[PATCH] mv643xx: fix outstanding tx skb counter
[linux-2.6/kvm.git] / drivers / net / mv643xx_eth.c
blob8ea004714648d335972f41e0d8f3f96515408bbc
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani (lachwani@pmc-sierra.com)
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/tcp.h>
36 #include <linux/udp.h>
37 #include <linux/etherdevice.h>
39 #include <linux/bitops.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <asm/io.h>
43 #include <asm/types.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/delay.h>
47 #include "mv643xx_eth.h"
50 * The first part is the high level driver of the gigE ethernet ports.
53 /* Constants */
54 #define VLAN_HLEN 4
55 #define FCS_LEN 4
56 #define WRAP NET_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
57 #define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
59 #define INT_CAUSE_UNMASK_ALL 0x0007ffff
60 #define INT_CAUSE_UNMASK_ALL_EXT 0x0011ffff
61 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
62 #define INT_CAUSE_MASK_ALL 0x00000000
63 #define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
64 #define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
65 #endif
67 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
68 #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
69 #else
70 #define MAX_DESCS_PER_SKB 1
71 #endif
73 #define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
74 #define PHY_WAIT_MICRO_SECONDS 10
76 /* Static function declarations */
77 static int eth_port_link_is_up(unsigned int eth_port_num);
78 static void eth_port_uc_addr_get(struct net_device *dev,
79 unsigned char *MacAddr);
80 static int mv643xx_eth_real_open(struct net_device *);
81 static int mv643xx_eth_real_stop(struct net_device *);
82 static int mv643xx_eth_change_mtu(struct net_device *, int);
83 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
84 static void eth_port_init_mac_tables(unsigned int eth_port_num);
85 #ifdef MV643XX_NAPI
86 static int mv643xx_poll(struct net_device *dev, int *budget);
87 #endif
88 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
89 static int ethernet_phy_detect(unsigned int eth_port_num);
90 static struct ethtool_ops mv643xx_ethtool_ops;
92 static char mv643xx_driver_name[] = "mv643xx_eth";
93 static char mv643xx_driver_version[] = "1.0";
95 static void __iomem *mv643xx_eth_shared_base;
97 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
98 static spinlock_t mv643xx_eth_phy_lock = SPIN_LOCK_UNLOCKED;
100 static inline u32 mv_read(int offset)
102 void __iomem *reg_base;
104 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
106 return readl(reg_base + offset);
109 static inline void mv_write(int offset, u32 data)
111 void __iomem *reg_base;
113 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
114 writel(data, reg_base + offset);
118 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
120 * Input : pointer to ethernet interface network device structure
121 * new mtu size
122 * Output : 0 upon success, -EINVAL upon failure
124 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
126 struct mv643xx_private *mp = netdev_priv(dev);
127 unsigned long flags;
129 spin_lock_irqsave(&mp->lock, flags);
131 if ((new_mtu > 9500) || (new_mtu < 64)) {
132 spin_unlock_irqrestore(&mp->lock, flags);
133 return -EINVAL;
136 dev->mtu = new_mtu;
138 * Stop then re-open the interface. This will allocate RX skb's with
139 * the new MTU.
140 * There is a possible danger that the open will not successed, due
141 * to memory is full, which might fail the open function.
143 if (netif_running(dev)) {
144 if (mv643xx_eth_real_stop(dev))
145 printk(KERN_ERR
146 "%s: Fatal error on stopping device\n",
147 dev->name);
148 if (mv643xx_eth_real_open(dev))
149 printk(KERN_ERR
150 "%s: Fatal error on opening device\n",
151 dev->name);
154 spin_unlock_irqrestore(&mp->lock, flags);
155 return 0;
159 * mv643xx_eth_rx_task
161 * Fills / refills RX queue on a certain gigabit ethernet port
163 * Input : pointer to ethernet interface network device structure
164 * Output : N/A
166 static void mv643xx_eth_rx_task(void *data)
168 struct net_device *dev = (struct net_device *)data;
169 struct mv643xx_private *mp = netdev_priv(dev);
170 struct pkt_info pkt_info;
171 struct sk_buff *skb;
173 if (test_and_set_bit(0, &mp->rx_task_busy))
174 panic("%s: Error in test_set_bit / clear_bit", dev->name);
176 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
177 skb = dev_alloc_skb(RX_SKB_SIZE);
178 if (!skb)
179 break;
180 mp->rx_ring_skbs++;
181 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
182 pkt_info.byte_cnt = RX_SKB_SIZE;
183 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
184 DMA_FROM_DEVICE);
185 pkt_info.return_info = skb;
186 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
187 printk(KERN_ERR
188 "%s: Error allocating RX Ring\n", dev->name);
189 break;
191 skb_reserve(skb, 2);
193 clear_bit(0, &mp->rx_task_busy);
195 * If RX ring is empty of SKB, set a timer to try allocating
196 * again in a later time .
198 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
199 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
200 /* After 100mSec */
201 mp->timeout.expires = jiffies + (HZ / 10);
202 add_timer(&mp->timeout);
203 mp->rx_timer_flag = 1;
205 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
206 else {
207 /* Return interrupts */
208 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
209 INT_CAUSE_UNMASK_ALL);
211 #endif
215 * mv643xx_eth_rx_task_timer_wrapper
217 * Timer routine to wake up RX queue filling task. This function is
218 * used only in case the RX queue is empty, and all alloc_skb has
219 * failed (due to out of memory event).
221 * Input : pointer to ethernet interface network device structure
222 * Output : N/A
224 static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
226 struct net_device *dev = (struct net_device *)data;
227 struct mv643xx_private *mp = netdev_priv(dev);
229 mp->rx_timer_flag = 0;
230 mv643xx_eth_rx_task((void *)data);
234 * mv643xx_eth_update_mac_address
236 * Update the MAC address of the port in the address table
238 * Input : pointer to ethernet interface network device structure
239 * Output : N/A
241 static void mv643xx_eth_update_mac_address(struct net_device *dev)
243 struct mv643xx_private *mp = netdev_priv(dev);
244 unsigned int port_num = mp->port_num;
246 eth_port_init_mac_tables(port_num);
247 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
248 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
252 * mv643xx_eth_set_rx_mode
254 * Change from promiscuos to regular rx mode
256 * Input : pointer to ethernet interface network device structure
257 * Output : N/A
259 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
261 struct mv643xx_private *mp = netdev_priv(dev);
262 u32 config_reg;
264 config_reg = ethernet_get_config_reg(mp->port_num);
265 if (dev->flags & IFF_PROMISC)
266 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
267 else
268 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
269 ethernet_set_config_reg(mp->port_num, config_reg);
273 * mv643xx_eth_set_mac_address
275 * Change the interface's mac address.
276 * No special hardware thing should be done because interface is always
277 * put in promiscuous mode.
279 * Input : pointer to ethernet interface network device structure and
280 * a pointer to the designated entry to be added to the cache.
281 * Output : zero upon success, negative upon failure
283 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
285 int i;
287 for (i = 0; i < 6; i++)
288 /* +2 is for the offset of the HW addr type */
289 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
290 mv643xx_eth_update_mac_address(dev);
291 return 0;
295 * mv643xx_eth_tx_timeout
297 * Called upon a timeout on transmitting a packet
299 * Input : pointer to ethernet interface network device structure.
300 * Output : N/A
302 static void mv643xx_eth_tx_timeout(struct net_device *dev)
304 struct mv643xx_private *mp = netdev_priv(dev);
306 printk(KERN_INFO "%s: TX timeout ", dev->name);
308 /* Do the reset outside of interrupt context */
309 schedule_work(&mp->tx_timeout_task);
313 * mv643xx_eth_tx_timeout_task
315 * Actual routine to reset the adapter when a timeout on Tx has occurred
317 static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
319 struct mv643xx_private *mp = netdev_priv(dev);
321 netif_device_detach(dev);
322 eth_port_reset(mp->port_num);
323 eth_port_start(mp);
324 netif_device_attach(dev);
328 * mv643xx_eth_free_tx_queue
330 * Input : dev - a pointer to the required interface
332 * Output : 0 if was able to release skb , nonzero otherwise
334 static int mv643xx_eth_free_tx_queue(struct net_device *dev,
335 unsigned int eth_int_cause_ext)
337 struct mv643xx_private *mp = netdev_priv(dev);
338 struct net_device_stats *stats = &mp->stats;
339 struct pkt_info pkt_info;
340 int released = 1;
342 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
343 return released;
345 spin_lock(&mp->lock);
347 /* Check only queue 0 */
348 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
349 if (pkt_info.cmd_sts & BIT0) {
350 printk("%s: Error in TX\n", dev->name);
351 stats->tx_errors++;
355 * If return_info is different than 0, release the skb.
356 * The case where return_info is not 0 is only in case
357 * when transmitted a scatter/gather packet, where only
358 * last skb releases the whole chain.
360 if (pkt_info.return_info) {
361 if (skb_shinfo(pkt_info.return_info)->nr_frags)
362 dma_unmap_page(NULL, pkt_info.buf_ptr,
363 pkt_info.byte_cnt,
364 DMA_TO_DEVICE);
365 else
366 dma_unmap_single(NULL, pkt_info.buf_ptr,
367 pkt_info.byte_cnt,
368 DMA_TO_DEVICE);
370 dev_kfree_skb_irq(pkt_info.return_info);
371 released = 0;
372 } else
373 dma_unmap_page(NULL, pkt_info.buf_ptr,
374 pkt_info.byte_cnt, DMA_TO_DEVICE);
377 spin_unlock(&mp->lock);
379 return released;
383 * mv643xx_eth_receive
385 * This function is forward packets that are received from the port's
386 * queues toward kernel core or FastRoute them to another interface.
388 * Input : dev - a pointer to the required interface
389 * max - maximum number to receive (0 means unlimted)
391 * Output : number of served packets
393 #ifdef MV643XX_NAPI
394 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
395 #else
396 static int mv643xx_eth_receive_queue(struct net_device *dev)
397 #endif
399 struct mv643xx_private *mp = netdev_priv(dev);
400 struct net_device_stats *stats = &mp->stats;
401 unsigned int received_packets = 0;
402 struct sk_buff *skb;
403 struct pkt_info pkt_info;
405 #ifdef MV643XX_NAPI
406 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
407 #else
408 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
409 #endif
410 mp->rx_ring_skbs--;
411 received_packets++;
413 /* Update statistics. Note byte count includes 4 byte CRC count */
414 stats->rx_packets++;
415 stats->rx_bytes += pkt_info.byte_cnt;
416 skb = pkt_info.return_info;
418 * In case received a packet without first / last bits on OR
419 * the error summary bit is on, the packets needs to be dropeed.
