on
1731 * architectures with IO MMUs).
1733 * This runs with softirqs disabled.
1735 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1736 unsigned int qid, struct net_device *dev)
1738 struct sge *sge = adapter->sge;
1739 struct cmdQ *q = &sge->cmdQ[qid];
1740 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1742 if (!spin_trylock(&q->lock))
1743 return NETDEV_TX_LOCKED;
1745 reclaim_completed_tx(sge, q);
1747 pidx = q->pidx;
1748 credits = q->size - q->in_use;
1749 count = 1 + skb_shinfo(skb)->nr_frags;
1750 count += compute_large_page_tx_descs(skb);
1752 /* Ethernet packet */
1753 if (unlikely(credits < count)) {
1754 if (!netif_queue_stopped(dev)) {
1755 netif_stop_queue(dev);
1756 set_bit(dev->if_port, &sge->stopped_tx_queues);
1757 sge->stats.cmdQ_full[2]++;
1758 CH_ERR("%s: Tx ring full while queue awake!\n",
1759 adapter->name);
1761 spin_unlock(&q->lock);
1762 return NETDEV_TX_BUSY;
1765 if (unlikely(credits - count < q->stop_thres)) {
1766 netif_stop_queue(dev);
1767 set_bit(dev->if_port, &sge->stopped_tx_queues);
1768 sge->stats.cmdQ_full[2]++;
1771 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1772 * through the scheduler.
1774 if (sge->tx_sched && !qid && skb->dev) {
1775 use_sched:
1776 use_sched_skb = 1;
1777 /* Note that the scheduler might return a different skb than
1778 * the one passed in.
1780 skb = sched_skb(sge, skb, credits);
1781 if (!skb) {
1782 spin_unlock(&q->lock);
1783 return NETDEV_TX_OK;
1785 pidx = q->pidx;
1786 count = 1 + skb_shinfo(skb)->nr_frags;
1787 count += compute_large_page_tx_descs(skb);
1790 q->in_use += count;
1791 genbit = q->genbit;
1792 pidx = q->pidx;
1793 q->pidx += count;
1794 if (q->pidx >= q->size) {
1795 q->pidx -= q->size;
1796 q->genbit ^= 1;
1798 spin_unlock(&q->lock);
1800 write_tx_descs(adapter, skb, pidx, genbit, q);
1803 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1804 * the doorbell if the Q is asleep. There is a natural race, where
1805 * the hardware is going to sleep just after we checked, however,
1806 * then the interrupt handler will detect the outstanding TX packet
1807 * and ring the doorbell for us.
1809 if (qid)
1810 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1811 else {
1812 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1813 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1814 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1815 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1819 if (use_sched_skb) {
1820 if (spin_trylock(&q->lock)) {
1821 credits = q->size - q->in_use;
1822 skb = NULL;
1823 goto use_sched;
1826 return NETDEV_TX_OK;
1829 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1832 * eth_hdr_len - return the length of an Ethernet header
1833 * @data: pointer to the start of the Ethernet header
1835 * Returns the length of an Ethernet header, including optional VLAN tag.
1837 static inline int eth_hdr_len(const void *data)
1839 const struct ethhdr *e = data;
1841 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1845 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1847 int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1849 struct adapter *adapter = dev->priv;
1850 struct sge *sge = adapter->sge;
1851 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], smp_processor_id());
1852 struct cpl_tx_pkt *cpl;
1853 struct sk_buff *orig_skb = skb;
1854 int ret;
1856 if (skb->protocol == htons(ETH_P_CPL5))
1857 goto send;
1859 if (skb_shinfo(skb)->gso_size) {
1860 int eth_type;
1861 struct cpl_tx_pkt_lso *hdr;
1863 ++st->tx_tso;
1865 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1866 CPL_ETH_II : CPL_ETH_II_VLAN;
1868 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1869 hdr->opcode = CPL_TX_PKT_LSO;
1870 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1871 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1872 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1873 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1874 skb_shinfo(skb)->gso_size));
1875 hdr->len = htonl(skb->len - sizeof(*hdr));
1876 cpl = (struct cpl_tx_pkt *)hdr;
1877 } else {
1879 * Packets shorter than ETH_HLEN can break the MAC, drop them
1880 * early. Also, we may get oversized packets because some
1881 * parts of the kernel don't handle our unusual hard_header_len
1882 * right, drop those too.
