arch/x86/pci: use kasprintf
[linux-2.6/kvm.git] / drivers / ata / pata_octeon_cf.c
blob3001109352ea516ba80ee4e2520cd84fb5b72886
1 /*
2 * Driver for the Octeon bootbus compact flash.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
8 * Copyright (C) 2005 - 2009 Cavium Networks
9 * Copyright (C) 2008 Wind River Systems
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/irq.h>
16 #include <linux/slab.h>
17 #include <linux/platform_device.h>
18 #include <linux/workqueue.h>
19 #include <scsi/scsi_host.h>
21 #include <asm/octeon/octeon.h>
24 * The Octeon bootbus compact flash interface is connected in at least
25 * 3 different configurations on various evaluation boards:
27 * -- 8 bits no irq, no DMA
28 * -- 16 bits no irq, no DMA
29 * -- 16 bits True IDE mode with DMA, but no irq.
31 * In the last case the DMA engine can generate an interrupt when the
32 * transfer is complete. For the first two cases only PIO is supported.
36 #define DRV_NAME "pata_octeon_cf"
37 #define DRV_VERSION "2.1"
40 struct octeon_cf_port {
41 struct workqueue_struct *wq;
42 struct delayed_work delayed_finish;
43 struct ata_port *ap;
44 int dma_finished;
47 static struct scsi_host_template octeon_cf_sht = {
48 ATA_PIO_SHT(DRV_NAME),
51 /**
52 * Convert nanosecond based time to setting used in the
53 * boot bus timing register, based on timing multiple
55 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
57 unsigned int val;
60 * Compute # of eclock periods to get desired duration in
61 * nanoseconds.
63 val = DIV_ROUND_UP(nsecs * (octeon_get_clock_rate() / 1000000),
64 1000 * tim_mult);
66 return val;
69 static void octeon_cf_set_boot_reg_cfg(int cs)
71 union cvmx_mio_boot_reg_cfgx reg_cfg;
72 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
73 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
74 reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */
75 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
76 reg_cfg.s.sam = 0; /* Don't combine write and output enable */
77 reg_cfg.s.we_ext = 0; /* No write enable extension */
78 reg_cfg.s.oe_ext = 0; /* No read enable extension */
79 reg_cfg.s.en = 1; /* Enable this region */
80 reg_cfg.s.orbit = 0; /* Don't combine with previous region */
81 reg_cfg.s.ale = 0; /* Don't do address multiplexing */
82 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
85 /**
86 * Called after libata determines the needed PIO mode. This
87 * function programs the Octeon bootbus regions to support the
88 * timing requirements of the PIO mode.
90 * @ap: ATA port information
91 * @dev: ATA device
93 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
95 struct octeon_cf_data *ocd = ap->dev->platform_data;
96 union cvmx_mio_boot_reg_timx reg_tim;
97 int cs = ocd->base_region;
98 int T;
99 struct ata_timing timing;
101 int use_iordy;
102 int trh;
103 int pause;
104 /* These names are timing parameters from the ATA spec */
105 int t1;
106 int t2;
107 int t2i;
109 T = (int)(2000000000000LL / octeon_get_clock_rate());
111 if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
112 BUG();
114 t1 = timing.setup;
115 if (t1)
116 t1--;
117 t2 = timing.active;
118 if (t2)
119 t2--;
120 t2i = timing.act8b;
121 if (t2i)
122 t2i--;
124 trh = ns_to_tim_reg(2, 20);
125 if (trh)
126 trh--;
128 pause = timing.cycle - timing.active - timing.setup - trh;
129 if (pause)
130 pause--;
132 octeon_cf_set_boot_reg_cfg(cs);
133 if (ocd->dma_engine >= 0)
134 /* True IDE mode, program both chip selects. */
135 octeon_cf_set_boot_reg_cfg(cs + 1);
138 use_iordy = ata_pio_need_iordy(dev);
140 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
141 /* Disable page mode */
142 reg_tim.s.pagem = 0;
143 /* Enable dynamic timing */
144 reg_tim.s.waitm = use_iordy;
145 /* Pages are disabled */
146 reg_tim.s.pages = 0;
147 /* We don't use multiplexed address mode */
148 reg_tim.s.ale = 0;
149 /* Not used */
150 reg_tim.s.page = 0;
151 /* Time after IORDY to coninue to assert the data */
152 reg_tim.s.wait = 0;
153 /* Time to wait to complete the cycle. */
154 reg_tim.s.pause = pause;