421 if (((pkt_info.cmd_sts
422 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
423 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
424 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
425 stats->rx_dropped++;
426 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
427 ETH_RX_LAST_DESC)) !=
428 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
429 if (net_ratelimit())
430 printk(KERN_ERR
431 "%s: Received packet spread "
432 "on multiple descriptors\n",
433 dev->name);
435 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
436 stats->rx_errors++;
438 dev_kfree_skb_irq(skb);
439 } else {
441 * The -4 is for the CRC in the trailer of the
442 * received packet
444 skb_put(skb, pkt_info.byte_cnt - 4);
445 skb->dev = dev;
447 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
448 skb->ip_summed = CHECKSUM_UNNECESSARY;
449 skb->csum = htons(
450 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
452 skb->protocol = eth_type_trans(skb, dev);
453 #ifdef MV643XX_NAPI
454 netif_receive_skb(skb);
455 #else
456 netif_rx(skb);
457 #endif
461 return received_packets;
465 * mv643xx_eth_int_handler
467 * Main interrupt handler for the gigbit ethernet ports
469 * Input : irq - irq number (not used)
470 * dev_id - a pointer to the required interface's data structure
471 * regs - not used
472 * Output : N/A
475 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
476 struct pt_regs *regs)
478 struct net_device *dev = (struct net_device *)dev_id;
479 struct mv643xx_private *mp = netdev_priv(dev);
480 u32 eth_int_cause, eth_int_cause_ext = 0;
481 unsigned int port_num = mp->port_num;
483 /* Read interrupt cause registers */
484 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
485 INT_CAUSE_UNMASK_ALL;
487 if (eth_int_cause & BIT1)
488 eth_int_cause_ext = mv_read(
489 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
490 INT_CAUSE_UNMASK_ALL_EXT;
492 #ifdef MV643XX_NAPI
493 if (!(eth_int_cause & 0x0007fffd)) {
494 /* Dont ack the Rx interrupt */
495 #endif
497 * Clear specific ethernet port intrerrupt registers by
498 * acknowleding relevant bits.
500 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
501 ~eth_int_cause);
502 if (eth_int_cause_ext != 0x0)
503 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
504 (port_num), ~eth_int_cause_ext);
506 /* UDP change : We may need this */
507 if ((eth_int_cause_ext & 0x0000ffff) &&
508 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
509 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
510 netif_wake_queue(dev);
511 #ifdef MV643XX_NAPI
512 } else {
513 if (netif_rx_schedule_prep(dev)) {
514 /* Mask all the interrupts */
515 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
516 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG
517 (port_num), 0);
518 __netif_rx_schedule(dev);
520 #else
521 if (eth_int_cause & (BIT2 | BIT11))
522 mv643xx_eth_receive_queue(dev, 0);
525 * After forwarded received packets to upper layer, add a task
526 * in an interrupts enabled context that refills the RX ring
527 * with skb's.
529 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
530 /* Unmask all interrupts on ethernet port */
531 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
532 INT_CAUSE_MASK_ALL);
533 queue_task(&mp->rx_task, &tq_immediate);
534 mark_bh(IMMEDIATE_BH);
535 #else
536 mp->rx_task.func(dev);
537 #endif
538 #endif
540 /* PHY status changed */
541 if (eth_int_cause_ext & (BIT16 | BIT20)) {
542 if (eth_port_link_is_up(port_num)) {
543 netif_carrier_on(dev);
544 netif_wake_queue(dev);
545 /* Start TX queue */
546 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
547 (port_num), 1);
548 } else {
549 netif_carrier_off(dev);
550 netif_stop_queue(dev);
555 * If no real interrupt occured, exit.
556 * This can happen when using gigE interrupt coalescing mechanism.
558 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
559 return IRQ_NONE;
561 return IRQ_HANDLED;
564 #ifdef MV643XX_COAL
567 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
569 * DESCRIPTION:
570 * This routine sets the RX coalescing interrupt mechanism parameter.
571 * This parameter is a timeout counter, that counts in 64 t_clk
572 * chunks ; that when timeout event occurs a maskable interrupt
573 * occurs.
574 * The parameter is calculated using the tClk of the MV-643xx chip
575 * , and the required delay of the interrupt in usec.
577 * INPUT:
578 * unsigned int eth_port_num Ethernet port number
579 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
580 * unsigned int delay Delay in usec
582 * OUTPUT:
583 * Interrupt coalescing mechanism value is set in MV-643xx chip.
585 * RETURN:
586 * The interrupt coalescing value set in the gigE port.
589 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
590 unsigned int t_clk, unsigned int delay)
592 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
594 /* Set RX Coalescing mechanism */
595 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
596 ((coal & 0x3fff) << 8) |
597 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
598 & 0xffc000ff));
600 return coal;
602 #endif
605 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
607 * DESCRIPTION:
608 * This routine sets the TX coalescing interrupt mechanism parameter.
609 * This parameter is a timeout counter, that counts in 64 t_clk
610 * chunks ; that when timeout event occurs a maskable interrupt
611 * occurs.
612 * The parameter is calculated using the t_cLK frequency of the
613 * MV-643xx chip and the required delay in the interrupt in uSec
615 * INPUT:
616 * unsigned int eth_port_num Ethernet port number
617 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
618 * unsigned int delay Delay in uSeconds
620 * OUTPUT:
621 * Interrupt coalescing mechanism value is set in MV-643xx chip.
623 * RETURN:
624 * The interrupt coalescing value set in the gigE port.
627 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
628 unsigned int t_clk, unsigned int delay)
630 unsigned int coal;
631 coal = ((t_clk / 1000000) * delay) / 64;
632 /* Set TX Coalescing mechanism */
633 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
634 coal << 4);
635 return coal;
639 * mv643xx_eth_open
641 * This function is called when openning the network device. The function
642 * should initialize all the hardware, initialize cyclic Rx/Tx
643 * descriptors chain and buffers and allocate an IRQ to the network
644 * device.
646 * Input : a pointer to the network device structure
648 * Output : zero of success , nonzero if fails.
651 static int mv643xx_eth_open(struct net_device *dev)
653 struct mv643xx_private *mp = netdev_priv(dev);
654 unsigned int port_num = mp->port_num;
655 int err;
657 spin_lock_irq(&mp->lock);
659 err = request_irq(dev->irq, mv643xx_eth_int_handler,
660 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
662 if (err) {
663 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
664 port_num);
665 err = -EAGAIN;
666 goto out;
669 if (mv643xx_eth_real_open(dev)) {
670 printk("%s: Error opening interface\n", dev->name);
671 err = -EBUSY;
672 goto out_free;
675 spin_unlock_irq(&mp->lock);
677 return 0;
679 out_free:
680 free_irq(dev->irq, dev);
682 out:
683 spin_unlock_irq(&mp->lock);
685 return err;
689 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
691 * DESCRIPTION:
692 * This function prepares a Rx chained list of descriptors and packet
693 * buffers in a form of a ring. The routine must be called after port
694 * initialization routine and before port start routine.
695 * The Ethernet SDMA engine uses CPU bus addresses to access the various
696 * devices in the system (i.e. DRAM). This function uses the ethernet
697 * struct 'virtual to physical' routine (set by the user) to set the ring
698 * with physical addresses.
700 * INPUT:
701 * struct mv643xx_private *mp Ethernet Port Control srtuct.
703 * OUTPUT:
704 * The routine updates the Ethernet port control struct with information
705 * regarding the Rx descriptors and buffers.
707 * RETURN:
708 * None.
710 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
712 volatile struct eth_rx_desc *p_rx_desc;
713 int rx_desc_num = mp->rx_ring_size;
714 int i;
716 /* initialize the next_desc_ptr links in the Rx descriptors ring */
717 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
718 for (i = 0; i < rx_desc_num; i++) {
719 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
720 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
723 /* Save Rx desc pointer to driver struct. */
724 mp->rx_curr_desc_q = 0;
725 mp->rx_used_desc_q = 0;
727 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
729 /* Add the queue to the list of RX queues of this port */
730 mp->port_rx_queue_command |= 1;
734 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
736 * DESCRIPTION:
737 * This function prepares a Tx chained list of descriptors and packet
738 * buffers in a form of a ring. The routine must be called after port
739 * initialization routine and before port start routine.
740 * The Ethernet SDMA engine uses CPU bus addresses to access the various
741 * devices in the system (i.e. DRAM). This function uses the ethernet
742 * struct 'virtual to physical' routine (set by the user) to set the ring
743 * with physical addresses.
745 * INPUT:
746 * struct mv643xx_private *mp Ethernet Port Control srtuct.
748 * OUTPUT:
749 * The routine updates the Ethernet port control struct with information
750 * regarding the Tx descriptors and buffers.
752 * RETURN:
753 * None.
