ocfs2: ocfs2_extent_contig() only requires the superblock.
[linux-2.6/kvm.git] / fs / ocfs2 / alloc.c
blob2431bbba6cd83b605ad3a71791353c67ad926c68
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * alloc.c
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
36 #include "ocfs2.h"
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
53 #include "buffer_head_io.h"
57 * Operations for a specific extent tree type.
59 * To implement an on-disk btree (extent tree) type in ocfs2, add
60 * an ocfs2_extent_tree_operations structure and the matching
61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
62 * for the allocation portion of the extent tree.
64 struct ocfs2_extent_tree_operations {
66 * last_eb_blk is the block number of the right most leaf extent
67 * block. Most on-disk structures containing an extent tree store
68 * this value for fast access. The ->eo_set_last_eb_blk() and
69 * ->eo_get_last_eb_blk() operations access this value. They are
70 * both required.
72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 u64 blkno);
74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
77 * The on-disk structure usually keeps track of how many total
78 * clusters are stored in this extent tree. This function updates
79 * that value. new_clusters is the delta, and must be
80 * added to the total. Required.
82 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
83 u32 new_clusters);
86 * If this extent tree is supported by an extent map, truncate the
87 * map to clusters,
89 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
90 u32 clusters);
93 * If ->eo_insert_check() exists, it is called before rec is
94 * inserted into the extent tree. It is optional.
96 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
97 struct ocfs2_extent_rec *rec);
98 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
101 * --------------------------------------------------------------
102 * The remaining are internal to ocfs2_extent_tree and don't have
103 * accessor functions
107 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
108 * It is required.
110 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
113 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
114 * it exists. If it does not, et->et_max_leaf_clusters is set
115 * to 0 (unlimited). Optional.
117 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
122 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
123 * in the methods.
125 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
126 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
127 u64 blkno);
128 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
129 u32 clusters);
130 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
131 u32 clusters);
132 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
133 struct ocfs2_extent_rec *rec);
134 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
135 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
136 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
137 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
138 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
139 .eo_update_clusters = ocfs2_dinode_update_clusters,
140 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
141 .eo_insert_check = ocfs2_dinode_insert_check,
142 .eo_sanity_check = ocfs2_dinode_sanity_check,
143 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
146 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
147 u64 blkno)
149 struct ocfs2_dinode *di = et->et_object;
151 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
152 di->i_last_eb_blk = cpu_to_le64(blkno);
155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
157 struct ocfs2_dinode *di = et->et_object;
159 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
160 return le64_to_cpu(di->i_last_eb_blk);
163 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
164 u32 clusters)
166 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
167 struct ocfs2_dinode *di = et->et_object;
169 le32_add_cpu(&di->i_clusters, clusters);
170 spin_lock(&oi->ip_lock);
171 oi->ip_clusters = le32_to_cpu(di->i_clusters);
172 spin_unlock(&oi->ip_lock);
175 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
176 u32 clusters)
178 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
180 ocfs2_extent_map_trunc(inode, clusters);
183 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
184 struct ocfs2_extent_rec *rec)
186 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
187 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
189 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
190 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
191 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
192 "Device %s, asking for sparse allocation: inode %llu, "
193 "cpos %u, clusters %u\n",
194 osb->dev_str,
195 (unsigned long long)oi->ip_blkno,
196 rec->e_cpos, oi->ip_clusters);
198 return 0;
201 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
203 struct ocfs2_dinode *di = et->et_object;
205 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
206 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
208 return 0;
211 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
213 struct ocfs2_dinode *di = et->et_object;
215 et->et_root_el = &di->id2.i_list;
219 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
221 struct ocfs2_xattr_value_buf *vb = et->et_object;
223 et->et_root_el = &vb->vb_xv->xr_list;
226 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
227 u64 blkno)
229 struct ocfs2_xattr_value_buf *vb = et->et_object;
231 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
234 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
236 struct ocfs2_xattr_value_buf *vb = et->et_object;
238 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
241 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
242 u32 clusters)
244 struct ocfs2_xattr_value_buf *vb = et->et_object;
246 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
249 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
250 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
251 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
252 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
253 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
256 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
258 struct ocfs2_xattr_block *xb = et->et_object;
260 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
263 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
265 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
266 et->et_max_leaf_clusters =
267 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
270 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
271 u64 blkno)
273 struct ocfs2_xattr_block *xb = et->et_object;
274 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 xt->xt_last_eb_blk = cpu_to_le64(blkno);
279 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
281 struct ocfs2_xattr_block *xb = et->et_object;
282 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
284 return le64_to_cpu(xt->xt_last_eb_blk);
287 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
288 u32 clusters)
290 struct ocfs2_xattr_block *xb = et->et_object;
292 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
295 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
296 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
297 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
298 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
299 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
300 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
303 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
304 u64 blkno)
306 struct ocfs2_dx_root_block *dx_root = et->et_object;
308 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
311 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
313 struct ocfs2_dx_root_block *dx_root = et->et_object;
315 return le64_to_cpu(dx_root->dr_last_eb_blk);
318 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
319 u32 clusters)
321 struct ocfs2_dx_root_block *dx_root = et->et_object;
323 le32_add_cpu(&dx_root->dr_clusters, clusters);
326 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
328 struct ocfs2_dx_root_block *dx_root = et->et_object;
330 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
332 return 0;
335 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
337 struct ocfs2_dx_root_block *dx_root = et->et_object;
339 et->et_root_el = &dx_root->dr_list;
342 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
343 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
344 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
345 .eo_update_clusters = ocfs2_dx_root_update_clusters,
346 .eo_sanity_check = ocfs2_dx_root_sanity_check,
347 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
350 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
351 struct inode *inode,
352 struct buffer_head *bh,
353 ocfs2_journal_access_func access,
354 void *obj,
355 struct ocfs2_extent_tree_operations *ops)
357 et->et_ops = ops;
358 et->et_root_bh = bh;
359 et->et_ci = INODE_CACHE(inode);
360 et->et_root_journal_access = access;
361 if (!obj)
362 obj = (void *)bh->b_data;
363 et->et_object = obj;
365 et->et_ops->eo_fill_root_el(et);
366 if (!et->et_ops->eo_fill_max_leaf_clusters)
367 et->et_max_leaf_clusters = 0;
368 else
369 et->et_ops->eo_fill_max_leaf_clusters(et);
372 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
373 struct inode *inode,
374 struct buffer_head *bh)
376 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
377 NULL, &ocfs2_dinode_et_ops);
380 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
381 struct inode *inode,
382 struct buffer_head *bh)
384 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
385 NULL, &ocfs2_xattr_tree_et_ops);
388 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
389 struct inode *inode,
390 struct ocfs2_xattr_value_buf *vb)
392 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
393 &ocfs2_xattr_value_et_ops);
396 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
397 struct inode *inode,
398 struct buffer_head *bh)
400 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
401 NULL, &ocfs2_dx_root_et_ops);
404 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
405 u64 new_last_eb_blk)
407 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
410 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
412 return et->et_ops->eo_get_last_eb_blk(et);
415 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
416 u32 clusters)
418 et->et_ops->eo_update_clusters(et, clusters);
421 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
422 u32 clusters)
424 if (et->et_ops->eo_extent_map_truncate)
425 et->et_ops->eo_extent_map_truncate(et, clusters);
428 static inline int ocfs2_et_root_journal_access(handle_t *handle,
429 struct ocfs2_extent_tree *et,
430 int type)
432 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
433 type);
436 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
437 struct ocfs2_extent_rec *rec)
439 int ret = 0;
441 if (et->et_ops->eo_insert_check)
442 ret = et->et_ops->eo_insert_check(et, rec);
443 return ret;
446 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
448 int ret = 0;
450 if (et->et_ops->eo_sanity_check)
451 ret = et->et_ops->eo_sanity_check(et);
452 return ret;
455 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
456 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
457 struct ocfs2_extent_block *eb);
460 * Structures which describe a path through a btree, and functions to
461 * manipulate them.
463 * The idea here is to be as generic as possible with the tree
464 * manipulation code.
466 struct ocfs2_path_item {
467 struct buffer_head *bh;
468 struct ocfs2_extent_list *el;
471 #define OCFS2_MAX_PATH_DEPTH 5
473 struct ocfs2_path {
474 int p_tree_depth;
475 ocfs2_journal_access_func p_root_access;
476 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
479 #define path_root_bh(_path) ((_path)->p_node[0].bh)
480 #define path_root_el(_path) ((_path)->p_node[0].el)
481 #define path_root_access(_path)((_path)->p_root_access)
482 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
483 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
484 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
486 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
487 struct ocfs2_path *path, u32 cpos);
488 static void ocfs2_adjust_rightmost_records(handle_t *handle,
489 struct ocfs2_extent_tree *et,
490 struct ocfs2_path *path,
491 struct ocfs2_extent_rec *insert_rec);
493 * Reset the actual path elements so that we can re-use the structure
494 * to build another path. Generally, this involves freeing the buffer
495 * heads.
497 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
499 int i, start = 0, depth = 0;
500 struct ocfs2_path_item *node;
502 if (keep_root)
503 start = 1;
505 for(i = start; i < path_num_items(path); i++) {
506 node = &path->p_node[i];
508 brelse(node->bh);
509 node->bh = NULL;
510 node->el = NULL;
514 * Tree depth may change during truncate, or insert. If we're
515 * keeping the root extent list, then make sure that our path
516 * structure reflects the proper depth.
518 if (keep_root)
519 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
520 else
521 path_root_access(path) = NULL;
523 path->p_tree_depth = depth;
526 static void ocfs2_free_path(struct ocfs2_path *path)
528 if (path) {
529 ocfs2_reinit_path(path, 0);
530 kfree(path);
535 * All the elements of src into dest. After this call, src could be freed
536 * without affecting dest.
538 * Both paths should have the same root. Any non-root elements of dest
539 * will be freed.
541 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
543 int i;
545 BUG_ON(path_root_bh(dest) != path_root_bh(src));
546 BUG_ON(path_root_el(dest) != path_root_el(src));
547 BUG_ON(path_root_access(dest) != path_root_access(src));
549 ocfs2_reinit_path(dest, 1);
551 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
552 dest->p_node[i].bh = src->p_node[i].bh;
553 dest->p_node[i].el = src->p_node[i].el;
555 if (dest->p_node[i].bh)
556 get_bh(dest->p_node[i].bh);
561 * Make the *dest path the same as src and re-initialize src path to
562 * have a root only.
564 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
566 int i;
568 BUG_ON(path_root_bh(dest) != path_root_bh(src));
569 BUG_ON(path_root_access(dest) != path_root_access(src));
571 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
572 brelse(dest->p_node[i].bh);
574 dest->p_node[i].bh = src->p_node[i].bh;
575 dest->p_node[i].el = src->p_node[i].el;
577 src->p_node[i].bh = NULL;
578 src->p_node[i].el = NULL;
583 * Insert an extent block at given index.
585 * This will not take an additional reference on eb_bh.
587 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
588 struct buffer_head *eb_bh)
590 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
593 * Right now, no root bh is an extent block, so this helps
594 * catch code errors with dinode trees. The assertion can be
595 * safely removed if we ever need to insert extent block
596 * structures at the root.
598 BUG_ON(index == 0);
600 path->p_node[index].bh = eb_bh;
601 path->p_node[index].el = &eb->h_list;
604 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
605 struct ocfs2_extent_list *root_el,
606 ocfs2_journal_access_func access)
608 struct ocfs2_path *path;
610 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
612 path = kzalloc(sizeof(*path), GFP_NOFS);
613 if (path) {
614 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
615 get_bh(root_bh);
616 path_root_bh(path) = root_bh;
617 path_root_el(path) = root_el;
618 path_root_access(path) = access;
621 return path;
624 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
626 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
627 path_root_access(path));
630 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
632 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
633 et->et_root_journal_access);
637 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
638 * otherwise it's the root_access function.
640 * I don't like the way this function's name looks next to
641 * ocfs2_journal_access_path(), but I don't have a better one.
643 static int ocfs2_path_bh_journal_access(handle_t *handle,
644 struct ocfs2_caching_info *ci,
645 struct ocfs2_path *path,
646 int idx)
648 ocfs2_journal_access_func access = path_root_access(path);
650 if (!access)
651 access = ocfs2_journal_access;
653 if (idx)
654 access = ocfs2_journal_access_eb;
656 return access(handle, ci, path->p_node[idx].bh,
657 OCFS2_JOURNAL_ACCESS_WRITE);
661 * Convenience function to journal all components in a path.
663 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
664 handle_t *handle,
665 struct ocfs2_path *path)
667 int i, ret = 0;
669 if (!path)
670 goto out;
672 for(i = 0; i < path_num_items(path); i++) {
673 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
674 if (ret < 0) {
675 mlog_errno(ret);
676 goto out;
680 out:
681 return ret;
685 * Return the index of the extent record which contains cluster #v_cluster.
686 * -1 is returned if it was not found.
688 * Should work fine on interior and exterior nodes.
690 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
692 int ret = -1;
693 int i;
694 struct ocfs2_extent_rec *rec;
695 u32 rec_end, rec_start, clusters;
697 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
698 rec = &el->l_recs[i];
700 rec_start = le32_to_cpu(rec->e_cpos);
701 clusters = ocfs2_rec_clusters(el, rec);
703 rec_end = rec_start + clusters;
705 if (v_cluster >= rec_start && v_cluster < rec_end) {
706 ret = i;
707 break;
711 return ret;
714 enum ocfs2_contig_type {
715 CONTIG_NONE = 0,
716 CONTIG_LEFT,
717 CONTIG_RIGHT,
718 CONTIG_LEFTRIGHT,
723 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
724 * ocfs2_extent_contig only work properly against leaf nodes!
726 static int ocfs2_block_extent_contig(struct super_block *sb,
727 struct ocfs2_extent_rec *ext,
728 u64 blkno)
730 u64 blk_end = le64_to_cpu(ext->e_blkno);
732 blk_end += ocfs2_clusters_to_blocks(sb,
733 le16_to_cpu(ext->e_leaf_clusters));
735 return blkno == blk_end;
738 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
739 struct ocfs2_extent_rec *right)
741 u32 left_range;
743 left_range = le32_to_cpu(left->e_cpos) +
744 le16_to_cpu(left->e_leaf_clusters);
746 return (left_range == le32_to_cpu(right->e_cpos));
749 static enum ocfs2_contig_type
750 ocfs2_extent_contig(struct super_block *sb,
751 struct ocfs2_extent_rec *ext,
752 struct ocfs2_extent_rec *insert_rec)
754 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
757 * Refuse to coalesce extent records with different flag
758 * fields - we don't want to mix unwritten extents with user
759 * data.
761 if (ext->e_flags != insert_rec->e_flags)
762 return CONTIG_NONE;
764 if (ocfs2_extents_adjacent(ext, insert_rec) &&
765 ocfs2_block_extent_contig(sb, ext, blkno))
766 return CONTIG_RIGHT;
768 blkno = le64_to_cpu(ext->e_blkno);
769 if (ocfs2_extents_adjacent(insert_rec, ext) &&
770 ocfs2_block_extent_contig(sb, insert_rec, blkno))
771 return CONTIG_LEFT;
773 return CONTIG_NONE;
777 * NOTE: We can have pretty much any combination of contiguousness and
778 * appending.
780 * The usefulness of APPEND_TAIL is more in that it lets us know that
781 * we'll have to update the path to that leaf.
783 enum ocfs2_append_type {
784 APPEND_NONE = 0,
785 APPEND_TAIL,
788 enum ocfs2_split_type {
789 SPLIT_NONE = 0,
790 SPLIT_LEFT,
791 SPLIT_RIGHT,
794 struct ocfs2_insert_type {
795 enum ocfs2_split_type ins_split;
796 enum ocfs2_append_type ins_appending;
797 enum ocfs2_contig_type ins_contig;
798 int ins_contig_index;
799 int ins_tree_depth;
802 struct ocfs2_merge_ctxt {
803 enum ocfs2_contig_type c_contig_type;
804 int c_has_empty_extent;
805 int c_split_covers_rec;
808 static int ocfs2_validate_extent_block(struct super_block *sb,
809 struct buffer_head *bh)
811 int rc;
812 struct ocfs2_extent_block *eb =
813 (struct ocfs2_extent_block *)bh->b_data;
815 mlog(0, "Validating extent block %llu\n",
816 (unsigned long long)bh->b_blocknr);
818 BUG_ON(!buffer_uptodate(bh));
821 * If the ecc fails, we return the error but otherwise
822 * leave the filesystem running. We know any error is
823 * local to this block.
825 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
826 if (rc) {
827 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
828 (unsigned long long)bh->b_blocknr);
829 return rc;
833 * Errors after here are fatal.
836 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
837 ocfs2_error(sb,
838 "Extent block #%llu has bad signature %.*s",
839 (unsigned long long)bh->b_blocknr, 7,
840 eb->h_signature);
841 return -EINVAL;
844 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
845 ocfs2_error(sb,
846 "Extent block #%llu has an invalid h_blkno "
847 "of %llu",
848 (unsigned long long)bh->b_blocknr,
849 (unsigned long long)le64_to_cpu(eb->h_blkno));
850 return -EINVAL;
853 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
854 ocfs2_error(sb,
855 "Extent block #%llu has an invalid "
856 "h_fs_generation of #%u",
857 (unsigned long long)bh->b_blocknr,
858 le32_to_cpu(eb->h_fs_generation));
859 return -EINVAL;
862 return 0;
865 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
866 struct buffer_head **bh)
868 int rc;
869 struct buffer_head *tmp = *bh;
871 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
872 ocfs2_validate_extent_block);
874 /* If ocfs2_read_block() got us a new bh, pass it up. */
875 if (!rc && !*bh)
876 *bh = tmp;
878 return rc;
883 * How many free extents have we got before we need more meta data?
885 int ocfs2_num_free_extents(struct ocfs2_super *osb,
886 struct ocfs2_extent_tree *et)
888 int retval;
889 struct ocfs2_extent_list *el = NULL;
890 struct ocfs2_extent_block *eb;
891 struct buffer_head *eb_bh = NULL;
892 u64 last_eb_blk = 0;
894 mlog_entry_void();
896 el = et->et_root_el;
897 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
899 if (last_eb_blk) {
900 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
901 &eb_bh);
902 if (retval < 0) {
903 mlog_errno(retval);
904 goto bail;
906 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
907 el = &eb->h_list;
910 BUG_ON(el->l_tree_depth != 0);
912 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
913 bail:
914 brelse(eb_bh);
916 mlog_exit(retval);
917 return retval;
920 /* expects array to already be allocated
922 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
923 * l_count for you
925 static int ocfs2_create_new_meta_bhs(handle_t *handle,
926 struct ocfs2_extent_tree *et,
927 int wanted,
928 struct ocfs2_alloc_context *meta_ac,
929 struct buffer_head *bhs[])
931 int count, status, i;
932 u16 suballoc_bit_start;
933 u32 num_got;
934 u64 first_blkno;
935 struct ocfs2_super *osb =
936 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
937 struct ocfs2_extent_block *eb;
939 mlog_entry_void();
941 count = 0;
942 while (count < wanted) {
943 status = ocfs2_claim_metadata(osb,
944 handle,
945 meta_ac,
946 wanted - count,
947 &suballoc_bit_start,
948 &num_got,
949 &first_blkno);
950 if (status < 0) {
951 mlog_errno(status);
952 goto bail;
955 for(i = count; i < (num_got + count); i++) {
956 bhs[i] = sb_getblk(osb->sb, first_blkno);
957 if (bhs[i] == NULL) {
958 status = -EIO;
959 mlog_errno(status);
960 goto bail;
962 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
964 status = ocfs2_journal_access_eb(handle, et->et_ci,
965 bhs[i],
966 OCFS2_JOURNAL_ACCESS_CREATE);
967 if (status < 0) {
968 mlog_errno(status);
969 goto bail;
972 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
973 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
974 /* Ok, setup the minimal stuff here. */
975 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
976 eb->h_blkno = cpu_to_le64(first_blkno);
977 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
978 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
979 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
980 eb->h_list.l_count =
981 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
983 suballoc_bit_start++;
984 first_blkno++;
986 /* We'll also be dirtied by the caller, so
987 * this isn't absolutely necessary. */
988 status = ocfs2_journal_dirty(handle, bhs[i]);
989 if (status < 0) {
990 mlog_errno(status);
991 goto bail;
995 count += num_got;
998 status = 0;
999 bail:
1000 if (status < 0) {
1001 for(i = 0; i < wanted; i++) {
1002 brelse(bhs[i]);
1003 bhs[i] = NULL;
1006 mlog_exit(status);
1007 return status;
1011 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1013 * Returns the sum of the rightmost extent rec logical offset and
1014 * cluster count.
1016 * ocfs2_add_branch() uses this to determine what logical cluster
1017 * value should be populated into the leftmost new branch records.
1019 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1020 * value for the new topmost tree record.
1022 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1024 int i;
1026 i = le16_to_cpu(el->l_next_free_rec) - 1;
1028 return le32_to_cpu(el->l_recs[i].e_cpos) +
1029 ocfs2_rec_clusters(el, &el->l_recs[i]);
1033 * Change range of the branches in the right most path according to the leaf
1034 * extent block's rightmost record.
1036 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1037 struct ocfs2_extent_tree *et)
1039 int status;
1040 struct ocfs2_path *path = NULL;
1041 struct ocfs2_extent_list *el;
1042 struct ocfs2_extent_rec *rec;
1044 path = ocfs2_new_path_from_et(et);
1045 if (!path) {
1046 status = -ENOMEM;
1047 return status;
1050 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1051 if (status < 0) {
1052 mlog_errno(status);
1053 goto out;
1056 status = ocfs2_extend_trans(handle, path_num_items(path) +
1057 handle->h_buffer_credits);
1058 if (status < 0) {
1059 mlog_errno(status);
1060 goto out;
1063 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1064 if (status < 0) {
1065 mlog_errno(status);
1066 goto out;
1069 el = path_leaf_el(path);
1070 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1072 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1074 out:
1075 ocfs2_free_path(path);
1076 return status;
1080 * Add an entire tree branch to our inode. eb_bh is the extent block
1081 * to start at, if we don't want to start the branch at the root
1082 * structure.
1084 * last_eb_bh is required as we have to update it's next_leaf pointer
1085 * for the new last extent block.
1087 * the new branch will be 'empty' in the sense that every block will
1088 * contain a single record with cluster count == 0.
1090 static int ocfs2_add_branch(handle_t *handle,
1091 struct ocfs2_extent_tree *et,
1092 struct buffer_head *eb_bh,
1093 struct buffer_head **last_eb_bh,
1094 struct ocfs2_alloc_context *meta_ac)
1096 int status, new_blocks, i;
1097 u64 next_blkno, new_last_eb_blk;
1098 struct buffer_head *bh;
1099 struct buffer_head **new_eb_bhs = NULL;
1100 struct ocfs2_extent_block *eb;
1101 struct ocfs2_extent_list *eb_el;
1102 struct ocfs2_extent_list *el;
1103 u32 new_cpos, root_end;
1105 mlog_entry_void();
1107 BUG_ON(!last_eb_bh || !*last_eb_bh);
1109 if (eb_bh) {
1110 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1111 el = &eb->h_list;
1112 } else
1113 el = et->et_root_el;
1115 /* we never add a branch to a leaf. */
1116 BUG_ON(!el->l_tree_depth);
1118 new_blocks = le16_to_cpu(el->l_tree_depth);
1120 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1121 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1122 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1125 * If there is a gap before the root end and the real end
1126 * of the righmost leaf block, we need to remove the gap
1127 * between new_cpos and root_end first so that the tree
1128 * is consistent after we add a new branch(it will start
1129 * from new_cpos).
