[S390] sclp_cpi module license.
[linux-2.6/kvm.git] / drivers / net / s2io.c
blob250cdbeefdfde0da0641c999e6af0f0272351aa0
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74 #include <asm/irq.h>
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
80 #define DRV_VERSION "2.0.15.2"
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
91 int ret;
93 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
96 return ret;
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC 1
113 #define LOW 2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
116 mac_info_t *mac_control;
118 mac_control = &sp->mac_control;
119 if (rxb_size <= rxd_count[sp->rxd_mode])
120 return PANIC;
121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122 return LOW;
123 return 0;
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
237 {"rmac_vlan_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
240 {"rmac_pf_discard"},
241 {"rmac_da_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
245 {"link_fault_cnt"},
246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
249 {"parity_err_cnt"},
250 {"serious_err_cnt"},
251 {"soft_reset_cnt"},
252 {"fifo_full_cnt"},
253 {"ring_full_cnt"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
276 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287 struct vlan_group *grp)
289 nic_t *nic = dev->priv;
290 unsigned long flags;
292 spin_lock_irqsave(&nic->tx_lock, flags);
293 nic->vlgrp = grp;
294 spin_unlock_irqrestore(&nic->tx_lock, flags);
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
300 nic_t *nic = dev->priv;
301 unsigned long flags;
303 spin_lock_irqsave(&nic->tx_lock, flags);
304 if (nic->vlgrp)
305 nic->vlgrp->vlan_devices[vid] = NULL;
306 spin_unlock_irqrestore(&nic->tx_lock, flags);
310 * Constants to be programmed into the Xena's registers, to configure
311 * the XAUI.
314 #define END_SIGN 0x0
315 static const u64 herc_act_dtx_cfg[] = {
316 /* Set address */
317 0x8000051536750000ULL, 0x80000515367500E0ULL,
318 /* Write data */
319 0x8000051536750004ULL, 0x80000515367500E4ULL,
320 /* Set address */
321 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322 /* Write data */
323 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324 /* Set address */
325 0x801205150D440000ULL, 0x801205150D4400E0ULL,
326 /* Write data */
327 0x801205150D440004ULL, 0x801205150D4400E4ULL,
328 /* Set address */
329 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330 /* Write data */
331 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332 /* Done */
333 END_SIGN
336 static const u64 xena_dtx_cfg[] = {
337 /* Set address */
338 0x8000051500000000ULL, 0x80000515000000E0ULL,
339 /* Write data */
340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341 /* Set address */
342 0x8001051500000000ULL, 0x80010515000000E0ULL,
343 /* Write data */
344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345 /* Set address */
346 0x8002051500000000ULL, 0x80020515000000E0ULL,
347 /* Write data */
348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349 END_SIGN
353 * Constants for Fixing the MacAddress problem seen mostly on
354 * Alpha machines.
356 static const u64 fix_mac[] = {
357 0x0060000000000000ULL, 0x0060600000000000ULL,
358 0x0040600000000000ULL, 0x0000600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0060600000000000ULL,
369 0x0020600000000000ULL, 0x0000600000000000ULL,
370 0x0040600000000000ULL, 0x0060600000000000ULL,
371 END_SIGN
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401 * aggregation happens until we hit max IP pkt size(64K)
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 #ifndef CONFIG_S2IO_NAPI
405 S2IO_PARM_INT(indicate_max_pkts, 0);
406 #endif
408 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
409 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
410 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
411 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
412 static unsigned int rts_frm_len[MAX_RX_RINGS] =
413 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415 module_param_array(tx_fifo_len, uint, NULL, 0);
416 module_param_array(rx_ring_sz, uint, NULL, 0);
417 module_param_array(rts_frm_len, uint, NULL, 0);
420 * S2IO device table.
421 * This table lists all the devices that this driver supports.
423 static struct pci_device_id s2io_tbl[] __devinitdata = {
424 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
425 PCI_ANY_ID, PCI_ANY_ID},
426 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
427 PCI_ANY_ID, PCI_ANY_ID},
428 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
429 PCI_ANY_ID, PCI_ANY_ID},
430 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
431 PCI_ANY_ID, PCI_ANY_ID},
432 {0,}
435 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437 static struct pci_driver s2io_driver = {
438 .name = "S2IO",
439 .id_table = s2io_tbl,
440 .probe = s2io_init_nic,
441 .remove = __devexit_p(s2io_rem_nic),
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
448 * init_shared_mem - Allocation and Initialization of Memory
449 * @nic: Device private variable.
450 * Description: The function allocates all the memory areas shared
451 * between the NIC and the driver. This includes Tx descriptors,
452 * Rx descriptors and the statistics block.
455 static int init_shared_mem(struct s2io_nic *nic)
457 u32 size;
458 void *tmp_v_addr, *tmp_v_addr_next;
459 dma_addr_t tmp_p_addr, tmp_p_addr_next;
460 RxD_block_t *pre_rxd_blk = NULL;
461 int i, j, blk_cnt, rx_sz, tx_sz;
462 int lst_size, lst_per_page;
463 struct net_device *dev = nic->dev;
464 unsigned long tmp;
465 buffAdd_t *ba;
467 mac_info_t *mac_control;
468 struct config_param *config;
470 mac_control = &nic->mac_control;
471 config = &nic->config;
474 /* Allocation and initialization of TXDLs in FIOFs */
475 size = 0;
476 for (i = 0; i < config->tx_fifo_num; i++) {
477 size += config->tx_cfg[i].fifo_len;
479 if (size > MAX_AVAILABLE_TXDS) {
480 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
481 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
482 return -EINVAL;
485 lst_size = (sizeof(TxD_t) * config->max_txds);
486 tx_sz = lst_size * size;
487 lst_per_page = PAGE_SIZE / lst_size;
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int fifo_len = config->tx_cfg[i].fifo_len;
491 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
492 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
493 GFP_KERNEL);
494 if (!mac_control->fifos[i].list_info) {
495 DBG_PRINT(ERR_DBG,
496 "Malloc failed for list_info\n");
497 return -ENOMEM;
499 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
501 for (i = 0; i < config->tx_fifo_num; i++) {
502 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
503 lst_per_page);
504 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505 mac_control->fifos[i].tx_curr_put_info.fifo_len =
506 config->tx_cfg[i].fifo_len - 1;
507 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508 mac_control->fifos[i].tx_curr_get_info.fifo_len =
509 config->tx_cfg[i].fifo_len - 1;
510 mac_control->fifos[i].fifo_no = i;
511 mac_control->fifos[i].nic = nic;
512 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
514 for (j = 0; j < page_num; j++) {
515 int k = 0;
516 dma_addr_t tmp_p;
517 void *tmp_v;
518 tmp_v = pci_alloc_consistent(nic->pdev,
519 PAGE_SIZE, &tmp_p);
520 if (!tmp_v) {
521 DBG_PRINT(ERR_DBG,
522 "pci_alloc_consistent ");
523 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
524 return -ENOMEM;
526 /* If we got a zero DMA address(can happen on
527 * certain platforms like PPC), reallocate.
528 * Store virtual address of page we don't want,
529 * to be freed later.
531 if (!tmp_p) {
532 mac_control->zerodma_virt_addr = tmp_v;
533 DBG_PRINT(INIT_DBG,
534 "%s: Zero DMA address for TxDL. ", dev->name);
535 DBG_PRINT(INIT_DBG,
536 "Virtual address %p\n", tmp_v);
537 tmp_v = pci_alloc_consistent(nic->pdev,
538 PAGE_SIZE, &tmp_p);
539 if (!tmp_v) {
540 DBG_PRINT(ERR_DBG,
541 "pci_alloc_consistent ");
542 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
543 return -ENOMEM;
546 while (k < lst_per_page) {
547 int l = (j * lst_per_page) + k;
548 if (l == config->tx_cfg[i].fifo_len)
549 break;
550 mac_control->fifos[i].list_info[l].list_virt_addr =
551 tmp_v + (k * lst_size);
552 mac_control->fifos[i].list_info[l].list_phy_addr =
553 tmp_p + (k * lst_size);
554 k++;
559 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
560 if (!nic->ufo_in_band_v)
561 return -ENOMEM;
562 memset(nic->ufo_in_band_v, 0, size);
564 /* Allocation and initialization of RXDs in Rings */
565 size = 0;
566 for (i = 0; i < config->rx_ring_num; i++) {
567 if (config->rx_cfg[i].num_rxd %
568 (rxd_count[nic->rxd_mode] + 1)) {
569 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
570 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
572 DBG_PRINT(ERR_DBG, "RxDs per Block");
573 return FAILURE;
575 size += config->rx_cfg[i].num_rxd;
576 mac_control->rings[i].block_count =
577 config->rx_cfg[i].num_rxd /
578 (rxd_count[nic->rxd_mode] + 1 );
579 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
580 mac_control->rings[i].block_count;
582 if (nic->rxd_mode == RXD_MODE_1)
583 size = (size * (sizeof(RxD1_t)));
584 else
585 size = (size * (sizeof(RxD3_t)));
586 rx_sz = size;
588 for (i = 0; i < config->rx_ring_num; i++) {
589 mac_control->rings[i].rx_curr_get_info.block_index = 0;
590 mac_control->rings[i].rx_curr_get_info.offset = 0;
591 mac_control->rings[i].rx_curr_get_info.ring_len =
592 config->rx_cfg[i].num_rxd - 1;
593 mac_control->rings[i].rx_curr_put_info.block_index = 0;
594 mac_control->rings[i].rx_curr_put_info.offset = 0;
595 mac_control->rings[i].rx_curr_put_info.ring_len =
596 config->rx_cfg[i].num_rxd - 1;
597 mac_control->rings[i].nic = nic;
598 mac_control->rings[i].ring_no = i;
600 blk_cnt = config->rx_cfg[i].num_rxd /
601 (rxd_count[nic->rxd_mode] + 1);
602 /* Allocating all the Rx blocks */
603 for (j = 0; j < blk_cnt; j++) {
604 rx_block_info_t *rx_blocks;
605 int l;
607 rx_blocks = &mac_control->rings[i].rx_blocks[j];
608 size = SIZE_OF_BLOCK; //size is always page size
609 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
610 &tmp_p_addr);
611 if (tmp_v_addr == NULL) {
613 * In case of failure, free_shared_mem()
614 * is called, which should free any
615 * memory that was alloced till the
616 * failure happened.
618 rx_blocks->block_virt_addr = tmp_v_addr;
619 return -ENOMEM;
621 memset(tmp_v_addr, 0, size);
622 rx_blocks->block_virt_addr = tmp_v_addr;
623 rx_blocks->block_dma_addr = tmp_p_addr;
624 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
625 rxd_count[nic->rxd_mode],
626 GFP_KERNEL);
627 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628 rx_blocks->rxds[l].virt_addr =
629 rx_blocks->block_virt_addr +
630 (rxd_size[nic->rxd_mode] * l);
631 rx_blocks->rxds[l].dma_addr =
632 rx_blocks->block_dma_addr +
633 (rxd_size[nic->rxd_mode] * l);
636 /* Interlinking all Rx Blocks */
637 for (j = 0; j < blk_cnt; j++) {
638 tmp_v_addr =
639 mac_control->rings[i].rx_blocks[j].block_virt_addr;
640 tmp_v_addr_next =
641 mac_control->rings[i].rx_blocks[(j + 1) %
642 blk_cnt].block_virt_addr;
643 tmp_p_addr =
644 mac_control->rings[i].rx_blocks[j].block_dma_addr;
645 tmp_p_addr_next =
646 mac_control->rings[i].rx_blocks[(j + 1) %
647 blk_cnt].block_dma_addr;
649 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
650 pre_rxd_blk->reserved_2_pNext_RxD_block =
651 (unsigned long) tmp_v_addr_next;
652 pre_rxd_blk->pNext_RxD_Blk_physical =
653 (u64) tmp_p_addr_next;
656 if (nic->rxd_mode >= RXD_MODE_3A) {
658 * Allocation of Storages for buffer addresses in 2BUFF mode
659 * and the buffers as well.
661 for (i = 0; i < config->rx_ring_num; i++) {
662 blk_cnt = config->rx_cfg[i].num_rxd /
663 (rxd_count[nic->rxd_mode]+ 1);
664 mac_control->rings[i].ba =
665 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
666 GFP_KERNEL);
667 if (!mac_control->rings[i].ba)
668 return -ENOMEM;
669 for (j = 0; j < blk_cnt; j++) {
670 int k = 0;
671 mac_control->rings[i].ba[j] =
672 kmalloc((sizeof(buffAdd_t) *
673 (rxd_count[nic->rxd_mode] + 1)),
674 GFP_KERNEL);
675 if (!mac_control->rings[i].ba[j])
676 return -ENOMEM;
677 while (k != rxd_count[nic->rxd_mode]) {
678 ba = &mac_control->rings[i].ba[j][k];
680 ba->ba_0_org = (void *) kmalloc
681 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
682 if (!ba->ba_0_org)
683 return -ENOMEM;
684 tmp = (unsigned long)ba->ba_0_org;
685 tmp += ALIGN_SIZE;
686 tmp &= ~((unsigned long) ALIGN_SIZE);
687 ba->ba_0 = (void *) tmp;
689 ba->ba_1_org = (void *) kmalloc
690 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
691 if (!ba->ba_1_org)
692 return -ENOMEM;
693 tmp = (unsigned long) ba->ba_1_org;
694 tmp += ALIGN_SIZE;
695 tmp &= ~((unsigned long) ALIGN_SIZE);
696 ba->ba_1 = (void *) tmp;
697 k++;
703 /* Allocation and initialization of Statistics block */
704 size = sizeof(StatInfo_t);
705 mac_control->stats_mem = pci_alloc_consistent
706 (nic->pdev, size, &mac_control->stats_mem_phy);
708 if (!mac_control->stats_mem) {
710 * In case of failure, free_shared_mem() is called, which
711 * should free any memory that was alloced till the
712 * failure happened.
714 return -ENOMEM;
716 mac_control->stats_mem_sz = size;
718 tmp_v_addr = mac_control->stats_mem;
719 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
720 memset(tmp_v_addr, 0, size);
721 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722 (unsigned long long) tmp_p_addr);
724 return SUCCESS;
728 * free_shared_mem - Free the allocated Memory
729 * @nic: Device private variable.
730 * Description: This function is to free all memory locations allocated by
731 * the init_shared_mem() function and return it to the kernel.
734 static void free_shared_mem(struct s2io_nic *nic)
736 int i, j, blk_cnt, size;
737 void *tmp_v_addr;
738 dma_addr_t tmp_p_addr;
739 mac_info_t *mac_control;
740 struct config_param *config;
741 int lst_size, lst_per_page;
742 struct net_device *dev = nic->dev;
744 if (!nic)
745 return;
747 mac_control = &nic->mac_control;
748 config = &nic->config;
750 lst_size = (sizeof(TxD_t) * config->max_txds);
751 lst_per_page = PAGE_SIZE / lst_size;
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
755 lst_per_page);
756 for (j = 0; j < page_num; j++) {
757 int mem_blks = (j * lst_per_page);
758 if (!mac_control->fifos[i].list_info)
759 return;
760 if (!mac_control->fifos[i].list_info[mem_blks].
761 list_virt_addr)
762 break;
763 pci_free_consistent(nic->pdev, PAGE_SIZE,
764 mac_control->fifos[i].
765 list_info[mem_blks].
766 list_virt_addr,
767 mac_control->fifos[i].
768 list_info[mem_blks].
769 list_phy_addr);
771 /* If we got a zero DMA address during allocation,
772 * free the page now
774 if (mac_control->zerodma_virt_addr) {
775 pci_free_consistent(nic->pdev, PAGE_SIZE,
776 mac_control->zerodma_virt_addr,
777 (dma_addr_t)0);
778 DBG_PRINT(INIT_DBG,
779 "%s: Freeing TxDL with zero DMA addr. ",
780 dev->name);
781 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782 mac_control->zerodma_virt_addr);
784 kfree(mac_control->fifos[i].list_info);
787 size = SIZE_OF_BLOCK;
788 for (i = 0; i < config->rx_ring_num; i++) {
789 blk_cnt = mac_control->rings[i].block_count;
790 for (j = 0; j < blk_cnt; j++) {
791 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
792 block_virt_addr;
793 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
794 block_dma_addr;
795 if (tmp_v_addr == NULL)
796 break;
797 pci_free_consistent(nic->pdev, size,
798 tmp_v_addr, tmp_p_addr);
799 kfree(mac_control->rings[i].rx_blocks[j].rxds);
803 if (nic->rxd_mode >= RXD_MODE_3A) {
804 /* Freeing buffer storage addresses in 2BUFF mode. */
805 for (i = 0; i < config->rx_ring_num; i++) {
806 blk_cnt = config->rx_cfg[i].num_rxd /
807 (rxd_count[nic->rxd_mode] + 1);
808 for (j = 0; j < blk_cnt; j++) {
809 int k = 0;
810 if (!mac_control->rings[i].ba[j])
811 continue;
812 while (k != rxd_count[nic->rxd_mode]) {
813 buffAdd_t *ba =
814 &mac_control->rings[i].ba[j][k];
815 kfree(ba->ba_0_org);
816 kfree(ba->ba_1_org);
817 k++;
819 kfree(mac_control->rings[i].ba[j]);
821 kfree(mac_control->rings[i].ba);
825 if (mac_control->stats_mem) {
826 pci_free_consistent(nic->pdev,
827 mac_control->stats_mem_sz,
828 mac_control->stats_mem,
829 mac_control->stats_mem_phy);
831 if (nic->ufo_in_band_v)
832 kfree(nic->ufo_in_band_v);
836 * s2io_verify_pci_mode -
839 static int s2io_verify_pci_mode(nic_t *nic)
841 XENA_dev_config_t __iomem *bar0 = nic->bar0;
842 register u64 val64 = 0;
843 int mode;
845 val64 = readq(&bar0->pci_mode);
846 mode = (u8)GET_PCI_MODE(val64);
848 if ( val64 & PCI_MODE_UNKNOWN_MODE)
849 return -1; /* Unknown PCI mode */
850 return mode;
853 #define NEC_VENID 0x1033
854 #define NEC_DEVID 0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
857 struct pci_dev *tdev = NULL;
858 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
860 if (tdev->bus == s2io_pdev->bus->parent)
861 pci_dev_put(tdev);
862 return 1;
865 return 0;
868 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
870 * s2io_print_pci_mode -
872 static int s2io_print_pci_mode(nic_t *nic)
874 XENA_dev_config_t __iomem *bar0 = nic->bar0;
875 register u64 val64 = 0;
876 int mode;
877 struct config_param *config = &nic->config;
879 val64 = readq(&bar0->pci_mode);
880 mode = (u8)GET_PCI_MODE(val64);
882 if ( val64 & PCI_MODE_UNKNOWN_MODE)
883 return -1; /* Unknown PCI mode */
885 config->bus_speed = bus_speed[mode];
887 if (s2io_on_nec_bridge(nic->pdev)) {
888 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
889 nic->dev->name);
890 return mode;
893 if (val64 & PCI_MODE_32_BITS) {
894 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
895 } else {
896 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
899 switch(mode) {
900 case PCI_MODE_PCI_33:
901 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
902 break;
903 case PCI_MODE_PCI_66:
904 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
905 break;
906 case PCI_MODE_PCIX_M1_66:
907 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
908 break;
909 case PCI_MODE_PCIX_M1_100:
910 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
911 break;
912 case PCI_MODE_PCIX_M1_133:
913 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
914 break;
915 case PCI_MODE_PCIX_M2_66:
916 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
917 break;
918 case PCI_MODE_PCIX_M2_100:
919 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
920 break;
921 case PCI_MODE_PCIX_M2_133:
922 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
923 break;
924 default:
925 return -1; /* Unsupported bus speed */
928 return mode;
932 * init_nic - Initialization of hardware
933 * @nic: device peivate variable
934 * Description: The function sequentially configures every block
935 * of the H/W from their reset values.
936 * Return Value: SUCCESS on success and
937 * '-1' on failure (endian settings incorrect).
940 static int init_nic(struct s2io_nic *nic)
942 XENA_dev_config_t __iomem *bar0 = nic->bar0;
943 struct net_device *dev = nic->dev;
944 register u64 val64 = 0;
945 void __iomem *add;
946 u32 time;
947 int i, j;
948 mac_info_t *mac_control;
949 struct config_param *config;
950 int dtx_cnt = 0;
951 unsigned long long mem_share;
952 int mem_size;
954 mac_control = &nic->mac_control;
955 config = &nic->config;
957 /* to set the swapper controle on the card */
958 if(s2io_set_swapper(nic)) {
959 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
960 return -1;
964 * Herc requires EOI to be removed from reset before XGXS, so..
966 if (nic->device_type & XFRAME_II_DEVICE) {
967 val64 = 0xA500000000ULL;
968 writeq(val64, &bar0->sw_reset);
969 msleep(500);
970 val64 = readq(&bar0->sw_reset);
973 /* Remove XGXS from reset state */
974 val64 = 0;
975 writeq(val64, &bar0->sw_reset);
976 msleep(500);
977 val64 = readq(&bar0->sw_reset);
979 /* Enable Receiving broadcasts */
980 add = &bar0->mac_cfg;
981 val64 = readq(&bar0->mac_cfg);
982 val64 |= MAC_RMAC_BCAST_ENABLE;
983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984 writel((u32) val64, add);
985 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986 writel((u32) (val64 >> 32), (add + 4));
988 /* Read registers in all blocks */
989 val64 = readq(&bar0->mac_int_mask);
990 val64 = readq(&bar0->mc_int_mask);
991 val64 = readq(&bar0->xgxs_int_mask);
993 /* Set MTU */
994 val64 = dev->mtu;
995 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
997 if (nic->device_type & XFRAME_II_DEVICE) {
998 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
999 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1000 &bar0->dtx_control, UF);
1001 if (dtx_cnt & 0x1)
1002 msleep(1); /* Necessary!! */
1003 dtx_cnt++;
1005 } else {
1006 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008 &bar0->dtx_control, UF);
1009 val64 = readq(&bar0->dtx_control);
1010 dtx_cnt++;
1014 /* Tx DMA Initialization */
1015 val64 = 0;
1016 writeq(val64, &bar0->tx_fifo_partition_0);
1017 writeq(val64, &bar0->tx_fifo_partition_1);
1018 writeq(val64, &bar0->tx_fifo_partition_2);
1019 writeq(val64, &bar0->tx_fifo_partition_3);
1022 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1023 val64 |=
1024 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025 13) | vBIT(config->tx_cfg[i].fifo_priority,
1026 ((i * 32) + 5), 3);
1028 if (i == (config->tx_fifo_num - 1)) {
1029 if (i % 2 == 0)
1030 i++;
1033 switch (i) {
1034 case 1:
1035 writeq(val64, &bar0->tx_fifo_partition_0);
1036 val64 = 0;
1037 break;
1038 case 3:
1039 writeq(val64, &bar0->tx_fifo_partition_1);
1040 val64 = 0;
1041 break;
1042 case 5:
1043 writeq(val64, &bar0->tx_fifo_partition_2);
1044 val64 = 0;
1045 break;
1046 case 7:
1047 writeq(val64, &bar0->tx_fifo_partition_3);
1048 break;
1053 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1056 if ((nic->device_type == XFRAME_I_DEVICE) &&
1057 (get_xena_rev_id(nic->pdev) < 4))
1058 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1060 val64 = readq(&bar0->tx_fifo_partition_0);
1061 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1065 * Initialization of Tx_PA_CONFIG register to ignore packet
1066 * integrity checking.
1068 val64 = readq(&bar0->tx_pa_cfg);
1069 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071 writeq(val64, &bar0->tx_pa_cfg);
1073 /* Rx DMA intialization. */
1074 val64 = 0;
1075 for (i = 0; i < config->rx_ring_num; i++) {
1076 val64 |=
1077 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1080 writeq(val64, &bar0->rx_queue_priority);
1083 * Allocating equal share of memory to all the
1084 * configured Rings.
1086 val64 = 0;
1087 if (nic->device_type & XFRAME_II_DEVICE)
1088 mem_size = 32;
1089 else
1090 mem_size = 64;
1092 for (i = 0; i < config->rx_ring_num; i++) {
1093 switch (i) {
1094 case 0:
1095 mem_share = (mem_size / config->rx_ring_num +
1096 mem_size % config->rx_ring_num);
1097 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1098 continue;
1099 case 1:
1100 mem_share = (mem_size / config->rx_ring_num);
1101 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1102 continue;
1103 case 2:
1104 mem_share = (mem_size / config->rx_ring_num);
1105 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1106 continue;
1107 case 3:
1108 mem_share = (mem_size / config->rx_ring_num);
1109 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1110 continue;
1111 case 4:
1112 mem_share = (mem_size / config->rx_ring_num);
1113 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1114 continue;
1115 case 5:
1116 mem_share = (mem_size / config->rx_ring_num);
1117 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1118 continue;
1119 case 6:
1120 mem_share = (mem_size / config->rx_ring_num);
1121 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1122 continue;
1123 case 7:
1124 mem_share = (mem_size / config->rx_ring_num);
1125 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1126 continue;
1129 writeq(val64, &bar0->rx_queue_cfg);
1132 * Filling Tx round robin registers
1133 * as per the number of FIFOs
1135 switch (config->tx_fifo_num) {
1136 case 1:
1137 val64 = 0x0000000000000000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_0);
1139 writeq(val64, &bar0->tx_w_round_robin_1);
1140 writeq(val64, &bar0->tx_w_round_robin_2);
1141 writeq(val64, &bar0->tx_w_round_robin_3);
1142 writeq(val64, &bar0->tx_w_round_robin_4);
1143 break;
1144 case 2:
1145 val64 = 0x0000010000010000ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_0);
1147 val64 = 0x0100000100000100ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_1);
1149 val64 = 0x0001000001000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_2);
1151 val64 = 0x0000010000010000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_3);
1153 val64 = 0x0100000000000000ULL;
1154 writeq(val64, &bar0->tx_w_round_robin_4);
1155 break;
1156 case 3:
1157 val64 = 0x0001000102000001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_0);
1159 val64 = 0x0001020000010001ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_1);
1161 val64 = 0x0200000100010200ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_2);
1163 val64 = 0x0001000102000001ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_3);
1165 val64 = 0x0001020000000000ULL;
1166 writeq(val64, &bar0->tx_w_round_robin_4);
1167 break;
1168 case 4:
1169 val64 = 0x0001020300010200ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_0);
1171 val64 = 0x0100000102030001ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_1);
1173 val64 = 0x0200010000010203ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_2);
1175 val64 = 0x0001020001000001ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_3);
1177 val64 = 0x0203000100000000ULL;
1178 writeq(val64, &bar0->tx_w_round_robin_4);
1179 break;
1180 case 5:
1181 val64 = 0x0001000203000102ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_0);
1183 val64 = 0x0001020001030004ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_1);
1185 val64 = 0x0001000203000102ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_2);
1187 val64 = 0x0001020001030004ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_3);
1189 val64 = 0x0001000000000000ULL;
1190 writeq(val64, &bar0->tx_w_round_robin_4);
1191 break;
1192 case 6:
1193 val64 = 0x0001020304000102ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_0);
1195 val64 = 0x0304050001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_1);
1197 val64 = 0x0203000100000102ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_2);
1199 val64 = 0x0304000102030405ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_3);
1201 val64 = 0x0001000200000000ULL;
1202 writeq(val64, &bar0->tx_w_round_robin_4);
1203 break;
1204 case 7:
1205 val64 = 0x0001020001020300ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_0);
1207 val64 = 0x0102030400010203ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_1);
1209 val64 = 0x0405060001020001ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_2);
1211 val64 = 0x0304050000010200ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_3);
1213 val64 = 0x0102030000000000ULL;
1214 writeq(val64, &bar0->tx_w_round_robin_4);
1215 break;
1216 case 8:
1217 val64 = 0x0001020300040105ULL;
1218 writeq(val64, &bar0->tx_w_round_robin_0);
1219 val64 = 0x0200030106000204ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_1);
1221 val64 = 0x0103000502010007ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_2);
1223 val64 = 0x0304010002060500ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_3);
1225 val64 = 0x0103020400000000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1230 /* Enable all configured Tx FIFO partitions */
1231 val64 = readq(&bar0->tx_fifo_partition_0);
1232 val64 |= (TX_FIFO_PARTITION_EN);
1233 writeq(val64, &bar0->tx_fifo_partition_0);
1235 /* Filling the Rx round robin registers as per the
1236 * number of Rings and steering based on QoS.