755 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
757 int tx_desc_num = mp->tx_ring_size;
758 struct eth_tx_desc *p_tx_desc;
759 int i;
761 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
762 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
763 for (i = 0; i < tx_desc_num; i++) {
764 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
765 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
768 mp->tx_curr_desc_q = 0;
769 mp->tx_used_desc_q = 0;
770 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
771 mp->tx_first_desc_q = 0;
772 #endif
774 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
776 /* Add the queue to the list of Tx queues of this port */
777 mp->port_tx_queue_command |= 1;
780 /* Helper function for mv643xx_eth_open */
781 static int mv643xx_eth_real_open(struct net_device *dev)
783 struct mv643xx_private *mp = netdev_priv(dev);
784 unsigned int port_num = mp->port_num;
785 unsigned int size;
787 /* Stop RX Queues */
788 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
790 /* Clear the ethernet port interrupts */
791 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
792 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
794 /* Unmask RX buffer and TX end interrupt */
795 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
796 INT_CAUSE_UNMASK_ALL);
798 /* Unmask phy and link status changes interrupts */
799 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
800 INT_CAUSE_UNMASK_ALL_EXT);
802 /* Set the MAC Address */
803 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
805 eth_port_init(mp);
807 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
809 memset(&mp->timeout, 0, sizeof(struct timer_list));
810 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
811 mp->timeout.data = (unsigned long)dev;
813 mp->rx_task_busy = 0;
814 mp->rx_timer_flag = 0;
816 /* Allocate RX and TX skb rings */
817 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
818 GFP_KERNEL);
819 if (!mp->rx_skb) {
820 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
821 return -ENOMEM;
823 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
824 GFP_KERNEL);
825 if (!mp->tx_skb) {
826 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
827 kfree(mp->rx_skb);
828 return -ENOMEM;
831 /* Allocate TX ring */
832 mp->tx_ring_skbs = 0;
833 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
834 mp->tx_desc_area_size = size;
836 if (mp->tx_sram_size) {
837 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
838 mp->tx_sram_size);
839 mp->tx_desc_dma = mp->tx_sram_addr;
840 } else
841 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
842 &mp->tx_desc_dma,
843 GFP_KERNEL);
845 if (!mp->p_tx_desc_area) {
846 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
847 dev->name, size);
848 kfree(mp->rx_skb);
849 kfree(mp->tx_skb);
850 return -ENOMEM;
852 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
853 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
855 ether_init_tx_desc_ring(mp);
857 /* Allocate RX ring */
858 mp->rx_ring_skbs = 0;
859 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
860 mp->rx_desc_area_size = size;
862 if (mp->rx_sram_size) {
863 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
864 mp->rx_sram_size);
865 mp->rx_desc_dma = mp->rx_sram_addr;
866 } else
867 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
868 &mp->rx_desc_dma,
869 GFP_KERNEL);
871 if (!mp->p_rx_desc_area) {
872 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
873 dev->name, size);
874 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
875 dev->name);
876 if (mp->rx_sram_size)
877 iounmap(mp->p_rx_desc_area);
878 else
879 dma_free_coherent(NULL, mp->tx_desc_area_size,
880 mp->p_tx_desc_area, mp->tx_desc_dma);
881 kfree(mp->rx_skb);
882 kfree(mp->tx_skb);
883 return -ENOMEM;
885 memset((void *)mp->p_rx_desc_area, 0, size);
887 ether_init_rx_desc_ring(mp);
889 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
891 eth_port_start(mp);
893 /* Interrupt Coalescing */
895 #ifdef MV643XX_COAL
896 mp->rx_int_coal =
897 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
898 #endif
900 mp->tx_int_coal =
901 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
903 netif_start_queue(dev);
905 return 0;
908 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
910 struct mv643xx_private *mp = netdev_priv(dev);
911 unsigned int port_num = mp->port_num;
912 unsigned int curr;
914 /* Stop Tx Queues */
915 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
917 /* Free outstanding skb's on TX rings */
918 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
919 if (mp->tx_skb[curr]) {
920 dev_kfree_skb(mp->tx_skb[curr]);
921 mp->tx_ring_skbs--;
924 if (mp->tx_ring_skbs)
925 printk("%s: Error on Tx descriptor free - could not free %d"
926 " descriptors\n", dev->name, mp->tx_ring_skbs);
928 /* Free TX ring */
929 if (mp->tx_sram_size)
930 iounmap(mp->p_tx_desc_area);
931 else
932 dma_free_coherent(NULL, mp->tx_desc_area_size,
933 mp->p_tx_desc_area, mp->tx_desc_dma);
936 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
938 struct mv643xx_private *mp = netdev_priv(dev);
939 unsigned int port_num = mp->port_num;
940 int curr;
942 /* Stop RX Queues */
943 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
945 /* Free preallocated skb's on RX rings */
946 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
947 if (mp->rx_skb[curr]) {
948 dev_kfree_skb(mp->rx_skb[curr]);
949 mp->rx_ring_skbs--;
953 if (mp->rx_ring_skbs)
954 printk(KERN_ERR
955 "%s: Error in freeing Rx Ring. %d skb's still"
956 " stuck in RX Ring - ignoring them\n", dev->name,
957 mp->rx_ring_skbs);
958 /* Free RX ring */
959 if (mp->rx_sram_size)
960 iounmap(mp->p_rx_desc_area);
961 else
962 dma_free_coherent(NULL, mp->rx_desc_area_size,
963 mp->p_rx_desc_area, mp->rx_desc_dma);
967 * mv643xx_eth_stop
969 * This function is used when closing the network device.
970 * It updates the hardware,
971 * release all memory that holds buffers and descriptors and release the IRQ.
972 * Input : a pointer to the device structure
973 * Output : zero if success , nonzero if fails
976 /* Helper function for mv643xx_eth_stop */
978 static int mv643xx_eth_real_stop(struct net_device *dev)
980 struct mv643xx_private *mp = netdev_priv(dev);
981 unsigned int port_num = mp->port_num;
983 netif_carrier_off(dev);
984 netif_stop_queue(dev);
986 mv643xx_eth_free_tx_rings(dev);
987 mv643xx_eth_free_rx_rings(dev);
989 eth_port_reset(mp->port_num);
991 /* Disable ethernet port interrupts */
992 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
993 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
995 /* Mask RX buffer and TX end interrupt */
996 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
998 /* Mask phy and link status changes interrupts */
999 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), 0);
1001 return 0;
1004 static int mv643xx_eth_stop(struct net_device *dev)
1006 struct mv643xx_private *mp = netdev_priv(dev);
1008 spin_lock_irq(&mp->lock);
1010 mv643xx_eth_real_stop(dev);
1012 free_irq(dev->irq, dev);
1013 spin_unlock_irq(&mp->lock);
1015 return 0;
1018 #ifdef MV643XX_NAPI
1019 static void mv643xx_tx(struct net_device *dev)
1021 struct mv643xx_private *mp = netdev_priv(dev);
1022 struct pkt_info pkt_info;
1024 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
1025 if (pkt_info.return_info) {
1026 if (skb_shinfo(pkt_info.return_info)->nr_frags)
1027 dma_unmap_page(NULL, pkt_info.buf_ptr,
1028 pkt_info.byte_cnt,
1029 DMA_TO_DEVICE);
1030 else
1031 dma_unmap_single(NULL, pkt_info.buf_ptr,
1032 pkt_info.byte_cnt,
1033 DMA_TO_DEVICE);
1035 dev_kfree_skb_irq(pkt_info.return_info);
1036 } else
1037 dma_unmap_page(NULL, pkt_info.buf_ptr,
1038 pkt_info.byte_cnt, DMA_TO_DEVICE);
1041 if (netif_queue_stopped(dev) &&
1042 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
1043 netif_wake_queue(dev);
1047 * mv643xx_poll
1049 * This function is used in case of NAPI
1051 static int mv643xx_poll(struct net_device *dev, int *budget)
1053 struct mv643xx_private *mp = netdev_priv(dev);
1054 int done = 1, orig_budget, work_done;
1055 unsigned int port_num = mp->port_num;
1056 unsigned long flags;
1058 #ifdef MV643XX_TX_FAST_REFILL
1059 if (++mp->tx_clean_threshold > 5) {
1060 spin_lock_irqsave(&mp->lock, flags);
1061 mv643xx_tx(dev);
1062 mp->tx_clean_threshold = 0;
1063 spin_unlock_irqrestore(&mp->lock, flags);
1065 #endif
1067 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1068 != (u32) mp->rx_used_desc_q) {
1069 orig_budget = *budget;
1070 if (orig_budget > dev->quota)
1071 orig_budget = dev->quota;
1072 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1073 mp->rx_task.func(dev);
1074 *budget -= work_done;
1075 dev->quota -= work_done;
1076 if (work_done >= orig_budget)
1077 done = 0;
1080 if (done) {
1081 spin_lock_irqsave(&mp->lock, flags);
1082 __netif_rx_complete(dev);
1083 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1084 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1085 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1086 INT_CAUSE_UNMASK_ALL);
1087 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1088 INT_CAUSE_UNMASK_ALL_EXT);
1089 spin_unlock_irqrestore(&mp->lock, flags);
1092 return done ? 0 : 1;
1094 #endif
1097 * mv643xx_eth_start_xmit
1099 * This function is queues a packet in the Tx descriptor for
1100 * required port.
1102 * Input : skb - a pointer to socket buffer
1103 * dev - a pointer to the required port
1105 * Output : zero upon success
1107 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1109 struct mv643xx_private *mp = netdev_priv(dev);
1110 struct net_device_stats *stats = &mp->stats;
1111 ETH_FUNC_RET_STATUS status;
1112 unsigned long flags;
1113 struct pkt_info pkt_info;
1115 if (netif_queue_stopped(dev)) {
1116 printk(KERN_ERR
1117 "%s: Tried sending packet when interface is stopped\n",
1118 dev->name);
1119 return 1;
1122 /* This is a hard error, log it. */
1123 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1124 (skb_shinfo(skb)->nr_frags + 1)) {
1125 netif_stop_queue(dev);
1126 printk(KERN_ERR
1127 "%s: Bug in mv643xx_eth - Trying to transmit when"
1128 " queue full !\n", dev->name);
1129 return 1;
1132 /* Paranoid check - this shouldn't happen */
1133 if (skb == NULL) {
1134 stats->tx_dropped++;
1135 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1136 return 1;
1139 spin_lock_irqsave(&mp->lock, flags);
1141 /* Update packet info data structure -- DMA owned, first last */
1142 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1143 if (!skb_shinfo(skb)->nr_frags) {
1144 linear:
1145 if (skb->ip_summed != CHECKSUM_HW) {
1146 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1147 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1148 ETH_TX_FIRST_DESC |
1149 ETH_TX_LAST_DESC |
1150 5 << ETH_TX_IHL_SHIFT;
1151 pkt_info.l4i_chk = 0;
1152 } else {
1154 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1155 ETH_TX_FIRST_DESC |
1156 ETH_TX_LAST_DESC |
1157 ETH_GEN_TCP_UDP_CHECKSUM |
1158 ETH_GEN_IP_V_4_CHECKSUM |
1159 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1160 /* CPU already calculated pseudo header checksum. */
1161 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1162 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1163 pkt_info.l4i_chk = skb->h.uh->check;
1164 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1165 pkt_info.l4i_chk = skb->h.th->check;
1166 else {
1167 printk(KERN_ERR
1168 "%s: chksum proto != TCP or UDP\n",
1169 dev->name);
1170 spin_unlock_irqrestore(&mp->lock, flags);
1171 return 1;
1174 pkt_info.byte_cnt = skb->len;
1175 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1176 DMA_TO_DEVICE);
1177 pkt_info.return_info = skb;
1178 status = eth_port_send(mp, &pkt_info);
1179 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1180 printk(KERN_ERR "%s: Error on transmitting packet\n",
1181 dev->name);
1182 stats->tx_bytes += pkt_info.byte_cnt;
1183 } else {
1184 unsigned int frag;
1186 /* Since hardware can't handle unaligned fragments smaller
1187 * than 9 bytes, if we find any, we linearize the skb
1188 * and start again. When I've seen it, it's always been
1189 * the first frag (probably near the end of the page),
1190 * but we check all frags to be safe.