155 /* How long to hold after a write to de-assert CE. */
156 reg_tim.s.wr_hld = trh;
157 /* How long to wait after a read to de-assert CE. */
158 reg_tim.s.rd_hld = trh;
159 /* How long write enable is asserted */
160 reg_tim.s.we = t2;
161 /* How long read enable is asserted */
162 reg_tim.s.oe = t2;
163 /* Time after CE that read/write starts */
164 reg_tim.s.ce = ns_to_tim_reg(2, 5);
165 /* Time before CE that address is valid */
166 reg_tim.s.adr = 0;
168 /* Program the bootbus region timing for the data port chip select. */
169 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
170 if (ocd->dma_engine >= 0)
171 /* True IDE mode, program both chip selects. */
172 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
175 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
177 struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
178 union cvmx_mio_boot_dma_timx dma_tim;
179 unsigned int oe_a;
180 unsigned int oe_n;
181 unsigned int dma_ackh;
182 unsigned int dma_arq;
183 unsigned int pause;
184 unsigned int T0, Tkr, Td;
185 unsigned int tim_mult;
187 const struct ata_timing *timing;
189 timing = ata_timing_find_mode(dev->dma_mode);
190 T0 = timing->cycle;
191 Td = timing->active;
192 Tkr = timing->recover;
193 dma_ackh = timing->dmack_hold;
195 dma_tim.u64 = 0;
196 /* dma_tim.s.tim_mult = 0 --> 4x */
197 tim_mult = 4;
199 /* not spec'ed, value in eclocks, not affected by tim_mult */
200 dma_arq = 8;
201 pause = 25 - dma_arq * 1000 /
202 (octeon_get_clock_rate() / 1000000); /* Tz */
204 oe_a = Td;
205 /* Tkr from cf spec, lengthened to meet T0 */
206 oe_n = max(T0 - oe_a, Tkr);
208 dma_tim.s.dmack_pi = 1;
210 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
211 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
214 * This is tI, C.F. spec. says 0, but Sony CF card requires
215 * more, we use 20 nS.
217 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
218 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
220 dma_tim.s.dmarq = dma_arq;
221 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
223 dma_tim.s.rd_dly = 0; /* Sample right on edge */
225 /* writes only */
226 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
227 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
229 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
230 ns_to_tim_reg(tim_mult, 60));
231 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
232 "%d, dmarq: %d, pause: %d\n",
233 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
234 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
236 cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
237 dma_tim.u64);
242 * Handle an 8 bit I/O request.
244 * @dev: Device to access
245 * @buffer: Data buffer
246 * @buflen: Length of the buffer.
247 * @rw: True to write.
249 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
250 unsigned char *buffer,
251 unsigned int buflen,
252 int rw)
254 struct ata_port *ap = dev->link->ap;
255 void __iomem *data_addr = ap->ioaddr.data_addr;
256 unsigned long words;
257 int count;
259 words = buflen;
260 if (rw) {
261 count = 16;
262 while (words--) {
263 iowrite8(*buffer, data_addr);
264 buffer++;
266 * Every 16 writes do a read so the bootbus
267 * FIFO doesn't fill up.
269 if (--count == 0) {
270 ioread8(ap->ioaddr.altstatus_addr);
271 count = 16;
274 } else {
275 ioread8_rep(data_addr, buffer, words);
277 return buflen;
281 * Handle a 16 bit I/O request.
283 * @dev: Device to access
284 * @buffer: Data buffer
285 * @buflen: Length of the buffer.
286 * @rw: True to write.
288 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
289 unsigned char *buffer,
290 unsigned int buflen,
291 int rw)
293 struct ata_port *ap = dev->link->ap;
294 void __iomem *data_addr = ap->ioaddr.data_addr;
295 unsigned long words;
296 int count;
298 words = buflen / 2;
299 if (rw) {
300 count = 16;
301 while (words--) {
302 iowrite16(*(uint16_t *)buffer, data_addr);
303 buffer += sizeof(uint16_t);
305 * Every 16 writes do a read so the bootbus
306 * FIFO doesn't fill up.