1238 switch (config->rx_ring_num) {
1239 case 1:
1240 val64 = 0x8080808080808080ULL;
1241 writeq(val64, &bar0->rts_qos_steering);
1242 break;
1243 case 2:
1244 val64 = 0x0000010000010000ULL;
1245 writeq(val64, &bar0->rx_w_round_robin_0);
1246 val64 = 0x0100000100000100ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_1);
1248 val64 = 0x0001000001000001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_2);
1250 val64 = 0x0000010000010000ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_3);
1252 val64 = 0x0100000000000000ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_4);
1255 val64 = 0x8080808040404040ULL;
1256 writeq(val64, &bar0->rts_qos_steering);
1257 break;
1258 case 3:
1259 val64 = 0x0001000102000001ULL;
1260 writeq(val64, &bar0->rx_w_round_robin_0);
1261 val64 = 0x0001020000010001ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_1);
1263 val64 = 0x0200000100010200ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_2);
1265 val64 = 0x0001000102000001ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_3);
1267 val64 = 0x0001020000000000ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_4);
1270 val64 = 0x8080804040402020ULL;
1271 writeq(val64, &bar0->rts_qos_steering);
1272 break;
1273 case 4:
1274 val64 = 0x0001020300010200ULL;
1275 writeq(val64, &bar0->rx_w_round_robin_0);
1276 val64 = 0x0100000102030001ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_1);
1278 val64 = 0x0200010000010203ULL;
1279 writeq(val64, &bar0->rx_w_round_robin_2);
1280 val64 = 0x0001020001000001ULL;
1281 writeq(val64, &bar0->rx_w_round_robin_3);
1282 val64 = 0x0203000100000000ULL;
1283 writeq(val64, &bar0->rx_w_round_robin_4);
1285 val64 = 0x8080404020201010ULL;
1286 writeq(val64, &bar0->rts_qos_steering);
1287 break;
1288 case 5:
1289 val64 = 0x0001000203000102ULL;
1290 writeq(val64, &bar0->rx_w_round_robin_0);
1291 val64 = 0x0001020001030004ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_1);
1293 val64 = 0x0001000203000102ULL;
1294 writeq(val64, &bar0->rx_w_round_robin_2);
1295 val64 = 0x0001020001030004ULL;
1296 writeq(val64, &bar0->rx_w_round_robin_3);
1297 val64 = 0x0001000000000000ULL;
1298 writeq(val64, &bar0->rx_w_round_robin_4);
1300 val64 = 0x8080404020201008ULL;
1301 writeq(val64, &bar0->rts_qos_steering);
1302 break;
1303 case 6:
1304 val64 = 0x0001020304000102ULL;
1305 writeq(val64, &bar0->rx_w_round_robin_0);
1306 val64 = 0x0304050001020001ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_1);
1308 val64 = 0x0203000100000102ULL;
1309 writeq(val64, &bar0->rx_w_round_robin_2);
1310 val64 = 0x0304000102030405ULL;
1311 writeq(val64, &bar0->rx_w_round_robin_3);
1312 val64 = 0x0001000200000000ULL;
1313 writeq(val64, &bar0->rx_w_round_robin_4);
1315 val64 = 0x8080404020100804ULL;
1316 writeq(val64, &bar0->rts_qos_steering);
1317 break;
1318 case 7:
1319 val64 = 0x0001020001020300ULL;
1320 writeq(val64, &bar0->rx_w_round_robin_0);
1321 val64 = 0x0102030400010203ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_1);
1323 val64 = 0x0405060001020001ULL;
1324 writeq(val64, &bar0->rx_w_round_robin_2);
1325 val64 = 0x0304050000010200ULL;
1326 writeq(val64, &bar0->rx_w_round_robin_3);
1327 val64 = 0x0102030000000000ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_4);
1330 val64 = 0x8080402010080402ULL;
1331 writeq(val64, &bar0->rts_qos_steering);
1332 break;
1333 case 8:
1334 val64 = 0x0001020300040105ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_0);
1336 val64 = 0x0200030106000204ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_1);
1338 val64 = 0x0103000502010007ULL;
1339 writeq(val64, &bar0->rx_w_round_robin_2);
1340 val64 = 0x0304010002060500ULL;
1341 writeq(val64, &bar0->rx_w_round_robin_3);
1342 val64 = 0x0103020400000000ULL;
1343 writeq(val64, &bar0->rx_w_round_robin_4);
1345 val64 = 0x8040201008040201ULL;
1346 writeq(val64, &bar0->rts_qos_steering);
1347 break;
1350 /* UDP Fix */
1351 val64 = 0;
1352 for (i = 0; i < 8; i++)
1353 writeq(val64, &bar0->rts_frm_len_n[i]);
1355 /* Set the default rts frame length for the rings configured */
1356 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357 for (i = 0 ; i < config->rx_ring_num ; i++)
1358 writeq(val64, &bar0->rts_frm_len_n[i]);
1360 /* Set the frame length for the configured rings
1361 * desired by the user
1363 for (i = 0; i < config->rx_ring_num; i++) {
1364 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365 * specified frame length steering.
1366 * If the user provides the frame length then program
1367 * the rts_frm_len register for those values or else
1368 * leave it as it is.
1370 if (rts_frm_len[i] != 0) {
1371 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372 &bar0->rts_frm_len_n[i]);
1376 /* Program statistics memory */
1377 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1379 if (nic->device_type == XFRAME_II_DEVICE) {
1380 val64 = STAT_BC(0x320);
1381 writeq(val64, &bar0->stat_byte_cnt);
1385 * Initializing the sampling rate for the device to calculate the
1386 * bandwidth utilization.
1388 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390 writeq(val64, &bar0->mac_link_util);
1394 * Initializing the Transmit and Receive Traffic Interrupt
1395 * Scheme.
1398 * TTI Initialization. Default Tx timer gets us about
1399 * 250 interrupts per sec. Continuous interrupts are enabled
1400 * by default.
1402 if (nic->device_type == XFRAME_II_DEVICE) {
1403 int count = (nic->config.bus_speed * 125)/2;
1404 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1405 } else {
1407 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1409 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1410 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1411 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1412 if (use_continuous_tx_intrs)
1413 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1414 writeq(val64, &bar0->tti_data1_mem);
1416 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1418 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1419 writeq(val64, &bar0->tti_data2_mem);
1421 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422 writeq(val64, &bar0->tti_command_mem);
1425 * Once the operation completes, the Strobe bit of the command
1426 * register will be reset. We poll for this particular condition
1427 * We wait for a maximum of 500ms for the operation to complete,
1428 * if it's not complete by then we return error.
1430 time = 0;
1431 while (TRUE) {
1432 val64 = readq(&bar0->tti_command_mem);
1433 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1434 break;
1436 if (time > 10) {
1437 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1438 dev->name);
1439 return -1;
1441 msleep(50);
1442 time++;
1445 if (nic->config.bimodal) {
1446 int k = 0;
1447 for (k = 0; k < config->rx_ring_num; k++) {
1448 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450 writeq(val64, &bar0->tti_command_mem);
1453 * Once the operation completes, the Strobe bit of the command
1454 * register will be reset. We poll for this particular condition
1455 * We wait for a maximum of 500ms for the operation to complete,
1456 * if it's not complete by then we return error.
1458 time = 0;
1459 while (TRUE) {
1460 val64 = readq(&bar0->tti_command_mem);
1461 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1462 break;
1464 if (time > 10) {
1465 DBG_PRINT(ERR_DBG,
1466 "%s: TTI init Failed\n",
1467 dev->name);
1468 return -1;
1470 time++;
1471 msleep(50);
1474 } else {
1476 /* RTI Initialization */
1477 if (nic->device_type == XFRAME_II_DEVICE) {
1479 * Programmed to generate Apprx 500 Intrs per
1480 * second
1482 int count = (nic->config.bus_speed * 125)/4;
1483 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1484 } else {
1485 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1487 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1491 writeq(val64, &bar0->rti_data1_mem);
1493 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1494 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495 if (nic->intr_type == MSI_X)
1496 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497 RTI_DATA2_MEM_RX_UFC_D(0x40));
1498 else
1499 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500 RTI_DATA2_MEM_RX_UFC_D(0x80));
1501 writeq(val64, &bar0->rti_data2_mem);
1503 for (i = 0; i < config->rx_ring_num; i++) {
1504 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505 | RTI_CMD_MEM_OFFSET(i);
1506 writeq(val64, &bar0->rti_command_mem);
1509 * Once the operation completes, the Strobe bit of the
1510 * command register will be reset. We poll for this
1511 * particular condition. We wait for a maximum of 500ms
1512 * for the operation to complete, if it's not complete
1513 * by then we return error.
1515 time = 0;
1516 while (TRUE) {
1517 val64 = readq(&bar0->rti_command_mem);
1518 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1519 break;
1521 if (time > 10) {
1522 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1523 dev->name);
1524 return -1;
1526 time++;
1527 msleep(50);
1533 * Initializing proper values as Pause threshold into all
1534 * the 8 Queues on Rx side.
1536 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1539 /* Disable RMAC PAD STRIPPING */
1540 add = &bar0->mac_cfg;
1541 val64 = readq(&bar0->mac_cfg);
1542 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544 writel((u32) (val64), add);
1545 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546 writel((u32) (val64 >> 32), (add + 4));
1547 val64 = readq(&bar0->mac_cfg);
1549 /* Enable FCS stripping by adapter */
1550 add = &bar0->mac_cfg;
1551 val64 = readq(&bar0->mac_cfg);
1552 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553 if (nic->device_type == XFRAME_II_DEVICE)
1554 writeq(val64, &bar0->mac_cfg);
1555 else {
1556 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557 writel((u32) (val64), add);
1558 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559 writel((u32) (val64 >> 32), (add + 4));
1563 * Set the time value to be inserted in the pause frame
1564 * generated by xena.
1566 val64 = readq(&bar0->rmac_pause_cfg);
1567 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569 writeq(val64, &bar0->rmac_pause_cfg);
1572 * Set the Threshold Limit for Generating the pause frame
1573 * If the amount of data in any Queue exceeds ratio of
1574 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575 * pause frame is generated
1577 val64 = 0;
1578 for (i = 0; i < 4; i++) {
1579 val64 |=
1580 (((u64) 0xFF00 | nic->mac_control.
1581 mc_pause_threshold_q0q3)
1582 << (i * 2 * 8));
1584 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1586 val64 = 0;
1587 for (i = 0; i < 4; i++) {
1588 val64 |=
1589 (((u64) 0xFF00 | nic->mac_control.
1590 mc_pause_threshold_q4q7)
1591 << (i * 2 * 8));
1593 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1596 * TxDMA will stop Read request if the number of read split has
1597 * exceeded the limit pointed by shared_splits
1599 val64 = readq(&bar0->pic_control);
1600 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601 writeq(val64, &bar0->pic_control);
1603 if (nic->config.bus_speed == 266) {
1604 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605 writeq(0x0, &bar0->read_retry_delay);
1606 writeq(0x0, &bar0->write_retry_delay);
1610 * Programming the Herc to split every write transaction
1611 * that does not start on an ADB to reduce disconnects.
1613 if (nic->device_type == XFRAME_II_DEVICE) {
1614 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1615 writeq(val64, &bar0->misc_control);
1616 val64 = readq(&bar0->pic_control2);
1617 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1618 writeq(val64, &bar0->pic_control2);
1620 if (strstr(nic->product_name, "CX4")) {
1621 val64 = TMAC_AVG_IPG(0x17);
1622 writeq(val64, &bar0->tmac_avg_ipg);
1625 return SUCCESS;
1627 #define LINK_UP_DOWN_INTERRUPT 1
1628 #define MAC_RMAC_ERR_TIMER 2
1630 static int s2io_link_fault_indication(nic_t *nic)
1632 if (nic->intr_type != INTA)
1633 return MAC_RMAC_ERR_TIMER;
1634 if (nic->device_type == XFRAME_II_DEVICE)
1635 return LINK_UP_DOWN_INTERRUPT;
1636 else
1637 return MAC_RMAC_ERR_TIMER;
1641 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1642 * @nic: device private variable,
1643 * @mask: A mask indicating which Intr block must be modified and,
1644 * @flag: A flag indicating whether to enable or disable the Intrs.
1645 * Description: This function will either disable or enable the interrupts
1646 * depending on the flag argument. The mask argument can be used to
1647 * enable/disable any Intr block.
1648 * Return Value: NONE.
1651 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1653 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1654 register u64 val64 = 0, temp64 = 0;
1656 /* Top level interrupt classification */
1657 /* PIC Interrupts */
1658 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1659 /* Enable PIC Intrs in the general intr mask register */
1660 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1661 if (flag == ENABLE_INTRS) {
1662 temp64 = readq(&bar0->general_int_mask);
1663 temp64 &= ~((u64) val64);
1664 writeq(temp64, &bar0->general_int_mask);
1666 * If Hercules adapter enable GPIO otherwise
1667 * disable all PCIX, Flash, MDIO, IIC and GPIO
1668 * interrupts for now.
1669 * TODO
1671 if (s2io_link_fault_indication(nic) ==
1672 LINK_UP_DOWN_INTERRUPT ) {
1673 temp64 = readq(&bar0->pic_int_mask);
1674 temp64 &= ~((u64) PIC_INT_GPIO);
1675 writeq(temp64, &bar0->pic_int_mask);
1676 temp64 = readq(&bar0->gpio_int_mask);
1677 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1678 writeq(temp64, &bar0->gpio_int_mask);
1679 } else {
1680 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1683 * No MSI Support is available presently, so TTI and
1684 * RTI interrupts are also disabled.
1686 } else if (flag == DISABLE_INTRS) {
1688 * Disable PIC Intrs in the general
1689 * intr mask register
1691 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1692 temp64 = readq(&bar0->general_int_mask);
1693 val64 |= temp64;
1694 writeq(val64, &bar0->general_int_mask);
1698 /* DMA Interrupts */
1699 /* Enabling/Disabling Tx DMA interrupts */
1700 if (mask & TX_DMA_INTR) {
1701 /* Enable TxDMA Intrs in the general intr mask register */
1702 val64 = TXDMA_INT_M;
1703 if (flag == ENABLE_INTRS) {
1704 temp64 = readq(&bar0->general_int_mask);
1705 temp64 &= ~((u64) val64);
1706 writeq(temp64, &bar0->general_int_mask);
1708 * Keep all interrupts other than PFC interrupt
1709 * and PCC interrupt disabled in DMA level.
1711 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1712 TXDMA_PCC_INT_M);
1713 writeq(val64, &bar0->txdma_int_mask);
1715 * Enable only the MISC error 1 interrupt in PFC block
1717 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1718 writeq(val64, &bar0->pfc_err_mask);
1720 * Enable only the FB_ECC error interrupt in PCC block
1722 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1723 writeq(val64, &bar0->pcc_err_mask);
1724 } else if (flag == DISABLE_INTRS) {
1726 * Disable TxDMA Intrs in the general intr mask
1727 * register
1729 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1730 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1731 temp64 = readq(&bar0->general_int_mask);
1732 val64 |= temp64;
1733 writeq(val64, &bar0->general_int_mask);
1737 /* Enabling/Disabling Rx DMA interrupts */
1738 if (mask & RX_DMA_INTR) {
1739 /* Enable RxDMA Intrs in the general intr mask register */
1740 val64 = RXDMA_INT_M;
1741 if (flag == ENABLE_INTRS) {
1742 temp64 = readq(&bar0->general_int_mask);
1743 temp64 &= ~((u64) val64);
1744 writeq(temp64, &bar0->general_int_mask);
1746 * All RxDMA block interrupts are disabled for now
1747 * TODO
1749 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1750 } else if (flag == DISABLE_INTRS) {
1752 * Disable RxDMA Intrs in the general intr mask
1753 * register
1755 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1756 temp64 = readq(&bar0->general_int_mask);
1757 val64 |= temp64;
1758 writeq(val64, &bar0->general_int_mask);
1762 /* MAC Interrupts */
1763 /* Enabling/Disabling MAC interrupts */
1764 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1765 val64 = TXMAC_INT_M | RXMAC_INT_M;
1766 if (flag == ENABLE_INTRS) {
1767 temp64 = readq(&bar0->general_int_mask);
1768 temp64 &= ~((u64) val64);
1769 writeq(temp64, &bar0->general_int_mask);
1771 * All MAC block error interrupts are disabled for now
1772 * TODO
1774 } else if (flag == DISABLE_INTRS) {
1776 * Disable MAC Intrs in the general intr mask register
1778 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1779 writeq(DISABLE_ALL_INTRS,
1780 &bar0->mac_rmac_err_mask);
1782 temp64 = readq(&bar0->general_int_mask);
1783 val64 |= temp64;
1784 writeq(val64, &bar0->general_int_mask);
1788 /* XGXS Interrupts */
1789 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1790 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1791 if (flag == ENABLE_INTRS) {
1792 temp64 = readq(&bar0->general_int_mask);
1793 temp64 &= ~((u64) val64);
1794 writeq(temp64, &bar0->general_int_mask);
1796 * All XGXS block error interrupts are disabled for now
1797 * TODO
1799 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1800 } else if (flag == DISABLE_INTRS) {
1802 * Disable MC Intrs in the general intr mask register
1804 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1805 temp64 = readq(&bar0->general_int_mask);
1806 val64 |= temp64;
1807 writeq(val64, &bar0->general_int_mask);
1811 /* Memory Controller(MC) interrupts */
1812 if (mask & MC_INTR) {
1813 val64 = MC_INT_M;
1814 if (flag == ENABLE_INTRS) {
1815 temp64 = readq(&bar0->general_int_mask);
1816 temp64 &= ~((u64) val64);
1817 writeq(temp64, &bar0->general_int_mask);
1819 * Enable all MC Intrs.
1821 writeq(0x0, &bar0->mc_int_mask);
1822 writeq(0x0, &bar0->mc_err_mask);
1823 } else if (flag == DISABLE_INTRS) {
1825 * Disable MC Intrs in the general intr mask register
1827 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1828 temp64 = readq(&bar0->general_int_mask);
1829 val64 |= temp64;
1830 writeq(val64, &bar0->general_int_mask);
1835 /* Tx traffic interrupts */
1836 if (mask & TX_TRAFFIC_INTR) {
1837 val64 = TXTRAFFIC_INT_M;
1838 if (flag == ENABLE_INTRS) {
1839 temp64 = readq(&bar0->general_int_mask);
1840 temp64 &= ~((u64) val64);
1841 writeq(temp64, &bar0->general_int_mask);
1843 * Enable all the Tx side interrupts
1844 * writing 0 Enables all 64 TX interrupt levels
1846 writeq(0x0, &bar0->tx_traffic_mask);
1847 } else if (flag == DISABLE_INTRS) {
1849 * Disable Tx Traffic Intrs in the general intr mask
1850 * register.
1852 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1853 temp64 = readq(&bar0->general_int_mask);
1854 val64 |= temp64;
1855 writeq(val64, &bar0->general_int_mask);
1859 /* Rx traffic interrupts */
1860 if (mask & RX_TRAFFIC_INTR) {
1861 val64 = RXTRAFFIC_INT_M;
1862 if (flag == ENABLE_INTRS) {
1863 temp64 = readq(&bar0->general_int_mask);
1864 temp64 &= ~((u64) val64);
1865 writeq(temp64, &bar0->general_int_mask);
1866 /* writing 0 Enables all 8 RX interrupt levels */
1867 writeq(0x0, &bar0->rx_traffic_mask);
1868 } else if (flag == DISABLE_INTRS) {
1870 * Disable Rx Traffic Intrs in the general intr mask
1871 * register.
1873 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1874 temp64 = readq(&bar0->general_int_mask);
1875 val64 |= temp64;
1876 writeq(val64, &bar0->general_int_mask);
1881 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1883 int ret = 0;
1885 if (flag == FALSE) {
1886 if ((!herc && (rev_id >= 4)) || herc) {
1887 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1888 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1889 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1890 ret = 1;
1892 }else {
1893 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1894 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1895 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1896 ret = 1;
1899 } else {
1900 if ((!herc && (rev_id >= 4)) || herc) {
1901 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1902 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1903 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1904 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1905 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1906 ret = 1;
1908 } else {
1909 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1910 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1911 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1912 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1913 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1914 ret = 1;
1919 return ret;
1922 * verify_xena_quiescence - Checks whether the H/W is ready
1923 * @val64 : Value read from adapter status register.
1924 * @flag : indicates if the adapter enable bit was ever written once
1925 * before.
1926 * Description: Returns whether the H/W is ready to go or not. Depending
1927 * on whether adapter enable bit was written or not the comparison
1928 * differs and the calling function passes the input argument flag to
1929 * indicate this.
1930 * Return: 1 If xena is quiescence
1931 * 0 If Xena is not quiescence
1934 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1936 int ret = 0, herc;
1937 u64 tmp64 = ~((u64) val64);
1938 int rev_id = get_xena_rev_id(sp->pdev);
1940 herc = (sp->device_type == XFRAME_II_DEVICE);
1941 if (!
1942 (tmp64 &
1943 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1944 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1945 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1946 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1947 ADAPTER_STATUS_P_PLL_LOCK))) {
1948 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1951 return ret;
1955 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1956 * @sp: Pointer to device specifc structure
1957 * Description :
1958 * New procedure to clear mac address reading problems on Alpha platforms
1962 static void fix_mac_address(nic_t * sp)
1964 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1965 u64 val64;
1966 int i = 0;
1968 while (fix_mac[i] != END_SIGN) {
1969 writeq(fix_mac[i++], &bar0->gpio_control);
1970 udelay(10);
1971 val64 = readq(&bar0->gpio_control);
1976 * start_nic - Turns the device on
1977 * @nic : device private variable.
1978 * Description:
1979 * This function actually turns the device on. Before this function is
1980 * called,all Registers are configured from their reset states
1981 * and shared memory is allocated but the NIC is still quiescent. On
1982 * calling this function, the device interrupts are cleared and the NIC is
1983 * literally switched on by writing into the adapter control register.
1984 * Return Value:
1985 * SUCCESS on success and -1 on failure.
1988 static int start_nic(struct s2io_nic *nic)
1990 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1991 struct net_device *dev = nic->dev;
1992 register u64 val64 = 0;
1993 u16 subid, i;
1994 mac_info_t *mac_control;
1995 struct config_param *config;
1997 mac_control = &nic->mac_control;
1998 config = &nic->config;
2000 /* PRC Initialization and configuration */
2001 for (i = 0; i < config->rx_ring_num; i++) {
2002 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2003 &bar0->prc_rxd0_n[i]);
2005 val64 = readq(&bar0->prc_ctrl_n[i]);
2006 if (nic->config.bimodal)
2007 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2008 if (nic->rxd_mode == RXD_MODE_1)
2009 val64 |= PRC_CTRL_RC_ENABLED;
2010 else
2011 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2012 if (nic->device_type == XFRAME_II_DEVICE)
2013 val64 |= PRC_CTRL_GROUP_READS;
2014 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2015 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2016 writeq(val64, &bar0->prc_ctrl_n[i]);
2019 if (nic->rxd_mode == RXD_MODE_3B) {
2020 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2021 val64 = readq(&bar0->rx_pa_cfg);
2022 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2023 writeq(val64, &bar0->rx_pa_cfg);
2027 * Enabling MC-RLDRAM. After enabling the device, we timeout
2028 * for around 100ms, which is approximately the time required
2029 * for the device to be ready for operation.
2031 val64 = readq(&bar0->mc_rldram_mrs);
2032 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2033 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2034 val64 = readq(&bar0->mc_rldram_mrs);
2036 msleep(100); /* Delay by around 100 ms. */
2038 /* Enabling ECC Protection. */
2039 val64 = readq(&bar0->adapter_control);
2040 val64 &= ~ADAPTER_ECC_EN;
2041 writeq(val64, &bar0->adapter_control);
2044 * Clearing any possible Link state change interrupts that
2045 * could have popped up just before Enabling the card.
2047 val64 = readq(&bar0->mac_rmac_err_reg);
2048 if (val64)
2049 writeq(val64, &bar0->mac_rmac_err_reg);
2052 * Verify if the device is ready to be enabled, if so enable
2053 * it.