1192 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1193 skb_frag_t *fragp;
1195 fragp = &skb_shinfo(skb)->frags[frag];
1196 if (fragp->size <= 8 && fragp->page_offset & 0x7) {
1197 skb_linearize(skb, GFP_ATOMIC);
1198 printk(KERN_DEBUG "%s: unaligned tiny fragment"
1199 "%d of %d, fixed\n",
1200 dev->name, frag,
1201 skb_shinfo(skb)->nr_frags);
1202 goto linear;
1206 /* first frag which is skb header */
1207 pkt_info.byte_cnt = skb_headlen(skb);
1208 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1209 skb_headlen(skb),
1210 DMA_TO_DEVICE);
1211 pkt_info.l4i_chk = 0;
1212 pkt_info.return_info = 0;
1214 if (skb->ip_summed != CHECKSUM_HW)
1215 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1216 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1217 5 << ETH_TX_IHL_SHIFT;
1218 else {
1219 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1220 ETH_GEN_TCP_UDP_CHECKSUM |
1221 ETH_GEN_IP_V_4_CHECKSUM |
1222 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1223 /* CPU already calculated pseudo header checksum. */
1224 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1225 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1226 pkt_info.l4i_chk = skb->h.uh->check;
1227 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1228 pkt_info.l4i_chk = skb->h.th->check;
1229 else {
1230 printk(KERN_ERR
1231 "%s: chksum proto != TCP or UDP\n",
1232 dev->name);
1233 spin_unlock_irqrestore(&mp->lock, flags);
1234 return 1;
1238 status = eth_port_send(mp, &pkt_info);
1239 if (status != ETH_OK) {
1240 if ((status == ETH_ERROR))
1241 printk(KERN_ERR
1242 "%s: Error on transmitting packet\n",
1243 dev->name);
1244 if (status == ETH_QUEUE_FULL)
1245 printk("Error on Queue Full \n");
1246 if (status == ETH_QUEUE_LAST_RESOURCE)
1247 printk("Tx resource error \n");
1249 stats->tx_bytes += pkt_info.byte_cnt;
1251 /* Check for the remaining frags */
1252 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1253 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1254 pkt_info.l4i_chk = 0x0000;
1255 pkt_info.cmd_sts = 0x00000000;
1257 /* Last Frag enables interrupt and frees the skb */
1258 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1259 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1260 ETH_TX_LAST_DESC;
1261 pkt_info.return_info = skb;
1262 } else {
1263 pkt_info.return_info = 0;
1265 pkt_info.l4i_chk = 0;
1266 pkt_info.byte_cnt = this_frag->size;
1268 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1269 this_frag->page_offset,
1270 this_frag->size,
1271 DMA_TO_DEVICE);
1273 status = eth_port_send(mp, &pkt_info);
1275 if (status != ETH_OK) {
1276 if ((status == ETH_ERROR))
1277 printk(KERN_ERR "%s: Error on "
1278 "transmitting packet\n",
1279 dev->name);
1281 if (status == ETH_QUEUE_LAST_RESOURCE)
1282 printk("Tx resource error \n");
1284 if (status == ETH_QUEUE_FULL)
1285 printk("Queue is full \n");
1287 stats->tx_bytes += pkt_info.byte_cnt;
1290 #else
1291 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1292 ETH_TX_LAST_DESC;
1293 pkt_info.l4i_chk = 0;
1294 pkt_info.byte_cnt = skb->len;
1295 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1296 DMA_TO_DEVICE);
1297 pkt_info.return_info = skb;
1298 status = eth_port_send(mp, &pkt_info);
1299 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1300 printk(KERN_ERR "%s: Error on transmitting packet\n",
1301 dev->name);
1302 stats->tx_bytes += pkt_info.byte_cnt;
1303 #endif
1305 /* Check if TX queue can handle another skb. If not, then
1306 * signal higher layers to stop requesting TX
1308 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1310 * Stop getting skb's from upper layers.
1311 * Getting skb's from upper layers will be enabled again after
1312 * packets are released.
1314 netif_stop_queue(dev);
1316 /* Update statistics and start of transmittion time */
1317 stats->tx_packets++;
1318 dev->trans_start = jiffies;
1320 spin_unlock_irqrestore(&mp->lock, flags);
1322 return 0; /* success */
1326 * mv643xx_eth_get_stats
1328 * Returns a pointer to the interface statistics.
1330 * Input : dev - a pointer to the required interface
1332 * Output : a pointer to the interface's statistics
1335 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1337 struct mv643xx_private *mp = netdev_priv(dev);
1339 return &mp->stats;
1343 * mv643xx_eth_probe
1345 * First function called after registering the network device.
1346 * It's purpose is to initialize the device as an ethernet device,
1347 * fill the ethernet device structure with pointers * to functions,
1348 * and set the MAC address of the interface
1350 * Input : struct device *
1351 * Output : -ENOMEM if failed , 0 if success
1353 static int mv643xx_eth_probe(struct device *ddev)
1355 struct platform_device *pdev = to_platform_device(ddev);
1356 struct mv643xx_eth_platform_data *pd;
1357 int port_num = pdev->id;
1358 struct mv643xx_private *mp;
1359 struct net_device *dev;
1360 u8 *p;
1361 struct resource *res;
1362 int err;
1364 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1365 if (!dev)
1366 return -ENOMEM;
1368 dev_set_drvdata(ddev, dev);
1370 mp = netdev_priv(dev);
1372 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1373 BUG_ON(!res);
1374 dev->irq = res->start;
1376 mp->port_num = port_num;
1378 dev->open = mv643xx_eth_open;
1379 dev->stop = mv643xx_eth_stop;
1380 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1381 dev->get_stats = mv643xx_eth_get_stats;
1382 dev->set_mac_address = mv643xx_eth_set_mac_address;
1383 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1385 /* No need to Tx Timeout */
1386 dev->tx_timeout = mv643xx_eth_tx_timeout;
1387 #ifdef MV643XX_NAPI
1388 dev->poll = mv643xx_poll;
1389 dev->weight = 64;
1390 #endif
1392 dev->watchdog_timeo = 2 * HZ;
1393 dev->tx_queue_len = mp->tx_ring_size;
1394 dev->base_addr = 0;
1395 dev->change_mtu = mv643xx_eth_change_mtu;
1396 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1398 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1399 #ifdef MAX_SKB_FRAGS
1401 * Zero copy can only work if we use Discovery II memory. Else, we will
1402 * have to map the buffers to ISA memory which is only 16 MB
1404 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HW_CSUM;
1405 #endif
1406 #endif
1408 /* Configure the timeout task */
1409 INIT_WORK(&mp->tx_timeout_task,
1410 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1412 spin_lock_init(&mp->lock);
1414 /* set default config values */
1415 eth_port_uc_addr_get(dev, dev->dev_addr);
1416 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1417 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1418 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1419 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1420 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1421 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1423 pd = pdev->dev.platform_data;
1424 if (pd) {
1425 if (pd->mac_addr != NULL)
1426 memcpy(dev->dev_addr, pd->mac_addr, 6);
1428 if (pd->phy_addr || pd->force_phy_addr)
1429 ethernet_phy_set(port_num, pd->phy_addr);
1431 if (pd->port_config || pd->force_port_config)
1432 mp->port_config = pd->port_config;
1434 if (pd->port_config_extend || pd->force_port_config_extend)
1435 mp->port_config_extend = pd->port_config_extend;
1437 if (pd->port_sdma_config || pd->force_port_sdma_config)
1438 mp->port_sdma_config = pd->port_sdma_config;
1440 if (pd->port_serial_control || pd->force_port_serial_control)
1441 mp->port_serial_control = pd->port_serial_control;
1443 if (pd->rx_queue_size)
1444 mp->rx_ring_size = pd->rx_queue_size;
1446 if (pd->tx_queue_size)
1447 mp->tx_ring_size = pd->tx_queue_size;
1449 if (pd->tx_sram_size) {
1450 mp->tx_sram_size = pd->tx_sram_size;
1451 mp->tx_sram_addr = pd->tx_sram_addr;
1454 if (pd->rx_sram_size) {
1455 mp->rx_sram_size = pd->rx_sram_size;
1456 mp->rx_sram_addr = pd->rx_sram_addr;
1460 err = ethernet_phy_detect(port_num);
1461 if (err) {
1462 pr_debug("MV643xx ethernet port %d: "
1463 "No PHY detected at addr %d\n",
1464 port_num, ethernet_phy_get(port_num));
1465 return err;
1468 err = register_netdev(dev);
1469 if (err)
1470 goto out;
1472 p = dev->dev_addr;
1473 printk(KERN_NOTICE
1474 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1475 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1477 if (dev->features & NETIF_F_SG)
1478 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1480 if (dev->features & NETIF_F_IP_CSUM)
1481 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1482 dev->name);
1484 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1485 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1486 #endif
1488 #ifdef MV643XX_COAL
1489 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1490 dev->name);
1491 #endif
1493 #ifdef MV643XX_NAPI
1494 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1495 #endif
1497 return 0;
1499 out:
1500 free_netdev(dev);
1502 return err;
1505 static int mv643xx_eth_remove(struct device *ddev)
1507 struct net_device *dev = dev_get_drvdata(ddev);
1509 unregister_netdev(dev);
1510 flush_scheduled_work();
1512 free_netdev(dev);
1513 dev_set_drvdata(ddev, NULL);
1514 return 0;
1517 static int mv643xx_eth_shared_probe(struct device *ddev)
1519 struct platform_device *pdev = to_platform_device(ddev);
1520 struct resource *res;
1522 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1524 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1525 if (res == NULL)
1526 return -ENODEV;
1528 mv643xx_eth_shared_base = ioremap(res->start,
1529 MV643XX_ETH_SHARED_REGS_SIZE);
1530 if (mv643xx_eth_shared_base == NULL)
1531 return -ENOMEM;
1533 return 0;
1537 static int mv643xx_eth_shared_remove(struct device *ddev)
1539 iounmap(mv643xx_eth_shared_base);
1540 mv643xx_eth_shared_base = NULL;
1542 return 0;
1545 static struct device_driver mv643xx_eth_driver = {
1546 .name = MV643XX_ETH_NAME,
1547 .bus = &platform_bus_type,
1548 .probe = mv643xx_eth_probe,
1549 .remove = mv643xx_eth_remove,
1552 static struct device_driver mv643xx_eth_shared_driver = {
1553 .name = MV643XX_ETH_SHARED_NAME,
1554 .bus = &platform_bus_type,
1555 .probe = mv643xx_eth_shared_probe,
1556 .remove = mv643xx_eth_shared_remove,
1560 * mv643xx_init_module
1562 * Registers the network drivers into the Linux kernel
1564 * Input : N/A
1566 * Output : N/A
1568 static int __init mv643xx_init_module(void)
1570 int rc;
1572 rc = driver_register(&mv643xx_eth_shared_driver);
1573 if (!rc) {
1574 rc = driver_register(&mv643xx_eth_driver);
1575 if (rc)
1576 driver_unregister(&mv643xx_eth_shared_driver);
1578 return rc;
1582 * mv643xx_cleanup_module
1584 * Registers the network drivers into the Linux kernel
1586 * Input : N/A
1588 * Output : N/A
1590 static void __exit mv643xx_cleanup_module(void)
1592 driver_unregister(&mv643xx_eth_driver);
1593 driver_unregister(&mv643xx_eth_shared_driver);
1596 module_init(mv643xx_init_module);
1597 module_exit(mv643xx_cleanup_module);
1599 MODULE_LICENSE("GPL");
1600 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1601 " and Dale Farnsworth");
1602 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1605 * The second part is the low level driver of the gigE ethernet ports.