1131 if (root_end > new_cpos) {
1132 mlog(0, "adjust the cluster end from %u to %u\n",
1133 root_end, new_cpos);
1134 status = ocfs2_adjust_rightmost_branch(handle, et);
1135 if (status) {
1136 mlog_errno(status);
1137 goto bail;
1141 /* allocate the number of new eb blocks we need */
1142 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1143 GFP_KERNEL);
1144 if (!new_eb_bhs) {
1145 status = -ENOMEM;
1146 mlog_errno(status);
1147 goto bail;
1150 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1151 meta_ac, new_eb_bhs);
1152 if (status < 0) {
1153 mlog_errno(status);
1154 goto bail;
1157 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1158 * linked with the rest of the tree.
1159 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1161 * when we leave the loop, new_last_eb_blk will point to the
1162 * newest leaf, and next_blkno will point to the topmost extent
1163 * block. */
1164 next_blkno = new_last_eb_blk = 0;
1165 for(i = 0; i < new_blocks; i++) {
1166 bh = new_eb_bhs[i];
1167 eb = (struct ocfs2_extent_block *) bh->b_data;
1168 /* ocfs2_create_new_meta_bhs() should create it right! */
1169 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1170 eb_el = &eb->h_list;
1172 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1173 OCFS2_JOURNAL_ACCESS_CREATE);
1174 if (status < 0) {
1175 mlog_errno(status);
1176 goto bail;
1179 eb->h_next_leaf_blk = 0;
1180 eb_el->l_tree_depth = cpu_to_le16(i);
1181 eb_el->l_next_free_rec = cpu_to_le16(1);
1183 * This actually counts as an empty extent as
1184 * c_clusters == 0
1186 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1187 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1189 * eb_el isn't always an interior node, but even leaf
1190 * nodes want a zero'd flags and reserved field so
1191 * this gets the whole 32 bits regardless of use.
1193 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1194 if (!eb_el->l_tree_depth)
1195 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1197 status = ocfs2_journal_dirty(handle, bh);
1198 if (status < 0) {
1199 mlog_errno(status);
1200 goto bail;
1203 next_blkno = le64_to_cpu(eb->h_blkno);
1206 /* This is a bit hairy. We want to update up to three blocks
1207 * here without leaving any of them in an inconsistent state
1208 * in case of error. We don't have to worry about
1209 * journal_dirty erroring as it won't unless we've aborted the
1210 * handle (in which case we would never be here) so reserving
1211 * the write with journal_access is all we need to do. */
1212 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1213 OCFS2_JOURNAL_ACCESS_WRITE);
1214 if (status < 0) {
1215 mlog_errno(status);
1216 goto bail;
1218 status = ocfs2_et_root_journal_access(handle, et,
1219 OCFS2_JOURNAL_ACCESS_WRITE);
1220 if (status < 0) {
1221 mlog_errno(status);
1222 goto bail;
1224 if (eb_bh) {
1225 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1226 OCFS2_JOURNAL_ACCESS_WRITE);
1227 if (status < 0) {
1228 mlog_errno(status);
1229 goto bail;
1233 /* Link the new branch into the rest of the tree (el will
1234 * either be on the root_bh, or the extent block passed in. */
1235 i = le16_to_cpu(el->l_next_free_rec);
1236 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1237 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1238 el->l_recs[i].e_int_clusters = 0;
1239 le16_add_cpu(&el->l_next_free_rec, 1);
1241 /* fe needs a new last extent block pointer, as does the
1242 * next_leaf on the previously last-extent-block. */
1243 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1245 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1246 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1248 status = ocfs2_journal_dirty(handle, *last_eb_bh);
1249 if (status < 0)
1250 mlog_errno(status);
1251 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1252 if (status < 0)
1253 mlog_errno(status);
1254 if (eb_bh) {
1255 status = ocfs2_journal_dirty(handle, eb_bh);
1256 if (status < 0)
1257 mlog_errno(status);
1261 * Some callers want to track the rightmost leaf so pass it
1262 * back here.
1264 brelse(*last_eb_bh);
1265 get_bh(new_eb_bhs[0]);
1266 *last_eb_bh = new_eb_bhs[0];
1268 status = 0;
1269 bail:
1270 if (new_eb_bhs) {
1271 for (i = 0; i < new_blocks; i++)
1272 brelse(new_eb_bhs[i]);
1273 kfree(new_eb_bhs);
1276 mlog_exit(status);
1277 return status;
1281 * adds another level to the allocation tree.
1282 * returns back the new extent block so you can add a branch to it
1283 * after this call.
1285 static int ocfs2_shift_tree_depth(handle_t *handle,
1286 struct ocfs2_extent_tree *et,
1287 struct ocfs2_alloc_context *meta_ac,
1288 struct buffer_head **ret_new_eb_bh)
1290 int status, i;
1291 u32 new_clusters;
1292 struct buffer_head *new_eb_bh = NULL;
1293 struct ocfs2_extent_block *eb;
1294 struct ocfs2_extent_list *root_el;
1295 struct ocfs2_extent_list *eb_el;
1297 mlog_entry_void();
1299 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1300 &new_eb_bh);
1301 if (status < 0) {
1302 mlog_errno(status);
1303 goto bail;
1306 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1307 /* ocfs2_create_new_meta_bhs() should create it right! */
1308 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1310 eb_el = &eb->h_list;
1311 root_el = et->et_root_el;
1313 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1314 OCFS2_JOURNAL_ACCESS_CREATE);
1315 if (status < 0) {
1316 mlog_errno(status);
1317 goto bail;
1320 /* copy the root extent list data into the new extent block */
1321 eb_el->l_tree_depth = root_el->l_tree_depth;
1322 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1323 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1324 eb_el->l_recs[i] = root_el->l_recs[i];
1326 status = ocfs2_journal_dirty(handle, new_eb_bh);
1327 if (status < 0) {
1328 mlog_errno(status);
1329 goto bail;
1332 status = ocfs2_et_root_journal_access(handle, et,
1333 OCFS2_JOURNAL_ACCESS_WRITE);
1334 if (status < 0) {
1335 mlog_errno(status);
1336 goto bail;
1339 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1341 /* update root_bh now */
1342 le16_add_cpu(&root_el->l_tree_depth, 1);
1343 root_el->l_recs[0].e_cpos = 0;
1344 root_el->l_recs[0].e_blkno = eb->h_blkno;
1345 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1346 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1347 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1348 root_el->l_next_free_rec = cpu_to_le16(1);
1350 /* If this is our 1st tree depth shift, then last_eb_blk
1351 * becomes the allocated extent block */
1352 if (root_el->l_tree_depth == cpu_to_le16(1))
1353 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1355 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1356 if (status < 0) {
1357 mlog_errno(status);
1358 goto bail;
1361 *ret_new_eb_bh = new_eb_bh;
1362 new_eb_bh = NULL;
1363 status = 0;
1364 bail:
1365 brelse(new_eb_bh);
1367 mlog_exit(status);
1368 return status;
1372 * Should only be called when there is no space left in any of the
1373 * leaf nodes. What we want to do is find the lowest tree depth
1374 * non-leaf extent block with room for new records. There are three
1375 * valid results of this search:
1377 * 1) a lowest extent block is found, then we pass it back in
1378 * *lowest_eb_bh and return '0'
1380 * 2) the search fails to find anything, but the root_el has room. We
1381 * pass NULL back in *lowest_eb_bh, but still return '0'
1383 * 3) the search fails to find anything AND the root_el is full, in
1384 * which case we return > 0
1386 * return status < 0 indicates an error.
1388 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1389 struct buffer_head **target_bh)
1391 int status = 0, i;
1392 u64 blkno;
1393 struct ocfs2_extent_block *eb;
1394 struct ocfs2_extent_list *el;
1395 struct buffer_head *bh = NULL;
1396 struct buffer_head *lowest_bh = NULL;
1398 mlog_entry_void();
1400 *target_bh = NULL;
1402 el = et->et_root_el;
1404 while(le16_to_cpu(el->l_tree_depth) > 1) {
1405 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1406 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1407 "Owner %llu has empty "
1408 "extent list (next_free_rec == 0)",
1409 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1410 status = -EIO;
1411 goto bail;
1413 i = le16_to_cpu(el->l_next_free_rec) - 1;
1414 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1415 if (!blkno) {
1416 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1417 "Owner %llu has extent "
1418 "list where extent # %d has no physical "
1419 "block start",
1420 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1421 status = -EIO;
1422 goto bail;
1425 brelse(bh);
1426 bh = NULL;
1428 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1429 if (status < 0) {
1430 mlog_errno(status);
1431 goto bail;
1434 eb = (struct ocfs2_extent_block *) bh->b_data;
1435 el = &eb->h_list;
1437 if (le16_to_cpu(el->l_next_free_rec) <
1438 le16_to_cpu(el->l_count)) {
1439 brelse(lowest_bh);
1440 lowest_bh = bh;
1441 get_bh(lowest_bh);
1445 /* If we didn't find one and the fe doesn't have any room,
1446 * then return '1' */
1447 el = et->et_root_el;
1448 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1449 status = 1;
1451 *target_bh = lowest_bh;
1452 bail:
1453 brelse(bh);
1455 mlog_exit(status);
1456 return status;
1460 * Grow a b-tree so that it has more records.
1462 * We might shift the tree depth in which case existing paths should
1463 * be considered invalid.
1465 * Tree depth after the grow is returned via *final_depth.
1467 * *last_eb_bh will be updated by ocfs2_add_branch().
1469 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1470 int *final_depth, struct buffer_head **last_eb_bh,
1471 struct ocfs2_alloc_context *meta_ac)
1473 int ret, shift;
1474 struct ocfs2_extent_list *el = et->et_root_el;
1475 int depth = le16_to_cpu(el->l_tree_depth);
1476 struct buffer_head *bh = NULL;
1478 BUG_ON(meta_ac == NULL);
1480 shift = ocfs2_find_branch_target(et, &bh);
1481 if (shift < 0) {
1482 ret = shift;
1483 mlog_errno(ret);
1484 goto out;
1487 /* We traveled all the way to the bottom of the allocation tree
1488 * and didn't find room for any more extents - we need to add
1489 * another tree level */
1490 if (shift) {
1491 BUG_ON(bh);
1492 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1494 /* ocfs2_shift_tree_depth will return us a buffer with
1495 * the new extent block (so we can pass that to
1496 * ocfs2_add_branch). */
1497 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1498 if (ret < 0) {
1499 mlog_errno(ret);
1500 goto out;
1502 depth++;
1503 if (depth == 1) {
1505 * Special case: we have room now if we shifted from
1506 * tree_depth 0, so no more work needs to be done.
1508 * We won't be calling add_branch, so pass
1509 * back *last_eb_bh as the new leaf. At depth
1510 * zero, it should always be null so there's
1511 * no reason to brelse.
1513 BUG_ON(*last_eb_bh);
1514 get_bh(bh);
1515 *last_eb_bh = bh;
1516 goto out;
1520 /* call ocfs2_add_branch to add the final part of the tree with
1521 * the new data. */
1522 mlog(0, "add branch. bh = %p\n", bh);
1523 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1524 meta_ac);
1525 if (ret < 0) {
1526 mlog_errno(ret);
1527 goto out;
1530 out:
1531 if (final_depth)
1532 *final_depth = depth;
1533 brelse(bh);
1534 return ret;
1538 * This function will discard the rightmost extent record.
1540 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1542 int next_free = le16_to_cpu(el->l_next_free_rec);
1543 int count = le16_to_cpu(el->l_count);
1544 unsigned int num_bytes;
1546 BUG_ON(!next_free);
1547 /* This will cause us to go off the end of our extent list. */
1548 BUG_ON(next_free >= count);
1550 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1552 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1555 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1556 struct ocfs2_extent_rec *insert_rec)
1558 int i, insert_index, next_free, has_empty, num_bytes;
1559 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1560 struct ocfs2_extent_rec *rec;
1562 next_free = le16_to_cpu(el->l_next_free_rec);
1563 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1565 BUG_ON(!next_free);
1567 /* The tree code before us didn't allow enough room in the leaf. */
1568 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1571 * The easiest way to approach this is to just remove the
1572 * empty extent and temporarily decrement next_free.
1574 if (has_empty) {
1576 * If next_free was 1 (only an empty extent), this
1577 * loop won't execute, which is fine. We still want
1578 * the decrement above to happen.
1580 for(i = 0; i < (next_free - 1); i++)
1581 el->l_recs[i] = el->l_recs[i+1];
1583 next_free--;
1587 * Figure out what the new record index should be.
1589 for(i = 0; i < next_free; i++) {
1590 rec = &el->l_recs[i];
1592 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1593 break;
1595 insert_index = i;
1597 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1598 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1600 BUG_ON(insert_index < 0);
1601 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1602 BUG_ON(insert_index > next_free);
1605 * No need to memmove if we're just adding to the tail.
1607 if (insert_index != next_free) {
1608 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1610 num_bytes = next_free - insert_index;
1611 num_bytes *= sizeof(struct ocfs2_extent_rec);
1612 memmove(&el->l_recs[insert_index + 1],
1613 &el->l_recs[insert_index],
1614 num_bytes);
1618 * Either we had an empty extent, and need to re-increment or
1619 * there was no empty extent on a non full rightmost leaf node,
1620 * in which case we still need to increment.
1622 next_free++;
1623 el->l_next_free_rec = cpu_to_le16(next_free);
1625 * Make sure none of the math above just messed up our tree.
1627 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1629 el->l_recs[insert_index] = *insert_rec;
1633 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1635 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1637 BUG_ON(num_recs == 0);
1639 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1640 num_recs--;
1641 size = num_recs * sizeof(struct ocfs2_extent_rec);
1642 memmove(&el->l_recs[0], &el->l_recs[1], size);
1643 memset(&el->l_recs[num_recs], 0,
1644 sizeof(struct ocfs2_extent_rec));
1645 el->l_next_free_rec = cpu_to_le16(num_recs);
1650 * Create an empty extent record .
1652 * l_next_free_rec may be updated.
1654 * If an empty extent already exists do nothing.
1656 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1658 int next_free = le16_to_cpu(el->l_next_free_rec);
1660 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1662 if (next_free == 0)
1663 goto set_and_inc;
1665 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1666 return;
1668 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1669 "Asked to create an empty extent in a full list:\n"
1670 "count = %u, tree depth = %u",
1671 le16_to_cpu(el->l_count),
1672 le16_to_cpu(el->l_tree_depth));
1674 ocfs2_shift_records_right(el);
1676 set_and_inc:
1677 le16_add_cpu(&el->l_next_free_rec, 1);
1678 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1682 * For a rotation which involves two leaf nodes, the "root node" is
1683 * the lowest level tree node which contains a path to both leafs. This
1684 * resulting set of information can be used to form a complete "subtree"
1686 * This function is passed two full paths from the dinode down to a
1687 * pair of adjacent leaves. It's task is to figure out which path
1688 * index contains the subtree root - this can be the root index itself
1689 * in a worst-case rotation.
1691 * The array index of the subtree root is passed back.
1693 static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1694 struct ocfs2_path *left,
1695 struct ocfs2_path *right)
1697 int i = 0;
1700 * Check that the caller passed in two paths from the same tree.
1702 BUG_ON(path_root_bh(left) != path_root_bh(right));
1704 do {
1705 i++;
1708 * The caller didn't pass two adjacent paths.
1710 mlog_bug_on_msg(i > left->p_tree_depth,
1711 "Owner %llu, left depth %u, right depth %u\n"
1712 "left leaf blk %llu, right leaf blk %llu\n",
1713 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1714 left->p_tree_depth, right->p_tree_depth,
1715 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1716 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1717 } while (left->p_node[i].bh->b_blocknr ==
1718 right->p_node[i].bh->b_blocknr);
1720 return i - 1;
1723 typedef void (path_insert_t)(void *, struct buffer_head *);
1726 * Traverse a btree path in search of cpos, starting at root_el.
1728 * This code can be called with a cpos larger than the tree, in which
1729 * case it will return the rightmost path.
1731 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1732 struct ocfs2_extent_list *root_el, u32 cpos,
1733 path_insert_t *func, void *data)
1735 int i, ret = 0;
1736 u32 range;
1737 u64 blkno;
1738 struct buffer_head *bh = NULL;
1739 struct ocfs2_extent_block *eb;
1740 struct ocfs2_extent_list *el;
1741 struct ocfs2_extent_rec *rec;
1743 el = root_el;
1744 while (el->l_tree_depth) {
1745 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1746 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1747 "Owner %llu has empty extent list at "
1748 "depth %u\n",
1749 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1750 le16_to_cpu(el->l_tree_depth));
1751 ret = -EROFS;
1752 goto out;
1756 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1757 rec = &el->l_recs[i];
1760 * In the case that cpos is off the allocation
1761 * tree, this should just wind up returning the
1762 * rightmost record.
1764 range = le32_to_cpu(rec->e_cpos) +
1765 ocfs2_rec_clusters(el, rec);
1766 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1767 break;
1770 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1771 if (blkno == 0) {
1772 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1773 "Owner %llu has bad blkno in extent list "
1774 "at depth %u (index %d)\n",
1775 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1776 le16_to_cpu(el->l_tree_depth), i);
1777 ret = -EROFS;
1778 goto out;
1781 brelse(bh);
1782 bh = NULL;
1783 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1784 if (ret) {
1785 mlog_errno(ret);
1786 goto out;
1789 eb = (struct ocfs2_extent_block *) bh->b_data;
1790 el = &eb->h_list;
1792 if (le16_to_cpu(el->l_next_free_rec) >
1793 le16_to_cpu(el->l_count)) {
1794 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1795 "Owner %llu has bad count in extent list "
1796 "at block %llu (next free=%u, count=%u)\n",
1797 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1798 (unsigned long long)bh->b_blocknr,
1799 le16_to_cpu(el->l_next_free_rec),
1800 le16_to_cpu(el->l_count));
1801 ret = -EROFS;
1802 goto out;
1805 if (func)
1806 func(data, bh);
1809 out:
1811 * Catch any trailing bh that the loop didn't handle.
1813 brelse(bh);
1815 return ret;
1819 * Given an initialized path (that is, it has a valid root extent
1820 * list), this function will traverse the btree in search of the path
1821 * which would contain cpos.
1823 * The path traveled is recorded in the path structure.
1825 * Note that this will not do any comparisons on leaf node extent
1826 * records, so it will work fine in the case that we just added a tree
1827 * branch.
1829 struct find_path_data {
1830 int index;
1831 struct ocfs2_path *path;
1833 static void find_path_ins(void *data, struct buffer_head *bh)
1835 struct find_path_data *fp = data;
1837 get_bh(bh);
1838 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1839 fp->index++;
1841 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1842 struct ocfs2_path *path, u32 cpos)
1844 struct find_path_data data;
1846 data.index = 1;
1847 data.path = path;
1848 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1849 find_path_ins, &data);
1852 static void find_leaf_ins(void *data, struct buffer_head *bh)
1854 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1855 struct ocfs2_extent_list *el = &eb->h_list;
1856 struct buffer_head **ret = data;
1858 /* We want to retain only the leaf block. */
1859 if (le16_to_cpu(el->l_tree_depth) == 0) {
1860 get_bh(bh);
1861 *ret = bh;
1865 * Find the leaf block in the tree which would contain cpos. No
1866 * checking of the actual leaf is done.
1868 * Some paths want to call this instead of allocating a path structure
1869 * and calling ocfs2_find_path().
1871 * This function doesn't handle non btree extent lists.
1873 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1874 struct ocfs2_extent_list *root_el, u32 cpos,
1875 struct buffer_head **leaf_bh)
1877 int ret;
1878 struct buffer_head *bh = NULL;
1880 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1881 if (ret) {
1882 mlog_errno(ret);
1883 goto out;
1886 *leaf_bh = bh;
1887 out:
1888 return ret;
1892 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1894 * Basically, we've moved stuff around at the bottom of the tree and
1895 * we need to fix up the extent records above the changes to reflect
1896 * the new changes.
1898 * left_rec: the record on the left.
1899 * left_child_el: is the child list pointed to by left_rec
1900 * right_rec: the record to the right of left_rec
1901 * right_child_el: is the child list pointed to by right_rec
1903 * By definition, this only works on interior nodes.
1905 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1906 struct ocfs2_extent_list *left_child_el,
1907 struct ocfs2_extent_rec *right_rec,
1908 struct ocfs2_extent_list *right_child_el)
1910 u32 left_clusters, right_end;
1913 * Interior nodes never have holes. Their cpos is the cpos of
1914 * the leftmost record in their child list. Their cluster
1915 * count covers the full theoretical range of their child list
1916 * - the range between their cpos and the cpos of the record
1917 * immediately to their right.
1919 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1920 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1921 BUG_ON(right_child_el->l_tree_depth);
1922 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1923 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1925 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1926 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1929 * Calculate the rightmost cluster count boundary before
1930 * moving cpos - we will need to adjust clusters after
1931 * updating e_cpos to keep the same highest cluster count.
1933 right_end = le32_to_cpu(right_rec->e_cpos);
1934 right_end += le32_to_cpu(right_rec->e_int_clusters);
1936 right_rec->e_cpos = left_rec->e_cpos;
1937 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1939 right_end -= le32_to_cpu(right_rec->e_cpos);
1940 right_rec->e_int_clusters = cpu_to_le32(right_end);
1944 * Adjust the adjacent root node records involved in a
1945 * rotation. left_el_blkno is passed in as a key so that we can easily
1946 * find it's index in the root list.
1948 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1949 struct ocfs2_extent_list *left_el,
1950 struct ocfs2_extent_list *right_el,
1951 u64 left_el_blkno)
1953 int i;
1955 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1956 le16_to_cpu(left_el->l_tree_depth));
1958 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1959 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1960 break;
1964 * The path walking code should have never returned a root and
1965 * two paths which are not adjacent.
1967 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1969 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1970 &root_el->l_recs[i + 1], right_el);
1974 * We've changed a leaf block (in right_path) and need to reflect that
1975 * change back up the subtree.
1977 * This happens in multiple places:
1978 * - When we've moved an extent record from the left path leaf to the right
1979 * path leaf to make room for an empty extent in the left path leaf.
1980 * - When our insert into the right path leaf is at the leftmost edge
1981 * and requires an update of the path immediately to it's left. This
1982 * can occur at the end of some types of rotation and appending inserts.
1983 * - When we've adjusted the last extent record in the left path leaf and the
1984 * 1st extent record in the right path leaf during cross extent block merge.
1986 static void ocfs2_complete_edge_insert(handle_t *handle,
1987 struct ocfs2_path *left_path,
1988 struct ocfs2_path *right_path,
1989 int subtree_index)
1991 int ret, i, idx;
1992 struct ocfs2_extent_list *el, *left_el, *right_el;
1993 struct ocfs2_extent_rec *left_rec, *right_rec;
1994 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1997 * Update the counts and position values within all the
1998 * interior nodes to reflect the leaf rotation we just did.
2000 * The root node is handled below the loop.
2002 * We begin the loop with right_el and left_el pointing to the
2003 * leaf lists and work our way up.
2005 * NOTE: within this loop, left_el and right_el always refer
2006 * to the *child* lists.
2008 left_el = path_leaf_el(left_path);
2009 right_el = path_leaf_el(right_path);
2010 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2011 mlog(0, "Adjust records at index %u\n", i);
2014 * One nice property of knowing that all of these
2015 * nodes are below the root is that we only deal with
2016 * the leftmost right node record and the rightmost
2017 * left node record.
2019 el = left_path->p_node[i].el;
2020 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2021 left_rec = &el->l_recs[idx];
2023 el = right_path->p_node[i].el;
2024 right_rec = &el->l_recs[0];
2026 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2027 right_el);
2029 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2030 if (ret)
2031 mlog_errno(ret);
2033 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2034 if (ret)
2035 mlog_errno(ret);
2038 * Setup our list pointers now so that the current
2039 * parents become children in the next iteration.
