[PATCH] ad1848 section fix
[linux-2.6/kvm.git] / mm / slab.c
blobd31a06bfbea5c78998e3c68a5a484b98b3e4579f
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 #ifdef CONFIG_DEBUG_SLAB
127 #define DEBUG 1
128 #define STATS 1
129 #define FORCED_DEBUG 1
130 #else
131 #define DEBUG 0
132 #define STATS 0
133 #define FORCED_DEBUG 0
134 #endif
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
141 #endif
143 #ifndef ARCH_KMALLOC_MINALIGN
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
152 #define ARCH_KMALLOC_MINALIGN 0
153 #endif
155 #ifndef ARCH_SLAB_MINALIGN
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
186 * kmem_bufctl_t:
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210 /* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
213 static unsigned long offslab_limit;
216 * struct slab
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct slab {
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
232 * struct slab_rcu
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
245 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct slab_rcu {
248 struct rcu_head head;
249 struct kmem_cache *cachep;
250 void *addr;
254 * struct array_cache
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
265 struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
270 spinlock_t lock;
271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init {
285 struct array_cache cache;
286 void *entries[BOOT_CPUCACHE_ENTRIES];
290 * The slab lists for all objects.
292 struct kmem_list3 {
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
297 unsigned int free_limit;
298 unsigned int colour_next; /* Per-node cache coloring */
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
307 * Need this for bootstrapping a per node allocator.
309 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311 #define CACHE_CACHE 0
312 #define SIZE_AC 1
313 #define SIZE_L3 (1 + MAX_NUMNODES)
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
319 static __always_inline int index_of(const size_t size)
321 extern void __bad_size(void);
323 if (__builtin_constant_p(size)) {
324 int i = 0;
326 #define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331 #include "linux/kmalloc_sizes.h"
332 #undef CACHE
333 __bad_size();
334 } else
335 __bad_size();
336 return 0;
339 #define INDEX_AC index_of(sizeof(struct arraycache_init))
340 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
342 static void kmem_list3_init(struct kmem_list3 *parent)
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
349 parent->colour_next = 0;
350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
355 #define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
359 } while (0)
361 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
369 * struct kmem_cache
371 * manages a cache.
374 struct kmem_cache {
375 /* 1) per-cpu data, touched during every alloc/free */
376 struct array_cache *array[NR_CPUS];
377 /* 2) Cache tunables. Protected by cache_chain_mutex */
378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
382 unsigned int buffer_size;
383 /* 3) touched by every alloc & free from the backend */
384 struct kmem_list3 *nodelists[MAX_NUMNODES];
386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
389 /* 4) cache_grow/shrink */
390 /* order of pgs per slab (2^n) */
391 unsigned int gfporder;
393 /* force GFP flags, e.g. GFP_DMA */
394 gfp_t gfpflags;
396 size_t colour; /* cache colouring range */
397 unsigned int colour_off; /* colour offset */
398 struct kmem_cache *slabp_cache;
399 unsigned int slab_size;
400 unsigned int dflags; /* dynamic flags */
402 /* constructor func */
403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
405 /* de-constructor func */
406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
408 /* 5) cache creation/removal */
409 const char *name;
410 struct list_head next;
412 /* 6) statistics */
413 #if STATS
414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
423 unsigned long node_overflow;
424 atomic_t allochit;
425 atomic_t allocmiss;
426 atomic_t freehit;
427 atomic_t freemiss;
428 #endif
429 #if DEBUG
431 * If debugging is enabled, then the allocator can add additional
432 * fields and/or padding to every object. buffer_size contains the total
433 * object size including these internal fields, the following two
434 * variables contain the offset to the user object and its size.
436 int obj_offset;
437 int obj_size;
438 #endif
441 #define CFLGS_OFF_SLAB (0x80000000UL)
442 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
444 #define BATCHREFILL_LIMIT 16
446 * Optimization question: fewer reaps means less probability for unnessary
447 * cpucache drain/refill cycles.
449 * OTOH the cpuarrays can contain lots of objects,
450 * which could lock up otherwise freeable slabs.
452 #define REAPTIMEOUT_CPUC (2*HZ)
453 #define REAPTIMEOUT_LIST3 (4*HZ)
455 #if STATS
456 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
457 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
458 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
459 #define STATS_INC_GROWN(x) ((x)->grown++)
460 #define STATS_INC_REAPED(x) ((x)->reaped++)
461 #define STATS_SET_HIGH(x) \
462 do { \
463 if ((x)->num_active > (x)->high_mark) \
464 (x)->high_mark = (x)->num_active; \
465 } while (0)
466 #define STATS_INC_ERR(x) ((x)->errors++)
467 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
468 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
469 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
470 #define STATS_SET_FREEABLE(x, i) \
471 do { \
472 if ((x)->max_freeable < i) \
473 (x)->max_freeable = i; \
474 } while (0)
475 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
476 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
477 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
478 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
479 #else
480 #define STATS_INC_ACTIVE(x) do { } while (0)
481 #define STATS_DEC_ACTIVE(x) do { } while (0)
482 #define STATS_INC_ALLOCED(x) do { } while (0)
483 #define STATS_INC_GROWN(x) do { } while (0)
484 #define STATS_INC_REAPED(x) do { } while (0)
485 #define STATS_SET_HIGH(x) do { } while (0)
486 #define STATS_INC_ERR(x) do { } while (0)
487 #define STATS_INC_NODEALLOCS(x) do { } while (0)
488 #define STATS_INC_NODEFREES(x) do { } while (0)
489 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
490 #define STATS_SET_FREEABLE(x, i) do { } while (0)
491 #define STATS_INC_ALLOCHIT(x) do { } while (0)
492 #define STATS_INC_ALLOCMISS(x) do { } while (0)
493 #define STATS_INC_FREEHIT(x) do { } while (0)
494 #define STATS_INC_FREEMISS(x) do { } while (0)
495 #endif
497 #if DEBUG
499 * Magic nums for obj red zoning.
500 * Placed in the first word before and the first word after an obj.
502 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
503 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
505 /* ...and for poisoning */
506 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
507 #define POISON_FREE 0x6b /* for use-after-free poisoning */
508 #define POISON_END 0xa5 /* end-byte of poisoning */
511 * memory layout of objects:
512 * 0 : objp
513 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
514 * the end of an object is aligned with the end of the real
515 * allocation. Catches writes behind the end of the allocation.
516 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
517 * redzone word.
518 * cachep->obj_offset: The real object.
519 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
520 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
521 * [BYTES_PER_WORD long]
523 static int obj_offset(struct kmem_cache *cachep)
525 return cachep->obj_offset;
528 static int obj_size(struct kmem_cache *cachep)
530 return cachep->obj_size;
533 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
539 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
541 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542 if (cachep->flags & SLAB_STORE_USER)
543 return (unsigned long *)(objp + cachep->buffer_size -
544 2 * BYTES_PER_WORD);
545 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
548 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
550 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
551 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
554 #else
556 #define obj_offset(x) 0
557 #define obj_size(cachep) (cachep->buffer_size)
558 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
559 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
560 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
562 #endif
565 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
566 * order.
568 #if defined(CONFIG_LARGE_ALLOCS)
569 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
570 #define MAX_GFP_ORDER 13 /* up to 32Mb */
571 #elif defined(CONFIG_MMU)
572 #define MAX_OBJ_ORDER 5 /* 32 pages */
573 #define MAX_GFP_ORDER 5 /* 32 pages */
574 #else
575 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
576 #define MAX_GFP_ORDER 8 /* up to 1Mb */
577 #endif
580 * Do not go above this order unless 0 objects fit into the slab.
582 #define BREAK_GFP_ORDER_HI 1
583 #define BREAK_GFP_ORDER_LO 0
584 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
587 * Functions for storing/retrieving the cachep and or slab from the page
588 * allocator. These are used to find the slab an obj belongs to. With kfree(),
589 * these are used to find the cache which an obj belongs to.
591 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
593 page->lru.next = (struct list_head *)cache;
596 static inline struct kmem_cache *page_get_cache(struct page *page)
598 if (unlikely(PageCompound(page)))
599 page = (struct page *)page_private(page);
600 return (struct kmem_cache *)page->lru.next;
603 static inline void page_set_slab(struct page *page, struct slab *slab)
605 page->lru.prev = (struct list_head *)slab;
608 static inline struct slab *page_get_slab(struct page *page)
610 if (unlikely(PageCompound(page)))
611 page = (struct page *)page_private(page);
612 return (struct slab *)page->lru.prev;
615 static inline struct kmem_cache *virt_to_cache(const void *obj)
617 struct page *page = virt_to_page(obj);
618 return page_get_cache(page);
621 static inline struct slab *virt_to_slab(const void *obj)
623 struct page *page = virt_to_page(obj);
624 return page_get_slab(page);
627 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
628 unsigned int idx)
630 return slab->s_mem + cache->buffer_size * idx;
633 static inline unsigned int obj_to_index(struct kmem_cache *cache,
634 struct slab *slab, void *obj)
636 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
640 * These are the default caches for kmalloc. Custom caches can have other sizes.
642 struct cache_sizes malloc_sizes[] = {
643 #define CACHE(x) { .cs_size = (x) },
644 #include <linux/kmalloc_sizes.h>
645 CACHE(ULONG_MAX)
646 #undef CACHE
648 EXPORT_SYMBOL(malloc_sizes);
650 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
651 struct cache_names {
652 char *name;
653 char *name_dma;
656 static struct cache_names __initdata cache_names[] = {
657 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
658 #include <linux/kmalloc_sizes.h>
659 {NULL,}
660 #undef CACHE
663 static struct arraycache_init initarray_cache __initdata =
664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665 static struct arraycache_init initarray_generic =
666 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
668 /* internal cache of cache description objs */
669 static struct kmem_cache cache_cache = {
670 .batchcount = 1,
671 .limit = BOOT_CPUCACHE_ENTRIES,
672 .shared = 1,
673 .buffer_size = sizeof(struct kmem_cache),
674 .name = "kmem_cache",
675 #if DEBUG
676 .obj_size = sizeof(struct kmem_cache),
677 #endif
680 /* Guard access to the cache-chain. */
681 static DEFINE_MUTEX(cache_chain_mutex);
682 static struct list_head cache_chain;
685 * vm_enough_memory() looks at this to determine how many slab-allocated pages
686 * are possibly freeable under pressure
688 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
690 atomic_t slab_reclaim_pages;
693 * chicken and egg problem: delay the per-cpu array allocation
694 * until the general caches are up.
696 static enum {
697 NONE,
698 PARTIAL_AC,
699 PARTIAL_L3,
700 FULL
701 } g_cpucache_up;
704 * used by boot code to determine if it can use slab based allocator
706 int slab_is_available(void)
708 return g_cpucache_up == FULL;
711 static DEFINE_PER_CPU(struct work_struct, reap_work);
713 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
714 int node);
715 static void enable_cpucache(struct kmem_cache *cachep);
716 static void cache_reap(void *unused);
717 static int __node_shrink(struct kmem_cache *cachep, int node);
719 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
721 return cachep->array[smp_processor_id()];
724 static inline struct kmem_cache *__find_general_cachep(size_t size,
725 gfp_t gfpflags)
727 struct cache_sizes *csizep = malloc_sizes;
729 #if DEBUG
730 /* This happens if someone tries to call
731 * kmem_cache_create(), or __kmalloc(), before
732 * the generic caches are initialized.
734 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
735 #endif
736 while (size > csizep->cs_size)
737 csizep++;
740 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
741 * has cs_{dma,}cachep==NULL. Thus no special case
742 * for large kmalloc calls required.
744 if (unlikely(gfpflags & GFP_DMA))
745 return csizep->cs_dmacachep;
746 return csizep->cs_cachep;
749 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
751 return __find_general_cachep(size, gfpflags);
753 EXPORT_SYMBOL(kmem_find_general_cachep);
755 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
757 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
761 * Calculate the number of objects and left-over bytes for a given buffer size.
763 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
764 size_t align, int flags, size_t *left_over,
765 unsigned int *num)
767 int nr_objs;
768 size_t mgmt_size;
769 size_t slab_size = PAGE_SIZE << gfporder;
772 * The slab management structure can be either off the slab or
773 * on it. For the latter case, the memory allocated for a
774 * slab is used for:
776 * - The struct slab
777 * - One kmem_bufctl_t for each object
778 * - Padding to respect alignment of @align
779 * - @buffer_size bytes for each object
781 * If the slab management structure is off the slab, then the
782 * alignment will already be calculated into the size. Because
783 * the slabs are all pages aligned, the objects will be at the
784 * correct alignment when allocated.
786 if (flags & CFLGS_OFF_SLAB) {
787 mgmt_size = 0;
788 nr_objs = slab_size / buffer_size;
790 if (nr_objs > SLAB_LIMIT)
791 nr_objs = SLAB_LIMIT;
792 } else {
794 * Ignore padding for the initial guess. The padding
795 * is at most @align-1 bytes, and @buffer_size is at
796 * least @align. In the worst case, this result will
797 * be one greater than the number of objects that fit
798 * into the memory allocation when taking the padding
799 * into account.
801 nr_objs = (slab_size - sizeof(struct slab)) /
802 (buffer_size + sizeof(kmem_bufctl_t));
805 * This calculated number will be either the right
806 * amount, or one greater than what we want.