1884 if (unlikely(skb->len < ETH_HLEN ||
1885 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1886 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1887 skb->len, eth_hdr_len(skb->data), dev->mtu);
1888 dev_kfree_skb_any(skb);
1889 return NETDEV_TX_OK;
1893 * We are using a non-standard hard_header_len and some kernel
1894 * components, such as pktgen, do not handle it right.
1895 * Complain when this happens but try to fix things up.
1897 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1898 pr_debug("%s: headroom %d header_len %d\n", dev->name,
1899 skb_headroom(skb), dev->hard_header_len);
1901 if (net_ratelimit())
1902 printk(KERN_ERR "%s: inadequate headroom in "
1903 "Tx packet\n", dev->name);
1904 skb = skb_realloc_headroom(skb, sizeof(*cpl));
1905 dev_kfree_skb_any(orig_skb);
1906 if (!skb)
1907 return NETDEV_TX_OK;
1910 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1911 skb->ip_summed == CHECKSUM_PARTIAL &&
1912 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1913 if (unlikely(skb_checksum_help(skb))) {
1914 pr_debug("%s: unable to do udp checksum\n", dev->name);
1915 dev_kfree_skb_any(skb);
1916 return NETDEV_TX_OK;
1920 /* Hmmm, assuming to catch the gratious arp... and we'll use
1921 * it to flush out stuck espi packets...
1923 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1924 if (skb->protocol == htons(ETH_P_ARP) &&
1925 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1926 adapter->sge->espibug_skb[dev->if_port] = skb;
1927 /* We want to re-use this skb later. We
1928 * simply bump the reference count and it
1929 * will not be freed...
1931 skb = skb_get(skb);
1935 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1936 cpl->opcode = CPL_TX_PKT;
1937 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1938 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1939 /* the length field isn't used so don't bother setting it */
1941 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1943 cpl->iff = dev->if_port;
1945 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1946 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1947 cpl->vlan_valid = 1;
1948 cpl->vlan = htons(vlan_tx_tag_get(skb));
1949 st->vlan_insert++;
1950 } else
1951 #endif
1952 cpl->vlan_valid = 0;
1954 send:
1955 st->tx_packets++;
1956 dev->trans_start = jiffies;
1957 ret = t1_sge_tx(skb, adapter, 0, dev);
1959 /* If transmit busy, and we reallocated skb's due to headroom limit,
1960 * then silently discard to avoid leak.
1962 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1963 dev_kfree_skb_any(skb);
1964 ret = NETDEV_TX_OK;
1966 return ret;
1970 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1972 static void sge_tx_reclaim_cb(unsigned long data)
1974 int i;
1975 struct sge *sge = (struct sge *)data;
1977 for (i = 0; i < SGE_CMDQ_N; ++i) {
1978 struct cmdQ *q = &sge->cmdQ[i];
1980 if (!spin_trylock(&q->lock))
1981 continue;
1983 reclaim_completed_tx(sge, q);
1984 if (i == 0 && q->in_use) { /* flush pending credits */
1985 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1987 spin_unlock(&q->lock);
1989 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1993 * Propagate changes of the SGE coalescing parameters to the HW.
1995 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1997 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1998 core_ticks_per_usec(sge->adapter);
1999 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
2000 return 0;
2004 * Allocates both RX and TX resources and configures the SGE. However,
2005 * the hardware is not enabled yet.
2007 int t1_sge_configure(struct sge *sge, struct sge_params *p)
2009 if (alloc_rx_resources(sge, p))
2010 return -ENOMEM;
2011 if (alloc_tx_resources(sge, p)) {
2012 free_rx_resources(sge);
2013 return -ENOMEM;
2015 configure_sge(sge, p);
2018 * Now that we have sized the free lists calculate the payload
2019 * capacity of the large buffers. Other parts of the driver use
2020 * this to set the max offload coalescing size so that RX packets
2021 * do not overflow our large buffers.
2023 p->large_buf_capacity = jumbo_payload_capacity(sge);
2024 return 0;
2028 * Disables the DMA engine.
2030 void t1_sge_stop(struct sge *sge)
2032 int i;
2033 writel(0, sge->adapter->regs + A_SG_CONTROL);
2034 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2036 if (is_T2(sge->adapter))
2037 del_timer_sync(&sge->espibug_timer);
2039 del_timer_sync(&sge->tx_reclaim_timer);
2040 if (sge->tx_sched)
2041 tx_sched_stop(sge);
2043 for (i = 0; i < MAX_NPORTS; i++)
2044 if (sge->espibug_skb[i])
2045 kfree_skb(sge->espibug_skb[i]);
2049 * Enables the DMA engine.