2041 left_el = left_path->p_node[i].el;
2042 right_el = right_path->p_node[i].el;
2046 * At the root node, adjust the two adjacent records which
2047 * begin our path to the leaves.
2050 el = left_path->p_node[subtree_index].el;
2051 left_el = left_path->p_node[subtree_index + 1].el;
2052 right_el = right_path->p_node[subtree_index + 1].el;
2054 ocfs2_adjust_root_records(el, left_el, right_el,
2055 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2057 root_bh = left_path->p_node[subtree_index].bh;
2059 ret = ocfs2_journal_dirty(handle, root_bh);
2060 if (ret)
2061 mlog_errno(ret);
2064 static int ocfs2_rotate_subtree_right(handle_t *handle,
2065 struct ocfs2_extent_tree *et,
2066 struct ocfs2_path *left_path,
2067 struct ocfs2_path *right_path,
2068 int subtree_index)
2070 int ret, i;
2071 struct buffer_head *right_leaf_bh;
2072 struct buffer_head *left_leaf_bh = NULL;
2073 struct buffer_head *root_bh;
2074 struct ocfs2_extent_list *right_el, *left_el;
2075 struct ocfs2_extent_rec move_rec;
2077 left_leaf_bh = path_leaf_bh(left_path);
2078 left_el = path_leaf_el(left_path);
2080 if (left_el->l_next_free_rec != left_el->l_count) {
2081 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2082 "Inode %llu has non-full interior leaf node %llu"
2083 "(next free = %u)",
2084 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2085 (unsigned long long)left_leaf_bh->b_blocknr,
2086 le16_to_cpu(left_el->l_next_free_rec));
2087 return -EROFS;
2091 * This extent block may already have an empty record, so we
2092 * return early if so.
2094 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2095 return 0;
2097 root_bh = left_path->p_node[subtree_index].bh;
2098 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2100 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2101 subtree_index);
2102 if (ret) {
2103 mlog_errno(ret);
2104 goto out;
2107 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2108 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2109 right_path, i);
2110 if (ret) {
2111 mlog_errno(ret);
2112 goto out;
2115 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2116 left_path, i);
2117 if (ret) {
2118 mlog_errno(ret);
2119 goto out;
2123 right_leaf_bh = path_leaf_bh(right_path);
2124 right_el = path_leaf_el(right_path);
2126 /* This is a code error, not a disk corruption. */
2127 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2128 "because rightmost leaf block %llu is empty\n",
2129 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2130 (unsigned long long)right_leaf_bh->b_blocknr);
2132 ocfs2_create_empty_extent(right_el);
2134 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2135 if (ret) {
2136 mlog_errno(ret);
2137 goto out;
2140 /* Do the copy now. */
2141 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2142 move_rec = left_el->l_recs[i];
2143 right_el->l_recs[0] = move_rec;
2146 * Clear out the record we just copied and shift everything
2147 * over, leaving an empty extent in the left leaf.
2149 * We temporarily subtract from next_free_rec so that the
2150 * shift will lose the tail record (which is now defunct).
2152 le16_add_cpu(&left_el->l_next_free_rec, -1);
2153 ocfs2_shift_records_right(left_el);
2154 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2155 le16_add_cpu(&left_el->l_next_free_rec, 1);
2157 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2158 if (ret) {
2159 mlog_errno(ret);
2160 goto out;
2163 ocfs2_complete_edge_insert(handle, left_path, right_path,
2164 subtree_index);
2166 out:
2167 return ret;
2171 * Given a full path, determine what cpos value would return us a path
2172 * containing the leaf immediately to the left of the current one.
2174 * Will return zero if the path passed in is already the leftmost path.
2176 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2177 struct ocfs2_path *path, u32 *cpos)
2179 int i, j, ret = 0;
2180 u64 blkno;
2181 struct ocfs2_extent_list *el;
2183 BUG_ON(path->p_tree_depth == 0);
2185 *cpos = 0;
2187 blkno = path_leaf_bh(path)->b_blocknr;
2189 /* Start at the tree node just above the leaf and work our way up. */
2190 i = path->p_tree_depth - 1;
2191 while (i >= 0) {
2192 el = path->p_node[i].el;
2195 * Find the extent record just before the one in our
2196 * path.
2198 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2199 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2200 if (j == 0) {
2201 if (i == 0) {
2203 * We've determined that the
2204 * path specified is already
2205 * the leftmost one - return a
2206 * cpos of zero.
2208 goto out;
2211 * The leftmost record points to our
2212 * leaf - we need to travel up the
2213 * tree one level.
2215 goto next_node;
2218 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2219 *cpos = *cpos + ocfs2_rec_clusters(el,
2220 &el->l_recs[j - 1]);
2221 *cpos = *cpos - 1;
2222 goto out;
2227 * If we got here, we never found a valid node where
2228 * the tree indicated one should be.
2230 ocfs2_error(sb,
2231 "Invalid extent tree at extent block %llu\n",
2232 (unsigned long long)blkno);
2233 ret = -EROFS;
2234 goto out;
2236 next_node:
2237 blkno = path->p_node[i].bh->b_blocknr;
2238 i--;
2241 out:
2242 return ret;
2246 * Extend the transaction by enough credits to complete the rotation,
2247 * and still leave at least the original number of credits allocated
2248 * to this transaction.
2250 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2251 int op_credits,
2252 struct ocfs2_path *path)
2254 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2256 if (handle->h_buffer_credits < credits)
2257 return ocfs2_extend_trans(handle, credits);
2259 return 0;
2263 * Trap the case where we're inserting into the theoretical range past
2264 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2265 * whose cpos is less than ours into the right leaf.
2267 * It's only necessary to look at the rightmost record of the left
2268 * leaf because the logic that calls us should ensure that the
2269 * theoretical ranges in the path components above the leaves are
2270 * correct.
2272 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2273 u32 insert_cpos)
2275 struct ocfs2_extent_list *left_el;
2276 struct ocfs2_extent_rec *rec;
2277 int next_free;
2279 left_el = path_leaf_el(left_path);
2280 next_free = le16_to_cpu(left_el->l_next_free_rec);
2281 rec = &left_el->l_recs[next_free - 1];
2283 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2284 return 1;
2285 return 0;
2288 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2290 int next_free = le16_to_cpu(el->l_next_free_rec);
2291 unsigned int range;
2292 struct ocfs2_extent_rec *rec;
2294 if (next_free == 0)
2295 return 0;
2297 rec = &el->l_recs[0];
2298 if (ocfs2_is_empty_extent(rec)) {
2299 /* Empty list. */
2300 if (next_free == 1)
2301 return 0;
2302 rec = &el->l_recs[1];
2305 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2306 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2307 return 1;
2308 return 0;
2312 * Rotate all the records in a btree right one record, starting at insert_cpos.
2314 * The path to the rightmost leaf should be passed in.
2316 * The array is assumed to be large enough to hold an entire path (tree depth).
2318 * Upon succesful return from this function:
2320 * - The 'right_path' array will contain a path to the leaf block
2321 * whose range contains e_cpos.
2322 * - That leaf block will have a single empty extent in list index 0.
2323 * - In the case that the rotation requires a post-insert update,
2324 * *ret_left_path will contain a valid path which can be passed to
2325 * ocfs2_insert_path().
2327 static int ocfs2_rotate_tree_right(handle_t *handle,
2328 struct ocfs2_extent_tree *et,
2329 enum ocfs2_split_type split,
2330 u32 insert_cpos,
2331 struct ocfs2_path *right_path,
2332 struct ocfs2_path **ret_left_path)
2334 int ret, start, orig_credits = handle->h_buffer_credits;
2335 u32 cpos;
2336 struct ocfs2_path *left_path = NULL;
2337 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2339 *ret_left_path = NULL;
2341 left_path = ocfs2_new_path_from_path(right_path);
2342 if (!left_path) {
2343 ret = -ENOMEM;
2344 mlog_errno(ret);
2345 goto out;
2348 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2349 if (ret) {
2350 mlog_errno(ret);
2351 goto out;
2354 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2357 * What we want to do here is:
2359 * 1) Start with the rightmost path.
2361 * 2) Determine a path to the leaf block directly to the left
2362 * of that leaf.
2364 * 3) Determine the 'subtree root' - the lowest level tree node
2365 * which contains a path to both leaves.
2367 * 4) Rotate the subtree.
2369 * 5) Find the next subtree by considering the left path to be
2370 * the new right path.
2372 * The check at the top of this while loop also accepts
2373 * insert_cpos == cpos because cpos is only a _theoretical_
2374 * value to get us the left path - insert_cpos might very well
2375 * be filling that hole.
2377 * Stop at a cpos of '0' because we either started at the
2378 * leftmost branch (i.e., a tree with one branch and a
2379 * rotation inside of it), or we've gone as far as we can in
2380 * rotating subtrees.
2382 while (cpos && insert_cpos <= cpos) {
2383 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2384 insert_cpos, cpos);
2386 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2387 if (ret) {
2388 mlog_errno(ret);
2389 goto out;
2392 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2393 path_leaf_bh(right_path),
2394 "Owner %llu: error during insert of %u "
2395 "(left path cpos %u) results in two identical "
2396 "paths ending at %llu\n",
2397 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2398 insert_cpos, cpos,
2399 (unsigned long long)
2400 path_leaf_bh(left_path)->b_blocknr);
2402 if (split == SPLIT_NONE &&
2403 ocfs2_rotate_requires_path_adjustment(left_path,
2404 insert_cpos)) {
2407 * We've rotated the tree as much as we
2408 * should. The rest is up to
2409 * ocfs2_insert_path() to complete, after the
2410 * record insertion. We indicate this
2411 * situation by returning the left path.
2413 * The reason we don't adjust the records here
2414 * before the record insert is that an error
2415 * later might break the rule where a parent
2416 * record e_cpos will reflect the actual
2417 * e_cpos of the 1st nonempty record of the
2418 * child list.
2420 *ret_left_path = left_path;
2421 goto out_ret_path;
2424 start = ocfs2_find_subtree_root(et, left_path, right_path);
2426 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2427 start,
2428 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2429 right_path->p_tree_depth);
2431 ret = ocfs2_extend_rotate_transaction(handle, start,
2432 orig_credits, right_path);
2433 if (ret) {
2434 mlog_errno(ret);
2435 goto out;
2438 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2439 right_path, start);
2440 if (ret) {
2441 mlog_errno(ret);
2442 goto out;
2445 if (split != SPLIT_NONE &&
2446 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2447 insert_cpos)) {
2449 * A rotate moves the rightmost left leaf
2450 * record over to the leftmost right leaf
2451 * slot. If we're doing an extent split
2452 * instead of a real insert, then we have to
2453 * check that the extent to be split wasn't
2454 * just moved over. If it was, then we can
2455 * exit here, passing left_path back -
2456 * ocfs2_split_extent() is smart enough to
2457 * search both leaves.
2459 *ret_left_path = left_path;
2460 goto out_ret_path;
2464 * There is no need to re-read the next right path
2465 * as we know that it'll be our current left
2466 * path. Optimize by copying values instead.
2468 ocfs2_mv_path(right_path, left_path);
2470 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2471 if (ret) {
2472 mlog_errno(ret);
2473 goto out;
2477 out:
2478 ocfs2_free_path(left_path);
2480 out_ret_path:
2481 return ret;
2484 static int ocfs2_update_edge_lengths(handle_t *handle,
2485 struct ocfs2_extent_tree *et,
2486 int subtree_index, struct ocfs2_path *path)
2488 int i, idx, ret;
2489 struct ocfs2_extent_rec *rec;
2490 struct ocfs2_extent_list *el;
2491 struct ocfs2_extent_block *eb;
2492 u32 range;
2495 * In normal tree rotation process, we will never touch the
2496 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2497 * doesn't reserve the credits for them either.
2499 * But we do have a special case here which will update the rightmost
2500 * records for all the bh in the path.
2501 * So we have to allocate extra credits and access them.
2503 ret = ocfs2_extend_trans(handle,
2504 handle->h_buffer_credits + subtree_index);
2505 if (ret) {
2506 mlog_errno(ret);
2507 goto out;
2510 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2511 if (ret) {
2512 mlog_errno(ret);
2513 goto out;
2516 /* Path should always be rightmost. */
2517 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2518 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2520 el = &eb->h_list;
2521 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2522 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2523 rec = &el->l_recs[idx];
2524 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2526 for (i = 0; i < path->p_tree_depth; i++) {
2527 el = path->p_node[i].el;
2528 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2529 rec = &el->l_recs[idx];
2531 rec->e_int_clusters = cpu_to_le32(range);
2532 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2534 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2536 out:
2537 return ret;
2540 static void ocfs2_unlink_path(handle_t *handle,
2541 struct ocfs2_extent_tree *et,
2542 struct ocfs2_cached_dealloc_ctxt *dealloc,
2543 struct ocfs2_path *path, int unlink_start)
2545 int ret, i;
2546 struct ocfs2_extent_block *eb;
2547 struct ocfs2_extent_list *el;
2548 struct buffer_head *bh;
2550 for(i = unlink_start; i < path_num_items(path); i++) {
2551 bh = path->p_node[i].bh;
2553 eb = (struct ocfs2_extent_block *)bh->b_data;
2555 * Not all nodes might have had their final count
2556 * decremented by the caller - handle this here.
2558 el = &eb->h_list;
2559 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2560 mlog(ML_ERROR,
2561 "Inode %llu, attempted to remove extent block "
2562 "%llu with %u records\n",
2563 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2564 (unsigned long long)le64_to_cpu(eb->h_blkno),
2565 le16_to_cpu(el->l_next_free_rec));
2567 ocfs2_journal_dirty(handle, bh);
2568 ocfs2_remove_from_cache(et->et_ci, bh);
2569 continue;
2572 el->l_next_free_rec = 0;
2573 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2575 ocfs2_journal_dirty(handle, bh);
2577 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2578 if (ret)
2579 mlog_errno(ret);
2581 ocfs2_remove_from_cache(et->et_ci, bh);
2585 static void ocfs2_unlink_subtree(handle_t *handle,
2586 struct ocfs2_extent_tree *et,
2587 struct ocfs2_path *left_path,
2588 struct ocfs2_path *right_path,
2589 int subtree_index,
2590 struct ocfs2_cached_dealloc_ctxt *dealloc)
2592 int i;
2593 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2594 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2595 struct ocfs2_extent_list *el;
2596 struct ocfs2_extent_block *eb;
2598 el = path_leaf_el(left_path);
2600 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2602 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2603 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2604 break;
2606 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2608 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2609 le16_add_cpu(&root_el->l_next_free_rec, -1);
2611 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2612 eb->h_next_leaf_blk = 0;
2614 ocfs2_journal_dirty(handle, root_bh);
2615 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2617 ocfs2_unlink_path(handle, et, dealloc, right_path,
2618 subtree_index + 1);
2621 static int ocfs2_rotate_subtree_left(handle_t *handle,
2622 struct ocfs2_extent_tree *et,
2623 struct ocfs2_path *left_path,
2624 struct ocfs2_path *right_path,
2625 int subtree_index,
2626 struct ocfs2_cached_dealloc_ctxt *dealloc,
2627 int *deleted)
2629 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2630 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2631 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2632 struct ocfs2_extent_block *eb;
2634 *deleted = 0;
2636 right_leaf_el = path_leaf_el(right_path);
2637 left_leaf_el = path_leaf_el(left_path);
2638 root_bh = left_path->p_node[subtree_index].bh;
2639 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2641 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2642 return 0;
2644 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2645 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2647 * It's legal for us to proceed if the right leaf is
2648 * the rightmost one and it has an empty extent. There
2649 * are two cases to handle - whether the leaf will be
2650 * empty after removal or not. If the leaf isn't empty
2651 * then just remove the empty extent up front. The
2652 * next block will handle empty leaves by flagging
2653 * them for unlink.
2655 * Non rightmost leaves will throw -EAGAIN and the
2656 * caller can manually move the subtree and retry.
2659 if (eb->h_next_leaf_blk != 0ULL)
2660 return -EAGAIN;
2662 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2663 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2664 path_leaf_bh(right_path),
2665 OCFS2_JOURNAL_ACCESS_WRITE);
2666 if (ret) {
2667 mlog_errno(ret);
2668 goto out;
2671 ocfs2_remove_empty_extent(right_leaf_el);
2672 } else
2673 right_has_empty = 1;
2676 if (eb->h_next_leaf_blk == 0ULL &&
2677 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2679 * We have to update i_last_eb_blk during the meta
2680 * data delete.
2682 ret = ocfs2_et_root_journal_access(handle, et,
2683 OCFS2_JOURNAL_ACCESS_WRITE);
2684 if (ret) {
2685 mlog_errno(ret);
2686 goto out;
2689 del_right_subtree = 1;
2693 * Getting here with an empty extent in the right path implies
2694 * that it's the rightmost path and will be deleted.
2696 BUG_ON(right_has_empty && !del_right_subtree);
2698 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2699 subtree_index);
2700 if (ret) {
2701 mlog_errno(ret);
2702 goto out;
2705 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2706 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2707 right_path, i);
2708 if (ret) {
2709 mlog_errno(ret);
2710 goto out;
2713 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2714 left_path, i);
2715 if (ret) {
2716 mlog_errno(ret);
2717 goto out;
2721 if (!right_has_empty) {
2723 * Only do this if we're moving a real
2724 * record. Otherwise, the action is delayed until
2725 * after removal of the right path in which case we
2726 * can do a simple shift to remove the empty extent.
2728 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2729 memset(&right_leaf_el->l_recs[0], 0,
2730 sizeof(struct ocfs2_extent_rec));
2732 if (eb->h_next_leaf_blk == 0ULL) {
2734 * Move recs over to get rid of empty extent, decrease
2735 * next_free. This is allowed to remove the last
2736 * extent in our leaf (setting l_next_free_rec to
2737 * zero) - the delete code below won't care.
2739 ocfs2_remove_empty_extent(right_leaf_el);
2742 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2743 if (ret)
2744 mlog_errno(ret);
2745 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2746 if (ret)
2747 mlog_errno(ret);
2749 if (del_right_subtree) {
2750 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2751 subtree_index, dealloc);
2752 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2753 left_path);
2754 if (ret) {
2755 mlog_errno(ret);
2756 goto out;
2759 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2760 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2763 * Removal of the extent in the left leaf was skipped
2764 * above so we could delete the right path
2765 * 1st.
2767 if (right_has_empty)
2768 ocfs2_remove_empty_extent(left_leaf_el);
2770 ret = ocfs2_journal_dirty(handle, et_root_bh);
2771 if (ret)
2772 mlog_errno(ret);
2774 *deleted = 1;
2775 } else
2776 ocfs2_complete_edge_insert(handle, left_path, right_path,
2777 subtree_index);
2779 out:
2780 return ret;
2784 * Given a full path, determine what cpos value would return us a path
2785 * containing the leaf immediately to the right of the current one.
2787 * Will return zero if the path passed in is already the rightmost path.
2789 * This looks similar, but is subtly different to
2790 * ocfs2_find_cpos_for_left_leaf().
2792 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2793 struct ocfs2_path *path, u32 *cpos)
2795 int i, j, ret = 0;
2796 u64 blkno;
2797 struct ocfs2_extent_list *el;
2799 *cpos = 0;
2801 if (path->p_tree_depth == 0)
2802 return 0;
2804 blkno = path_leaf_bh(path)->b_blocknr;
2806 /* Start at the tree node just above the leaf and work our way up. */
2807 i = path->p_tree_depth - 1;
2808 while (i >= 0) {
2809 int next_free;
2811 el = path->p_node[i].el;
2814 * Find the extent record just after the one in our
2815 * path.
2817 next_free = le16_to_cpu(el->l_next_free_rec);
2818 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2819 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2820 if (j == (next_free - 1)) {
2821 if (i == 0) {
2823 * We've determined that the
2824 * path specified is already
2825 * the rightmost one - return a
2826 * cpos of zero.
2828 goto out;
2831 * The rightmost record points to our
2832 * leaf - we need to travel up the
2833 * tree one level.
2835 goto next_node;
2838 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2839 goto out;
2844 * If we got here, we never found a valid node where
2845 * the tree indicated one should be.
2847 ocfs2_error(sb,
2848 "Invalid extent tree at extent block %llu\n",
2849 (unsigned long long)blkno);
2850 ret = -EROFS;
2851 goto out;
2853 next_node:
2854 blkno = path->p_node[i].bh->b_blocknr;
2855 i--;
2858 out:
2859 return ret;
2862 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2863 struct ocfs2_extent_tree *et,
2864 struct ocfs2_path *path)
2866 int ret;
2867 struct buffer_head *bh = path_leaf_bh(path);
2868 struct ocfs2_extent_list *el = path_leaf_el(path);
2870 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2871 return 0;
2873 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2874 path_num_items(path) - 1);
2875 if (ret) {
2876 mlog_errno(ret);
2877 goto out;
2880 ocfs2_remove_empty_extent(el);
2882 ret = ocfs2_journal_dirty(handle, bh);
2883 if (ret)
2884 mlog_errno(ret);
2886 out:
2887 return ret;
2890 static int __ocfs2_rotate_tree_left(handle_t *handle,
2891 struct ocfs2_extent_tree *et,
2892 int orig_credits,
2893 struct ocfs2_path *path,
2894 struct ocfs2_cached_dealloc_ctxt *dealloc,
2895 struct ocfs2_path **empty_extent_path)
2897 int ret, subtree_root, deleted;
2898 u32 right_cpos;
2899 struct ocfs2_path *left_path = NULL;
2900 struct ocfs2_path *right_path = NULL;
2901 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2903 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2905 *empty_extent_path = NULL;
2907 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2908 if (ret) {
2909 mlog_errno(ret);
2910 goto out;
2913 left_path = ocfs2_new_path_from_path(path);
2914 if (!left_path) {
2915 ret = -ENOMEM;
2916 mlog_errno(ret);
2917 goto out;
2920 ocfs2_cp_path(left_path, path);
2922 right_path = ocfs2_new_path_from_path(path);
2923 if (!right_path) {
2924 ret = -ENOMEM;
2925 mlog_errno(ret);
2926 goto out;
2929 while (right_cpos) {
2930 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2931 if (ret) {
2932 mlog_errno(ret);
2933 goto out;
2936 subtree_root = ocfs2_find_subtree_root(et, left_path,
2937 right_path);
2939 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2940 subtree_root,
2941 (unsigned long long)
2942 right_path->p_node[subtree_root].bh->b_blocknr,
2943 right_path->p_tree_depth);
2945 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2946 orig_credits, left_path);
2947 if (ret) {
2948 mlog_errno(ret);
2949 goto out;
2953 * Caller might still want to make changes to the
2954 * tree root, so re-add it to the journal here.
2956 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2957 left_path, 0);
2958 if (ret) {
2959 mlog_errno(ret);
2960 goto out;
2963 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2964 right_path, subtree_root,
2965 dealloc, &deleted);
2966 if (ret == -EAGAIN) {
2968 * The rotation has to temporarily stop due to
2969 * the right subtree having an empty
2970 * extent. Pass it back to the caller for a
2971 * fixup.
2973 *empty_extent_path = right_path;
2974 right_path = NULL;
2975 goto out;
2977 if (ret) {
2978 mlog_errno(ret);
2979 goto out;
2983 * The subtree rotate might have removed records on
2984 * the rightmost edge. If so, then rotation is
2985 * complete.