1609 * Marvell's Gigabit Ethernet controller low level driver
1611 * DESCRIPTION:
1612 * This file introduce low level API to Marvell's Gigabit Ethernet
1613 * controller. This Gigabit Ethernet Controller driver API controls
1614 * 1) Operations (i.e. port init, start, reset etc').
1615 * 2) Data flow (i.e. port send, receive etc').
1616 * Each Gigabit Ethernet port is controlled via
1617 * struct mv643xx_private.
1618 * This struct includes user configuration information as well as
1619 * driver internal data needed for its operations.
1621 * Supported Features:
1622 * - This low level driver is OS independent. Allocating memory for
1623 * the descriptor rings and buffers are not within the scope of
1624 * this driver.
1625 * - The user is free from Rx/Tx queue managing.
1626 * - This low level driver introduce functionality API that enable
1627 * the to operate Marvell's Gigabit Ethernet Controller in a
1628 * convenient way.
1629 * - Simple Gigabit Ethernet port operation API.
1630 * - Simple Gigabit Ethernet port data flow API.
1631 * - Data flow and operation API support per queue functionality.
1632 * - Support cached descriptors for better performance.
1633 * - Enable access to all four DRAM banks and internal SRAM memory
1634 * spaces.
1635 * - PHY access and control API.
1636 * - Port control register configuration API.
1637 * - Full control over Unicast and Multicast MAC configurations.
1639 * Operation flow:
1641 * Initialization phase
1642 * This phase complete the initialization of the the
1643 * mv643xx_private struct.
1644 * User information regarding port configuration has to be set
1645 * prior to calling the port initialization routine.
1647 * In this phase any port Tx/Rx activity is halted, MIB counters
1648 * are cleared, PHY address is set according to user parameter and
1649 * access to DRAM and internal SRAM memory spaces.
1651 * Driver ring initialization
1652 * Allocating memory for the descriptor rings and buffers is not
1653 * within the scope of this driver. Thus, the user is required to
1654 * allocate memory for the descriptors ring and buffers. Those
1655 * memory parameters are used by the Rx and Tx ring initialization
1656 * routines in order to curve the descriptor linked list in a form
1657 * of a ring.
1658 * Note: Pay special attention to alignment issues when using
1659 * cached descriptors/buffers. In this phase the driver store
1660 * information in the mv643xx_private struct regarding each queue
1661 * ring.
1663 * Driver start
1664 * This phase prepares the Ethernet port for Rx and Tx activity.
1665 * It uses the information stored in the mv643xx_private struct to
1666 * initialize the various port registers.
1668 * Data flow:
1669 * All packet references to/from the driver are done using
1670 * struct pkt_info.
1671 * This struct is a unified struct used with Rx and Tx operations.
1672 * This way the user is not required to be familiar with neither
1673 * Tx nor Rx descriptors structures.
1674 * The driver's descriptors rings are management by indexes.
1675 * Those indexes controls the ring resources and used to indicate
1676 * a SW resource error:
1677 * 'current'
1678 * This index points to the current available resource for use. For
1679 * example in Rx process this index will point to the descriptor
1680 * that will be passed to the user upon calling the receive
1681 * routine. In Tx process, this index will point to the descriptor
1682 * that will be assigned with the user packet info and transmitted.
1683 * 'used'
1684 * This index points to the descriptor that need to restore its
1685 * resources. For example in Rx process, using the Rx buffer return
1686 * API will attach the buffer returned in packet info to the
1687 * descriptor pointed by 'used'. In Tx process, using the Tx
1688 * descriptor return will merely return the user packet info with
1689 * the command status of the transmitted buffer pointed by the
1690 * 'used' index. Nevertheless, it is essential to use this routine
1691 * to update the 'used' index.
1692 * 'first'
1693 * This index supports Tx Scatter-Gather. It points to the first
1694 * descriptor of a packet assembled of multiple buffers. For
1695 * example when in middle of Such packet we have a Tx resource
1696 * error the 'curr' index get the value of 'first' to indicate
1697 * that the ring returned to its state before trying to transmit
1698 * this packet.
1700 * Receive operation:
1701 * The eth_port_receive API set the packet information struct,
1702 * passed by the caller, with received information from the
1703 * 'current' SDMA descriptor.
1704 * It is the user responsibility to return this resource back
1705 * to the Rx descriptor ring to enable the reuse of this source.
1706 * Return Rx resource is done using the eth_rx_return_buff API.
1708 * Transmit operation:
1709 * The eth_port_send API supports Scatter-Gather which enables to
1710 * send a packet spanned over multiple buffers. This means that
1711 * for each packet info structure given by the user and put into
1712 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1713 * bit will be set in the packet info command status field. This
1714 * API also consider restriction regarding buffer alignments and
1715 * sizes.
1716 * The user must return a Tx resource after ensuring the buffer
1717 * has been transmitted to enable the Tx ring indexes to update.
1719 * BOARD LAYOUT
1720 * This device is on-board. No jumper diagram is necessary.
1722 * EXTERNAL INTERFACE
1724 * Prior to calling the initialization routine eth_port_init() the user
1725 * must set the following fields under mv643xx_private struct:
1726 * port_num User Ethernet port number.
1727 * port_mac_addr[6] User defined port MAC address.
1728 * port_config User port configuration value.
1729 * port_config_extend User port config extend value.
1730 * port_sdma_config User port SDMA config value.
1731 * port_serial_control User port serial control value.
1733 * This driver data flow is done using the struct pkt_info which
1734 * is a unified struct for Rx and Tx operations:
1736 * byte_cnt Tx/Rx descriptor buffer byte count.
1737 * l4i_chk CPU provided TCP Checksum. For Tx operation
1738 * only.
1739 * cmd_sts Tx/Rx descriptor command status.
1740 * buf_ptr Tx/Rx descriptor buffer pointer.
1741 * return_info Tx/Rx user resource return information.
1744 /* defines */
1745 /* SDMA command macros */
1746 #define ETH_ENABLE_TX_QUEUE(eth_port) \
1747 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1749 /* locals */
1751 /* PHY routines */
1752 static int ethernet_phy_get(unsigned int eth_port_num);
1753 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1755 /* Ethernet Port routines */
1756 static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1757 int option);
1760 * eth_port_init - Initialize the Ethernet port driver
1762 * DESCRIPTION:
1763 * This function prepares the ethernet port to start its activity:
1764 * 1) Completes the ethernet port driver struct initialization toward port
1765 * start routine.
1766 * 2) Resets the device to a quiescent state in case of warm reboot.
1767 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1768 * 4) Clean MAC tables. The reset status of those tables is unknown.
1769 * 5) Set PHY address.
1770 * Note: Call this routine prior to eth_port_start routine and after
1771 * setting user values in the user fields of Ethernet port control
1772 * struct.
1774 * INPUT:
1775 * struct mv643xx_private *mp Ethernet port control struct
1777 * OUTPUT:
1778 * See description.
1780 * RETURN:
1781 * None.
1783 static void eth_port_init(struct mv643xx_private *mp)
1785 mp->port_rx_queue_command = 0;
1786 mp->port_tx_queue_command = 0;
1788 mp->rx_resource_err = 0;
1789 mp->tx_resource_err = 0;
1791 eth_port_reset(mp->port_num);
1793 eth_port_init_mac_tables(mp->port_num);
1795 ethernet_phy_reset(mp->port_num);
1799 * eth_port_start - Start the Ethernet port activity.
1801 * DESCRIPTION:
1802 * This routine prepares the Ethernet port for Rx and Tx activity:
1803 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1804 * has been initialized a descriptor's ring (using
1805 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1806 * 2. Initialize and enable the Ethernet configuration port by writing to
1807 * the port's configuration and command registers.
1808 * 3. Initialize and enable the SDMA by writing to the SDMA's
1809 * configuration and command registers. After completing these steps,
1810 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1812 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1813 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1814 * and ether_init_rx_desc_ring for Rx queues).