808 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
809 > slab_size)
810 nr_objs--;
812 if (nr_objs > SLAB_LIMIT)
813 nr_objs = SLAB_LIMIT;
815 mgmt_size = slab_mgmt_size(nr_objs, align);
817 *num = nr_objs;
818 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
821 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
823 static void __slab_error(const char *function, struct kmem_cache *cachep,
824 char *msg)
826 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
827 function, cachep->name, msg);
828 dump_stack();
831 #ifdef CONFIG_NUMA
833 * Special reaping functions for NUMA systems called from cache_reap().
834 * These take care of doing round robin flushing of alien caches (containing
835 * objects freed on different nodes from which they were allocated) and the
836 * flushing of remote pcps by calling drain_node_pages.
838 static DEFINE_PER_CPU(unsigned long, reap_node);
840 static void init_reap_node(int cpu)
842 int node;
844 node = next_node(cpu_to_node(cpu), node_online_map);
845 if (node == MAX_NUMNODES)
846 node = first_node(node_online_map);
848 __get_cpu_var(reap_node) = node;
851 static void next_reap_node(void)
853 int node = __get_cpu_var(reap_node);
856 * Also drain per cpu pages on remote zones
858 if (node != numa_node_id())
859 drain_node_pages(node);
861 node = next_node(node, node_online_map);
862 if (unlikely(node >= MAX_NUMNODES))
863 node = first_node(node_online_map);
864 __get_cpu_var(reap_node) = node;
867 #else
868 #define init_reap_node(cpu) do { } while (0)
869 #define next_reap_node(void) do { } while (0)
870 #endif
873 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
874 * via the workqueue/eventd.
875 * Add the CPU number into the expiration time to minimize the possibility of
876 * the CPUs getting into lockstep and contending for the global cache chain
877 * lock.
879 static void __devinit start_cpu_timer(int cpu)
881 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
884 * When this gets called from do_initcalls via cpucache_init(),
885 * init_workqueues() has already run, so keventd will be setup
886 * at that time.
888 if (keventd_up() && reap_work->func == NULL) {
889 init_reap_node(cpu);
890 INIT_WORK(reap_work, cache_reap, NULL);
891 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
895 static struct array_cache *alloc_arraycache(int node, int entries,
896 int batchcount)
898 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
899 struct array_cache *nc = NULL;
901 nc = kmalloc_node(memsize, GFP_KERNEL, node);
902 if (nc) {
903 nc->avail = 0;
904 nc->limit = entries;
905 nc->batchcount = batchcount;
906 nc->touched = 0;
907 spin_lock_init(&nc->lock);
909 return nc;
913 * Transfer objects in one arraycache to another.
914 * Locking must be handled by the caller.
916 * Return the number of entries transferred.
918 static int transfer_objects(struct array_cache *to,
919 struct array_cache *from, unsigned int max)
921 /* Figure out how many entries to transfer */
922 int nr = min(min(from->avail, max), to->limit - to->avail);
924 if (!nr)
925 return 0;
927 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
928 sizeof(void *) *nr);
930 from->avail -= nr;
931 to->avail += nr;
932 to->touched = 1;
933 return nr;
936 #ifdef CONFIG_NUMA
937 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
938 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
940 static struct array_cache **alloc_alien_cache(int node, int limit)
942 struct array_cache **ac_ptr;
943 int memsize = sizeof(void *) * MAX_NUMNODES;
944 int i;
946 if (limit > 1)
947 limit = 12;
948 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
949 if (ac_ptr) {
950 for_each_node(i) {
951 if (i == node || !node_online(i)) {
952 ac_ptr[i] = NULL;
953 continue;
955 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
956 if (!ac_ptr[i]) {
957 for (i--; i <= 0; i--)
958 kfree(ac_ptr[i]);
959 kfree(ac_ptr);
960 return NULL;
964 return ac_ptr;
967 static void free_alien_cache(struct array_cache **ac_ptr)
969 int i;
971 if (!ac_ptr)
972 return;
973 for_each_node(i)
974 kfree(ac_ptr[i]);
975 kfree(ac_ptr);
978 static void __drain_alien_cache(struct kmem_cache *cachep,
979 struct array_cache *ac, int node)
981 struct kmem_list3 *rl3 = cachep->nodelists[node];
983 if (ac->avail) {
984 spin_lock(&rl3->list_lock);
986 * Stuff objects into the remote nodes shared array first.
987 * That way we could avoid the overhead of putting the objects
988 * into the free lists and getting them back later.
990 if (rl3->shared)
991 transfer_objects(rl3->shared, ac, ac->limit);
993 free_block(cachep, ac->entry, ac->avail, node);
994 ac->avail = 0;
995 spin_unlock(&rl3->list_lock);
1000 * Called from cache_reap() to regularly drain alien caches round robin.
1002 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1004 int node = __get_cpu_var(reap_node);
1006 if (l3->alien) {
1007 struct array_cache *ac = l3->alien[node];
1009 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1010 __drain_alien_cache(cachep, ac, node);
1011 spin_unlock_irq(&ac->lock);
1016 static void drain_alien_cache(struct kmem_cache *cachep,
1017 struct array_cache **alien)
1019 int i = 0;
1020 struct array_cache *ac;
1021 unsigned long flags;
1023 for_each_online_node(i) {
1024 ac = alien[i];
1025 if (ac) {
1026 spin_lock_irqsave(&ac->lock, flags);
1027 __drain_alien_cache(cachep, ac, i);
1028 spin_unlock_irqrestore(&ac->lock, flags);
1032 #else
1034 #define drain_alien_cache(cachep, alien) do { } while (0)
1035 #define reap_alien(cachep, l3) do { } while (0)
1037 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1039 return (struct array_cache **) 0x01020304ul;
1042 static inline void free_alien_cache(struct array_cache **ac_ptr)
1046 #endif
1048 static int cpuup_callback(struct notifier_block *nfb,
1049 unsigned long action, void *hcpu)
1051 long cpu = (long)hcpu;
1052 struct kmem_cache *cachep;
1053 struct kmem_list3 *l3 = NULL;
1054 int node = cpu_to_node(cpu);
1055 int memsize = sizeof(struct kmem_list3);
1057 switch (action) {
1058 case CPU_UP_PREPARE:
1059 mutex_lock(&cache_chain_mutex);
1061 * We need to do this right in the beginning since
1062 * alloc_arraycache's are going to use this list.
1063 * kmalloc_node allows us to add the slab to the right
1064 * kmem_list3 and not this cpu's kmem_list3
1067 list_for_each_entry(cachep, &cache_chain, next) {
1069 * Set up the size64 kmemlist for cpu before we can
1070 * begin anything. Make sure some other cpu on this
1071 * node has not already allocated this
1073 if (!cachep->nodelists[node]) {
1074 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1075 if (!l3)
1076 goto bad;
1077 kmem_list3_init(l3);
1078 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1079 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1082 * The l3s don't come and go as CPUs come and
1083 * go. cache_chain_mutex is sufficient
1084 * protection here.
1086 cachep->nodelists[node] = l3;
1089 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1090 cachep->nodelists[node]->free_limit =
1091 (1 + nr_cpus_node(node)) *
1092 cachep->batchcount + cachep->num;
1093 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1097 * Now we can go ahead with allocating the shared arrays and
1098 * array caches
1100 list_for_each_entry(cachep, &cache_chain, next) {
1101 struct array_cache *nc;
1102 struct array_cache *shared;
1103 struct array_cache **alien;
1105 nc = alloc_arraycache(node, cachep->limit,
1106 cachep->batchcount);
1107 if (!nc)
1108 goto bad;
1109 shared = alloc_arraycache(node,
1110 cachep->shared * cachep->batchcount,
1111 0xbaadf00d);
1112 if (!shared)
1113 goto bad;
1115 alien = alloc_alien_cache(node, cachep->limit);
1116 if (!alien)
1117 goto bad;
1118 cachep->array[cpu] = nc;
1119 l3 = cachep->nodelists[node];
1120 BUG_ON(!l3);
1122 spin_lock_irq(&l3->list_lock);
1123 if (!l3->shared) {
1125 * We are serialised from CPU_DEAD or
1126 * CPU_UP_CANCELLED by the cpucontrol lock
1128 l3->shared = shared;
1129 shared = NULL;
1131 #ifdef CONFIG_NUMA
1132 if (!l3->alien) {
1133 l3->alien = alien;
1134 alien = NULL;
1136 #endif
1137 spin_unlock_irq(&l3->list_lock);
1138 kfree(shared);
1139 free_alien_cache(alien);
1141 mutex_unlock(&cache_chain_mutex);
1142 break;
1143 case CPU_ONLINE:
1144 start_cpu_timer(cpu);
1145 break;
1146 #ifdef CONFIG_HOTPLUG_CPU
1147 case CPU_DEAD:
1149 * Even if all the cpus of a node are down, we don't free the
1150 * kmem_list3 of any cache. This to avoid a race between
1151 * cpu_down, and a kmalloc allocation from another cpu for
1152 * memory from the node of the cpu going down. The list3
1153 * structure is usually allocated from kmem_cache_create() and
1154 * gets destroyed at kmem_cache_destroy().
1156 /* fall thru */
1157 case CPU_UP_CANCELED:
1158 mutex_lock(&cache_chain_mutex);
1159 list_for_each_entry(cachep, &cache_chain, next) {
1160 struct array_cache *nc;
1161 struct array_cache *shared;
1162 struct array_cache **alien;
1163 cpumask_t mask;
1165 mask = node_to_cpumask(node);
1166 /* cpu is dead; no one can alloc from it. */
1167 nc = cachep->array[cpu];
1168 cachep->array[cpu] = NULL;
1169 l3 = cachep->nodelists[node];
1171 if (!l3)
1172 goto free_array_cache;
1174 spin_lock_irq(&l3->list_lock);
1176 /* Free limit for this kmem_list3 */
1177 l3->free_limit -= cachep->batchcount;
1178 if (nc)
1179 free_block(cachep, nc->entry, nc->avail, node);
1181 if (!cpus_empty(mask)) {
1182 spin_unlock_irq(&l3->list_lock);
1183 goto free_array_cache;
1186 shared = l3->shared;
1187 if (shared) {
1188 free_block(cachep, l3->shared->entry,
1189 l3->shared->avail, node);
1190 l3->shared = NULL;
1193 alien = l3->alien;
1194 l3->alien = NULL;
1196 spin_unlock_irq(&l3->list_lock);
1198 kfree(shared);
1199 if (alien) {
1200 drain_alien_cache(cachep, alien);
1201 free_alien_cache(alien);
1203 free_array_cache:
1204 kfree(nc);
1207 * In the previous loop, all the objects were freed to
1208 * the respective cache's slabs, now we can go ahead and
1209 * shrink each nodelist to its limit.
1211 list_for_each_entry(cachep, &cache_chain, next) {
1212 l3 = cachep->nodelists[node];
1213 if (!l3)
1214 continue;
1215 spin_lock_irq(&l3->list_lock);
1216 /* free slabs belonging to this node */
1217 __node_shrink(cachep, node);
1218 spin_unlock_irq(&l3->list_lock);
1220 mutex_unlock(&cache_chain_mutex);
1221 break;
1222 #endif
1224 return NOTIFY_OK;
1225 bad:
1226 mutex_unlock(&cache_chain_mutex);
1227 return NOTIFY_BAD;
1230 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1233 * swap the static kmem_list3 with kmalloced memory
1235 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1236 int nodeid)
1238 struct kmem_list3 *ptr;
1240 BUG_ON(cachep->nodelists[nodeid] != list);
1241 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1242 BUG_ON(!ptr);
1244 local_irq_disable();
1245 memcpy(ptr, list, sizeof(struct kmem_list3));
1246 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1247 cachep->nodelists[nodeid] = ptr;
1248 local_irq_enable();
1252 * Initialisation. Called after the page allocator have been initialised and
1253 * before smp_init().
1255 void __init kmem_cache_init(void)
1257 size_t left_over;
1258 struct cache_sizes *sizes;
1259 struct cache_names *names;
1260 int i;
1261 int order;
1263 for (i = 0; i < NUM_INIT_LISTS; i++) {
1264 kmem_list3_init(&initkmem_list3[i]);
1265 if (i < MAX_NUMNODES)
1266 cache_cache.nodelists[i] = NULL;
1270 * Fragmentation resistance on low memory - only use bigger
1271 * page orders on machines with more than 32MB of memory.
1273 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1274 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1276 /* Bootstrap is tricky, because several objects are allocated
1277 * from caches that do not exist yet:
1278 * 1) initialize the cache_cache cache: it contains the struct
1279 * kmem_cache structures of all caches, except cache_cache itself:
1280 * cache_cache is statically allocated.
1281 * Initially an __init data area is used for the head array and the
1282 * kmem_list3 structures, it's replaced with a kmalloc allocated
1283 * array at the end of the bootstrap.
1284 * 2) Create the first kmalloc cache.
1285 * The struct kmem_cache for the new cache is allocated normally.
1286 * An __init data area is used for the head array.
1287 * 3) Create the remaining kmalloc caches, with minimally sized
1288 * head arrays.
1289 * 4) Replace the __init data head arrays for cache_cache and the first
1290 * kmalloc cache with kmalloc allocated arrays.
1291 * 5) Replace the __init data for kmem_list3 for cache_cache and
1292 * the other cache's with kmalloc allocated memory.