2051 void t1_sge_start(struct sge *sge)
2053 refill_free_list(sge, &sge->freelQ[0]);
2054 refill_free_list(sge, &sge->freelQ[1]);
2056 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2057 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2058 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2060 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2062 if (is_T2(sge->adapter))
2063 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2067 * Callback for the T2 ESPI 'stuck packet feature' workaorund
2069 static void espibug_workaround_t204(unsigned long data)
2071 struct adapter *adapter = (struct adapter *)data;
2072 struct sge *sge = adapter->sge;
2073 unsigned int nports = adapter->params.nports;
2074 u32 seop[MAX_NPORTS];
2076 if (adapter->open_device_map & PORT_MASK) {
2077 int i;
2079 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2080 return;
2082 for (i = 0; i < nports; i++) {
2083 struct sk_buff *skb = sge->espibug_skb[i];
2085 if (!netif_running(adapter->port[i].dev) ||
2086 netif_queue_stopped(adapter->port[i].dev) ||
2087 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2088 continue;
2090 if (!skb->cb[0]) {
2091 u8 ch_mac_addr[ETH_ALEN] = {
2092 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2095 skb_copy_to_linear_data_offset(skb,
2096 sizeof(struct cpl_tx_pkt),
2097 ch_mac_addr,
2098 ETH_ALEN);
2099 skb_copy_to_linear_data_offset(skb,
2100 skb->len - 10,
2101 ch_mac_addr,
2102 ETH_ALEN);
2103 skb->cb[0] = 0xff;
2106 /* bump the reference count to avoid freeing of
2107 * the skb once the DMA has completed.
2109 skb = skb_get(skb);
2110 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2113 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2116 static void espibug_workaround(unsigned long data)
2118 struct adapter *adapter = (struct adapter *)data;
2119 struct sge *sge = adapter->sge;
2121 if (netif_running(adapter->port[0].dev)) {
2122 struct sk_buff *skb = sge->espibug_skb[0];
2123 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2125 if ((seop & 0xfff0fff) == 0xfff && skb) {
2126 if (!skb->cb[0]) {
2127 u8 ch_mac_addr[ETH_ALEN] =
2128 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2129 skb_copy_to_linear_data_offset(skb,
2130 sizeof(struct cpl_tx_pkt),
2131 ch_mac_addr,
2132 ETH_ALEN);
2133 skb_copy_to_linear_data_offset(skb,
2134 skb->len - 10,
2135 ch_mac_addr,
2136 ETH_ALEN);
2137 skb->cb[0] = 0xff;
2140 /* bump the reference count to avoid freeing of the
2141 * skb once the DMA has completed.
2143 skb = skb_get(skb);
2144 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2147 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2151 * Creates a t1_sge structure and returns suggested resource parameters.
2153 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2154 struct sge_params *p)
2156 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2157 int i;
2159 if (!sge)
2160 return NULL;
2162 sge->adapter = adapter;
2163 sge->netdev = adapter->port[0].dev;
2164 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2165 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2167 for_each_port(adapter, i) {
2168 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2169 if (!sge->port_stats[i])
2170 goto nomem_port;
2173 init_timer(&sge->tx_reclaim_timer);
2174 sge->tx_reclaim_timer.data = (unsigned long)sge;
2175 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2177 if (is_T2(sge->adapter)) {
2178 init_timer(&sge->espibug_timer);
2180 if (adapter->params.nports > 1) {
2181 tx_sched_init(sge);
2182 sge->espibug_timer.function = espibug_workaround_t204;
2183 } else
2184 sge->espibug_timer.function = espibug_workaround;
2185 sge->espibug_timer.data = (unsigned long)sge->adapter;
2187 sge->espibug_timeout = 1;
2188 /* for T204, every 10ms */
2189 if (adapter->params.nports > 1)
2190 sge->espibug_timeout = HZ/100;
2194 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2195 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2196 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2197 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2198 if (sge->tx_sched) {
2199 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2200 p->rx_coalesce_usecs = 15;
2201 else
2202 p->rx_coalesce_usecs = 50;
2203 } else
2204 p->rx_coalesce_usecs = 50;
2206 p->coalesce_enable = 0;
2207 p->sample_interval_usecs = 0;
2209 return sge;
2210 nomem_port:
2211 while (i >= 0) {
2212 free_percpu(sge->port_stats[i]);
2213 --i;
2215 kfree(sge);
2216 return NULL;