1816 * INPUT:
1817 * struct mv643xx_private *mp Ethernet port control struct
1819 * OUTPUT:
1820 * Ethernet port is ready to receive and transmit.
1822 * RETURN:
1823 * None.
1825 static void eth_port_start(struct mv643xx_private *mp)
1827 unsigned int port_num = mp->port_num;
1828 int tx_curr_desc, rx_curr_desc;
1830 /* Assignment of Tx CTRP of given queue */
1831 tx_curr_desc = mp->tx_curr_desc_q;
1832 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1833 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1835 /* Assignment of Rx CRDP of given queue */
1836 rx_curr_desc = mp->rx_curr_desc_q;
1837 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1838 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1840 /* Add the assigned Ethernet address to the port's address table */
1841 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1843 /* Assign port configuration and command. */
1844 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1846 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1847 mp->port_config_extend);
1850 /* Increase the Rx side buffer size if supporting GigE */
1851 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1852 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1853 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1854 else
1855 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1856 mp->port_serial_control);
1858 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1859 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1860 MV643XX_ETH_SERIAL_PORT_ENABLE);
1862 /* Assign port SDMA configuration */
1863 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1864 mp->port_sdma_config);
1866 /* Enable port Rx. */
1867 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1868 mp->port_rx_queue_command);
1872 * eth_port_uc_addr_set - This function Set the port Unicast address.
1874 * DESCRIPTION:
1875 * This function Set the port Ethernet MAC address.
1877 * INPUT:
1878 * unsigned int eth_port_num Port number.
1879 * char * p_addr Address to be set
1881 * OUTPUT:
1882 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1883 * To set the unicast table with the proper information.
1885 * RETURN:
1886 * N/A.
1889 static void eth_port_uc_addr_set(unsigned int eth_port_num,
1890 unsigned char *p_addr)
1892 unsigned int mac_h;
1893 unsigned int mac_l;
1895 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1896 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1897 (p_addr[3] << 0);
1899 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1900 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1902 /* Accept frames of this address */
1903 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1905 return;
1909 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1910 * (MAC address) from the ethernet hw registers.
1912 * DESCRIPTION:
1913 * This function retrieves the port Ethernet MAC address.
1915 * INPUT:
1916 * unsigned int eth_port_num Port number.
1917 * char *MacAddr pointer where the MAC address is stored
1919 * OUTPUT:
1920 * Copy the MAC address to the location pointed to by MacAddr
1922 * RETURN:
1923 * N/A.
1926 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1928 struct mv643xx_private *mp = netdev_priv(dev);
1929 unsigned int mac_h;
1930 unsigned int mac_l;
1932 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1933 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1935 p_addr[0] = (mac_h >> 24) & 0xff;
1936 p_addr[1] = (mac_h >> 16) & 0xff;
1937 p_addr[2] = (mac_h >> 8) & 0xff;
1938 p_addr[3] = mac_h & 0xff;
1939 p_addr[4] = (mac_l >> 8) & 0xff;
1940 p_addr[5] = mac_l & 0xff;
1944 * eth_port_uc_addr - This function Set the port unicast address table
1946 * DESCRIPTION:
1947 * This function locates the proper entry in the Unicast table for the
1948 * specified MAC nibble and sets its properties according to function
1949 * parameters.
1951 * INPUT:
1952 * unsigned int eth_port_num Port number.
1953 * unsigned char uc_nibble Unicast MAC Address last nibble.
1954 * int option 0 = Add, 1 = remove address.
1956 * OUTPUT:
1957 * This function add/removes MAC addresses from the port unicast address
1958 * table.
1960 * RETURN:
1961 * true is output succeeded.
1962 * false if option parameter is invalid.
1965 static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1966 int option)
1968 unsigned int unicast_reg;
1969 unsigned int tbl_offset;
1970 unsigned int reg_offset;
1972 /* Locate the Unicast table entry */
1973 uc_nibble = (0xf & uc_nibble);
1974 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
1975 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
1977 switch (option) {
1978 case REJECT_MAC_ADDR:
1979 /* Clear accepts frame bit at given unicast DA table entry */
1980 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1981 (eth_port_num) + tbl_offset));
1983 unicast_reg &= (0x0E << (8 * reg_offset));
1985 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1986 (eth_port_num) + tbl_offset), unicast_reg);
1987 break;
1989 case ACCEPT_MAC_ADDR:
1990 /* Set accepts frame bit at unicast DA filter table entry */
1991 unicast_reg =
1992 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1993 (eth_port_num) + tbl_offset));
1995 unicast_reg |= (0x01 << (8 * reg_offset));
1997 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1998 (eth_port_num) + tbl_offset), unicast_reg);
2000 break;
2002 default:
2003 return 0;
2006 return 1;
2010 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2012 * DESCRIPTION:
2013 * Go through all the DA filter tables (Unicast, Special Multicast &
2014 * Other Multicast) and set each entry to 0.
2016 * INPUT:
2017 * unsigned int eth_port_num Ethernet Port number.
2019 * OUTPUT:
2020 * Multicast and Unicast packets are rejected.
2022 * RETURN:
2023 * None.
2025 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2027 int table_index;
2029 /* Clear DA filter unicast table (Ex_dFUT) */
2030 for (table_index = 0; table_index <= 0xC; table_index += 4)
2031 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2032 (eth_port_num) + table_index), 0);
2034 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2035 /* Clear DA filter special multicast table (Ex_dFSMT) */
2036 mv_write((MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2037 (eth_port_num) + table_index), 0);
2038 /* Clear DA filter other multicast table (Ex_dFOMT) */
2039 mv_write((MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2040 (eth_port_num) + table_index), 0);
2045 * eth_clear_mib_counters - Clear all MIB counters
2047 * DESCRIPTION:
2048 * This function clears all MIB counters of a specific ethernet port.
2049 * A read from the MIB counter will reset the counter.
2051 * INPUT:
2052 * unsigned int eth_port_num Ethernet Port number.
2054 * OUTPUT:
2055 * After reading all MIB counters, the counters resets.
2057 * RETURN:
2058 * MIB counter value.
2061 static void eth_clear_mib_counters(unsigned int eth_port_num)
2063 int i;
2065 /* Perform dummy reads from MIB counters */
2066 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2067 i += 4)
2068 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2071 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2073 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2076 static void eth_update_mib_counters(struct mv643xx_private *mp)
2078 struct mv643xx_mib_counters *p = &mp->mib_counters;
2079 int offset;
2081 p->good_octets_received +=
2082 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2083 p->good_octets_received +=
2084 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2086 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2087 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2088 offset += 4)
2089 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2091 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2092 p->good_octets_sent +=
2093 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2095 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2096 offset <= ETH_MIB_LATE_COLLISION;
2097 offset += 4)
2098 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2102 * ethernet_phy_detect - Detect whether a phy is present
2104 * DESCRIPTION:
2105 * This function tests whether there is a PHY present on
2106 * the specified port.
2108 * INPUT:
2109 * unsigned int eth_port_num Ethernet Port number.
2111 * OUTPUT:
2112 * None
2114 * RETURN:
2115 * 0 on success
2116 * -ENODEV on failure
2119 static int ethernet_phy_detect(unsigned int port_num)
2121 unsigned int phy_reg_data0;
2122 int auto_neg;
2124 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2125 auto_neg = phy_reg_data0 & 0x1000;
2126 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2127 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2129 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2130 if ((phy_reg_data0 & 0x1000) == auto_neg)
2131 return -ENODEV; /* change didn't take */
2133 phy_reg_data0 ^= 0x1000;
2134 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2135 return 0;
2139 * ethernet_phy_get - Get the ethernet port PHY address.
2141 * DESCRIPTION:
2142 * This routine returns the given ethernet port PHY address.
2144 * INPUT:
2145 * unsigned int eth_port_num Ethernet Port number.
2147 * OUTPUT:
2148 * None.
2150 * RETURN:
2151 * PHY address.
2154 static int ethernet_phy_get(unsigned int eth_port_num)
2156 unsigned int reg_data;
2158 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2160 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2164 * ethernet_phy_set - Set the ethernet port PHY address.
2166 * DESCRIPTION:
2167 * This routine sets the given ethernet port PHY address.
2169 * INPUT:
2170 * unsigned int eth_port_num Ethernet Port number.
2171 * int phy_addr PHY address.
2173 * OUTPUT:
2174 * None.
2176 * RETURN:
2177 * None.
2180 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2182 u32 reg_data;
2183 int addr_shift = 5 * eth_port_num;
2185 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2186 reg_data &= ~(0x1f << addr_shift);
2187 reg_data |= (phy_addr & 0x1f) << addr_shift;
2188 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2192 * ethernet_phy_reset - Reset Ethernet port PHY.
2194 * DESCRIPTION:
2195 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2197 * INPUT:
2198 * unsigned int eth_port_num Ethernet Port number.
2200 * OUTPUT:
2201 * The PHY is reset.
2203 * RETURN:
2204 * None.
2207 static void ethernet_phy_reset(unsigned int eth_port_num)
2209 unsigned int phy_reg_data;
2211 /* Reset the PHY */
2212 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2213 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2214 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2218 * eth_port_reset - Reset Ethernet port
2220 * DESCRIPTION:
2221 * This routine resets the chip by aborting any SDMA engine activity and
2222 * clearing the MIB counters. The Receiver and the Transmit unit are in
2223 * idle state after this command is performed and the port is disabled.
2225 * INPUT:
2226 * unsigned int eth_port_num Ethernet Port number.
2228 * OUTPUT:
2229 * Channel activity is halted.
2231 * RETURN:
2232 * None.
2235 static void eth_port_reset(unsigned int port_num)
2237 unsigned int reg_data;
2239 /* Stop Tx port activity. Check port Tx activity. */
2240 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2242 if (reg_data & 0xFF) {
2243 /* Issue stop command for active channels only */
2244 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2245 (reg_data << 8));
2247 /* Wait for all Tx activity to terminate. */
2248 /* Check port cause register that all Tx queues are stopped */
2249 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2250 & 0xFF)
2251 udelay(10);
2254 /* Stop Rx port activity. Check port Rx activity. */
2255 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2257 if (reg_data & 0xFF) {
2258 /* Issue stop command for active channels only */
2259 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2260 (reg_data << 8));
2262 /* Wait for all Rx activity to terminate. */
2263 /* Check port cause register that all Rx queues are stopped */
2264 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2265 & 0xFF)
2266 udelay(10);
2269 /* Clear all MIB counters */
2270 eth_clear_mib_counters(port_num);
2272 /* Reset the Enable bit in the Configuration Register */
2273 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2274 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2275 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2279 * ethernet_set_config_reg - Set specified bits in configuration register.