2055 val64 = readq(&bar0->adapter_status);
2056 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2057 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2058 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2059 (unsigned long long) val64);
2060 return FAILURE;
2064 * With some switches, link might be already up at this point.
2065 * Because of this weird behavior, when we enable laser,
2066 * we may not get link. We need to handle this. We cannot
2067 * figure out which switch is misbehaving. So we are forced to
2068 * make a global change.
2071 /* Enabling Laser. */
2072 val64 = readq(&bar0->adapter_control);
2073 val64 |= ADAPTER_EOI_TX_ON;
2074 writeq(val64, &bar0->adapter_control);
2076 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2078 * Dont see link state interrupts initally on some switches,
2079 * so directly scheduling the link state task here.
2081 schedule_work(&nic->set_link_task);
2083 /* SXE-002: Initialize link and activity LED */
2084 subid = nic->pdev->subsystem_device;
2085 if (((subid & 0xFF) >= 0x07) &&
2086 (nic->device_type == XFRAME_I_DEVICE)) {
2087 val64 = readq(&bar0->gpio_control);
2088 val64 |= 0x0000800000000000ULL;
2089 writeq(val64, &bar0->gpio_control);
2090 val64 = 0x0411040400000000ULL;
2091 writeq(val64, (void __iomem *)bar0 + 0x2700);
2094 return SUCCESS;
2097 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2099 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2101 nic_t *nic = fifo_data->nic;
2102 struct sk_buff *skb;
2103 TxD_t *txds;
2104 u16 j, frg_cnt;
2106 txds = txdlp;
2107 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2108 pci_unmap_single(nic->pdev, (dma_addr_t)
2109 txds->Buffer_Pointer, sizeof(u64),
2110 PCI_DMA_TODEVICE);
2111 txds++;
2114 skb = (struct sk_buff *) ((unsigned long)
2115 txds->Host_Control);
2116 if (!skb) {
2117 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2118 return NULL;
2120 pci_unmap_single(nic->pdev, (dma_addr_t)
2121 txds->Buffer_Pointer,
2122 skb->len - skb->data_len,
2123 PCI_DMA_TODEVICE);
2124 frg_cnt = skb_shinfo(skb)->nr_frags;
2125 if (frg_cnt) {
2126 txds++;
2127 for (j = 0; j < frg_cnt; j++, txds++) {
2128 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2129 if (!txds->Buffer_Pointer)
2130 break;
2131 pci_unmap_page(nic->pdev, (dma_addr_t)
2132 txds->Buffer_Pointer,
2133 frag->size, PCI_DMA_TODEVICE);
2136 memset(txdlp,0, (sizeof(TxD_t) * fifo_data->max_txds));
2137 return(skb);
2141 * free_tx_buffers - Free all queued Tx buffers
2142 * @nic : device private variable.
2143 * Description:
2144 * Free all queued Tx buffers.
2145 * Return Value: void
2148 static void free_tx_buffers(struct s2io_nic *nic)
2150 struct net_device *dev = nic->dev;
2151 struct sk_buff *skb;
2152 TxD_t *txdp;
2153 int i, j;
2154 mac_info_t *mac_control;
2155 struct config_param *config;
2156 int cnt = 0;
2158 mac_control = &nic->mac_control;
2159 config = &nic->config;
2161 for (i = 0; i < config->tx_fifo_num; i++) {
2162 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2163 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2164 list_virt_addr;
2165 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2166 if (skb) {
2167 dev_kfree_skb(skb);
2168 cnt++;
2171 DBG_PRINT(INTR_DBG,
2172 "%s:forcibly freeing %d skbs on FIFO%d\n",
2173 dev->name, cnt, i);
2174 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2175 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2180 * stop_nic - To stop the nic
2181 * @nic ; device private variable.
2182 * Description:
2183 * This function does exactly the opposite of what the start_nic()
2184 * function does. This function is called to stop the device.
2185 * Return Value:
2186 * void.
2189 static void stop_nic(struct s2io_nic *nic)
2191 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2192 register u64 val64 = 0;
2193 u16 interruptible;
2194 mac_info_t *mac_control;
2195 struct config_param *config;
2197 mac_control = &nic->mac_control;
2198 config = &nic->config;
2200 /* Disable all interrupts */
2201 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2202 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2203 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2204 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2206 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2207 val64 = readq(&bar0->adapter_control);
2208 val64 &= ~(ADAPTER_CNTL_EN);
2209 writeq(val64, &bar0->adapter_control);
2212 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2214 struct net_device *dev = nic->dev;
2215 struct sk_buff *frag_list;
2216 void *tmp;
2218 /* Buffer-1 receives L3/L4 headers */
2219 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2220 (nic->pdev, skb->data, l3l4hdr_size + 4,
2221 PCI_DMA_FROMDEVICE);
2223 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2224 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2225 if (skb_shinfo(skb)->frag_list == NULL) {
2226 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2227 return -ENOMEM ;
2229 frag_list = skb_shinfo(skb)->frag_list;
2230 frag_list->next = NULL;
2231 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2232 frag_list->data = tmp;
2233 frag_list->tail = tmp;
2235 /* Buffer-2 receives L4 data payload */
2236 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2237 frag_list->data, dev->mtu,
2238 PCI_DMA_FROMDEVICE);
2239 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2240 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2242 return SUCCESS;
2246 * fill_rx_buffers - Allocates the Rx side skbs
2247 * @nic: device private variable
2248 * @ring_no: ring number
2249 * Description:
2250 * The function allocates Rx side skbs and puts the physical
2251 * address of these buffers into the RxD buffer pointers, so that the NIC
2252 * can DMA the received frame into these locations.
2253 * The NIC supports 3 receive modes, viz
2254 * 1. single buffer,
2255 * 2. three buffer and
2256 * 3. Five buffer modes.
2257 * Each mode defines how many fragments the received frame will be split
2258 * up into by the NIC. The frame is split into L3 header, L4 Header,
2259 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2260 * is split into 3 fragments. As of now only single buffer mode is
2261 * supported.
2262 * Return Value:
2263 * SUCCESS on success or an appropriate -ve value on failure.
2266 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2268 struct net_device *dev = nic->dev;
2269 struct sk_buff *skb;
2270 RxD_t *rxdp;
2271 int off, off1, size, block_no, block_no1;
2272 u32 alloc_tab = 0;
2273 u32 alloc_cnt;
2274 mac_info_t *mac_control;
2275 struct config_param *config;
2276 u64 tmp;
2277 buffAdd_t *ba;
2278 #ifndef CONFIG_S2IO_NAPI
2279 unsigned long flags;
2280 #endif
2281 RxD_t *first_rxdp = NULL;
2283 mac_control = &nic->mac_control;
2284 config = &nic->config;
2285 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2286 atomic_read(&nic->rx_bufs_left[ring_no]);
2288 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2289 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2290 while (alloc_tab < alloc_cnt) {
2291 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2292 block_index;
2293 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2295 rxdp = mac_control->rings[ring_no].
2296 rx_blocks[block_no].rxds[off].virt_addr;
2298 if ((block_no == block_no1) && (off == off1) &&
2299 (rxdp->Host_Control)) {
2300 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2301 dev->name);
2302 DBG_PRINT(INTR_DBG, " info equated\n");
2303 goto end;
2305 if (off && (off == rxd_count[nic->rxd_mode])) {
2306 mac_control->rings[ring_no].rx_curr_put_info.
2307 block_index++;
2308 if (mac_control->rings[ring_no].rx_curr_put_info.
2309 block_index == mac_control->rings[ring_no].
2310 block_count)
2311 mac_control->rings[ring_no].rx_curr_put_info.
2312 block_index = 0;
2313 block_no = mac_control->rings[ring_no].
2314 rx_curr_put_info.block_index;
2315 if (off == rxd_count[nic->rxd_mode])
2316 off = 0;
2317 mac_control->rings[ring_no].rx_curr_put_info.
2318 offset = off;
2319 rxdp = mac_control->rings[ring_no].
2320 rx_blocks[block_no].block_virt_addr;
2321 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2322 dev->name, rxdp);
2324 #ifndef CONFIG_S2IO_NAPI
2325 spin_lock_irqsave(&nic->put_lock, flags);
2326 mac_control->rings[ring_no].put_pos =
2327 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2328 spin_unlock_irqrestore(&nic->put_lock, flags);
2329 #endif
2330 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2331 ((nic->rxd_mode >= RXD_MODE_3A) &&
2332 (rxdp->Control_2 & BIT(0)))) {
2333 mac_control->rings[ring_no].rx_curr_put_info.
2334 offset = off;
2335 goto end;
2337 /* calculate size of skb based on ring mode */
2338 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2339 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2340 if (nic->rxd_mode == RXD_MODE_1)
2341 size += NET_IP_ALIGN;
2342 else if (nic->rxd_mode == RXD_MODE_3B)
2343 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2344 else
2345 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2347 /* allocate skb */
2348 skb = dev_alloc_skb(size);
2349 if(!skb) {
2350 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2351 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2352 if (first_rxdp) {
2353 wmb();
2354 first_rxdp->Control_1 |= RXD_OWN_XENA;
2356 return -ENOMEM ;
2358 if (nic->rxd_mode == RXD_MODE_1) {
2359 /* 1 buffer mode - normal operation mode */
2360 memset(rxdp, 0, sizeof(RxD1_t));
2361 skb_reserve(skb, NET_IP_ALIGN);
2362 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2363 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364 PCI_DMA_FROMDEVICE);
2365 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2367 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2369 * 2 or 3 buffer mode -
2370 * Both 2 buffer mode and 3 buffer mode provides 128
2371 * byte aligned receive buffers.
2373 * 3 buffer mode provides header separation where in
2374 * skb->data will have L3/L4 headers where as
2375 * skb_shinfo(skb)->frag_list will have the L4 data
2376 * payload
2379 memset(rxdp, 0, sizeof(RxD3_t));
2380 ba = &mac_control->rings[ring_no].ba[block_no][off];
2381 skb_reserve(skb, BUF0_LEN);
2382 tmp = (u64)(unsigned long) skb->data;
2383 tmp += ALIGN_SIZE;
2384 tmp &= ~ALIGN_SIZE;
2385 skb->data = (void *) (unsigned long)tmp;
2386 skb->tail = (void *) (unsigned long)tmp;
2388 if (!(((RxD3_t*)rxdp)->Buffer0_ptr))
2389 ((RxD3_t*)rxdp)->Buffer0_ptr =
2390 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2391 PCI_DMA_FROMDEVICE);
2392 else
2393 pci_dma_sync_single_for_device(nic->pdev,
2394 (dma_addr_t) ((RxD3_t*)rxdp)->Buffer0_ptr,
2395 BUF0_LEN, PCI_DMA_FROMDEVICE);
2396 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2397 if (nic->rxd_mode == RXD_MODE_3B) {
2398 /* Two buffer mode */
2401 * Buffer2 will have L3/L4 header plus
2402 * L4 payload
2404 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2405 (nic->pdev, skb->data, dev->mtu + 4,
2406 PCI_DMA_FROMDEVICE);
2408 /* Buffer-1 will be dummy buffer. Not used */
2409 if (!(((RxD3_t*)rxdp)->Buffer1_ptr)) {
2410 ((RxD3_t*)rxdp)->Buffer1_ptr =
2411 pci_map_single(nic->pdev,
2412 ba->ba_1, BUF1_LEN,
2413 PCI_DMA_FROMDEVICE);
2415 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2416 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2417 (dev->mtu + 4);
2418 } else {
2419 /* 3 buffer mode */
2420 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2421 dev_kfree_skb_irq(skb);
2422 if (first_rxdp) {
2423 wmb();
2424 first_rxdp->Control_1 |=
2425 RXD_OWN_XENA;
2427 return -ENOMEM ;
2430 rxdp->Control_2 |= BIT(0);
2432 rxdp->Host_Control = (unsigned long) (skb);
2433 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2434 rxdp->Control_1 |= RXD_OWN_XENA;
2435 off++;
2436 if (off == (rxd_count[nic->rxd_mode] + 1))
2437 off = 0;
2438 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2440 rxdp->Control_2 |= SET_RXD_MARKER;
2441 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2442 if (first_rxdp) {
2443 wmb();
2444 first_rxdp->Control_1 |= RXD_OWN_XENA;
2446 first_rxdp = rxdp;
2448 atomic_inc(&nic->rx_bufs_left[ring_no]);
2449 alloc_tab++;
2452 end:
2453 /* Transfer ownership of first descriptor to adapter just before
2454 * exiting. Before that, use memory barrier so that ownership
2455 * and other fields are seen by adapter correctly.
2457 if (first_rxdp) {
2458 wmb();
2459 first_rxdp->Control_1 |= RXD_OWN_XENA;
2462 return SUCCESS;
2465 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2467 struct net_device *dev = sp->dev;
2468 int j;
2469 struct sk_buff *skb;
2470 RxD_t *rxdp;
2471 mac_info_t *mac_control;
2472 buffAdd_t *ba;
2474 mac_control = &sp->mac_control;
2475 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2476 rxdp = mac_control->rings[ring_no].
2477 rx_blocks[blk].rxds[j].virt_addr;
2478 skb = (struct sk_buff *)
2479 ((unsigned long) rxdp->Host_Control);
2480 if (!skb) {
2481 continue;
2483 if (sp->rxd_mode == RXD_MODE_1) {
2484 pci_unmap_single(sp->pdev, (dma_addr_t)
2485 ((RxD1_t*)rxdp)->Buffer0_ptr,
2486 dev->mtu +
2487 HEADER_ETHERNET_II_802_3_SIZE
2488 + HEADER_802_2_SIZE +
2489 HEADER_SNAP_SIZE,
2490 PCI_DMA_FROMDEVICE);
2491 memset(rxdp, 0, sizeof(RxD1_t));
2492 } else if(sp->rxd_mode == RXD_MODE_3B) {
2493 ba = &mac_control->rings[ring_no].
2494 ba[blk][j];
2495 pci_unmap_single(sp->pdev, (dma_addr_t)
2496 ((RxD3_t*)rxdp)->Buffer0_ptr,
2497 BUF0_LEN,
2498 PCI_DMA_FROMDEVICE);
2499 pci_unmap_single(sp->pdev, (dma_addr_t)
2500 ((RxD3_t*)rxdp)->Buffer1_ptr,
2501 BUF1_LEN,
2502 PCI_DMA_FROMDEVICE);
2503 pci_unmap_single(sp->pdev, (dma_addr_t)
2504 ((RxD3_t*)rxdp)->Buffer2_ptr,
2505 dev->mtu + 4,
2506 PCI_DMA_FROMDEVICE);
2507 memset(rxdp, 0, sizeof(RxD3_t));
2508 } else {
2509 pci_unmap_single(sp->pdev, (dma_addr_t)
2510 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2511 PCI_DMA_FROMDEVICE);
2512 pci_unmap_single(sp->pdev, (dma_addr_t)
2513 ((RxD3_t*)rxdp)->Buffer1_ptr,
2514 l3l4hdr_size + 4,
2515 PCI_DMA_FROMDEVICE);
2516 pci_unmap_single(sp->pdev, (dma_addr_t)
2517 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2518 PCI_DMA_FROMDEVICE);
2519 memset(rxdp, 0, sizeof(RxD3_t));
2521 dev_kfree_skb(skb);
2522 atomic_dec(&sp->rx_bufs_left[ring_no]);
2527 * free_rx_buffers - Frees all Rx buffers
2528 * @sp: device private variable.
2529 * Description:
2530 * This function will free all Rx buffers allocated by host.
2531 * Return Value:
2532 * NONE.
2535 static void free_rx_buffers(struct s2io_nic *sp)
2537 struct net_device *dev = sp->dev;
2538 int i, blk = 0, buf_cnt = 0;
2539 mac_info_t *mac_control;
2540 struct config_param *config;
2542 mac_control = &sp->mac_control;
2543 config = &sp->config;
2545 for (i = 0; i < config->rx_ring_num; i++) {
2546 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2547 free_rxd_blk(sp,i,blk);
2549 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2550 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2551 mac_control->rings[i].rx_curr_put_info.offset = 0;
2552 mac_control->rings[i].rx_curr_get_info.offset = 0;
2553 atomic_set(&sp->rx_bufs_left[i], 0);
2554 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2555 dev->name, buf_cnt, i);
2560 * s2io_poll - Rx interrupt handler for NAPI support
2561 * @dev : pointer to the device structure.
2562 * @budget : The number of packets that were budgeted to be processed
2563 * during one pass through the 'Poll" function.
2564 * Description:
2565 * Comes into picture only if NAPI support has been incorporated. It does
2566 * the same thing that rx_intr_handler does, but not in a interrupt context
2567 * also It will process only a given number of packets.
2568 * Return value:
2569 * 0 on success and 1 if there are No Rx packets to be processed.
2572 #if defined(CONFIG_S2IO_NAPI)
2573 static int s2io_poll(struct net_device *dev, int *budget)
2575 nic_t *nic = dev->priv;
2576 int pkt_cnt = 0, org_pkts_to_process;
2577 mac_info_t *mac_control;
2578 struct config_param *config;
2579 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2580 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2581 int i;
2583 atomic_inc(&nic->isr_cnt);
2584 mac_control = &nic->mac_control;
2585 config = &nic->config;
2587 nic->pkts_to_process = *budget;
2588 if (nic->pkts_to_process > dev->quota)
2589 nic->pkts_to_process = dev->quota;
2590 org_pkts_to_process = nic->pkts_to_process;
2592 writeq(val64, &bar0->rx_traffic_int);
2593 val64 = readl(&bar0->rx_traffic_int);
2595 for (i = 0; i < config->rx_ring_num; i++) {
2596 rx_intr_handler(&mac_control->rings[i]);
2597 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2598 if (!nic->pkts_to_process) {
2599 /* Quota for the current iteration has been met */
2600 goto no_rx;
2603 if (!pkt_cnt)
2604 pkt_cnt = 1;
2606 dev->quota -= pkt_cnt;
2607 *budget -= pkt_cnt;
2608 netif_rx_complete(dev);
2610 for (i = 0; i < config->rx_ring_num; i++) {
2611 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2612 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2613 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2614 break;
2617 /* Re enable the Rx interrupts. */
2618 writeq(0x0, &bar0->rx_traffic_mask);
2619 val64 = readl(&bar0->rx_traffic_mask);
2620 atomic_dec(&nic->isr_cnt);
2621 return 0;
2623 no_rx:
2624 dev->quota -= pkt_cnt;
2625 *budget -= pkt_cnt;
2627 for (i = 0; i < config->rx_ring_num; i++) {
2628 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2629 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2630 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2631 break;
2634 atomic_dec(&nic->isr_cnt);
2635 return 1;
2637 #endif
2639 #ifdef CONFIG_NET_POLL_CONTROLLER
2641 * s2io_netpoll - netpoll event handler entry point
2642 * @dev : pointer to the device structure.
2643 * Description:
2644 * This function will be called by upper layer to check for events on the
2645 * interface in situations where interrupts are disabled. It is used for
2646 * specific in-kernel networking tasks, such as remote consoles and kernel
2647 * debugging over the network (example netdump in RedHat).
2649 static void s2io_netpoll(struct net_device *dev)
2651 nic_t *nic = dev->priv;
2652 mac_info_t *mac_control;
2653 struct config_param *config;
2654 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2655 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2656 int i;
2658 disable_irq(dev->irq);
2660 atomic_inc(&nic->isr_cnt);
2661 mac_control = &nic->mac_control;
2662 config = &nic->config;
2664 writeq(val64, &bar0->rx_traffic_int);
2665 writeq(val64, &bar0->tx_traffic_int);
2667 /* we need to free up the transmitted skbufs or else netpoll will
2668 * run out of skbs and will fail and eventually netpoll application such
2669 * as netdump will fail.
2671 for (i = 0; i < config->tx_fifo_num; i++)
2672 tx_intr_handler(&mac_control->fifos[i]);
2674 /* check for received packet and indicate up to network */
2675 for (i = 0; i < config->rx_ring_num; i++)
2676 rx_intr_handler(&mac_control->rings[i]);
2678 for (i = 0; i < config->rx_ring_num; i++) {
2679 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2680 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2681 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2682 break;
2685 atomic_dec(&nic->isr_cnt);
2686 enable_irq(dev->irq);
2687 return;
2689 #endif
2692 * rx_intr_handler - Rx interrupt handler
2693 * @nic: device private variable.
2694 * Description:
2695 * If the interrupt is because of a received frame or if the
2696 * receive ring contains fresh as yet un-processed frames,this function is
2697 * called. It picks out the RxD at which place the last Rx processing had
2698 * stopped and sends the skb to the OSM's Rx handler and then increments
2699 * the offset.
2700 * Return Value:
2701 * NONE.
2703 static void rx_intr_handler(ring_info_t *ring_data)
2705 nic_t *nic = ring_data->nic;
2706 struct net_device *dev = (struct net_device *) nic->dev;
2707 int get_block, put_block, put_offset;
2708 rx_curr_get_info_t get_info, put_info;
2709 RxD_t *rxdp;
2710 struct sk_buff *skb;
2711 #ifndef CONFIG_S2IO_NAPI
2712 int pkt_cnt = 0;
2713 #endif
2714 int i;
2716 spin_lock(&nic->rx_lock);
2717 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2718 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2719 __FUNCTION__, dev->name);
2720 spin_unlock(&nic->rx_lock);
2721 return;
2724 get_info = ring_data->rx_curr_get_info;
2725 get_block = get_info.block_index;
2726 put_info = ring_data->rx_curr_put_info;
2727 put_block = put_info.block_index;
2728 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2729 #ifndef CONFIG_S2IO_NAPI
2730 spin_lock(&nic->put_lock);
2731 put_offset = ring_data->put_pos;
2732 spin_unlock(&nic->put_lock);
2733 #else
2734 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2735 put_info.offset;
2736 #endif
2737 while (RXD_IS_UP2DT(rxdp)) {
2738 /* If your are next to put index then it's FIFO full condition */
2739 if ((get_block == put_block) &&
2740 (get_info.offset + 1) == put_info.offset) {
2741 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2742 break;
2744 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2745 if (skb == NULL) {
2746 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2747 dev->name);
2748 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2749 spin_unlock(&nic->rx_lock);
2750 return;
2752 if (nic->rxd_mode == RXD_MODE_1) {
2753 pci_unmap_single(nic->pdev, (dma_addr_t)
2754 ((RxD1_t*)rxdp)->Buffer0_ptr,
2755 dev->mtu +
2756 HEADER_ETHERNET_II_802_3_SIZE +
2757 HEADER_802_2_SIZE +
2758 HEADER_SNAP_SIZE,
2759 PCI_DMA_FROMDEVICE);
2760 } else if (nic->rxd_mode == RXD_MODE_3B) {
2761 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2762 ((RxD3_t*)rxdp)->Buffer0_ptr,
2763 BUF0_LEN, PCI_DMA_FROMDEVICE);
2764 pci_unmap_single(nic->pdev, (dma_addr_t)
2765 ((RxD3_t*)rxdp)->Buffer2_ptr,
2766 dev->mtu + 4,
2767 PCI_DMA_FROMDEVICE);
2768 } else {
2769 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2770 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2771 PCI_DMA_FROMDEVICE);
2772 pci_unmap_single(nic->pdev, (dma_addr_t)
2773 ((RxD3_t*)rxdp)->Buffer1_ptr,
2774 l3l4hdr_size + 4,
2775 PCI_DMA_FROMDEVICE);
2776 pci_unmap_single(nic->pdev, (dma_addr_t)
2777 ((RxD3_t*)rxdp)->Buffer2_ptr,
2778 dev->mtu, PCI_DMA_FROMDEVICE);
2780 prefetch(skb->data);
2781 rx_osm_handler(ring_data, rxdp);
2782 get_info.offset++;
2783 ring_data->rx_curr_get_info.offset = get_info.offset;
2784 rxdp = ring_data->rx_blocks[get_block].
2785 rxds[get_info.offset].virt_addr;
2786 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2787 get_info.offset = 0;
2788 ring_data->rx_curr_get_info.offset = get_info.offset;
2789 get_block++;
2790 if (get_block == ring_data->block_count)
2791 get_block = 0;
2792 ring_data->rx_curr_get_info.block_index = get_block;
2793 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2796 #ifdef CONFIG_S2IO_NAPI
2797 nic->pkts_to_process -= 1;
2798 if (!nic->pkts_to_process)
2799 break;
2800 #else
2801 pkt_cnt++;
2802 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2803 break;
2804 #endif
2806 if (nic->lro) {
2807 /* Clear all LRO sessions before exiting */
2808 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2809 lro_t *lro = &nic->lro0_n[i];
2810 if (lro->in_use) {
2811 update_L3L4_header(nic, lro);
2812 queue_rx_frame(lro->parent);
2813 clear_lro_session(lro);
2818 spin_unlock(&nic->rx_lock);
2822 * tx_intr_handler - Transmit interrupt handler
2823 * @nic : device private variable
2824 * Description:
2825 * If an interrupt was raised to indicate DMA complete of the
2826 * Tx packet, this function is called. It identifies the last TxD
2827 * whose buffer was freed and frees all skbs whose data have already
2828 * DMA'ed into the NICs internal memory.
2829 * Return Value:
2830 * NONE
2833 static void tx_intr_handler(fifo_info_t *fifo_data)
2835 nic_t *nic = fifo_data->nic;
2836 struct net_device *dev = (struct net_device *) nic->dev;
2837 tx_curr_get_info_t get_info, put_info;
2838 struct sk_buff *skb;
2839 TxD_t *txdlp;
2841 get_info = fifo_data->tx_curr_get_info;
2842 put_info = fifo_data->tx_curr_put_info;
2843 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2844 list_virt_addr;
2845 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2846 (get_info.offset != put_info.offset) &&
2847 (txdlp->Host_Control)) {
2848 /* Check for TxD errors */
2849 if (txdlp->Control_1 & TXD_T_CODE) {
2850 unsigned long long err;
2851 err = txdlp->Control_1 & TXD_T_CODE;
2852 if (err & 0x1) {
2853 nic->mac_control.stats_info->sw_stat.
