3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 #ifdef CONFIG_DEBUG_SLAB
129 #define FORCED_DEBUG 1
133 #define FORCED_DEBUG 0
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
143 #ifndef ARCH_KMALLOC_MINALIGN
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
152 #define ARCH_KMALLOC_MINALIGN 0
155 #ifndef ARCH_SLAB_MINALIGN
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
163 #define ARCH_SLAB_MINALIGN 0
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170 /* Legal flag mask for kmem_cache_create(). */
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
188 * Bufctl's are used for linking objs within a slab
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 typedef unsigned int kmem_bufctl_t
;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210 /* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
213 static unsigned long offslab_limit
;
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 struct list_head list
;
224 unsigned long colouroff
;
225 void *s_mem
; /* including colour offset */
226 unsigned int inuse
; /* num of objs active in slab */
228 unsigned short nodeid
;
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
245 * We assume struct slab_rcu can overlay struct slab when destroying.
248 struct rcu_head head
;
249 struct kmem_cache
*cachep
;
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
261 * The limit is stored in the per-cpu structure to reduce the data cache
268 unsigned int batchcount
;
269 unsigned int touched
;
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
275 * [0] is for gcc 2.95. It should really be [].
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init
{
285 struct array_cache cache
;
286 void *entries
[BOOT_CPUCACHE_ENTRIES
];
290 * The slab lists for all objects.
293 struct list_head slabs_partial
; /* partial list first, better asm code */
294 struct list_head slabs_full
;
295 struct list_head slabs_free
;
296 unsigned long free_objects
;
297 unsigned int free_limit
;
298 unsigned int colour_next
; /* Per-node cache coloring */
299 spinlock_t list_lock
;
300 struct array_cache
*shared
; /* shared per node */
301 struct array_cache
**alien
; /* on other nodes */
302 unsigned long next_reap
; /* updated without locking */
303 int free_touched
; /* updated without locking */
307 * Need this for bootstrapping a per node allocator.
309 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
311 #define CACHE_CACHE 0
313 #define SIZE_L3 (1 + MAX_NUMNODES)
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
319 static __always_inline
int index_of(const size_t size
)
321 extern void __bad_size(void);
323 if (__builtin_constant_p(size
)) {
331 #include "linux/kmalloc_sizes.h"
339 #define INDEX_AC index_of(sizeof(struct arraycache_init))
340 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
342 static void kmem_list3_init(struct kmem_list3
*parent
)
344 INIT_LIST_HEAD(&parent
->slabs_full
);
345 INIT_LIST_HEAD(&parent
->slabs_partial
);
346 INIT_LIST_HEAD(&parent
->slabs_free
);
347 parent
->shared
= NULL
;
348 parent
->alien
= NULL
;
349 parent
->colour_next
= 0;
350 spin_lock_init(&parent
->list_lock
);
351 parent
->free_objects
= 0;
352 parent
->free_touched
= 0;
355 #define MAKE_LIST(cachep, listp, slab, nodeid) \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
361 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
375 /* 1) per-cpu data, touched during every alloc/free */
376 struct array_cache
*array
[NR_CPUS
];
377 /* 2) Cache tunables. Protected by cache_chain_mutex */
378 unsigned int batchcount
;
382 unsigned int buffer_size
;
383 /* 3) touched by every alloc & free from the backend */
384 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
386 unsigned int flags
; /* constant flags */
387 unsigned int num
; /* # of objs per slab */
389 /* 4) cache_grow/shrink */
390 /* order of pgs per slab (2^n) */
391 unsigned int gfporder
;
393 /* force GFP flags, e.g. GFP_DMA */
396 size_t colour
; /* cache colouring range */
397 unsigned int colour_off
; /* colour offset */
398 struct kmem_cache
*slabp_cache
;
399 unsigned int slab_size
;
400 unsigned int dflags
; /* dynamic flags */
402 /* constructor func */
403 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
405 /* de-constructor func */
406 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
408 /* 5) cache creation/removal */
410 struct list_head next
;
414 unsigned long num_active
;
415 unsigned long num_allocations
;
416 unsigned long high_mark
;
418 unsigned long reaped
;
419 unsigned long errors
;
420 unsigned long max_freeable
;
421 unsigned long node_allocs
;
422 unsigned long node_frees
;
423 unsigned long node_overflow
;
431 * If debugging is enabled, then the allocator can add additional
432 * fields and/or padding to every object. buffer_size contains the total
433 * object size including these internal fields, the following two
434 * variables contain the offset to the user object and its size.
441 #define CFLGS_OFF_SLAB (0x80000000UL)
442 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
444 #define BATCHREFILL_LIMIT 16
446 * Optimization question: fewer reaps means less probability for unnessary
447 * cpucache drain/refill cycles.
449 * OTOH the cpuarrays can contain lots of objects,
450 * which could lock up otherwise freeable slabs.
452 #define REAPTIMEOUT_CPUC (2*HZ)
453 #define REAPTIMEOUT_LIST3 (4*HZ)
456 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
457 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
458 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
459 #define STATS_INC_GROWN(x) ((x)->grown++)
460 #define STATS_INC_REAPED(x) ((x)->reaped++)
461 #define STATS_SET_HIGH(x) \
463 if ((x)->num_active > (x)->high_mark) \
464 (x)->high_mark = (x)->num_active; \
466 #define STATS_INC_ERR(x) ((x)->errors++)
467 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
468 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
469 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
470 #define STATS_SET_FREEABLE(x, i) \
472 if ((x)->max_freeable < i) \
473 (x)->max_freeable = i; \
475 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
476 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
477 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
478 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
480 #define STATS_INC_ACTIVE(x) do { } while (0)
481 #define STATS_DEC_ACTIVE(x) do { } while (0)
482 #define STATS_INC_ALLOCED(x) do { } while (0)
483 #define STATS_INC_GROWN(x) do { } while (0)
484 #define STATS_INC_REAPED(x) do { } while (0)
485 #define STATS_SET_HIGH(x) do { } while (0)
486 #define STATS_INC_ERR(x) do { } while (0)
487 #define STATS_INC_NODEALLOCS(x) do { } while (0)
488 #define STATS_INC_NODEFREES(x) do { } while (0)
489 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
490 #define STATS_SET_FREEABLE(x, i) do { } while (0)
491 #define STATS_INC_ALLOCHIT(x) do { } while (0)
492 #define STATS_INC_ALLOCMISS(x) do { } while (0)
493 #define STATS_INC_FREEHIT(x) do { } while (0)
494 #define STATS_INC_FREEMISS(x) do { } while (0)
499 * Magic nums for obj red zoning.
500 * Placed in the first word before and the first word after an obj.
502 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
503 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
505 /* ...and for poisoning */
506 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
507 #define POISON_FREE 0x6b /* for use-after-free poisoning */
508 #define POISON_END 0xa5 /* end-byte of poisoning */
511 * memory layout of objects:
513 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
514 * the end of an object is aligned with the end of the real
515 * allocation. Catches writes behind the end of the allocation.
516 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
518 * cachep->obj_offset: The real object.
519 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
520 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
521 * [BYTES_PER_WORD long]
523 static int obj_offset(struct kmem_cache
*cachep
)
525 return cachep
->obj_offset
;
528 static int obj_size(struct kmem_cache
*cachep
)
530 return cachep
->obj_size
;
533 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
535 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
536 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
539 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
541 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
542 if (cachep
->flags
& SLAB_STORE_USER
)
543 return (unsigned long *)(objp
+ cachep
->buffer_size
-
545 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
548 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
550 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
551 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
556 #define obj_offset(x) 0
557 #define obj_size(cachep) (cachep->buffer_size)
558 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
559 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
560 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
565 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
568 #if defined(CONFIG_LARGE_ALLOCS)
569 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
570 #define MAX_GFP_ORDER 13 /* up to 32Mb */
571 #elif defined(CONFIG_MMU)
572 #define MAX_OBJ_ORDER 5 /* 32 pages */
573 #define MAX_GFP_ORDER 5 /* 32 pages */
575 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
576 #define MAX_GFP_ORDER 8 /* up to 1Mb */
580 * Do not go above this order unless 0 objects fit into the slab.
582 #define BREAK_GFP_ORDER_HI 1
583 #define BREAK_GFP_ORDER_LO 0
584 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
587 * Functions for storing/retrieving the cachep and or slab from the page
588 * allocator. These are used to find the slab an obj belongs to. With kfree(),
589 * these are used to find the cache which an obj belongs to.
591 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
593 page
->lru
.next
= (struct list_head
*)cache
;
596 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
598 if (unlikely(PageCompound(page
)))
599 page
= (struct page
*)page_private(page
);
600 return (struct kmem_cache
*)page
->lru
.next
;
603 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
605 page
->lru
.prev
= (struct list_head
*)slab
;
608 static inline struct slab
*page_get_slab(struct page
*page
)
610 if (unlikely(PageCompound(page
)))
611 page
= (struct page
*)page_private(page
);
612 return (struct slab
*)page
->lru
.prev
;
615 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
617 struct page
*page
= virt_to_page(obj
);
618 return page_get_cache(page
);
621 static inline struct slab
*virt_to_slab(const void *obj
)
623 struct page
*page
= virt_to_page(obj
);
624 return page_get_slab(page
);
627 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
630 return slab
->s_mem
+ cache
->buffer_size
* idx
;
633 static inline unsigned int obj_to_index(struct kmem_cache
*cache
,
634 struct slab
*slab
, void *obj
)
636 return (unsigned)(obj
- slab
->s_mem
) / cache
->buffer_size
;
640 * These are the default caches for kmalloc. Custom caches can have other sizes.
642 struct cache_sizes malloc_sizes
[] = {
643 #define CACHE(x) { .cs_size = (x) },
644 #include <linux/kmalloc_sizes.h>
648 EXPORT_SYMBOL(malloc_sizes
);
650 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
656 static struct cache_names __initdata cache_names
[] = {
657 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
658 #include <linux/kmalloc_sizes.h>
663 static struct arraycache_init initarray_cache __initdata
=
664 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
665 static struct arraycache_init initarray_generic
=
666 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
668 /* internal cache of cache description objs */
669 static struct kmem_cache cache_cache
= {
671 .limit
= BOOT_CPUCACHE_ENTRIES
,
673 .buffer_size
= sizeof(struct kmem_cache
),
674 .name
= "kmem_cache",
676 .obj_size
= sizeof(struct kmem_cache
),
680 /* Guard access to the cache-chain. */
681 static DEFINE_MUTEX(cache_chain_mutex
);
682 static struct list_head cache_chain
;
685 * vm_enough_memory() looks at this to determine how many slab-allocated pages
686 * are possibly freeable under pressure
688 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
690 atomic_t slab_reclaim_pages
;
693 * chicken and egg problem: delay the per-cpu array allocation
694 * until the general caches are up.
704 * used by boot code to determine if it can use slab based allocator
706 int slab_is_available(void)
708 return g_cpucache_up
== FULL
;
711 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
713 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
715 static void enable_cpucache(struct kmem_cache
*cachep
);
716 static void cache_reap(void *unused
);
717 static int __node_shrink(struct kmem_cache
*cachep
, int node
);
719 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
721 return cachep
->array
[smp_processor_id()];
724 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
727 struct cache_sizes
*csizep
= malloc_sizes
;
730 /* This happens if someone tries to call
731 * kmem_cache_create(), or __kmalloc(), before
732 * the generic caches are initialized.
734 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
736 while (size
> csizep
->cs_size
)
740 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
741 * has cs_{dma,}cachep==NULL. Thus no special case
742 * for large kmalloc calls required.