2281 * DESCRIPTION:
2282 * This function sets specified bits in the given ethernet
2283 * configuration register.
2285 * INPUT:
2286 * unsigned int eth_port_num Ethernet Port number.
2287 * unsigned int value 32 bit value.
2289 * OUTPUT:
2290 * The set bits in the value parameter are set in the configuration
2291 * register.
2293 * RETURN:
2294 * None.
2297 static void ethernet_set_config_reg(unsigned int eth_port_num,
2298 unsigned int value)
2300 unsigned int eth_config_reg;
2302 eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num));
2303 eth_config_reg |= value;
2304 mv_write(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num), eth_config_reg);
2307 static int eth_port_autoneg_supported(unsigned int eth_port_num)
2309 unsigned int phy_reg_data0;
2311 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2313 return phy_reg_data0 & 0x1000;
2316 static int eth_port_link_is_up(unsigned int eth_port_num)
2318 unsigned int phy_reg_data1;
2320 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2322 if (eth_port_autoneg_supported(eth_port_num)) {
2323 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2324 return 1;
2325 } else if (phy_reg_data1 & 0x4) /* link up */
2326 return 1;
2328 return 0;
2332 * ethernet_get_config_reg - Get the port configuration register
2334 * DESCRIPTION:
2335 * This function returns the configuration register value of the given
2336 * ethernet port.
2338 * INPUT:
2339 * unsigned int eth_port_num Ethernet Port number.
2341 * OUTPUT:
2342 * None.
2344 * RETURN:
2345 * Port configuration register value.
2347 static unsigned int ethernet_get_config_reg(unsigned int eth_port_num)
2349 unsigned int eth_config_reg;
2351 eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_EXTEND_REG
2352 (eth_port_num));
2353 return eth_config_reg;
2357 * eth_port_read_smi_reg - Read PHY registers
2359 * DESCRIPTION:
2360 * This routine utilize the SMI interface to interact with the PHY in
2361 * order to perform PHY register read.
2363 * INPUT:
2364 * unsigned int port_num Ethernet Port number.
2365 * unsigned int phy_reg PHY register address offset.
2366 * unsigned int *value Register value buffer.
2368 * OUTPUT:
2369 * Write the value of a specified PHY register into given buffer.
2371 * RETURN:
2372 * false if the PHY is busy or read data is not in valid state.
2373 * true otherwise.
2376 static void eth_port_read_smi_reg(unsigned int port_num,
2377 unsigned int phy_reg, unsigned int *value)
2379 int phy_addr = ethernet_phy_get(port_num);
2380 unsigned long flags;
2381 int i;
2383 /* the SMI register is a shared resource */
2384 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2386 /* wait for the SMI register to become available */
2387 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2388 if (i == PHY_WAIT_ITERATIONS) {
2389 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2390 goto out;
2392 udelay(PHY_WAIT_MICRO_SECONDS);
2395 mv_write(MV643XX_ETH_SMI_REG,
2396 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2398 /* now wait for the data to be valid */
2399 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2400 if (i == PHY_WAIT_ITERATIONS) {
2401 printk("mv643xx PHY read timeout, port %d\n", port_num);
2402 goto out;
2404 udelay(PHY_WAIT_MICRO_SECONDS);
2407 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2408 out:
2409 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2413 * eth_port_write_smi_reg - Write to PHY registers
2415 * DESCRIPTION:
2416 * This routine utilize the SMI interface to interact with the PHY in
2417 * order to perform writes to PHY registers.
2419 * INPUT:
2420 * unsigned int eth_port_num Ethernet Port number.
2421 * unsigned int phy_reg PHY register address offset.
2422 * unsigned int value Register value.
2424 * OUTPUT:
2425 * Write the given value to the specified PHY register.
2427 * RETURN:
2428 * false if the PHY is busy.
2429 * true otherwise.
2432 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2433 unsigned int phy_reg, unsigned int value)
2435 int phy_addr;
2436 int i;
2437 unsigned long flags;
2439 phy_addr = ethernet_phy_get(eth_port_num);
2441 /* the SMI register is a shared resource */
2442 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2444 /* wait for the SMI register to become available */
2445 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2446 if (i == PHY_WAIT_ITERATIONS) {
2447 printk("mv643xx PHY busy timeout, port %d\n",
2448 eth_port_num);
2449 goto out;
2451 udelay(PHY_WAIT_MICRO_SECONDS);
2454 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2455 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2456 out:
2457 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2461 * eth_port_send - Send an Ethernet packet
2463 * DESCRIPTION:
2464 * This routine send a given packet described by p_pktinfo parameter. It
2465 * supports transmitting of a packet spaned over multiple buffers. The
2466 * routine updates 'curr' and 'first' indexes according to the packet
2467 * segment passed to the routine. In case the packet segment is first,
2468 * the 'first' index is update. In any case, the 'curr' index is updated.
2469 * If the routine get into Tx resource error it assigns 'curr' index as
2470 * 'first'. This way the function can abort Tx process of multiple
2471 * descriptors per packet.
2473 * INPUT:
2474 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2475 * struct pkt_info *p_pkt_info User packet buffer.
2477 * OUTPUT:
2478 * Tx ring 'curr' and 'first' indexes are updated.
2480 * RETURN:
2481 * ETH_QUEUE_FULL in case of Tx resource error.
2482 * ETH_ERROR in case the routine can not access Tx desc ring.
2483 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2484 * ETH_OK otherwise.
2487 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2489 * Modified to include the first descriptor pointer in case of SG
2491 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2492 struct pkt_info *p_pkt_info)
2494 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2495 struct eth_tx_desc *current_descriptor;
2496 struct eth_tx_desc *first_descriptor;
2497 u32 command;
2499 /* Do not process Tx ring in case of Tx ring resource error */
2500 if (mp->tx_resource_err)
2501 return ETH_QUEUE_FULL;
2504 * The hardware requires that each buffer that is <= 8 bytes
2505 * in length must be aligned on an 8 byte boundary.
2507 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2508 printk(KERN_ERR
2509 "mv643xx_eth port %d: packet size <= 8 problem\n",
2510 mp->port_num);
2511 return ETH_ERROR;
2514 mp->tx_ring_skbs++;
2515 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2517 /* Get the Tx Desc ring indexes */
2518 tx_desc_curr = mp->tx_curr_desc_q;
2519 tx_desc_used = mp->tx_used_desc_q;
2521 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2523 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2525 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2526 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2527 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2528 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2530 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2531 ETH_BUFFER_OWNED_BY_DMA;
2532 if (command & ETH_TX_FIRST_DESC) {
2533 tx_first_desc = tx_desc_curr;
2534 mp->tx_first_desc_q = tx_first_desc;
2535 first_descriptor = current_descriptor;
2536 mp->tx_first_command = command;
2537 } else {
2538 tx_first_desc = mp->tx_first_desc_q;
2539 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2540 BUG_ON(first_descriptor == NULL);
2541 current_descriptor->cmd_sts = command;
2544 if (command & ETH_TX_LAST_DESC) {
2545 wmb();
2546 first_descriptor->cmd_sts = mp->tx_first_command;
2548 wmb();
2549 ETH_ENABLE_TX_QUEUE(mp->port_num);
2552 * Finish Tx packet. Update first desc in case of Tx resource
2553 * error */
2554 tx_first_desc = tx_next_desc;
2555 mp->tx_first_desc_q = tx_first_desc;
2558 /* Check for ring index overlap in the Tx desc ring */
2559 if (tx_next_desc == tx_desc_used) {
2560 mp->tx_resource_err = 1;
2561 mp->tx_curr_desc_q = tx_first_desc;
2563 return ETH_QUEUE_LAST_RESOURCE;
2566 mp->tx_curr_desc_q = tx_next_desc;
2568 return ETH_OK;
2570 #else
2571 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2572 struct pkt_info *p_pkt_info)
2574 int tx_desc_curr;
2575 int tx_desc_used;
2576 struct eth_tx_desc *current_descriptor;
2577 unsigned int command_status;
2579 /* Do not process Tx ring in case of Tx ring resource error */
2580 if (mp->tx_resource_err)
2581 return ETH_QUEUE_FULL;
2583 mp->tx_ring_skbs++;
2584 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2586 /* Get the Tx Desc ring indexes */
2587 tx_desc_curr = mp->tx_curr_desc_q;
2588 tx_desc_used = mp->tx_used_desc_q;
2589 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2591 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2592 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2593 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2594 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2596 /* Set last desc with DMA ownership and interrupt enable. */
2597 wmb();
2598 current_descriptor->cmd_sts = command_status |
2599 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2601 wmb();
2602 ETH_ENABLE_TX_QUEUE(mp->port_num);
2604 /* Finish Tx packet. Update first desc in case of Tx resource error */
2605 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2607 /* Update the current descriptor */
2608 mp->tx_curr_desc_q = tx_desc_curr;
2610 /* Check for ring index overlap in the Tx desc ring */
2611 if (tx_desc_curr == tx_desc_used) {
2612 mp->tx_resource_err = 1;
2613 return ETH_QUEUE_LAST_RESOURCE;
2616 return ETH_OK;
2618 #endif
2621 * eth_tx_return_desc - Free all used Tx descriptors
2623 * DESCRIPTION:
2624 * This routine returns the transmitted packet information to the caller.
2625 * It uses the 'first' index to support Tx desc return in case a transmit
2626 * of a packet spanned over multiple buffer still in process.
2627 * In case the Tx queue was in "resource error" condition, where there are
2628 * no available Tx resources, the function resets the resource error flag.
2630 * INPUT:
2631 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2632 * struct pkt_info *p_pkt_info User packet buffer.
2634 * OUTPUT:
2635 * Tx ring 'first' and 'used' indexes are updated.
2637 * RETURN:
2638 * ETH_ERROR in case the routine can not access Tx desc ring.
2639 * ETH_RETRY in case there is transmission in process.