1293 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1296 /* 1) create the cache_cache */
1297 INIT_LIST_HEAD(&cache_chain);
1298 list_add(&cache_cache.next, &cache_chain);
1299 cache_cache.colour_off = cache_line_size();
1300 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1301 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1303 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1304 cache_line_size());
1306 for (order = 0; order < MAX_ORDER; order++) {
1307 cache_estimate(order, cache_cache.buffer_size,
1308 cache_line_size(), 0, &left_over, &cache_cache.num);
1309 if (cache_cache.num)
1310 break;
1312 BUG_ON(!cache_cache.num);
1313 cache_cache.gfporder = order;
1314 cache_cache.colour = left_over / cache_cache.colour_off;
1315 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1316 sizeof(struct slab), cache_line_size());
1318 /* 2+3) create the kmalloc caches */
1319 sizes = malloc_sizes;
1320 names = cache_names;
1323 * Initialize the caches that provide memory for the array cache and the
1324 * kmem_list3 structures first. Without this, further allocations will
1325 * bug.
1328 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1329 sizes[INDEX_AC].cs_size,
1330 ARCH_KMALLOC_MINALIGN,
1331 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1332 NULL, NULL);
1334 if (INDEX_AC != INDEX_L3) {
1335 sizes[INDEX_L3].cs_cachep =
1336 kmem_cache_create(names[INDEX_L3].name,
1337 sizes[INDEX_L3].cs_size,
1338 ARCH_KMALLOC_MINALIGN,
1339 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1340 NULL, NULL);
1343 while (sizes->cs_size != ULONG_MAX) {
1345 * For performance, all the general caches are L1 aligned.
1346 * This should be particularly beneficial on SMP boxes, as it
1347 * eliminates "false sharing".
1348 * Note for systems short on memory removing the alignment will
1349 * allow tighter packing of the smaller caches.
1351 if (!sizes->cs_cachep) {
1352 sizes->cs_cachep = kmem_cache_create(names->name,
1353 sizes->cs_size,
1354 ARCH_KMALLOC_MINALIGN,
1355 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1356 NULL, NULL);
1359 /* Inc off-slab bufctl limit until the ceiling is hit. */
1360 if (!(OFF_SLAB(sizes->cs_cachep))) {
1361 offslab_limit = sizes->cs_size - sizeof(struct slab);
1362 offslab_limit /= sizeof(kmem_bufctl_t);
1365 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1366 sizes->cs_size,
1367 ARCH_KMALLOC_MINALIGN,
1368 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1369 SLAB_PANIC,
1370 NULL, NULL);
1371 sizes++;
1372 names++;
1374 /* 4) Replace the bootstrap head arrays */
1376 void *ptr;
1378 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1380 local_irq_disable();
1381 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1382 memcpy(ptr, cpu_cache_get(&cache_cache),
1383 sizeof(struct arraycache_init));
1384 cache_cache.array[smp_processor_id()] = ptr;
1385 local_irq_enable();
1387 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1389 local_irq_disable();
1390 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1391 != &initarray_generic.cache);
1392 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1393 sizeof(struct arraycache_init));
1394 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1395 ptr;
1396 local_irq_enable();
1398 /* 5) Replace the bootstrap kmem_list3's */
1400 int node;
1401 /* Replace the static kmem_list3 structures for the boot cpu */
1402 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1403 numa_node_id());
1405 for_each_online_node(node) {
1406 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1407 &initkmem_list3[SIZE_AC + node], node);
1409 if (INDEX_AC != INDEX_L3) {
1410 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1411 &initkmem_list3[SIZE_L3 + node],
1412 node);
1417 /* 6) resize the head arrays to their final sizes */
1419 struct kmem_cache *cachep;
1420 mutex_lock(&cache_chain_mutex);
1421 list_for_each_entry(cachep, &cache_chain, next)
1422 enable_cpucache(cachep);
1423 mutex_unlock(&cache_chain_mutex);
1426 /* Done! */
1427 g_cpucache_up = FULL;
1430 * Register a cpu startup notifier callback that initializes
1431 * cpu_cache_get for all new cpus
1433 register_cpu_notifier(&cpucache_notifier);
1436 * The reap timers are started later, with a module init call: That part
1437 * of the kernel is not yet operational.
1441 static int __init cpucache_init(void)
1443 int cpu;
1446 * Register the timers that return unneeded pages to the page allocator
1448 for_each_online_cpu(cpu)
1449 start_cpu_timer(cpu);
1450 return 0;
1452 __initcall(cpucache_init);
1455 * Interface to system's page allocator. No need to hold the cache-lock.
1457 * If we requested dmaable memory, we will get it. Even if we
1458 * did not request dmaable memory, we might get it, but that
1459 * would be relatively rare and ignorable.
1461 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1463 struct page *page;
1464 void *addr;
1465 int i;
1467 flags |= cachep->gfpflags;
1468 #ifndef CONFIG_MMU
1469 /* nommu uses slab's for process anonymous memory allocations, so
1470 * requires __GFP_COMP to properly refcount higher order allocations"
1472 page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
1473 #else
1474 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1475 #endif
1476 if (!page)
1477 return NULL;
1478 addr = page_address(page);
1480 i = (1 << cachep->gfporder);
1481 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1482 atomic_add(i, &slab_reclaim_pages);
1483 add_page_state(nr_slab, i);
1484 while (i--) {
1485 __SetPageSlab(page);
1486 page++;
1488 return addr;
1492 * Interface to system's page release.
1494 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1496 unsigned long i = (1 << cachep->gfporder);
1497 struct page *page = virt_to_page(addr);
1498 const unsigned long nr_freed = i;
1500 while (i--) {
1501 BUG_ON(!PageSlab(page));
1502 __ClearPageSlab(page);
1503 page++;
1505 sub_page_state(nr_slab, nr_freed);
1506 if (current->reclaim_state)
1507 current->reclaim_state->reclaimed_slab += nr_freed;
1508 free_pages((unsigned long)addr, cachep->gfporder);
1509 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1510 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1513 static void kmem_rcu_free(struct rcu_head *head)
1515 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1516 struct kmem_cache *cachep = slab_rcu->cachep;
1518 kmem_freepages(cachep, slab_rcu->addr);
1519 if (OFF_SLAB(cachep))
1520 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1523 #if DEBUG
1525 #ifdef CONFIG_DEBUG_PAGEALLOC
1526 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1527 unsigned long caller)
1529 int size = obj_size(cachep);
1531 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1533 if (size < 5 * sizeof(unsigned long))
1534 return;
1536 *addr++ = 0x12345678;
1537 *addr++ = caller;
1538 *addr++ = smp_processor_id();
1539 size -= 3 * sizeof(unsigned long);
1541 unsigned long *sptr = &caller;
1542 unsigned long svalue;
1544 while (!kstack_end(sptr)) {
1545 svalue = *sptr++;
1546 if (kernel_text_address(svalue)) {
1547 *addr++ = svalue;
1548 size -= sizeof(unsigned long);
1549 if (size <= sizeof(unsigned long))
1550 break;
1555 *addr++ = 0x87654321;
1557 #endif
1559 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1561 int size = obj_size(cachep);
1562 addr = &((char *)addr)[obj_offset(cachep)];
1564 memset(addr, val, size);
1565 *(unsigned char *)(addr + size - 1) = POISON_END;
1568 static void dump_line(char *data, int offset, int limit)
1570 int i;
1571 printk(KERN_ERR "%03x:", offset);
1572 for (i = 0; i < limit; i++)
1573 printk(" %02x", (unsigned char)data[offset + i]);
1574 printk("\n");
1576 #endif
1578 #if DEBUG
1580 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1582 int i, size;
1583 char *realobj;
1585 if (cachep->flags & SLAB_RED_ZONE) {
1586 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1587 *dbg_redzone1(cachep, objp),
1588 *dbg_redzone2(cachep, objp));
1591 if (cachep->flags & SLAB_STORE_USER) {
1592 printk(KERN_ERR "Last user: [<%p>]",
1593 *dbg_userword(cachep, objp));
1594 print_symbol("(%s)",
1595 (unsigned long)*dbg_userword(cachep, objp));
1596 printk("\n");
1598 realobj = (char *)objp + obj_offset(cachep);
1599 size = obj_size(cachep);
1600 for (i = 0; i < size && lines; i += 16, lines--) {
1601 int limit;
1602 limit = 16;
1603 if (i + limit > size)
1604 limit = size - i;
1605 dump_line(realobj, i, limit);
1609 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1611 char *realobj;
1612 int size, i;
1613 int lines = 0;
1615 realobj = (char *)objp + obj_offset(cachep);
1616 size = obj_size(cachep);
1618 for (i = 0; i < size; i++) {
1619 char exp = POISON_FREE;
1620 if (i == size - 1)
1621 exp = POISON_END;
1622 if (realobj[i] != exp) {
1623 int limit;
1624 /* Mismatch ! */
1625 /* Print header */
1626 if (lines == 0) {
1627 printk(KERN_ERR
1628 "Slab corruption: start=%p, len=%d\n",
1629 realobj, size);
1630 print_objinfo(cachep, objp, 0);
1632 /* Hexdump the affected line */
1633 i = (i / 16) * 16;
1634 limit = 16;
1635 if (i + limit > size)
1636 limit = size - i;
1637 dump_line(realobj, i, limit);
1638 i += 16;
1639 lines++;
1640 /* Limit to 5 lines */
1641 if (lines > 5)
1642 break;
1645 if (lines != 0) {
1646 /* Print some data about the neighboring objects, if they
1647 * exist:
1649 struct slab *slabp = virt_to_slab(objp);
1650 unsigned int objnr;
1652 objnr = obj_to_index(cachep, slabp, objp);
1653 if (objnr) {
1654 objp = index_to_obj(cachep, slabp, objnr - 1);
1655 realobj = (char *)objp + obj_offset(cachep);
1656 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1657 realobj, size);
1658 print_objinfo(cachep, objp, 2);
1660 if (objnr + 1 < cachep->num) {
1661 objp = index_to_obj(cachep, slabp, objnr + 1);
1662 realobj = (char *)objp + obj_offset(cachep);
1663 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1664 realobj, size);
1665 print_objinfo(cachep, objp, 2);
1669 #endif
1671 #if DEBUG
1673 * slab_destroy_objs - destroy a slab and its objects
1674 * @cachep: cache pointer being destroyed
1675 * @slabp: slab pointer being destroyed
1677 * Call the registered destructor for each object in a slab that is being
1678 * destroyed.
1680 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1682 int i;
1683 for (i = 0; i < cachep->num; i++) {
1684 void *objp = index_to_obj(cachep, slabp, i);
1686 if (cachep->flags & SLAB_POISON) {
1687 #ifdef CONFIG_DEBUG_PAGEALLOC
1688 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1689 OFF_SLAB(cachep))
1690 kernel_map_pages(virt_to_page(objp),
1691 cachep->buffer_size / PAGE_SIZE, 1);
1692 else
1693 check_poison_obj(cachep, objp);
1694 #else
1695 check_poison_obj(cachep, objp);
1696 #endif
1698 if (cachep->flags & SLAB_RED_ZONE) {
1699 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1700 slab_error(cachep, "start of a freed object "
1701 "was overwritten");
1702 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1703 slab_error(cachep, "end of a freed object "
1704 "was overwritten");
1706 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1707 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1710 #else
1711 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1713 if (cachep->dtor) {
1714 int i;
1715 for (i = 0; i < cachep->num; i++) {
1716 void *objp = index_to_obj(cachep, slabp, i);
1717 (cachep->dtor) (objp, cachep, 0);
1721 #endif
1724 * slab_destroy - destroy and release all objects in a slab
1725 * @cachep: cache pointer being destroyed
1726 * @slabp: slab pointer being destroyed
1728 * Destroy all the objs in a slab, and release the mem back to the system.
1729 * Before calling the slab must have been unlinked from the cache. The
1730 * cache-lock is not held/needed.
1732 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1734 void *addr = slabp->s_mem - slabp->colouroff;
1736 slab_destroy_objs(cachep, slabp);
1737 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1738 struct slab_rcu *slab_rcu;
1740 slab_rcu = (struct slab_rcu *)slabp;
1741 slab_rcu->cachep = cachep;
1742 slab_rcu->addr = addr;
1743 call_rcu(&slab_rcu->head, kmem_rcu_free);
1744 } else {
1745 kmem_freepages(cachep, addr);
1746 if (OFF_SLAB(cachep))
1747 kmem_cache_free(cachep->slabp_cache, slabp);
1752 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1753 * size of kmem_list3.
1755 static void set_up_list3s(struct kmem_cache *cachep, int index)
1757 int node;
1759 for_each_online_node(node) {
1760 cachep->nodelists[node] = &initkmem_list3[index + node];
1761 cachep->nodelists[node]->next_reap = jiffies +
1762 REAPTIMEOUT_LIST3 +
1763 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1768 * calculate_slab_order - calculate size (page order) of slabs
1769 * @cachep: pointer to the cache that is being created
1770 * @size: size of objects to be created in this cache.
1771 * @align: required alignment for the objects.
1772 * @flags: slab allocation flags
1774 * Also calculates the number of objects per slab.
1776 * This could be made much more intelligent. For now, try to avoid using
1777 * high order pages for slabs. When the gfp() functions are more friendly
1778 * towards high-order requests, this should be changed.