2854 parity_err_cnt++;
2856 if ((err >> 48) == 0xA) {
2857 DBG_PRINT(TX_DBG, "TxD returned due \
2858 to loss of link\n");
2860 else {
2861 DBG_PRINT(ERR_DBG, "***TxD error \
2862 %llx\n", err);
2866 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2867 if (skb == NULL) {
2868 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2869 __FUNCTION__);
2870 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2871 return;
2874 /* Updating the statistics block */
2875 nic->stats.tx_bytes += skb->len;
2876 dev_kfree_skb_irq(skb);
2878 get_info.offset++;
2879 if (get_info.offset == get_info.fifo_len + 1)
2880 get_info.offset = 0;
2881 txdlp = (TxD_t *) fifo_data->list_info
2882 [get_info.offset].list_virt_addr;
2883 fifo_data->tx_curr_get_info.offset =
2884 get_info.offset;
2887 spin_lock(&nic->tx_lock);
2888 if (netif_queue_stopped(dev))
2889 netif_wake_queue(dev);
2890 spin_unlock(&nic->tx_lock);
2894 * s2io_mdio_write - Function to write in to MDIO registers
2895 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2896 * @addr : address value
2897 * @value : data value
2898 * @dev : pointer to net_device structure
2899 * Description:
2900 * This function is used to write values to the MDIO registers
2901 * NONE
2903 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2905 u64 val64 = 0x0;
2906 nic_t *sp = dev->priv;
2907 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2909 //address transaction
2910 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2911 | MDIO_MMD_DEV_ADDR(mmd_type)
2912 | MDIO_MMS_PRT_ADDR(0x0);
2913 writeq(val64, &bar0->mdio_control);
2914 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2915 writeq(val64, &bar0->mdio_control);
2916 udelay(100);
2918 //Data transaction
2919 val64 = 0x0;
2920 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2921 | MDIO_MMD_DEV_ADDR(mmd_type)
2922 | MDIO_MMS_PRT_ADDR(0x0)
2923 | MDIO_MDIO_DATA(value)
2924 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2925 writeq(val64, &bar0->mdio_control);
2926 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2927 writeq(val64, &bar0->mdio_control);
2928 udelay(100);
2930 val64 = 0x0;
2931 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2932 | MDIO_MMD_DEV_ADDR(mmd_type)
2933 | MDIO_MMS_PRT_ADDR(0x0)
2934 | MDIO_OP(MDIO_OP_READ_TRANS);
2935 writeq(val64, &bar0->mdio_control);
2936 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2937 writeq(val64, &bar0->mdio_control);
2938 udelay(100);
2943 * s2io_mdio_read - Function to write in to MDIO registers
2944 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2945 * @addr : address value
2946 * @dev : pointer to net_device structure
2947 * Description:
2948 * This function is used to read values to the MDIO registers
2949 * NONE
2951 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2953 u64 val64 = 0x0;
2954 u64 rval64 = 0x0;
2955 nic_t *sp = dev->priv;
2956 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2958 /* address transaction */
2959 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2960 | MDIO_MMD_DEV_ADDR(mmd_type)
2961 | MDIO_MMS_PRT_ADDR(0x0);
2962 writeq(val64, &bar0->mdio_control);
2963 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2964 writeq(val64, &bar0->mdio_control);
2965 udelay(100);
2967 /* Data transaction */
2968 val64 = 0x0;
2969 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2970 | MDIO_MMD_DEV_ADDR(mmd_type)
2971 | MDIO_MMS_PRT_ADDR(0x0)
2972 | MDIO_OP(MDIO_OP_READ_TRANS);
2973 writeq(val64, &bar0->mdio_control);
2974 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2975 writeq(val64, &bar0->mdio_control);
2976 udelay(100);
2978 /* Read the value from regs */
2979 rval64 = readq(&bar0->mdio_control);
2980 rval64 = rval64 & 0xFFFF0000;
2981 rval64 = rval64 >> 16;
2982 return rval64;
2985 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2986 * @counter : couter value to be updated
2987 * @flag : flag to indicate the status
2988 * @type : counter type
2989 * Description:
2990 * This function is to check the status of the xpak counters value
2991 * NONE
2994 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2996 u64 mask = 0x3;
2997 u64 val64;
2998 int i;
2999 for(i = 0; i <index; i++)
3000 mask = mask << 0x2;
3002 if(flag > 0)
3004 *counter = *counter + 1;
3005 val64 = *regs_stat & mask;
3006 val64 = val64 >> (index * 0x2);
3007 val64 = val64 + 1;
3008 if(val64 == 3)
3010 switch(type)
3012 case 1:
3013 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3014 "service. Excessive temperatures may "
3015 "result in premature transceiver "
3016 "failure \n");
3017 break;
3018 case 2:
3019 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3020 "service Excessive bias currents may "
3021 "indicate imminent laser diode "
3022 "failure \n");
3023 break;
3024 case 3:
3025 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3026 "service Excessive laser output "
3027 "power may saturate far-end "
3028 "receiver\n");
3029 break;
3030 default:
3031 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3032 "type \n");
3034 val64 = 0x0;
3036 val64 = val64 << (index * 0x2);
3037 *regs_stat = (*regs_stat & (~mask)) | (val64);
3039 } else {
3040 *regs_stat = *regs_stat & (~mask);
3045 * s2io_updt_xpak_counter - Function to update the xpak counters
3046 * @dev : pointer to net_device struct
3047 * Description:
3048 * This function is to upate the status of the xpak counters value
3049 * NONE
3051 static void s2io_updt_xpak_counter(struct net_device *dev)
3053 u16 flag = 0x0;
3054 u16 type = 0x0;
3055 u16 val16 = 0x0;
3056 u64 val64 = 0x0;
3057 u64 addr = 0x0;
3059 nic_t *sp = dev->priv;
3060 StatInfo_t *stat_info = sp->mac_control.stats_info;
3062 /* Check the communication with the MDIO slave */
3063 addr = 0x0000;
3064 val64 = 0x0;
3065 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3066 if((val64 == 0xFFFF) || (val64 == 0x0000))
3068 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3069 "Returned %llx\n", (unsigned long long)val64);
3070 return;
3073 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3074 if(val64 != 0x2040)
3076 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3077 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3078 (unsigned long long)val64);
3079 return;
3082 /* Loading the DOM register to MDIO register */
3083 addr = 0xA100;
3084 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3085 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3087 /* Reading the Alarm flags */
3088 addr = 0xA070;
3089 val64 = 0x0;
3090 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3092 flag = CHECKBIT(val64, 0x7);
3093 type = 1;
3094 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3095 &stat_info->xpak_stat.xpak_regs_stat,
3096 0x0, flag, type);
3098 if(CHECKBIT(val64, 0x6))
3099 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3101 flag = CHECKBIT(val64, 0x3);
3102 type = 2;
3103 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3104 &stat_info->xpak_stat.xpak_regs_stat,
3105 0x2, flag, type);
3107 if(CHECKBIT(val64, 0x2))
3108 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3110 flag = CHECKBIT(val64, 0x1);
3111 type = 3;
3112 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3113 &stat_info->xpak_stat.xpak_regs_stat,
3114 0x4, flag, type);
3116 if(CHECKBIT(val64, 0x0))
3117 stat_info->xpak_stat.alarm_laser_output_power_low++;
3119 /* Reading the Warning flags */
3120 addr = 0xA074;
3121 val64 = 0x0;
3122 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3124 if(CHECKBIT(val64, 0x7))
3125 stat_info->xpak_stat.warn_transceiver_temp_high++;
3127 if(CHECKBIT(val64, 0x6))
3128 stat_info->xpak_stat.warn_transceiver_temp_low++;
3130 if(CHECKBIT(val64, 0x3))
3131 stat_info->xpak_stat.warn_laser_bias_current_high++;
3133 if(CHECKBIT(val64, 0x2))
3134 stat_info->xpak_stat.warn_laser_bias_current_low++;
3136 if(CHECKBIT(val64, 0x1))
3137 stat_info->xpak_stat.warn_laser_output_power_high++;
3139 if(CHECKBIT(val64, 0x0))
3140 stat_info->xpak_stat.warn_laser_output_power_low++;
3144 * alarm_intr_handler - Alarm Interrrupt handler
3145 * @nic: device private variable
3146 * Description: If the interrupt was neither because of Rx packet or Tx
3147 * complete, this function is called. If the interrupt was to indicate
3148 * a loss of link, the OSM link status handler is invoked for any other
3149 * alarm interrupt the block that raised the interrupt is displayed
3150 * and a H/W reset is issued.
3151 * Return Value:
3152 * NONE
3155 static void alarm_intr_handler(struct s2io_nic *nic)
3157 struct net_device *dev = (struct net_device *) nic->dev;
3158 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3159 register u64 val64 = 0, err_reg = 0;
3160 u64 cnt;
3161 int i;
3162 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3163 /* Handling the XPAK counters update */
3164 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3165 /* waiting for an hour */
3166 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3167 } else {
3168 s2io_updt_xpak_counter(dev);
3169 /* reset the count to zero */
3170 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3173 /* Handling link status change error Intr */
3174 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3175 err_reg = readq(&bar0->mac_rmac_err_reg);
3176 writeq(err_reg, &bar0->mac_rmac_err_reg);
3177 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3178 schedule_work(&nic->set_link_task);
3182 /* Handling Ecc errors */
3183 val64 = readq(&bar0->mc_err_reg);
3184 writeq(val64, &bar0->mc_err_reg);
3185 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3186 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3187 nic->mac_control.stats_info->sw_stat.
3188 double_ecc_errs++;
3189 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3190 dev->name);
3191 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3192 if (nic->device_type != XFRAME_II_DEVICE) {
3193 /* Reset XframeI only if critical error */
3194 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3195 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3196 netif_stop_queue(dev);
3197 schedule_work(&nic->rst_timer_task);
3198 nic->mac_control.stats_info->sw_stat.
3199 soft_reset_cnt++;
3202 } else {
3203 nic->mac_control.stats_info->sw_stat.
3204 single_ecc_errs++;
3208 /* In case of a serious error, the device will be Reset. */
3209 val64 = readq(&bar0->serr_source);
3210 if (val64 & SERR_SOURCE_ANY) {
3211 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3212 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3213 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3214 (unsigned long long)val64);
3215 netif_stop_queue(dev);
3216 schedule_work(&nic->rst_timer_task);
3217 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3221 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3222 * Error occurs, the adapter will be recycled by disabling the
3223 * adapter enable bit and enabling it again after the device
3224 * becomes Quiescent.
3226 val64 = readq(&bar0->pcc_err_reg);
3227 writeq(val64, &bar0->pcc_err_reg);
3228 if (val64 & PCC_FB_ECC_DB_ERR) {
3229 u64 ac = readq(&bar0->adapter_control);
3230 ac &= ~(ADAPTER_CNTL_EN);
3231 writeq(ac, &bar0->adapter_control);
3232 ac = readq(&bar0->adapter_control);
3233 schedule_work(&nic->set_link_task);
3235 /* Check for data parity error */
3236 val64 = readq(&bar0->pic_int_status);
3237 if (val64 & PIC_INT_GPIO) {
3238 val64 = readq(&bar0->gpio_int_reg);
3239 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3240 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3241 schedule_work(&nic->rst_timer_task);
3242 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3246 /* Check for ring full counter */
3247 if (nic->device_type & XFRAME_II_DEVICE) {
3248 val64 = readq(&bar0->ring_bump_counter1);
3249 for (i=0; i<4; i++) {
3250 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3251 cnt >>= 64 - ((i+1)*16);
3252 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3253 += cnt;
3256 val64 = readq(&bar0->ring_bump_counter2);
3257 for (i=0; i<4; i++) {
3258 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3259 cnt >>= 64 - ((i+1)*16);
3260 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3261 += cnt;
3265 /* Other type of interrupts are not being handled now, TODO */
3269 * wait_for_cmd_complete - waits for a command to complete.
3270 * @sp : private member of the device structure, which is a pointer to the
3271 * s2io_nic structure.
3272 * Description: Function that waits for a command to Write into RMAC
3273 * ADDR DATA registers to be completed and returns either success or
3274 * error depending on whether the command was complete or not.
3275 * Return value:
3276 * SUCCESS on success and FAILURE on failure.
3279 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3281 int ret = FAILURE, cnt = 0;
3282 u64 val64;
3284 while (TRUE) {
3285 val64 = readq(addr);
3286 if (!(val64 & busy_bit)) {
3287 ret = SUCCESS;
3288 break;
3291 if(in_interrupt())
3292 mdelay(50);
3293 else
3294 msleep(50);
3296 if (cnt++ > 10)
3297 break;
3299 return ret;
3303 * s2io_reset - Resets the card.
3304 * @sp : private member of the device structure.
3305 * Description: Function to Reset the card. This function then also
3306 * restores the previously saved PCI configuration space registers as
3307 * the card reset also resets the configuration space.
3308 * Return value:
3309 * void.
3312 static void s2io_reset(nic_t * sp)
3314 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3315 u64 val64;
3316 u16 subid, pci_cmd;
3318 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3319 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3321 val64 = SW_RESET_ALL;
3322 writeq(val64, &bar0->sw_reset);
3325 * At this stage, if the PCI write is indeed completed, the
3326 * card is reset and so is the PCI Config space of the device.
3327 * So a read cannot be issued at this stage on any of the
3328 * registers to ensure the write into "sw_reset" register
3329 * has gone through.
3330 * Question: Is there any system call that will explicitly force
3331 * all the write commands still pending on the bus to be pushed
3332 * through?
3333 * As of now I'am just giving a 250ms delay and hoping that the
3334 * PCI write to sw_reset register is done by this time.
3336 msleep(250);
3337 if (strstr(sp->product_name, "CX4")) {
3338 msleep(750);
3341 /* Restore the PCI state saved during initialization. */
3342 pci_restore_state(sp->pdev);
3343 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3344 pci_cmd);
3345 s2io_init_pci(sp);
3347 msleep(250);
3349 /* Set swapper to enable I/O register access */
3350 s2io_set_swapper(sp);
3352 /* Restore the MSIX table entries from local variables */
3353 restore_xmsi_data(sp);
3355 /* Clear certain PCI/PCI-X fields after reset */
3356 if (sp->device_type == XFRAME_II_DEVICE) {
3357 /* Clear "detected parity error" bit */
3358 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3360 /* Clearing PCIX Ecc status register */
3361 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3363 /* Clearing PCI_STATUS error reflected here */
3364 writeq(BIT(62), &bar0->txpic_int_reg);
3367 /* Reset device statistics maintained by OS */
3368 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3370 /* SXE-002: Configure link and activity LED to turn it off */
3371 subid = sp->pdev->subsystem_device;
3372 if (((subid & 0xFF) >= 0x07) &&
3373 (sp->device_type == XFRAME_I_DEVICE)) {
3374 val64 = readq(&bar0->gpio_control);
3375 val64 |= 0x0000800000000000ULL;
3376 writeq(val64, &bar0->gpio_control);
3377 val64 = 0x0411040400000000ULL;
3378 writeq(val64, (void __iomem *)bar0 + 0x2700);
3382 * Clear spurious ECC interrupts that would have occured on
3383 * XFRAME II cards after reset.
3385 if (sp->device_type == XFRAME_II_DEVICE) {
3386 val64 = readq(&bar0->pcc_err_reg);
3387 writeq(val64, &bar0->pcc_err_reg);
3390 sp->device_enabled_once = FALSE;
3394 * s2io_set_swapper - to set the swapper controle on the card
3395 * @sp : private member of the device structure,
3396 * pointer to the s2io_nic structure.
3397 * Description: Function to set the swapper control on the card
3398 * correctly depending on the 'endianness' of the system.
3399 * Return value:
3400 * SUCCESS on success and FAILURE on failure.
3403 static int s2io_set_swapper(nic_t * sp)
3405 struct net_device *dev = sp->dev;
3406 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3407 u64 val64, valt, valr;
3410 * Set proper endian settings and verify the same by reading
3411 * the PIF Feed-back register.
3414 val64 = readq(&bar0->pif_rd_swapper_fb);
3415 if (val64 != 0x0123456789ABCDEFULL) {
3416 int i = 0;
3417 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3418 0x8100008181000081ULL, /* FE=1, SE=0 */
3419 0x4200004242000042ULL, /* FE=0, SE=1 */
3420 0}; /* FE=0, SE=0 */
3422 while(i<4) {
3423 writeq(value[i], &bar0->swapper_ctrl);
3424 val64 = readq(&bar0->pif_rd_swapper_fb);
3425 if (val64 == 0x0123456789ABCDEFULL)
3426 break;
3427 i++;
3429 if (i == 4) {
3430 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3431 dev->name);
3432 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3433 (unsigned long long) val64);
3434 return FAILURE;
3436 valr = value[i];
3437 } else {
3438 valr = readq(&bar0->swapper_ctrl);
3441 valt = 0x0123456789ABCDEFULL;
3442 writeq(valt, &bar0->xmsi_address);
3443 val64 = readq(&bar0->xmsi_address);
3445 if(val64 != valt) {
3446 int i = 0;
3447 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3448 0x0081810000818100ULL, /* FE=1, SE=0 */
3449 0x0042420000424200ULL, /* FE=0, SE=1 */
3450 0}; /* FE=0, SE=0 */
3452 while(i<4) {
3453 writeq((value[i] | valr), &bar0->swapper_ctrl);
3454 writeq(valt, &bar0->xmsi_address);
3455 val64 = readq(&bar0->xmsi_address);
3456 if(val64 == valt)
3457 break;
3458 i++;
3460 if(i == 4) {
3461 unsigned long long x = val64;
3462 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3463 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3464 return FAILURE;
3467 val64 = readq(&bar0->swapper_ctrl);
3468 val64 &= 0xFFFF000000000000ULL;
3470 #ifdef __BIG_ENDIAN
3472 * The device by default set to a big endian format, so a
3473 * big endian driver need not set anything.
3475 val64 |= (SWAPPER_CTRL_TXP_FE |
3476 SWAPPER_CTRL_TXP_SE |
3477 SWAPPER_CTRL_TXD_R_FE |
3478 SWAPPER_CTRL_TXD_W_FE |
3479 SWAPPER_CTRL_TXF_R_FE |
3480 SWAPPER_CTRL_RXD_R_FE |
3481 SWAPPER_CTRL_RXD_W_FE |
3482 SWAPPER_CTRL_RXF_W_FE |
3483 SWAPPER_CTRL_XMSI_FE |
3484 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3485 if (sp->intr_type == INTA)
3486 val64 |= SWAPPER_CTRL_XMSI_SE;
3487 writeq(val64, &bar0->swapper_ctrl);
3488 #else
3490 * Initially we enable all bits to make it accessible by the
3491 * driver, then we selectively enable only those bits that
3492 * we want to set.
3494 val64 |= (SWAPPER_CTRL_TXP_FE |
3495 SWAPPER_CTRL_TXP_SE |
3496 SWAPPER_CTRL_TXD_R_FE |
3497 SWAPPER_CTRL_TXD_R_SE |
3498 SWAPPER_CTRL_TXD_W_FE |
3499 SWAPPER_CTRL_TXD_W_SE |
3500 SWAPPER_CTRL_TXF_R_FE |
3501 SWAPPER_CTRL_RXD_R_FE |
3502 SWAPPER_CTRL_RXD_R_SE |
3503 SWAPPER_CTRL_RXD_W_FE |
3504 SWAPPER_CTRL_RXD_W_SE |
3505 SWAPPER_CTRL_RXF_W_FE |
3506 SWAPPER_CTRL_XMSI_FE |
3507 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3508 if (sp->intr_type == INTA)
3509 val64 |= SWAPPER_CTRL_XMSI_SE;
3510 writeq(val64, &bar0->swapper_ctrl);
3511 #endif
3512 val64 = readq(&bar0->swapper_ctrl);
3515 * Verifying if endian settings are accurate by reading a
3516 * feedback register.
3518 val64 = readq(&bar0->pif_rd_swapper_fb);
3519 if (val64 != 0x0123456789ABCDEFULL) {
3520 /* Endian settings are incorrect, calls for another dekko. */
3521 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3522 dev->name);
3523 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3524 (unsigned long long) val64);
3525 return FAILURE;
3528 return SUCCESS;
3531 static int wait_for_msix_trans(nic_t *nic, int i)
3533 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3534 u64 val64;
3535 int ret = 0, cnt = 0;
3537 do {
3538 val64 = readq(&bar0->xmsi_access);
3539 if (!(val64 & BIT(15)))
3540 break;
3541 mdelay(1);
3542 cnt++;
3543 } while(cnt < 5);
3544 if (cnt == 5) {
3545 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3546 ret = 1;
3549 return ret;
3552 static void restore_xmsi_data(nic_t *nic)
3554 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3555 u64 val64;
3556 int i;
3558 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3559 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3560 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3561 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3562 writeq(val64, &bar0->xmsi_access);
3563 if (wait_for_msix_trans(nic, i)) {
3564 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3565 continue;
3570 static void store_xmsi_data(nic_t *nic)
3572 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3573 u64 val64, addr, data;
3574 int i;
3576 /* Store and display */
3577 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3578 val64 = (BIT(15) | vBIT(i, 26, 6));
3579 writeq(val64, &bar0->xmsi_access);
3580 if (wait_for_msix_trans(nic, i)) {
3581 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3582 continue;
3584 addr = readq(&bar0->xmsi_address);
3585 data = readq(&bar0->xmsi_data);
3586 if (addr && data) {
3587 nic->msix_info[i].addr = addr;
3588 nic->msix_info[i].data = data;
3593 int s2io_enable_msi(nic_t *nic)
3595 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3596 u16 msi_ctrl, msg_val;
3597 struct config_param *config = &nic->config;
3598 struct net_device *dev = nic->dev;
3599 u64 val64, tx_mat, rx_mat;
3600 int i, err;
3602 val64 = readq(&bar0->pic_control);
3603 val64 &= ~BIT(1);
3604 writeq(val64, &bar0->pic_control);
3606 err = pci_enable_msi(nic->pdev);
3607 if (err) {
3608 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3609 nic->dev->name);
3610 return err;
3614 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3615 * for interrupt handling.
3617 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3618 msg_val ^= 0x1;
3619 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3620 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3622 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3623 msi_ctrl |= 0x10;
3624 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3626 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3627 tx_mat = readq(&bar0->tx_mat0_n[0]);
3628 for (i=0; i<config->tx_fifo_num; i++) {
3629 tx_mat |= TX_MAT_SET(i, 1);
3631 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3633 rx_mat = readq(&bar0->rx_mat);
3634 for (i=0; i<config->rx_ring_num; i++) {
3635 rx_mat |= RX_MAT_SET(i, 1);
3637 writeq(rx_mat, &bar0->rx_mat);
3639 dev->irq = nic->pdev->irq;
3640 return 0;
3643 static int s2io_enable_msi_x(nic_t *nic)
3645 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3646 u64 tx_mat, rx_mat;
3647 u16 msi_control; /* Temp variable */
3648 int ret, i, j, msix_indx = 1;
3650 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3651 GFP_KERNEL);
3652 if (nic->entries == NULL) {
3653 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3654 return -ENOMEM;
3656 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3658 nic->s2io_entries =
3659 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3660 GFP_KERNEL);
3661 if (nic->s2io_entries == NULL) {
3662 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3663 kfree(nic->entries);
3664 return -ENOMEM;
3666 memset(nic->s2io_entries, 0,
3667 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3669 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3670 nic->entries[i].entry = i;
3671 nic->s2io_entries[i].entry = i;
3672 nic->s2io_entries[i].arg = NULL;
3673 nic->s2io_entries[i].in_use = 0;
3676 tx_mat = readq(&bar0->tx_mat0_n[0]);
3677 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3678 tx_mat |= TX_MAT_SET(i, msix_indx);
3679 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3680 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3681 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3683 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3685 if (!nic->config.bimodal) {
3686 rx_mat = readq(&bar0->rx_mat);
3687 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3688 rx_mat |= RX_MAT_SET(j, msix_indx);
3689 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3690 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3691 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3693 writeq(rx_mat, &bar0->rx_mat);
3694 } else {
3695 tx_mat = readq(&bar0->tx_mat0_n[7]);
3696 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3697 tx_mat |= TX_MAT_SET(i, msix_indx);
3698 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3699 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3700 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3702 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3705 nic->avail_msix_vectors = 0;
3706 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3707 /* We fail init if error or we get less vectors than min required */
3708 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3709 nic->avail_msix_vectors = ret;
3710 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3712 if (ret) {
3713 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3714 kfree(nic->entries);
3715 kfree(nic->s2io_entries);
3716 nic->entries = NULL;
3717 nic->s2io_entries = NULL;
3718 nic->avail_msix_vectors = 0;
3719 return -ENOMEM;
3721 if (!nic->avail_msix_vectors)
3722 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3725 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3726 * in the herc NIC. (Temp change, needs to be removed later)
3728 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3729 msi_control |= 0x1; /* Enable MSI */
3730 pci_write_config_word(nic->pdev, 0x42, msi_control);
3732 return 0;
3735 /* ********************************************************* *
3736 * Functions defined below concern the OS part of the driver *
3737 * ********************************************************* */
3740 * s2io_open - open entry point of the driver
3741 * @dev : pointer to the device structure.
3742 * Description:
3743 * This function is the open entry point of the driver. It mainly calls a
3744 * function to allocate Rx buffers and inserts them into the buffer
3745 * descriptors and then enables the Rx part of the NIC.
3746 * Return value:
3747 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3748 * file on failure.
3751 static int s2io_open(struct net_device *dev)
3753 nic_t *sp = dev->priv;
3754 int err = 0;
3757 * Make sure you have link off by default every time
3758 * Nic is initialized
3760 netif_carrier_off(dev);
3761 sp->last_link_state = 0;
3763 /* Initialize H/W and enable interrupts */
3764 err = s2io_card_up(sp);
3765 if (err) {
3766 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3767 dev->name);
3768 goto hw_init_failed;
3771 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3772 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3773 s2io_card_down(sp);
3774 err = -ENODEV;
3775 goto hw_init_failed;
3778 netif_start_queue(dev);
3779 return 0;
3781 hw_init_failed:
3782 if (sp->intr_type == MSI_X) {
3783 if (sp->entries)
3784 kfree(sp->entries);
3785 if (sp->s2io_entries)
3786 kfree(sp->s2io_entries);
3788 return err;
3792 * s2io_close -close entry point of the driver
3793 * @dev : device pointer.