2987 if (deleted)
2988 break;
2990 ocfs2_mv_path(left_path, right_path);
2992 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2993 &right_cpos);
2994 if (ret) {
2995 mlog_errno(ret);
2996 goto out;
3000 out:
3001 ocfs2_free_path(right_path);
3002 ocfs2_free_path(left_path);
3004 return ret;
3007 static int ocfs2_remove_rightmost_path(handle_t *handle,
3008 struct ocfs2_extent_tree *et,
3009 struct ocfs2_path *path,
3010 struct ocfs2_cached_dealloc_ctxt *dealloc)
3012 int ret, subtree_index;
3013 u32 cpos;
3014 struct ocfs2_path *left_path = NULL;
3015 struct ocfs2_extent_block *eb;
3016 struct ocfs2_extent_list *el;
3019 ret = ocfs2_et_sanity_check(et);
3020 if (ret)
3021 goto out;
3023 * There's two ways we handle this depending on
3024 * whether path is the only existing one.
3026 ret = ocfs2_extend_rotate_transaction(handle, 0,
3027 handle->h_buffer_credits,
3028 path);
3029 if (ret) {
3030 mlog_errno(ret);
3031 goto out;
3034 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3035 if (ret) {
3036 mlog_errno(ret);
3037 goto out;
3040 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3041 path, &cpos);
3042 if (ret) {
3043 mlog_errno(ret);
3044 goto out;
3047 if (cpos) {
3049 * We have a path to the left of this one - it needs
3050 * an update too.
3052 left_path = ocfs2_new_path_from_path(path);
3053 if (!left_path) {
3054 ret = -ENOMEM;
3055 mlog_errno(ret);
3056 goto out;
3059 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3060 if (ret) {
3061 mlog_errno(ret);
3062 goto out;
3065 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3066 if (ret) {
3067 mlog_errno(ret);
3068 goto out;
3071 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3073 ocfs2_unlink_subtree(handle, et, left_path, path,
3074 subtree_index, dealloc);
3075 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3076 left_path);
3077 if (ret) {
3078 mlog_errno(ret);
3079 goto out;
3082 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3083 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3084 } else {
3086 * 'path' is also the leftmost path which
3087 * means it must be the only one. This gets
3088 * handled differently because we want to
3089 * revert the root back to having extents
3090 * in-line.
3092 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3094 el = et->et_root_el;
3095 el->l_tree_depth = 0;
3096 el->l_next_free_rec = 0;
3097 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3099 ocfs2_et_set_last_eb_blk(et, 0);
3102 ocfs2_journal_dirty(handle, path_root_bh(path));
3104 out:
3105 ocfs2_free_path(left_path);
3106 return ret;
3110 * Left rotation of btree records.
3112 * In many ways, this is (unsurprisingly) the opposite of right
3113 * rotation. We start at some non-rightmost path containing an empty
3114 * extent in the leaf block. The code works its way to the rightmost
3115 * path by rotating records to the left in every subtree.
3117 * This is used by any code which reduces the number of extent records
3118 * in a leaf. After removal, an empty record should be placed in the
3119 * leftmost list position.
3121 * This won't handle a length update of the rightmost path records if
3122 * the rightmost tree leaf record is removed so the caller is
3123 * responsible for detecting and correcting that.
3125 static int ocfs2_rotate_tree_left(handle_t *handle,
3126 struct ocfs2_extent_tree *et,
3127 struct ocfs2_path *path,
3128 struct ocfs2_cached_dealloc_ctxt *dealloc)
3130 int ret, orig_credits = handle->h_buffer_credits;
3131 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3132 struct ocfs2_extent_block *eb;
3133 struct ocfs2_extent_list *el;
3135 el = path_leaf_el(path);
3136 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3137 return 0;
3139 if (path->p_tree_depth == 0) {
3140 rightmost_no_delete:
3142 * Inline extents. This is trivially handled, so do
3143 * it up front.
3145 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3146 if (ret)
3147 mlog_errno(ret);
3148 goto out;
3152 * Handle rightmost branch now. There's several cases:
3153 * 1) simple rotation leaving records in there. That's trivial.
3154 * 2) rotation requiring a branch delete - there's no more
3155 * records left. Two cases of this:
3156 * a) There are branches to the left.
3157 * b) This is also the leftmost (the only) branch.
3159 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3160 * 2a) we need the left branch so that we can update it with the unlink
3161 * 2b) we need to bring the root back to inline extents.
3164 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3165 el = &eb->h_list;
3166 if (eb->h_next_leaf_blk == 0) {
3168 * This gets a bit tricky if we're going to delete the
3169 * rightmost path. Get the other cases out of the way
3170 * 1st.
3172 if (le16_to_cpu(el->l_next_free_rec) > 1)
3173 goto rightmost_no_delete;
3175 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3176 ret = -EIO;
3177 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3178 "Owner %llu has empty extent block at %llu",
3179 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3180 (unsigned long long)le64_to_cpu(eb->h_blkno));
3181 goto out;
3185 * XXX: The caller can not trust "path" any more after
3186 * this as it will have been deleted. What do we do?
3188 * In theory the rotate-for-merge code will never get
3189 * here because it'll always ask for a rotate in a
3190 * nonempty list.
3193 ret = ocfs2_remove_rightmost_path(handle, et, path,
3194 dealloc);
3195 if (ret)
3196 mlog_errno(ret);
3197 goto out;
3201 * Now we can loop, remembering the path we get from -EAGAIN
3202 * and restarting from there.
3204 try_rotate:
3205 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3206 dealloc, &restart_path);
3207 if (ret && ret != -EAGAIN) {
3208 mlog_errno(ret);
3209 goto out;
3212 while (ret == -EAGAIN) {
3213 tmp_path = restart_path;
3214 restart_path = NULL;
3216 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3217 tmp_path, dealloc,
3218 &restart_path);
3219 if (ret && ret != -EAGAIN) {
3220 mlog_errno(ret);
3221 goto out;
3224 ocfs2_free_path(tmp_path);
3225 tmp_path = NULL;
3227 if (ret == 0)
3228 goto try_rotate;
3231 out:
3232 ocfs2_free_path(tmp_path);
3233 ocfs2_free_path(restart_path);
3234 return ret;
3237 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3238 int index)
3240 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3241 unsigned int size;
3243 if (rec->e_leaf_clusters == 0) {
3245 * We consumed all of the merged-from record. An empty
3246 * extent cannot exist anywhere but the 1st array
3247 * position, so move things over if the merged-from
3248 * record doesn't occupy that position.
3250 * This creates a new empty extent so the caller
3251 * should be smart enough to have removed any existing
3252 * ones.
3254 if (index > 0) {
3255 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3256 size = index * sizeof(struct ocfs2_extent_rec);
3257 memmove(&el->l_recs[1], &el->l_recs[0], size);
3261 * Always memset - the caller doesn't check whether it
3262 * created an empty extent, so there could be junk in
3263 * the other fields.
3265 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3269 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3270 struct ocfs2_path *left_path,
3271 struct ocfs2_path **ret_right_path)
3273 int ret;
3274 u32 right_cpos;
3275 struct ocfs2_path *right_path = NULL;
3276 struct ocfs2_extent_list *left_el;
3278 *ret_right_path = NULL;
3280 /* This function shouldn't be called for non-trees. */
3281 BUG_ON(left_path->p_tree_depth == 0);
3283 left_el = path_leaf_el(left_path);
3284 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3286 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3287 left_path, &right_cpos);
3288 if (ret) {
3289 mlog_errno(ret);
3290 goto out;
3293 /* This function shouldn't be called for the rightmost leaf. */
3294 BUG_ON(right_cpos == 0);
3296 right_path = ocfs2_new_path_from_path(left_path);
3297 if (!right_path) {
3298 ret = -ENOMEM;
3299 mlog_errno(ret);
3300 goto out;
3303 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3304 if (ret) {
3305 mlog_errno(ret);
3306 goto out;
3309 *ret_right_path = right_path;
3310 out:
3311 if (ret)
3312 ocfs2_free_path(right_path);
3313 return ret;
3317 * Remove split_rec clusters from the record at index and merge them
3318 * onto the beginning of the record "next" to it.
3319 * For index < l_count - 1, the next means the extent rec at index + 1.
3320 * For index == l_count - 1, the "next" means the 1st extent rec of the
3321 * next extent block.
3323 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3324 handle_t *handle,
3325 struct ocfs2_extent_tree *et,
3326 struct ocfs2_extent_rec *split_rec,
3327 int index)
3329 int ret, next_free, i;
3330 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3331 struct ocfs2_extent_rec *left_rec;
3332 struct ocfs2_extent_rec *right_rec;
3333 struct ocfs2_extent_list *right_el;
3334 struct ocfs2_path *right_path = NULL;
3335 int subtree_index = 0;
3336 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3337 struct buffer_head *bh = path_leaf_bh(left_path);
3338 struct buffer_head *root_bh = NULL;
3340 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3341 left_rec = &el->l_recs[index];
3343 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3344 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3345 /* we meet with a cross extent block merge. */
3346 ret = ocfs2_get_right_path(et, left_path, &right_path);
3347 if (ret) {
3348 mlog_errno(ret);
3349 goto out;
3352 right_el = path_leaf_el(right_path);
3353 next_free = le16_to_cpu(right_el->l_next_free_rec);
3354 BUG_ON(next_free <= 0);
3355 right_rec = &right_el->l_recs[0];
3356 if (ocfs2_is_empty_extent(right_rec)) {
3357 BUG_ON(next_free <= 1);
3358 right_rec = &right_el->l_recs[1];
3361 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3362 le16_to_cpu(left_rec->e_leaf_clusters) !=
3363 le32_to_cpu(right_rec->e_cpos));
3365 subtree_index = ocfs2_find_subtree_root(et, left_path,
3366 right_path);
3368 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3369 handle->h_buffer_credits,
3370 right_path);
3371 if (ret) {
3372 mlog_errno(ret);
3373 goto out;
3376 root_bh = left_path->p_node[subtree_index].bh;
3377 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3379 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3380 subtree_index);
3381 if (ret) {
3382 mlog_errno(ret);
3383 goto out;
3386 for (i = subtree_index + 1;
3387 i < path_num_items(right_path); i++) {
3388 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3389 right_path, i);
3390 if (ret) {
3391 mlog_errno(ret);
3392 goto out;
3395 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3396 left_path, i);
3397 if (ret) {
3398 mlog_errno(ret);
3399 goto out;
3403 } else {
3404 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3405 right_rec = &el->l_recs[index + 1];
3408 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3409 path_num_items(left_path) - 1);
3410 if (ret) {
3411 mlog_errno(ret);
3412 goto out;
3415 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3417 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3418 le64_add_cpu(&right_rec->e_blkno,
3419 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3420 split_clusters));
3421 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3423 ocfs2_cleanup_merge(el, index);
3425 ret = ocfs2_journal_dirty(handle, bh);
3426 if (ret)
3427 mlog_errno(ret);
3429 if (right_path) {
3430 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3431 if (ret)
3432 mlog_errno(ret);
3434 ocfs2_complete_edge_insert(handle, left_path, right_path,
3435 subtree_index);
3437 out:
3438 if (right_path)
3439 ocfs2_free_path(right_path);
3440 return ret;
3443 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3444 struct ocfs2_path *right_path,
3445 struct ocfs2_path **ret_left_path)
3447 int ret;
3448 u32 left_cpos;
3449 struct ocfs2_path *left_path = NULL;
3451 *ret_left_path = NULL;
3453 /* This function shouldn't be called for non-trees. */
3454 BUG_ON(right_path->p_tree_depth == 0);
3456 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3457 right_path, &left_cpos);
3458 if (ret) {
3459 mlog_errno(ret);
3460 goto out;
3463 /* This function shouldn't be called for the leftmost leaf. */
3464 BUG_ON(left_cpos == 0);
3466 left_path = ocfs2_new_path_from_path(right_path);
3467 if (!left_path) {
3468 ret = -ENOMEM;
3469 mlog_errno(ret);
3470 goto out;
3473 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3474 if (ret) {
3475 mlog_errno(ret);
3476 goto out;
3479 *ret_left_path = left_path;
3480 out:
3481 if (ret)
3482 ocfs2_free_path(left_path);
3483 return ret;
3487 * Remove split_rec clusters from the record at index and merge them
3488 * onto the tail of the record "before" it.
3489 * For index > 0, the "before" means the extent rec at index - 1.
3491 * For index == 0, the "before" means the last record of the previous
3492 * extent block. And there is also a situation that we may need to
3493 * remove the rightmost leaf extent block in the right_path and change
3494 * the right path to indicate the new rightmost path.
3496 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3497 handle_t *handle,
3498 struct ocfs2_extent_tree *et,
3499 struct ocfs2_extent_rec *split_rec,
3500 struct ocfs2_cached_dealloc_ctxt *dealloc,
3501 int index)
3503 int ret, i, subtree_index = 0, has_empty_extent = 0;
3504 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3505 struct ocfs2_extent_rec *left_rec;
3506 struct ocfs2_extent_rec *right_rec;
3507 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3508 struct buffer_head *bh = path_leaf_bh(right_path);
3509 struct buffer_head *root_bh = NULL;
3510 struct ocfs2_path *left_path = NULL;
3511 struct ocfs2_extent_list *left_el;
3513 BUG_ON(index < 0);
3515 right_rec = &el->l_recs[index];
3516 if (index == 0) {
3517 /* we meet with a cross extent block merge. */
3518 ret = ocfs2_get_left_path(et, right_path, &left_path);
3519 if (ret) {
3520 mlog_errno(ret);
3521 goto out;
3524 left_el = path_leaf_el(left_path);
3525 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3526 le16_to_cpu(left_el->l_count));
3528 left_rec = &left_el->l_recs[
3529 le16_to_cpu(left_el->l_next_free_rec) - 1];
3530 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3531 le16_to_cpu(left_rec->e_leaf_clusters) !=
3532 le32_to_cpu(split_rec->e_cpos));
3534 subtree_index = ocfs2_find_subtree_root(et, left_path,
3535 right_path);
3537 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3538 handle->h_buffer_credits,
3539 left_path);
3540 if (ret) {
3541 mlog_errno(ret);
3542 goto out;
3545 root_bh = left_path->p_node[subtree_index].bh;
3546 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3548 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3549 subtree_index);
3550 if (ret) {
3551 mlog_errno(ret);
3552 goto out;
3555 for (i = subtree_index + 1;
3556 i < path_num_items(right_path); i++) {
3557 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3558 right_path, i);
3559 if (ret) {
3560 mlog_errno(ret);
3561 goto out;
3564 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3565 left_path, i);
3566 if (ret) {
3567 mlog_errno(ret);
3568 goto out;
3571 } else {
3572 left_rec = &el->l_recs[index - 1];
3573 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3574 has_empty_extent = 1;
3577 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3578 path_num_items(right_path) - 1);
3579 if (ret) {
3580 mlog_errno(ret);
3581 goto out;
3584 if (has_empty_extent && index == 1) {
3586 * The easy case - we can just plop the record right in.
3588 *left_rec = *split_rec;
3590 has_empty_extent = 0;
3591 } else
3592 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3594 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3595 le64_add_cpu(&right_rec->e_blkno,
3596 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3597 split_clusters));
3598 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3600 ocfs2_cleanup_merge(el, index);
3602 ret = ocfs2_journal_dirty(handle, bh);
3603 if (ret)
3604 mlog_errno(ret);
3606 if (left_path) {
3607 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3608 if (ret)
3609 mlog_errno(ret);
3612 * In the situation that the right_rec is empty and the extent
3613 * block is empty also, ocfs2_complete_edge_insert can't handle
3614 * it and we need to delete the right extent block.
3616 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3617 le16_to_cpu(el->l_next_free_rec) == 1) {
3619 ret = ocfs2_remove_rightmost_path(handle, et,
3620 right_path,
3621 dealloc);
3622 if (ret) {
3623 mlog_errno(ret);
3624 goto out;
3627 /* Now the rightmost extent block has been deleted.
3628 * So we use the new rightmost path.
3630 ocfs2_mv_path(right_path, left_path);
3631 left_path = NULL;
3632 } else
3633 ocfs2_complete_edge_insert(handle, left_path,
3634 right_path, subtree_index);
3636 out:
3637 if (left_path)
3638 ocfs2_free_path(left_path);
3639 return ret;
3642 static int ocfs2_try_to_merge_extent(handle_t *handle,
3643 struct ocfs2_extent_tree *et,
3644 struct ocfs2_path *path,
3645 int split_index,
3646 struct ocfs2_extent_rec *split_rec,
3647 struct ocfs2_cached_dealloc_ctxt *dealloc,
3648 struct ocfs2_merge_ctxt *ctxt)
3650 int ret = 0;
3651 struct ocfs2_extent_list *el = path_leaf_el(path);
3652 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3654 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3656 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3658 * The merge code will need to create an empty
3659 * extent to take the place of the newly
3660 * emptied slot. Remove any pre-existing empty
3661 * extents - having more than one in a leaf is
3662 * illegal.
3664 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3665 if (ret) {
3666 mlog_errno(ret);
3667 goto out;
3669 split_index--;
3670 rec = &el->l_recs[split_index];
3673 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3675 * Left-right contig implies this.
3677 BUG_ON(!ctxt->c_split_covers_rec);
3680 * Since the leftright insert always covers the entire
3681 * extent, this call will delete the insert record
3682 * entirely, resulting in an empty extent record added to
3683 * the extent block.
3685 * Since the adding of an empty extent shifts
3686 * everything back to the right, there's no need to
3687 * update split_index here.
3689 * When the split_index is zero, we need to merge it to the
3690 * prevoius extent block. It is more efficient and easier
3691 * if we do merge_right first and merge_left later.
3693 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3694 split_index);
3695 if (ret) {
3696 mlog_errno(ret);
3697 goto out;
3701 * We can only get this from logic error above.
3703 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3705 /* The merge left us with an empty extent, remove it. */
3706 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3707 if (ret) {
3708 mlog_errno(ret);
3709 goto out;
3712 rec = &el->l_recs[split_index];
3715 * Note that we don't pass split_rec here on purpose -
3716 * we've merged it into the rec already.
3718 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3719 dealloc, split_index);
3721 if (ret) {
3722 mlog_errno(ret);
3723 goto out;
3726 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3728 * Error from this last rotate is not critical, so
3729 * print but don't bubble it up.
3731 if (ret)
3732 mlog_errno(ret);
3733 ret = 0;
3734 } else {
3736 * Merge a record to the left or right.
3738 * 'contig_type' is relative to the existing record,
3739 * so for example, if we're "right contig", it's to
3740 * the record on the left (hence the left merge).
3742 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3743 ret = ocfs2_merge_rec_left(path, handle, et,
3744 split_rec, dealloc,
3745 split_index);
3746 if (ret) {
3747 mlog_errno(ret);
3748 goto out;
3750 } else {
3751 ret = ocfs2_merge_rec_right(path, handle,
3752 et, split_rec,
3753 split_index);
3754 if (ret) {
3755 mlog_errno(ret);
3756 goto out;
3760 if (ctxt->c_split_covers_rec) {
3762 * The merge may have left an empty extent in
3763 * our leaf. Try to rotate it away.
3765 ret = ocfs2_rotate_tree_left(handle, et, path,
3766 dealloc);
3767 if (ret)
3768 mlog_errno(ret);
3769 ret = 0;
3773 out:
3774 return ret;
3777 static void ocfs2_subtract_from_rec(struct super_block *sb,
3778 enum ocfs2_split_type split,
3779 struct ocfs2_extent_rec *rec,
3780 struct ocfs2_extent_rec *split_rec)
3782 u64 len_blocks;
3784 len_blocks = ocfs2_clusters_to_blocks(sb,
3785 le16_to_cpu(split_rec->e_leaf_clusters));
3787 if (split == SPLIT_LEFT) {
3789 * Region is on the left edge of the existing
3790 * record.
3792 le32_add_cpu(&rec->e_cpos,
3793 le16_to_cpu(split_rec->e_leaf_clusters));
3794 le64_add_cpu(&rec->e_blkno, len_blocks);
3795 le16_add_cpu(&rec->e_leaf_clusters,
3796 -le16_to_cpu(split_rec->e_leaf_clusters));
3797 } else {
3799 * Region is on the right edge of the existing
3800 * record.
3802 le16_add_cpu(&rec->e_leaf_clusters,
3803 -le16_to_cpu(split_rec->e_leaf_clusters));
3808 * Do the final bits of extent record insertion at the target leaf
3809 * list. If this leaf is part of an allocation tree, it is assumed
3810 * that the tree above has been prepared.
3812 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3813 struct ocfs2_extent_rec *insert_rec,
3814 struct ocfs2_extent_list *el,
3815 struct ocfs2_insert_type *insert)
3817 int i = insert->ins_contig_index;
3818 unsigned int range;
3819 struct ocfs2_extent_rec *rec;
3821 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3823 if (insert->ins_split != SPLIT_NONE) {
3824 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3825 BUG_ON(i == -1);
3826 rec = &el->l_recs[i];
3827 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3828 insert->ins_split, rec,
3829 insert_rec);
3830 goto rotate;
3834 * Contiguous insert - either left or right.
3836 if (insert->ins_contig != CONTIG_NONE) {
3837 rec = &el->l_recs[i];
3838 if (insert->ins_contig == CONTIG_LEFT) {
3839 rec->e_blkno = insert_rec->e_blkno;
3840 rec->e_cpos = insert_rec->e_cpos;
3842 le16_add_cpu(&rec->e_leaf_clusters,
3843 le16_to_cpu(insert_rec->e_leaf_clusters));
3844 return;
3848 * Handle insert into an empty leaf.
3850 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3851 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3852 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3853 el->l_recs[0] = *insert_rec;
3854 el->l_next_free_rec = cpu_to_le16(1);
3855 return;
3859 * Appending insert.
3861 if (insert->ins_appending == APPEND_TAIL) {
3862 i = le16_to_cpu(el->l_next_free_rec) - 1;
3863 rec = &el->l_recs[i];
3864 range = le32_to_cpu(rec->e_cpos)
3865 + le16_to_cpu(rec->e_leaf_clusters);
3866 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3868 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3869 le16_to_cpu(el->l_count),
3870 "owner %llu, depth %u, count %u, next free %u, "
3871 "rec.cpos %u, rec.clusters %u, "
3872 "insert.cpos %u, insert.clusters %u\n",
3873 ocfs2_metadata_cache_owner(et->et_ci),
3874 le16_to_cpu(el->l_tree_depth),
3875 le16_to_cpu(el->l_count),
3876 le16_to_cpu(el->l_next_free_rec),
3877 le32_to_cpu(el->l_recs[i].e_cpos),
3878 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3879 le32_to_cpu(insert_rec->e_cpos),
3880 le16_to_cpu(insert_rec->e_leaf_clusters));
3881 i++;
3882 el->l_recs[i] = *insert_rec;
3883 le16_add_cpu(&el->l_next_free_rec, 1);
3884 return;
3887 rotate:
3889 * Ok, we have to rotate.
3891 * At this point, it is safe to assume that inserting into an
3892 * empty leaf and appending to a leaf have both been handled
3893 * above.
3895 * This leaf needs to have space, either by the empty 1st
3896 * extent record, or by virtue of an l_next_rec < l_count.
3898 ocfs2_rotate_leaf(el, insert_rec);
3901 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3902 struct ocfs2_extent_tree *et,
3903 struct ocfs2_path *path,
3904 struct ocfs2_extent_rec *insert_rec)
3906 int ret, i, next_free;
3907 struct buffer_head *bh;
3908 struct ocfs2_extent_list *el;
3909 struct ocfs2_extent_rec *rec;
3912 * Update everything except the leaf block.