744 if (unlikely(gfpflags
& GFP_DMA
))
745 return csizep
->cs_dmacachep
;
746 return csizep
->cs_cachep
;
749 struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
751 return __find_general_cachep(size
, gfpflags
);
753 EXPORT_SYMBOL(kmem_find_general_cachep
);
755 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
757 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
761 * Calculate the number of objects and left-over bytes for a given buffer size.
763 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
764 size_t align
, int flags
, size_t *left_over
,
769 size_t slab_size
= PAGE_SIZE
<< gfporder
;
772 * The slab management structure can be either off the slab or
773 * on it. For the latter case, the memory allocated for a
777 * - One kmem_bufctl_t for each object
778 * - Padding to respect alignment of @align
779 * - @buffer_size bytes for each object
781 * If the slab management structure is off the slab, then the
782 * alignment will already be calculated into the size. Because
783 * the slabs are all pages aligned, the objects will be at the
784 * correct alignment when allocated.
786 if (flags
& CFLGS_OFF_SLAB
) {
788 nr_objs
= slab_size
/ buffer_size
;
790 if (nr_objs
> SLAB_LIMIT
)
791 nr_objs
= SLAB_LIMIT
;
794 * Ignore padding for the initial guess. The padding
795 * is at most @align-1 bytes, and @buffer_size is at
796 * least @align. In the worst case, this result will
797 * be one greater than the number of objects that fit
798 * into the memory allocation when taking the padding
801 nr_objs
= (slab_size
- sizeof(struct slab
)) /
802 (buffer_size
+ sizeof(kmem_bufctl_t
));
805 * This calculated number will be either the right
806 * amount, or one greater than what we want.
808 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
812 if (nr_objs
> SLAB_LIMIT
)
813 nr_objs
= SLAB_LIMIT
;
815 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
818 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
821 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
823 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
826 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
827 function
, cachep
->name
, msg
);
833 * Special reaping functions for NUMA systems called from cache_reap().
834 * These take care of doing round robin flushing of alien caches (containing
835 * objects freed on different nodes from which they were allocated) and the
836 * flushing of remote pcps by calling drain_node_pages.
838 static DEFINE_PER_CPU(unsigned long, reap_node
);
840 static void init_reap_node(int cpu
)
844 node
= next_node(cpu_to_node(cpu
), node_online_map
);
845 if (node
== MAX_NUMNODES
)
846 node
= first_node(node_online_map
);
848 __get_cpu_var(reap_node
) = node
;
851 static void next_reap_node(void)
853 int node
= __get_cpu_var(reap_node
);
856 * Also drain per cpu pages on remote zones
858 if (node
!= numa_node_id())
859 drain_node_pages(node
);
861 node
= next_node(node
, node_online_map
);
862 if (unlikely(node
>= MAX_NUMNODES
))
863 node
= first_node(node_online_map
);
864 __get_cpu_var(reap_node
) = node
;
868 #define init_reap_node(cpu) do { } while (0)
869 #define next_reap_node(void) do { } while (0)
873 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
874 * via the workqueue/eventd.
875 * Add the CPU number into the expiration time to minimize the possibility of
876 * the CPUs getting into lockstep and contending for the global cache chain
879 static void __devinit
start_cpu_timer(int cpu
)
881 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
884 * When this gets called from do_initcalls via cpucache_init(),
885 * init_workqueues() has already run, so keventd will be setup
888 if (keventd_up() && reap_work
->func
== NULL
) {
890 INIT_WORK(reap_work
, cache_reap
, NULL
);
891 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
895 static struct array_cache
*alloc_arraycache(int node
, int entries
,
898 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
899 struct array_cache
*nc
= NULL
;
901 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
905 nc
->batchcount
= batchcount
;
907 spin_lock_init(&nc
->lock
);
913 * Transfer objects in one arraycache to another.
914 * Locking must be handled by the caller.
916 * Return the number of entries transferred.
918 static int transfer_objects(struct array_cache
*to
,
919 struct array_cache
*from
, unsigned int max
)
921 /* Figure out how many entries to transfer */
922 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
927 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
937 static void *__cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
938 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
940 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
942 struct array_cache
**ac_ptr
;
943 int memsize
= sizeof(void *) * MAX_NUMNODES
;
948 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
951 if (i
== node
|| !node_online(i
)) {
955 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
957 for (i
--; i
<= 0; i
--)
967 static void free_alien_cache(struct array_cache
**ac_ptr
)
978 static void __drain_alien_cache(struct kmem_cache
*cachep
,
979 struct array_cache
*ac
, int node
)
981 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
984 spin_lock(&rl3
->list_lock
);
986 * Stuff objects into the remote nodes shared array first.
987 * That way we could avoid the overhead of putting the objects
988 * into the free lists and getting them back later.
991 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
993 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
995 spin_unlock(&rl3
->list_lock
);
1000 * Called from cache_reap() to regularly drain alien caches round robin.
1002 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1004 int node
= __get_cpu_var(reap_node
);
1007 struct array_cache
*ac
= l3
->alien
[node
];
1009 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1010 __drain_alien_cache(cachep
, ac
, node
);
1011 spin_unlock_irq(&ac
->lock
);
1016 static void drain_alien_cache(struct kmem_cache
*cachep
,
1017 struct array_cache
**alien
)
1020 struct array_cache
*ac
;
1021 unsigned long flags
;
1023 for_each_online_node(i
) {
1026 spin_lock_irqsave(&ac
->lock
, flags
);
1027 __drain_alien_cache(cachep
, ac
, i
);
1028 spin_unlock_irqrestore(&ac
->lock
, flags
);
1034 #define drain_alien_cache(cachep, alien) do { } while (0)
1035 #define reap_alien(cachep, l3) do { } while (0)
1037 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1039 return (struct array_cache
**) 0x01020304ul
;
1042 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1048 static int cpuup_callback(struct notifier_block
*nfb
,
1049 unsigned long action
, void *hcpu
)
1051 long cpu
= (long)hcpu
;
1052 struct kmem_cache
*cachep
;
1053 struct kmem_list3
*l3
= NULL
;
1054 int node
= cpu_to_node(cpu
);
1055 int memsize
= sizeof(struct kmem_list3
);
1058 case CPU_UP_PREPARE
:
1059 mutex_lock(&cache_chain_mutex
);
1061 * We need to do this right in the beginning since
1062 * alloc_arraycache's are going to use this list.
1063 * kmalloc_node allows us to add the slab to the right
1064 * kmem_list3 and not this cpu's kmem_list3
1067 list_for_each_entry(cachep
, &cache_chain
, next
) {
1069 * Set up the size64 kmemlist for cpu before we can
1070 * begin anything. Make sure some other cpu on this
1071 * node has not already allocated this
1073 if (!cachep
->nodelists
[node
]) {
1074 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1077 kmem_list3_init(l3
);
1078 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1079 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1082 * The l3s don't come and go as CPUs come and
1083 * go. cache_chain_mutex is sufficient
1086 cachep
->nodelists
[node
] = l3
;
1089 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1090 cachep
->nodelists
[node
]->free_limit
=
1091 (1 + nr_cpus_node(node
)) *
1092 cachep
->batchcount
+ cachep
->num
;
1093 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1097 * Now we can go ahead with allocating the shared arrays and
1100 list_for_each_entry(cachep
, &cache_chain
, next
) {
1101 struct array_cache
*nc
;
1102 struct array_cache
*shared
;
1103 struct array_cache
**alien
;
1105 nc
= alloc_arraycache(node
, cachep
->limit
,
1106 cachep
->batchcount
);
1109 shared
= alloc_arraycache(node
,
1110 cachep
->shared
* cachep
->batchcount
,
1115 alien
= alloc_alien_cache(node
, cachep
->limit
);
1118 cachep
->array
[cpu
] = nc
;
1119 l3
= cachep
->nodelists
[node
];
1122 spin_lock_irq(&l3
->list_lock
);
1125 * We are serialised from CPU_DEAD or
1126 * CPU_UP_CANCELLED by the cpucontrol lock
1128 l3
->shared
= shared
;
1137 spin_unlock_irq(&l3
->list_lock
);
1139 free_alien_cache(alien
);
1141 mutex_unlock(&cache_chain_mutex
);
1144 start_cpu_timer(cpu
);
1146 #ifdef CONFIG_HOTPLUG_CPU
1149 * Even if all the cpus of a node are down, we don't free the
1150 * kmem_list3 of any cache. This to avoid a race between
1151 * cpu_down, and a kmalloc allocation from another cpu for
1152 * memory from the node of the cpu going down. The list3
1153 * structure is usually allocated from kmem_cache_create() and
1154 * gets destroyed at kmem_cache_destroy().
1157 case CPU_UP_CANCELED
:
1158 mutex_lock(&cache_chain_mutex
);
1159 list_for_each_entry(cachep
, &cache_chain
, next
) {
1160 struct array_cache
*nc
;
1161 struct array_cache
*shared
;
1162 struct array_cache
**alien
;
1165 mask
= node_to_cpumask(node
);
1166 /* cpu is dead; no one can alloc from it. */
1167 nc
= cachep
->array
[cpu
];
1168 cachep
->array
[cpu
] = NULL
;
1169 l3
= cachep
->nodelists
[node
];
1172 goto free_array_cache
;
1174 spin_lock_irq(&l3
->list_lock
);
1176 /* Free limit for this kmem_list3 */
1177 l3
->free_limit
-= cachep
->batchcount
;
1179 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1181 if (!cpus_empty(mask
)) {
1182 spin_unlock_irq(&l3
->list_lock
);
1183 goto free_array_cache
;
1186 shared
= l3
->shared
;
1188 free_block(cachep
, l3
->shared
->entry
,
1189 l3
->shared
->avail
, node
);
1196 spin_unlock_irq(&l3
->list_lock
);
1200 drain_alien_cache(cachep
, alien
);
1201 free_alien_cache(alien
);
1207 * In the previous loop, all the objects were freed to
1208 * the respective cache's slabs, now we can go ahead and
1209 * shrink each nodelist to its limit.
1211 list_for_each_entry(cachep
, &cache_chain
, next
) {
1212 l3
= cachep
->nodelists
[node
];
1215 spin_lock_irq(&l3
->list_lock
);
1216 /* free slabs belonging to this node */
1217 __node_shrink(cachep
, node
);
1218 spin_unlock_irq(&l3
->list_lock
);
1220 mutex_unlock(&cache_chain_mutex
);
1226 mutex_unlock(&cache_chain_mutex
);
1230 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
1233 * swap the static kmem_list3 with kmalloced memory
1235 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1238 struct kmem_list3
*ptr
;
1240 BUG_ON(cachep
->nodelists
[nodeid
] != list
);
1241 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1244 local_irq_disable();
1245 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1246 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1247 cachep
->nodelists
[nodeid
] = ptr
;
1252 * Initialisation. Called after the page allocator have been initialised and
1253 * before smp_init().
1255 void __init
kmem_cache_init(void)
1258 struct cache_sizes
*sizes
;
1259 struct cache_names
*names
;
1263 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1264 kmem_list3_init(&initkmem_list3
[i
]);
1265 if (i
< MAX_NUMNODES
)
1266 cache_cache
.nodelists
[i
] = NULL
;
1270 * Fragmentation resistance on low memory - only use bigger
1271 * page orders on machines with more than 32MB of memory.