3794 * Description:
3795 * This is the stop entry point of the driver. It needs to undo exactly
3796 * whatever was done by the open entry point,thus it's usually referred to
3797 * as the close function.Among other things this function mainly stops the
3798 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3799 * Return value:
3800 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3801 * file on failure.
3804 static int s2io_close(struct net_device *dev)
3806 nic_t *sp = dev->priv;
3808 flush_scheduled_work();
3809 netif_stop_queue(dev);
3810 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3811 s2io_card_down(sp);
3813 sp->device_close_flag = TRUE; /* Device is shut down. */
3814 return 0;
3818 * s2io_xmit - Tx entry point of te driver
3819 * @skb : the socket buffer containing the Tx data.
3820 * @dev : device pointer.
3821 * Description :
3822 * This function is the Tx entry point of the driver. S2IO NIC supports
3823 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3824 * NOTE: when device cant queue the pkt,just the trans_start variable will
3825 * not be upadted.
3826 * Return value:
3827 * 0 on success & 1 on failure.
3830 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3832 nic_t *sp = dev->priv;
3833 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3834 register u64 val64;
3835 TxD_t *txdp;
3836 TxFIFO_element_t __iomem *tx_fifo;
3837 unsigned long flags;
3838 u16 vlan_tag = 0;
3839 int vlan_priority = 0;
3840 mac_info_t *mac_control;
3841 struct config_param *config;
3842 int offload_type;
3844 mac_control = &sp->mac_control;
3845 config = &sp->config;
3847 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3848 spin_lock_irqsave(&sp->tx_lock, flags);
3849 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3850 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3851 dev->name);
3852 spin_unlock_irqrestore(&sp->tx_lock, flags);
3853 dev_kfree_skb(skb);
3854 return 0;
3857 queue = 0;
3859 /* Get Fifo number to Transmit based on vlan priority */
3860 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3861 vlan_tag = vlan_tx_tag_get(skb);
3862 vlan_priority = vlan_tag >> 13;
3863 queue = config->fifo_mapping[vlan_priority];
3866 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3867 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3868 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3869 list_virt_addr;
3871 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3872 /* Avoid "put" pointer going beyond "get" pointer */
3873 if (txdp->Host_Control ||
3874 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3875 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3876 netif_stop_queue(dev);
3877 dev_kfree_skb(skb);
3878 spin_unlock_irqrestore(&sp->tx_lock, flags);
3879 return 0;
3882 /* A buffer with no data will be dropped */
3883 if (!skb->len) {
3884 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3885 dev_kfree_skb(skb);
3886 spin_unlock_irqrestore(&sp->tx_lock, flags);
3887 return 0;
3890 offload_type = s2io_offload_type(skb);
3891 #ifdef NETIF_F_TSO
3892 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3893 txdp->Control_1 |= TXD_TCP_LSO_EN;
3894 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3896 #endif
3897 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3898 txdp->Control_2 |=
3899 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3900 TXD_TX_CKO_UDP_EN);
3902 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3903 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3904 txdp->Control_2 |= config->tx_intr_type;
3906 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3907 txdp->Control_2 |= TXD_VLAN_ENABLE;
3908 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3911 frg_len = skb->len - skb->data_len;
3912 if (offload_type == SKB_GSO_UDP) {
3913 int ufo_size;
3915 ufo_size = s2io_udp_mss(skb);
3916 ufo_size &= ~7;
3917 txdp->Control_1 |= TXD_UFO_EN;
3918 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3919 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3920 #ifdef __BIG_ENDIAN
3921 sp->ufo_in_band_v[put_off] =
3922 (u64)skb_shinfo(skb)->ip6_frag_id;
3923 #else
3924 sp->ufo_in_band_v[put_off] =
3925 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3926 #endif
3927 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3928 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3929 sp->ufo_in_band_v,
3930 sizeof(u64), PCI_DMA_TODEVICE);
3931 txdp++;
3934 txdp->Buffer_Pointer = pci_map_single
3935 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3936 txdp->Host_Control = (unsigned long) skb;
3937 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3938 if (offload_type == SKB_GSO_UDP)
3939 txdp->Control_1 |= TXD_UFO_EN;
3941 frg_cnt = skb_shinfo(skb)->nr_frags;
3942 /* For fragmented SKB. */
3943 for (i = 0; i < frg_cnt; i++) {
3944 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3945 /* A '0' length fragment will be ignored */
3946 if (!frag->size)
3947 continue;
3948 txdp++;
3949 txdp->Buffer_Pointer = (u64) pci_map_page
3950 (sp->pdev, frag->page, frag->page_offset,
3951 frag->size, PCI_DMA_TODEVICE);
3952 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3953 if (offload_type == SKB_GSO_UDP)
3954 txdp->Control_1 |= TXD_UFO_EN;
3956 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3958 if (offload_type == SKB_GSO_UDP)
3959 frg_cnt++; /* as Txd0 was used for inband header */
3961 tx_fifo = mac_control->tx_FIFO_start[queue];
3962 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3963 writeq(val64, &tx_fifo->TxDL_Pointer);
3965 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3966 TX_FIFO_LAST_LIST);
3967 if (offload_type)
3968 val64 |= TX_FIFO_SPECIAL_FUNC;
3970 writeq(val64, &tx_fifo->List_Control);
3972 mmiowb();
3974 put_off++;
3975 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3976 put_off = 0;
3977 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3979 /* Avoid "put" pointer going beyond "get" pointer */
3980 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3981 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3982 DBG_PRINT(TX_DBG,
3983 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3984 put_off, get_off);
3985 netif_stop_queue(dev);
3988 dev->trans_start = jiffies;
3989 spin_unlock_irqrestore(&sp->tx_lock, flags);
3991 return 0;
3994 static void
3995 s2io_alarm_handle(unsigned long data)
3997 nic_t *sp = (nic_t *)data;
3999 alarm_intr_handler(sp);
4000 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4003 static int s2io_chk_rx_buffers(nic_t *sp, int rng_n)
4005 int rxb_size, level;
4007 if (!sp->lro) {
4008 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4009 level = rx_buffer_level(sp, rxb_size, rng_n);
4011 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4012 int ret;
4013 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4014 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4015 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4016 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4017 __FUNCTION__);
4018 clear_bit(0, (&sp->tasklet_status));
4019 return -1;
4021 clear_bit(0, (&sp->tasklet_status));
4022 } else if (level == LOW)
4023 tasklet_schedule(&sp->task);
4025 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4026 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
4027 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4029 return 0;
4032 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4034 struct net_device *dev = (struct net_device *) dev_id;
4035 nic_t *sp = dev->priv;
4036 int i;
4037 mac_info_t *mac_control;
4038 struct config_param *config;
4040 atomic_inc(&sp->isr_cnt);
4041 mac_control = &sp->mac_control;
4042 config = &sp->config;
4043 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4045 /* If Intr is because of Rx Traffic */
4046 for (i = 0; i < config->rx_ring_num; i++)
4047 rx_intr_handler(&mac_control->rings[i]);
4049 /* If Intr is because of Tx Traffic */
4050 for (i = 0; i < config->tx_fifo_num; i++)
4051 tx_intr_handler(&mac_control->fifos[i]);
4054 * If the Rx buffer count is below the panic threshold then
4055 * reallocate the buffers from the interrupt handler itself,
4056 * else schedule a tasklet to reallocate the buffers.
4058 for (i = 0; i < config->rx_ring_num; i++)
4059 s2io_chk_rx_buffers(sp, i);
4061 atomic_dec(&sp->isr_cnt);
4062 return IRQ_HANDLED;
4065 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4067 ring_info_t *ring = (ring_info_t *)dev_id;
4068 nic_t *sp = ring->nic;
4070 atomic_inc(&sp->isr_cnt);
4072 rx_intr_handler(ring);
4073 s2io_chk_rx_buffers(sp, ring->ring_no);
4075 atomic_dec(&sp->isr_cnt);
4076 return IRQ_HANDLED;
4079 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4081 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4082 nic_t *sp = fifo->nic;
4084 atomic_inc(&sp->isr_cnt);
4085 tx_intr_handler(fifo);
4086 atomic_dec(&sp->isr_cnt);
4087 return IRQ_HANDLED;
4089 static void s2io_txpic_intr_handle(nic_t *sp)
4091 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4092 u64 val64;
4094 val64 = readq(&bar0->pic_int_status);
4095 if (val64 & PIC_INT_GPIO) {
4096 val64 = readq(&bar0->gpio_int_reg);
4097 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4098 (val64 & GPIO_INT_REG_LINK_UP)) {
4100 * This is unstable state so clear both up/down
4101 * interrupt and adapter to re-evaluate the link state.
4103 val64 |= GPIO_INT_REG_LINK_DOWN;
4104 val64 |= GPIO_INT_REG_LINK_UP;
4105 writeq(val64, &bar0->gpio_int_reg);
4106 val64 = readq(&bar0->gpio_int_mask);
4107 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4108 GPIO_INT_MASK_LINK_DOWN);
4109 writeq(val64, &bar0->gpio_int_mask);
4111 else if (val64 & GPIO_INT_REG_LINK_UP) {
4112 val64 = readq(&bar0->adapter_status);
4113 if (verify_xena_quiescence(sp, val64,
4114 sp->device_enabled_once)) {
4115 /* Enable Adapter */
4116 val64 = readq(&bar0->adapter_control);
4117 val64 |= ADAPTER_CNTL_EN;
4118 writeq(val64, &bar0->adapter_control);
4119 val64 |= ADAPTER_LED_ON;
4120 writeq(val64, &bar0->adapter_control);
4121 if (!sp->device_enabled_once)
4122 sp->device_enabled_once = 1;
4124 s2io_link(sp, LINK_UP);
4126 * unmask link down interrupt and mask link-up
4127 * intr
4129 val64 = readq(&bar0->gpio_int_mask);
4130 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4131 val64 |= GPIO_INT_MASK_LINK_UP;
4132 writeq(val64, &bar0->gpio_int_mask);
4135 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4136 val64 = readq(&bar0->adapter_status);
4137 if (verify_xena_quiescence(sp, val64,
4138 sp->device_enabled_once)) {
4139 s2io_link(sp, LINK_DOWN);
4140 /* Link is down so unmaks link up interrupt */
4141 val64 = readq(&bar0->gpio_int_mask);
4142 val64 &= ~GPIO_INT_MASK_LINK_UP;
4143 val64 |= GPIO_INT_MASK_LINK_DOWN;
4144 writeq(val64, &bar0->gpio_int_mask);
4148 val64 = readq(&bar0->gpio_int_mask);
4152 * s2io_isr - ISR handler of the device .
4153 * @irq: the irq of the device.
4154 * @dev_id: a void pointer to the dev structure of the NIC.
4155 * Description: This function is the ISR handler of the device. It
4156 * identifies the reason for the interrupt and calls the relevant
4157 * service routines. As a contongency measure, this ISR allocates the
4158 * recv buffers, if their numbers are below the panic value which is
4159 * presently set to 25% of the original number of rcv buffers allocated.
4160 * Return value:
4161 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4162 * IRQ_NONE: will be returned if interrupt is not from our device
4164 static irqreturn_t s2io_isr(int irq, void *dev_id)
4166 struct net_device *dev = (struct net_device *) dev_id;
4167 nic_t *sp = dev->priv;
4168 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4169 int i;
4170 u64 reason = 0, val64, org_mask;
4171 mac_info_t *mac_control;
4172 struct config_param *config;
4174 atomic_inc(&sp->isr_cnt);
4175 mac_control = &sp->mac_control;
4176 config = &sp->config;
4179 * Identify the cause for interrupt and call the appropriate
4180 * interrupt handler. Causes for the interrupt could be;
4181 * 1. Rx of packet.
4182 * 2. Tx complete.
4183 * 3. Link down.
4184 * 4. Error in any functional blocks of the NIC.
4186 reason = readq(&bar0->general_int_status);
4188 if (!reason) {
4189 /* The interrupt was not raised by Xena. */
4190 atomic_dec(&sp->isr_cnt);
4191 return IRQ_NONE;
4194 val64 = 0xFFFFFFFFFFFFFFFFULL;
4195 /* Store current mask before masking all interrupts */
4196 org_mask = readq(&bar0->general_int_mask);
4197 writeq(val64, &bar0->general_int_mask);
4199 #ifdef CONFIG_S2IO_NAPI
4200 if (reason & GEN_INTR_RXTRAFFIC) {
4201 if (netif_rx_schedule_prep(dev)) {
4202 writeq(val64, &bar0->rx_traffic_mask);
4203 __netif_rx_schedule(dev);
4206 #else
4208 * Rx handler is called by default, without checking for the
4209 * cause of interrupt.
4210 * rx_traffic_int reg is an R1 register, writing all 1's
4211 * will ensure that the actual interrupt causing bit get's
4212 * cleared and hence a read can be avoided.
4214 writeq(val64, &bar0->rx_traffic_int);
4215 for (i = 0; i < config->rx_ring_num; i++) {
4216 rx_intr_handler(&mac_control->rings[i]);
4218 #endif
4221 * tx_traffic_int reg is an R1 register, writing all 1's
4222 * will ensure that the actual interrupt causing bit get's
4223 * cleared and hence a read can be avoided.
4225 writeq(val64, &bar0->tx_traffic_int);
4227 for (i = 0; i < config->tx_fifo_num; i++)
4228 tx_intr_handler(&mac_control->fifos[i]);
4230 if (reason & GEN_INTR_TXPIC)
4231 s2io_txpic_intr_handle(sp);
4233 * If the Rx buffer count is below the panic threshold then
4234 * reallocate the buffers from the interrupt handler itself,
4235 * else schedule a tasklet to reallocate the buffers.
4237 #ifndef CONFIG_S2IO_NAPI
4238 for (i = 0; i < config->rx_ring_num; i++)
4239 s2io_chk_rx_buffers(sp, i);
4240 #endif
4241 writeq(org_mask, &bar0->general_int_mask);
4242 atomic_dec(&sp->isr_cnt);
4243 return IRQ_HANDLED;
4247 * s2io_updt_stats -
4249 static void s2io_updt_stats(nic_t *sp)
4251 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4252 u64 val64;
4253 int cnt = 0;
4255 if (atomic_read(&sp->card_state) == CARD_UP) {
4256 /* Apprx 30us on a 133 MHz bus */
4257 val64 = SET_UPDT_CLICKS(10) |
4258 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4259 writeq(val64, &bar0->stat_cfg);
4260 do {
4261 udelay(100);
4262 val64 = readq(&bar0->stat_cfg);
4263 if (!(val64 & BIT(0)))
4264 break;
4265 cnt++;
4266 if (cnt == 5)
4267 break; /* Updt failed */
4268 } while(1);
4269 } else {
4270 memset(sp->mac_control.stats_info, 0, sizeof(StatInfo_t));
4275 * s2io_get_stats - Updates the device statistics structure.
4276 * @dev : pointer to the device structure.
4277 * Description:
4278 * This function updates the device statistics structure in the s2io_nic
4279 * structure and returns a pointer to the same.
4280 * Return value:
4281 * pointer to the updated net_device_stats structure.
4284 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4286 nic_t *sp = dev->priv;
4287 mac_info_t *mac_control;
4288 struct config_param *config;
4291 mac_control = &sp->mac_control;
4292 config = &sp->config;
4294 /* Configure Stats for immediate updt */
4295 s2io_updt_stats(sp);
4297 sp->stats.tx_packets =
4298 le32_to_cpu(mac_control->stats_info->tmac_frms);
4299 sp->stats.tx_errors =
4300 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4301 sp->stats.rx_errors =
4302 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4303 sp->stats.multicast =
4304 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4305 sp->stats.rx_length_errors =
4306 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4308 return (&sp->stats);
4312 * s2io_set_multicast - entry point for multicast address enable/disable.
4313 * @dev : pointer to the device structure
4314 * Description:
4315 * This function is a driver entry point which gets called by the kernel
4316 * whenever multicast addresses must be enabled/disabled. This also gets
4317 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4318 * determine, if multicast address must be enabled or if promiscuous mode
4319 * is to be disabled etc.
4320 * Return value:
4321 * void.
4324 static void s2io_set_multicast(struct net_device *dev)
4326 int i, j, prev_cnt;
4327 struct dev_mc_list *mclist;
4328 nic_t *sp = dev->priv;
4329 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4330 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4331 0xfeffffffffffULL;
4332 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4333 void __iomem *add;
4335 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4336 /* Enable all Multicast addresses */
4337 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4338 &bar0->rmac_addr_data0_mem);
4339 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4340 &bar0->rmac_addr_data1_mem);
4341 val64 = RMAC_ADDR_CMD_MEM_WE |
4342 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4343 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4344 writeq(val64, &bar0->rmac_addr_cmd_mem);
4345 /* Wait till command completes */
4346 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4347 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4349 sp->m_cast_flg = 1;
4350 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4351 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4352 /* Disable all Multicast addresses */
4353 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4354 &bar0->rmac_addr_data0_mem);
4355 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4356 &bar0->rmac_addr_data1_mem);
4357 val64 = RMAC_ADDR_CMD_MEM_WE |
4358 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4359 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4360 writeq(val64, &bar0->rmac_addr_cmd_mem);
4361 /* Wait till command completes */
4362 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4363 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4365 sp->m_cast_flg = 0;
4366 sp->all_multi_pos = 0;
4369 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4370 /* Put the NIC into promiscuous mode */
4371 add = &bar0->mac_cfg;
4372 val64 = readq(&bar0->mac_cfg);
4373 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4375 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4376 writel((u32) val64, add);
4377 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4378 writel((u32) (val64 >> 32), (add + 4));
4380 val64 = readq(&bar0->mac_cfg);
4381 sp->promisc_flg = 1;
4382 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4383 dev->name);
4384 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4385 /* Remove the NIC from promiscuous mode */
4386 add = &bar0->mac_cfg;
4387 val64 = readq(&bar0->mac_cfg);
4388 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4390 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4391 writel((u32) val64, add);
4392 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4393 writel((u32) (val64 >> 32), (add + 4));
4395 val64 = readq(&bar0->mac_cfg);
4396 sp->promisc_flg = 0;
4397 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4398 dev->name);
4401 /* Update individual M_CAST address list */
4402 if ((!sp->m_cast_flg) && dev->mc_count) {
4403 if (dev->mc_count >
4404 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4405 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4406 dev->name);
4407 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4408 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4409 return;
4412 prev_cnt = sp->mc_addr_count;
4413 sp->mc_addr_count = dev->mc_count;
4415 /* Clear out the previous list of Mc in the H/W. */
4416 for (i = 0; i < prev_cnt; i++) {
4417 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4418 &bar0->rmac_addr_data0_mem);
4419 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4420 &bar0->rmac_addr_data1_mem);
4421 val64 = RMAC_ADDR_CMD_MEM_WE |
4422 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4423 RMAC_ADDR_CMD_MEM_OFFSET
4424 (MAC_MC_ADDR_START_OFFSET + i);
4425 writeq(val64, &bar0->rmac_addr_cmd_mem);
4427 /* Wait for command completes */
4428 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4429 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4430 DBG_PRINT(ERR_DBG, "%s: Adding ",
4431 dev->name);
4432 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4433 return;
4437 /* Create the new Rx filter list and update the same in H/W. */
4438 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4439 i++, mclist = mclist->next) {
4440 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4441 ETH_ALEN);
4442 mac_addr = 0;
4443 for (j = 0; j < ETH_ALEN; j++) {
4444 mac_addr |= mclist->dmi_addr[j];
4445 mac_addr <<= 8;
4447 mac_addr >>= 8;
4448 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4449 &bar0->rmac_addr_data0_mem);
4450 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4451 &bar0->rmac_addr_data1_mem);
4452 val64 = RMAC_ADDR_CMD_MEM_WE |
4453 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4454 RMAC_ADDR_CMD_MEM_OFFSET
4455 (i + MAC_MC_ADDR_START_OFFSET);
4456 writeq(val64, &bar0->rmac_addr_cmd_mem);
4458 /* Wait for command completes */
4459 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4460 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4461 DBG_PRINT(ERR_DBG, "%s: Adding ",
4462 dev->name);
4463 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4464 return;
4471 * s2io_set_mac_addr - Programs the Xframe mac address
4472 * @dev : pointer to the device structure.
4473 * @addr: a uchar pointer to the new mac address which is to be set.
4474 * Description : This procedure will program the Xframe to receive
4475 * frames with new Mac Address
4476 * Return value: SUCCESS on success and an appropriate (-)ve integer
4477 * as defined in errno.h file on failure.
4480 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4482 nic_t *sp = dev->priv;
4483 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4484 register u64 val64, mac_addr = 0;
4485 int i;
4488 * Set the new MAC address as the new unicast filter and reflect this
4489 * change on the device address registered with the OS. It will be
4490 * at offset 0.
4492 for (i = 0; i < ETH_ALEN; i++) {
4493 mac_addr <<= 8;
4494 mac_addr |= addr[i];
4497 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4498 &bar0->rmac_addr_data0_mem);
4500 val64 =
4501 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4502 RMAC_ADDR_CMD_MEM_OFFSET(0);
4503 writeq(val64, &bar0->rmac_addr_cmd_mem);
4504 /* Wait till command completes */
4505 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4506 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4507 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4508 return FAILURE;
4511 return SUCCESS;
4515 * s2io_ethtool_sset - Sets different link parameters.
4516 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4517 * @info: pointer to the structure with parameters given by ethtool to set
4518 * link information.
4519 * Description:
4520 * The function sets different link parameters provided by the user onto
4521 * the NIC.
4522 * Return value:
4523 * 0 on success.
4526 static int s2io_ethtool_sset(struct net_device *dev,
4527 struct ethtool_cmd *info)
4529 nic_t *sp = dev->priv;
4530 if ((info->autoneg == AUTONEG_ENABLE) ||
4531 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4532 return -EINVAL;
4533 else {
4534 s2io_close(sp->dev);
4535 s2io_open(sp->dev);
4538 return 0;
4542 * s2io_ethtol_gset - Return link specific information.
4543 * @sp : private member of the device structure, pointer to the
4544 * s2io_nic structure.
4545 * @info : pointer to the structure with parameters given by ethtool
4546 * to return link information.
4547 * Description:
4548 * Returns link specific information like speed, duplex etc.. to ethtool.
4549 * Return value :
4550 * return 0 on success.
4553 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4555 nic_t *sp = dev->priv;
4556 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4557 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4558 info->port = PORT_FIBRE;
4559 /* info->transceiver?? TODO */
4561 if (netif_carrier_ok(sp->dev)) {
4562 info->speed = 10000;
4563 info->duplex = DUPLEX_FULL;
4564 } else {
4565 info->speed = -1;
4566 info->duplex = -1;
4569 info->autoneg = AUTONEG_DISABLE;
4570 return 0;
4574 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4575 * @sp : private member of the device structure, which is a pointer to the
4576 * s2io_nic structure.
4577 * @info : pointer to the structure with parameters given by ethtool to
4578 * return driver information.
4579 * Description:
4580 * Returns driver specefic information like name, version etc.. to ethtool.
4581 * Return value:
4582 * void
4585 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4586 struct ethtool_drvinfo *info)
4588 nic_t *sp = dev->priv;
4590 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4591 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4592 strncpy(info->fw_version, "", sizeof(info->fw_version));
4593 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4594 info->regdump_len = XENA_REG_SPACE;
4595 info->eedump_len = XENA_EEPROM_SPACE;
4596 info->testinfo_len = S2IO_TEST_LEN;
4597 info->n_stats = S2IO_STAT_LEN;
4601 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4602 * @sp: private member of the device structure, which is a pointer to the
4603 * s2io_nic structure.
4604 * @regs : pointer to the structure with parameters given by ethtool for
4605 * dumping the registers.
4606 * @reg_space: The input argumnet into which all the registers are dumped.
4607 * Description:
4608 * Dumps the entire register space of xFrame NIC into the user given
4609 * buffer area.
4610 * Return value :
4611 * void .
4614 static void s2io_ethtool_gregs(struct net_device *dev,
4615 struct ethtool_regs *regs, void *space)
4617 int i;
4618 u64 reg;
4619 u8 *reg_space = (u8 *) space;
4620 nic_t *sp = dev->priv;
4622 regs->len = XENA_REG_SPACE;
4623 regs->version = sp->pdev->subsystem_device;
4625 for (i = 0; i < regs->len; i += 8) {
4626 reg = readq(sp->bar0 + i);
4627 memcpy((reg_space + i), &reg, 8);
4632 * s2io_phy_id - timer function that alternates adapter LED.
4633 * @data : address of the private member of the device structure, which
4634 * is a pointer to the s2io_nic structure, provided as an u32.
4635 * Description: This is actually the timer function that alternates the
4636 * adapter LED bit of the adapter control bit to set/reset every time on
4637 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4638 * once every second.
4640 static void s2io_phy_id(unsigned long data)
4642 nic_t *sp = (nic_t *) data;
4643 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4644 u64 val64 = 0;
4645 u16 subid;
4647 subid = sp->pdev->subsystem_device;
4648 if ((sp->device_type == XFRAME_II_DEVICE) ||
4649 ((subid & 0xFF) >= 0x07)) {
4650 val64 = readq(&bar0->gpio_control);
4651 val64 ^= GPIO_CTRL_GPIO_0;
4652 writeq(val64, &bar0->gpio_control);
4653 } else {
4654 val64 = readq(&bar0->adapter_control);
4655 val64 ^= ADAPTER_LED_ON;
4656 writeq(val64, &bar0->adapter_control);
4659 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4663 * s2io_ethtool_idnic - To physically identify the nic on the system.
4664 * @sp : private member of the device structure, which is a pointer to the
4665 * s2io_nic structure.
4666 * @id : pointer to the structure with identification parameters given by
4667 * ethtool.
4668 * Description: Used to physically identify the NIC on the system.
4669 * The Link LED will blink for a time specified by the user for
4670 * identification.
4671 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4672 * identification is possible only if it's link is up.