1780 static size_t calculate_slab_order(struct kmem_cache *cachep,
1781 size_t size, size_t align, unsigned long flags)
1783 size_t left_over = 0;
1784 int gfporder;
1786 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1787 unsigned int num;
1788 size_t remainder;
1790 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1791 if (!num)
1792 continue;
1794 /* More than offslab_limit objects will cause problems */
1795 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1796 break;
1798 /* Found something acceptable - save it away */
1799 cachep->num = num;
1800 cachep->gfporder = gfporder;
1801 left_over = remainder;
1804 * A VFS-reclaimable slab tends to have most allocations
1805 * as GFP_NOFS and we really don't want to have to be allocating
1806 * higher-order pages when we are unable to shrink dcache.
1808 if (flags & SLAB_RECLAIM_ACCOUNT)
1809 break;
1812 * Large number of objects is good, but very large slabs are
1813 * currently bad for the gfp()s.
1815 if (gfporder >= slab_break_gfp_order)
1816 break;
1819 * Acceptable internal fragmentation?
1821 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1822 break;
1824 return left_over;
1827 static void setup_cpu_cache(struct kmem_cache *cachep)
1829 if (g_cpucache_up == FULL) {
1830 enable_cpucache(cachep);
1831 return;
1833 if (g_cpucache_up == NONE) {
1835 * Note: the first kmem_cache_create must create the cache
1836 * that's used by kmalloc(24), otherwise the creation of
1837 * further caches will BUG().
1839 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1842 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1843 * the first cache, then we need to set up all its list3s,
1844 * otherwise the creation of further caches will BUG().
1846 set_up_list3s(cachep, SIZE_AC);
1847 if (INDEX_AC == INDEX_L3)
1848 g_cpucache_up = PARTIAL_L3;
1849 else
1850 g_cpucache_up = PARTIAL_AC;
1851 } else {
1852 cachep->array[smp_processor_id()] =
1853 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1855 if (g_cpucache_up == PARTIAL_AC) {
1856 set_up_list3s(cachep, SIZE_L3);
1857 g_cpucache_up = PARTIAL_L3;
1858 } else {
1859 int node;
1860 for_each_online_node(node) {
1861 cachep->nodelists[node] =
1862 kmalloc_node(sizeof(struct kmem_list3),
1863 GFP_KERNEL, node);
1864 BUG_ON(!cachep->nodelists[node]);
1865 kmem_list3_init(cachep->nodelists[node]);
1869 cachep->nodelists[numa_node_id()]->next_reap =
1870 jiffies + REAPTIMEOUT_LIST3 +
1871 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1873 cpu_cache_get(cachep)->avail = 0;
1874 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1875 cpu_cache_get(cachep)->batchcount = 1;
1876 cpu_cache_get(cachep)->touched = 0;
1877 cachep->batchcount = 1;
1878 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1882 * kmem_cache_create - Create a cache.
1883 * @name: A string which is used in /proc/slabinfo to identify this cache.
1884 * @size: The size of objects to be created in this cache.
1885 * @align: The required alignment for the objects.
1886 * @flags: SLAB flags
1887 * @ctor: A constructor for the objects.
1888 * @dtor: A destructor for the objects.
1890 * Returns a ptr to the cache on success, NULL on failure.
1891 * Cannot be called within a int, but can be interrupted.
1892 * The @ctor is run when new pages are allocated by the cache
1893 * and the @dtor is run before the pages are handed back.
1895 * @name must be valid until the cache is destroyed. This implies that
1896 * the module calling this has to destroy the cache before getting unloaded.
1898 * The flags are
1900 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1901 * to catch references to uninitialised memory.
1903 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1904 * for buffer overruns.
1906 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1907 * cacheline. This can be beneficial if you're counting cycles as closely
1908 * as davem.
1910 struct kmem_cache *
1911 kmem_cache_create (const char *name, size_t size, size_t align,
1912 unsigned long flags,
1913 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1914 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1916 size_t left_over, slab_size, ralign;
1917 struct kmem_cache *cachep = NULL;
1918 struct list_head *p;
1921 * Sanity checks... these are all serious usage bugs.
1923 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1924 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1925 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1926 name);
1927 BUG();
1931 * Prevent CPUs from coming and going.
1932 * lock_cpu_hotplug() nests outside cache_chain_mutex
1934 lock_cpu_hotplug();
1936 mutex_lock(&cache_chain_mutex);
1938 list_for_each(p, &cache_chain) {
1939 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1940 mm_segment_t old_fs = get_fs();
1941 char tmp;
1942 int res;
1945 * This happens when the module gets unloaded and doesn't
1946 * destroy its slab cache and no-one else reuses the vmalloc
1947 * area of the module. Print a warning.
1949 set_fs(KERNEL_DS);
1950 res = __get_user(tmp, pc->name);
1951 set_fs(old_fs);
1952 if (res) {
1953 printk("SLAB: cache with size %d has lost its name\n",
1954 pc->buffer_size);
1955 continue;
1958 if (!strcmp(pc->name, name)) {
1959 printk("kmem_cache_create: duplicate cache %s\n", name);
1960 dump_stack();
1961 goto oops;
1965 #if DEBUG
1966 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1967 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1968 /* No constructor, but inital state check requested */
1969 printk(KERN_ERR "%s: No con, but init state check "
1970 "requested - %s\n", __FUNCTION__, name);
1971 flags &= ~SLAB_DEBUG_INITIAL;
1973 #if FORCED_DEBUG
1975 * Enable redzoning and last user accounting, except for caches with
1976 * large objects, if the increased size would increase the object size
1977 * above the next power of two: caches with object sizes just above a
1978 * power of two have a significant amount of internal fragmentation.
1980 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1981 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1982 if (!(flags & SLAB_DESTROY_BY_RCU))
1983 flags |= SLAB_POISON;
1984 #endif
1985 if (flags & SLAB_DESTROY_BY_RCU)
1986 BUG_ON(flags & SLAB_POISON);
1987 #endif
1988 if (flags & SLAB_DESTROY_BY_RCU)
1989 BUG_ON(dtor);
1992 * Always checks flags, a caller might be expecting debug support which
1993 * isn't available.
1995 BUG_ON(flags & ~CREATE_MASK);
1998 * Check that size is in terms of words. This is needed to avoid
1999 * unaligned accesses for some archs when redzoning is used, and makes
2000 * sure any on-slab bufctl's are also correctly aligned.
2002 if (size & (BYTES_PER_WORD - 1)) {
2003 size += (BYTES_PER_WORD - 1);
2004 size &= ~(BYTES_PER_WORD - 1);
2007 /* calculate the final buffer alignment: */
2009 /* 1) arch recommendation: can be overridden for debug */
2010 if (flags & SLAB_HWCACHE_ALIGN) {
2012 * Default alignment: as specified by the arch code. Except if
2013 * an object is really small, then squeeze multiple objects into
2014 * one cacheline.
2016 ralign = cache_line_size();
2017 while (size <= ralign / 2)
2018 ralign /= 2;
2019 } else {
2020 ralign = BYTES_PER_WORD;
2022 /* 2) arch mandated alignment: disables debug if necessary */
2023 if (ralign < ARCH_SLAB_MINALIGN) {
2024 ralign = ARCH_SLAB_MINALIGN;
2025 if (ralign > BYTES_PER_WORD)
2026 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2028 /* 3) caller mandated alignment: disables debug if necessary */
2029 if (ralign < align) {
2030 ralign = align;
2031 if (ralign > BYTES_PER_WORD)
2032 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2035 * 4) Store it. Note that the debug code below can reduce
2036 * the alignment to BYTES_PER_WORD.
2038 align = ralign;
2040 /* Get cache's description obj. */
2041 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2042 if (!cachep)
2043 goto oops;
2045 #if DEBUG
2046 cachep->obj_size = size;
2048 if (flags & SLAB_RED_ZONE) {
2049 /* redzoning only works with word aligned caches */
2050 align = BYTES_PER_WORD;
2052 /* add space for red zone words */
2053 cachep->obj_offset += BYTES_PER_WORD;
2054 size += 2 * BYTES_PER_WORD;
2056 if (flags & SLAB_STORE_USER) {
2057 /* user store requires word alignment and
2058 * one word storage behind the end of the real
2059 * object.
2061 align = BYTES_PER_WORD;
2062 size += BYTES_PER_WORD;
2064 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2065 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2066 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2067 cachep->obj_offset += PAGE_SIZE - size;
2068 size = PAGE_SIZE;
2070 #endif
2071 #endif
2073 /* Determine if the slab management is 'on' or 'off' slab. */
2074 if (size >= (PAGE_SIZE >> 3))
2076 * Size is large, assume best to place the slab management obj
2077 * off-slab (should allow better packing of objs).
2079 flags |= CFLGS_OFF_SLAB;
2081 size = ALIGN(size, align);
2083 left_over = calculate_slab_order(cachep, size, align, flags);
2085 if (!cachep->num) {
2086 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2087 kmem_cache_free(&cache_cache, cachep);
2088 cachep = NULL;
2089 goto oops;
2091 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2092 + sizeof(struct slab), align);
2095 * If the slab has been placed off-slab, and we have enough space then
2096 * move it on-slab. This is at the expense of any extra colouring.
2098 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2099 flags &= ~CFLGS_OFF_SLAB;
2100 left_over -= slab_size;
2103 if (flags & CFLGS_OFF_SLAB) {
2104 /* really off slab. No need for manual alignment */
2105 slab_size =
2106 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2109 cachep->colour_off = cache_line_size();
2110 /* Offset must be a multiple of the alignment. */
2111 if (cachep->colour_off < align)
2112 cachep->colour_off = align;
2113 cachep->colour = left_over / cachep->colour_off;
2114 cachep->slab_size = slab_size;
2115 cachep->flags = flags;
2116 cachep->gfpflags = 0;
2117 if (flags & SLAB_CACHE_DMA)
2118 cachep->gfpflags |= GFP_DMA;
2119 cachep->buffer_size = size;
2121 if (flags & CFLGS_OFF_SLAB)
2122 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2123 cachep->ctor = ctor;
2124 cachep->dtor = dtor;
2125 cachep->name = name;
2128 setup_cpu_cache(cachep);
2130 /* cache setup completed, link it into the list */
2131 list_add(&cachep->next, &cache_chain);
2132 oops:
2133 if (!cachep && (flags & SLAB_PANIC))
2134 panic("kmem_cache_create(): failed to create slab `%s'\n",
2135 name);
2136 mutex_unlock(&cache_chain_mutex);
2137 unlock_cpu_hotplug();
2138 return cachep;
2140 EXPORT_SYMBOL(kmem_cache_create);
2142 #if DEBUG
2143 static void check_irq_off(void)
2145 BUG_ON(!irqs_disabled());
2148 static void check_irq_on(void)
2150 BUG_ON(irqs_disabled());
2153 static void check_spinlock_acquired(struct kmem_cache *cachep)
2155 #ifdef CONFIG_SMP
2156 check_irq_off();
2157 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2158 #endif
2161 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2163 #ifdef CONFIG_SMP
2164 check_irq_off();
2165 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2166 #endif
2169 #else
2170 #define check_irq_off() do { } while(0)
2171 #define check_irq_on() do { } while(0)
2172 #define check_spinlock_acquired(x) do { } while(0)
2173 #define check_spinlock_acquired_node(x, y) do { } while(0)
2174 #endif
2176 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2177 struct array_cache *ac,
2178 int force, int node);
2180 static void do_drain(void *arg)
2182 struct kmem_cache *cachep = arg;
2183 struct array_cache *ac;
2184 int node = numa_node_id();
2186 check_irq_off();
2187 ac = cpu_cache_get(cachep);
2188 spin_lock(&cachep->nodelists[node]->list_lock);
2189 free_block(cachep, ac->entry, ac->avail, node);
2190 spin_unlock(&cachep->nodelists[node]->list_lock);
2191 ac->avail = 0;
2194 static void drain_cpu_caches(struct kmem_cache *cachep)
2196 struct kmem_list3 *l3;
2197 int node;
2199 on_each_cpu(do_drain, cachep, 1, 1);
2200 check_irq_on();
2201 for_each_online_node(node) {
2202 l3 = cachep->nodelists[node];
2203 if (l3 && l3->alien)
2204 drain_alien_cache(cachep, l3->alien);
2207 for_each_online_node(node) {
2208 l3 = cachep->nodelists[node];
2209 if (l3)
2210 drain_array(cachep, l3, l3->shared, 1, node);
2214 static int __node_shrink(struct kmem_cache *cachep, int node)
2216 struct slab *slabp;
2217 struct kmem_list3 *l3 = cachep->nodelists[node];
2218 int ret;
2220 for (;;) {
2221 struct list_head *p;
2223 p = l3->slabs_free.prev;
2224 if (p == &l3->slabs_free)
2225 break;
2227 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2228 #if DEBUG
2229 BUG_ON(slabp->inuse);
2230 #endif
2231 list_del(&slabp->list);
2233 l3->free_objects -= cachep->num;
2234 spin_unlock_irq(&l3->list_lock);
2235 slab_destroy(cachep, slabp);
2236 spin_lock_irq(&l3->list_lock);
2238 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2239 return ret;
2242 static int __cache_shrink(struct kmem_cache *cachep)
2244 int ret = 0, i = 0;
2245 struct kmem_list3 *l3;
2247 drain_cpu_caches(cachep);
2249 check_irq_on();
2250 for_each_online_node(i) {
2251 l3 = cachep->nodelists[i];
2252 if (l3) {
2253 spin_lock_irq(&l3->list_lock);
2254 ret += __node_shrink(cachep, i);
2255 spin_unlock_irq(&l3->list_lock);
2258 return (ret ? 1 : 0);
2262 * kmem_cache_shrink - Shrink a cache.