1273 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1274 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1276 /* Bootstrap is tricky, because several objects are allocated
1277 * from caches that do not exist yet:
1278 * 1) initialize the cache_cache cache: it contains the struct
1279 * kmem_cache structures of all caches, except cache_cache itself:
1280 * cache_cache is statically allocated.
1281 * Initially an __init data area is used for the head array and the
1282 * kmem_list3 structures, it's replaced with a kmalloc allocated
1283 * array at the end of the bootstrap.
1284 * 2) Create the first kmalloc cache.
1285 * The struct kmem_cache for the new cache is allocated normally.
1286 * An __init data area is used for the head array.
1287 * 3) Create the remaining kmalloc caches, with minimally sized
1289 * 4) Replace the __init data head arrays for cache_cache and the first
1290 * kmalloc cache with kmalloc allocated arrays.
1291 * 5) Replace the __init data for kmem_list3 for cache_cache and
1292 * the other cache's with kmalloc allocated memory.
1293 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1296 /* 1) create the cache_cache */
1297 INIT_LIST_HEAD(&cache_chain
);
1298 list_add(&cache_cache
.next
, &cache_chain
);
1299 cache_cache
.colour_off
= cache_line_size();
1300 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1301 cache_cache
.nodelists
[numa_node_id()] = &initkmem_list3
[CACHE_CACHE
];
1303 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1306 for (order
= 0; order
< MAX_ORDER
; order
++) {
1307 cache_estimate(order
, cache_cache
.buffer_size
,
1308 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1309 if (cache_cache
.num
)
1312 BUG_ON(!cache_cache
.num
);
1313 cache_cache
.gfporder
= order
;
1314 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1315 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1316 sizeof(struct slab
), cache_line_size());
1318 /* 2+3) create the kmalloc caches */
1319 sizes
= malloc_sizes
;
1320 names
= cache_names
;
1323 * Initialize the caches that provide memory for the array cache and the
1324 * kmem_list3 structures first. Without this, further allocations will
1328 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1329 sizes
[INDEX_AC
].cs_size
,
1330 ARCH_KMALLOC_MINALIGN
,
1331 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1334 if (INDEX_AC
!= INDEX_L3
) {
1335 sizes
[INDEX_L3
].cs_cachep
=
1336 kmem_cache_create(names
[INDEX_L3
].name
,
1337 sizes
[INDEX_L3
].cs_size
,
1338 ARCH_KMALLOC_MINALIGN
,
1339 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1343 while (sizes
->cs_size
!= ULONG_MAX
) {
1345 * For performance, all the general caches are L1 aligned.
1346 * This should be particularly beneficial on SMP boxes, as it
1347 * eliminates "false sharing".
1348 * Note for systems short on memory removing the alignment will
1349 * allow tighter packing of the smaller caches.
1351 if (!sizes
->cs_cachep
) {
1352 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1354 ARCH_KMALLOC_MINALIGN
,
1355 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1359 /* Inc off-slab bufctl limit until the ceiling is hit. */
1360 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
1361 offslab_limit
= sizes
->cs_size
- sizeof(struct slab
);
1362 offslab_limit
/= sizeof(kmem_bufctl_t
);
1365 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1367 ARCH_KMALLOC_MINALIGN
,
1368 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1374 /* 4) Replace the bootstrap head arrays */
1378 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1380 local_irq_disable();
1381 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1382 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1383 sizeof(struct arraycache_init
));
1384 cache_cache
.array
[smp_processor_id()] = ptr
;
1387 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1389 local_irq_disable();
1390 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1391 != &initarray_generic
.cache
);
1392 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1393 sizeof(struct arraycache_init
));
1394 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1398 /* 5) Replace the bootstrap kmem_list3's */
1401 /* Replace the static kmem_list3 structures for the boot cpu */
1402 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
],
1405 for_each_online_node(node
) {
1406 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1407 &initkmem_list3
[SIZE_AC
+ node
], node
);
1409 if (INDEX_AC
!= INDEX_L3
) {
1410 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1411 &initkmem_list3
[SIZE_L3
+ node
],
1417 /* 6) resize the head arrays to their final sizes */
1419 struct kmem_cache
*cachep
;
1420 mutex_lock(&cache_chain_mutex
);
1421 list_for_each_entry(cachep
, &cache_chain
, next
)
1422 enable_cpucache(cachep
);
1423 mutex_unlock(&cache_chain_mutex
);
1427 g_cpucache_up
= FULL
;
1430 * Register a cpu startup notifier callback that initializes
1431 * cpu_cache_get for all new cpus
1433 register_cpu_notifier(&cpucache_notifier
);
1436 * The reap timers are started later, with a module init call: That part
1437 * of the kernel is not yet operational.
1441 static int __init
cpucache_init(void)
1446 * Register the timers that return unneeded pages to the page allocator
1448 for_each_online_cpu(cpu
)
1449 start_cpu_timer(cpu
);
1452 __initcall(cpucache_init
);
1455 * Interface to system's page allocator. No need to hold the cache-lock.
1457 * If we requested dmaable memory, we will get it. Even if we
1458 * did not request dmaable memory, we might get it, but that
1459 * would be relatively rare and ignorable.
1461 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1467 flags
|= cachep
->gfpflags
;
1469 /* nommu uses slab's for process anonymous memory allocations, so
1470 * requires __GFP_COMP to properly refcount higher order allocations"
1472 page
= alloc_pages_node(nodeid
, (flags
| __GFP_COMP
), cachep
->gfporder
);
1474 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1478 addr
= page_address(page
);
1480 i
= (1 << cachep
->gfporder
);
1481 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1482 atomic_add(i
, &slab_reclaim_pages
);
1483 add_page_state(nr_slab
, i
);
1485 __SetPageSlab(page
);
1492 * Interface to system's page release.
1494 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1496 unsigned long i
= (1 << cachep
->gfporder
);
1497 struct page
*page
= virt_to_page(addr
);
1498 const unsigned long nr_freed
= i
;
1501 BUG_ON(!PageSlab(page
));
1502 __ClearPageSlab(page
);
1505 sub_page_state(nr_slab
, nr_freed
);
1506 if (current
->reclaim_state
)
1507 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1508 free_pages((unsigned long)addr
, cachep
->gfporder
);
1509 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1510 atomic_sub(1 << cachep
->gfporder
, &slab_reclaim_pages
);
1513 static void kmem_rcu_free(struct rcu_head
*head
)
1515 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1516 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1518 kmem_freepages(cachep
, slab_rcu
->addr
);
1519 if (OFF_SLAB(cachep
))
1520 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1525 #ifdef CONFIG_DEBUG_PAGEALLOC
1526 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1527 unsigned long caller
)
1529 int size
= obj_size(cachep
);
1531 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1533 if (size
< 5 * sizeof(unsigned long))
1536 *addr
++ = 0x12345678;
1538 *addr
++ = smp_processor_id();
1539 size
-= 3 * sizeof(unsigned long);
1541 unsigned long *sptr
= &caller
;
1542 unsigned long svalue
;
1544 while (!kstack_end(sptr
)) {
1546 if (kernel_text_address(svalue
)) {
1548 size
-= sizeof(unsigned long);
1549 if (size
<= sizeof(unsigned long))
1555 *addr
++ = 0x87654321;
1559 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1561 int size
= obj_size(cachep
);
1562 addr
= &((char *)addr
)[obj_offset(cachep
)];
1564 memset(addr
, val
, size
);
1565 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1568 static void dump_line(char *data
, int offset
, int limit
)
1571 printk(KERN_ERR
"%03x:", offset
);
1572 for (i
= 0; i
< limit
; i
++)
1573 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1580 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1585 if (cachep
->flags
& SLAB_RED_ZONE
) {
1586 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1587 *dbg_redzone1(cachep
, objp
),
1588 *dbg_redzone2(cachep
, objp
));
1591 if (cachep
->flags
& SLAB_STORE_USER
) {
1592 printk(KERN_ERR
"Last user: [<%p>]",
1593 *dbg_userword(cachep
, objp
));
1594 print_symbol("(%s)",
1595 (unsigned long)*dbg_userword(cachep
, objp
));
1598 realobj
= (char *)objp
+ obj_offset(cachep
);
1599 size
= obj_size(cachep
);
1600 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1603 if (i
+ limit
> size
)
1605 dump_line(realobj
, i
, limit
);
1609 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1615 realobj
= (char *)objp
+ obj_offset(cachep
);
1616 size
= obj_size(cachep
);
1618 for (i
= 0; i
< size
; i
++) {
1619 char exp
= POISON_FREE
;
1622 if (realobj
[i
] != exp
) {
1628 "Slab corruption: start=%p, len=%d\n",
1630 print_objinfo(cachep
, objp
, 0);
1632 /* Hexdump the affected line */
1635 if (i
+ limit
> size
)
1637 dump_line(realobj
, i
, limit
);
1640 /* Limit to 5 lines */
1646 /* Print some data about the neighboring objects, if they
1649 struct slab
*slabp
= virt_to_slab(objp
);
1652 objnr
= obj_to_index(cachep
, slabp
, objp
);
1654 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1655 realobj
= (char *)objp
+ obj_offset(cachep
);
1656 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1658 print_objinfo(cachep
, objp
, 2);
1660 if (objnr
+ 1 < cachep
->num
) {
1661 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1662 realobj
= (char *)objp
+ obj_offset(cachep
);
1663 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1665 print_objinfo(cachep
, objp
, 2);
1673 * slab_destroy_objs - destroy a slab and its objects
1674 * @cachep: cache pointer being destroyed
1675 * @slabp: slab pointer being destroyed
1677 * Call the registered destructor for each object in a slab that is being
1680 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1683 for (i
= 0; i
< cachep
->num
; i
++) {
1684 void *objp
= index_to_obj(cachep
, slabp
, i
);
1686 if (cachep
->flags
& SLAB_POISON
) {
1687 #ifdef CONFIG_DEBUG_PAGEALLOC
1688 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1690 kernel_map_pages(virt_to_page(objp
),
1691 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1693 check_poison_obj(cachep
, objp
);
1695 check_poison_obj(cachep
, objp
);
1698 if (cachep
->flags
& SLAB_RED_ZONE
) {
1699 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1700 slab_error(cachep
, "start of a freed object "
1702 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1703 slab_error(cachep
, "end of a freed object "
1706 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1707 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1711 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1715 for (i
= 0; i
< cachep
->num
; i
++) {
1716 void *objp
= index_to_obj(cachep
, slabp
, i
);
1717 (cachep
->dtor
) (objp
, cachep
, 0);
1724 * slab_destroy - destroy and release all objects in a slab
1725 * @cachep: cache pointer being destroyed
1726 * @slabp: slab pointer being destroyed
1728 * Destroy all the objs in a slab, and release the mem back to the system.
1729 * Before calling the slab must have been unlinked from the cache. The
1730 * cache-lock is not held/needed.
1732 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1734 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1736 slab_destroy_objs(cachep
, slabp
);
1737 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1738 struct slab_rcu
*slab_rcu
;
1740 slab_rcu
= (struct slab_rcu
*)slabp
;
1741 slab_rcu
->cachep
= cachep
;
1742 slab_rcu
->addr
= addr
;
1743 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1745 kmem_freepages(cachep
, addr
);
1746 if (OFF_SLAB(cachep
))
1747 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1752 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1753 * size of kmem_list3.
1755 static void set_up_list3s(struct kmem_cache
*cachep
, int index
)
1759 for_each_online_node(node
) {
1760 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1761 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1763 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1768 * calculate_slab_order - calculate size (page order) of slabs
1769 * @cachep: pointer to the cache that is being created
1770 * @size: size of objects to be created in this cache.