3914 for (i = 0; i < path->p_tree_depth; i++) {
3915 bh = path->p_node[i].bh;
3916 el = path->p_node[i].el;
3918 next_free = le16_to_cpu(el->l_next_free_rec);
3919 if (next_free == 0) {
3920 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3921 "Owner %llu has a bad extent list",
3922 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3923 ret = -EIO;
3924 return;
3927 rec = &el->l_recs[next_free - 1];
3929 rec->e_int_clusters = insert_rec->e_cpos;
3930 le32_add_cpu(&rec->e_int_clusters,
3931 le16_to_cpu(insert_rec->e_leaf_clusters));
3932 le32_add_cpu(&rec->e_int_clusters,
3933 -le32_to_cpu(rec->e_cpos));
3935 ret = ocfs2_journal_dirty(handle, bh);
3936 if (ret)
3937 mlog_errno(ret);
3942 static int ocfs2_append_rec_to_path(handle_t *handle,
3943 struct ocfs2_extent_tree *et,
3944 struct ocfs2_extent_rec *insert_rec,
3945 struct ocfs2_path *right_path,
3946 struct ocfs2_path **ret_left_path)
3948 int ret, next_free;
3949 struct ocfs2_extent_list *el;
3950 struct ocfs2_path *left_path = NULL;
3952 *ret_left_path = NULL;
3955 * This shouldn't happen for non-trees. The extent rec cluster
3956 * count manipulation below only works for interior nodes.
3958 BUG_ON(right_path->p_tree_depth == 0);
3961 * If our appending insert is at the leftmost edge of a leaf,
3962 * then we might need to update the rightmost records of the
3963 * neighboring path.
3965 el = path_leaf_el(right_path);
3966 next_free = le16_to_cpu(el->l_next_free_rec);
3967 if (next_free == 0 ||
3968 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3969 u32 left_cpos;
3971 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3972 right_path, &left_cpos);
3973 if (ret) {
3974 mlog_errno(ret);
3975 goto out;
3978 mlog(0, "Append may need a left path update. cpos: %u, "
3979 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3980 left_cpos);
3983 * No need to worry if the append is already in the
3984 * leftmost leaf.
3986 if (left_cpos) {
3987 left_path = ocfs2_new_path_from_path(right_path);
3988 if (!left_path) {
3989 ret = -ENOMEM;
3990 mlog_errno(ret);
3991 goto out;
3994 ret = ocfs2_find_path(et->et_ci, left_path,
3995 left_cpos);
3996 if (ret) {
3997 mlog_errno(ret);
3998 goto out;
4002 * ocfs2_insert_path() will pass the left_path to the
4003 * journal for us.
4008 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4009 if (ret) {
4010 mlog_errno(ret);
4011 goto out;
4014 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4016 *ret_left_path = left_path;
4017 ret = 0;
4018 out:
4019 if (ret != 0)
4020 ocfs2_free_path(left_path);
4022 return ret;
4025 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4026 struct ocfs2_path *left_path,
4027 struct ocfs2_path *right_path,
4028 struct ocfs2_extent_rec *split_rec,
4029 enum ocfs2_split_type split)
4031 int index;
4032 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4033 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4034 struct ocfs2_extent_rec *rec, *tmprec;
4036 right_el = path_leaf_el(right_path);
4037 if (left_path)
4038 left_el = path_leaf_el(left_path);
4040 el = right_el;
4041 insert_el = right_el;
4042 index = ocfs2_search_extent_list(el, cpos);
4043 if (index != -1) {
4044 if (index == 0 && left_path) {
4045 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4048 * This typically means that the record
4049 * started in the left path but moved to the
4050 * right as a result of rotation. We either
4051 * move the existing record to the left, or we
4052 * do the later insert there.
4054 * In this case, the left path should always
4055 * exist as the rotate code will have passed
4056 * it back for a post-insert update.
4059 if (split == SPLIT_LEFT) {
4061 * It's a left split. Since we know
4062 * that the rotate code gave us an
4063 * empty extent in the left path, we
4064 * can just do the insert there.
4066 insert_el = left_el;
4067 } else {
4069 * Right split - we have to move the
4070 * existing record over to the left
4071 * leaf. The insert will be into the
4072 * newly created empty extent in the
4073 * right leaf.
4075 tmprec = &right_el->l_recs[index];
4076 ocfs2_rotate_leaf(left_el, tmprec);
4077 el = left_el;
4079 memset(tmprec, 0, sizeof(*tmprec));
4080 index = ocfs2_search_extent_list(left_el, cpos);
4081 BUG_ON(index == -1);
4084 } else {
4085 BUG_ON(!left_path);
4086 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4088 * Left path is easy - we can just allow the insert to
4089 * happen.
4091 el = left_el;
4092 insert_el = left_el;
4093 index = ocfs2_search_extent_list(el, cpos);
4094 BUG_ON(index == -1);
4097 rec = &el->l_recs[index];
4098 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4099 split, rec, split_rec);
4100 ocfs2_rotate_leaf(insert_el, split_rec);
4104 * This function only does inserts on an allocation b-tree. For tree
4105 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4107 * right_path is the path we want to do the actual insert
4108 * in. left_path should only be passed in if we need to update that
4109 * portion of the tree after an edge insert.
4111 static int ocfs2_insert_path(handle_t *handle,
4112 struct ocfs2_extent_tree *et,
4113 struct ocfs2_path *left_path,
4114 struct ocfs2_path *right_path,
4115 struct ocfs2_extent_rec *insert_rec,
4116 struct ocfs2_insert_type *insert)
4118 int ret, subtree_index;
4119 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4121 if (left_path) {
4122 int credits = handle->h_buffer_credits;
4125 * There's a chance that left_path got passed back to
4126 * us without being accounted for in the
4127 * journal. Extend our transaction here to be sure we
4128 * can change those blocks.
4130 credits += left_path->p_tree_depth;
4132 ret = ocfs2_extend_trans(handle, credits);
4133 if (ret < 0) {
4134 mlog_errno(ret);
4135 goto out;
4138 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4139 if (ret < 0) {
4140 mlog_errno(ret);
4141 goto out;
4146 * Pass both paths to the journal. The majority of inserts
4147 * will be touching all components anyway.
4149 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4150 if (ret < 0) {
4151 mlog_errno(ret);
4152 goto out;
4155 if (insert->ins_split != SPLIT_NONE) {
4157 * We could call ocfs2_insert_at_leaf() for some types
4158 * of splits, but it's easier to just let one separate
4159 * function sort it all out.
4161 ocfs2_split_record(et, left_path, right_path,
4162 insert_rec, insert->ins_split);
4165 * Split might have modified either leaf and we don't
4166 * have a guarantee that the later edge insert will
4167 * dirty this for us.
4169 if (left_path)
4170 ret = ocfs2_journal_dirty(handle,
4171 path_leaf_bh(left_path));
4172 if (ret)
4173 mlog_errno(ret);
4174 } else
4175 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4176 insert);
4178 ret = ocfs2_journal_dirty(handle, leaf_bh);
4179 if (ret)
4180 mlog_errno(ret);
4182 if (left_path) {
4184 * The rotate code has indicated that we need to fix
4185 * up portions of the tree after the insert.
4187 * XXX: Should we extend the transaction here?
4189 subtree_index = ocfs2_find_subtree_root(et, left_path,
4190 right_path);
4191 ocfs2_complete_edge_insert(handle, left_path, right_path,
4192 subtree_index);
4195 ret = 0;
4196 out:
4197 return ret;
4200 static int ocfs2_do_insert_extent(handle_t *handle,
4201 struct ocfs2_extent_tree *et,
4202 struct ocfs2_extent_rec *insert_rec,
4203 struct ocfs2_insert_type *type)
4205 int ret, rotate = 0;
4206 u32 cpos;
4207 struct ocfs2_path *right_path = NULL;
4208 struct ocfs2_path *left_path = NULL;
4209 struct ocfs2_extent_list *el;
4211 el = et->et_root_el;
4213 ret = ocfs2_et_root_journal_access(handle, et,
4214 OCFS2_JOURNAL_ACCESS_WRITE);
4215 if (ret) {
4216 mlog_errno(ret);
4217 goto out;
4220 if (le16_to_cpu(el->l_tree_depth) == 0) {
4221 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4222 goto out_update_clusters;
4225 right_path = ocfs2_new_path_from_et(et);
4226 if (!right_path) {
4227 ret = -ENOMEM;
4228 mlog_errno(ret);
4229 goto out;
4233 * Determine the path to start with. Rotations need the
4234 * rightmost path, everything else can go directly to the
4235 * target leaf.
4237 cpos = le32_to_cpu(insert_rec->e_cpos);
4238 if (type->ins_appending == APPEND_NONE &&
4239 type->ins_contig == CONTIG_NONE) {
4240 rotate = 1;
4241 cpos = UINT_MAX;
4244 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4245 if (ret) {
4246 mlog_errno(ret);
4247 goto out;
4251 * Rotations and appends need special treatment - they modify
4252 * parts of the tree's above them.
4254 * Both might pass back a path immediate to the left of the
4255 * one being inserted to. This will be cause
4256 * ocfs2_insert_path() to modify the rightmost records of
4257 * left_path to account for an edge insert.
4259 * XXX: When modifying this code, keep in mind that an insert
4260 * can wind up skipping both of these two special cases...
4262 if (rotate) {
4263 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4264 le32_to_cpu(insert_rec->e_cpos),
4265 right_path, &left_path);
4266 if (ret) {
4267 mlog_errno(ret);
4268 goto out;
4272 * ocfs2_rotate_tree_right() might have extended the
4273 * transaction without re-journaling our tree root.
4275 ret = ocfs2_et_root_journal_access(handle, et,
4276 OCFS2_JOURNAL_ACCESS_WRITE);
4277 if (ret) {
4278 mlog_errno(ret);
4279 goto out;
4281 } else if (type->ins_appending == APPEND_TAIL
4282 && type->ins_contig != CONTIG_LEFT) {
4283 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4284 right_path, &left_path);
4285 if (ret) {
4286 mlog_errno(ret);
4287 goto out;
4291 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4292 insert_rec, type);
4293 if (ret) {
4294 mlog_errno(ret);
4295 goto out;
4298 out_update_clusters:
4299 if (type->ins_split == SPLIT_NONE)
4300 ocfs2_et_update_clusters(et,
4301 le16_to_cpu(insert_rec->e_leaf_clusters));
4303 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4304 if (ret)
4305 mlog_errno(ret);
4307 out:
4308 ocfs2_free_path(left_path);
4309 ocfs2_free_path(right_path);
4311 return ret;
4314 static enum ocfs2_contig_type
4315 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4316 struct ocfs2_extent_list *el, int index,
4317 struct ocfs2_extent_rec *split_rec)
4319 int status;
4320 enum ocfs2_contig_type ret = CONTIG_NONE;
4321 u32 left_cpos, right_cpos;
4322 struct ocfs2_extent_rec *rec = NULL;
4323 struct ocfs2_extent_list *new_el;
4324 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4325 struct buffer_head *bh;
4326 struct ocfs2_extent_block *eb;
4328 if (index > 0) {
4329 rec = &el->l_recs[index - 1];
4330 } else if (path->p_tree_depth > 0) {
4331 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4332 path, &left_cpos);
4333 if (status)
4334 goto out;
4336 if (left_cpos != 0) {
4337 left_path = ocfs2_new_path_from_path(path);
4338 if (!left_path)
4339 goto out;
4341 status = ocfs2_find_path(INODE_CACHE(inode),
4342 left_path, left_cpos);
4343 if (status)
4344 goto out;
4346 new_el = path_leaf_el(left_path);
4348 if (le16_to_cpu(new_el->l_next_free_rec) !=
4349 le16_to_cpu(new_el->l_count)) {
4350 bh = path_leaf_bh(left_path);
4351 eb = (struct ocfs2_extent_block *)bh->b_data;
4352 ocfs2_error(inode->i_sb,
4353 "Extent block #%llu has an "
4354 "invalid l_next_free_rec of "
4355 "%d. It should have "
4356 "matched the l_count of %d",
4357 (unsigned long long)le64_to_cpu(eb->h_blkno),
4358 le16_to_cpu(new_el->l_next_free_rec),
4359 le16_to_cpu(new_el->l_count));
4360 status = -EINVAL;
4361 goto out;
4363 rec = &new_el->l_recs[
4364 le16_to_cpu(new_el->l_next_free_rec) - 1];
4369 * We're careful to check for an empty extent record here -
4370 * the merge code will know what to do if it sees one.
4372 if (rec) {
4373 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4374 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4375 ret = CONTIG_RIGHT;
4376 } else {
4377 ret = ocfs2_extent_contig(inode->i_sb, rec, split_rec);
4381 rec = NULL;
4382 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4383 rec = &el->l_recs[index + 1];
4384 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4385 path->p_tree_depth > 0) {
4386 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4387 path, &right_cpos);
4388 if (status)
4389 goto out;
4391 if (right_cpos == 0)
4392 goto out;
4394 right_path = ocfs2_new_path_from_path(path);
4395 if (!right_path)
4396 goto out;
4398 status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4399 if (status)
4400 goto out;
4402 new_el = path_leaf_el(right_path);
4403 rec = &new_el->l_recs[0];
4404 if (ocfs2_is_empty_extent(rec)) {
4405 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4406 bh = path_leaf_bh(right_path);
4407 eb = (struct ocfs2_extent_block *)bh->b_data;
4408 ocfs2_error(inode->i_sb,
4409 "Extent block #%llu has an "
4410 "invalid l_next_free_rec of %d",
4411 (unsigned long long)le64_to_cpu(eb->h_blkno),
4412 le16_to_cpu(new_el->l_next_free_rec));
4413 status = -EINVAL;
4414 goto out;
4416 rec = &new_el->l_recs[1];
4420 if (rec) {
4421 enum ocfs2_contig_type contig_type;
4423 contig_type = ocfs2_extent_contig(inode->i_sb, rec, split_rec);
4425 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4426 ret = CONTIG_LEFTRIGHT;
4427 else if (ret == CONTIG_NONE)
4428 ret = contig_type;
4431 out:
4432 if (left_path)
4433 ocfs2_free_path(left_path);
4434 if (right_path)
4435 ocfs2_free_path(right_path);
4437 return ret;
4440 static void ocfs2_figure_contig_type(struct inode *inode,
4441 struct ocfs2_insert_type *insert,
4442 struct ocfs2_extent_list *el,
4443 struct ocfs2_extent_rec *insert_rec,
4444 struct ocfs2_extent_tree *et)
4446 int i;
4447 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4449 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4451 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4452 contig_type = ocfs2_extent_contig(inode->i_sb, &el->l_recs[i],
4453 insert_rec);
4454 if (contig_type != CONTIG_NONE) {
4455 insert->ins_contig_index = i;
4456 break;
4459 insert->ins_contig = contig_type;
4461 if (insert->ins_contig != CONTIG_NONE) {
4462 struct ocfs2_extent_rec *rec =
4463 &el->l_recs[insert->ins_contig_index];
4464 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4465 le16_to_cpu(insert_rec->e_leaf_clusters);
4468 * Caller might want us to limit the size of extents, don't
4469 * calculate contiguousness if we might exceed that limit.
4471 if (et->et_max_leaf_clusters &&
4472 (len > et->et_max_leaf_clusters))
4473 insert->ins_contig = CONTIG_NONE;
4478 * This should only be called against the righmost leaf extent list.
4480 * ocfs2_figure_appending_type() will figure out whether we'll have to
4481 * insert at the tail of the rightmost leaf.
4483 * This should also work against the root extent list for tree's with 0
4484 * depth. If we consider the root extent list to be the rightmost leaf node
4485 * then the logic here makes sense.
4487 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4488 struct ocfs2_extent_list *el,
4489 struct ocfs2_extent_rec *insert_rec)
4491 int i;
4492 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4493 struct ocfs2_extent_rec *rec;
4495 insert->ins_appending = APPEND_NONE;
4497 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4499 if (!el->l_next_free_rec)
4500 goto set_tail_append;
4502 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4503 /* Were all records empty? */
4504 if (le16_to_cpu(el->l_next_free_rec) == 1)
4505 goto set_tail_append;
4508 i = le16_to_cpu(el->l_next_free_rec) - 1;
4509 rec = &el->l_recs[i];
4511 if (cpos >=
4512 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4513 goto set_tail_append;
4515 return;
4517 set_tail_append:
4518 insert->ins_appending = APPEND_TAIL;
4522 * Helper function called at the begining of an insert.
4524 * This computes a few things that are commonly used in the process of
4525 * inserting into the btree:
4526 * - Whether the new extent is contiguous with an existing one.
4527 * - The current tree depth.
4528 * - Whether the insert is an appending one.
4529 * - The total # of free records in the tree.
4531 * All of the information is stored on the ocfs2_insert_type
4532 * structure.
4534 static int ocfs2_figure_insert_type(struct inode *inode,
4535 struct ocfs2_extent_tree *et,
4536 struct buffer_head **last_eb_bh,
4537 struct ocfs2_extent_rec *insert_rec,
4538 int *free_records,
4539 struct ocfs2_insert_type *insert)
4541 int ret;
4542 struct ocfs2_extent_block *eb;
4543 struct ocfs2_extent_list *el;
4544 struct ocfs2_path *path = NULL;
4545 struct buffer_head *bh = NULL;
4547 insert->ins_split = SPLIT_NONE;
4549 el = et->et_root_el;
4550 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4552 if (el->l_tree_depth) {
4554 * If we have tree depth, we read in the
4555 * rightmost extent block ahead of time as
4556 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4557 * may want it later.
4559 ret = ocfs2_read_extent_block(et->et_ci,
4560 ocfs2_et_get_last_eb_blk(et),
4561 &bh);
4562 if (ret) {
4563 mlog_exit(ret);
4564 goto out;
4566 eb = (struct ocfs2_extent_block *) bh->b_data;
4567 el = &eb->h_list;
4571 * Unless we have a contiguous insert, we'll need to know if
4572 * there is room left in our allocation tree for another
4573 * extent record.
4575 * XXX: This test is simplistic, we can search for empty
4576 * extent records too.
4578 *free_records = le16_to_cpu(el->l_count) -
4579 le16_to_cpu(el->l_next_free_rec);
4581 if (!insert->ins_tree_depth) {
4582 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4583 ocfs2_figure_appending_type(insert, el, insert_rec);
4584 return 0;
4587 path = ocfs2_new_path_from_et(et);
4588 if (!path) {
4589 ret = -ENOMEM;
4590 mlog_errno(ret);
4591 goto out;
4595 * In the case that we're inserting past what the tree
4596 * currently accounts for, ocfs2_find_path() will return for
4597 * us the rightmost tree path. This is accounted for below in
4598 * the appending code.
4600 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4601 if (ret) {
4602 mlog_errno(ret);
4603 goto out;
4606 el = path_leaf_el(path);
4609 * Now that we have the path, there's two things we want to determine:
4610 * 1) Contiguousness (also set contig_index if this is so)
4612 * 2) Are we doing an append? We can trivially break this up
4613 * into two types of appends: simple record append, or a
4614 * rotate inside the tail leaf.
4616 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4619 * The insert code isn't quite ready to deal with all cases of
4620 * left contiguousness. Specifically, if it's an insert into
4621 * the 1st record in a leaf, it will require the adjustment of
4622 * cluster count on the last record of the path directly to it's
4623 * left. For now, just catch that case and fool the layers
4624 * above us. This works just fine for tree_depth == 0, which
4625 * is why we allow that above.
4627 if (insert->ins_contig == CONTIG_LEFT &&
4628 insert->ins_contig_index == 0)
4629 insert->ins_contig = CONTIG_NONE;
4632 * Ok, so we can simply compare against last_eb to figure out
4633 * whether the path doesn't exist. This will only happen in
4634 * the case that we're doing a tail append, so maybe we can
4635 * take advantage of that information somehow.
4637 if (ocfs2_et_get_last_eb_blk(et) ==
4638 path_leaf_bh(path)->b_blocknr) {
4640 * Ok, ocfs2_find_path() returned us the rightmost
4641 * tree path. This might be an appending insert. There are
4642 * two cases:
4643 * 1) We're doing a true append at the tail:
4644 * -This might even be off the end of the leaf
4645 * 2) We're "appending" by rotating in the tail
4647 ocfs2_figure_appending_type(insert, el, insert_rec);
4650 out:
4651 ocfs2_free_path(path);
4653 if (ret == 0)
4654 *last_eb_bh = bh;
4655 else
4656 brelse(bh);
4657 return ret;
4661 * Insert an extent into an inode btree.
4663 * The caller needs to update fe->i_clusters
4665 int ocfs2_insert_extent(struct ocfs2_super *osb,
4666 handle_t *handle,
4667 struct inode *inode,
4668 struct ocfs2_extent_tree *et,
4669 u32 cpos,
4670 u64 start_blk,
4671 u32 new_clusters,
4672 u8 flags,
4673 struct ocfs2_alloc_context *meta_ac)
4675 int status;
4676 int uninitialized_var(free_records);
4677 struct buffer_head *last_eb_bh = NULL;
4678 struct ocfs2_insert_type insert = {0, };
4679 struct ocfs2_extent_rec rec;
4681 mlog(0, "add %u clusters at position %u to inode %llu\n",
4682 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4684 memset(&rec, 0, sizeof(rec));
4685 rec.e_cpos = cpu_to_le32(cpos);
4686 rec.e_blkno = cpu_to_le64(start_blk);
4687 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4688 rec.e_flags = flags;
4689 status = ocfs2_et_insert_check(et, &rec);
4690 if (status) {
4691 mlog_errno(status);
4692 goto bail;
4695 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4696 &free_records, &insert);
4697 if (status < 0) {
4698 mlog_errno(status);
4699 goto bail;
4702 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4703 "Insert.contig_index: %d, Insert.free_records: %d, "
4704 "Insert.tree_depth: %d\n",
4705 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4706 free_records, insert.ins_tree_depth);
4708 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4709 status = ocfs2_grow_tree(handle, et,
4710 &insert.ins_tree_depth, &last_eb_bh,
4711 meta_ac);
4712 if (status) {
4713 mlog_errno(status);
4714 goto bail;
4718 /* Finally, we can add clusters. This might rotate the tree for us. */
4719 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4720 if (status < 0)
4721 mlog_errno(status);
4722 else if (et->et_ops == &ocfs2_dinode_et_ops)
4723 ocfs2_extent_map_insert_rec(inode, &rec);
4725 bail:
4726 brelse(last_eb_bh);
4728 mlog_exit(status);
4729 return status;
4733 * Allcate and add clusters into the extent b-tree.
4734 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4735 * The extent b-tree's root is specified by et, and
4736 * it is not limited to the file storage. Any extent tree can use this
4737 * function if it implements the proper ocfs2_extent_tree.