2263 * @cachep: The cache to shrink.
2265 * Releases as many slabs as possible for a cache.
2266 * To help debugging, a zero exit status indicates all slabs were released.
2268 int kmem_cache_shrink(struct kmem_cache *cachep)
2270 BUG_ON(!cachep || in_interrupt());
2272 return __cache_shrink(cachep);
2274 EXPORT_SYMBOL(kmem_cache_shrink);
2277 * kmem_cache_destroy - delete a cache
2278 * @cachep: the cache to destroy
2280 * Remove a struct kmem_cache object from the slab cache.
2281 * Returns 0 on success.
2283 * It is expected this function will be called by a module when it is
2284 * unloaded. This will remove the cache completely, and avoid a duplicate
2285 * cache being allocated each time a module is loaded and unloaded, if the
2286 * module doesn't have persistent in-kernel storage across loads and unloads.
2288 * The cache must be empty before calling this function.
2290 * The caller must guarantee that noone will allocate memory from the cache
2291 * during the kmem_cache_destroy().
2293 int kmem_cache_destroy(struct kmem_cache *cachep)
2295 int i;
2296 struct kmem_list3 *l3;
2298 BUG_ON(!cachep || in_interrupt());
2300 /* Don't let CPUs to come and go */
2301 lock_cpu_hotplug();
2303 /* Find the cache in the chain of caches. */
2304 mutex_lock(&cache_chain_mutex);
2306 * the chain is never empty, cache_cache is never destroyed
2308 list_del(&cachep->next);
2309 mutex_unlock(&cache_chain_mutex);
2311 if (__cache_shrink(cachep)) {
2312 slab_error(cachep, "Can't free all objects");
2313 mutex_lock(&cache_chain_mutex);
2314 list_add(&cachep->next, &cache_chain);
2315 mutex_unlock(&cache_chain_mutex);
2316 unlock_cpu_hotplug();
2317 return 1;
2320 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2321 synchronize_rcu();
2323 for_each_online_cpu(i)
2324 kfree(cachep->array[i]);
2326 /* NUMA: free the list3 structures */
2327 for_each_online_node(i) {
2328 l3 = cachep->nodelists[i];
2329 if (l3) {
2330 kfree(l3->shared);
2331 free_alien_cache(l3->alien);
2332 kfree(l3);
2335 kmem_cache_free(&cache_cache, cachep);
2336 unlock_cpu_hotplug();
2337 return 0;
2339 EXPORT_SYMBOL(kmem_cache_destroy);
2341 /* Get the memory for a slab management obj. */
2342 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2343 int colour_off, gfp_t local_flags,
2344 int nodeid)
2346 struct slab *slabp;
2348 if (OFF_SLAB(cachep)) {
2349 /* Slab management obj is off-slab. */
2350 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2351 local_flags, nodeid);
2352 if (!slabp)
2353 return NULL;
2354 } else {
2355 slabp = objp + colour_off;
2356 colour_off += cachep->slab_size;
2358 slabp->inuse = 0;
2359 slabp->colouroff = colour_off;
2360 slabp->s_mem = objp + colour_off;
2361 slabp->nodeid = nodeid;
2362 return slabp;
2365 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2367 return (kmem_bufctl_t *) (slabp + 1);
2370 static void cache_init_objs(struct kmem_cache *cachep,
2371 struct slab *slabp, unsigned long ctor_flags)
2373 int i;
2375 for (i = 0; i < cachep->num; i++) {
2376 void *objp = index_to_obj(cachep, slabp, i);
2377 #if DEBUG
2378 /* need to poison the objs? */
2379 if (cachep->flags & SLAB_POISON)
2380 poison_obj(cachep, objp, POISON_FREE);
2381 if (cachep->flags & SLAB_STORE_USER)
2382 *dbg_userword(cachep, objp) = NULL;
2384 if (cachep->flags & SLAB_RED_ZONE) {
2385 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2386 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2389 * Constructors are not allowed to allocate memory from the same
2390 * cache which they are a constructor for. Otherwise, deadlock.
2391 * They must also be threaded.
2393 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2394 cachep->ctor(objp + obj_offset(cachep), cachep,
2395 ctor_flags);
2397 if (cachep->flags & SLAB_RED_ZONE) {
2398 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2399 slab_error(cachep, "constructor overwrote the"
2400 " end of an object");
2401 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2402 slab_error(cachep, "constructor overwrote the"
2403 " start of an object");
2405 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2406 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2407 kernel_map_pages(virt_to_page(objp),
2408 cachep->buffer_size / PAGE_SIZE, 0);
2409 #else
2410 if (cachep->ctor)
2411 cachep->ctor(objp, cachep, ctor_flags);
2412 #endif
2413 slab_bufctl(slabp)[i] = i + 1;
2415 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2416 slabp->free = 0;
2419 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2421 if (flags & SLAB_DMA)
2422 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2423 else
2424 BUG_ON(cachep->gfpflags & GFP_DMA);
2427 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2428 int nodeid)
2430 void *objp = index_to_obj(cachep, slabp, slabp->free);
2431 kmem_bufctl_t next;
2433 slabp->inuse++;
2434 next = slab_bufctl(slabp)[slabp->free];
2435 #if DEBUG
2436 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2437 WARN_ON(slabp->nodeid != nodeid);
2438 #endif
2439 slabp->free = next;
2441 return objp;
2444 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2445 void *objp, int nodeid)
2447 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2449 #if DEBUG
2450 /* Verify that the slab belongs to the intended node */
2451 WARN_ON(slabp->nodeid != nodeid);
2453 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2454 printk(KERN_ERR "slab: double free detected in cache "
2455 "'%s', objp %p\n", cachep->name, objp);
2456 BUG();
2458 #endif
2459 slab_bufctl(slabp)[objnr] = slabp->free;
2460 slabp->free = objnr;
2461 slabp->inuse--;
2464 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2465 void *objp)
2467 int i;
2468 struct page *page;
2470 /* Nasty!!!!!! I hope this is OK. */
2471 page = virt_to_page(objp);
2473 i = 1;
2474 if (likely(!PageCompound(page)))
2475 i <<= cachep->gfporder;
2476 do {
2477 page_set_cache(page, cachep);
2478 page_set_slab(page, slabp);
2479 page++;
2480 } while (--i);
2484 * Grow (by 1) the number of slabs within a cache. This is called by
2485 * kmem_cache_alloc() when there are no active objs left in a cache.
2487 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2489 struct slab *slabp;
2490 void *objp;
2491 size_t offset;
2492 gfp_t local_flags;
2493 unsigned long ctor_flags;
2494 struct kmem_list3 *l3;
2497 * Be lazy and only check for valid flags here, keeping it out of the
2498 * critical path in kmem_cache_alloc().
2500 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2501 if (flags & SLAB_NO_GROW)
2502 return 0;
2504 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2505 local_flags = (flags & SLAB_LEVEL_MASK);
2506 if (!(local_flags & __GFP_WAIT))
2508 * Not allowed to sleep. Need to tell a constructor about
2509 * this - it might need to know...
2511 ctor_flags |= SLAB_CTOR_ATOMIC;
2513 /* Take the l3 list lock to change the colour_next on this node */
2514 check_irq_off();
2515 l3 = cachep->nodelists[nodeid];
2516 spin_lock(&l3->list_lock);
2518 /* Get colour for the slab, and cal the next value. */
2519 offset = l3->colour_next;
2520 l3->colour_next++;
2521 if (l3->colour_next >= cachep->colour)
2522 l3->colour_next = 0;
2523 spin_unlock(&l3->list_lock);
2525 offset *= cachep->colour_off;
2527 if (local_flags & __GFP_WAIT)
2528 local_irq_enable();
2531 * The test for missing atomic flag is performed here, rather than
2532 * the more obvious place, simply to reduce the critical path length
2533 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2534 * will eventually be caught here (where it matters).
2536 kmem_flagcheck(cachep, flags);
2539 * Get mem for the objs. Attempt to allocate a physical page from
2540 * 'nodeid'.
2542 objp = kmem_getpages(cachep, flags, nodeid);
2543 if (!objp)
2544 goto failed;
2546 /* Get slab management. */
2547 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2548 if (!slabp)
2549 goto opps1;
2551 slabp->nodeid = nodeid;
2552 set_slab_attr(cachep, slabp, objp);
2554 cache_init_objs(cachep, slabp, ctor_flags);
2556 if (local_flags & __GFP_WAIT)
2557 local_irq_disable();
2558 check_irq_off();
2559 spin_lock(&l3->list_lock);
2561 /* Make slab active. */
2562 list_add_tail(&slabp->list, &(l3->slabs_free));
2563 STATS_INC_GROWN(cachep);
2564 l3->free_objects += cachep->num;
2565 spin_unlock(&l3->list_lock);
2566 return 1;
2567 opps1:
2568 kmem_freepages(cachep, objp);
2569 failed:
2570 if (local_flags & __GFP_WAIT)
2571 local_irq_disable();
2572 return 0;
2575 #if DEBUG
2578 * Perform extra freeing checks:
2579 * - detect bad pointers.
2580 * - POISON/RED_ZONE checking
2581 * - destructor calls, for caches with POISON+dtor
2583 static void kfree_debugcheck(const void *objp)
2585 struct page *page;
2587 if (!virt_addr_valid(objp)) {
2588 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2589 (unsigned long)objp);
2590 BUG();
2592 page = virt_to_page(objp);
2593 if (!PageSlab(page)) {
2594 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2595 (unsigned long)objp);
2596 BUG();
2600 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2601 void *caller)
2603 struct page *page;
2604 unsigned int objnr;
2605 struct slab *slabp;
2607 objp -= obj_offset(cachep);
2608 kfree_debugcheck(objp);
2609 page = virt_to_page(objp);
2611 if (page_get_cache(page) != cachep) {
2612 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2613 "cache %p, got %p\n",
2614 page_get_cache(page), cachep);
2615 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2616 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2617 page_get_cache(page)->name);
2618 WARN_ON(1);
2620 slabp = page_get_slab(page);
2622 if (cachep->flags & SLAB_RED_ZONE) {
2623 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2624 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2625 slab_error(cachep, "double free, or memory outside"
2626 " object was overwritten");
2627 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2628 "redzone 2:0x%lx.\n",
2629 objp, *dbg_redzone1(cachep, objp),
2630 *dbg_redzone2(cachep, objp));
2632 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2633 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2635 if (cachep->flags & SLAB_STORE_USER)
2636 *dbg_userword(cachep, objp) = caller;
2638 objnr = obj_to_index(cachep, slabp, objp);
2640 BUG_ON(objnr >= cachep->num);
2641 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2643 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2645 * Need to call the slab's constructor so the caller can
2646 * perform a verify of its state (debugging). Called without
2647 * the cache-lock held.
2649 cachep->ctor(objp + obj_offset(cachep),
2650 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2652 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2653 /* we want to cache poison the object,
2654 * call the destruction callback
2656 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2658 #ifdef CONFIG_DEBUG_SLAB_LEAK
2659 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2660 #endif
2661 if (cachep->flags & SLAB_POISON) {
2662 #ifdef CONFIG_DEBUG_PAGEALLOC
2663 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2664 store_stackinfo(cachep, objp, (unsigned long)caller);
2665 kernel_map_pages(virt_to_page(objp),
2666 cachep->buffer_size / PAGE_SIZE, 0);
2667 } else {
2668 poison_obj(cachep, objp, POISON_FREE);
2670 #else
2671 poison_obj(cachep, objp, POISON_FREE);
2672 #endif
2674 return objp;
2677 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2679 kmem_bufctl_t i;
2680 int entries = 0;
2682 /* Check slab's freelist to see if this obj is there. */
2683 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2684 entries++;
2685 if (entries > cachep->num || i >= cachep->num)
2686 goto bad;
2688 if (entries != cachep->num - slabp->inuse) {
2689 bad:
2690 printk(KERN_ERR "slab: Internal list corruption detected in "
2691 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2692 cachep->name, cachep->num, slabp, slabp->inuse);
2693 for (i = 0;
2694 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2695 i++) {
2696 if (i % 16 == 0)
2697 printk("\n%03x:", i);
2698 printk(" %02x", ((unsigned char *)slabp)[i]);
2700 printk("\n");
2701 BUG();
2704 #else
2705 #define kfree_debugcheck(x) do { } while(0)
2706 #define cache_free_debugcheck(x,objp,z) (objp)
2707 #define check_slabp(x,y) do { } while(0)
2708 #endif
2710 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2712 int batchcount;
2713 struct kmem_list3 *l3;
2714 struct array_cache *ac;
2716 check_irq_off();
2717 ac = cpu_cache_get(cachep);
2718 retry:
2719 batchcount = ac->batchcount;
2720 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2722 * If there was little recent activity on this cache, then
2723 * perform only a partial refill. Otherwise we could generate
2724 * refill bouncing.