308 if (--count == 0) {
309 ioread8(ap->ioaddr.altstatus_addr);
310 count = 16;
313 } else {
314 while (words--) {
315 *(uint16_t *)buffer = ioread16(data_addr);
316 buffer += sizeof(uint16_t);
319 /* Transfer trailing 1 byte, if any. */
320 if (unlikely(buflen & 0x01)) {
321 __le16 align_buf[1] = { 0 };
323 if (rw == READ) {
324 align_buf[0] = cpu_to_le16(ioread16(data_addr));
325 memcpy(buffer, align_buf, 1);
326 } else {
327 memcpy(align_buf, buffer, 1);
328 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
330 words++;
332 return buflen;
336 * Read the taskfile for 16bit non-True IDE only.
338 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
340 u16 blob;
341 /* The base of the registers is at ioaddr.data_addr. */
342 void __iomem *base = ap->ioaddr.data_addr;
344 blob = __raw_readw(base + 0xc);
345 tf->feature = blob >> 8;
347 blob = __raw_readw(base + 2);
348 tf->nsect = blob & 0xff;
349 tf->lbal = blob >> 8;
351 blob = __raw_readw(base + 4);
352 tf->lbam = blob & 0xff;
353 tf->lbah = blob >> 8;
355 blob = __raw_readw(base + 6);
356 tf->device = blob & 0xff;
357 tf->command = blob >> 8;
359 if (tf->flags & ATA_TFLAG_LBA48) {
360 if (likely(ap->ioaddr.ctl_addr)) {
361 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
363 blob = __raw_readw(base + 0xc);
364 tf->hob_feature = blob >> 8;
366 blob = __raw_readw(base + 2);
367 tf->hob_nsect = blob & 0xff;
368 tf->hob_lbal = blob >> 8;
370 blob = __raw_readw(base + 4);
371 tf->hob_lbam = blob & 0xff;
372 tf->hob_lbah = blob >> 8;
374 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
375 ap->last_ctl = tf->ctl;
376 } else {
377 WARN_ON(1);
382 static u8 octeon_cf_check_status16(struct ata_port *ap)
384 u16 blob;
385 void __iomem *base = ap->ioaddr.data_addr;
387 blob = __raw_readw(base + 6);
388 return blob >> 8;
391 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
392 unsigned long deadline)
394 struct ata_port *ap = link->ap;
395 void __iomem *base = ap->ioaddr.data_addr;
396 int rc;
397 u8 err;
399 DPRINTK("about to softreset\n");
400 __raw_writew(ap->ctl, base + 0xe);
401 udelay(20);
402 __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
403 udelay(20);
404 __raw_writew(ap->ctl, base + 0xe);
406 rc = ata_sff_wait_after_reset(link, 1, deadline);
407 if (rc) {
408 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
409 return rc;
412 /* determine by signature whether we have ATA or ATAPI devices */
413 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
414 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
415 return 0;
419 * Load the taskfile for 16bit non-True IDE only. The device_addr is
420 * not loaded, we do this as part of octeon_cf_exec_command16.
422 static void octeon_cf_tf_load16(struct ata_port *ap,
423 const struct ata_taskfile *tf)
425 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
426 /* The base of the registers is at ioaddr.data_addr. */
427 void __iomem *base = ap->ioaddr.data_addr;
429 if (tf->ctl != ap->last_ctl) {
430 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
431 ap->last_ctl = tf->ctl;
432 ata_wait_idle(ap);
434 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
435 __raw_writew(tf->hob_feature << 8, base + 0xc);
436 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
437 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
438 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
439 tf->hob_feature,
440 tf->hob_nsect,
441 tf->hob_lbal,
442 tf->hob_lbam,
443 tf->hob_lbah);
445 if (is_addr) {
446 __raw_writew(tf->feature << 8, base + 0xc);
447 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
448 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
449 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
450 tf->feature,
451 tf->nsect,
452 tf->lbal,
453 tf->lbam,
454 tf->lbah);
456 ata_wait_idle(ap);
460 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
462 /* There is only one device, do nothing. */
463 return;
467 * Issue ATA command to host controller. The device_addr is also sent
468 * as it must be written in a combined write with the command.