1771 * @align: required alignment for the objects.
1772 * @flags: slab allocation flags
1774 * Also calculates the number of objects per slab.
1776 * This could be made much more intelligent. For now, try to avoid using
1777 * high order pages for slabs. When the gfp() functions are more friendly
1778 * towards high-order requests, this should be changed.
1780 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1781 size_t size
, size_t align
, unsigned long flags
)
1783 size_t left_over
= 0;
1786 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
1790 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1794 /* More than offslab_limit objects will cause problems */
1795 if ((flags
& CFLGS_OFF_SLAB
) && num
> offslab_limit
)
1798 /* Found something acceptable - save it away */
1800 cachep
->gfporder
= gfporder
;
1801 left_over
= remainder
;
1804 * A VFS-reclaimable slab tends to have most allocations
1805 * as GFP_NOFS and we really don't want to have to be allocating
1806 * higher-order pages when we are unable to shrink dcache.
1808 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1812 * Large number of objects is good, but very large slabs are
1813 * currently bad for the gfp()s.
1815 if (gfporder
>= slab_break_gfp_order
)
1819 * Acceptable internal fragmentation?
1821 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1827 static void setup_cpu_cache(struct kmem_cache
*cachep
)
1829 if (g_cpucache_up
== FULL
) {
1830 enable_cpucache(cachep
);
1833 if (g_cpucache_up
== NONE
) {
1835 * Note: the first kmem_cache_create must create the cache
1836 * that's used by kmalloc(24), otherwise the creation of
1837 * further caches will BUG().
1839 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1842 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1843 * the first cache, then we need to set up all its list3s,
1844 * otherwise the creation of further caches will BUG().
1846 set_up_list3s(cachep
, SIZE_AC
);
1847 if (INDEX_AC
== INDEX_L3
)
1848 g_cpucache_up
= PARTIAL_L3
;
1850 g_cpucache_up
= PARTIAL_AC
;
1852 cachep
->array
[smp_processor_id()] =
1853 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1855 if (g_cpucache_up
== PARTIAL_AC
) {
1856 set_up_list3s(cachep
, SIZE_L3
);
1857 g_cpucache_up
= PARTIAL_L3
;
1860 for_each_online_node(node
) {
1861 cachep
->nodelists
[node
] =
1862 kmalloc_node(sizeof(struct kmem_list3
),
1864 BUG_ON(!cachep
->nodelists
[node
]);
1865 kmem_list3_init(cachep
->nodelists
[node
]);
1869 cachep
->nodelists
[numa_node_id()]->next_reap
=
1870 jiffies
+ REAPTIMEOUT_LIST3
+
1871 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1873 cpu_cache_get(cachep
)->avail
= 0;
1874 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1875 cpu_cache_get(cachep
)->batchcount
= 1;
1876 cpu_cache_get(cachep
)->touched
= 0;
1877 cachep
->batchcount
= 1;
1878 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1882 * kmem_cache_create - Create a cache.
1883 * @name: A string which is used in /proc/slabinfo to identify this cache.
1884 * @size: The size of objects to be created in this cache.
1885 * @align: The required alignment for the objects.
1886 * @flags: SLAB flags
1887 * @ctor: A constructor for the objects.
1888 * @dtor: A destructor for the objects.
1890 * Returns a ptr to the cache on success, NULL on failure.
1891 * Cannot be called within a int, but can be interrupted.
1892 * The @ctor is run when new pages are allocated by the cache
1893 * and the @dtor is run before the pages are handed back.
1895 * @name must be valid until the cache is destroyed. This implies that
1896 * the module calling this has to destroy the cache before getting unloaded.
1900 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1901 * to catch references to uninitialised memory.
1903 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1904 * for buffer overruns.
1906 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1907 * cacheline. This can be beneficial if you're counting cycles as closely
1911 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1912 unsigned long flags
,
1913 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
1914 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
1916 size_t left_over
, slab_size
, ralign
;
1917 struct kmem_cache
*cachep
= NULL
;
1918 struct list_head
*p
;
1921 * Sanity checks... these are all serious usage bugs.
1923 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
1924 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
1925 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
1931 * Prevent CPUs from coming and going.
1932 * lock_cpu_hotplug() nests outside cache_chain_mutex
1936 mutex_lock(&cache_chain_mutex
);
1938 list_for_each(p
, &cache_chain
) {
1939 struct kmem_cache
*pc
= list_entry(p
, struct kmem_cache
, next
);
1940 mm_segment_t old_fs
= get_fs();
1945 * This happens when the module gets unloaded and doesn't
1946 * destroy its slab cache and no-one else reuses the vmalloc
1947 * area of the module. Print a warning.
1950 res
= __get_user(tmp
, pc
->name
);
1953 printk("SLAB: cache with size %d has lost its name\n",
1958 if (!strcmp(pc
->name
, name
)) {
1959 printk("kmem_cache_create: duplicate cache %s\n", name
);
1966 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
1967 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1968 /* No constructor, but inital state check requested */
1969 printk(KERN_ERR
"%s: No con, but init state check "
1970 "requested - %s\n", __FUNCTION__
, name
);
1971 flags
&= ~SLAB_DEBUG_INITIAL
;
1975 * Enable redzoning and last user accounting, except for caches with
1976 * large objects, if the increased size would increase the object size
1977 * above the next power of two: caches with object sizes just above a
1978 * power of two have a significant amount of internal fragmentation.
1980 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
1981 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
1982 if (!(flags
& SLAB_DESTROY_BY_RCU
))
1983 flags
|= SLAB_POISON
;
1985 if (flags
& SLAB_DESTROY_BY_RCU
)
1986 BUG_ON(flags
& SLAB_POISON
);
1988 if (flags
& SLAB_DESTROY_BY_RCU
)
1992 * Always checks flags, a caller might be expecting debug support which
1995 BUG_ON(flags
& ~CREATE_MASK
);
1998 * Check that size is in terms of words. This is needed to avoid
1999 * unaligned accesses for some archs when redzoning is used, and makes
2000 * sure any on-slab bufctl's are also correctly aligned.
2002 if (size
& (BYTES_PER_WORD
- 1)) {
2003 size
+= (BYTES_PER_WORD
- 1);
2004 size
&= ~(BYTES_PER_WORD
- 1);
2007 /* calculate the final buffer alignment: */
2009 /* 1) arch recommendation: can be overridden for debug */
2010 if (flags
& SLAB_HWCACHE_ALIGN
) {
2012 * Default alignment: as specified by the arch code. Except if
2013 * an object is really small, then squeeze multiple objects into
2016 ralign
= cache_line_size();
2017 while (size
<= ralign
/ 2)
2020 ralign
= BYTES_PER_WORD
;
2022 /* 2) arch mandated alignment: disables debug if necessary */
2023 if (ralign
< ARCH_SLAB_MINALIGN
) {
2024 ralign
= ARCH_SLAB_MINALIGN
;
2025 if (ralign
> BYTES_PER_WORD
)
2026 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2028 /* 3) caller mandated alignment: disables debug if necessary */
2029 if (ralign
< align
) {
2031 if (ralign
> BYTES_PER_WORD
)
2032 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2035 * 4) Store it. Note that the debug code below can reduce
2036 * the alignment to BYTES_PER_WORD.
2040 /* Get cache's description obj. */
2041 cachep
= kmem_cache_zalloc(&cache_cache
, SLAB_KERNEL
);
2046 cachep
->obj_size
= size
;
2048 if (flags
& SLAB_RED_ZONE
) {
2049 /* redzoning only works with word aligned caches */
2050 align
= BYTES_PER_WORD
;
2052 /* add space for red zone words */
2053 cachep
->obj_offset
+= BYTES_PER_WORD
;
2054 size
+= 2 * BYTES_PER_WORD
;
2056 if (flags
& SLAB_STORE_USER
) {
2057 /* user store requires word alignment and
2058 * one word storage behind the end of the real
2061 align
= BYTES_PER_WORD
;
2062 size
+= BYTES_PER_WORD
;
2064 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2065 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2066 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2067 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2073 /* Determine if the slab management is 'on' or 'off' slab. */
2074 if (size
>= (PAGE_SIZE
>> 3))
2076 * Size is large, assume best to place the slab management obj
2077 * off-slab (should allow better packing of objs).
2079 flags
|= CFLGS_OFF_SLAB
;
2081 size
= ALIGN(size
, align
);
2083 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2086 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
2087 kmem_cache_free(&cache_cache
, cachep
);
2091 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2092 + sizeof(struct slab
), align
);
2095 * If the slab has been placed off-slab, and we have enough space then
2096 * move it on-slab. This is at the expense of any extra colouring.
2098 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2099 flags
&= ~CFLGS_OFF_SLAB
;
2100 left_over
-= slab_size
;
2103 if (flags
& CFLGS_OFF_SLAB
) {
2104 /* really off slab. No need for manual alignment */
2106 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2109 cachep
->colour_off
= cache_line_size();
2110 /* Offset must be a multiple of the alignment. */
2111 if (cachep
->colour_off
< align
)
2112 cachep
->colour_off
= align
;
2113 cachep
->colour
= left_over
/ cachep
->colour_off
;
2114 cachep
->slab_size
= slab_size
;
2115 cachep
->flags
= flags
;
2116 cachep
->gfpflags
= 0;
2117 if (flags
& SLAB_CACHE_DMA
)
2118 cachep
->gfpflags
|= GFP_DMA
;
2119 cachep
->buffer_size
= size
;
2121 if (flags
& CFLGS_OFF_SLAB
)
2122 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2123 cachep
->ctor
= ctor
;
2124 cachep
->dtor
= dtor
;
2125 cachep
->name
= name
;
2128 setup_cpu_cache(cachep
);
2130 /* cache setup completed, link it into the list */
2131 list_add(&cachep
->next
, &cache_chain
);
2133 if (!cachep
&& (flags
& SLAB_PANIC
))
2134 panic("kmem_cache_create(): failed to create slab `%s'\n",
2136 mutex_unlock(&cache_chain_mutex
);
2137 unlock_cpu_hotplug();
2140 EXPORT_SYMBOL(kmem_cache_create
);
2143 static void check_irq_off(void)
2145 BUG_ON(!irqs_disabled());
2148 static void check_irq_on(void)
2150 BUG_ON(irqs_disabled());
2153 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2157 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2161 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2165 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2170 #define check_irq_off() do { } while(0)
2171 #define check_irq_on() do { } while(0)
2172 #define check_spinlock_acquired(x) do { } while(0)
2173 #define check_spinlock_acquired_node(x, y) do { } while(0)
2176 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2177 struct array_cache
*ac
,
2178 int force
, int node
);
2180 static void do_drain(void *arg
)
2182 struct kmem_cache
*cachep
= arg
;
2183 struct array_cache
*ac
;
2184 int node
= numa_node_id();
2187 ac
= cpu_cache_get(cachep
);
2188 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2189 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2190 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2194 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2196 struct kmem_list3
*l3
;
2199 on_each_cpu(do_drain
, cachep
, 1, 1);
2201 for_each_online_node(node
) {
2202 l3
= cachep
->nodelists
[node
];
2203 if (l3
&& l3
->alien
)
2204 drain_alien_cache(cachep
, l3
->alien
);
2207 for_each_online_node(node
) {
2208 l3
= cachep
->nodelists
[node
];
2210 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2214 static int __node_shrink(struct kmem_cache
*cachep
, int node
)
2217 struct kmem_list3
*l3
= cachep
->nodelists
[node
];
2221 struct list_head
*p
;
2223 p
= l3
->slabs_free
.prev
;
2224 if (p
== &l3
->slabs_free
)
2227 slabp
= list_entry(l3
->slabs_free
.prev
, struct slab
, list
);
2229 BUG_ON(slabp
->inuse
);
2231 list_del(&slabp
->list
);
2233 l3
->free_objects
-= cachep
->num
;
2234 spin_unlock_irq(&l3
->list_lock
);
2235 slab_destroy(cachep
, slabp
);
2236 spin_lock_irq(&l3
->list_lock
);
2238 ret
= !list_empty(&l3
->slabs_full
) || !list_empty(&l3
->slabs_partial
);
2242 static int __cache_shrink(struct kmem_cache
*cachep
)
2245 struct kmem_list3
*l3
;
2247 drain_cpu_caches(cachep
);
2250 for_each_online_node(i
) {
2251 l3
= cachep
->nodelists
[i
];
2253 spin_lock_irq(&l3
->list_lock
);
2254 ret
+= __node_shrink(cachep
, i
);
2255 spin_unlock_irq(&l3
->list_lock
);
2258 return (ret
? 1 : 0);
2262 * kmem_cache_shrink - Shrink a cache.