2726 batchcount = BATCHREFILL_LIMIT;
2728 l3 = cachep->nodelists[numa_node_id()];
2730 BUG_ON(ac->avail > 0 || !l3);
2731 spin_lock(&l3->list_lock);
2733 /* See if we can refill from the shared array */
2734 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2735 goto alloc_done;
2737 while (batchcount > 0) {
2738 struct list_head *entry;
2739 struct slab *slabp;
2740 /* Get slab alloc is to come from. */
2741 entry = l3->slabs_partial.next;
2742 if (entry == &l3->slabs_partial) {
2743 l3->free_touched = 1;
2744 entry = l3->slabs_free.next;
2745 if (entry == &l3->slabs_free)
2746 goto must_grow;
2749 slabp = list_entry(entry, struct slab, list);
2750 check_slabp(cachep, slabp);
2751 check_spinlock_acquired(cachep);
2752 while (slabp->inuse < cachep->num && batchcount--) {
2753 STATS_INC_ALLOCED(cachep);
2754 STATS_INC_ACTIVE(cachep);
2755 STATS_SET_HIGH(cachep);
2757 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2758 numa_node_id());
2760 check_slabp(cachep, slabp);
2762 /* move slabp to correct slabp list: */
2763 list_del(&slabp->list);
2764 if (slabp->free == BUFCTL_END)
2765 list_add(&slabp->list, &l3->slabs_full);
2766 else
2767 list_add(&slabp->list, &l3->slabs_partial);
2770 must_grow:
2771 l3->free_objects -= ac->avail;
2772 alloc_done:
2773 spin_unlock(&l3->list_lock);
2775 if (unlikely(!ac->avail)) {
2776 int x;
2777 x = cache_grow(cachep, flags, numa_node_id());
2779 /* cache_grow can reenable interrupts, then ac could change. */
2780 ac = cpu_cache_get(cachep);
2781 if (!x && ac->avail == 0) /* no objects in sight? abort */
2782 return NULL;
2784 if (!ac->avail) /* objects refilled by interrupt? */
2785 goto retry;
2787 ac->touched = 1;
2788 return ac->entry[--ac->avail];
2791 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2792 gfp_t flags)
2794 might_sleep_if(flags & __GFP_WAIT);
2795 #if DEBUG
2796 kmem_flagcheck(cachep, flags);
2797 #endif
2800 #if DEBUG
2801 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2802 gfp_t flags, void *objp, void *caller)
2804 if (!objp)
2805 return objp;
2806 if (cachep->flags & SLAB_POISON) {
2807 #ifdef CONFIG_DEBUG_PAGEALLOC
2808 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2809 kernel_map_pages(virt_to_page(objp),
2810 cachep->buffer_size / PAGE_SIZE, 1);
2811 else
2812 check_poison_obj(cachep, objp);
2813 #else
2814 check_poison_obj(cachep, objp);
2815 #endif
2816 poison_obj(cachep, objp, POISON_INUSE);
2818 if (cachep->flags & SLAB_STORE_USER)
2819 *dbg_userword(cachep, objp) = caller;
2821 if (cachep->flags & SLAB_RED_ZONE) {
2822 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2823 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2824 slab_error(cachep, "double free, or memory outside"
2825 " object was overwritten");
2826 printk(KERN_ERR
2827 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2828 objp, *dbg_redzone1(cachep, objp),
2829 *dbg_redzone2(cachep, objp));
2831 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2832 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2834 #ifdef CONFIG_DEBUG_SLAB_LEAK
2836 struct slab *slabp;
2837 unsigned objnr;
2839 slabp = page_get_slab(virt_to_page(objp));
2840 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2841 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2843 #endif
2844 objp += obj_offset(cachep);
2845 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2846 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2848 if (!(flags & __GFP_WAIT))
2849 ctor_flags |= SLAB_CTOR_ATOMIC;
2851 cachep->ctor(objp, cachep, ctor_flags);
2853 return objp;
2855 #else
2856 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2857 #endif
2859 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2861 void *objp;
2862 struct array_cache *ac;
2864 #ifdef CONFIG_NUMA
2865 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2866 objp = alternate_node_alloc(cachep, flags);
2867 if (objp != NULL)
2868 return objp;
2870 #endif
2872 check_irq_off();
2873 ac = cpu_cache_get(cachep);
2874 if (likely(ac->avail)) {
2875 STATS_INC_ALLOCHIT(cachep);
2876 ac->touched = 1;
2877 objp = ac->entry[--ac->avail];
2878 } else {
2879 STATS_INC_ALLOCMISS(cachep);
2880 objp = cache_alloc_refill(cachep, flags);
2882 return objp;
2885 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2886 gfp_t flags, void *caller)
2888 unsigned long save_flags;
2889 void *objp;
2891 cache_alloc_debugcheck_before(cachep, flags);
2893 local_irq_save(save_flags);
2894 objp = ____cache_alloc(cachep, flags);
2895 local_irq_restore(save_flags);
2896 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2897 caller);
2898 prefetchw(objp);
2899 return objp;
2902 #ifdef CONFIG_NUMA
2904 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2906 * If we are in_interrupt, then process context, including cpusets and
2907 * mempolicy, may not apply and should not be used for allocation policy.
2909 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2911 int nid_alloc, nid_here;
2913 if (in_interrupt())
2914 return NULL;
2915 nid_alloc = nid_here = numa_node_id();
2916 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2917 nid_alloc = cpuset_mem_spread_node();
2918 else if (current->mempolicy)
2919 nid_alloc = slab_node(current->mempolicy);
2920 if (nid_alloc != nid_here)
2921 return __cache_alloc_node(cachep, flags, nid_alloc);
2922 return NULL;
2926 * A interface to enable slab creation on nodeid
2928 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2929 int nodeid)
2931 struct list_head *entry;
2932 struct slab *slabp;
2933 struct kmem_list3 *l3;
2934 void *obj;
2935 int x;
2937 l3 = cachep->nodelists[nodeid];
2938 BUG_ON(!l3);
2940 retry:
2941 check_irq_off();
2942 spin_lock(&l3->list_lock);
2943 entry = l3->slabs_partial.next;
2944 if (entry == &l3->slabs_partial) {
2945 l3->free_touched = 1;
2946 entry = l3->slabs_free.next;
2947 if (entry == &l3->slabs_free)
2948 goto must_grow;
2951 slabp = list_entry(entry, struct slab, list);
2952 check_spinlock_acquired_node(cachep, nodeid);
2953 check_slabp(cachep, slabp);
2955 STATS_INC_NODEALLOCS(cachep);
2956 STATS_INC_ACTIVE(cachep);
2957 STATS_SET_HIGH(cachep);
2959 BUG_ON(slabp->inuse == cachep->num);
2961 obj = slab_get_obj(cachep, slabp, nodeid);
2962 check_slabp(cachep, slabp);
2963 l3->free_objects--;
2964 /* move slabp to correct slabp list: */
2965 list_del(&slabp->list);
2967 if (slabp->free == BUFCTL_END)
2968 list_add(&slabp->list, &l3->slabs_full);
2969 else
2970 list_add(&slabp->list, &l3->slabs_partial);
2972 spin_unlock(&l3->list_lock);
2973 goto done;
2975 must_grow:
2976 spin_unlock(&l3->list_lock);
2977 x = cache_grow(cachep, flags, nodeid);
2979 if (!x)
2980 return NULL;
2982 goto retry;
2983 done:
2984 return obj;
2986 #endif
2989 * Caller needs to acquire correct kmem_list's list_lock
2991 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2992 int node)
2994 int i;
2995 struct kmem_list3 *l3;
2997 for (i = 0; i < nr_objects; i++) {
2998 void *objp = objpp[i];
2999 struct slab *slabp;
3001 slabp = virt_to_slab(objp);
3002 l3 = cachep->nodelists[node];
3003 list_del(&slabp->list);
3004 check_spinlock_acquired_node(cachep, node);
3005 check_slabp(cachep, slabp);
3006 slab_put_obj(cachep, slabp, objp, node);
3007 STATS_DEC_ACTIVE(cachep);
3008 l3->free_objects++;
3009 check_slabp(cachep, slabp);
3011 /* fixup slab chains */
3012 if (slabp->inuse == 0) {
3013 if (l3->free_objects > l3->free_limit) {
3014 l3->free_objects -= cachep->num;
3015 slab_destroy(cachep, slabp);
3016 } else {
3017 list_add(&slabp->list, &l3->slabs_free);
3019 } else {
3020 /* Unconditionally move a slab to the end of the
3021 * partial list on free - maximum time for the
3022 * other objects to be freed, too.
3024 list_add_tail(&slabp->list, &l3->slabs_partial);
3029 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3031 int batchcount;
3032 struct kmem_list3 *l3;
3033 int node = numa_node_id();
3035 batchcount = ac->batchcount;
3036 #if DEBUG
3037 BUG_ON(!batchcount || batchcount > ac->avail);
3038 #endif
3039 check_irq_off();
3040 l3 = cachep->nodelists[node];
3041 spin_lock(&l3->list_lock);
3042 if (l3->shared) {
3043 struct array_cache *shared_array = l3->shared;
3044 int max = shared_array->limit - shared_array->avail;
3045 if (max) {
3046 if (batchcount > max)
3047 batchcount = max;
3048 memcpy(&(shared_array->entry[shared_array->avail]),
3049 ac->entry, sizeof(void *) * batchcount);
3050 shared_array->avail += batchcount;
3051 goto free_done;
3055 free_block(cachep, ac->entry, batchcount, node);
3056 free_done:
3057 #if STATS
3059 int i = 0;
3060 struct list_head *p;
3062 p = l3->slabs_free.next;
3063 while (p != &(l3->slabs_free)) {
3064 struct slab *slabp;
3066 slabp = list_entry(p, struct slab, list);
3067 BUG_ON(slabp->inuse);
3069 i++;
3070 p = p->next;
3072 STATS_SET_FREEABLE(cachep, i);
3074 #endif
3075 spin_unlock(&l3->list_lock);
3076 ac->avail -= batchcount;
3077 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3081 * Release an obj back to its cache. If the obj has a constructed state, it must
3082 * be in this state _before_ it is released. Called with disabled ints.
3084 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3086 struct array_cache *ac = cpu_cache_get(cachep);
3088 check_irq_off();
3089 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3091 /* Make sure we are not freeing a object from another
3092 * node to the array cache on this cpu.
3094 #ifdef CONFIG_NUMA
3096 struct slab *slabp;
3097 slabp = virt_to_slab(objp);
3098 if (unlikely(slabp->nodeid != numa_node_id())) {
3099 struct array_cache *alien = NULL;
3100 int nodeid = slabp->nodeid;
3101 struct kmem_list3 *l3;
3103 l3 = cachep->nodelists[numa_node_id()];
3104 STATS_INC_NODEFREES(cachep);
3105 if (l3->alien && l3->alien[nodeid]) {
3106 alien = l3->alien[nodeid];
3107 spin_lock(&alien->lock);
3108 if (unlikely(alien->avail == alien->limit)) {
3109 STATS_INC_ACOVERFLOW(cachep);
3110 __drain_alien_cache(cachep,
3111 alien, nodeid);
3113 alien->entry[alien->avail++] = objp;
3114 spin_unlock(&alien->lock);
3115 } else {
3116 spin_lock(&(cachep->nodelists[nodeid])->
3117 list_lock);
3118 free_block(cachep, &objp, 1, nodeid);
3119 spin_unlock(&(cachep->nodelists[nodeid])->
3120 list_lock);
3122 return;
3125 #endif
3126 if (likely(ac->avail < ac->limit)) {
3127 STATS_INC_FREEHIT(cachep);
3128 ac->entry[ac->avail++] = objp;
3129 return;
3130 } else {
3131 STATS_INC_FREEMISS(cachep);
3132 cache_flusharray(cachep, ac);
3133 ac->entry[ac->avail++] = objp;
3138 * kmem_cache_alloc - Allocate an object
3139 * @cachep: The cache to allocate from.
3140 * @flags: See kmalloc().
3142 * Allocate an object from this cache. The flags are only relevant
3143 * if the cache has no available objects.
3145 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3147 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3149 EXPORT_SYMBOL(kmem_cache_alloc);
3152 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3153 * @cache: The cache to allocate from.
3154 * @flags: See kmalloc().
3156 * Allocate an object from this cache and set the allocated memory to zero.
3157 * The flags are only relevant if the cache has no available objects.
3159 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3161 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3162 if (ret)
3163 memset(ret, 0, obj_size(cache));
3164 return ret;
3166 EXPORT_SYMBOL(kmem_cache_zalloc);
3169 * kmem_ptr_validate - check if an untrusted pointer might
3170 * be a slab entry.
3171 * @cachep: the cache we're checking against
3172 * @ptr: pointer to validate
3174 * This verifies that the untrusted pointer looks sane:
3175 * it is _not_ a guarantee that the pointer is actually
3176 * part of the slab cache in question, but it at least
3177 * validates that the pointer can be dereferenced and
3178 * looks half-way sane.
3180 * Currently only used for dentry validation.