470 static void octeon_cf_exec_command16(struct ata_port *ap,
471 const struct ata_taskfile *tf)
473 /* The base of the registers is at ioaddr.data_addr. */
474 void __iomem *base = ap->ioaddr.data_addr;
475 u16 blob;
477 if (tf->flags & ATA_TFLAG_DEVICE) {
478 VPRINTK("device 0x%X\n", tf->device);
479 blob = tf->device;
480 } else {
481 blob = 0;
484 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
485 blob |= (tf->command << 8);
486 __raw_writew(blob, base + 6);
489 ata_wait_idle(ap);
492 static void octeon_cf_irq_on(struct ata_port *ap)
496 static void octeon_cf_irq_clear(struct ata_port *ap)
498 return;
501 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
503 struct ata_port *ap = qc->ap;
504 struct octeon_cf_port *cf_port;
506 cf_port = ap->private_data;
507 DPRINTK("ENTER\n");
508 /* issue r/w command */
509 qc->cursg = qc->sg;
510 cf_port->dma_finished = 0;
511 ap->ops->sff_exec_command(ap, &qc->tf);
512 DPRINTK("EXIT\n");
516 * Start a DMA transfer that was already setup
518 * @qc: Information about the DMA
520 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
522 struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
523 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
524 union cvmx_mio_boot_dma_intx mio_boot_dma_int;
525 struct scatterlist *sg;
527 VPRINTK("%d scatterlists\n", qc->n_elem);
529 /* Get the scatter list entry we need to DMA into */
530 sg = qc->cursg;
531 BUG_ON(!sg);
534 * Clear the DMA complete status.
536 mio_boot_dma_int.u64 = 0;
537 mio_boot_dma_int.s.done = 1;
538 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
539 mio_boot_dma_int.u64);
541 /* Enable the interrupt. */
542 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
543 mio_boot_dma_int.u64);
545 /* Set the direction of the DMA */
546 mio_boot_dma_cfg.u64 = 0;
547 mio_boot_dma_cfg.s.en = 1;
548 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
551 * Don't stop the DMA if the device deasserts DMARQ. Many
552 * compact flashes deassert DMARQ for a short time between
553 * sectors. Instead of stopping and restarting the DMA, we'll
554 * let the hardware do it. If the DMA is really stopped early
555 * due to an error condition, a later timeout will force us to
556 * stop.
558 mio_boot_dma_cfg.s.clr = 0;
560 /* Size is specified in 16bit words and minus one notation */
561 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
563 /* We need to swap the high and low bytes of every 16 bits */
564 mio_boot_dma_cfg.s.swap8 = 1;
566 mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
568 VPRINTK("%s %d bytes address=%p\n",
569 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
570 (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
572 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
573 mio_boot_dma_cfg.u64);
578 * LOCKING:
579 * spin_lock_irqsave(host lock)
582 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
583 struct ata_queued_cmd *qc)
585 struct ata_eh_info *ehi = &ap->link.eh_info;
586 struct octeon_cf_data *ocd = ap->dev->platform_data;
587 union cvmx_mio_boot_dma_cfgx dma_cfg;
588 union cvmx_mio_boot_dma_intx dma_int;
589 struct octeon_cf_port *cf_port;
590 u8 status;
592 VPRINTK("ata%u: protocol %d task_state %d\n",
593 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
596 if (ap->hsm_task_state != HSM_ST_LAST)
597 return 0;
599 cf_port = ap->private_data;
601 dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
602 if (dma_cfg.s.size != 0xfffff) {
603 /* Error, the transfer was not complete. */
604 qc->err_mask |= AC_ERR_HOST_BUS;
605 ap->hsm_task_state = HSM_ST_ERR;
608 /* Stop and clear the dma engine. */
609 dma_cfg.u64 = 0;
610 dma_cfg.s.size = -1;
611 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
613 /* Disable the interrupt. */
614 dma_int.u64 = 0;
615 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
617 /* Clear the DMA complete status */
618 dma_int.s.done = 1;
619 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
621 status = ap->ops->sff_check_status(ap);
623 ata_sff_hsm_move(ap, qc, status, 0);
625 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
626 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
628 return 1;
632 * Check if any queued commands have more DMAs, if so start the next
633 * transfer, else do end of transfer handling.