2263 * @cachep: The cache to shrink.
2265 * Releases as many slabs as possible for a cache.
2266 * To help debugging, a zero exit status indicates all slabs were released.
2268 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2270 BUG_ON(!cachep
|| in_interrupt());
2272 return __cache_shrink(cachep
);
2274 EXPORT_SYMBOL(kmem_cache_shrink
);
2277 * kmem_cache_destroy - delete a cache
2278 * @cachep: the cache to destroy
2280 * Remove a struct kmem_cache object from the slab cache.
2281 * Returns 0 on success.
2283 * It is expected this function will be called by a module when it is
2284 * unloaded. This will remove the cache completely, and avoid a duplicate
2285 * cache being allocated each time a module is loaded and unloaded, if the
2286 * module doesn't have persistent in-kernel storage across loads and unloads.
2288 * The cache must be empty before calling this function.
2290 * The caller must guarantee that noone will allocate memory from the cache
2291 * during the kmem_cache_destroy().
2293 int kmem_cache_destroy(struct kmem_cache
*cachep
)
2296 struct kmem_list3
*l3
;
2298 BUG_ON(!cachep
|| in_interrupt());
2300 /* Don't let CPUs to come and go */
2303 /* Find the cache in the chain of caches. */
2304 mutex_lock(&cache_chain_mutex
);
2306 * the chain is never empty, cache_cache is never destroyed
2308 list_del(&cachep
->next
);
2309 mutex_unlock(&cache_chain_mutex
);
2311 if (__cache_shrink(cachep
)) {
2312 slab_error(cachep
, "Can't free all objects");
2313 mutex_lock(&cache_chain_mutex
);
2314 list_add(&cachep
->next
, &cache_chain
);
2315 mutex_unlock(&cache_chain_mutex
);
2316 unlock_cpu_hotplug();
2320 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2323 for_each_online_cpu(i
)
2324 kfree(cachep
->array
[i
]);
2326 /* NUMA: free the list3 structures */
2327 for_each_online_node(i
) {
2328 l3
= cachep
->nodelists
[i
];
2331 free_alien_cache(l3
->alien
);
2335 kmem_cache_free(&cache_cache
, cachep
);
2336 unlock_cpu_hotplug();
2339 EXPORT_SYMBOL(kmem_cache_destroy
);
2341 /* Get the memory for a slab management obj. */
2342 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2343 int colour_off
, gfp_t local_flags
,
2348 if (OFF_SLAB(cachep
)) {
2349 /* Slab management obj is off-slab. */
2350 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2351 local_flags
, nodeid
);
2355 slabp
= objp
+ colour_off
;
2356 colour_off
+= cachep
->slab_size
;
2359 slabp
->colouroff
= colour_off
;
2360 slabp
->s_mem
= objp
+ colour_off
;
2361 slabp
->nodeid
= nodeid
;
2365 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2367 return (kmem_bufctl_t
*) (slabp
+ 1);
2370 static void cache_init_objs(struct kmem_cache
*cachep
,
2371 struct slab
*slabp
, unsigned long ctor_flags
)
2375 for (i
= 0; i
< cachep
->num
; i
++) {
2376 void *objp
= index_to_obj(cachep
, slabp
, i
);
2378 /* need to poison the objs? */
2379 if (cachep
->flags
& SLAB_POISON
)
2380 poison_obj(cachep
, objp
, POISON_FREE
);
2381 if (cachep
->flags
& SLAB_STORE_USER
)
2382 *dbg_userword(cachep
, objp
) = NULL
;
2384 if (cachep
->flags
& SLAB_RED_ZONE
) {
2385 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2386 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2389 * Constructors are not allowed to allocate memory from the same
2390 * cache which they are a constructor for. Otherwise, deadlock.
2391 * They must also be threaded.
2393 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2394 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2397 if (cachep
->flags
& SLAB_RED_ZONE
) {
2398 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2399 slab_error(cachep
, "constructor overwrote the"
2400 " end of an object");
2401 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2402 slab_error(cachep
, "constructor overwrote the"
2403 " start of an object");
2405 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2406 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2407 kernel_map_pages(virt_to_page(objp
),
2408 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2411 cachep
->ctor(objp
, cachep
, ctor_flags
);
2413 slab_bufctl(slabp
)[i
] = i
+ 1;
2415 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2419 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2421 if (flags
& SLAB_DMA
)
2422 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2424 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2427 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2430 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2434 next
= slab_bufctl(slabp
)[slabp
->free
];
2436 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2437 WARN_ON(slabp
->nodeid
!= nodeid
);
2444 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2445 void *objp
, int nodeid
)
2447 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2450 /* Verify that the slab belongs to the intended node */
2451 WARN_ON(slabp
->nodeid
!= nodeid
);
2453 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2454 printk(KERN_ERR
"slab: double free detected in cache "
2455 "'%s', objp %p\n", cachep
->name
, objp
);
2459 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2460 slabp
->free
= objnr
;
2464 static void set_slab_attr(struct kmem_cache
*cachep
, struct slab
*slabp
,
2470 /* Nasty!!!!!! I hope this is OK. */
2471 page
= virt_to_page(objp
);
2474 if (likely(!PageCompound(page
)))
2475 i
<<= cachep
->gfporder
;
2477 page_set_cache(page
, cachep
);
2478 page_set_slab(page
, slabp
);
2484 * Grow (by 1) the number of slabs within a cache. This is called by
2485 * kmem_cache_alloc() when there are no active objs left in a cache.
2487 static int cache_grow(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
2493 unsigned long ctor_flags
;
2494 struct kmem_list3
*l3
;
2497 * Be lazy and only check for valid flags here, keeping it out of the
2498 * critical path in kmem_cache_alloc().
2500 BUG_ON(flags
& ~(SLAB_DMA
| SLAB_LEVEL_MASK
| SLAB_NO_GROW
));
2501 if (flags
& SLAB_NO_GROW
)
2504 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2505 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2506 if (!(local_flags
& __GFP_WAIT
))
2508 * Not allowed to sleep. Need to tell a constructor about
2509 * this - it might need to know...
2511 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2513 /* Take the l3 list lock to change the colour_next on this node */
2515 l3
= cachep
->nodelists
[nodeid
];
2516 spin_lock(&l3
->list_lock
);
2518 /* Get colour for the slab, and cal the next value. */
2519 offset
= l3
->colour_next
;
2521 if (l3
->colour_next
>= cachep
->colour
)
2522 l3
->colour_next
= 0;
2523 spin_unlock(&l3
->list_lock
);
2525 offset
*= cachep
->colour_off
;
2527 if (local_flags
& __GFP_WAIT
)
2531 * The test for missing atomic flag is performed here, rather than
2532 * the more obvious place, simply to reduce the critical path length
2533 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2534 * will eventually be caught here (where it matters).
2536 kmem_flagcheck(cachep
, flags
);
2539 * Get mem for the objs. Attempt to allocate a physical page from
2542 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2546 /* Get slab management. */
2547 slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
, nodeid
);
2551 slabp
->nodeid
= nodeid
;
2552 set_slab_attr(cachep
, slabp
, objp
);
2554 cache_init_objs(cachep
, slabp
, ctor_flags
);
2556 if (local_flags
& __GFP_WAIT
)
2557 local_irq_disable();
2559 spin_lock(&l3
->list_lock
);
2561 /* Make slab active. */
2562 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2563 STATS_INC_GROWN(cachep
);
2564 l3
->free_objects
+= cachep
->num
;
2565 spin_unlock(&l3
->list_lock
);
2568 kmem_freepages(cachep
, objp
);
2570 if (local_flags
& __GFP_WAIT
)
2571 local_irq_disable();
2578 * Perform extra freeing checks:
2579 * - detect bad pointers.
2580 * - POISON/RED_ZONE checking
2581 * - destructor calls, for caches with POISON+dtor
2583 static void kfree_debugcheck(const void *objp
)
2587 if (!virt_addr_valid(objp
)) {
2588 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2589 (unsigned long)objp
);
2592 page
= virt_to_page(objp
);
2593 if (!PageSlab(page
)) {
2594 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n",
2595 (unsigned long)objp
);
2600 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2607 objp
-= obj_offset(cachep
);
2608 kfree_debugcheck(objp
);
2609 page
= virt_to_page(objp
);
2611 if (page_get_cache(page
) != cachep
) {
2612 printk(KERN_ERR
"mismatch in kmem_cache_free: expected "
2613 "cache %p, got %p\n",
2614 page_get_cache(page
), cachep
);
2615 printk(KERN_ERR
"%p is %s.\n", cachep
, cachep
->name
);
2616 printk(KERN_ERR
"%p is %s.\n", page_get_cache(page
),
2617 page_get_cache(page
)->name
);
2620 slabp
= page_get_slab(page
);
2622 if (cachep
->flags
& SLAB_RED_ZONE
) {
2623 if (*dbg_redzone1(cachep
, objp
) != RED_ACTIVE
||
2624 *dbg_redzone2(cachep
, objp
) != RED_ACTIVE
) {
2625 slab_error(cachep
, "double free, or memory outside"
2626 " object was overwritten");
2627 printk(KERN_ERR
"%p: redzone 1:0x%lx, "
2628 "redzone 2:0x%lx.\n",
2629 objp
, *dbg_redzone1(cachep
, objp
),
2630 *dbg_redzone2(cachep
, objp
));
2632 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2633 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2635 if (cachep
->flags
& SLAB_STORE_USER
)
2636 *dbg_userword(cachep
, objp
) = caller
;
2638 objnr
= obj_to_index(cachep
, slabp
, objp
);
2640 BUG_ON(objnr
>= cachep
->num
);
2641 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2643 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2645 * Need to call the slab's constructor so the caller can
2646 * perform a verify of its state (debugging). Called without
2647 * the cache-lock held.