4739 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4740 struct inode *inode,
4741 u32 *logical_offset,
4742 u32 clusters_to_add,
4743 int mark_unwritten,
4744 struct ocfs2_extent_tree *et,
4745 handle_t *handle,
4746 struct ocfs2_alloc_context *data_ac,
4747 struct ocfs2_alloc_context *meta_ac,
4748 enum ocfs2_alloc_restarted *reason_ret)
4750 int status = 0;
4751 int free_extents;
4752 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4753 u32 bit_off, num_bits;
4754 u64 block;
4755 u8 flags = 0;
4757 BUG_ON(!clusters_to_add);
4759 if (mark_unwritten)
4760 flags = OCFS2_EXT_UNWRITTEN;
4762 free_extents = ocfs2_num_free_extents(osb, et);
4763 if (free_extents < 0) {
4764 status = free_extents;
4765 mlog_errno(status);
4766 goto leave;
4769 /* there are two cases which could cause us to EAGAIN in the
4770 * we-need-more-metadata case:
4771 * 1) we haven't reserved *any*
4772 * 2) we are so fragmented, we've needed to add metadata too
4773 * many times. */
4774 if (!free_extents && !meta_ac) {
4775 mlog(0, "we haven't reserved any metadata!\n");
4776 status = -EAGAIN;
4777 reason = RESTART_META;
4778 goto leave;
4779 } else if ((!free_extents)
4780 && (ocfs2_alloc_context_bits_left(meta_ac)
4781 < ocfs2_extend_meta_needed(et->et_root_el))) {
4782 mlog(0, "filesystem is really fragmented...\n");
4783 status = -EAGAIN;
4784 reason = RESTART_META;
4785 goto leave;
4788 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4789 clusters_to_add, &bit_off, &num_bits);
4790 if (status < 0) {
4791 if (status != -ENOSPC)
4792 mlog_errno(status);
4793 goto leave;
4796 BUG_ON(num_bits > clusters_to_add);
4798 /* reserve our write early -- insert_extent may update the tree root */
4799 status = ocfs2_et_root_journal_access(handle, et,
4800 OCFS2_JOURNAL_ACCESS_WRITE);
4801 if (status < 0) {
4802 mlog_errno(status);
4803 goto leave;
4806 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4807 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4808 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4809 status = ocfs2_insert_extent(osb, handle, inode, et,
4810 *logical_offset, block,
4811 num_bits, flags, meta_ac);
4812 if (status < 0) {
4813 mlog_errno(status);
4814 goto leave;
4817 status = ocfs2_journal_dirty(handle, et->et_root_bh);
4818 if (status < 0) {
4819 mlog_errno(status);
4820 goto leave;
4823 clusters_to_add -= num_bits;
4824 *logical_offset += num_bits;
4826 if (clusters_to_add) {
4827 mlog(0, "need to alloc once more, wanted = %u\n",
4828 clusters_to_add);
4829 status = -EAGAIN;
4830 reason = RESTART_TRANS;
4833 leave:
4834 mlog_exit(status);
4835 if (reason_ret)
4836 *reason_ret = reason;
4837 return status;
4840 static void ocfs2_make_right_split_rec(struct super_block *sb,
4841 struct ocfs2_extent_rec *split_rec,
4842 u32 cpos,
4843 struct ocfs2_extent_rec *rec)
4845 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4846 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4848 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4850 split_rec->e_cpos = cpu_to_le32(cpos);
4851 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4853 split_rec->e_blkno = rec->e_blkno;
4854 le64_add_cpu(&split_rec->e_blkno,
4855 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4857 split_rec->e_flags = rec->e_flags;
4860 static int ocfs2_split_and_insert(struct inode *inode,
4861 handle_t *handle,
4862 struct ocfs2_path *path,
4863 struct ocfs2_extent_tree *et,
4864 struct buffer_head **last_eb_bh,
4865 int split_index,
4866 struct ocfs2_extent_rec *orig_split_rec,
4867 struct ocfs2_alloc_context *meta_ac)
4869 int ret = 0, depth;
4870 unsigned int insert_range, rec_range, do_leftright = 0;
4871 struct ocfs2_extent_rec tmprec;
4872 struct ocfs2_extent_list *rightmost_el;
4873 struct ocfs2_extent_rec rec;
4874 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4875 struct ocfs2_insert_type insert;
4876 struct ocfs2_extent_block *eb;
4878 leftright:
4880 * Store a copy of the record on the stack - it might move
4881 * around as the tree is manipulated below.
4883 rec = path_leaf_el(path)->l_recs[split_index];
4885 rightmost_el = et->et_root_el;
4887 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4888 if (depth) {
4889 BUG_ON(!(*last_eb_bh));
4890 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4891 rightmost_el = &eb->h_list;
4894 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4895 le16_to_cpu(rightmost_el->l_count)) {
4896 ret = ocfs2_grow_tree(handle, et,
4897 &depth, last_eb_bh, meta_ac);
4898 if (ret) {
4899 mlog_errno(ret);
4900 goto out;
4904 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4905 insert.ins_appending = APPEND_NONE;
4906 insert.ins_contig = CONTIG_NONE;
4907 insert.ins_tree_depth = depth;
4909 insert_range = le32_to_cpu(split_rec.e_cpos) +
4910 le16_to_cpu(split_rec.e_leaf_clusters);
4911 rec_range = le32_to_cpu(rec.e_cpos) +
4912 le16_to_cpu(rec.e_leaf_clusters);
4914 if (split_rec.e_cpos == rec.e_cpos) {
4915 insert.ins_split = SPLIT_LEFT;
4916 } else if (insert_range == rec_range) {
4917 insert.ins_split = SPLIT_RIGHT;
4918 } else {
4920 * Left/right split. We fake this as a right split
4921 * first and then make a second pass as a left split.
4923 insert.ins_split = SPLIT_RIGHT;
4925 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4926 &rec);
4928 split_rec = tmprec;
4930 BUG_ON(do_leftright);
4931 do_leftright = 1;
4934 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4935 if (ret) {
4936 mlog_errno(ret);
4937 goto out;
4940 if (do_leftright == 1) {
4941 u32 cpos;
4942 struct ocfs2_extent_list *el;
4944 do_leftright++;
4945 split_rec = *orig_split_rec;
4947 ocfs2_reinit_path(path, 1);
4949 cpos = le32_to_cpu(split_rec.e_cpos);
4950 ret = ocfs2_find_path(et->et_ci, path, cpos);
4951 if (ret) {
4952 mlog_errno(ret);
4953 goto out;
4956 el = path_leaf_el(path);
4957 split_index = ocfs2_search_extent_list(el, cpos);
4958 goto leftright;
4960 out:
4962 return ret;
4965 static int ocfs2_replace_extent_rec(struct inode *inode,
4966 handle_t *handle,
4967 struct ocfs2_path *path,
4968 struct ocfs2_extent_list *el,
4969 int split_index,
4970 struct ocfs2_extent_rec *split_rec)
4972 int ret;
4974 ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4975 path_num_items(path) - 1);
4976 if (ret) {
4977 mlog_errno(ret);
4978 goto out;
4981 el->l_recs[split_index] = *split_rec;
4983 ocfs2_journal_dirty(handle, path_leaf_bh(path));
4984 out:
4985 return ret;
4989 * Mark part or all of the extent record at split_index in the leaf
4990 * pointed to by path as written. This removes the unwritten
4991 * extent flag.
4993 * Care is taken to handle contiguousness so as to not grow the tree.
4995 * meta_ac is not strictly necessary - we only truly need it if growth
4996 * of the tree is required. All other cases will degrade into a less
4997 * optimal tree layout.
4999 * last_eb_bh should be the rightmost leaf block for any extent
5000 * btree. Since a split may grow the tree or a merge might shrink it,
5001 * the caller cannot trust the contents of that buffer after this call.
5003 * This code is optimized for readability - several passes might be
5004 * made over certain portions of the tree. All of those blocks will
5005 * have been brought into cache (and pinned via the journal), so the
5006 * extra overhead is not expressed in terms of disk reads.
5008 static int __ocfs2_mark_extent_written(struct inode *inode,
5009 struct ocfs2_extent_tree *et,
5010 handle_t *handle,
5011 struct ocfs2_path *path,
5012 int split_index,
5013 struct ocfs2_extent_rec *split_rec,
5014 struct ocfs2_alloc_context *meta_ac,
5015 struct ocfs2_cached_dealloc_ctxt *dealloc)
5017 int ret = 0;
5018 struct ocfs2_extent_list *el = path_leaf_el(path);
5019 struct buffer_head *last_eb_bh = NULL;
5020 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5021 struct ocfs2_merge_ctxt ctxt;
5022 struct ocfs2_extent_list *rightmost_el;
5024 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5025 ret = -EIO;
5026 mlog_errno(ret);
5027 goto out;
5030 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5031 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5032 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5033 ret = -EIO;
5034 mlog_errno(ret);
5035 goto out;
5038 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5039 split_index,
5040 split_rec);
5043 * The core merge / split code wants to know how much room is
5044 * left in this inodes allocation tree, so we pass the
5045 * rightmost extent list.
5047 if (path->p_tree_depth) {
5048 struct ocfs2_extent_block *eb;
5050 ret = ocfs2_read_extent_block(et->et_ci,
5051 ocfs2_et_get_last_eb_blk(et),
5052 &last_eb_bh);
5053 if (ret) {
5054 mlog_exit(ret);
5055 goto out;
5058 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5059 rightmost_el = &eb->h_list;
5060 } else
5061 rightmost_el = path_root_el(path);
5063 if (rec->e_cpos == split_rec->e_cpos &&
5064 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5065 ctxt.c_split_covers_rec = 1;
5066 else
5067 ctxt.c_split_covers_rec = 0;
5069 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5071 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5072 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5073 ctxt.c_split_covers_rec);
5075 if (ctxt.c_contig_type == CONTIG_NONE) {
5076 if (ctxt.c_split_covers_rec)
5077 ret = ocfs2_replace_extent_rec(inode, handle,
5078 path, el,
5079 split_index, split_rec);
5080 else
5081 ret = ocfs2_split_and_insert(inode, handle, path, et,
5082 &last_eb_bh, split_index,
5083 split_rec, meta_ac);
5084 if (ret)
5085 mlog_errno(ret);
5086 } else {
5087 ret = ocfs2_try_to_merge_extent(handle, et, path,
5088 split_index, split_rec,
5089 dealloc, &ctxt);
5090 if (ret)
5091 mlog_errno(ret);
5094 out:
5095 brelse(last_eb_bh);
5096 return ret;
5100 * Mark the already-existing extent at cpos as written for len clusters.
5102 * If the existing extent is larger than the request, initiate a
5103 * split. An attempt will be made at merging with adjacent extents.
5105 * The caller is responsible for passing down meta_ac if we'll need it.
5107 int ocfs2_mark_extent_written(struct inode *inode,
5108 struct ocfs2_extent_tree *et,
5109 handle_t *handle, u32 cpos, u32 len, u32 phys,
5110 struct ocfs2_alloc_context *meta_ac,
5111 struct ocfs2_cached_dealloc_ctxt *dealloc)
5113 int ret, index;
5114 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5115 struct ocfs2_extent_rec split_rec;
5116 struct ocfs2_path *left_path = NULL;
5117 struct ocfs2_extent_list *el;
5119 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5120 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5122 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5123 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5124 "that are being written to, but the feature bit "
5125 "is not set in the super block.",
5126 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5127 ret = -EROFS;
5128 goto out;
5132 * XXX: This should be fixed up so that we just re-insert the
5133 * next extent records.
5135 ocfs2_et_extent_map_truncate(et, 0);
5137 left_path = ocfs2_new_path_from_et(et);
5138 if (!left_path) {
5139 ret = -ENOMEM;
5140 mlog_errno(ret);
5141 goto out;
5144 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5145 if (ret) {
5146 mlog_errno(ret);
5147 goto out;
5149 el = path_leaf_el(left_path);
5151 index = ocfs2_search_extent_list(el, cpos);
5152 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5153 ocfs2_error(inode->i_sb,
5154 "Inode %llu has an extent at cpos %u which can no "
5155 "longer be found.\n",
5156 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5157 ret = -EROFS;
5158 goto out;
5161 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5162 split_rec.e_cpos = cpu_to_le32(cpos);
5163 split_rec.e_leaf_clusters = cpu_to_le16(len);
5164 split_rec.e_blkno = cpu_to_le64(start_blkno);
5165 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5166 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5168 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5169 index, &split_rec, meta_ac,
5170 dealloc);
5171 if (ret)
5172 mlog_errno(ret);
5174 out:
5175 ocfs2_free_path(left_path);
5176 return ret;
5179 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5180 handle_t *handle, struct ocfs2_path *path,
5181 int index, u32 new_range,
5182 struct ocfs2_alloc_context *meta_ac)
5184 int ret, depth, credits = handle->h_buffer_credits;
5185 struct buffer_head *last_eb_bh = NULL;
5186 struct ocfs2_extent_block *eb;
5187 struct ocfs2_extent_list *rightmost_el, *el;
5188 struct ocfs2_extent_rec split_rec;
5189 struct ocfs2_extent_rec *rec;
5190 struct ocfs2_insert_type insert;
5193 * Setup the record to split before we grow the tree.
5195 el = path_leaf_el(path);
5196 rec = &el->l_recs[index];
5197 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5199 depth = path->p_tree_depth;
5200 if (depth > 0) {
5201 ret = ocfs2_read_extent_block(et->et_ci,
5202 ocfs2_et_get_last_eb_blk(et),
5203 &last_eb_bh);
5204 if (ret < 0) {
5205 mlog_errno(ret);
5206 goto out;
5209 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5210 rightmost_el = &eb->h_list;
5211 } else
5212 rightmost_el = path_leaf_el(path);
5214 credits += path->p_tree_depth +
5215 ocfs2_extend_meta_needed(et->et_root_el);
5216 ret = ocfs2_extend_trans(handle, credits);
5217 if (ret) {
5218 mlog_errno(ret);
5219 goto out;
5222 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5223 le16_to_cpu(rightmost_el->l_count)) {
5224 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5225 meta_ac);
5226 if (ret) {
5227 mlog_errno(ret);
5228 goto out;
5232 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5233 insert.ins_appending = APPEND_NONE;
5234 insert.ins_contig = CONTIG_NONE;
5235 insert.ins_split = SPLIT_RIGHT;
5236 insert.ins_tree_depth = depth;
5238 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5239 if (ret)
5240 mlog_errno(ret);
5242 out:
5243 brelse(last_eb_bh);
5244 return ret;
5247 static int ocfs2_truncate_rec(handle_t *handle,
5248 struct ocfs2_extent_tree *et,
5249 struct ocfs2_path *path, int index,
5250 struct ocfs2_cached_dealloc_ctxt *dealloc,
5251 u32 cpos, u32 len)
5253 int ret;
5254 u32 left_cpos, rec_range, trunc_range;
5255 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5256 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5257 struct ocfs2_path *left_path = NULL;
5258 struct ocfs2_extent_list *el = path_leaf_el(path);
5259 struct ocfs2_extent_rec *rec;
5260 struct ocfs2_extent_block *eb;
5262 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5263 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5264 if (ret) {
5265 mlog_errno(ret);
5266 goto out;
5269 index--;
5272 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5273 path->p_tree_depth) {
5275 * Check whether this is the rightmost tree record. If
5276 * we remove all of this record or part of its right
5277 * edge then an update of the record lengths above it
5278 * will be required.
5280 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5281 if (eb->h_next_leaf_blk == 0)
5282 is_rightmost_tree_rec = 1;
5285 rec = &el->l_recs[index];
5286 if (index == 0 && path->p_tree_depth &&
5287 le32_to_cpu(rec->e_cpos) == cpos) {
5289 * Changing the leftmost offset (via partial or whole
5290 * record truncate) of an interior (or rightmost) path
5291 * means we have to update the subtree that is formed
5292 * by this leaf and the one to it's left.
5294 * There are two cases we can skip:
5295 * 1) Path is the leftmost one in our btree.
5296 * 2) The leaf is rightmost and will be empty after
5297 * we remove the extent record - the rotate code
5298 * knows how to update the newly formed edge.
5301 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5302 if (ret) {
5303 mlog_errno(ret);
5304 goto out;
5307 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5308 left_path = ocfs2_new_path_from_path(path);
5309 if (!left_path) {
5310 ret = -ENOMEM;
5311 mlog_errno(ret);
5312 goto out;
5315 ret = ocfs2_find_path(et->et_ci, left_path,
5316 left_cpos);
5317 if (ret) {
5318 mlog_errno(ret);
5319 goto out;
5324 ret = ocfs2_extend_rotate_transaction(handle, 0,
5325 handle->h_buffer_credits,
5326 path);
5327 if (ret) {
5328 mlog_errno(ret);
5329 goto out;
5332 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5333 if (ret) {
5334 mlog_errno(ret);
5335 goto out;
5338 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5339 if (ret) {
5340 mlog_errno(ret);
5341 goto out;
5344 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5345 trunc_range = cpos + len;
5347 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5348 int next_free;
5350 memset(rec, 0, sizeof(*rec));
5351 ocfs2_cleanup_merge(el, index);
5352 wants_rotate = 1;
5354 next_free = le16_to_cpu(el->l_next_free_rec);
5355 if (is_rightmost_tree_rec && next_free > 1) {
5357 * We skip the edge update if this path will
5358 * be deleted by the rotate code.
5360 rec = &el->l_recs[next_free - 1];
5361 ocfs2_adjust_rightmost_records(handle, et, path,
5362 rec);
5364 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5365 /* Remove leftmost portion of the record. */
5366 le32_add_cpu(&rec->e_cpos, len);
5367 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5368 le16_add_cpu(&rec->e_leaf_clusters, -len);
5369 } else if (rec_range == trunc_range) {
5370 /* Remove rightmost portion of the record */
5371 le16_add_cpu(&rec->e_leaf_clusters, -len);
5372 if (is_rightmost_tree_rec)
5373 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5374 } else {
5375 /* Caller should have trapped this. */
5376 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5377 "(%u, %u)\n",
5378 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5379 le32_to_cpu(rec->e_cpos),
5380 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5381 BUG();
5384 if (left_path) {
5385 int subtree_index;
5387 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5388 ocfs2_complete_edge_insert(handle, left_path, path,
5389 subtree_index);
5392 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5394 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5395 if (ret) {
5396 mlog_errno(ret);
5397 goto out;
5400 out:
5401 ocfs2_free_path(left_path);
5402 return ret;
5405 int ocfs2_remove_extent(struct inode *inode,
5406 struct ocfs2_extent_tree *et,
5407 u32 cpos, u32 len, handle_t *handle,
5408 struct ocfs2_alloc_context *meta_ac,
5409 struct ocfs2_cached_dealloc_ctxt *dealloc)
5411 int ret, index;
5412 u32 rec_range, trunc_range;
5413 struct ocfs2_extent_rec *rec;
5414 struct ocfs2_extent_list *el;
5415 struct ocfs2_path *path = NULL;
5418 * XXX: Why are we truncating to 0 instead of wherever this
5419 * affects us?
5421 ocfs2_et_extent_map_truncate(et, 0);
5423 path = ocfs2_new_path_from_et(et);
5424 if (!path) {
5425 ret = -ENOMEM;
5426 mlog_errno(ret);
5427 goto out;
5430 ret = ocfs2_find_path(et->et_ci, path, cpos);
5431 if (ret) {
5432 mlog_errno(ret);
5433 goto out;
5436 el = path_leaf_el(path);
5437 index = ocfs2_search_extent_list(el, cpos);
5438 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5439 ocfs2_error(inode->i_sb,
5440 "Inode %llu has an extent at cpos %u which can no "
5441 "longer be found.\n",
5442 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5443 ret = -EROFS;
5444 goto out;
5448 * We have 3 cases of extent removal:
5449 * 1) Range covers the entire extent rec
5450 * 2) Range begins or ends on one edge of the extent rec
5451 * 3) Range is in the middle of the extent rec (no shared edges)
5453 * For case 1 we remove the extent rec and left rotate to
5454 * fill the hole.
5456 * For case 2 we just shrink the existing extent rec, with a
5457 * tree update if the shrinking edge is also the edge of an
5458 * extent block.
5460 * For case 3 we do a right split to turn the extent rec into
5461 * something case 2 can handle.
5463 rec = &el->l_recs[index];
5464 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5465 trunc_range = cpos + len;
5467 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5469 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5470 "(cpos %u, len %u)\n",
5471 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5472 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5474 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5475 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5476 cpos, len);
5477 if (ret) {
5478 mlog_errno(ret);
5479 goto out;
5481 } else {
5482 ret = ocfs2_split_tree(inode, et, handle, path, index,
5483 trunc_range, meta_ac);
5484 if (ret) {
5485 mlog_errno(ret);
5486 goto out;
5490 * The split could have manipulated the tree enough to
5491 * move the record location, so we have to look for it again.
5493 ocfs2_reinit_path(path, 1);
5495 ret = ocfs2_find_path(et->et_ci, path, cpos);
5496 if (ret) {
5497 mlog_errno(ret);
5498 goto out;
5501 el = path_leaf_el(path);
5502 index = ocfs2_search_extent_list(el, cpos);
5503 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5504 ocfs2_error(inode->i_sb,
5505 "Inode %llu: split at cpos %u lost record.",
5506 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5507 cpos);
5508 ret = -EROFS;
5509 goto out;
5513 * Double check our values here. If anything is fishy,
5514 * it's easier to catch it at the top level.
5516 rec = &el->l_recs[index];
5517 rec_range = le32_to_cpu(rec->e_cpos) +
5518 ocfs2_rec_clusters(el, rec);
5519 if (rec_range != trunc_range) {
5520 ocfs2_error(inode->i_sb,
5521 "Inode %llu: error after split at cpos %u"
5522 "trunc len %u, existing record is (%u,%u)",
5523 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5524 cpos, len, le32_to_cpu(rec->e_cpos),
5525 ocfs2_rec_clusters(el, rec));
5526 ret = -EROFS;
5527 goto out;
5530 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5531 cpos, len);
5532 if (ret) {
5533 mlog_errno(ret);
5534 goto out;
5538 out:
5539 ocfs2_free_path(path);
5540 return ret;
5543 int ocfs2_remove_btree_range(struct inode *inode,
5544 struct ocfs2_extent_tree *et,
5545 u32 cpos, u32 phys_cpos, u32 len,
5546 struct ocfs2_cached_dealloc_ctxt *dealloc)
5548 int ret;
5549 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5550 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5551 struct inode *tl_inode = osb->osb_tl_inode;
5552 handle_t *handle;
5553 struct ocfs2_alloc_context *meta_ac = NULL;
5555 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5556 if (ret) {
5557 mlog_errno(ret);
5558 return ret;
5561 mutex_lock(&tl_inode->i_mutex);
5563 if (ocfs2_truncate_log_needs_flush(osb)) {
5564 ret = __ocfs2_flush_truncate_log(osb);
5565 if (ret < 0) {
5566 mlog_errno(ret);
5567 goto out;
5571 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5572 if (IS_ERR(handle)) {
5573 ret = PTR_ERR(handle);
5574 mlog_errno(ret);
5575 goto out;
5578 ret = ocfs2_et_root_journal_access(handle, et,
5579 OCFS2_JOURNAL_ACCESS_WRITE);
5580 if (ret) {
5581 mlog_errno(ret);
5582 goto out;
5585 vfs_dq_free_space_nodirty(inode,
5586 ocfs2_clusters_to_bytes(inode->i_sb, len));
5588 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5589 dealloc);
5590 if (ret) {
5591 mlog_errno(ret);
5592 goto out_commit;
5595 ocfs2_et_update_clusters(et, -len);
5597 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5598 if (ret) {
5599 mlog_errno(ret);
5600 goto out_commit;
5603 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5604 if (ret)
5605 mlog_errno(ret);
5607 out_commit:
5608 ocfs2_commit_trans(osb, handle);
5609 out:
5610 mutex_unlock(&tl_inode->i_mutex);
5612 if (meta_ac)
5613 ocfs2_free_alloc_context(meta_ac);
5615 return ret;
5618 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5620 struct buffer_head *tl_bh = osb->osb_tl_bh;
5621 struct ocfs2_dinode *di;
5622 struct ocfs2_truncate_log *tl;
5624 di = (struct ocfs2_dinode *) tl_bh->b_data;
5625 tl = &di->id2.i_dealloc;
5627 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5628 "slot %d, invalid truncate log parameters: used = "
5629 "%u, count = %u\n", osb->slot_num,
5630 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5631 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5634 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5635 unsigned int new_start)
5637 unsigned int tail_index;
5638 unsigned int current_tail;
5640 /* No records, nothing to coalesce */
5641 if (!le16_to_cpu(tl->tl_used))
5642 return 0;
5644 tail_index = le16_to_cpu(tl->tl_used) - 1;
5645 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5646 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5648 return current_tail == new_start;
5651 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5652 handle_t *handle,
5653 u64 start_blk,
5654 unsigned int num_clusters)
5656 int status, index;
5657 unsigned int start_cluster, tl_count;
5658 struct inode *tl_inode = osb->osb_tl_inode;
5659 struct buffer_head *tl_bh = osb->osb_tl_bh;
5660 struct ocfs2_dinode *di;
5661 struct ocfs2_truncate_log *tl;
5663 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5664 (unsigned long long)start_blk, num_clusters);
5666 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5668 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5670 di = (struct ocfs2_dinode *) tl_bh->b_data;
5672 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5673 * by the underlying call to ocfs2_read_inode_block(), so any
5674 * corruption is a code bug */
5675 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5677 tl = &di->id2.i_dealloc;
5678 tl_count = le16_to_cpu(tl->tl_count);
5679 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5680 tl_count == 0,
5681 "Truncate record count on #%llu invalid "
5682 "wanted %u, actual %u\n",
5683 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5684 ocfs2_truncate_recs_per_inode(osb->sb),
5685 le16_to_cpu(tl->tl_count));
5687 /* Caller should have known to flush before calling us. */
5688 index = le16_to_cpu(tl->tl_used);
5689 if (index >= tl_count) {
5690 status = -ENOSPC;
5691 mlog_errno(status);
5692 goto bail;
5695 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5696 OCFS2_JOURNAL_ACCESS_WRITE);
5697 if (status < 0) {
5698 mlog_errno(status);
5699 goto bail;
5702 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5703 "%llu (index = %d)\n", num_clusters, start_cluster,
5704 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5706 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5708 * Move index back to the record we are coalescing with.