3182 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3184 unsigned long addr = (unsigned long)ptr;
3185 unsigned long min_addr = PAGE_OFFSET;
3186 unsigned long align_mask = BYTES_PER_WORD - 1;
3187 unsigned long size = cachep->buffer_size;
3188 struct page *page;
3190 if (unlikely(addr < min_addr))
3191 goto out;
3192 if (unlikely(addr > (unsigned long)high_memory - size))
3193 goto out;
3194 if (unlikely(addr & align_mask))
3195 goto out;
3196 if (unlikely(!kern_addr_valid(addr)))
3197 goto out;
3198 if (unlikely(!kern_addr_valid(addr + size - 1)))
3199 goto out;
3200 page = virt_to_page(ptr);
3201 if (unlikely(!PageSlab(page)))
3202 goto out;
3203 if (unlikely(page_get_cache(page) != cachep))
3204 goto out;
3205 return 1;
3206 out:
3207 return 0;
3210 #ifdef CONFIG_NUMA
3212 * kmem_cache_alloc_node - Allocate an object on the specified node
3213 * @cachep: The cache to allocate from.
3214 * @flags: See kmalloc().
3215 * @nodeid: node number of the target node.
3217 * Identical to kmem_cache_alloc, except that this function is slow
3218 * and can sleep. And it will allocate memory on the given node, which
3219 * can improve the performance for cpu bound structures.
3220 * New and improved: it will now make sure that the object gets
3221 * put on the correct node list so that there is no false sharing.
3223 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3225 unsigned long save_flags;
3226 void *ptr;
3228 cache_alloc_debugcheck_before(cachep, flags);
3229 local_irq_save(save_flags);
3231 if (nodeid == -1 || nodeid == numa_node_id() ||
3232 !cachep->nodelists[nodeid])
3233 ptr = ____cache_alloc(cachep, flags);
3234 else
3235 ptr = __cache_alloc_node(cachep, flags, nodeid);
3236 local_irq_restore(save_flags);
3238 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3239 __builtin_return_address(0));
3241 return ptr;
3243 EXPORT_SYMBOL(kmem_cache_alloc_node);
3245 void *kmalloc_node(size_t size, gfp_t flags, int node)
3247 struct kmem_cache *cachep;
3249 cachep = kmem_find_general_cachep(size, flags);
3250 if (unlikely(cachep == NULL))
3251 return NULL;
3252 return kmem_cache_alloc_node(cachep, flags, node);
3254 EXPORT_SYMBOL(kmalloc_node);
3255 #endif
3258 * kmalloc - allocate memory
3259 * @size: how many bytes of memory are required.
3260 * @flags: the type of memory to allocate.
3261 * @caller: function caller for debug tracking of the caller
3263 * kmalloc is the normal method of allocating memory
3264 * in the kernel.
3266 * The @flags argument may be one of:
3268 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3270 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3272 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3274 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3275 * must be suitable for DMA. This can mean different things on different
3276 * platforms. For example, on i386, it means that the memory must come
3277 * from the first 16MB.
3279 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3280 void *caller)
3282 struct kmem_cache *cachep;
3284 /* If you want to save a few bytes .text space: replace
3285 * __ with kmem_.
3286 * Then kmalloc uses the uninlined functions instead of the inline
3287 * functions.
3289 cachep = __find_general_cachep(size, flags);
3290 if (unlikely(cachep == NULL))
3291 return NULL;
3292 return __cache_alloc(cachep, flags, caller);
3296 void *__kmalloc(size_t size, gfp_t flags)
3298 #ifndef CONFIG_DEBUG_SLAB
3299 return __do_kmalloc(size, flags, NULL);
3300 #else
3301 return __do_kmalloc(size, flags, __builtin_return_address(0));
3302 #endif
3304 EXPORT_SYMBOL(__kmalloc);
3306 #ifdef CONFIG_DEBUG_SLAB
3307 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3309 return __do_kmalloc(size, flags, caller);
3311 EXPORT_SYMBOL(__kmalloc_track_caller);
3312 #endif
3314 #ifdef CONFIG_SMP
3316 * __alloc_percpu - allocate one copy of the object for every present
3317 * cpu in the system, zeroing them.
3318 * Objects should be dereferenced using the per_cpu_ptr macro only.
3320 * @size: how many bytes of memory are required.
3322 void *__alloc_percpu(size_t size)
3324 int i;
3325 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3327 if (!pdata)
3328 return NULL;
3331 * Cannot use for_each_online_cpu since a cpu may come online
3332 * and we have no way of figuring out how to fix the array
3333 * that we have allocated then....
3335 for_each_possible_cpu(i) {
3336 int node = cpu_to_node(i);
3338 if (node_online(node))
3339 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3340 else
3341 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3343 if (!pdata->ptrs[i])
3344 goto unwind_oom;
3345 memset(pdata->ptrs[i], 0, size);
3348 /* Catch derefs w/o wrappers */
3349 return (void *)(~(unsigned long)pdata);
3351 unwind_oom:
3352 while (--i >= 0) {
3353 if (!cpu_possible(i))
3354 continue;
3355 kfree(pdata->ptrs[i]);
3357 kfree(pdata);
3358 return NULL;
3360 EXPORT_SYMBOL(__alloc_percpu);
3361 #endif
3364 * kmem_cache_free - Deallocate an object
3365 * @cachep: The cache the allocation was from.
3366 * @objp: The previously allocated object.
3368 * Free an object which was previously allocated from this
3369 * cache.
3371 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3373 unsigned long flags;
3375 local_irq_save(flags);
3376 __cache_free(cachep, objp);
3377 local_irq_restore(flags);
3379 EXPORT_SYMBOL(kmem_cache_free);
3382 * kfree - free previously allocated memory
3383 * @objp: pointer returned by kmalloc.
3385 * If @objp is NULL, no operation is performed.
3387 * Don't free memory not originally allocated by kmalloc()
3388 * or you will run into trouble.
3390 void kfree(const void *objp)
3392 struct kmem_cache *c;
3393 unsigned long flags;
3395 if (unlikely(!objp))
3396 return;
3397 local_irq_save(flags);
3398 kfree_debugcheck(objp);
3399 c = virt_to_cache(objp);
3400 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3401 __cache_free(c, (void *)objp);
3402 local_irq_restore(flags);
3404 EXPORT_SYMBOL(kfree);
3406 #ifdef CONFIG_SMP
3408 * free_percpu - free previously allocated percpu memory
3409 * @objp: pointer returned by alloc_percpu.
3411 * Don't free memory not originally allocated by alloc_percpu()
3412 * The complemented objp is to check for that.
3414 void free_percpu(const void *objp)
3416 int i;
3417 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3420 * We allocate for all cpus so we cannot use for online cpu here.
3422 for_each_possible_cpu(i)
3423 kfree(p->ptrs[i]);
3424 kfree(p);
3426 EXPORT_SYMBOL(free_percpu);
3427 #endif
3429 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3431 return obj_size(cachep);
3433 EXPORT_SYMBOL(kmem_cache_size);
3435 const char *kmem_cache_name(struct kmem_cache *cachep)
3437 return cachep->name;
3439 EXPORT_SYMBOL_GPL(kmem_cache_name);
3442 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3444 static int alloc_kmemlist(struct kmem_cache *cachep)
3446 int node;
3447 struct kmem_list3 *l3;
3448 struct array_cache *new_shared;
3449 struct array_cache **new_alien;
3451 for_each_online_node(node) {
3453 new_alien = alloc_alien_cache(node, cachep->limit);
3454 if (!new_alien)
3455 goto fail;
3457 new_shared = alloc_arraycache(node,
3458 cachep->shared*cachep->batchcount,
3459 0xbaadf00d);
3460 if (!new_shared) {
3461 free_alien_cache(new_alien);
3462 goto fail;
3465 l3 = cachep->nodelists[node];
3466 if (l3) {
3467 struct array_cache *shared = l3->shared;
3469 spin_lock_irq(&l3->list_lock);
3471 if (shared)
3472 free_block(cachep, shared->entry,
3473 shared->avail, node);
3475 l3->shared = new_shared;
3476 if (!l3->alien) {
3477 l3->alien = new_alien;
3478 new_alien = NULL;
3480 l3->free_limit = (1 + nr_cpus_node(node)) *
3481 cachep->batchcount + cachep->num;
3482 spin_unlock_irq(&l3->list_lock);
3483 kfree(shared);
3484 free_alien_cache(new_alien);
3485 continue;
3487 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3488 if (!l3) {
3489 free_alien_cache(new_alien);
3490 kfree(new_shared);
3491 goto fail;
3494 kmem_list3_init(l3);
3495 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3496 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3497 l3->shared = new_shared;
3498 l3->alien = new_alien;
3499 l3->free_limit = (1 + nr_cpus_node(node)) *
3500 cachep->batchcount + cachep->num;
3501 cachep->nodelists[node] = l3;
3503 return 0;
3505 fail:
3506 if (!cachep->next.next) {
3507 /* Cache is not active yet. Roll back what we did */
3508 node--;
3509 while (node >= 0) {
3510 if (cachep->nodelists[node]) {
3511 l3 = cachep->nodelists[node];
3513 kfree(l3->shared);
3514 free_alien_cache(l3->alien);
3515 kfree(l3);
3516 cachep->nodelists[node] = NULL;
3518 node--;
3521 return -ENOMEM;
3524 struct ccupdate_struct {
3525 struct kmem_cache *cachep;
3526 struct array_cache *new[NR_CPUS];
3529 static void do_ccupdate_local(void *info)
3531 struct ccupdate_struct *new = info;
3532 struct array_cache *old;
3534 check_irq_off();
3535 old = cpu_cache_get(new->cachep);
3537 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3538 new->new[smp_processor_id()] = old;
3541 /* Always called with the cache_chain_mutex held */
3542 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3543 int batchcount, int shared)
3545 struct ccupdate_struct new;
3546 int i, err;
3548 memset(&new.new, 0, sizeof(new.new));
3549 for_each_online_cpu(i) {
3550 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3551 batchcount);
3552 if (!new.new[i]) {
3553 for (i--; i >= 0; i--)
3554 kfree(new.new[i]);
3555 return -ENOMEM;
3558 new.cachep = cachep;
3560 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3562 check_irq_on();
3563 cachep->batchcount = batchcount;
3564 cachep->limit = limit;
3565 cachep->shared = shared;
3567 for_each_online_cpu(i) {
3568 struct array_cache *ccold = new.new[i];
3569 if (!ccold)
3570 continue;
3571 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3572 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3573 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3574 kfree(ccold);
3577 err = alloc_kmemlist(cachep);
3578 if (err) {
3579 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3580 cachep->name, -err);
3581 BUG();
3583 return 0;
3586 /* Called with cache_chain_mutex held always */
3587 static void enable_cpucache(struct kmem_cache *cachep)
3589 int err;
3590 int limit, shared;
3593 * The head array serves three purposes:
3594 * - create a LIFO ordering, i.e. return objects that are cache-warm
3595 * - reduce the number of spinlock operations.
3596 * - reduce the number of linked list operations on the slab and
3597 * bufctl chains: array operations are cheaper.
3598 * The numbers are guessed, we should auto-tune as described by
3599 * Bonwick.
3601 if (cachep->buffer_size > 131072)
3602 limit = 1;
3603 else if (cachep->buffer_size > PAGE_SIZE)
3604 limit = 8;
3605 else if (cachep->buffer_size > 1024)
3606 limit = 24;
3607 else if (cachep->buffer_size > 256)
3608 limit = 54;
3609 else
3610 limit = 120;
3613 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3614 * allocation behaviour: Most allocs on one cpu, most free operations
3615 * on another cpu. For these cases, an efficient object passing between
3616 * cpus is necessary. This is provided by a shared array. The array
3617 * replaces Bonwick's magazine layer.
3618 * On uniprocessor, it's functionally equivalent (but less efficient)
3619 * to a larger limit. Thus disabled by default.
3621 shared = 0;
3622 #ifdef CONFIG_SMP
3623 if (cachep->buffer_size <= PAGE_SIZE)
3624 shared = 8;
3625 #endif
3627 #if DEBUG
3629 * With debugging enabled, large batchcount lead to excessively long
3630 * periods with disabled local interrupts. Limit the batchcount
3632 if (limit > 32)
3633 limit = 32;
3634 #endif
3635 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3636 if (err)
3637 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3638 cachep->name, -err);
3642 * Drain an array if it contains any elements taking the l3 lock only if
3643 * necessary. Note that the l3 listlock also protects the array_cache
3644 * if drain_array() is used on the shared array.
3646 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3647 struct array_cache *ac, int force, int node)
3649 int tofree;
3651 if (!ac || !ac->avail)
3652 return;
3653 if (ac->touched && !force) {
3654 ac->touched = 0;
3655 } else {
3656 spin_lock_irq(&l3->list_lock);
3657 if (ac->avail) {
3658 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3659 if (tofree > ac->avail)
3660 tofree = (ac->avail + 1) / 2;
3661 free_block(cachep, ac->entry, tofree, node);
3662 ac->avail -= tofree;
3663 memmove(ac->entry, &(ac->entry[tofree]),
3664 sizeof(void *) * ac->avail);
3666 spin_unlock_irq(&l3->list_lock);
3671 * cache_reap - Reclaim memory from caches.
3672 * @unused: unused parameter
3674 * Called from workqueue/eventd every few seconds.
3675 * Purpose:
3676 * - clear the per-cpu caches for this CPU.
3677 * - return freeable pages to the main free memory pool.
3679 * If we cannot acquire the cache chain mutex then just give up - we'll try
3680 * again on the next iteration.