2649 cachep
->ctor(objp
+ obj_offset(cachep
),
2650 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2652 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2653 /* we want to cache poison the object,
2654 * call the destruction callback
2656 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2658 #ifdef CONFIG_DEBUG_SLAB_LEAK
2659 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2661 if (cachep
->flags
& SLAB_POISON
) {
2662 #ifdef CONFIG_DEBUG_PAGEALLOC
2663 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2664 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2665 kernel_map_pages(virt_to_page(objp
),
2666 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2668 poison_obj(cachep
, objp
, POISON_FREE
);
2671 poison_obj(cachep
, objp
, POISON_FREE
);
2677 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2682 /* Check slab's freelist to see if this obj is there. */
2683 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2685 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2688 if (entries
!= cachep
->num
- slabp
->inuse
) {
2690 printk(KERN_ERR
"slab: Internal list corruption detected in "
2691 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2692 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2694 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2697 printk("\n%03x:", i
);
2698 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2705 #define kfree_debugcheck(x) do { } while(0)
2706 #define cache_free_debugcheck(x,objp,z) (objp)
2707 #define check_slabp(x,y) do { } while(0)
2710 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2713 struct kmem_list3
*l3
;
2714 struct array_cache
*ac
;
2717 ac
= cpu_cache_get(cachep
);
2719 batchcount
= ac
->batchcount
;
2720 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2722 * If there was little recent activity on this cache, then
2723 * perform only a partial refill. Otherwise we could generate
2726 batchcount
= BATCHREFILL_LIMIT
;
2728 l3
= cachep
->nodelists
[numa_node_id()];
2730 BUG_ON(ac
->avail
> 0 || !l3
);
2731 spin_lock(&l3
->list_lock
);
2733 /* See if we can refill from the shared array */
2734 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2737 while (batchcount
> 0) {
2738 struct list_head
*entry
;
2740 /* Get slab alloc is to come from. */
2741 entry
= l3
->slabs_partial
.next
;
2742 if (entry
== &l3
->slabs_partial
) {
2743 l3
->free_touched
= 1;
2744 entry
= l3
->slabs_free
.next
;
2745 if (entry
== &l3
->slabs_free
)
2749 slabp
= list_entry(entry
, struct slab
, list
);
2750 check_slabp(cachep
, slabp
);
2751 check_spinlock_acquired(cachep
);
2752 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2753 STATS_INC_ALLOCED(cachep
);
2754 STATS_INC_ACTIVE(cachep
);
2755 STATS_SET_HIGH(cachep
);
2757 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2760 check_slabp(cachep
, slabp
);
2762 /* move slabp to correct slabp list: */
2763 list_del(&slabp
->list
);
2764 if (slabp
->free
== BUFCTL_END
)
2765 list_add(&slabp
->list
, &l3
->slabs_full
);
2767 list_add(&slabp
->list
, &l3
->slabs_partial
);
2771 l3
->free_objects
-= ac
->avail
;
2773 spin_unlock(&l3
->list_lock
);
2775 if (unlikely(!ac
->avail
)) {
2777 x
= cache_grow(cachep
, flags
, numa_node_id());
2779 /* cache_grow can reenable interrupts, then ac could change. */
2780 ac
= cpu_cache_get(cachep
);
2781 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
2784 if (!ac
->avail
) /* objects refilled by interrupt? */
2788 return ac
->entry
[--ac
->avail
];
2791 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2794 might_sleep_if(flags
& __GFP_WAIT
);
2796 kmem_flagcheck(cachep
, flags
);
2801 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2802 gfp_t flags
, void *objp
, void *caller
)
2806 if (cachep
->flags
& SLAB_POISON
) {
2807 #ifdef CONFIG_DEBUG_PAGEALLOC
2808 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2809 kernel_map_pages(virt_to_page(objp
),
2810 cachep
->buffer_size
/ PAGE_SIZE
, 1);
2812 check_poison_obj(cachep
, objp
);
2814 check_poison_obj(cachep
, objp
);
2816 poison_obj(cachep
, objp
, POISON_INUSE
);
2818 if (cachep
->flags
& SLAB_STORE_USER
)
2819 *dbg_userword(cachep
, objp
) = caller
;
2821 if (cachep
->flags
& SLAB_RED_ZONE
) {
2822 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2823 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2824 slab_error(cachep
, "double free, or memory outside"
2825 " object was overwritten");
2827 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2828 objp
, *dbg_redzone1(cachep
, objp
),
2829 *dbg_redzone2(cachep
, objp
));
2831 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2832 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2834 #ifdef CONFIG_DEBUG_SLAB_LEAK
2839 slabp
= page_get_slab(virt_to_page(objp
));
2840 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
2841 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
2844 objp
+= obj_offset(cachep
);
2845 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2846 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2848 if (!(flags
& __GFP_WAIT
))
2849 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2851 cachep
->ctor(objp
, cachep
, ctor_flags
);
2856 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2859 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2862 struct array_cache
*ac
;
2865 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
2866 objp
= alternate_node_alloc(cachep
, flags
);
2873 ac
= cpu_cache_get(cachep
);
2874 if (likely(ac
->avail
)) {
2875 STATS_INC_ALLOCHIT(cachep
);
2877 objp
= ac
->entry
[--ac
->avail
];
2879 STATS_INC_ALLOCMISS(cachep
);
2880 objp
= cache_alloc_refill(cachep
, flags
);
2885 static __always_inline
void *__cache_alloc(struct kmem_cache
*cachep
,
2886 gfp_t flags
, void *caller
)
2888 unsigned long save_flags
;
2891 cache_alloc_debugcheck_before(cachep
, flags
);
2893 local_irq_save(save_flags
);
2894 objp
= ____cache_alloc(cachep
, flags
);
2895 local_irq_restore(save_flags
);
2896 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
2904 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2906 * If we are in_interrupt, then process context, including cpusets and
2907 * mempolicy, may not apply and should not be used for allocation policy.
2909 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2911 int nid_alloc
, nid_here
;
2915 nid_alloc
= nid_here
= numa_node_id();
2916 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
2917 nid_alloc
= cpuset_mem_spread_node();
2918 else if (current
->mempolicy
)
2919 nid_alloc
= slab_node(current
->mempolicy
);
2920 if (nid_alloc
!= nid_here
)
2921 return __cache_alloc_node(cachep
, flags
, nid_alloc
);
2926 * A interface to enable slab creation on nodeid
2928 static void *__cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
2931 struct list_head
*entry
;
2933 struct kmem_list3
*l3
;
2937 l3
= cachep
->nodelists
[nodeid
];
2942 spin_lock(&l3
->list_lock
);
2943 entry
= l3
->slabs_partial
.next
;
2944 if (entry
== &l3
->slabs_partial
) {
2945 l3
->free_touched
= 1;
2946 entry
= l3
->slabs_free
.next
;
2947 if (entry
== &l3
->slabs_free
)
2951 slabp
= list_entry(entry
, struct slab
, list
);
2952 check_spinlock_acquired_node(cachep
, nodeid
);
2953 check_slabp(cachep
, slabp
);
2955 STATS_INC_NODEALLOCS(cachep
);
2956 STATS_INC_ACTIVE(cachep
);
2957 STATS_SET_HIGH(cachep
);
2959 BUG_ON(slabp
->inuse
== cachep
->num
);
2961 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
2962 check_slabp(cachep
, slabp
);
2964 /* move slabp to correct slabp list: */
2965 list_del(&slabp
->list
);
2967 if (slabp
->free
== BUFCTL_END
)
2968 list_add(&slabp
->list
, &l3
->slabs_full
);
2970 list_add(&slabp
->list
, &l3
->slabs_partial
);
2972 spin_unlock(&l3
->list_lock
);
2976 spin_unlock(&l3
->list_lock
);
2977 x
= cache_grow(cachep
, flags
, nodeid
);
2989 * Caller needs to acquire correct kmem_list's list_lock
2991 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
2995 struct kmem_list3
*l3
;
2997 for (i
= 0; i
< nr_objects
; i
++) {
2998 void *objp
= objpp
[i
];
3001 slabp
= virt_to_slab(objp
);
3002 l3
= cachep
->nodelists
[node
];
3003 list_del(&slabp
->list
);
3004 check_spinlock_acquired_node(cachep
, node
);
3005 check_slabp(cachep
, slabp
);
3006 slab_put_obj(cachep
, slabp
, objp
, node
);
3007 STATS_DEC_ACTIVE(cachep
);
3009 check_slabp(cachep
, slabp
);
3011 /* fixup slab chains */
3012 if (slabp
->inuse
== 0) {
3013 if (l3
->free_objects
> l3
->free_limit
) {
3014 l3
->free_objects
-= cachep
->num
;
3015 slab_destroy(cachep
, slabp
);
3017 list_add(&slabp
->list
, &l3
->slabs_free
);
3020 /* Unconditionally move a slab to the end of the
3021 * partial list on free - maximum time for the
3022 * other objects to be freed, too.
3024 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3029 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3032 struct kmem_list3
*l3
;
3033 int node
= numa_node_id();
3035 batchcount
= ac
->batchcount
;
3037 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3040 l3
= cachep
->nodelists
[node
];
3041 spin_lock(&l3
->list_lock
);
3043 struct array_cache
*shared_array
= l3
->shared
;
3044 int max
= shared_array
->limit
- shared_array
->avail
;
3046 if (batchcount
> max
)
3048 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3049 ac
->entry
, sizeof(void *) * batchcount
);
3050 shared_array
->avail
+= batchcount
;
3055 free_block(cachep
, ac
->entry
, batchcount
, node
);
3060 struct list_head
*p
;
3062 p
= l3
->slabs_free
.next
;
3063 while (p
!= &(l3
->slabs_free
)) {
3066 slabp
= list_entry(p
, struct slab
, list
);
3067 BUG_ON(slabp
->inuse
);
3072 STATS_SET_FREEABLE(cachep
, i
);
3075 spin_unlock(&l3
->list_lock
);
3076 ac
->avail
-= batchcount
;
3077 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3081 * Release an obj back to its cache. If the obj has a constructed state, it must
3082 * be in this state _before_ it is released. Called with disabled ints.
3084 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3086 struct array_cache
*ac
= cpu_cache_get(cachep
);
3089 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3091 /* Make sure we are not freeing a object from another
3092 * node to the array cache on this cpu.
3097 slabp
= virt_to_slab(objp
);
3098 if (unlikely(slabp
->nodeid
!= numa_node_id())) {
3099 struct array_cache
*alien
= NULL
;
3100 int nodeid
= slabp
->nodeid
;
3101 struct kmem_list3
*l3
;
3103 l3
= cachep
->nodelists
[numa_node_id()];
3104 STATS_INC_NODEFREES(cachep
);
3105 if (l3
->alien
&& l3
->alien
[nodeid
]) {
3106 alien
= l3
->alien
[nodeid
];
3107 spin_lock(&alien
->lock
);
3108 if (unlikely(alien
->avail
== alien
->limit
)) {
3109 STATS_INC_ACOVERFLOW(cachep
);
3110 __drain_alien_cache(cachep
,
3113 alien
->entry
[alien
->avail
++] = objp
;
3114 spin_unlock(&alien
->lock
);
3116 spin_lock(&(cachep
->nodelists
[nodeid
])->
3118 free_block(cachep
, &objp
, 1, nodeid
);
3119 spin_unlock(&(cachep
->nodelists
[nodeid
])->
3126 if (likely(ac
->avail
< ac
->limit
)) {
3127 STATS_INC_FREEHIT(cachep
);
3128 ac
->entry
[ac
->avail
++] = objp
;
3131 STATS_INC_FREEMISS(cachep
);
3132 cache_flusharray(cachep
, ac
);
3133 ac
->entry
[ac
->avail
++] = objp
;
3138 * kmem_cache_alloc - Allocate an object
3139 * @cachep: The cache to allocate from.
3140 * @flags: See kmalloc().
3142 * Allocate an object from this cache. The flags are only relevant
3143 * if the cache has no available objects.