4673 * Return value:
4674 * int , returns 0 on success
4677 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4679 u64 val64 = 0, last_gpio_ctrl_val;
4680 nic_t *sp = dev->priv;
4681 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4682 u16 subid;
4684 subid = sp->pdev->subsystem_device;
4685 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4686 if ((sp->device_type == XFRAME_I_DEVICE) &&
4687 ((subid & 0xFF) < 0x07)) {
4688 val64 = readq(&bar0->adapter_control);
4689 if (!(val64 & ADAPTER_CNTL_EN)) {
4690 printk(KERN_ERR
4691 "Adapter Link down, cannot blink LED\n");
4692 return -EFAULT;
4695 if (sp->id_timer.function == NULL) {
4696 init_timer(&sp->id_timer);
4697 sp->id_timer.function = s2io_phy_id;
4698 sp->id_timer.data = (unsigned long) sp;
4700 mod_timer(&sp->id_timer, jiffies);
4701 if (data)
4702 msleep_interruptible(data * HZ);
4703 else
4704 msleep_interruptible(MAX_FLICKER_TIME);
4705 del_timer_sync(&sp->id_timer);
4707 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4708 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4709 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4712 return 0;
4716 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4717 * @sp : private member of the device structure, which is a pointer to the
4718 * s2io_nic structure.
4719 * @ep : pointer to the structure with pause parameters given by ethtool.
4720 * Description:
4721 * Returns the Pause frame generation and reception capability of the NIC.
4722 * Return value:
4723 * void
4725 static void s2io_ethtool_getpause_data(struct net_device *dev,
4726 struct ethtool_pauseparam *ep)
4728 u64 val64;
4729 nic_t *sp = dev->priv;
4730 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4732 val64 = readq(&bar0->rmac_pause_cfg);
4733 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4734 ep->tx_pause = TRUE;
4735 if (val64 & RMAC_PAUSE_RX_ENABLE)
4736 ep->rx_pause = TRUE;
4737 ep->autoneg = FALSE;
4741 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4742 * @sp : private member of the device structure, which is a pointer to the
4743 * s2io_nic structure.
4744 * @ep : pointer to the structure with pause parameters given by ethtool.
4745 * Description:
4746 * It can be used to set or reset Pause frame generation or reception
4747 * support of the NIC.
4748 * Return value:
4749 * int, returns 0 on Success
4752 static int s2io_ethtool_setpause_data(struct net_device *dev,
4753 struct ethtool_pauseparam *ep)
4755 u64 val64;
4756 nic_t *sp = dev->priv;
4757 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4759 val64 = readq(&bar0->rmac_pause_cfg);
4760 if (ep->tx_pause)
4761 val64 |= RMAC_PAUSE_GEN_ENABLE;
4762 else
4763 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4764 if (ep->rx_pause)
4765 val64 |= RMAC_PAUSE_RX_ENABLE;
4766 else
4767 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4768 writeq(val64, &bar0->rmac_pause_cfg);
4769 return 0;
4773 * read_eeprom - reads 4 bytes of data from user given offset.
4774 * @sp : private member of the device structure, which is a pointer to the
4775 * s2io_nic structure.
4776 * @off : offset at which the data must be written
4777 * @data : Its an output parameter where the data read at the given
4778 * offset is stored.
4779 * Description:
4780 * Will read 4 bytes of data from the user given offset and return the
4781 * read data.
4782 * NOTE: Will allow to read only part of the EEPROM visible through the
4783 * I2C bus.
4784 * Return value:
4785 * -1 on failure and 0 on success.
4788 #define S2IO_DEV_ID 5
4789 static int read_eeprom(nic_t * sp, int off, u64 * data)
4791 int ret = -1;
4792 u32 exit_cnt = 0;
4793 u64 val64;
4794 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4796 if (sp->device_type == XFRAME_I_DEVICE) {
4797 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4798 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4799 I2C_CONTROL_CNTL_START;
4800 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4802 while (exit_cnt < 5) {
4803 val64 = readq(&bar0->i2c_control);
4804 if (I2C_CONTROL_CNTL_END(val64)) {
4805 *data = I2C_CONTROL_GET_DATA(val64);
4806 ret = 0;
4807 break;
4809 msleep(50);
4810 exit_cnt++;
4814 if (sp->device_type == XFRAME_II_DEVICE) {
4815 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4816 SPI_CONTROL_BYTECNT(0x3) |
4817 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4818 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4819 val64 |= SPI_CONTROL_REQ;
4820 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4821 while (exit_cnt < 5) {
4822 val64 = readq(&bar0->spi_control);
4823 if (val64 & SPI_CONTROL_NACK) {
4824 ret = 1;
4825 break;
4826 } else if (val64 & SPI_CONTROL_DONE) {
4827 *data = readq(&bar0->spi_data);
4828 *data &= 0xffffff;
4829 ret = 0;
4830 break;
4832 msleep(50);
4833 exit_cnt++;
4836 return ret;
4840 * write_eeprom - actually writes the relevant part of the data value.
4841 * @sp : private member of the device structure, which is a pointer to the
4842 * s2io_nic structure.
4843 * @off : offset at which the data must be written
4844 * @data : The data that is to be written
4845 * @cnt : Number of bytes of the data that are actually to be written into
4846 * the Eeprom. (max of 3)
4847 * Description:
4848 * Actually writes the relevant part of the data value into the Eeprom
4849 * through the I2C bus.
4850 * Return value:
4851 * 0 on success, -1 on failure.
4854 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4856 int exit_cnt = 0, ret = -1;
4857 u64 val64;
4858 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4860 if (sp->device_type == XFRAME_I_DEVICE) {
4861 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4862 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4863 I2C_CONTROL_CNTL_START;
4864 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4866 while (exit_cnt < 5) {
4867 val64 = readq(&bar0->i2c_control);
4868 if (I2C_CONTROL_CNTL_END(val64)) {
4869 if (!(val64 & I2C_CONTROL_NACK))
4870 ret = 0;
4871 break;
4873 msleep(50);
4874 exit_cnt++;
4878 if (sp->device_type == XFRAME_II_DEVICE) {
4879 int write_cnt = (cnt == 8) ? 0 : cnt;
4880 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4882 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4883 SPI_CONTROL_BYTECNT(write_cnt) |
4884 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4885 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4886 val64 |= SPI_CONTROL_REQ;
4887 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4888 while (exit_cnt < 5) {
4889 val64 = readq(&bar0->spi_control);
4890 if (val64 & SPI_CONTROL_NACK) {
4891 ret = 1;
4892 break;
4893 } else if (val64 & SPI_CONTROL_DONE) {
4894 ret = 0;
4895 break;
4897 msleep(50);
4898 exit_cnt++;
4901 return ret;
4903 static void s2io_vpd_read(nic_t *nic)
4905 u8 *vpd_data;
4906 u8 data;
4907 int i=0, cnt, fail = 0;
4908 int vpd_addr = 0x80;
4910 if (nic->device_type == XFRAME_II_DEVICE) {
4911 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4912 vpd_addr = 0x80;
4914 else {
4915 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4916 vpd_addr = 0x50;
4919 vpd_data = kmalloc(256, GFP_KERNEL);
4920 if (!vpd_data)
4921 return;
4923 for (i = 0; i < 256; i +=4 ) {
4924 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4925 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4926 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4927 for (cnt = 0; cnt <5; cnt++) {
4928 msleep(2);
4929 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4930 if (data == 0x80)
4931 break;
4933 if (cnt >= 5) {
4934 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4935 fail = 1;
4936 break;
4938 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4939 (u32 *)&vpd_data[i]);
4941 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
4942 memset(nic->product_name, 0, vpd_data[1]);
4943 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4945 kfree(vpd_data);
4949 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4950 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4951 * @eeprom : pointer to the user level structure provided by ethtool,
4952 * containing all relevant information.
4953 * @data_buf : user defined value to be written into Eeprom.
4954 * Description: Reads the values stored in the Eeprom at given offset
4955 * for a given length. Stores these values int the input argument data
4956 * buffer 'data_buf' and returns these to the caller (ethtool.)
4957 * Return value:
4958 * int 0 on success
4961 static int s2io_ethtool_geeprom(struct net_device *dev,
4962 struct ethtool_eeprom *eeprom, u8 * data_buf)
4964 u32 i, valid;
4965 u64 data;
4966 nic_t *sp = dev->priv;
4968 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4970 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4971 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4973 for (i = 0; i < eeprom->len; i += 4) {
4974 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4975 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4976 return -EFAULT;
4978 valid = INV(data);
4979 memcpy((data_buf + i), &valid, 4);
4981 return 0;
4985 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4986 * @sp : private member of the device structure, which is a pointer to the
4987 * s2io_nic structure.
4988 * @eeprom : pointer to the user level structure provided by ethtool,
4989 * containing all relevant information.
4990 * @data_buf ; user defined value to be written into Eeprom.
4991 * Description:
4992 * Tries to write the user provided value in the Eeprom, at the offset
4993 * given by the user.
4994 * Return value:
4995 * 0 on success, -EFAULT on failure.
4998 static int s2io_ethtool_seeprom(struct net_device *dev,
4999 struct ethtool_eeprom *eeprom,
5000 u8 * data_buf)
5002 int len = eeprom->len, cnt = 0;
5003 u64 valid = 0, data;
5004 nic_t *sp = dev->priv;
5006 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5007 DBG_PRINT(ERR_DBG,
5008 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5009 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5010 eeprom->magic);
5011 return -EFAULT;
5014 while (len) {
5015 data = (u32) data_buf[cnt] & 0x000000FF;
5016 if (data) {
5017 valid = (u32) (data << 24);
5018 } else
5019 valid = data;
5021 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5022 DBG_PRINT(ERR_DBG,
5023 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5024 DBG_PRINT(ERR_DBG,
5025 "write into the specified offset\n");
5026 return -EFAULT;
5028 cnt++;
5029 len--;
5032 return 0;
5036 * s2io_register_test - reads and writes into all clock domains.
5037 * @sp : private member of the device structure, which is a pointer to the
5038 * s2io_nic structure.
5039 * @data : variable that returns the result of each of the test conducted b
5040 * by the driver.
5041 * Description:
5042 * Read and write into all clock domains. The NIC has 3 clock domains,
5043 * see that registers in all the three regions are accessible.
5044 * Return value:
5045 * 0 on success.
5048 static int s2io_register_test(nic_t * sp, uint64_t * data)
5050 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5051 u64 val64 = 0, exp_val;
5052 int fail = 0;
5054 val64 = readq(&bar0->pif_rd_swapper_fb);
5055 if (val64 != 0x123456789abcdefULL) {
5056 fail = 1;
5057 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5060 val64 = readq(&bar0->rmac_pause_cfg);
5061 if (val64 != 0xc000ffff00000000ULL) {
5062 fail = 1;
5063 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5066 val64 = readq(&bar0->rx_queue_cfg);
5067 if (sp->device_type == XFRAME_II_DEVICE)
5068 exp_val = 0x0404040404040404ULL;
5069 else
5070 exp_val = 0x0808080808080808ULL;
5071 if (val64 != exp_val) {
5072 fail = 1;
5073 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5076 val64 = readq(&bar0->xgxs_efifo_cfg);
5077 if (val64 != 0x000000001923141EULL) {
5078 fail = 1;
5079 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5082 val64 = 0x5A5A5A5A5A5A5A5AULL;
5083 writeq(val64, &bar0->xmsi_data);
5084 val64 = readq(&bar0->xmsi_data);
5085 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5086 fail = 1;
5087 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5090 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5091 writeq(val64, &bar0->xmsi_data);
5092 val64 = readq(&bar0->xmsi_data);
5093 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5094 fail = 1;
5095 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5098 *data = fail;
5099 return fail;
5103 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5104 * @sp : private member of the device structure, which is a pointer to the
5105 * s2io_nic structure.
5106 * @data:variable that returns the result of each of the test conducted by
5107 * the driver.
5108 * Description:
5109 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5110 * register.
5111 * Return value:
5112 * 0 on success.
5115 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5117 int fail = 0;
5118 u64 ret_data, org_4F0, org_7F0;
5119 u8 saved_4F0 = 0, saved_7F0 = 0;
5120 struct net_device *dev = sp->dev;
5122 /* Test Write Error at offset 0 */
5123 /* Note that SPI interface allows write access to all areas
5124 * of EEPROM. Hence doing all negative testing only for Xframe I.
5126 if (sp->device_type == XFRAME_I_DEVICE)
5127 if (!write_eeprom(sp, 0, 0, 3))
5128 fail = 1;
5130 /* Save current values at offsets 0x4F0 and 0x7F0 */
5131 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5132 saved_4F0 = 1;
5133 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5134 saved_7F0 = 1;
5136 /* Test Write at offset 4f0 */
5137 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5138 fail = 1;
5139 if (read_eeprom(sp, 0x4F0, &ret_data))
5140 fail = 1;
5142 if (ret_data != 0x012345) {
5143 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5144 "Data written %llx Data read %llx\n",
5145 dev->name, (unsigned long long)0x12345,
5146 (unsigned long long)ret_data);
5147 fail = 1;
5150 /* Reset the EEPROM data go FFFF */
5151 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5153 /* Test Write Request Error at offset 0x7c */
5154 if (sp->device_type == XFRAME_I_DEVICE)
5155 if (!write_eeprom(sp, 0x07C, 0, 3))
5156 fail = 1;
5158 /* Test Write Request at offset 0x7f0 */
5159 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5160 fail = 1;
5161 if (read_eeprom(sp, 0x7F0, &ret_data))
5162 fail = 1;
5164 if (ret_data != 0x012345) {
5165 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5166 "Data written %llx Data read %llx\n",
5167 dev->name, (unsigned long long)0x12345,
5168 (unsigned long long)ret_data);
5169 fail = 1;
5172 /* Reset the EEPROM data go FFFF */
5173 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5175 if (sp->device_type == XFRAME_I_DEVICE) {
5176 /* Test Write Error at offset 0x80 */
5177 if (!write_eeprom(sp, 0x080, 0, 3))
5178 fail = 1;
5180 /* Test Write Error at offset 0xfc */
5181 if (!write_eeprom(sp, 0x0FC, 0, 3))
5182 fail = 1;
5184 /* Test Write Error at offset 0x100 */
5185 if (!write_eeprom(sp, 0x100, 0, 3))
5186 fail = 1;
5188 /* Test Write Error at offset 4ec */
5189 if (!write_eeprom(sp, 0x4EC, 0, 3))
5190 fail = 1;
5193 /* Restore values at offsets 0x4F0 and 0x7F0 */
5194 if (saved_4F0)
5195 write_eeprom(sp, 0x4F0, org_4F0, 3);
5196 if (saved_7F0)
5197 write_eeprom(sp, 0x7F0, org_7F0, 3);
5199 *data = fail;
5200 return fail;
5204 * s2io_bist_test - invokes the MemBist test of the card .
5205 * @sp : private member of the device structure, which is a pointer to the
5206 * s2io_nic structure.
5207 * @data:variable that returns the result of each of the test conducted by
5208 * the driver.
5209 * Description:
5210 * This invokes the MemBist test of the card. We give around
5211 * 2 secs time for the Test to complete. If it's still not complete
5212 * within this peiod, we consider that the test failed.
5213 * Return value:
5214 * 0 on success and -1 on failure.
5217 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5219 u8 bist = 0;
5220 int cnt = 0, ret = -1;
5222 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5223 bist |= PCI_BIST_START;
5224 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5226 while (cnt < 20) {
5227 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5228 if (!(bist & PCI_BIST_START)) {
5229 *data = (bist & PCI_BIST_CODE_MASK);
5230 ret = 0;
5231 break;
5233 msleep(100);
5234 cnt++;
5237 return ret;
5241 * s2io-link_test - verifies the link state of the nic
5242 * @sp ; private member of the device structure, which is a pointer to the
5243 * s2io_nic structure.
5244 * @data: variable that returns the result of each of the test conducted by
5245 * the driver.
5246 * Description:
5247 * The function verifies the link state of the NIC and updates the input
5248 * argument 'data' appropriately.
5249 * Return value:
5250 * 0 on success.
5253 static int s2io_link_test(nic_t * sp, uint64_t * data)
5255 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5256 u64 val64;
5258 val64 = readq(&bar0->adapter_status);
5259 if(!(LINK_IS_UP(val64)))
5260 *data = 1;
5261 else
5262 *data = 0;
5264 return *data;
5268 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5269 * @sp - private member of the device structure, which is a pointer to the
5270 * s2io_nic structure.
5271 * @data - variable that returns the result of each of the test
5272 * conducted by the driver.
5273 * Description:
5274 * This is one of the offline test that tests the read and write
5275 * access to the RldRam chip on the NIC.
5276 * Return value:
5277 * 0 on success.
5280 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5282 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5283 u64 val64;
5284 int cnt, iteration = 0, test_fail = 0;
5286 val64 = readq(&bar0->adapter_control);
5287 val64 &= ~ADAPTER_ECC_EN;
5288 writeq(val64, &bar0->adapter_control);
5290 val64 = readq(&bar0->mc_rldram_test_ctrl);
5291 val64 |= MC_RLDRAM_TEST_MODE;
5292 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5294 val64 = readq(&bar0->mc_rldram_mrs);
5295 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5296 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5298 val64 |= MC_RLDRAM_MRS_ENABLE;
5299 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5301 while (iteration < 2) {
5302 val64 = 0x55555555aaaa0000ULL;
5303 if (iteration == 1) {
5304 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5306 writeq(val64, &bar0->mc_rldram_test_d0);
5308 val64 = 0xaaaa5a5555550000ULL;
5309 if (iteration == 1) {
5310 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5312 writeq(val64, &bar0->mc_rldram_test_d1);
5314 val64 = 0x55aaaaaaaa5a0000ULL;
5315 if (iteration == 1) {
5316 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5318 writeq(val64, &bar0->mc_rldram_test_d2);
5320 val64 = (u64) (0x0000003ffffe0100ULL);
5321 writeq(val64, &bar0->mc_rldram_test_add);
5323 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5324 MC_RLDRAM_TEST_GO;
5325 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5327 for (cnt = 0; cnt < 5; cnt++) {
5328 val64 = readq(&bar0->mc_rldram_test_ctrl);
5329 if (val64 & MC_RLDRAM_TEST_DONE)
5330 break;
5331 msleep(200);
5334 if (cnt == 5)
5335 break;
5337 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5338 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5340 for (cnt = 0; cnt < 5; cnt++) {
5341 val64 = readq(&bar0->mc_rldram_test_ctrl);
5342 if (val64 & MC_RLDRAM_TEST_DONE)
5343 break;
5344 msleep(500);
5347 if (cnt == 5)
5348 break;
5350 val64 = readq(&bar0->mc_rldram_test_ctrl);
5351 if (!(val64 & MC_RLDRAM_TEST_PASS))
5352 test_fail = 1;
5354 iteration++;
5357 *data = test_fail;
5359 /* Bring the adapter out of test mode */
5360 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5362 return test_fail;
5366 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5367 * @sp : private member of the device structure, which is a pointer to the
5368 * s2io_nic structure.
5369 * @ethtest : pointer to a ethtool command specific structure that will be
5370 * returned to the user.
5371 * @data : variable that returns the result of each of the test
5372 * conducted by the driver.
5373 * Description:
5374 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5375 * the health of the card.
5376 * Return value:
5377 * void
5380 static void s2io_ethtool_test(struct net_device *dev,
5381 struct ethtool_test *ethtest,
5382 uint64_t * data)
5384 nic_t *sp = dev->priv;
5385 int orig_state = netif_running(sp->dev);
5387 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5388 /* Offline Tests. */
5389 if (orig_state)
5390 s2io_close(sp->dev);
5392 if (s2io_register_test(sp, &data[0]))
5393 ethtest->flags |= ETH_TEST_FL_FAILED;
5395 s2io_reset(sp);
5397 if (s2io_rldram_test(sp, &data[3]))
5398 ethtest->flags |= ETH_TEST_FL_FAILED;
5400 s2io_reset(sp);
5402 if (s2io_eeprom_test(sp, &data[1]))
5403 ethtest->flags |= ETH_TEST_FL_FAILED;
5405 if (s2io_bist_test(sp, &data[4]))
5406 ethtest->flags |= ETH_TEST_FL_FAILED;
5408 if (orig_state)
5409 s2io_open(sp->dev);
5411 data[2] = 0;
5412 } else {
5413 /* Online Tests. */
5414 if (!orig_state) {
5415 DBG_PRINT(ERR_DBG,
5416 "%s: is not up, cannot run test\n",
5417 dev->name);
5418 data[0] = -1;
5419 data[1] = -1;
5420 data[2] = -1;
5421 data[3] = -1;
5422 data[4] = -1;
5425 if (s2io_link_test(sp, &data[2]))
5426 ethtest->flags |= ETH_TEST_FL_FAILED;
5428 data[0] = 0;
5429 data[1] = 0;
5430 data[3] = 0;
5431 data[4] = 0;
5435 static void s2io_get_ethtool_stats(struct net_device *dev,
5436 struct ethtool_stats *estats,
5437 u64 * tmp_stats)
5439 int i = 0;
5440 nic_t *sp = dev->priv;
5441 StatInfo_t *stat_info = sp->mac_control.stats_info;
5443 s2io_updt_stats(sp);
5444 tmp_stats[i++] =
5445 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5446 le32_to_cpu(stat_info->tmac_frms);
5447 tmp_stats[i++] =
5448 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5449 le32_to_cpu(stat_info->tmac_data_octets);
5450 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5451 tmp_stats[i++] =
5452 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5453 le32_to_cpu(stat_info->tmac_mcst_frms);
5454 tmp_stats[i++] =
5455 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5456 le32_to_cpu(stat_info->tmac_bcst_frms);
5457 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5458 tmp_stats[i++] =
5459 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5460 le32_to_cpu(stat_info->tmac_ttl_octets);
5461 tmp_stats[i++] =
5462 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5463 le32_to_cpu(stat_info->tmac_ucst_frms);
5464 tmp_stats[i++] =
5465 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5466 le32_to_cpu(stat_info->tmac_nucst_frms);
5467 tmp_stats[i++] =
5468 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5469 le32_to_cpu(stat_info->tmac_any_err_frms);
5470 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5471 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5472 tmp_stats[i++] =
5473 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5474 le32_to_cpu(stat_info->tmac_vld_ip);
5475 tmp_stats[i++] =
5476 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5477 le32_to_cpu(stat_info->tmac_drop_ip);
5478 tmp_stats[i++] =
5479 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5480 le32_to_cpu(stat_info->tmac_icmp);
5481 tmp_stats[i++] =
5482 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5483 le32_to_cpu(stat_info->tmac_rst_tcp);
5484 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5485 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5486 le32_to_cpu(stat_info->tmac_udp);
5487 tmp_stats[i++] =
5488 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5489 le32_to_cpu(stat_info->rmac_vld_frms);
5490 tmp_stats[i++] =
5491 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5492 le32_to_cpu(stat_info->rmac_data_octets);
5493 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5494 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5495 tmp_stats[i++] =
5496 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5497 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5498 tmp_stats[i++] =
5499 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5500 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5501 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5502 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5503 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5504 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5505 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5506 tmp_stats[i++] =
5507 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5508 le32_to_cpu(stat_info->rmac_ttl_octets);
5509 tmp_stats[i++] =
5510 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5511 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5512 tmp_stats[i++] =
5513 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5514 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5515 tmp_stats[i++] =
5516 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5517 le32_to_cpu(stat_info->rmac_discarded_frms);
5518 tmp_stats[i++] =
5519 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5520 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5521 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5522 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5523 tmp_stats[i++] =
5524 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5525 le32_to_cpu(stat_info->rmac_usized_frms);
5526 tmp_stats[i++] =
5527 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5528 le32_to_cpu(stat_info->rmac_osized_frms);
5529 tmp_stats[i++] =
5530 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5531 le32_to_cpu(stat_info->rmac_frag_frms);
5532 tmp_stats[i++] =
5533 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5534 le32_to_cpu(stat_info->rmac_jabber_frms);
5535 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5536 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5537 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5538 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5539 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5540 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5541 tmp_stats[i++] =
5542 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5543 le32_to_cpu(stat_info->rmac_ip);
5544 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5545 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5546 tmp_stats[i++] =
5547 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5548 le32_to_cpu(stat_info->rmac_drop_ip);
5549 tmp_stats[i++] =
5550 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5551 le32_to_cpu(stat_info->rmac_icmp);
5552 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5553 tmp_stats[i++] =
5554 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5555 le32_to_cpu(stat_info->rmac_udp);
5556 tmp_stats[i++] =
5557 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5558 le32_to_cpu(stat_info->rmac_err_drp_udp);
5559 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5560 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5561 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5562 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5563 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5564 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5565 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5566 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5567 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5568 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5569 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5570 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5571 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5572 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5573 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5574 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5575 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5576 tmp_stats[i++] =
5577 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5578 le32_to_cpu(stat_info->rmac_pause_cnt);
5579 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5580 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5581 tmp_stats[i++] =
5582 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5583 le32_to_cpu(stat_info->rmac_accepted_ip);
5584 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5585 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5587 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5588 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5589 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5590 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5591 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5592 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5593 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5594 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5595 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5596 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5597 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5598 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5599 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5600 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5601 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5602 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5603 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5604 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5605 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5606 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5607 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5608 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5609 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5610 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5611 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5612 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5613 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5614 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5615 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5616 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5617 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5618 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5619 tmp_stats[i++] = 0;
5620 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5621 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5622 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5623 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5624 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5625 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5626 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5627 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5628 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5629 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5630 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5631 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5632 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5633 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5634 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5635 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5636 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5637 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5638 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5639 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5640 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5641 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5642 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5643 if (stat_info->sw_stat.num_aggregations) {
5644 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5645 int count = 0;
5647 * Since 64-bit divide does not work on all platforms,
5648 * do repeated subtraction.