3682 static void cache_reap(void *unused)
3684 struct list_head *walk;
3685 struct kmem_list3 *l3;
3686 int node = numa_node_id();
3688 if (!mutex_trylock(&cache_chain_mutex)) {
3689 /* Give up. Setup the next iteration. */
3690 schedule_delayed_work(&__get_cpu_var(reap_work),
3691 REAPTIMEOUT_CPUC);
3692 return;
3695 list_for_each(walk, &cache_chain) {
3696 struct kmem_cache *searchp;
3697 struct list_head *p;
3698 int tofree;
3699 struct slab *slabp;
3701 searchp = list_entry(walk, struct kmem_cache, next);
3702 check_irq_on();
3705 * We only take the l3 lock if absolutely necessary and we
3706 * have established with reasonable certainty that
3707 * we can do some work if the lock was obtained.
3709 l3 = searchp->nodelists[node];
3711 reap_alien(searchp, l3);
3713 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3716 * These are racy checks but it does not matter
3717 * if we skip one check or scan twice.
3719 if (time_after(l3->next_reap, jiffies))
3720 goto next;
3722 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3724 drain_array(searchp, l3, l3->shared, 0, node);
3726 if (l3->free_touched) {
3727 l3->free_touched = 0;
3728 goto next;
3731 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3732 (5 * searchp->num);
3733 do {
3735 * Do not lock if there are no free blocks.
3737 if (list_empty(&l3->slabs_free))
3738 break;
3740 spin_lock_irq(&l3->list_lock);
3741 p = l3->slabs_free.next;
3742 if (p == &(l3->slabs_free)) {
3743 spin_unlock_irq(&l3->list_lock);
3744 break;
3747 slabp = list_entry(p, struct slab, list);
3748 BUG_ON(slabp->inuse);
3749 list_del(&slabp->list);
3750 STATS_INC_REAPED(searchp);
3753 * Safe to drop the lock. The slab is no longer linked
3754 * to the cache. searchp cannot disappear, we hold
3755 * cache_chain_lock
3757 l3->free_objects -= searchp->num;
3758 spin_unlock_irq(&l3->list_lock);
3759 slab_destroy(searchp, slabp);
3760 } while (--tofree > 0);
3761 next:
3762 cond_resched();
3764 check_irq_on();
3765 mutex_unlock(&cache_chain_mutex);
3766 next_reap_node();
3767 /* Set up the next iteration */
3768 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3771 #ifdef CONFIG_PROC_FS
3773 static void print_slabinfo_header(struct seq_file *m)
3776 * Output format version, so at least we can change it
3777 * without _too_ many complaints.
3779 #if STATS
3780 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3781 #else
3782 seq_puts(m, "slabinfo - version: 2.1\n");
3783 #endif
3784 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3785 "<objperslab> <pagesperslab>");
3786 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3787 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3788 #if STATS
3789 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3790 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3791 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3792 #endif
3793 seq_putc(m, '\n');
3796 static void *s_start(struct seq_file *m, loff_t *pos)
3798 loff_t n = *pos;
3799 struct list_head *p;
3801 mutex_lock(&cache_chain_mutex);
3802 if (!n)
3803 print_slabinfo_header(m);
3804 p = cache_chain.next;
3805 while (n--) {
3806 p = p->next;
3807 if (p == &cache_chain)
3808 return NULL;
3810 return list_entry(p, struct kmem_cache, next);
3813 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3815 struct kmem_cache *cachep = p;
3816 ++*pos;
3817 return cachep->next.next == &cache_chain ?
3818 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3821 static void s_stop(struct seq_file *m, void *p)
3823 mutex_unlock(&cache_chain_mutex);
3826 static int s_show(struct seq_file *m, void *p)
3828 struct kmem_cache *cachep = p;
3829 struct list_head *q;
3830 struct slab *slabp;
3831 unsigned long active_objs;
3832 unsigned long num_objs;
3833 unsigned long active_slabs = 0;
3834 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3835 const char *name;
3836 char *error = NULL;
3837 int node;
3838 struct kmem_list3 *l3;
3840 active_objs = 0;
3841 num_slabs = 0;
3842 for_each_online_node(node) {
3843 l3 = cachep->nodelists[node];
3844 if (!l3)
3845 continue;
3847 check_irq_on();
3848 spin_lock_irq(&l3->list_lock);
3850 list_for_each(q, &l3->slabs_full) {
3851 slabp = list_entry(q, struct slab, list);
3852 if (slabp->inuse != cachep->num && !error)
3853 error = "slabs_full accounting error";
3854 active_objs += cachep->num;
3855 active_slabs++;
3857 list_for_each(q, &l3->slabs_partial) {
3858 slabp = list_entry(q, struct slab, list);
3859 if (slabp->inuse == cachep->num && !error)
3860 error = "slabs_partial inuse accounting error";
3861 if (!slabp->inuse && !error)
3862 error = "slabs_partial/inuse accounting error";
3863 active_objs += slabp->inuse;
3864 active_slabs++;
3866 list_for_each(q, &l3->slabs_free) {
3867 slabp = list_entry(q, struct slab, list);
3868 if (slabp->inuse && !error)
3869 error = "slabs_free/inuse accounting error";
3870 num_slabs++;
3872 free_objects += l3->free_objects;
3873 if (l3->shared)
3874 shared_avail += l3->shared->avail;
3876 spin_unlock_irq(&l3->list_lock);
3878 num_slabs += active_slabs;
3879 num_objs = num_slabs * cachep->num;
3880 if (num_objs - active_objs != free_objects && !error)
3881 error = "free_objects accounting error";
3883 name = cachep->name;
3884 if (error)
3885 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3887 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3888 name, active_objs, num_objs, cachep->buffer_size,
3889 cachep->num, (1 << cachep->gfporder));
3890 seq_printf(m, " : tunables %4u %4u %4u",
3891 cachep->limit, cachep->batchcount, cachep->shared);
3892 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3893 active_slabs, num_slabs, shared_avail);
3894 #if STATS
3895 { /* list3 stats */
3896 unsigned long high = cachep->high_mark;
3897 unsigned long allocs = cachep->num_allocations;
3898 unsigned long grown = cachep->grown;
3899 unsigned long reaped = cachep->reaped;
3900 unsigned long errors = cachep->errors;
3901 unsigned long max_freeable = cachep->max_freeable;
3902 unsigned long node_allocs = cachep->node_allocs;
3903 unsigned long node_frees = cachep->node_frees;
3904 unsigned long overflows = cachep->node_overflow;
3906 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3907 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3908 reaped, errors, max_freeable, node_allocs,
3909 node_frees, overflows);
3911 /* cpu stats */
3913 unsigned long allochit = atomic_read(&cachep->allochit);
3914 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3915 unsigned long freehit = atomic_read(&cachep->freehit);
3916 unsigned long freemiss = atomic_read(&cachep->freemiss);
3918 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3919 allochit, allocmiss, freehit, freemiss);
3921 #endif
3922 seq_putc(m, '\n');
3923 return 0;
3927 * slabinfo_op - iterator that generates /proc/slabinfo
3929 * Output layout:
3930 * cache-name
3931 * num-active-objs
3932 * total-objs
3933 * object size
3934 * num-active-slabs
3935 * total-slabs
3936 * num-pages-per-slab
3937 * + further values on SMP and with statistics enabled
3940 struct seq_operations slabinfo_op = {
3941 .start = s_start,
3942 .next = s_next,
3943 .stop = s_stop,
3944 .show = s_show,
3947 #define MAX_SLABINFO_WRITE 128
3949 * slabinfo_write - Tuning for the slab allocator
3950 * @file: unused
3951 * @buffer: user buffer
3952 * @count: data length
3953 * @ppos: unused
3955 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3956 size_t count, loff_t *ppos)
3958 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3959 int limit, batchcount, shared, res;
3960 struct list_head *p;
3962 if (count > MAX_SLABINFO_WRITE)
3963 return -EINVAL;
3964 if (copy_from_user(&kbuf, buffer, count))
3965 return -EFAULT;
3966 kbuf[MAX_SLABINFO_WRITE] = '\0';
3968 tmp = strchr(kbuf, ' ');
3969 if (!tmp)
3970 return -EINVAL;
3971 *tmp = '\0';
3972 tmp++;
3973 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3974 return -EINVAL;
3976 /* Find the cache in the chain of caches. */
3977 mutex_lock(&cache_chain_mutex);
3978 res = -EINVAL;
3979 list_for_each(p, &cache_chain) {
3980 struct kmem_cache *cachep;
3982 cachep = list_entry(p, struct kmem_cache, next);
3983 if (!strcmp(cachep->name, kbuf)) {
3984 if (limit < 1 || batchcount < 1 ||
3985 batchcount > limit || shared < 0) {
3986 res = 0;
3987 } else {
3988 res = do_tune_cpucache(cachep, limit,
3989 batchcount, shared);
3991 break;
3994 mutex_unlock(&cache_chain_mutex);
3995 if (res >= 0)
3996 res = count;
3997 return res;
4000 #ifdef CONFIG_DEBUG_SLAB_LEAK
4002 static void *leaks_start(struct seq_file *m, loff_t *pos)
4004 loff_t n = *pos;
4005 struct list_head *p;
4007 mutex_lock(&cache_chain_mutex);
4008 p = cache_chain.next;
4009 while (n--) {
4010 p = p->next;
4011 if (p == &cache_chain)
4012 return NULL;
4014 return list_entry(p, struct kmem_cache, next);
4017 static inline int add_caller(unsigned long *n, unsigned long v)
4019 unsigned long *p;
4020 int l;
4021 if (!v)
4022 return 1;
4023 l = n[1];
4024 p = n + 2;
4025 while (l) {
4026 int i = l/2;
4027 unsigned long *q = p + 2 * i;
4028 if (*q == v) {
4029 q[1]++;
4030 return 1;
4032 if (*q > v) {
4033 l = i;
4034 } else {
4035 p = q + 2;
4036 l -= i + 1;
4039 if (++n[1] == n[0])
4040 return 0;
4041 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4042 p[0] = v;
4043 p[1] = 1;
4044 return 1;
4047 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4049 void *p;
4050 int i;
4051 if (n[0] == n[1])
4052 return;
4053 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4054 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4055 continue;
4056 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4057 return;
4061 static void show_symbol(struct seq_file *m, unsigned long address)
4063 #ifdef CONFIG_KALLSYMS
4064 char *modname;
4065 const char *name;
4066 unsigned long offset, size;
4067 char namebuf[KSYM_NAME_LEN+1];
4069 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4071 if (name) {
4072 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4073 if (modname)
4074 seq_printf(m, " [%s]", modname);
4075 return;
4077 #endif
4078 seq_printf(m, "%p", (void *)address);
4081 static int leaks_show(struct seq_file *m, void *p)
4083 struct kmem_cache *cachep = p;
4084 struct list_head *q;
4085 struct slab *slabp;
4086 struct kmem_list3 *l3;
4087 const char *name;
4088 unsigned long *n = m->private;
4089 int node;
4090 int i;
4092 if (!(cachep->flags & SLAB_STORE_USER))
4093 return 0;
4094 if (!(cachep->flags & SLAB_RED_ZONE))
4095 return 0;
4097 /* OK, we can do it */
4099 n[1] = 0;
4101 for_each_online_node(node) {
4102 l3 = cachep->nodelists[node];
4103 if (!l3)
4104 continue;
4106 check_irq_on();
4107 spin_lock_irq(&l3->list_lock);
4109 list_for_each(q, &l3->slabs_full) {
4110 slabp = list_entry(q, struct slab, list);
4111 handle_slab(n, cachep, slabp);
4113 list_for_each(q, &l3->slabs_partial) {
4114 slabp = list_entry(q, struct slab, list);
4115 handle_slab(n, cachep, slabp);
4117 spin_unlock_irq(&l3->list_lock);
4119 name = cachep->name;
4120 if (n[0] == n[1]) {
4121 /* Increase the buffer size */
4122 mutex_unlock(&cache_chain_mutex);
4123 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4124 if (!m->private) {
4125 /* Too bad, we are really out */
4126 m->private = n;
4127 mutex_lock(&cache_chain_mutex);
4128 return -ENOMEM;
4130 *(unsigned long *)m->private = n[0] * 2;
4131 kfree(n);
4132 mutex_lock(&cache_chain_mutex);
4133 /* Now make sure this entry will be retried */
4134 m->count = m->size;
4135 return 0;
4137 for (i = 0; i < n[1]; i++) {
4138 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4139 show_symbol(m, n[2*i+2]);
4140 seq_putc(m, '\n');
4142 return 0;
4145 struct seq_operations slabstats_op = {
4146 .start = leaks_start,
4147 .next = s_next,
4148 .stop = s_stop,
4149 .show = leaks_show,
4151 #endif
4152 #endif
4155 * ksize - get the actual amount of memory allocated for a given object
4156 * @objp: Pointer to the object
4158 * kmalloc may internally round up allocations and return more memory
4159 * than requested. ksize() can be used to determine the actual amount of
4160 * memory allocated. The caller may use this additional memory, even though
4161 * a smaller amount of memory was initially specified with the kmalloc call.
4162 * The caller must guarantee that objp points to a valid object previously
4163 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4164 * must not be freed during the duration of the call.
4166 unsigned int ksize(const void *objp)
4168 if (unlikely(objp == NULL))
4169 return 0;
4171 return obj_size(virt_to_cache(objp));