2640 * ETH_END_OF_JOB if the routine has nothing to release.
2641 * ETH_OK otherwise.
2644 static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2645 struct pkt_info *p_pkt_info)
2647 int tx_desc_used;
2648 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2649 int tx_busy_desc = mp->tx_first_desc_q;
2650 #else
2651 int tx_busy_desc = mp->tx_curr_desc_q;
2652 #endif
2653 struct eth_tx_desc *p_tx_desc_used;
2654 unsigned int command_status;
2656 /* Get the Tx Desc ring indexes */
2657 tx_desc_used = mp->tx_used_desc_q;
2659 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2661 /* Sanity check */
2662 if (p_tx_desc_used == NULL)
2663 return ETH_ERROR;
2665 /* Stop release. About to overlap the current available Tx descriptor */
2666 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err)
2667 return ETH_END_OF_JOB;
2669 command_status = p_tx_desc_used->cmd_sts;
2671 /* Still transmitting... */
2672 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2673 return ETH_RETRY;
2675 /* Pass the packet information to the caller */
2676 p_pkt_info->cmd_sts = command_status;
2677 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
2678 mp->tx_skb[tx_desc_used] = NULL;
2680 /* Update the next descriptor to release. */
2681 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2683 /* Any Tx return cancels the Tx resource error status */
2684 mp->tx_resource_err = 0;
2686 BUG_ON(mp->tx_ring_skbs == 0);
2687 mp->tx_ring_skbs--;
2689 return ETH_OK;
2693 * eth_port_receive - Get received information from Rx ring.
2695 * DESCRIPTION:
2696 * This routine returns the received data to the caller. There is no
2697 * data copying during routine operation. All information is returned
2698 * using pointer to packet information struct passed from the caller.
2699 * If the routine exhausts Rx ring resources then the resource error flag
2700 * is set.
2702 * INPUT:
2703 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2704 * struct pkt_info *p_pkt_info User packet buffer.
2706 * OUTPUT:
2707 * Rx ring current and used indexes are updated.
2709 * RETURN:
2710 * ETH_ERROR in case the routine can not access Rx desc ring.
2711 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2712 * ETH_END_OF_JOB if there is no received data.
2713 * ETH_OK otherwise.
2715 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2716 struct pkt_info *p_pkt_info)
2718 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2719 volatile struct eth_rx_desc *p_rx_desc;
2720 unsigned int command_status;
2722 /* Do not process Rx ring in case of Rx ring resource error */
2723 if (mp->rx_resource_err)
2724 return ETH_QUEUE_FULL;
2726 /* Get the Rx Desc ring 'curr and 'used' indexes */
2727 rx_curr_desc = mp->rx_curr_desc_q;
2728 rx_used_desc = mp->rx_used_desc_q;
2730 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2732 /* The following parameters are used to save readings from memory */
2733 command_status = p_rx_desc->cmd_sts;
2734 rmb();
2736 /* Nothing to receive... */
2737 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2738 return ETH_END_OF_JOB;
2740 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2741 p_pkt_info->cmd_sts = command_status;
2742 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2743 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2744 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2746 /* Clean the return info field to indicate that the packet has been */
2747 /* moved to the upper layers */
2748 mp->rx_skb[rx_curr_desc] = NULL;
2750 /* Update current index in data structure */
2751 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2752 mp->rx_curr_desc_q = rx_next_curr_desc;
2754 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2755 if (rx_next_curr_desc == rx_used_desc)
2756 mp->rx_resource_err = 1;
2758 return ETH_OK;
2762 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2764 * DESCRIPTION:
2765 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2766 * next 'used' descriptor and attached the returned buffer to it.
2767 * In case the Rx ring was in "resource error" condition, where there are
2768 * no available Rx resources, the function resets the resource error flag.
2770 * INPUT:
2771 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2772 * struct pkt_info *p_pkt_info Information on returned buffer.
2774 * OUTPUT:
2775 * New available Rx resource in Rx descriptor ring.
2777 * RETURN:
2778 * ETH_ERROR in case the routine can not access Rx desc ring.
2779 * ETH_OK otherwise.
2781 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2782 struct pkt_info *p_pkt_info)
2784 int used_rx_desc; /* Where to return Rx resource */
2785 volatile struct eth_rx_desc *p_used_rx_desc;
2787 /* Get 'used' Rx descriptor */
2788 used_rx_desc = mp->rx_used_desc_q;
2789 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2791 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2792 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2793 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2795 /* Flush the write pipe */
2797 /* Return the descriptor to DMA ownership */
2798 wmb();
2799 p_used_rx_desc->cmd_sts =
2800 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2801 wmb();
2803 /* Move the used descriptor pointer to the next descriptor */
2804 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2806 /* Any Rx return cancels the Rx resource error status */
2807 mp->rx_resource_err = 0;
2809 return ETH_OK;
2812 /************* Begin ethtool support *************************/
2814 struct mv643xx_stats {
2815 char stat_string[ETH_GSTRING_LEN];
2816 int sizeof_stat;
2817 int stat_offset;
2820 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2821 offsetof(struct mv643xx_private, m)
2823 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2824 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2825 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2826 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2827 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2828 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2829 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2830 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2831 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2832 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2833 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2834 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2835 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2836 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2837 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2838 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2839 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2840 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2841 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2842 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2843 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2844 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2845 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2846 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2847 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2848 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2849 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2850 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2851 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2852 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2853 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2854 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2855 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2856 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2857 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2858 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2859 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2860 { "collision", MV643XX_STAT(mib_counters.collision) },
2861 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2864 #define MV643XX_STATS_LEN \
2865 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2867 static int
2868 mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2870 struct mv643xx_private *mp = netdev->priv;
2871 int port_num = mp->port_num;
2872 int autoneg = eth_port_autoneg_supported(port_num);
2873 int mode_10_bit;
2874 int auto_duplex;
2875 int half_duplex = 0;
2876 int full_duplex = 0;
2877 int auto_speed;
2878 int speed_10 = 0;
2879 int speed_100 = 0;
2880 int speed_1000 = 0;
2882 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2883 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
2885 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
2887 if (mode_10_bit) {
2888 ecmd->supported = SUPPORTED_10baseT_Half;
2889 } else {
2890 ecmd->supported = (SUPPORTED_10baseT_Half |
2891 SUPPORTED_10baseT_Full |
2892 SUPPORTED_100baseT_Half |
2893 SUPPORTED_100baseT_Full |
2894 SUPPORTED_1000baseT_Full |
2895 (autoneg ? SUPPORTED_Autoneg : 0) |
2896 SUPPORTED_TP);
2898 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
2899 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
2901 ecmd->advertising = ADVERTISED_TP;
2903 if (autoneg) {
2904 ecmd->advertising |= ADVERTISED_Autoneg;
2906 if (auto_duplex) {
2907 half_duplex = 1;
2908 full_duplex = 1;
2909 } else {
2910 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
2911 full_duplex = 1;
2912 else
2913 half_duplex = 1;
2916 if (auto_speed) {
2917 speed_10 = 1;
2918 speed_100 = 1;
2919 speed_1000 = 1;
2920 } else {
2921 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
2922 speed_1000 = 1;
2923 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
2924 speed_100 = 1;
2925 else
2926 speed_10 = 1;
2929 if (speed_10 & half_duplex)
2930 ecmd->advertising |= ADVERTISED_10baseT_Half;
2931 if (speed_10 & full_duplex)
2932 ecmd->advertising |= ADVERTISED_10baseT_Full;
2933 if (speed_100 & half_duplex)
2934 ecmd->advertising |= ADVERTISED_100baseT_Half;
2935 if (speed_100 & full_duplex)
2936 ecmd->advertising |= ADVERTISED_100baseT_Full;
2937 if (speed_1000)
2938 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2942 ecmd->port = PORT_TP;
2943 ecmd->phy_address = ethernet_phy_get(port_num);
2945 ecmd->transceiver = XCVR_EXTERNAL;
2947 if (netif_carrier_ok(netdev)) {
2948 if (mode_10_bit)
2949 ecmd->speed = SPEED_10;
2950 else {
2951 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
2952 ecmd->speed = SPEED_1000;
2953 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
2954 ecmd->speed = SPEED_100;
2955 else
2956 ecmd->speed = SPEED_10;
2959 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
2960 ecmd->duplex = DUPLEX_FULL;
2961 else
2962 ecmd->duplex = DUPLEX_HALF;
2963 } else {
2964 ecmd->speed = -1;
2965 ecmd->duplex = -1;
2968 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2969 return 0;
2972 static void
2973 mv643xx_get_drvinfo(struct net_device *netdev,
2974 struct ethtool_drvinfo *drvinfo)
2976 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2977 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2978 strncpy(drvinfo->fw_version, "N/A", 32);
2979 strncpy(drvinfo->bus_info, "mv643xx", 32);
2980 drvinfo->n_stats = MV643XX_STATS_LEN;
2983 static int
2984 mv643xx_get_stats_count(struct net_device *netdev)
2986 return MV643XX_STATS_LEN;
2989 static void
2990 mv643xx_get_ethtool_stats(struct net_device *netdev,
2991 struct ethtool_stats *stats, uint64_t *data)
2993 struct mv643xx_private *mp = netdev->priv;
2994 int i;
2996 eth_update_mib_counters(mp);
2998 for(i = 0; i < MV643XX_STATS_LEN; i++) {
2999 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3000 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3001 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3005 static void
3006 mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
3008 int i;
3010 switch(stringset) {
3011 case ETH_SS_STATS:
3012 for (i=0; i < MV643XX_STATS_LEN; i++) {
3013 memcpy(data + i * ETH_GSTRING_LEN,
3014 mv643xx_gstrings_stats[i].stat_string,
3015 ETH_GSTRING_LEN);
3017 break;
3021 static struct ethtool_ops mv643xx_ethtool_ops = {
3022 .get_settings = mv643xx_get_settings,
3023 .get_drvinfo = mv643xx_get_drvinfo,
3024 .get_link = ethtool_op_get_link,
3025 .get_sg = ethtool_op_get_sg,
3026 .set_sg = ethtool_op_set_sg,
3027 .get_strings = mv643xx_get_strings,
3028 .get_stats_count = mv643xx_get_stats_count,
3029 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3032 /************* End ethtool support *************************/