5650 while (tmp >= stat_info->sw_stat.num_aggregations) {
5651 tmp -= stat_info->sw_stat.num_aggregations;
5652 count++;
5654 tmp_stats[i++] = count;
5656 else
5657 tmp_stats[i++] = 0;
5660 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5662 return (XENA_REG_SPACE);
5666 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5668 nic_t *sp = dev->priv;
5670 return (sp->rx_csum);
5673 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5675 nic_t *sp = dev->priv;
5677 if (data)
5678 sp->rx_csum = 1;
5679 else
5680 sp->rx_csum = 0;
5682 return 0;
5685 static int s2io_get_eeprom_len(struct net_device *dev)
5687 return (XENA_EEPROM_SPACE);
5690 static int s2io_ethtool_self_test_count(struct net_device *dev)
5692 return (S2IO_TEST_LEN);
5695 static void s2io_ethtool_get_strings(struct net_device *dev,
5696 u32 stringset, u8 * data)
5698 switch (stringset) {
5699 case ETH_SS_TEST:
5700 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5701 break;
5702 case ETH_SS_STATS:
5703 memcpy(data, &ethtool_stats_keys,
5704 sizeof(ethtool_stats_keys));
5707 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5709 return (S2IO_STAT_LEN);
5712 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5714 if (data)
5715 dev->features |= NETIF_F_IP_CSUM;
5716 else
5717 dev->features &= ~NETIF_F_IP_CSUM;
5719 return 0;
5722 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5724 return (dev->features & NETIF_F_TSO) != 0;
5726 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5728 if (data)
5729 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5730 else
5731 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5733 return 0;
5736 static const struct ethtool_ops netdev_ethtool_ops = {
5737 .get_settings = s2io_ethtool_gset,
5738 .set_settings = s2io_ethtool_sset,
5739 .get_drvinfo = s2io_ethtool_gdrvinfo,
5740 .get_regs_len = s2io_ethtool_get_regs_len,
5741 .get_regs = s2io_ethtool_gregs,
5742 .get_link = ethtool_op_get_link,
5743 .get_eeprom_len = s2io_get_eeprom_len,
5744 .get_eeprom = s2io_ethtool_geeprom,
5745 .set_eeprom = s2io_ethtool_seeprom,
5746 .get_pauseparam = s2io_ethtool_getpause_data,
5747 .set_pauseparam = s2io_ethtool_setpause_data,
5748 .get_rx_csum = s2io_ethtool_get_rx_csum,
5749 .set_rx_csum = s2io_ethtool_set_rx_csum,
5750 .get_tx_csum = ethtool_op_get_tx_csum,
5751 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5752 .get_sg = ethtool_op_get_sg,
5753 .set_sg = ethtool_op_set_sg,
5754 #ifdef NETIF_F_TSO
5755 .get_tso = s2io_ethtool_op_get_tso,
5756 .set_tso = s2io_ethtool_op_set_tso,
5757 #endif
5758 .get_ufo = ethtool_op_get_ufo,
5759 .set_ufo = ethtool_op_set_ufo,
5760 .self_test_count = s2io_ethtool_self_test_count,
5761 .self_test = s2io_ethtool_test,
5762 .get_strings = s2io_ethtool_get_strings,
5763 .phys_id = s2io_ethtool_idnic,
5764 .get_stats_count = s2io_ethtool_get_stats_count,
5765 .get_ethtool_stats = s2io_get_ethtool_stats
5769 * s2io_ioctl - Entry point for the Ioctl
5770 * @dev : Device pointer.
5771 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5772 * a proprietary structure used to pass information to the driver.
5773 * @cmd : This is used to distinguish between the different commands that
5774 * can be passed to the IOCTL functions.
5775 * Description:
5776 * Currently there are no special functionality supported in IOCTL, hence
5777 * function always return EOPNOTSUPPORTED
5780 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5782 return -EOPNOTSUPP;
5786 * s2io_change_mtu - entry point to change MTU size for the device.
5787 * @dev : device pointer.
5788 * @new_mtu : the new MTU size for the device.
5789 * Description: A driver entry point to change MTU size for the device.
5790 * Before changing the MTU the device must be stopped.
5791 * Return value:
5792 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5793 * file on failure.
5796 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5798 nic_t *sp = dev->priv;
5800 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5801 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5802 dev->name);
5803 return -EPERM;
5806 dev->mtu = new_mtu;
5807 if (netif_running(dev)) {
5808 s2io_card_down(sp);
5809 netif_stop_queue(dev);
5810 if (s2io_card_up(sp)) {
5811 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5812 __FUNCTION__);
5814 if (netif_queue_stopped(dev))
5815 netif_wake_queue(dev);
5816 } else { /* Device is down */
5817 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5818 u64 val64 = new_mtu;
5820 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5823 return 0;
5827 * s2io_tasklet - Bottom half of the ISR.
5828 * @dev_adr : address of the device structure in dma_addr_t format.
5829 * Description:
5830 * This is the tasklet or the bottom half of the ISR. This is
5831 * an extension of the ISR which is scheduled by the scheduler to be run
5832 * when the load on the CPU is low. All low priority tasks of the ISR can
5833 * be pushed into the tasklet. For now the tasklet is used only to
5834 * replenish the Rx buffers in the Rx buffer descriptors.
5835 * Return value:
5836 * void.
5839 static void s2io_tasklet(unsigned long dev_addr)
5841 struct net_device *dev = (struct net_device *) dev_addr;
5842 nic_t *sp = dev->priv;
5843 int i, ret;
5844 mac_info_t *mac_control;
5845 struct config_param *config;
5847 mac_control = &sp->mac_control;
5848 config = &sp->config;
5850 if (!TASKLET_IN_USE) {
5851 for (i = 0; i < config->rx_ring_num; i++) {
5852 ret = fill_rx_buffers(sp, i);
5853 if (ret == -ENOMEM) {
5854 DBG_PRINT(ERR_DBG, "%s: Out of ",
5855 dev->name);
5856 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5857 break;
5858 } else if (ret == -EFILL) {
5859 DBG_PRINT(ERR_DBG,
5860 "%s: Rx Ring %d is full\n",
5861 dev->name, i);
5862 break;
5865 clear_bit(0, (&sp->tasklet_status));
5870 * s2io_set_link - Set the LInk status
5871 * @data: long pointer to device private structue
5872 * Description: Sets the link status for the adapter
5875 static void s2io_set_link(struct work_struct *work)
5877 nic_t *nic = container_of(work, nic_t, set_link_task);
5878 struct net_device *dev = nic->dev;
5879 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5880 register u64 val64;
5881 u16 subid;
5883 if (test_and_set_bit(0, &(nic->link_state))) {
5884 /* The card is being reset, no point doing anything */
5885 return;
5888 subid = nic->pdev->subsystem_device;
5889 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5891 * Allow a small delay for the NICs self initiated
5892 * cleanup to complete.
5894 msleep(100);
5897 val64 = readq(&bar0->adapter_status);
5898 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5899 if (LINK_IS_UP(val64)) {
5900 val64 = readq(&bar0->adapter_control);
5901 val64 |= ADAPTER_CNTL_EN;
5902 writeq(val64, &bar0->adapter_control);
5903 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5904 subid)) {
5905 val64 = readq(&bar0->gpio_control);
5906 val64 |= GPIO_CTRL_GPIO_0;
5907 writeq(val64, &bar0->gpio_control);
5908 val64 = readq(&bar0->gpio_control);
5909 } else {
5910 val64 |= ADAPTER_LED_ON;
5911 writeq(val64, &bar0->adapter_control);
5913 if (s2io_link_fault_indication(nic) ==
5914 MAC_RMAC_ERR_TIMER) {
5915 val64 = readq(&bar0->adapter_status);
5916 if (!LINK_IS_UP(val64)) {
5917 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5918 DBG_PRINT(ERR_DBG, " Link down");
5919 DBG_PRINT(ERR_DBG, "after ");
5920 DBG_PRINT(ERR_DBG, "enabling ");
5921 DBG_PRINT(ERR_DBG, "device \n");
5924 if (nic->device_enabled_once == FALSE) {
5925 nic->device_enabled_once = TRUE;
5927 s2io_link(nic, LINK_UP);
5928 } else {
5929 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5930 subid)) {
5931 val64 = readq(&bar0->gpio_control);
5932 val64 &= ~GPIO_CTRL_GPIO_0;
5933 writeq(val64, &bar0->gpio_control);
5934 val64 = readq(&bar0->gpio_control);
5936 s2io_link(nic, LINK_DOWN);
5938 } else { /* NIC is not Quiescent. */
5939 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5940 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5941 netif_stop_queue(dev);
5943 clear_bit(0, &(nic->link_state));
5946 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
5947 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5948 u64 *temp2, int size)
5950 struct net_device *dev = sp->dev;
5951 struct sk_buff *frag_list;
5953 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5954 /* allocate skb */
5955 if (*skb) {
5956 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5958 * As Rx frame are not going to be processed,
5959 * using same mapped address for the Rxd
5960 * buffer pointer
5962 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
5963 } else {
5964 *skb = dev_alloc_skb(size);
5965 if (!(*skb)) {
5966 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5967 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5968 return -ENOMEM ;
5970 /* storing the mapped addr in a temp variable
5971 * such it will be used for next rxd whose
5972 * Host Control is NULL
5974 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
5975 pci_map_single( sp->pdev, (*skb)->data,
5976 size - NET_IP_ALIGN,
5977 PCI_DMA_FROMDEVICE);
5978 rxdp->Host_Control = (unsigned long) (*skb);
5980 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5981 /* Two buffer Mode */
5982 if (*skb) {
5983 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
5984 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
5985 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
5986 } else {
5987 *skb = dev_alloc_skb(size);
5988 if (!(*skb)) {
5989 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5990 dev->name);
5991 return -ENOMEM;
5993 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
5994 pci_map_single(sp->pdev, (*skb)->data,
5995 dev->mtu + 4,
5996 PCI_DMA_FROMDEVICE);
5997 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
5998 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5999 PCI_DMA_FROMDEVICE);
6000 rxdp->Host_Control = (unsigned long) (*skb);
6002 /* Buffer-1 will be dummy buffer not used */
6003 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6004 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6005 PCI_DMA_FROMDEVICE);
6007 } else if ((rxdp->Host_Control == 0)) {
6008 /* Three buffer mode */
6009 if (*skb) {
6010 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6011 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6012 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6013 } else {
6014 *skb = dev_alloc_skb(size);
6015 if (!(*skb)) {
6016 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6017 dev->name);
6018 return -ENOMEM;
6020 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6021 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6022 PCI_DMA_FROMDEVICE);
6023 /* Buffer-1 receives L3/L4 headers */
6024 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6025 pci_map_single( sp->pdev, (*skb)->data,
6026 l3l4hdr_size + 4,
6027 PCI_DMA_FROMDEVICE);
6029 * skb_shinfo(skb)->frag_list will have L4
6030 * data payload
6032 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6033 ALIGN_SIZE);
6034 if (skb_shinfo(*skb)->frag_list == NULL) {
6035 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6036 failed\n ", dev->name);
6037 return -ENOMEM ;
6039 frag_list = skb_shinfo(*skb)->frag_list;
6040 frag_list->next = NULL;
6042 * Buffer-2 receives L4 data payload
6044 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6045 pci_map_single( sp->pdev, frag_list->data,
6046 dev->mtu, PCI_DMA_FROMDEVICE);
6049 return 0;
6051 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6053 struct net_device *dev = sp->dev;
6054 if (sp->rxd_mode == RXD_MODE_1) {
6055 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6056 } else if (sp->rxd_mode == RXD_MODE_3B) {
6057 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6058 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6059 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6060 } else {
6061 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6062 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6063 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6067 static int rxd_owner_bit_reset(nic_t *sp)
6069 int i, j, k, blk_cnt = 0, size;
6070 mac_info_t * mac_control = &sp->mac_control;
6071 struct config_param *config = &sp->config;
6072 struct net_device *dev = sp->dev;
6073 RxD_t *rxdp = NULL;
6074 struct sk_buff *skb = NULL;
6075 buffAdd_t *ba = NULL;
6076 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6078 /* Calculate the size based on ring mode */
6079 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6080 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6081 if (sp->rxd_mode == RXD_MODE_1)
6082 size += NET_IP_ALIGN;
6083 else if (sp->rxd_mode == RXD_MODE_3B)
6084 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6085 else
6086 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6088 for (i = 0; i < config->rx_ring_num; i++) {
6089 blk_cnt = config->rx_cfg[i].num_rxd /
6090 (rxd_count[sp->rxd_mode] +1);
6092 for (j = 0; j < blk_cnt; j++) {
6093 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6094 rxdp = mac_control->rings[i].
6095 rx_blocks[j].rxds[k].virt_addr;
6096 if(sp->rxd_mode >= RXD_MODE_3A)
6097 ba = &mac_control->rings[i].ba[j][k];
6098 set_rxd_buffer_pointer(sp, rxdp, ba,
6099 &skb,(u64 *)&temp0_64,
6100 (u64 *)&temp1_64,
6101 (u64 *)&temp2_64, size);
6103 set_rxd_buffer_size(sp, rxdp, size);
6104 wmb();
6105 /* flip the Ownership bit to Hardware */
6106 rxdp->Control_1 |= RXD_OWN_XENA;
6110 return 0;
6114 static int s2io_add_isr(nic_t * sp)
6116 int ret = 0;
6117 struct net_device *dev = sp->dev;
6118 int err = 0;
6120 if (sp->intr_type == MSI)
6121 ret = s2io_enable_msi(sp);
6122 else if (sp->intr_type == MSI_X)
6123 ret = s2io_enable_msi_x(sp);
6124 if (ret) {
6125 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6126 sp->intr_type = INTA;
6129 /* Store the values of the MSIX table in the nic_t structure */
6130 store_xmsi_data(sp);
6132 /* After proper initialization of H/W, register ISR */
6133 if (sp->intr_type == MSI) {
6134 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6135 IRQF_SHARED, sp->name, dev);
6136 if (err) {
6137 pci_disable_msi(sp->pdev);
6138 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6139 dev->name);
6140 return -1;
6143 if (sp->intr_type == MSI_X) {
6144 int i;
6146 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6147 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6148 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6149 dev->name, i);
6150 err = request_irq(sp->entries[i].vector,
6151 s2io_msix_fifo_handle, 0, sp->desc[i],
6152 sp->s2io_entries[i].arg);
6153 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6154 (unsigned long long)sp->msix_info[i].addr);
6155 } else {
6156 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6157 dev->name, i);
6158 err = request_irq(sp->entries[i].vector,
6159 s2io_msix_ring_handle, 0, sp->desc[i],
6160 sp->s2io_entries[i].arg);
6161 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6162 (unsigned long long)sp->msix_info[i].addr);
6164 if (err) {
6165 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6166 "failed\n", dev->name, i);
6167 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6168 return -1;
6170 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6173 if (sp->intr_type == INTA) {
6174 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6175 sp->name, dev);
6176 if (err) {
6177 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6178 dev->name);
6179 return -1;
6182 return 0;
6184 static void s2io_rem_isr(nic_t * sp)
6186 int cnt = 0;
6187 struct net_device *dev = sp->dev;
6189 if (sp->intr_type == MSI_X) {
6190 int i;
6191 u16 msi_control;
6193 for (i=1; (sp->s2io_entries[i].in_use ==
6194 MSIX_REGISTERED_SUCCESS); i++) {
6195 int vector = sp->entries[i].vector;
6196 void *arg = sp->s2io_entries[i].arg;
6198 free_irq(vector, arg);
6200 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6201 msi_control &= 0xFFFE; /* Disable MSI */
6202 pci_write_config_word(sp->pdev, 0x42, msi_control);
6204 pci_disable_msix(sp->pdev);
6205 } else {
6206 free_irq(sp->pdev->irq, dev);
6207 if (sp->intr_type == MSI) {
6208 u16 val;
6210 pci_disable_msi(sp->pdev);
6211 pci_read_config_word(sp->pdev, 0x4c, &val);
6212 val ^= 0x1;
6213 pci_write_config_word(sp->pdev, 0x4c, val);
6216 /* Waiting till all Interrupt handlers are complete */
6217 cnt = 0;
6218 do {
6219 msleep(10);
6220 if (!atomic_read(&sp->isr_cnt))
6221 break;
6222 cnt++;
6223 } while(cnt < 5);
6226 static void s2io_card_down(nic_t * sp)
6228 int cnt = 0;
6229 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6230 unsigned long flags;
6231 register u64 val64 = 0;
6233 del_timer_sync(&sp->alarm_timer);
6234 /* If s2io_set_link task is executing, wait till it completes. */
6235 while (test_and_set_bit(0, &(sp->link_state))) {
6236 msleep(50);
6238 atomic_set(&sp->card_state, CARD_DOWN);
6240 /* disable Tx and Rx traffic on the NIC */
6241 stop_nic(sp);
6243 s2io_rem_isr(sp);
6245 /* Kill tasklet. */
6246 tasklet_kill(&sp->task);
6248 /* Check if the device is Quiescent and then Reset the NIC */
6249 do {
6250 /* As per the HW requirement we need to replenish the
6251 * receive buffer to avoid the ring bump. Since there is
6252 * no intention of processing the Rx frame at this pointwe are
6253 * just settting the ownership bit of rxd in Each Rx
6254 * ring to HW and set the appropriate buffer size
6255 * based on the ring mode
6257 rxd_owner_bit_reset(sp);
6259 val64 = readq(&bar0->adapter_status);
6260 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6261 break;
6264 msleep(50);
6265 cnt++;
6266 if (cnt == 10) {
6267 DBG_PRINT(ERR_DBG,
6268 "s2io_close:Device not Quiescent ");
6269 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6270 (unsigned long long) val64);
6271 break;
6273 } while (1);
6274 s2io_reset(sp);
6276 spin_lock_irqsave(&sp->tx_lock, flags);
6277 /* Free all Tx buffers */
6278 free_tx_buffers(sp);
6279 spin_unlock_irqrestore(&sp->tx_lock, flags);
6281 /* Free all Rx buffers */
6282 spin_lock_irqsave(&sp->rx_lock, flags);
6283 free_rx_buffers(sp);
6284 spin_unlock_irqrestore(&sp->rx_lock, flags);
6286 clear_bit(0, &(sp->link_state));
6289 static int s2io_card_up(nic_t * sp)
6291 int i, ret = 0;
6292 mac_info_t *mac_control;
6293 struct config_param *config;
6294 struct net_device *dev = (struct net_device *) sp->dev;
6295 u16 interruptible;
6297 /* Initialize the H/W I/O registers */
6298 if (init_nic(sp) != 0) {
6299 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6300 dev->name);
6301 s2io_reset(sp);
6302 return -ENODEV;
6306 * Initializing the Rx buffers. For now we are considering only 1
6307 * Rx ring and initializing buffers into 30 Rx blocks
6309 mac_control = &sp->mac_control;
6310 config = &sp->config;
6312 for (i = 0; i < config->rx_ring_num; i++) {
6313 if ((ret = fill_rx_buffers(sp, i))) {
6314 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6315 dev->name);
6316 s2io_reset(sp);
6317 free_rx_buffers(sp);
6318 return -ENOMEM;
6320 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6321 atomic_read(&sp->rx_bufs_left[i]));
6324 /* Setting its receive mode */
6325 s2io_set_multicast(dev);
6327 if (sp->lro) {
6328 /* Initialize max aggregatable pkts per session based on MTU */
6329 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6330 /* Check if we can use(if specified) user provided value */
6331 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6332 sp->lro_max_aggr_per_sess = lro_max_pkts;
6335 /* Enable Rx Traffic and interrupts on the NIC */
6336 if (start_nic(sp)) {
6337 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6338 s2io_reset(sp);
6339 free_rx_buffers(sp);
6340 return -ENODEV;
6343 /* Add interrupt service routine */
6344 if (s2io_add_isr(sp) != 0) {
6345 if (sp->intr_type == MSI_X)
6346 s2io_rem_isr(sp);
6347 s2io_reset(sp);
6348 free_rx_buffers(sp);
6349 return -ENODEV;
6352 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6354 /* Enable tasklet for the device */
6355 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6357 /* Enable select interrupts */
6358 if (sp->intr_type != INTA)
6359 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6360 else {
6361 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6362 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6363 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6364 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6368 atomic_set(&sp->card_state, CARD_UP);
6369 return 0;
6373 * s2io_restart_nic - Resets the NIC.
6374 * @data : long pointer to the device private structure
6375 * Description:
6376 * This function is scheduled to be run by the s2io_tx_watchdog
6377 * function after 0.5 secs to reset the NIC. The idea is to reduce
6378 * the run time of the watch dog routine which is run holding a
6379 * spin lock.
6382 static void s2io_restart_nic(struct work_struct *work)
6384 nic_t *sp = container_of(work, nic_t, rst_timer_task);
6385 struct net_device *dev = sp->dev;
6387 s2io_card_down(sp);
6388 if (s2io_card_up(sp)) {
6389 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6390 dev->name);
6392 netif_wake_queue(dev);
6393 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6394 dev->name);
6399 * s2io_tx_watchdog - Watchdog for transmit side.
6400 * @dev : Pointer to net device structure
6401 * Description:
6402 * This function is triggered if the Tx Queue is stopped
6403 * for a pre-defined amount of time when the Interface is still up.
6404 * If the Interface is jammed in such a situation, the hardware is
6405 * reset (by s2io_close) and restarted again (by s2io_open) to
6406 * overcome any problem that might have been caused in the hardware.
6407 * Return value:
6408 * void
6411 static void s2io_tx_watchdog(struct net_device *dev)
6413 nic_t *sp = dev->priv;
6415 if (netif_carrier_ok(dev)) {
6416 schedule_work(&sp->rst_timer_task);
6417 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6422 * rx_osm_handler - To perform some OS related operations on SKB.
6423 * @sp: private member of the device structure,pointer to s2io_nic structure.
6424 * @skb : the socket buffer pointer.
6425 * @len : length of the packet
6426 * @cksum : FCS checksum of the frame.
6427 * @ring_no : the ring from which this RxD was extracted.
6428 * Description:
6429 * This function is called by the Rx interrupt serivce routine to perform
6430 * some OS related operations on the SKB before passing it to the upper
6431 * layers. It mainly checks if the checksum is OK, if so adds it to the
6432 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6433 * to the upper layer. If the checksum is wrong, it increments the Rx
6434 * packet error count, frees the SKB and returns error.
6435 * Return value:
6436 * SUCCESS on success and -1 on failure.
6438 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6440 nic_t *sp = ring_data->nic;
6441 struct net_device *dev = (struct net_device *) sp->dev;
6442 struct sk_buff *skb = (struct sk_buff *)
6443 ((unsigned long) rxdp->Host_Control);
6444 int ring_no = ring_data->ring_no;
6445 u16 l3_csum, l4_csum;
6446 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6447 lro_t *lro;
6449 skb->dev = dev;
6451 if (err) {
6452 /* Check for parity error */
6453 if (err & 0x1) {
6454 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6458 * Drop the packet if bad transfer code. Exception being
6459 * 0x5, which could be due to unsupported IPv6 extension header.
6460 * In this case, we let stack handle the packet.
6461 * Note that in this case, since checksum will be incorrect,
6462 * stack will validate the same.
6464 if (err && ((err >> 48) != 0x5)) {
6465 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6466 dev->name, err);
6467 sp->stats.rx_crc_errors++;
6468 dev_kfree_skb(skb);
6469 atomic_dec(&sp->rx_bufs_left[ring_no]);
6470 rxdp->Host_Control = 0;
6471 return 0;
6475 /* Updating statistics */
6476 rxdp->Host_Control = 0;
6477 sp->rx_pkt_count++;
6478 sp->stats.rx_packets++;
6479 if (sp->rxd_mode == RXD_MODE_1) {
6480 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6482 sp->stats.rx_bytes += len;
6483 skb_put(skb, len);
6485 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6486 int get_block = ring_data->rx_curr_get_info.block_index;
6487 int get_off = ring_data->rx_curr_get_info.offset;
6488 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6489 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6490 unsigned char *buff = skb_push(skb, buf0_len);
6492 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6493 sp->stats.rx_bytes += buf0_len + buf2_len;
6494 memcpy(buff, ba->ba_0, buf0_len);
6496 if (sp->rxd_mode == RXD_MODE_3A) {
6497 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6499 skb_put(skb, buf1_len);
6500 skb->len += buf2_len;
6501 skb->data_len += buf2_len;
6502 skb->truesize += buf2_len;
6503 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6504 sp->stats.rx_bytes += buf1_len;
6506 } else
6507 skb_put(skb, buf2_len);
6510 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6511 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6512 (sp->rx_csum)) {
6513 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6514 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6515 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6517 * NIC verifies if the Checksum of the received
6518 * frame is Ok or not and accordingly returns
6519 * a flag in the RxD.
6521 skb->ip_summed = CHECKSUM_UNNECESSARY;
6522 if (sp->lro) {
6523 u32 tcp_len;
6524 u8 *tcp;
6525 int ret = 0;
6527 ret = s2io_club_tcp_session(skb->data, &tcp,
6528 &tcp_len, &lro, rxdp, sp);
6529 switch (ret) {
6530 case 3: /* Begin anew */
6531 lro->parent = skb;
6532 goto aggregate;
6533 case 1: /* Aggregate */
6535 lro_append_pkt(sp, lro,
6536 skb, tcp_len);
6537 goto aggregate;
6539 case 4: /* Flush session */
6541 lro_append_pkt(sp, lro,
6542 skb, tcp_len);
6543 queue_rx_frame(lro->parent);
6544 clear_lro_session(lro);
6545 sp->mac_control.stats_info->
6546 sw_stat.flush_max_pkts++;
6547 goto aggregate;
6549 case 2: /* Flush both */
6550 lro->parent->data_len =
6551 lro->frags_len;
6552 sp->mac_control.stats_info->
6553 sw_stat.sending_both++;
6554 queue_rx_frame(lro->parent);
6555 clear_lro_session(lro);
6556 goto send_up;
6557 case 0: /* sessions exceeded */
6558 case -1: /* non-TCP or not
6559 * L2 aggregatable
6561 case 5: /*
6562 * First pkt in session not
6563 * L3/L4 aggregatable
6565 break;
6566 default:
6567 DBG_PRINT(ERR_DBG,
6568 "%s: Samadhana!!\n",
6569 __FUNCTION__);
6570 BUG();
6573 } else {
6575 * Packet with erroneous checksum, let the
6576 * upper layers deal with it.