635 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
637 struct ata_host *host = dev_instance;
638 struct octeon_cf_port *cf_port;
639 int i;
640 unsigned int handled = 0;
641 unsigned long flags;
643 spin_lock_irqsave(&host->lock, flags);
645 DPRINTK("ENTER\n");
646 for (i = 0; i < host->n_ports; i++) {
647 u8 status;
648 struct ata_port *ap;
649 struct ata_queued_cmd *qc;
650 union cvmx_mio_boot_dma_intx dma_int;
651 union cvmx_mio_boot_dma_cfgx dma_cfg;
652 struct octeon_cf_data *ocd;
654 ap = host->ports[i];
655 ocd = ap->dev->platform_data;
657 ocd = ap->dev->platform_data;
658 cf_port = ap->private_data;
659 dma_int.u64 =
660 cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
661 dma_cfg.u64 =
662 cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
664 qc = ata_qc_from_tag(ap, ap->link.active_tag);
666 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) {
667 if (dma_int.s.done && !dma_cfg.s.en) {
668 if (!sg_is_last(qc->cursg)) {
669 qc->cursg = sg_next(qc->cursg);
670 handled = 1;
671 octeon_cf_dma_start(qc);
672 continue;
673 } else {
674 cf_port->dma_finished = 1;
677 if (!cf_port->dma_finished)
678 continue;
679 status = ioread8(ap->ioaddr.altstatus_addr);
680 if (status & (ATA_BUSY | ATA_DRQ)) {
682 * We are busy, try to handle it
683 * later. This is the DMA finished
684 * interrupt, and it could take a
685 * little while for the card to be
686 * ready for more commands.
688 /* Clear DMA irq. */
689 dma_int.u64 = 0;
690 dma_int.s.done = 1;
691 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
692 dma_int.u64);
694 queue_delayed_work(cf_port->wq,
695 &cf_port->delayed_finish, 1);
696 handled = 1;
697 } else {
698 handled |= octeon_cf_dma_finished(ap, qc);
702 spin_unlock_irqrestore(&host->lock, flags);
703 DPRINTK("EXIT\n");
704 return IRQ_RETVAL(handled);
707 static void octeon_cf_delayed_finish(struct work_struct *work)
709 struct octeon_cf_port *cf_port = container_of(work,
710 struct octeon_cf_port,
711 delayed_finish.work);
712 struct ata_port *ap = cf_port->ap;
713 struct ata_host *host = ap->host;
714 struct ata_queued_cmd *qc;
715 unsigned long flags;
716 u8 status;
718 spin_lock_irqsave(&host->lock, flags);
721 * If the port is not waiting for completion, it must have
722 * handled it previously. The hsm_task_state is
723 * protected by host->lock.
725 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
726 goto out;
728 status = ioread8(ap->ioaddr.altstatus_addr);
729 if (status & (ATA_BUSY | ATA_DRQ)) {
730 /* Still busy, try again. */
731 queue_delayed_work(cf_port->wq,
732 &cf_port->delayed_finish, 1);
733 goto out;
735 qc = ata_qc_from_tag(ap, ap->link.active_tag);
736 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
737 octeon_cf_dma_finished(ap, qc);
738 out:
739 spin_unlock_irqrestore(&host->lock, flags);
742 static void octeon_cf_dev_config(struct ata_device *dev)
745 * A maximum of 2^20 - 1 16 bit transfers are possible with
746 * the bootbus DMA. So we need to throttle max_sectors to
747 * (2^12 - 1 == 4095) to assure that this can never happen.
749 dev->max_sectors = min(dev->max_sectors, 4095U);
753 * Trap if driver tries to do standard bmdma commands. They are not
754 * supported.
756 static void unreachable_qc(struct ata_queued_cmd *qc)
758 BUG();
761 static u8 unreachable_port(struct ata_port *ap)
763 BUG();
767 * We don't do ATAPI DMA so return 0.