5709 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5711 index--;
5713 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5714 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5715 index, le32_to_cpu(tl->tl_recs[index].t_start),
5716 num_clusters);
5717 } else {
5718 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5719 tl->tl_used = cpu_to_le16(index + 1);
5721 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5723 status = ocfs2_journal_dirty(handle, tl_bh);
5724 if (status < 0) {
5725 mlog_errno(status);
5726 goto bail;
5729 bail:
5730 mlog_exit(status);
5731 return status;
5734 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5735 handle_t *handle,
5736 struct inode *data_alloc_inode,
5737 struct buffer_head *data_alloc_bh)
5739 int status = 0;
5740 int i;
5741 unsigned int num_clusters;
5742 u64 start_blk;
5743 struct ocfs2_truncate_rec rec;
5744 struct ocfs2_dinode *di;
5745 struct ocfs2_truncate_log *tl;
5746 struct inode *tl_inode = osb->osb_tl_inode;
5747 struct buffer_head *tl_bh = osb->osb_tl_bh;
5749 mlog_entry_void();
5751 di = (struct ocfs2_dinode *) tl_bh->b_data;
5752 tl = &di->id2.i_dealloc;
5753 i = le16_to_cpu(tl->tl_used) - 1;
5754 while (i >= 0) {
5755 /* Caller has given us at least enough credits to
5756 * update the truncate log dinode */
5757 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5758 OCFS2_JOURNAL_ACCESS_WRITE);
5759 if (status < 0) {
5760 mlog_errno(status);
5761 goto bail;
5764 tl->tl_used = cpu_to_le16(i);
5766 status = ocfs2_journal_dirty(handle, tl_bh);
5767 if (status < 0) {
5768 mlog_errno(status);
5769 goto bail;
5772 /* TODO: Perhaps we can calculate the bulk of the
5773 * credits up front rather than extending like
5774 * this. */
5775 status = ocfs2_extend_trans(handle,
5776 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5777 if (status < 0) {
5778 mlog_errno(status);
5779 goto bail;
5782 rec = tl->tl_recs[i];
5783 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5784 le32_to_cpu(rec.t_start));
5785 num_clusters = le32_to_cpu(rec.t_clusters);
5787 /* if start_blk is not set, we ignore the record as
5788 * invalid. */
5789 if (start_blk) {
5790 mlog(0, "free record %d, start = %u, clusters = %u\n",
5791 i, le32_to_cpu(rec.t_start), num_clusters);
5793 status = ocfs2_free_clusters(handle, data_alloc_inode,
5794 data_alloc_bh, start_blk,
5795 num_clusters);
5796 if (status < 0) {
5797 mlog_errno(status);
5798 goto bail;
5801 i--;
5804 bail:
5805 mlog_exit(status);
5806 return status;
5809 /* Expects you to already be holding tl_inode->i_mutex */
5810 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5812 int status;
5813 unsigned int num_to_flush;
5814 handle_t *handle;
5815 struct inode *tl_inode = osb->osb_tl_inode;
5816 struct inode *data_alloc_inode = NULL;
5817 struct buffer_head *tl_bh = osb->osb_tl_bh;
5818 struct buffer_head *data_alloc_bh = NULL;
5819 struct ocfs2_dinode *di;
5820 struct ocfs2_truncate_log *tl;
5822 mlog_entry_void();
5824 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5826 di = (struct ocfs2_dinode *) tl_bh->b_data;
5828 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5829 * by the underlying call to ocfs2_read_inode_block(), so any
5830 * corruption is a code bug */
5831 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5833 tl = &di->id2.i_dealloc;
5834 num_to_flush = le16_to_cpu(tl->tl_used);
5835 mlog(0, "Flush %u records from truncate log #%llu\n",
5836 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5837 if (!num_to_flush) {
5838 status = 0;
5839 goto out;
5842 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5843 GLOBAL_BITMAP_SYSTEM_INODE,
5844 OCFS2_INVALID_SLOT);
5845 if (!data_alloc_inode) {
5846 status = -EINVAL;
5847 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5848 goto out;
5851 mutex_lock(&data_alloc_inode->i_mutex);
5853 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5854 if (status < 0) {
5855 mlog_errno(status);
5856 goto out_mutex;
5859 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5860 if (IS_ERR(handle)) {
5861 status = PTR_ERR(handle);
5862 mlog_errno(status);
5863 goto out_unlock;
5866 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5867 data_alloc_bh);
5868 if (status < 0)
5869 mlog_errno(status);
5871 ocfs2_commit_trans(osb, handle);
5873 out_unlock:
5874 brelse(data_alloc_bh);
5875 ocfs2_inode_unlock(data_alloc_inode, 1);
5877 out_mutex:
5878 mutex_unlock(&data_alloc_inode->i_mutex);
5879 iput(data_alloc_inode);
5881 out:
5882 mlog_exit(status);
5883 return status;
5886 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5888 int status;
5889 struct inode *tl_inode = osb->osb_tl_inode;
5891 mutex_lock(&tl_inode->i_mutex);
5892 status = __ocfs2_flush_truncate_log(osb);
5893 mutex_unlock(&tl_inode->i_mutex);
5895 return status;
5898 static void ocfs2_truncate_log_worker(struct work_struct *work)
5900 int status;
5901 struct ocfs2_super *osb =
5902 container_of(work, struct ocfs2_super,
5903 osb_truncate_log_wq.work);
5905 mlog_entry_void();
5907 status = ocfs2_flush_truncate_log(osb);
5908 if (status < 0)
5909 mlog_errno(status);
5910 else
5911 ocfs2_init_inode_steal_slot(osb);
5913 mlog_exit(status);
5916 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5917 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5918 int cancel)
5920 if (osb->osb_tl_inode) {
5921 /* We want to push off log flushes while truncates are
5922 * still running. */
5923 if (cancel)
5924 cancel_delayed_work(&osb->osb_truncate_log_wq);
5926 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5927 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5931 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5932 int slot_num,
5933 struct inode **tl_inode,
5934 struct buffer_head **tl_bh)
5936 int status;
5937 struct inode *inode = NULL;
5938 struct buffer_head *bh = NULL;
5940 inode = ocfs2_get_system_file_inode(osb,
5941 TRUNCATE_LOG_SYSTEM_INODE,
5942 slot_num);
5943 if (!inode) {
5944 status = -EINVAL;
5945 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5946 goto bail;
5949 status = ocfs2_read_inode_block(inode, &bh);
5950 if (status < 0) {
5951 iput(inode);
5952 mlog_errno(status);
5953 goto bail;
5956 *tl_inode = inode;
5957 *tl_bh = bh;
5958 bail:
5959 mlog_exit(status);
5960 return status;
5963 /* called during the 1st stage of node recovery. we stamp a clean
5964 * truncate log and pass back a copy for processing later. if the
5965 * truncate log does not require processing, a *tl_copy is set to
5966 * NULL. */
5967 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5968 int slot_num,
5969 struct ocfs2_dinode **tl_copy)
5971 int status;
5972 struct inode *tl_inode = NULL;
5973 struct buffer_head *tl_bh = NULL;
5974 struct ocfs2_dinode *di;
5975 struct ocfs2_truncate_log *tl;
5977 *tl_copy = NULL;
5979 mlog(0, "recover truncate log from slot %d\n", slot_num);
5981 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5982 if (status < 0) {
5983 mlog_errno(status);
5984 goto bail;
5987 di = (struct ocfs2_dinode *) tl_bh->b_data;
5989 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
5990 * validated by the underlying call to ocfs2_read_inode_block(),
5991 * so any corruption is a code bug */
5992 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5994 tl = &di->id2.i_dealloc;
5995 if (le16_to_cpu(tl->tl_used)) {
5996 mlog(0, "We'll have %u logs to recover\n",
5997 le16_to_cpu(tl->tl_used));
5999 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6000 if (!(*tl_copy)) {
6001 status = -ENOMEM;
6002 mlog_errno(status);
6003 goto bail;
6006 /* Assuming the write-out below goes well, this copy
6007 * will be passed back to recovery for processing. */
6008 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6010 /* All we need to do to clear the truncate log is set
6011 * tl_used. */
6012 tl->tl_used = 0;
6014 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6015 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6016 if (status < 0) {
6017 mlog_errno(status);
6018 goto bail;
6022 bail:
6023 if (tl_inode)
6024 iput(tl_inode);
6025 brelse(tl_bh);
6027 if (status < 0 && (*tl_copy)) {
6028 kfree(*tl_copy);
6029 *tl_copy = NULL;
6032 mlog_exit(status);
6033 return status;
6036 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6037 struct ocfs2_dinode *tl_copy)
6039 int status = 0;
6040 int i;
6041 unsigned int clusters, num_recs, start_cluster;
6042 u64 start_blk;
6043 handle_t *handle;
6044 struct inode *tl_inode = osb->osb_tl_inode;
6045 struct ocfs2_truncate_log *tl;
6047 mlog_entry_void();
6049 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6050 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6051 return -EINVAL;
6054 tl = &tl_copy->id2.i_dealloc;
6055 num_recs = le16_to_cpu(tl->tl_used);
6056 mlog(0, "cleanup %u records from %llu\n", num_recs,
6057 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6059 mutex_lock(&tl_inode->i_mutex);
6060 for(i = 0; i < num_recs; i++) {
6061 if (ocfs2_truncate_log_needs_flush(osb)) {
6062 status = __ocfs2_flush_truncate_log(osb);
6063 if (status < 0) {
6064 mlog_errno(status);
6065 goto bail_up;
6069 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6070 if (IS_ERR(handle)) {
6071 status = PTR_ERR(handle);
6072 mlog_errno(status);
6073 goto bail_up;
6076 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6077 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6078 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6080 status = ocfs2_truncate_log_append(osb, handle,
6081 start_blk, clusters);
6082 ocfs2_commit_trans(osb, handle);
6083 if (status < 0) {
6084 mlog_errno(status);
6085 goto bail_up;
6089 bail_up:
6090 mutex_unlock(&tl_inode->i_mutex);
6092 mlog_exit(status);
6093 return status;
6096 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6098 int status;
6099 struct inode *tl_inode = osb->osb_tl_inode;
6101 mlog_entry_void();
6103 if (tl_inode) {
6104 cancel_delayed_work(&osb->osb_truncate_log_wq);
6105 flush_workqueue(ocfs2_wq);
6107 status = ocfs2_flush_truncate_log(osb);
6108 if (status < 0)
6109 mlog_errno(status);
6111 brelse(osb->osb_tl_bh);
6112 iput(osb->osb_tl_inode);
6115 mlog_exit_void();
6118 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6120 int status;
6121 struct inode *tl_inode = NULL;
6122 struct buffer_head *tl_bh = NULL;
6124 mlog_entry_void();
6126 status = ocfs2_get_truncate_log_info(osb,
6127 osb->slot_num,
6128 &tl_inode,
6129 &tl_bh);
6130 if (status < 0)
6131 mlog_errno(status);
6133 /* ocfs2_truncate_log_shutdown keys on the existence of
6134 * osb->osb_tl_inode so we don't set any of the osb variables
6135 * until we're sure all is well. */
6136 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6137 ocfs2_truncate_log_worker);
6138 osb->osb_tl_bh = tl_bh;
6139 osb->osb_tl_inode = tl_inode;
6141 mlog_exit(status);
6142 return status;
6146 * Delayed de-allocation of suballocator blocks.
6148 * Some sets of block de-allocations might involve multiple suballocator inodes.
6150 * The locking for this can get extremely complicated, especially when
6151 * the suballocator inodes to delete from aren't known until deep
6152 * within an unrelated codepath.
6154 * ocfs2_extent_block structures are a good example of this - an inode
6155 * btree could have been grown by any number of nodes each allocating
6156 * out of their own suballoc inode.
6158 * These structures allow the delay of block de-allocation until a
6159 * later time, when locking of multiple cluster inodes won't cause
6160 * deadlock.
6164 * Describe a single bit freed from a suballocator. For the block
6165 * suballocators, it represents one block. For the global cluster
6166 * allocator, it represents some clusters and free_bit indicates
6167 * clusters number.
6169 struct ocfs2_cached_block_free {
6170 struct ocfs2_cached_block_free *free_next;
6171 u64 free_blk;
6172 unsigned int free_bit;
6175 struct ocfs2_per_slot_free_list {
6176 struct ocfs2_per_slot_free_list *f_next_suballocator;
6177 int f_inode_type;
6178 int f_slot;
6179 struct ocfs2_cached_block_free *f_first;
6182 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6183 int sysfile_type,
6184 int slot,
6185 struct ocfs2_cached_block_free *head)
6187 int ret;
6188 u64 bg_blkno;
6189 handle_t *handle;
6190 struct inode *inode;
6191 struct buffer_head *di_bh = NULL;
6192 struct ocfs2_cached_block_free *tmp;
6194 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6195 if (!inode) {
6196 ret = -EINVAL;
6197 mlog_errno(ret);
6198 goto out;
6201 mutex_lock(&inode->i_mutex);
6203 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6204 if (ret) {
6205 mlog_errno(ret);
6206 goto out_mutex;
6209 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6210 if (IS_ERR(handle)) {
6211 ret = PTR_ERR(handle);
6212 mlog_errno(ret);
6213 goto out_unlock;
6216 while (head) {
6217 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6218 head->free_bit);
6219 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6220 head->free_bit, (unsigned long long)head->free_blk);
6222 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6223 head->free_bit, bg_blkno, 1);
6224 if (ret) {
6225 mlog_errno(ret);
6226 goto out_journal;
6229 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6230 if (ret) {
6231 mlog_errno(ret);
6232 goto out_journal;
6235 tmp = head;
6236 head = head->free_next;
6237 kfree(tmp);
6240 out_journal:
6241 ocfs2_commit_trans(osb, handle);
6243 out_unlock:
6244 ocfs2_inode_unlock(inode, 1);
6245 brelse(di_bh);
6246 out_mutex:
6247 mutex_unlock(&inode->i_mutex);
6248 iput(inode);
6249 out:
6250 while(head) {
6251 /* Premature exit may have left some dangling items. */
6252 tmp = head;
6253 head = head->free_next;
6254 kfree(tmp);
6257 return ret;
6260 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6261 u64 blkno, unsigned int bit)
6263 int ret = 0;
6264 struct ocfs2_cached_block_free *item;
6266 item = kmalloc(sizeof(*item), GFP_NOFS);
6267 if (item == NULL) {
6268 ret = -ENOMEM;
6269 mlog_errno(ret);
6270 return ret;
6273 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6274 bit, (unsigned long long)blkno);
6276 item->free_blk = blkno;
6277 item->free_bit = bit;
6278 item->free_next = ctxt->c_global_allocator;
6280 ctxt->c_global_allocator = item;
6281 return ret;
6284 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6285 struct ocfs2_cached_block_free *head)
6287 struct ocfs2_cached_block_free *tmp;
6288 struct inode *tl_inode = osb->osb_tl_inode;
6289 handle_t *handle;
6290 int ret = 0;
6292 mutex_lock(&tl_inode->i_mutex);
6294 while (head) {
6295 if (ocfs2_truncate_log_needs_flush(osb)) {
6296 ret = __ocfs2_flush_truncate_log(osb);
6297 if (ret < 0) {
6298 mlog_errno(ret);
6299 break;
6303 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6304 if (IS_ERR(handle)) {
6305 ret = PTR_ERR(handle);
6306 mlog_errno(ret);
6307 break;
6310 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6311 head->free_bit);
6313 ocfs2_commit_trans(osb, handle);
6314 tmp = head;
6315 head = head->free_next;
6316 kfree(tmp);
6318 if (ret < 0) {
6319 mlog_errno(ret);
6320 break;
6324 mutex_unlock(&tl_inode->i_mutex);
6326 while (head) {
6327 /* Premature exit may have left some dangling items. */
6328 tmp = head;
6329 head = head->free_next;
6330 kfree(tmp);
6333 return ret;
6336 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6337 struct ocfs2_cached_dealloc_ctxt *ctxt)
6339 int ret = 0, ret2;
6340 struct ocfs2_per_slot_free_list *fl;
6342 if (!ctxt)
6343 return 0;
6345 while (ctxt->c_first_suballocator) {
6346 fl = ctxt->c_first_suballocator;
6348 if (fl->f_first) {
6349 mlog(0, "Free items: (type %u, slot %d)\n",
6350 fl->f_inode_type, fl->f_slot);
6351 ret2 = ocfs2_free_cached_blocks(osb,
6352 fl->f_inode_type,
6353 fl->f_slot,
6354 fl->f_first);
6355 if (ret2)
6356 mlog_errno(ret2);
6357 if (!ret)
6358 ret = ret2;
6361 ctxt->c_first_suballocator = fl->f_next_suballocator;
6362 kfree(fl);
6365 if (ctxt->c_global_allocator) {
6366 ret2 = ocfs2_free_cached_clusters(osb,
6367 ctxt->c_global_allocator);
6368 if (ret2)
6369 mlog_errno(ret2);
6370 if (!ret)
6371 ret = ret2;
6373 ctxt->c_global_allocator = NULL;
6376 return ret;
6379 static struct ocfs2_per_slot_free_list *
6380 ocfs2_find_per_slot_free_list(int type,
6381 int slot,
6382 struct ocfs2_cached_dealloc_ctxt *ctxt)
6384 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6386 while (fl) {
6387 if (fl->f_inode_type == type && fl->f_slot == slot)
6388 return fl;
6390 fl = fl->f_next_suballocator;
6393 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6394 if (fl) {
6395 fl->f_inode_type = type;
6396 fl->f_slot = slot;
6397 fl->f_first = NULL;
6398 fl->f_next_suballocator = ctxt->c_first_suballocator;
6400 ctxt->c_first_suballocator = fl;
6402 return fl;
6405 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6406 int type, int slot, u64 blkno,
6407 unsigned int bit)
6409 int ret;
6410 struct ocfs2_per_slot_free_list *fl;
6411 struct ocfs2_cached_block_free *item;
6413 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6414 if (fl == NULL) {
6415 ret = -ENOMEM;
6416 mlog_errno(ret);
6417 goto out;
6420 item = kmalloc(sizeof(*item), GFP_NOFS);
6421 if (item == NULL) {
6422 ret = -ENOMEM;
6423 mlog_errno(ret);
6424 goto out;
6427 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6428 type, slot, bit, (unsigned long long)blkno);
6430 item->free_blk = blkno;
6431 item->free_bit = bit;
6432 item->free_next = fl->f_first;
6434 fl->f_first = item;
6436 ret = 0;
6437 out:
6438 return ret;
6441 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6442 struct ocfs2_extent_block *eb)
6444 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6445 le16_to_cpu(eb->h_suballoc_slot),
6446 le64_to_cpu(eb->h_blkno),
6447 le16_to_cpu(eb->h_suballoc_bit));
6450 /* This function will figure out whether the currently last extent
6451 * block will be deleted, and if it will, what the new last extent
6452 * block will be so we can update his h_next_leaf_blk field, as well
6453 * as the dinodes i_last_eb_blk */
6454 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6455 unsigned int clusters_to_del,
6456 struct ocfs2_path *path,
6457 struct buffer_head **new_last_eb)
6459 int next_free, ret = 0;
6460 u32 cpos;
6461 struct ocfs2_extent_rec *rec;
6462 struct ocfs2_extent_block *eb;
6463 struct ocfs2_extent_list *el;
6464 struct buffer_head *bh = NULL;
6466 *new_last_eb = NULL;
6468 /* we have no tree, so of course, no last_eb. */
6469 if (!path->p_tree_depth)
6470 goto out;
6472 /* trunc to zero special case - this makes tree_depth = 0
6473 * regardless of what it is. */
6474 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6475 goto out;
6477 el = path_leaf_el(path);
6478 BUG_ON(!el->l_next_free_rec);
6481 * Make sure that this extent list will actually be empty
6482 * after we clear away the data. We can shortcut out if
6483 * there's more than one non-empty extent in the
6484 * list. Otherwise, a check of the remaining extent is
6485 * necessary.
6487 next_free = le16_to_cpu(el->l_next_free_rec);
6488 rec = NULL;
6489 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6490 if (next_free > 2)
6491 goto out;
6493 /* We may have a valid extent in index 1, check it. */
6494 if (next_free == 2)
6495 rec = &el->l_recs[1];
6498 * Fall through - no more nonempty extents, so we want
6499 * to delete this leaf.
6501 } else {
6502 if (next_free > 1)
6503 goto out;
6505 rec = &el->l_recs[0];
6508 if (rec) {
6510 * Check it we'll only be trimming off the end of this
6511 * cluster.
6513 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6514 goto out;
6517 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6518 if (ret) {
6519 mlog_errno(ret);
6520 goto out;
6523 ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6524 if (ret) {
6525 mlog_errno(ret);
6526 goto out;
6529 eb = (struct ocfs2_extent_block *) bh->b_data;
6530 el = &eb->h_list;
6532 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6533 * Any corruption is a code bug. */
6534 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6536 *new_last_eb = bh;
6537 get_bh(*new_last_eb);
6538 mlog(0, "returning block %llu, (cpos: %u)\n",
6539 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6540 out:
6541 brelse(bh);
6543 return ret;
6547 * Trim some clusters off the rightmost edge of a tree. Only called
6548 * during truncate.
6550 * The caller needs to:
6551 * - start journaling of each path component.
6552 * - compute and fully set up any new last ext block
6554 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6555 handle_t *handle, struct ocfs2_truncate_context *tc,
6556 u32 clusters_to_del, u64 *delete_start)
6558 int ret, i, index = path->p_tree_depth;
6559 u32 new_edge = 0;
6560 u64 deleted_eb = 0;
6561 struct buffer_head *bh;
6562 struct ocfs2_extent_list *el;
6563 struct ocfs2_extent_rec *rec;
6565 *delete_start = 0;
6567 while (index >= 0) {
6568 bh = path->p_node[index].bh;
6569 el = path->p_node[index].el;
6571 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6572 index, (unsigned long long)bh->b_blocknr);
6574 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6576 if (index !=
6577 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6578 ocfs2_error(inode->i_sb,
6579 "Inode %lu has invalid ext. block %llu",
6580 inode->i_ino,
6581 (unsigned long long)bh->b_blocknr);
6582 ret = -EROFS;
6583 goto out;
6586 find_tail_record:
6587 i = le16_to_cpu(el->l_next_free_rec) - 1;
6588 rec = &el->l_recs[i];
6590 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6591 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6592 ocfs2_rec_clusters(el, rec),
6593 (unsigned long long)le64_to_cpu(rec->e_blkno),
6594 le16_to_cpu(el->l_next_free_rec));
6596 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6598 if (le16_to_cpu(el->l_tree_depth) == 0) {
6600 * If the leaf block contains a single empty
6601 * extent and no records, we can just remove
6602 * the block.