6578 skb->ip_summed = CHECKSUM_NONE;
6580 } else {
6581 skb->ip_summed = CHECKSUM_NONE;
6584 if (!sp->lro) {
6585 skb->protocol = eth_type_trans(skb, dev);
6586 #ifdef CONFIG_S2IO_NAPI
6587 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6588 /* Queueing the vlan frame to the upper layer */
6589 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6590 RXD_GET_VLAN_TAG(rxdp->Control_2));
6591 } else {
6592 netif_receive_skb(skb);
6594 #else
6595 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6596 /* Queueing the vlan frame to the upper layer */
6597 vlan_hwaccel_rx(skb, sp->vlgrp,
6598 RXD_GET_VLAN_TAG(rxdp->Control_2));
6599 } else {
6600 netif_rx(skb);
6602 #endif
6603 } else {
6604 send_up:
6605 queue_rx_frame(skb);
6607 dev->last_rx = jiffies;
6608 aggregate:
6609 atomic_dec(&sp->rx_bufs_left[ring_no]);
6610 return SUCCESS;
6614 * s2io_link - stops/starts the Tx queue.
6615 * @sp : private member of the device structure, which is a pointer to the
6616 * s2io_nic structure.
6617 * @link : inidicates whether link is UP/DOWN.
6618 * Description:
6619 * This function stops/starts the Tx queue depending on whether the link
6620 * status of the NIC is is down or up. This is called by the Alarm
6621 * interrupt handler whenever a link change interrupt comes up.
6622 * Return value:
6623 * void.
6626 static void s2io_link(nic_t * sp, int link)
6628 struct net_device *dev = (struct net_device *) sp->dev;
6630 if (link != sp->last_link_state) {
6631 if (link == LINK_DOWN) {
6632 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6633 netif_carrier_off(dev);
6634 } else {
6635 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6636 netif_carrier_on(dev);
6639 sp->last_link_state = link;
6643 * get_xena_rev_id - to identify revision ID of xena.
6644 * @pdev : PCI Dev structure
6645 * Description:
6646 * Function to identify the Revision ID of xena.
6647 * Return value:
6648 * returns the revision ID of the device.
6651 static int get_xena_rev_id(struct pci_dev *pdev)
6653 u8 id = 0;
6654 int ret;
6655 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6656 return id;
6660 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6661 * @sp : private member of the device structure, which is a pointer to the
6662 * s2io_nic structure.
6663 * Description:
6664 * This function initializes a few of the PCI and PCI-X configuration registers
6665 * with recommended values.
6666 * Return value:
6667 * void
6670 static void s2io_init_pci(nic_t * sp)
6672 u16 pci_cmd = 0, pcix_cmd = 0;
6674 /* Enable Data Parity Error Recovery in PCI-X command register. */
6675 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6676 &(pcix_cmd));
6677 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6678 (pcix_cmd | 1));
6679 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6680 &(pcix_cmd));
6682 /* Set the PErr Response bit in PCI command register. */
6683 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6684 pci_write_config_word(sp->pdev, PCI_COMMAND,
6685 (pci_cmd | PCI_COMMAND_PARITY));
6686 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6689 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6691 if ( tx_fifo_num > 8) {
6692 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6693 "supported\n");
6694 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6695 tx_fifo_num = 8;
6697 if ( rx_ring_num > 8) {
6698 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6699 "supported\n");
6700 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6701 rx_ring_num = 8;
6703 #ifdef CONFIG_S2IO_NAPI
6704 if (*dev_intr_type != INTA) {
6705 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6706 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6707 *dev_intr_type = INTA;
6709 #endif
6710 #ifndef CONFIG_PCI_MSI
6711 if (*dev_intr_type != INTA) {
6712 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6713 "MSI/MSI-X. Defaulting to INTA\n");
6714 *dev_intr_type = INTA;
6716 #else
6717 if (*dev_intr_type > MSI_X) {
6718 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6719 "Defaulting to INTA\n");
6720 *dev_intr_type = INTA;
6722 #endif
6723 if ((*dev_intr_type == MSI_X) &&
6724 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6725 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6726 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6727 "Defaulting to INTA\n");
6728 *dev_intr_type = INTA;
6730 if (rx_ring_mode > 3) {
6731 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6732 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6733 rx_ring_mode = 3;
6735 return SUCCESS;
6739 * s2io_init_nic - Initialization of the adapter .
6740 * @pdev : structure containing the PCI related information of the device.
6741 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6742 * Description:
6743 * The function initializes an adapter identified by the pci_dec structure.
6744 * All OS related initialization including memory and device structure and
6745 * initlaization of the device private variable is done. Also the swapper
6746 * control register is initialized to enable read and write into the I/O
6747 * registers of the device.
6748 * Return value:
6749 * returns 0 on success and negative on failure.
6752 static int __devinit
6753 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6755 nic_t *sp;
6756 struct net_device *dev;
6757 int i, j, ret;
6758 int dma_flag = FALSE;
6759 u32 mac_up, mac_down;
6760 u64 val64 = 0, tmp64 = 0;
6761 XENA_dev_config_t __iomem *bar0 = NULL;
6762 u16 subid;
6763 mac_info_t *mac_control;
6764 struct config_param *config;
6765 int mode;
6766 u8 dev_intr_type = intr_type;
6768 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6769 return ret;
6771 if ((ret = pci_enable_device(pdev))) {
6772 DBG_PRINT(ERR_DBG,
6773 "s2io_init_nic: pci_enable_device failed\n");
6774 return ret;
6777 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6778 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6779 dma_flag = TRUE;
6780 if (pci_set_consistent_dma_mask
6781 (pdev, DMA_64BIT_MASK)) {
6782 DBG_PRINT(ERR_DBG,
6783 "Unable to obtain 64bit DMA for \
6784 consistent allocations\n");
6785 pci_disable_device(pdev);
6786 return -ENOMEM;
6788 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6789 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6790 } else {
6791 pci_disable_device(pdev);
6792 return -ENOMEM;
6794 if (dev_intr_type != MSI_X) {
6795 if (pci_request_regions(pdev, s2io_driver_name)) {
6796 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6797 pci_disable_device(pdev);
6798 return -ENODEV;
6801 else {
6802 if (!(request_mem_region(pci_resource_start(pdev, 0),
6803 pci_resource_len(pdev, 0), s2io_driver_name))) {
6804 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6805 pci_disable_device(pdev);
6806 return -ENODEV;
6808 if (!(request_mem_region(pci_resource_start(pdev, 2),
6809 pci_resource_len(pdev, 2), s2io_driver_name))) {
6810 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6811 release_mem_region(pci_resource_start(pdev, 0),
6812 pci_resource_len(pdev, 0));
6813 pci_disable_device(pdev);
6814 return -ENODEV;
6818 dev = alloc_etherdev(sizeof(nic_t));
6819 if (dev == NULL) {
6820 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6821 pci_disable_device(pdev);
6822 pci_release_regions(pdev);
6823 return -ENODEV;
6826 pci_set_master(pdev);
6827 pci_set_drvdata(pdev, dev);
6828 SET_MODULE_OWNER(dev);
6829 SET_NETDEV_DEV(dev, &pdev->dev);
6831 /* Private member variable initialized to s2io NIC structure */
6832 sp = dev->priv;
6833 memset(sp, 0, sizeof(nic_t));
6834 sp->dev = dev;
6835 sp->pdev = pdev;
6836 sp->high_dma_flag = dma_flag;
6837 sp->device_enabled_once = FALSE;
6838 if (rx_ring_mode == 1)
6839 sp->rxd_mode = RXD_MODE_1;
6840 if (rx_ring_mode == 2)
6841 sp->rxd_mode = RXD_MODE_3B;
6842 if (rx_ring_mode == 3)
6843 sp->rxd_mode = RXD_MODE_3A;
6845 sp->intr_type = dev_intr_type;
6847 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6848 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6849 sp->device_type = XFRAME_II_DEVICE;
6850 else
6851 sp->device_type = XFRAME_I_DEVICE;
6853 sp->lro = lro;
6855 /* Initialize some PCI/PCI-X fields of the NIC. */
6856 s2io_init_pci(sp);
6859 * Setting the device configuration parameters.
6860 * Most of these parameters can be specified by the user during
6861 * module insertion as they are module loadable parameters. If
6862 * these parameters are not not specified during load time, they
6863 * are initialized with default values.
6865 mac_control = &sp->mac_control;
6866 config = &sp->config;
6868 /* Tx side parameters. */
6869 config->tx_fifo_num = tx_fifo_num;
6870 for (i = 0; i < MAX_TX_FIFOS; i++) {
6871 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6872 config->tx_cfg[i].fifo_priority = i;
6875 /* mapping the QoS priority to the configured fifos */
6876 for (i = 0; i < MAX_TX_FIFOS; i++)
6877 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6879 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6880 for (i = 0; i < config->tx_fifo_num; i++) {
6881 config->tx_cfg[i].f_no_snoop =
6882 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6883 if (config->tx_cfg[i].fifo_len < 65) {
6884 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6885 break;
6888 /* + 2 because one Txd for skb->data and one Txd for UFO */
6889 config->max_txds = MAX_SKB_FRAGS + 2;
6891 /* Rx side parameters. */
6892 config->rx_ring_num = rx_ring_num;
6893 for (i = 0; i < MAX_RX_RINGS; i++) {
6894 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6895 (rxd_count[sp->rxd_mode] + 1);
6896 config->rx_cfg[i].ring_priority = i;
6899 for (i = 0; i < rx_ring_num; i++) {
6900 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6901 config->rx_cfg[i].f_no_snoop =
6902 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6905 /* Setting Mac Control parameters */
6906 mac_control->rmac_pause_time = rmac_pause_time;
6907 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6908 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6911 /* Initialize Ring buffer parameters. */
6912 for (i = 0; i < config->rx_ring_num; i++)
6913 atomic_set(&sp->rx_bufs_left[i], 0);
6915 /* Initialize the number of ISRs currently running */
6916 atomic_set(&sp->isr_cnt, 0);
6918 /* initialize the shared memory used by the NIC and the host */
6919 if (init_shared_mem(sp)) {
6920 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6921 dev->name);
6922 ret = -ENOMEM;
6923 goto mem_alloc_failed;
6926 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6927 pci_resource_len(pdev, 0));
6928 if (!sp->bar0) {
6929 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6930 dev->name);
6931 ret = -ENOMEM;
6932 goto bar0_remap_failed;
6935 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6936 pci_resource_len(pdev, 2));
6937 if (!sp->bar1) {
6938 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6939 dev->name);
6940 ret = -ENOMEM;
6941 goto bar1_remap_failed;
6944 dev->irq = pdev->irq;
6945 dev->base_addr = (unsigned long) sp->bar0;
6947 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6948 for (j = 0; j < MAX_TX_FIFOS; j++) {
6949 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6950 (sp->bar1 + (j * 0x00020000));
6953 /* Driver entry points */
6954 dev->open = &s2io_open;
6955 dev->stop = &s2io_close;
6956 dev->hard_start_xmit = &s2io_xmit;
6957 dev->get_stats = &s2io_get_stats;
6958 dev->set_multicast_list = &s2io_set_multicast;
6959 dev->do_ioctl = &s2io_ioctl;
6960 dev->change_mtu = &s2io_change_mtu;
6961 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6962 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6963 dev->vlan_rx_register = s2io_vlan_rx_register;
6964 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6967 * will use eth_mac_addr() for dev->set_mac_address
6968 * mac address will be set every time dev->open() is called
6970 #if defined(CONFIG_S2IO_NAPI)
6971 dev->poll = s2io_poll;
6972 dev->weight = 32;
6973 #endif
6975 #ifdef CONFIG_NET_POLL_CONTROLLER
6976 dev->poll_controller = s2io_netpoll;
6977 #endif
6979 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6980 if (sp->high_dma_flag == TRUE)
6981 dev->features |= NETIF_F_HIGHDMA;
6982 #ifdef NETIF_F_TSO
6983 dev->features |= NETIF_F_TSO;
6984 #endif
6985 #ifdef NETIF_F_TSO6
6986 dev->features |= NETIF_F_TSO6;
6987 #endif
6988 if (sp->device_type & XFRAME_II_DEVICE) {
6989 dev->features |= NETIF_F_UFO;
6990 dev->features |= NETIF_F_HW_CSUM;
6993 dev->tx_timeout = &s2io_tx_watchdog;
6994 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6995 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6996 INIT_WORK(&sp->set_link_task, s2io_set_link);
6998 pci_save_state(sp->pdev);
7000 /* Setting swapper control on the NIC, for proper reset operation */
7001 if (s2io_set_swapper(sp)) {
7002 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7003 dev->name);
7004 ret = -EAGAIN;
7005 goto set_swap_failed;
7008 /* Verify if the Herc works on the slot its placed into */
7009 if (sp->device_type & XFRAME_II_DEVICE) {
7010 mode = s2io_verify_pci_mode(sp);
7011 if (mode < 0) {
7012 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7013 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7014 ret = -EBADSLT;
7015 goto set_swap_failed;
7019 /* Not needed for Herc */
7020 if (sp->device_type & XFRAME_I_DEVICE) {
7022 * Fix for all "FFs" MAC address problems observed on
7023 * Alpha platforms
7025 fix_mac_address(sp);
7026 s2io_reset(sp);
7030 * MAC address initialization.
7031 * For now only one mac address will be read and used.
7033 bar0 = sp->bar0;
7034 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7035 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7036 writeq(val64, &bar0->rmac_addr_cmd_mem);
7037 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7038 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7039 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7040 mac_down = (u32) tmp64;
7041 mac_up = (u32) (tmp64 >> 32);
7043 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7045 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7046 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7047 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7048 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7049 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7050 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7052 /* Set the factory defined MAC address initially */
7053 dev->addr_len = ETH_ALEN;
7054 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7056 /* reset Nic and bring it to known state */
7057 s2io_reset(sp);
7060 * Initialize the tasklet status and link state flags
7061 * and the card state parameter
7063 atomic_set(&(sp->card_state), 0);
7064 sp->tasklet_status = 0;
7065 sp->link_state = 0;
7067 /* Initialize spinlocks */
7068 spin_lock_init(&sp->tx_lock);
7069 #ifndef CONFIG_S2IO_NAPI
7070 spin_lock_init(&sp->put_lock);
7071 #endif
7072 spin_lock_init(&sp->rx_lock);
7075 * SXE-002: Configure link and activity LED to init state
7076 * on driver load.
7078 subid = sp->pdev->subsystem_device;
7079 if ((subid & 0xFF) >= 0x07) {
7080 val64 = readq(&bar0->gpio_control);
7081 val64 |= 0x0000800000000000ULL;
7082 writeq(val64, &bar0->gpio_control);
7083 val64 = 0x0411040400000000ULL;
7084 writeq(val64, (void __iomem *) bar0 + 0x2700);
7085 val64 = readq(&bar0->gpio_control);
7088 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7090 if (register_netdev(dev)) {
7091 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7092 ret = -ENODEV;
7093 goto register_failed;
7095 s2io_vpd_read(sp);
7096 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7097 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7098 sp->product_name, get_xena_rev_id(sp->pdev));
7099 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7100 s2io_driver_version);
7101 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7102 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7103 sp->def_mac_addr[0].mac_addr[0],
7104 sp->def_mac_addr[0].mac_addr[1],
7105 sp->def_mac_addr[0].mac_addr[2],
7106 sp->def_mac_addr[0].mac_addr[3],
7107 sp->def_mac_addr[0].mac_addr[4],
7108 sp->def_mac_addr[0].mac_addr[5]);
7109 if (sp->device_type & XFRAME_II_DEVICE) {
7110 mode = s2io_print_pci_mode(sp);
7111 if (mode < 0) {
7112 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7113 ret = -EBADSLT;
7114 unregister_netdev(dev);
7115 goto set_swap_failed;
7118 switch(sp->rxd_mode) {
7119 case RXD_MODE_1:
7120 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7121 dev->name);
7122 break;
7123 case RXD_MODE_3B:
7124 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7125 dev->name);
7126 break;
7127 case RXD_MODE_3A:
7128 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7129 dev->name);
7130 break;
7132 #ifdef CONFIG_S2IO_NAPI
7133 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7134 #endif
7135 switch(sp->intr_type) {
7136 case INTA:
7137 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7138 break;
7139 case MSI:
7140 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7141 break;
7142 case MSI_X:
7143 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7144 break;
7146 if (sp->lro)
7147 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7148 dev->name);
7150 /* Initialize device name */
7151 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7153 /* Initialize bimodal Interrupts */
7154 sp->config.bimodal = bimodal;
7155 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7156 sp->config.bimodal = 0;
7157 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7158 dev->name);
7162 * Make Link state as off at this point, when the Link change
7163 * interrupt comes the state will be automatically changed to
7164 * the right state.
7166 netif_carrier_off(dev);
7168 return 0;
7170 register_failed:
7171 set_swap_failed:
7172 iounmap(sp->bar1);
7173 bar1_remap_failed:
7174 iounmap(sp->bar0);
7175 bar0_remap_failed:
7176 mem_alloc_failed:
7177 free_shared_mem(sp);
7178 pci_disable_device(pdev);
7179 if (dev_intr_type != MSI_X)
7180 pci_release_regions(pdev);
7181 else {
7182 release_mem_region(pci_resource_start(pdev, 0),
7183 pci_resource_len(pdev, 0));
7184 release_mem_region(pci_resource_start(pdev, 2),
7185 pci_resource_len(pdev, 2));
7187 pci_set_drvdata(pdev, NULL);
7188 free_netdev(dev);
7190 return ret;
7194 * s2io_rem_nic - Free the PCI device
7195 * @pdev: structure containing the PCI related information of the device.
7196 * Description: This function is called by the Pci subsystem to release a
7197 * PCI device and free up all resource held up by the device. This could
7198 * be in response to a Hot plug event or when the driver is to be removed
7199 * from memory.
7202 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7204 struct net_device *dev =
7205 (struct net_device *) pci_get_drvdata(pdev);
7206 nic_t *sp;
7208 if (dev == NULL) {
7209 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7210 return;
7213 sp = dev->priv;
7214 unregister_netdev(dev);
7216 free_shared_mem(sp);
7217 iounmap(sp->bar0);
7218 iounmap(sp->bar1);
7219 pci_disable_device(pdev);
7220 if (sp->intr_type != MSI_X)
7221 pci_release_regions(pdev);
7222 else {
7223 release_mem_region(pci_resource_start(pdev, 0),
7224 pci_resource_len(pdev, 0));
7225 release_mem_region(pci_resource_start(pdev, 2),
7226 pci_resource_len(pdev, 2));
7228 pci_set_drvdata(pdev, NULL);
7229 free_netdev(dev);
7233 * s2io_starter - Entry point for the driver
7234 * Description: This function is the entry point for the driver. It verifies
7235 * the module loadable parameters and initializes PCI configuration space.
7238 int __init s2io_starter(void)
7240 return pci_register_driver(&s2io_driver);
7244 * s2io_closer - Cleanup routine for the driver
7245 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7248 static void s2io_closer(void)
7250 pci_unregister_driver(&s2io_driver);
7251 DBG_PRINT(INIT_DBG, "cleanup done\n");
7254 module_init(s2io_starter);
7255 module_exit(s2io_closer);
7257 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7258 struct tcphdr **tcp, RxD_t *rxdp)
7260 int ip_off;
7261 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7263 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7264 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7265 __FUNCTION__);
7266 return -1;
7269 /* TODO:
7270 * By default the VLAN field in the MAC is stripped by the card, if this
7271 * feature is turned off in rx_pa_cfg register, then the ip_off field
7272 * has to be shifted by a further 2 bytes
7274 switch (l2_type) {
7275 case 0: /* DIX type */
7276 case 4: /* DIX type with VLAN */
7277 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7278 break;
7279 /* LLC, SNAP etc are considered non-mergeable */
7280 default:
7281 return -1;
7284 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7285 ip_len = (u8)((*ip)->ihl);
7286 ip_len <<= 2;
7287 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7289 return 0;
7292 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7293 struct tcphdr *tcp)
7295 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7296 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7297 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7298 return -1;
7299 return 0;
7302 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7304 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7307 static void initiate_new_session(lro_t *lro, u8 *l2h,
7308 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7310 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7311 lro->l2h = l2h;
7312 lro->iph = ip;
7313 lro->tcph = tcp;
7314 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7315 lro->tcp_ack = ntohl(tcp->ack_seq);
7316 lro->sg_num = 1;
7317 lro->total_len = ntohs(ip->tot_len);
7318 lro->frags_len = 0;
7320 * check if we saw TCP timestamp. Other consistency checks have
7321 * already been done.
7323 if (tcp->doff == 8) {
7324 u32 *ptr;
7325 ptr = (u32 *)(tcp+1);
7326 lro->saw_ts = 1;
7327 lro->cur_tsval = *(ptr+1);
7328 lro->cur_tsecr = *(ptr+2);
7330 lro->in_use = 1;
7333 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7335 struct iphdr *ip = lro->iph;
7336 struct tcphdr *tcp = lro->tcph;
7337 u16 nchk;
7338 StatInfo_t *statinfo = sp->mac_control.stats_info;
7339 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7341 /* Update L3 header */
7342 ip->tot_len = htons(lro->total_len);
7343 ip->check = 0;
7344 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7345 ip->check = nchk;
7347 /* Update L4 header */
7348 tcp->ack_seq = lro->tcp_ack;
7349 tcp->window = lro->window;
7351 /* Update tsecr field if this session has timestamps enabled */
7352 if (lro->saw_ts) {
7353 u32 *ptr = (u32 *)(tcp + 1);
7354 *(ptr+2) = lro->cur_tsecr;
7357 /* Update counters required for calculation of
7358 * average no. of packets aggregated.
7360 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7361 statinfo->sw_stat.num_aggregations++;
7364 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7365 struct tcphdr *tcp, u32 l4_pyld)
7367 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7368 lro->total_len += l4_pyld;
7369 lro->frags_len += l4_pyld;
7370 lro->tcp_next_seq += l4_pyld;
7371 lro->sg_num++;
7373 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7374 lro->tcp_ack = tcp->ack_seq;
7375 lro->window = tcp->window;
7377 if (lro->saw_ts) {
7378 u32 *ptr;
7379 /* Update tsecr and tsval from this packet */
7380 ptr = (u32 *) (tcp + 1);
7381 lro->cur_tsval = *(ptr + 1);
7382 lro->cur_tsecr = *(ptr + 2);
7386 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7387 struct tcphdr *tcp, u32 tcp_pyld_len)
7389 u8 *ptr;
7391 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7393 if (!tcp_pyld_len) {
7394 /* Runt frame or a pure ack */
7395 return -1;
7398 if (ip->ihl != 5) /* IP has options */
7399 return -1;
7401 /* If we see CE codepoint in IP header, packet is not mergeable */
7402 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7403 return -1;
7405 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7406 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7407 tcp->ece || tcp->cwr || !tcp->ack) {
7409 * Currently recognize only the ack control word and
7410 * any other control field being set would result in
7411 * flushing the LRO session
7413 return -1;
7417 * Allow only one TCP timestamp option. Don't aggregate if
7418 * any other options are detected.
7420 if (tcp->doff != 5 && tcp->doff != 8)
7421 return -1;
7423 if (tcp->doff == 8) {
7424 ptr = (u8 *)(tcp + 1);
7425 while (*ptr == TCPOPT_NOP)
7426 ptr++;
7427 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7428 return -1;
7430 /* Ensure timestamp value increases monotonically */
7431 if (l_lro)
7432 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7433 return -1;
7435 /* timestamp echo reply should be non-zero */
7436 if (*((u32 *)(ptr+6)) == 0)
7437 return -1;
7440 return 0;
7443 static int
7444 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7445 RxD_t *rxdp, nic_t *sp)
7447 struct iphdr *ip;
7448 struct tcphdr *tcph;
7449 int ret = 0, i;
7451 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7452 rxdp))) {
7453 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7454 ip->saddr, ip->daddr);
7455 } else {
7456 return ret;
7459 tcph = (struct tcphdr *)*tcp;
7460 *tcp_len = get_l4_pyld_length(ip, tcph);
7461 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7462 lro_t *l_lro = &sp->lro0_n[i];
7463 if (l_lro->in_use) {
7464 if (check_for_socket_match(l_lro, ip, tcph))
7465 continue;
7466 /* Sock pair matched */
7467 *lro = l_lro;
7469 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7470 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7471 "0x%x, actual 0x%x\n", __FUNCTION__,
7472 (*lro)->tcp_next_seq,
7473 ntohl(tcph->seq));
7475 sp->mac_control.stats_info->
7476 sw_stat.outof_sequence_pkts++;
7477 ret = 2;
7478 break;
7481 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7482 ret = 1; /* Aggregate */
7483 else
7484 ret = 2; /* Flush both */
7485 break;
7489 if (ret == 0) {
7490 /* Before searching for available LRO objects,
7491 * check if the pkt is L3/L4 aggregatable. If not
7492 * don't create new LRO session. Just send this
7493 * packet up.
7495 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7496 return 5;
7499 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7500 lro_t *l_lro = &sp->lro0_n[i];
7501 if (!(l_lro->in_use)) {
7502 *lro = l_lro;
7503 ret = 3; /* Begin anew */
7504 break;
7509 if (ret == 0) { /* sessions exceeded */
7510 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7511 __FUNCTION__);
7512 *lro = NULL;
7513 return ret;
7516 switch (ret) {
7517 case 3:
7518 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7519 break;
7520 case 2:
7521 update_L3L4_header(sp, *lro);
7522 break;
7523 case 1:
7524 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7525 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7526 update_L3L4_header(sp, *lro);
7527 ret = 4; /* Flush the LRO */
7529 break;
7530 default:
7531 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7532 __FUNCTION__);
7533 break;
7536 return ret;
7539 static void clear_lro_session(lro_t *lro)
7541 static u16 lro_struct_size = sizeof(lro_t);
7543 memset(lro, 0, lro_struct_size);
7546 static void queue_rx_frame(struct sk_buff *skb)
7548 struct net_device *dev = skb->dev;
7550 skb->protocol = eth_type_trans(skb, dev);
7551 #ifdef CONFIG_S2IO_NAPI
7552 netif_receive_skb(skb);
7553 #else
7554 netif_rx(skb);
7555 #endif
7558 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7559 u32 tcp_len)
7561 struct sk_buff *first = lro->parent;
7563 first->len += tcp_len;
7564 first->data_len = lro->frags_len;
7565 skb_pull(skb, (skb->len - tcp_len));
7566 if (skb_shinfo(first)->frag_list)
7567 lro->last_frag->next = skb;
7568 else
7569 skb_shinfo(first)->frag_list = skb;
7570 lro->last_frag = skb;
7571 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7572 return;