3145 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3147 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3149 EXPORT_SYMBOL(kmem_cache_alloc
);
3152 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3153 * @cache: The cache to allocate from.
3154 * @flags: See kmalloc().
3156 * Allocate an object from this cache and set the allocated memory to zero.
3157 * The flags are only relevant if the cache has no available objects.
3159 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3161 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3163 memset(ret
, 0, obj_size(cache
));
3166 EXPORT_SYMBOL(kmem_cache_zalloc
);
3169 * kmem_ptr_validate - check if an untrusted pointer might
3171 * @cachep: the cache we're checking against
3172 * @ptr: pointer to validate
3174 * This verifies that the untrusted pointer looks sane:
3175 * it is _not_ a guarantee that the pointer is actually
3176 * part of the slab cache in question, but it at least
3177 * validates that the pointer can be dereferenced and
3178 * looks half-way sane.
3180 * Currently only used for dentry validation.
3182 int fastcall
kmem_ptr_validate(struct kmem_cache
*cachep
, void *ptr
)
3184 unsigned long addr
= (unsigned long)ptr
;
3185 unsigned long min_addr
= PAGE_OFFSET
;
3186 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3187 unsigned long size
= cachep
->buffer_size
;
3190 if (unlikely(addr
< min_addr
))
3192 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3194 if (unlikely(addr
& align_mask
))
3196 if (unlikely(!kern_addr_valid(addr
)))
3198 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3200 page
= virt_to_page(ptr
);
3201 if (unlikely(!PageSlab(page
)))
3203 if (unlikely(page_get_cache(page
) != cachep
))
3212 * kmem_cache_alloc_node - Allocate an object on the specified node
3213 * @cachep: The cache to allocate from.
3214 * @flags: See kmalloc().
3215 * @nodeid: node number of the target node.
3217 * Identical to kmem_cache_alloc, except that this function is slow
3218 * and can sleep. And it will allocate memory on the given node, which
3219 * can improve the performance for cpu bound structures.
3220 * New and improved: it will now make sure that the object gets
3221 * put on the correct node list so that there is no false sharing.
3223 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3225 unsigned long save_flags
;
3228 cache_alloc_debugcheck_before(cachep
, flags
);
3229 local_irq_save(save_flags
);
3231 if (nodeid
== -1 || nodeid
== numa_node_id() ||
3232 !cachep
->nodelists
[nodeid
])
3233 ptr
= ____cache_alloc(cachep
, flags
);
3235 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
3236 local_irq_restore(save_flags
);
3238 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
,
3239 __builtin_return_address(0));
3243 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3245 void *kmalloc_node(size_t size
, gfp_t flags
, int node
)
3247 struct kmem_cache
*cachep
;
3249 cachep
= kmem_find_general_cachep(size
, flags
);
3250 if (unlikely(cachep
== NULL
))
3252 return kmem_cache_alloc_node(cachep
, flags
, node
);
3254 EXPORT_SYMBOL(kmalloc_node
);
3258 * kmalloc - allocate memory
3259 * @size: how many bytes of memory are required.
3260 * @flags: the type of memory to allocate.
3261 * @caller: function caller for debug tracking of the caller
3263 * kmalloc is the normal method of allocating memory
3266 * The @flags argument may be one of:
3268 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3270 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3272 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3274 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3275 * must be suitable for DMA. This can mean different things on different
3276 * platforms. For example, on i386, it means that the memory must come
3277 * from the first 16MB.
3279 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3282 struct kmem_cache
*cachep
;
3284 /* If you want to save a few bytes .text space: replace
3286 * Then kmalloc uses the uninlined functions instead of the inline
3289 cachep
= __find_general_cachep(size
, flags
);
3290 if (unlikely(cachep
== NULL
))
3292 return __cache_alloc(cachep
, flags
, caller
);
3296 void *__kmalloc(size_t size
, gfp_t flags
)
3298 #ifndef CONFIG_DEBUG_SLAB
3299 return __do_kmalloc(size
, flags
, NULL
);
3301 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3304 EXPORT_SYMBOL(__kmalloc
);
3306 #ifdef CONFIG_DEBUG_SLAB
3307 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3309 return __do_kmalloc(size
, flags
, caller
);
3311 EXPORT_SYMBOL(__kmalloc_track_caller
);
3316 * __alloc_percpu - allocate one copy of the object for every present
3317 * cpu in the system, zeroing them.
3318 * Objects should be dereferenced using the per_cpu_ptr macro only.
3320 * @size: how many bytes of memory are required.
3322 void *__alloc_percpu(size_t size
)
3325 struct percpu_data
*pdata
= kmalloc(sizeof(*pdata
), GFP_KERNEL
);
3331 * Cannot use for_each_online_cpu since a cpu may come online
3332 * and we have no way of figuring out how to fix the array
3333 * that we have allocated then....
3335 for_each_possible_cpu(i
) {
3336 int node
= cpu_to_node(i
);
3338 if (node_online(node
))
3339 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
, node
);
3341 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
3343 if (!pdata
->ptrs
[i
])
3345 memset(pdata
->ptrs
[i
], 0, size
);
3348 /* Catch derefs w/o wrappers */
3349 return (void *)(~(unsigned long)pdata
);
3353 if (!cpu_possible(i
))
3355 kfree(pdata
->ptrs
[i
]);
3360 EXPORT_SYMBOL(__alloc_percpu
);
3364 * kmem_cache_free - Deallocate an object
3365 * @cachep: The cache the allocation was from.
3366 * @objp: The previously allocated object.
3368 * Free an object which was previously allocated from this
3371 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3373 unsigned long flags
;
3375 local_irq_save(flags
);
3376 __cache_free(cachep
, objp
);
3377 local_irq_restore(flags
);
3379 EXPORT_SYMBOL(kmem_cache_free
);
3382 * kfree - free previously allocated memory
3383 * @objp: pointer returned by kmalloc.
3385 * If @objp is NULL, no operation is performed.
3387 * Don't free memory not originally allocated by kmalloc()
3388 * or you will run into trouble.
3390 void kfree(const void *objp
)
3392 struct kmem_cache
*c
;
3393 unsigned long flags
;
3395 if (unlikely(!objp
))
3397 local_irq_save(flags
);
3398 kfree_debugcheck(objp
);
3399 c
= virt_to_cache(objp
);
3400 mutex_debug_check_no_locks_freed(objp
, obj_size(c
));
3401 __cache_free(c
, (void *)objp
);
3402 local_irq_restore(flags
);
3404 EXPORT_SYMBOL(kfree
);
3408 * free_percpu - free previously allocated percpu memory
3409 * @objp: pointer returned by alloc_percpu.
3411 * Don't free memory not originally allocated by alloc_percpu()
3412 * The complemented objp is to check for that.
3414 void free_percpu(const void *objp
)
3417 struct percpu_data
*p
= (struct percpu_data
*)(~(unsigned long)objp
);
3420 * We allocate for all cpus so we cannot use for online cpu here.
3422 for_each_possible_cpu(i
)
3426 EXPORT_SYMBOL(free_percpu
);
3429 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3431 return obj_size(cachep
);
3433 EXPORT_SYMBOL(kmem_cache_size
);
3435 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3437 return cachep
->name
;
3439 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3442 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3444 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3447 struct kmem_list3
*l3
;
3448 struct array_cache
*new_shared
;
3449 struct array_cache
**new_alien
;
3451 for_each_online_node(node
) {
3453 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3457 new_shared
= alloc_arraycache(node
,
3458 cachep
->shared
*cachep
->batchcount
,
3461 free_alien_cache(new_alien
);
3465 l3
= cachep
->nodelists
[node
];
3467 struct array_cache
*shared
= l3
->shared
;
3469 spin_lock_irq(&l3
->list_lock
);
3472 free_block(cachep
, shared
->entry
,
3473 shared
->avail
, node
);
3475 l3
->shared
= new_shared
;
3477 l3
->alien
= new_alien
;
3480 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3481 cachep
->batchcount
+ cachep
->num
;
3482 spin_unlock_irq(&l3
->list_lock
);
3484 free_alien_cache(new_alien
);
3487 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3489 free_alien_cache(new_alien
);
3494 kmem_list3_init(l3
);
3495 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3496 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3497 l3
->shared
= new_shared
;
3498 l3
->alien
= new_alien
;
3499 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3500 cachep
->batchcount
+ cachep
->num
;
3501 cachep
->nodelists
[node
] = l3
;
3506 if (!cachep
->next
.next
) {
3507 /* Cache is not active yet. Roll back what we did */
3510 if (cachep
->nodelists
[node
]) {
3511 l3
= cachep
->nodelists
[node
];
3514 free_alien_cache(l3
->alien
);
3516 cachep
->nodelists
[node
] = NULL
;
3524 struct ccupdate_struct
{
3525 struct kmem_cache
*cachep
;
3526 struct array_cache
*new[NR_CPUS
];
3529 static void do_ccupdate_local(void *info
)
3531 struct ccupdate_struct
*new = info
;
3532 struct array_cache
*old
;
3535 old
= cpu_cache_get(new->cachep
);
3537 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3538 new->new[smp_processor_id()] = old
;
3541 /* Always called with the cache_chain_mutex held */
3542 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3543 int batchcount
, int shared
)
3545 struct ccupdate_struct
new;
3548 memset(&new.new, 0, sizeof(new.new));
3549 for_each_online_cpu(i
) {
3550 new.new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3553 for (i
--; i
>= 0; i
--)
3558 new.cachep
= cachep
;
3560 on_each_cpu(do_ccupdate_local
, (void *)&new, 1, 1);
3563 cachep
->batchcount
= batchcount
;
3564 cachep
->limit
= limit
;
3565 cachep
->shared
= shared
;
3567 for_each_online_cpu(i
) {
3568 struct array_cache
*ccold
= new.new[i
];
3571 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3572 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3573 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3577 err
= alloc_kmemlist(cachep
);
3579 printk(KERN_ERR
"alloc_kmemlist failed for %s, error %d.\n",
3580 cachep
->name
, -err
);
3586 /* Called with cache_chain_mutex held always */
3587 static void enable_cpucache(struct kmem_cache
*cachep
)
3593 * The head array serves three purposes:
3594 * - create a LIFO ordering, i.e. return objects that are cache-warm
3595 * - reduce the number of spinlock operations.
3596 * - reduce the number of linked list operations on the slab and
3597 * bufctl chains: array operations are cheaper.
3598 * The numbers are guessed, we should auto-tune as described by
3601 if (cachep
->buffer_size
> 131072)
3603 else if (cachep
->buffer_size
> PAGE_SIZE
)
3605 else if (cachep
->buffer_size
> 1024)
3607 else if (cachep
->buffer_size
> 256)
3613 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3614 * allocation behaviour: Most allocs on one cpu, most free operations
3615 * on another cpu. For these cases, an efficient object passing between
3616 * cpus is necessary. This is provided by a shared array. The array
3617 * replaces Bonwick's magazine layer.
3618 * On uniprocessor, it's functionally equivalent (but less efficient)
3619 * to a larger limit. Thus disabled by default.
3623 if (cachep
->buffer_size
<= PAGE_SIZE
)
3629 * With debugging enabled, large batchcount lead to excessively long
3630 * periods with disabled local interrupts. Limit the batchcount
3635 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3637 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3638 cachep
->name
, -err
);
3642 * Drain an array if it contains any elements taking the l3 lock only if
3643 * necessary. Note that the l3 listlock also protects the array_cache
3644 * if drain_array() is used on the shared array.