769 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
771 return 0;
774 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
776 struct ata_port *ap = qc->ap;
778 switch (qc->tf.protocol) {
779 case ATA_PROT_DMA:
780 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
782 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
783 octeon_cf_dma_setup(qc); /* set up dma */
784 octeon_cf_dma_start(qc); /* initiate dma */
785 ap->hsm_task_state = HSM_ST_LAST;
786 break;
788 case ATAPI_PROT_DMA:
789 dev_err(ap->dev, "Error, ATAPI not supported\n");
790 BUG();
792 default:
793 return ata_sff_qc_issue(qc);
796 return 0;
799 static struct ata_port_operations octeon_cf_ops = {
800 .inherits = &ata_sff_port_ops,
801 .check_atapi_dma = octeon_cf_check_atapi_dma,
802 .qc_prep = ata_noop_qc_prep,
803 .qc_issue = octeon_cf_qc_issue,
804 .sff_dev_select = octeon_cf_dev_select,
805 .sff_irq_on = octeon_cf_irq_on,
806 .sff_irq_clear = octeon_cf_irq_clear,
807 .bmdma_setup = unreachable_qc,
808 .bmdma_start = unreachable_qc,
809 .bmdma_stop = unreachable_qc,
810 .bmdma_status = unreachable_port,
811 .cable_detect = ata_cable_40wire,
812 .set_piomode = octeon_cf_set_piomode,
813 .set_dmamode = octeon_cf_set_dmamode,
814 .dev_config = octeon_cf_dev_config,
817 static int __devinit octeon_cf_probe(struct platform_device *pdev)
819 struct resource *res_cs0, *res_cs1;
821 void __iomem *cs0;
822 void __iomem *cs1 = NULL;
823 struct ata_host *host;
824 struct ata_port *ap;
825 struct octeon_cf_data *ocd;
826 int irq = 0;
827 irq_handler_t irq_handler = NULL;
828 void __iomem *base;
829 struct octeon_cf_port *cf_port;
831 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
833 if (!res_cs0)
834 return -EINVAL;
836 ocd = pdev->dev.platform_data;
838 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
839 resource_size(res_cs0));
841 if (!cs0)
842 return -ENOMEM;
844 /* Determine from availability of DMA if True IDE mode or not */
845 if (ocd->dma_engine >= 0) {
846 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
847 if (!res_cs1)
848 return -EINVAL;
850 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
851 resource_size(res_cs1));
853 if (!cs1)
854 return -ENOMEM;
857 cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
858 if (!cf_port)
859 return -ENOMEM;
861 /* allocate host */
862 host = ata_host_alloc(&pdev->dev, 1);
863 if (!host)
864 goto free_cf_port;
866 ap = host->ports[0];
867 ap->private_data = cf_port;
868 cf_port->ap = ap;
869 ap->ops = &octeon_cf_ops;
870 ap->pio_mask = ATA_PIO6;
871 ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY
872 | ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
874 base = cs0 + ocd->base_region_bias;
875 if (!ocd->is16bit) {
876 ap->ioaddr.cmd_addr = base;
877 ata_sff_std_ports(&ap->ioaddr);
879 ap->ioaddr.altstatus_addr = base + 0xe;
880 ap->ioaddr.ctl_addr = base + 0xe;
881 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
882 } else if (cs1) {
883 /* Presence of cs1 indicates True IDE mode. */
884 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
885 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
886 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
887 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
888 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
889 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
890 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
891 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
892 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
893 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
894 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
895 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
896 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
897 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
899 ap->mwdma_mask = ATA_MWDMA4;
900 irq = platform_get_irq(pdev, 0);
901 irq_handler = octeon_cf_interrupt;
903 /* True IDE mode needs delayed work to poll for not-busy. */
904 cf_port->wq = create_singlethread_workqueue(DRV_NAME);
905 if (!cf_port->wq)
906 goto free_cf_port;
907 INIT_DELAYED_WORK(&cf_port->delayed_finish,
908 octeon_cf_delayed_finish);
910 } else {
911 /* 16 bit but not True IDE */
912 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
913 octeon_cf_ops.softreset = octeon_cf_softreset16;
914 octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
915 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
916 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
917 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
919 ap->ioaddr.data_addr = base + ATA_REG_DATA;
920 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
921 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
922 ap->ioaddr.ctl_addr = base + 0xe;
923 ap->ioaddr.altstatus_addr = base + 0xe;
926 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
929 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
930 (ocd->is16bit) ? 16 : 8,
931 (cs1) ? ", True IDE" : "");
934 return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
936 free_cf_port:
937 kfree(cf_port);
938 return -ENOMEM;
941 static struct platform_driver octeon_cf_driver = {
942 .probe = octeon_cf_probe,
943 .driver = {
944 .name = DRV_NAME,
945 .owner = THIS_MODULE,
949 static int __init octeon_cf_init(void)
951 return platform_driver_register(&octeon_cf_driver);
955 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
956 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
957 MODULE_LICENSE("GPL");
958 MODULE_VERSION(DRV_VERSION);
959 MODULE_ALIAS("platform:" DRV_NAME);
961 module_init(octeon_cf_init);