6604 if (i == 0 && ocfs2_is_empty_extent(rec)) {
6605 memset(rec, 0,
6606 sizeof(struct ocfs2_extent_rec));
6607 el->l_next_free_rec = cpu_to_le16(0);
6609 goto delete;
6613 * Remove any empty extents by shifting things
6614 * left. That should make life much easier on
6615 * the code below. This condition is rare
6616 * enough that we shouldn't see a performance
6617 * hit.
6619 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6620 le16_add_cpu(&el->l_next_free_rec, -1);
6622 for(i = 0;
6623 i < le16_to_cpu(el->l_next_free_rec); i++)
6624 el->l_recs[i] = el->l_recs[i + 1];
6626 memset(&el->l_recs[i], 0,
6627 sizeof(struct ocfs2_extent_rec));
6630 * We've modified our extent list. The
6631 * simplest way to handle this change
6632 * is to being the search from the
6633 * start again.
6635 goto find_tail_record;
6638 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6641 * We'll use "new_edge" on our way back up the
6642 * tree to know what our rightmost cpos is.
6644 new_edge = le16_to_cpu(rec->e_leaf_clusters);
6645 new_edge += le32_to_cpu(rec->e_cpos);
6648 * The caller will use this to delete data blocks.
6650 *delete_start = le64_to_cpu(rec->e_blkno)
6651 + ocfs2_clusters_to_blocks(inode->i_sb,
6652 le16_to_cpu(rec->e_leaf_clusters));
6655 * If it's now empty, remove this record.
6657 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6658 memset(rec, 0,
6659 sizeof(struct ocfs2_extent_rec));
6660 le16_add_cpu(&el->l_next_free_rec, -1);
6662 } else {
6663 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6664 memset(rec, 0,
6665 sizeof(struct ocfs2_extent_rec));
6666 le16_add_cpu(&el->l_next_free_rec, -1);
6668 goto delete;
6671 /* Can this actually happen? */
6672 if (le16_to_cpu(el->l_next_free_rec) == 0)
6673 goto delete;
6676 * We never actually deleted any clusters
6677 * because our leaf was empty. There's no
6678 * reason to adjust the rightmost edge then.
6680 if (new_edge == 0)
6681 goto delete;
6683 rec->e_int_clusters = cpu_to_le32(new_edge);
6684 le32_add_cpu(&rec->e_int_clusters,
6685 -le32_to_cpu(rec->e_cpos));
6688 * A deleted child record should have been
6689 * caught above.
6691 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6694 delete:
6695 ret = ocfs2_journal_dirty(handle, bh);
6696 if (ret) {
6697 mlog_errno(ret);
6698 goto out;
6701 mlog(0, "extent list container %llu, after: record %d: "
6702 "(%u, %u, %llu), next = %u.\n",
6703 (unsigned long long)bh->b_blocknr, i,
6704 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6705 (unsigned long long)le64_to_cpu(rec->e_blkno),
6706 le16_to_cpu(el->l_next_free_rec));
6709 * We must be careful to only attempt delete of an
6710 * extent block (and not the root inode block).
6712 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6713 struct ocfs2_extent_block *eb =
6714 (struct ocfs2_extent_block *)bh->b_data;
6717 * Save this for use when processing the
6718 * parent block.
6720 deleted_eb = le64_to_cpu(eb->h_blkno);
6722 mlog(0, "deleting this extent block.\n");
6724 ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6726 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6727 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6728 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6730 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6731 /* An error here is not fatal. */
6732 if (ret < 0)
6733 mlog_errno(ret);
6734 } else {
6735 deleted_eb = 0;
6738 index--;
6741 ret = 0;
6742 out:
6743 return ret;
6746 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6747 unsigned int clusters_to_del,
6748 struct inode *inode,
6749 struct buffer_head *fe_bh,
6750 handle_t *handle,
6751 struct ocfs2_truncate_context *tc,
6752 struct ocfs2_path *path)
6754 int status;
6755 struct ocfs2_dinode *fe;
6756 struct ocfs2_extent_block *last_eb = NULL;
6757 struct ocfs2_extent_list *el;
6758 struct buffer_head *last_eb_bh = NULL;
6759 u64 delete_blk = 0;
6761 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6763 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6764 path, &last_eb_bh);
6765 if (status < 0) {
6766 mlog_errno(status);
6767 goto bail;
6771 * Each component will be touched, so we might as well journal
6772 * here to avoid having to handle errors later.
6774 status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6775 if (status < 0) {
6776 mlog_errno(status);
6777 goto bail;
6780 if (last_eb_bh) {
6781 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6782 OCFS2_JOURNAL_ACCESS_WRITE);
6783 if (status < 0) {
6784 mlog_errno(status);
6785 goto bail;
6788 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6791 el = &(fe->id2.i_list);
6794 * Lower levels depend on this never happening, but it's best
6795 * to check it up here before changing the tree.
6797 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6798 ocfs2_error(inode->i_sb,
6799 "Inode %lu has an empty extent record, depth %u\n",
6800 inode->i_ino, le16_to_cpu(el->l_tree_depth));
6801 status = -EROFS;
6802 goto bail;
6805 vfs_dq_free_space_nodirty(inode,
6806 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6807 spin_lock(&OCFS2_I(inode)->ip_lock);
6808 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6809 clusters_to_del;
6810 spin_unlock(&OCFS2_I(inode)->ip_lock);
6811 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6812 inode->i_blocks = ocfs2_inode_sector_count(inode);
6814 status = ocfs2_trim_tree(inode, path, handle, tc,
6815 clusters_to_del, &delete_blk);
6816 if (status) {
6817 mlog_errno(status);
6818 goto bail;
6821 if (le32_to_cpu(fe->i_clusters) == 0) {
6822 /* trunc to zero is a special case. */
6823 el->l_tree_depth = 0;
6824 fe->i_last_eb_blk = 0;
6825 } else if (last_eb)
6826 fe->i_last_eb_blk = last_eb->h_blkno;
6828 status = ocfs2_journal_dirty(handle, fe_bh);
6829 if (status < 0) {
6830 mlog_errno(status);
6831 goto bail;
6834 if (last_eb) {
6835 /* If there will be a new last extent block, then by
6836 * definition, there cannot be any leaves to the right of
6837 * him. */
6838 last_eb->h_next_leaf_blk = 0;
6839 status = ocfs2_journal_dirty(handle, last_eb_bh);
6840 if (status < 0) {
6841 mlog_errno(status);
6842 goto bail;
6846 if (delete_blk) {
6847 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6848 clusters_to_del);
6849 if (status < 0) {
6850 mlog_errno(status);
6851 goto bail;
6854 status = 0;
6855 bail:
6856 brelse(last_eb_bh);
6857 mlog_exit(status);
6858 return status;
6861 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6863 set_buffer_uptodate(bh);
6864 mark_buffer_dirty(bh);
6865 return 0;
6868 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6869 unsigned int from, unsigned int to,
6870 struct page *page, int zero, u64 *phys)
6872 int ret, partial = 0;
6874 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6875 if (ret)
6876 mlog_errno(ret);
6878 if (zero)
6879 zero_user_segment(page, from, to);
6882 * Need to set the buffers we zero'd into uptodate
6883 * here if they aren't - ocfs2_map_page_blocks()
6884 * might've skipped some
6886 ret = walk_page_buffers(handle, page_buffers(page),
6887 from, to, &partial,
6888 ocfs2_zero_func);
6889 if (ret < 0)
6890 mlog_errno(ret);
6891 else if (ocfs2_should_order_data(inode)) {
6892 ret = ocfs2_jbd2_file_inode(handle, inode);
6893 if (ret < 0)
6894 mlog_errno(ret);
6897 if (!partial)
6898 SetPageUptodate(page);
6900 flush_dcache_page(page);
6903 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6904 loff_t end, struct page **pages,
6905 int numpages, u64 phys, handle_t *handle)
6907 int i;
6908 struct page *page;
6909 unsigned int from, to = PAGE_CACHE_SIZE;
6910 struct super_block *sb = inode->i_sb;
6912 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6914 if (numpages == 0)
6915 goto out;
6917 to = PAGE_CACHE_SIZE;
6918 for(i = 0; i < numpages; i++) {
6919 page = pages[i];
6921 from = start & (PAGE_CACHE_SIZE - 1);
6922 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6923 to = end & (PAGE_CACHE_SIZE - 1);
6925 BUG_ON(from > PAGE_CACHE_SIZE);
6926 BUG_ON(to > PAGE_CACHE_SIZE);
6928 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6929 &phys);
6931 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6933 out:
6934 if (pages)
6935 ocfs2_unlock_and_free_pages(pages, numpages);
6938 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6939 struct page **pages, int *num)
6941 int numpages, ret = 0;
6942 struct super_block *sb = inode->i_sb;
6943 struct address_space *mapping = inode->i_mapping;
6944 unsigned long index;
6945 loff_t last_page_bytes;
6947 BUG_ON(start > end);
6949 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6950 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6952 numpages = 0;
6953 last_page_bytes = PAGE_ALIGN(end);
6954 index = start >> PAGE_CACHE_SHIFT;
6955 do {
6956 pages[numpages] = grab_cache_page(mapping, index);
6957 if (!pages[numpages]) {
6958 ret = -ENOMEM;
6959 mlog_errno(ret);
6960 goto out;
6963 numpages++;
6964 index++;
6965 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6967 out:
6968 if (ret != 0) {
6969 if (pages)
6970 ocfs2_unlock_and_free_pages(pages, numpages);
6971 numpages = 0;
6974 *num = numpages;
6976 return ret;
6980 * Zero the area past i_size but still within an allocated
6981 * cluster. This avoids exposing nonzero data on subsequent file
6982 * extends.
6984 * We need to call this before i_size is updated on the inode because
6985 * otherwise block_write_full_page() will skip writeout of pages past
6986 * i_size. The new_i_size parameter is passed for this reason.
6988 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6989 u64 range_start, u64 range_end)
6991 int ret = 0, numpages;
6992 struct page **pages = NULL;
6993 u64 phys;
6994 unsigned int ext_flags;
6995 struct super_block *sb = inode->i_sb;
6998 * File systems which don't support sparse files zero on every
6999 * extend.
7001 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7002 return 0;
7004 pages = kcalloc(ocfs2_pages_per_cluster(sb),
7005 sizeof(struct page *), GFP_NOFS);
7006 if (pages == NULL) {
7007 ret = -ENOMEM;
7008 mlog_errno(ret);
7009 goto out;
7012 if (range_start == range_end)
7013 goto out;
7015 ret = ocfs2_extent_map_get_blocks(inode,
7016 range_start >> sb->s_blocksize_bits,
7017 &phys, NULL, &ext_flags);
7018 if (ret) {
7019 mlog_errno(ret);
7020 goto out;
7024 * Tail is a hole, or is marked unwritten. In either case, we
7025 * can count on read and write to return/push zero's.
7027 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7028 goto out;
7030 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7031 &numpages);
7032 if (ret) {
7033 mlog_errno(ret);
7034 goto out;
7037 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7038 numpages, phys, handle);
7041 * Initiate writeout of the pages we zero'd here. We don't
7042 * wait on them - the truncate_inode_pages() call later will
7043 * do that for us.
7045 ret = do_sync_mapping_range(inode->i_mapping, range_start,
7046 range_end - 1, SYNC_FILE_RANGE_WRITE);
7047 if (ret)
7048 mlog_errno(ret);
7050 out:
7051 if (pages)
7052 kfree(pages);
7054 return ret;
7057 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7058 struct ocfs2_dinode *di)
7060 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7061 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7063 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7064 memset(&di->id2, 0, blocksize -
7065 offsetof(struct ocfs2_dinode, id2) -
7066 xattrsize);
7067 else
7068 memset(&di->id2, 0, blocksize -
7069 offsetof(struct ocfs2_dinode, id2));
7072 void ocfs2_dinode_new_extent_list(struct inode *inode,
7073 struct ocfs2_dinode *di)
7075 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7076 di->id2.i_list.l_tree_depth = 0;
7077 di->id2.i_list.l_next_free_rec = 0;
7078 di->id2.i_list.l_count = cpu_to_le16(
7079 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7082 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7084 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7085 struct ocfs2_inline_data *idata = &di->id2.i_data;
7087 spin_lock(&oi->ip_lock);
7088 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7089 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7090 spin_unlock(&oi->ip_lock);
7093 * We clear the entire i_data structure here so that all
7094 * fields can be properly initialized.
7096 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7098 idata->id_count = cpu_to_le16(
7099 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7102 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7103 struct buffer_head *di_bh)
7105 int ret, i, has_data, num_pages = 0;
7106 handle_t *handle;
7107 u64 uninitialized_var(block);
7108 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7109 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7110 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7111 struct ocfs2_alloc_context *data_ac = NULL;
7112 struct page **pages = NULL;
7113 loff_t end = osb->s_clustersize;
7114 struct ocfs2_extent_tree et;
7115 int did_quota = 0;
7117 has_data = i_size_read(inode) ? 1 : 0;
7119 if (has_data) {
7120 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7121 sizeof(struct page *), GFP_NOFS);
7122 if (pages == NULL) {
7123 ret = -ENOMEM;
7124 mlog_errno(ret);
7125 goto out;
7128 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7129 if (ret) {
7130 mlog_errno(ret);
7131 goto out;
7135 handle = ocfs2_start_trans(osb,
7136 ocfs2_inline_to_extents_credits(osb->sb));
7137 if (IS_ERR(handle)) {
7138 ret = PTR_ERR(handle);
7139 mlog_errno(ret);
7140 goto out_unlock;
7143 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7144 OCFS2_JOURNAL_ACCESS_WRITE);
7145 if (ret) {
7146 mlog_errno(ret);
7147 goto out_commit;
7150 if (has_data) {
7151 u32 bit_off, num;
7152 unsigned int page_end;
7153 u64 phys;
7155 if (vfs_dq_alloc_space_nodirty(inode,
7156 ocfs2_clusters_to_bytes(osb->sb, 1))) {
7157 ret = -EDQUOT;
7158 goto out_commit;
7160 did_quota = 1;
7162 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7163 &num);
7164 if (ret) {
7165 mlog_errno(ret);
7166 goto out_commit;
7170 * Save two copies, one for insert, and one that can
7171 * be changed by ocfs2_map_and_dirty_page() below.
7173 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7176 * Non sparse file systems zero on extend, so no need
7177 * to do that now.
7179 if (!ocfs2_sparse_alloc(osb) &&
7180 PAGE_CACHE_SIZE < osb->s_clustersize)
7181 end = PAGE_CACHE_SIZE;
7183 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7184 if (ret) {
7185 mlog_errno(ret);
7186 goto out_commit;
7190 * This should populate the 1st page for us and mark
7191 * it up to date.
7193 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7194 if (ret) {
7195 mlog_errno(ret);
7196 goto out_commit;
7199 page_end = PAGE_CACHE_SIZE;
7200 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7201 page_end = osb->s_clustersize;
7203 for (i = 0; i < num_pages; i++)
7204 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7205 pages[i], i > 0, &phys);
7208 spin_lock(&oi->ip_lock);
7209 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7210 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7211 spin_unlock(&oi->ip_lock);
7213 ocfs2_dinode_new_extent_list(inode, di);
7215 ocfs2_journal_dirty(handle, di_bh);
7217 if (has_data) {
7219 * An error at this point should be extremely rare. If
7220 * this proves to be false, we could always re-build
7221 * the in-inode data from our pages.
7223 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7224 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7225 0, block, 1, 0, NULL);
7226 if (ret) {
7227 mlog_errno(ret);
7228 goto out_commit;
7231 inode->i_blocks = ocfs2_inode_sector_count(inode);
7234 out_commit:
7235 if (ret < 0 && did_quota)
7236 vfs_dq_free_space_nodirty(inode,
7237 ocfs2_clusters_to_bytes(osb->sb, 1));
7239 ocfs2_commit_trans(osb, handle);
7241 out_unlock:
7242 if (data_ac)
7243 ocfs2_free_alloc_context(data_ac);
7245 out:
7246 if (pages) {
7247 ocfs2_unlock_and_free_pages(pages, num_pages);
7248 kfree(pages);
7251 return ret;
7255 * It is expected, that by the time you call this function,
7256 * inode->i_size and fe->i_size have been adjusted.
7258 * WARNING: This will kfree the truncate context
7260 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7261 struct inode *inode,
7262 struct buffer_head *fe_bh,
7263 struct ocfs2_truncate_context *tc)
7265 int status, i, credits, tl_sem = 0;
7266 u32 clusters_to_del, new_highest_cpos, range;
7267 struct ocfs2_extent_list *el;
7268 handle_t *handle = NULL;
7269 struct inode *tl_inode = osb->osb_tl_inode;
7270 struct ocfs2_path *path = NULL;
7271 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7273 mlog_entry_void();
7275 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7276 i_size_read(inode));
7278 path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7279 ocfs2_journal_access_di);
7280 if (!path) {
7281 status = -ENOMEM;
7282 mlog_errno(status);
7283 goto bail;
7286 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7288 start:
7290 * Check that we still have allocation to delete.
7292 if (OCFS2_I(inode)->ip_clusters == 0) {
7293 status = 0;
7294 goto bail;
7298 * Truncate always works against the rightmost tree branch.
7300 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7301 if (status) {
7302 mlog_errno(status);
7303 goto bail;
7306 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7307 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7310 * By now, el will point to the extent list on the bottom most
7311 * portion of this tree. Only the tail record is considered in
7312 * each pass.
7314 * We handle the following cases, in order:
7315 * - empty extent: delete the remaining branch
7316 * - remove the entire record
7317 * - remove a partial record
7318 * - no record needs to be removed (truncate has completed)
7320 el = path_leaf_el(path);
7321 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7322 ocfs2_error(inode->i_sb,
7323 "Inode %llu has empty extent block at %llu\n",
7324 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7325 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7326 status = -EROFS;
7327 goto bail;
7330 i = le16_to_cpu(el->l_next_free_rec) - 1;
7331 range = le32_to_cpu(el->l_recs[i].e_cpos) +
7332 ocfs2_rec_clusters(el, &el->l_recs[i]);
7333 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7334 clusters_to_del = 0;
7335 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7336 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7337 } else if (range > new_highest_cpos) {
7338 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7339 le32_to_cpu(el->l_recs[i].e_cpos)) -
7340 new_highest_cpos;
7341 } else {
7342 status = 0;
7343 goto bail;
7346 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7347 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7349 mutex_lock(&tl_inode->i_mutex);
7350 tl_sem = 1;
7351 /* ocfs2_truncate_log_needs_flush guarantees us at least one
7352 * record is free for use. If there isn't any, we flush to get
7353 * an empty truncate log. */
7354 if (ocfs2_truncate_log_needs_flush(osb)) {
7355 status = __ocfs2_flush_truncate_log(osb);
7356 if (status < 0) {
7357 mlog_errno(status);
7358 goto bail;
7362 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7363 (struct ocfs2_dinode *)fe_bh->b_data,
7364 el);
7365 handle = ocfs2_start_trans(osb, credits);
7366 if (IS_ERR(handle)) {
7367 status = PTR_ERR(handle);
7368 handle = NULL;
7369 mlog_errno(status);
7370 goto bail;
7373 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7374 tc, path);
7375 if (status < 0) {
7376 mlog_errno(status);
7377 goto bail;
7380 mutex_unlock(&tl_inode->i_mutex);
7381 tl_sem = 0;
7383 ocfs2_commit_trans(osb, handle);
7384 handle = NULL;
7386 ocfs2_reinit_path(path, 1);
7389 * The check above will catch the case where we've truncated
7390 * away all allocation.
7392 goto start;
7394 bail:
7396 ocfs2_schedule_truncate_log_flush(osb, 1);
7398 if (tl_sem)
7399 mutex_unlock(&tl_inode->i_mutex);
7401 if (handle)
7402 ocfs2_commit_trans(osb, handle);
7404 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7406 ocfs2_free_path(path);
7408 /* This will drop the ext_alloc cluster lock for us */
7409 ocfs2_free_truncate_context(tc);
7411 mlog_exit(status);
7412 return status;
7416 * Expects the inode to already be locked.
7418 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7419 struct inode *inode,
7420 struct buffer_head *fe_bh,
7421 struct ocfs2_truncate_context **tc)
7423 int status;
7424 unsigned int new_i_clusters;
7425 struct ocfs2_dinode *fe;
7426 struct ocfs2_extent_block *eb;
7427 struct buffer_head *last_eb_bh = NULL;
7429 mlog_entry_void();
7431 *tc = NULL;
7433 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7434 i_size_read(inode));
7435 fe = (struct ocfs2_dinode *) fe_bh->b_data;
7437 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7438 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7439 (unsigned long long)le64_to_cpu(fe->i_size));
7441 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7442 if (!(*tc)) {
7443 status = -ENOMEM;
7444 mlog_errno(status);
7445 goto bail;
7447 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7449 if (fe->id2.i_list.l_tree_depth) {
7450 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7451 le64_to_cpu(fe->i_last_eb_blk),
7452 &last_eb_bh);
7453 if (status < 0) {
7454 mlog_errno(status);
7455 goto bail;
7457 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7460 (*tc)->tc_last_eb_bh = last_eb_bh;
7462 status = 0;
7463 bail:
7464 if (status < 0) {
7465 if (*tc)
7466 ocfs2_free_truncate_context(*tc);
7467 *tc = NULL;
7469 mlog_exit_void();
7470 return status;
7474 * 'start' is inclusive, 'end' is not.
7476 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7477 unsigned int start, unsigned int end, int trunc)
7479 int ret;
7480 unsigned int numbytes;
7481 handle_t *handle;
7482 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7483 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7484 struct ocfs2_inline_data *idata = &di->id2.i_data;
7486 if (end > i_size_read(inode))
7487 end = i_size_read(inode);
7489 BUG_ON(start >= end);
7491 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7492 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7493 !ocfs2_supports_inline_data(osb)) {
7494 ocfs2_error(inode->i_sb,
7495 "Inline data flags for inode %llu don't agree! "
7496 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7497 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7498 le16_to_cpu(di->i_dyn_features),
7499 OCFS2_I(inode)->ip_dyn_features,
7500 osb->s_feature_incompat);
7501 ret = -EROFS;
7502 goto out;
7505 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7506 if (IS_ERR(handle)) {
7507 ret = PTR_ERR(handle);
7508 mlog_errno(ret);
7509 goto out;
7512 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7513 OCFS2_JOURNAL_ACCESS_WRITE);
7514 if (ret) {
7515 mlog_errno(ret);
7516 goto out_commit;
7519 numbytes = end - start;
7520 memset(idata->id_data + start, 0, numbytes);
7523 * No need to worry about the data page here - it's been
7524 * truncated already and inline data doesn't need it for
7525 * pushing zero's to disk, so we'll let readpage pick it up
7526 * later.
7528 if (trunc) {
7529 i_size_write(inode, start);
7530 di->i_size = cpu_to_le64(start);
7533 inode->i_blocks = ocfs2_inode_sector_count(inode);
7534 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7536 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7537 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7539 ocfs2_journal_dirty(handle, di_bh);
7541 out_commit:
7542 ocfs2_commit_trans(osb, handle);
7544 out:
7545 return ret;
7548 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7551 * The caller is responsible for completing deallocation
7552 * before freeing the context.
7554 if (tc->tc_dealloc.c_first_suballocator != NULL)
7555 mlog(ML_NOTICE,
7556 "Truncate completion has non-empty dealloc context\n");
7558 brelse(tc->tc_last_eb_bh);
7560 kfree(tc);