3646 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3647 struct array_cache
*ac
, int force
, int node
)
3651 if (!ac
|| !ac
->avail
)
3653 if (ac
->touched
&& !force
) {
3656 spin_lock_irq(&l3
->list_lock
);
3658 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3659 if (tofree
> ac
->avail
)
3660 tofree
= (ac
->avail
+ 1) / 2;
3661 free_block(cachep
, ac
->entry
, tofree
, node
);
3662 ac
->avail
-= tofree
;
3663 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3664 sizeof(void *) * ac
->avail
);
3666 spin_unlock_irq(&l3
->list_lock
);
3671 * cache_reap - Reclaim memory from caches.
3672 * @unused: unused parameter
3674 * Called from workqueue/eventd every few seconds.
3676 * - clear the per-cpu caches for this CPU.
3677 * - return freeable pages to the main free memory pool.
3679 * If we cannot acquire the cache chain mutex then just give up - we'll try
3680 * again on the next iteration.
3682 static void cache_reap(void *unused
)
3684 struct list_head
*walk
;
3685 struct kmem_list3
*l3
;
3686 int node
= numa_node_id();
3688 if (!mutex_trylock(&cache_chain_mutex
)) {
3689 /* Give up. Setup the next iteration. */
3690 schedule_delayed_work(&__get_cpu_var(reap_work
),
3695 list_for_each(walk
, &cache_chain
) {
3696 struct kmem_cache
*searchp
;
3697 struct list_head
*p
;
3701 searchp
= list_entry(walk
, struct kmem_cache
, next
);
3705 * We only take the l3 lock if absolutely necessary and we
3706 * have established with reasonable certainty that
3707 * we can do some work if the lock was obtained.
3709 l3
= searchp
->nodelists
[node
];
3711 reap_alien(searchp
, l3
);
3713 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
3716 * These are racy checks but it does not matter
3717 * if we skip one check or scan twice.
3719 if (time_after(l3
->next_reap
, jiffies
))
3722 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3724 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
3726 if (l3
->free_touched
) {
3727 l3
->free_touched
= 0;
3731 tofree
= (l3
->free_limit
+ 5 * searchp
->num
- 1) /
3735 * Do not lock if there are no free blocks.
3737 if (list_empty(&l3
->slabs_free
))
3740 spin_lock_irq(&l3
->list_lock
);
3741 p
= l3
->slabs_free
.next
;
3742 if (p
== &(l3
->slabs_free
)) {
3743 spin_unlock_irq(&l3
->list_lock
);
3747 slabp
= list_entry(p
, struct slab
, list
);
3748 BUG_ON(slabp
->inuse
);
3749 list_del(&slabp
->list
);
3750 STATS_INC_REAPED(searchp
);
3753 * Safe to drop the lock. The slab is no longer linked
3754 * to the cache. searchp cannot disappear, we hold
3757 l3
->free_objects
-= searchp
->num
;
3758 spin_unlock_irq(&l3
->list_lock
);
3759 slab_destroy(searchp
, slabp
);
3760 } while (--tofree
> 0);
3765 mutex_unlock(&cache_chain_mutex
);
3767 /* Set up the next iteration */
3768 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
);
3771 #ifdef CONFIG_PROC_FS
3773 static void print_slabinfo_header(struct seq_file
*m
)
3776 * Output format version, so at least we can change it
3777 * without _too_ many complaints.
3780 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3782 seq_puts(m
, "slabinfo - version: 2.1\n");
3784 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
3785 "<objperslab> <pagesperslab>");
3786 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3787 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3789 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3790 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3791 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3796 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3799 struct list_head
*p
;
3801 mutex_lock(&cache_chain_mutex
);
3803 print_slabinfo_header(m
);
3804 p
= cache_chain
.next
;
3807 if (p
== &cache_chain
)
3810 return list_entry(p
, struct kmem_cache
, next
);
3813 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3815 struct kmem_cache
*cachep
= p
;
3817 return cachep
->next
.next
== &cache_chain
?
3818 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
3821 static void s_stop(struct seq_file
*m
, void *p
)
3823 mutex_unlock(&cache_chain_mutex
);
3826 static int s_show(struct seq_file
*m
, void *p
)
3828 struct kmem_cache
*cachep
= p
;
3829 struct list_head
*q
;
3831 unsigned long active_objs
;
3832 unsigned long num_objs
;
3833 unsigned long active_slabs
= 0;
3834 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3838 struct kmem_list3
*l3
;
3842 for_each_online_node(node
) {
3843 l3
= cachep
->nodelists
[node
];
3848 spin_lock_irq(&l3
->list_lock
);
3850 list_for_each(q
, &l3
->slabs_full
) {
3851 slabp
= list_entry(q
, struct slab
, list
);
3852 if (slabp
->inuse
!= cachep
->num
&& !error
)
3853 error
= "slabs_full accounting error";
3854 active_objs
+= cachep
->num
;
3857 list_for_each(q
, &l3
->slabs_partial
) {
3858 slabp
= list_entry(q
, struct slab
, list
);
3859 if (slabp
->inuse
== cachep
->num
&& !error
)
3860 error
= "slabs_partial inuse accounting error";
3861 if (!slabp
->inuse
&& !error
)
3862 error
= "slabs_partial/inuse accounting error";
3863 active_objs
+= slabp
->inuse
;
3866 list_for_each(q
, &l3
->slabs_free
) {
3867 slabp
= list_entry(q
, struct slab
, list
);
3868 if (slabp
->inuse
&& !error
)
3869 error
= "slabs_free/inuse accounting error";
3872 free_objects
+= l3
->free_objects
;
3874 shared_avail
+= l3
->shared
->avail
;
3876 spin_unlock_irq(&l3
->list_lock
);
3878 num_slabs
+= active_slabs
;
3879 num_objs
= num_slabs
* cachep
->num
;
3880 if (num_objs
- active_objs
!= free_objects
&& !error
)
3881 error
= "free_objects accounting error";
3883 name
= cachep
->name
;
3885 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3887 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3888 name
, active_objs
, num_objs
, cachep
->buffer_size
,
3889 cachep
->num
, (1 << cachep
->gfporder
));
3890 seq_printf(m
, " : tunables %4u %4u %4u",
3891 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
3892 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3893 active_slabs
, num_slabs
, shared_avail
);
3896 unsigned long high
= cachep
->high_mark
;
3897 unsigned long allocs
= cachep
->num_allocations
;
3898 unsigned long grown
= cachep
->grown
;
3899 unsigned long reaped
= cachep
->reaped
;
3900 unsigned long errors
= cachep
->errors
;
3901 unsigned long max_freeable
= cachep
->max_freeable
;
3902 unsigned long node_allocs
= cachep
->node_allocs
;
3903 unsigned long node_frees
= cachep
->node_frees
;
3904 unsigned long overflows
= cachep
->node_overflow
;
3906 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
3907 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
3908 reaped
, errors
, max_freeable
, node_allocs
,
3909 node_frees
, overflows
);
3913 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3914 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
3915 unsigned long freehit
= atomic_read(&cachep
->freehit
);
3916 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
3918 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
3919 allochit
, allocmiss
, freehit
, freemiss
);
3927 * slabinfo_op - iterator that generates /proc/slabinfo
3936 * num-pages-per-slab
3937 * + further values on SMP and with statistics enabled
3940 struct seq_operations slabinfo_op
= {
3947 #define MAX_SLABINFO_WRITE 128
3949 * slabinfo_write - Tuning for the slab allocator
3951 * @buffer: user buffer
3952 * @count: data length
3955 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
3956 size_t count
, loff_t
*ppos
)
3958 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
3959 int limit
, batchcount
, shared
, res
;
3960 struct list_head
*p
;
3962 if (count
> MAX_SLABINFO_WRITE
)
3964 if (copy_from_user(&kbuf
, buffer
, count
))
3966 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3968 tmp
= strchr(kbuf
, ' ');
3973 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3976 /* Find the cache in the chain of caches. */
3977 mutex_lock(&cache_chain_mutex
);
3979 list_for_each(p
, &cache_chain
) {
3980 struct kmem_cache
*cachep
;
3982 cachep
= list_entry(p
, struct kmem_cache
, next
);
3983 if (!strcmp(cachep
->name
, kbuf
)) {
3984 if (limit
< 1 || batchcount
< 1 ||
3985 batchcount
> limit
|| shared
< 0) {
3988 res
= do_tune_cpucache(cachep
, limit
,
3989 batchcount
, shared
);
3994 mutex_unlock(&cache_chain_mutex
);
4000 #ifdef CONFIG_DEBUG_SLAB_LEAK
4002 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4005 struct list_head
*p
;
4007 mutex_lock(&cache_chain_mutex
);
4008 p
= cache_chain
.next
;
4011 if (p
== &cache_chain
)
4014 return list_entry(p
, struct kmem_cache
, next
);
4017 static inline int add_caller(unsigned long *n
, unsigned long v
)
4027 unsigned long *q
= p
+ 2 * i
;
4041 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4047 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4053 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4054 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4056 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4061 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4063 #ifdef CONFIG_KALLSYMS
4066 unsigned long offset
, size
;
4067 char namebuf
[KSYM_NAME_LEN
+1];
4069 name
= kallsyms_lookup(address
, &size
, &offset
, &modname
, namebuf
);
4072 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4074 seq_printf(m
, " [%s]", modname
);
4078 seq_printf(m
, "%p", (void *)address
);
4081 static int leaks_show(struct seq_file
*m
, void *p
)
4083 struct kmem_cache
*cachep
= p
;
4084 struct list_head
*q
;
4086 struct kmem_list3
*l3
;
4088 unsigned long *n
= m
->private;
4092 if (!(cachep
->flags
& SLAB_STORE_USER
))
4094 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4097 /* OK, we can do it */
4101 for_each_online_node(node
) {
4102 l3
= cachep
->nodelists
[node
];
4107 spin_lock_irq(&l3
->list_lock
);
4109 list_for_each(q
, &l3
->slabs_full
) {
4110 slabp
= list_entry(q
, struct slab
, list
);
4111 handle_slab(n
, cachep
, slabp
);
4113 list_for_each(q
, &l3
->slabs_partial
) {
4114 slabp
= list_entry(q
, struct slab
, list
);
4115 handle_slab(n
, cachep
, slabp
);
4117 spin_unlock_irq(&l3
->list_lock
);
4119 name
= cachep
->name
;
4121 /* Increase the buffer size */
4122 mutex_unlock(&cache_chain_mutex
);
4123 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4125 /* Too bad, we are really out */
4127 mutex_lock(&cache_chain_mutex
);
4130 *(unsigned long *)m
->private = n
[0] * 2;
4132 mutex_lock(&cache_chain_mutex
);
4133 /* Now make sure this entry will be retried */
4137 for (i
= 0; i
< n
[1]; i
++) {
4138 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4139 show_symbol(m
, n
[2*i
+2]);
4145 struct seq_operations slabstats_op
= {
4146 .start
= leaks_start
,
4155 * ksize - get the actual amount of memory allocated for a given object
4156 * @objp: Pointer to the object
4158 * kmalloc may internally round up allocations and return more memory
4159 * than requested. ksize() can be used to determine the actual amount of
4160 * memory allocated. The caller may use this additional memory, even though
4161 * a smaller amount of memory was initially specified with the kmalloc call.
4162 * The caller must guarantee that objp points to a valid object previously
4163 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4164 * must not be freed during the duration of the call.
4166 unsigned int ksize(const void *objp
)
4168 if (unlikely(objp
== NULL
))
4171 return obj_size(virt_to_cache(objp
));